
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-1996

Integrating hypertext with information systems through dynamic Integrating hypertext with information systems through dynamic

mapping mapping

Jiangling Wan
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wan, Jiangling, "Integrating hypertext with information systems through dynamic mapping" (1996).
Dissertations. 1020.
https://digitalcommons.njit.edu/dissertations/1020

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1020?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of th is reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

UMI Number: 9635198

Copyright 1996 by Wan, Jiangling
All rights reserved.

UMI Microform 9635198
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

ABSTRACT

INTEGRATING HYPERTEXT W ITH INFORMATION SYSTEMS
THROUGH DYNAM IC M APPING

by
Jiangling Wan

T his d isserta tion presents a general hypertext model (G IIM I) supporting

in teg ration of hypertex t and inform ation system s through dynam ic m apping. Infor

m ation system s in tegrated based on th is model benefit from hypertex t function

alities (such as linking, backtracking, history, guided tours, anno ta tions , etc.)

while preserving their own com puta tion capabilities. A lthough system s supporting

in teg ration of hypertex t and interface-oriented inform ation system s do exist in

hypertex t litera tu re , there is no existing model or system effectively supporting

in teg ra tion of hypertex t and com putation-orien ted inform ation system s. GIIMT

m akes its m ajor contribu tions by both extending and specifying the well-known

D ex ter H ypertex t Reference M odel. G IIM I extends the D exter model to overcome

its lim ita tions. G IIM I also m aps its capabilities to the ex tended D exter model

w ith ap p ro p ria te specifications to m eet the requirem ents of our dynam ic m apping

environm ent. T he extended D exter functions apply bridge laws in the hypertex t

knowledge base to m ap inform ation system objects and relationships to hypertex t

construc ts a t run-tim e. We have im plem ented GHM I as a p ro to type to prove its

feasibility.

INTEGRATING HYPERTEXT W ITH INFORMATION SYSTEMS
THROUGH DYNAM IC M APPING

by
Jiangling Wan

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

May 1996

Copyright © 1996 by Jiangling W an

ALL R IG H T S RESERVED

APPROVAL PAGE

INTEGRATING HYPERTEXT WITH INFORMATION SYSTEMS
THROUGH DYNAMIC MAPPING

Jiangling Wan

Dr/Michael P. Bieber, Dissertation Advisor 	 'bate
Assistant Professor, CIS Department, NJIT

Dr. Peter A. Ng, Committee Member 	 Date
Professor and Chairman of CIS Department, NJIT

Dr. James A.M. McHugh, Committee Member 	 Date
Professor and Associate Chairman of CIS Department, NJIT

Dr. Tomas Isakowitz, Committee Member 	 Date
Assistant, Professor, Information Science Department, New York University

Dr. Fabio Vitali, Committee Member 	 Da te
Visiting Researcher, Department of Mathematics, University of Bologna

Dr. Hua Hua, Committee Member 	 Date
Assistant Professor, CIS Department, NJIT

Dr. B.A. Suresh, Committee Member 	 Date
Assistant Professor, CIS Department, NJIT

BIOGRAPHICAL SKETCH

Author: 	Jiangling Wan

Degree: 	Doctor of Philosophy

Date: 	 May 1996

Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, New Jersey, USA, 1996

• Master of Science in Computer Engineering,
Beijing University of Posts and Telecommunications, Beijing, P.R. China, 1987

• Bachelor of Science in Computer Science,
Tshinghua University, Beijing, P.R. China, 1985

Major: 	 Computer Science

Publications:

.1. Wan and M. Bieber, "A Logic-based Approach to Integrating Hypertext and
Information Systems," Decision Support Systems (submitted), 1996.

J. Wan and M. Bieber, "GHMI: A General Hypertext Data Model Supporting
Integration of Hypertext and Information Systems," in Proceedings of the
Twenty-Ninth Annual Hawaii International Conference on System Sciences
(HICSS), Vol. 2, pages 47-56, Maui, Hawaii, Jan. 1996.

J. Wan and M. Bieber and J.T.L. Wang and P.A. Ng, "LHM: A Logic-based
Hypertext Data Model for Integrating Hypertext and Information Systems," in
Proceedings of the Twenty-Eighth Annual Hawaii International Conference on
System Sciences (HICSS), Vol. III, pages 350-359, Maui, Hawaii, Jan. 1995.

M. Bieber and J. Wan, "Backtracking in a Multiple-window Hypertext Environment,"
in Proceedings of ACM European Conference on Hypertext Technology, pages
158-166, Edinburgh, Scotland, Sept. 1994.

J. Wan and M. Bieber and J.T.L. Wang and P.A. Ng, "Document Management
Through Hypertext: A Logic Modeling Approach," in Proceedings of the
Twenty-Seventh Annual Hawaii International Conference on System Sciences
(HICSS), Vol. III, pages 558-568, Maui, Hawaii, Jan. 1994.

iv

J. Wan and M. B ieber and J.T .L . W ang and P.A. Ng, “GHMI: A General
Hypertext, D a ta Model for In tegrating H ypertex t and Inform ation System s,"
in Proceedings o f W orkshop on Intelligent Hypertext, in C onjunction with the
A C M Conference on Inform ation and Knowledge M anagem ent, G aithersburg ,
M aryland, Dec. 2, 1994.

.1. W an and C. G an, “Realizing Conference Calls on D igital S PC ,” Telecom m uni
cations Science , pages 25-26, 7(1), 1991.

J. W an and C. G an, “M odular Software Design on Call-H andling Process M anagem ent,”
Telecom m unications Science , pages 19-22, 6(3), 1990.

J . W an and C. G an, “A P ractical C om puter Com m unication P rotocol for R eal-T im e
System s—IIC A C ,” Journal o f Beijing University o f Posts and Telecom m uni
cations, pages 73-78, 13(2), 1990.

This work is dedicated to
my m other, my father,

my husband Chuanyong and my son Eric

vi

ACKNOW LEDGMENT

I would like to express my deep appreciation to Dr. Michael Bieber, my advisor,

for his fruitful resources, invaluable support and constan t encouragem ent. T’d like to

th an k Dr. P e te r A. Ng for help on early d rafts and th ank Dr. Fabio V itali for help

on refining the final work. T hanks are also given to Dr. Jam es A.M. M cHugh, Dr.

Tom as Isakowitz, Dr. H ua H ua and Dr. B.A. Suresh for actively p a rtic ip a tin g on

my com m ittee.

TABLE OF CONTENTS

Chapter

1 IN T R O D U C T IO N ..

1.1 M o tiv a tio n ...

1.2 A p p ro ach ..

1.3 C o n tr ib u tio n s ..

1/1 An O u tlin e ...

2 M OTIVATION AND R ELA TED W O RK . . .

2.1 O pen H ypertex t S y s te m s

2.1.1 Sun’s Link S e rv ice

2.1.2 M ic ro c o sm ..

2.1.3 S P 3 ...

2.1.4 C h im e ra ...

2.1.5 M u ltic a rd ..

2.1.G C o n c lu s io n ..

2.2 H ypertex t and D atabases

2.3 T he D exter H ypertex t Reference Model

2.3.1 An Overview of the D exter Model

2.3.2 Problem s in D exter

2.3.3 D exter-based M odels and System s

2.3.4 C o n c lu s io n ..

2.4 S u m m a ry ..

3 GIIM I: BASIC C O N C E P T S

3.1 A System A rchitecture

3.2 Object. C la s s e s ...

3.3 A n c h o rs ...

viii

Chapter Page

3. 4 L in k s ... 38

3.4.1 T yped L in k s .. 38

3.4.2 Link S p e c if ie r s ... 41

3.5 C o m p o n e n ts ... 43

3.5.1 A tom ic C o m p o n e n ts .. 4.3

3.5.2 C om posite C o m p o n e n ts .. 43

3.5.3 V irtua l and C om puted C o m p o n e n ts ... 45

3.6 N avigation S t r u c tu r e s ... 47

3.6.1 B o o k m a rk s ... 48

3.6.2 Network O v erv iew s... 48

3.6.3 G u id e d -T o u rs .. 49

3.7 A Bridge Law Tem plate .. 52

3.7.1 C om ponent Bridge L a w s .. 53

3.7.2 Link Bridge L a w s .. 5.3

3.7.3 M RDC: A M apping Rule Definition C o n v e n tio n 55

3.7.4 E xecuting a Bridge L a w ... 57

3.7.5 Bridge Law E x a m p le s .. 59

3.8 Session S tru c tu re s ... 61

3.8.1 T he E vent S t r u c tu r e .. 62

3.8.2 System Traversal L o g s ... 63

3.9 S u m m a ry .. 64

4 GIIM I: A D E X TER -B A SE D H Y PE R T E X T M ODEL .. 67

4.1 The D exter Model .. 67

4.2 E xtensions to D e x te r ... 72

4.2.1 C o m p o n e n ts ... 73

4.2.2 A n c h o rs ... 74

4.2.3 L in k s .. 76

ix

Chapter Page

4.3 Specifications to D e x te r .. 77

4.3.1 C om ponent In fo rm a tio n .. 78

4.3.2 U I D s .. 79

4.3.3 C om ponents and the Accessor F u n c tio n ... 80

4.3.4 Anchors and Anchor Resolver F u n c t io n s .. 83

4.3.5 Links and the Resolver F u n c tio n ... 85

4.4 S u m m a ry ... 87

5 M A PPIN G RELA TIO N A L DATABASES T O H Y P E R T E X T 90

5.1 Identifying RDBM S O bjects ... 90

5.2 A pplying H ypertex t Functionality .. 91

5.3 The Schem a D B ... 94

5.4 RD BM S Bridge Law Design G u id e lin es .. 96

5.5 RD BM S Bridge L a w s ... 99

5.5.1 O bject Bridge L aw s.. 99

5.5.2 S tru c tu re Link Bridge L a w s ... 104

5.5.3 O peration Link Bridge Laws .. 106

5.5.4 Schem a-Based Bridge L a w s ... I l l

5.5.5 M eta-inform ation B L s .. 119

5.6 S u m m a ry .. 122

6 IM PLEM EN TA TIO N : T H E GIIM I P R O T O T Y P E .. 125

6.1 The Im plem entation A rc h ite c tu re ... 125

6.1.1 T he H ypertex t E n g in e .. 125

6.1.2 T h e C O I S s .. 129

6.1.3 T he I O S ... 130

6.1.4 The COIS H a n d le rs ... 133

6.1.5 T he IOS H andler .. 137

6.2 Tnter-process C o m m u n ica tio n ... 138

x

Chapter Page

6.2.1 The Com m unication P ro to c o l.. 138

6.2.2 D ynam ic M apping: A C om m unication S c e n a r io 142

6.3 Im plem enting G IIM I F u n c tio n a litie s .. 143

6.3.1 C o m p o n e n ts .. 143

6.3.2 A n c h o rs .. 146

6.3.3 T yped L in k s .. 146

6.3.4 N a v ig a tio n ... 147

6.4 C urren t Im plem entation S t a t u s .. 156

6.5 S u m m a ry .. 158

7 SUM M ARY AND FU T U R E W O R K ... 161

7.1 Guidelines: Using G H M I ... 161

7.2 Com parison w ith O ther System s and M o d e ls .. 163

7.2.1 O pen H ypertex t S y s te m s ... 163

7.2.2 T he D exter-based Models .. 169

7.2.3 GHM I and W W W .. 175

7.3 GH M I C ontribu tions and L im ita tio n s .. 176

7.3.1 GHM I C o n tr ib u tio n s ... 176

7.3.2 Po ten tial L im ita tio n s ... 177

7.4 F u tu re R e s e a rc h ... 178

7.5 S u m m a ry ... 182

A PPEN D IX A SECON D M ODELING DOM AIN: T E X P R O S 185

A PPEN D IX B SA M PLE SOURCE CO D E F O R DATABASE H A N D LER . . 193

R E FE R E N C E S ... 216

LIST OF TABLES

Table Page

3.1 A Component, Bridge Law T e m p la te ... 5.3

3.2 A Link Bridge Law T e m p la te .. 53

3.3 Bridge Law B L T a M e l.. 60

3.3 Bridge Law B L R e fT o T a b le ... 61

5.1 Bridge Law B L R e c o rd .. 100

5.2 Bridge Law BL F i e ld .. 100

5.3 Bridge Law B L T a b le] .. 101

5.3 Bridge Law B L T a 6 /e 2 .. 102

5.5 Bridge Law B L D a ta b a s e .. 102

5.6 Bridge Law B B S c h e m a ... 103

5.7 Bridge Law BLE R D iagram . .. 103

5.8 Bridge Law B L R eco rd T o T a b le ... 105

5.9 Bridge Law BLF ie ld T o T a b le .. 105

5.10 Bridge Law BLT a b le T o D a ta b a se ... 106

5.11 Bridge Law B B R ec o rd T o D a ta b a se .. 107

5.12 Bridge Law BLF ie ld T o D a ta b a .se ... 107

5.13 Bridge Law B L Q u c r y ... 108

5.13 Bridge Law B L C o u r se Q u e r y ... 110

5.15 Bridge Law B B S a m e S c h e m a ... 112

5.16 Bridge Law B L S a m e K e y ... 113

5.17 Bridge Law BLE R R e la t io n .. 113

5.18 Bridge Law BL R e fT o T a b le .. 115

5.19 Bridge Law B L F o r e ig n K e y F ie ld ... 116

5.20 Bridge Law B h F o r e A g n K e y V a lu e .. 117

xii

Table Page

5.21 B ridge Law BLS c h e m a T o T a b le .. 118

5.22 B ridge Law B L D B T o E R D ia g r a m .. 119

5.23 B ridge Law B L M e ta R e c o r d ... 120

5.24 B ridge Law B L M eta F i e l d ... 121

5.25 B ridge Law B L M e ta T a b le ... 121

5.26 B ridge Law B L M e ta D a ta b a s e ... 122

6.1 G IIM IC P M essages... 140

A .l B ridge Law B L F o ld e r ... 189

A.2 B ridge Law B L F r .. 190

A.3 B ridge Law BLD e p e n d s O n .. 191

A.4 B ridge Law BL R e I T o F o ld e r ... 192

xiii

LIST OF FIGURES

Figure Page

2.1 T he Three-Layer D exter Model .. 19

2.2 T he D exter Com ponent R epresentation .. 21

3.1 A GHM I System A r c h ite c tu re32

3.2 GHM I O bject Class H ie ra rc h y ... 3'I

3.3 A G uided-tour Exam ple .. 50

5.1 D atabase O b je c t s .. 91

5.2 A Schema DB R epresentation ... 95

5.3 A Schem a DB Exam ple: S m allS choo l-S chem a.. 97

6.1 T he GHM I Im plem entation A rch itec tu re ... 126

6.2 GHM I P ro to type IOS Screen Exam ple 1 ... 134

6.3 GHM I P ro to type IOS Screen Exam ple 2 .. 135

6.4 An E R Diagram E x a m p le ... 136

6.5 The Process Com m unication A rc h ite c tu re .. 139

6.6 A C om m unication S c e n a r io .. 144

7.1 A rchitecture Com parison w ith Open H ypertex t S y s te m s 164

7.2 Model Com parison w ith O pen H ypertex t S y s te m s ... 165

7.3 Com parison w ith O ther D exter-based M o d e ls .. 171

A .l A D epartm ent C hairperson’s Logical File S t r u c tu r e ... 186

A .2 An Exam ple H yperdocum ent for T E X P R O S ... 187

xiv

CHAPTER 1

INTRODUCTION

T his chap ter presents an overview of this d isserta tion , including its m otivation,

approach, contribu tions and chap ter outlines.

1.1 Motivation

T he overall goal of th is research is to add hypertex t functionality to inform ation

system s and therefore m ake these system s more friendly, powerful and effective

for users. Incorporating direct, context-sensitive access to pieces of inform ation

and th e ir in terrela tionships w ithin inform ation system s im proves system effec

tiveness. We have developed a general hypertext,1 d a ta model GH M I (i.e., a General

H ypertex t d a ta Model supporting Integration) [94, 93], which supports in tegration of

hypertex t w ith com putation-orien ted inform ation system s (called COIS th roughou t

th is thesis). COISs dynam ically generate their o u tp u ts [6, 10, 80, 44], in con trast to

m ost hypertex t system s which display predeclared contents. Therefore, in COISs,

users are unable to create an inform ation network m anually.

In general, there are two d istinct approaches for in teg ra ting hypertex t w ith

inform ation systems: e ither including hypertext functionality as p a rt of the in itial

prem ises of the inform ation system design, or adding hypertex t functionality to

existing inform ation system s through some dynam ic m apping m echanism . We

adop t the second approach, i.e., in tegrating hypertex t and inform ation system s

dynam ically. Given a GHM I hypertex t system , inform ation system s’ developers (or

builders) in tegrate th e ir system s by defining bridge laws. Bridge laws are schem ata

LWe do not distinguish the terms hypertext and hypermedia. We always use hypertext.
with the belief that our discussion applies to multimedia environments with proper
extensions.

1

2

which specify the dom ain m apping from an inform ation system to the hypertex t

system . This ensures th a t the inform ation system rem ains hypertext-unaware and

the im posed changes are m inim al— two of our m ajor contribu tions. We build GIIMT

upon the concept of generalized hypertext [11, 12], developed to im prove the concept

of basic hypertext employed by m any existing system s. G eneralized hypertex t

in troduces dynam ic m apping, which allows the hypertex t system to infer links at,

run tim e based on s tru c tu ra l specifications of th e inform ation system application .

T he m ajority of to d ay ’s hypertex t system s are still designed for standalone,

isolated applications [54]. They are usually non-in tegrated specialized system s

[58, 67, 70]. To take advantage of hypertext functionalities (navigation, an n o ta tio n ,

and s tru c tu ra l representation) users have to give up the fam iliar applications they

use everyday and rebuild th e ir inform ation fram ework to fit in to these specialized

system s. By con trast, in an in tegrated system , readily-available hypertex t function

alities can be added to inform ation system s w ith slight cooperative ad ju stm en t [57].

R ecent efforts tow ards open hypertex t system s [56, 58, 75, 78, 91] have a llev iated

some of the lim itations of specialized system s, especially for display-oriented infor

m ation system s which p rim arily facilitate accessing and m anaging large docum ent-

oriented inform ation [10]. However, none of these efforts su p p o rt COISs which

calcu late or otherw ise generate their ou tpu ts dynam ically as effectively as our

approach does. Exam ples of COISs include docum ent m anagem ent system s, expert

system s, decision suppo rt system s and database m anagem ent system s [8, 10]. We

have developed GHM I to suppo rt in tegration of a varie ty of COISs w ith hypertex t.

System s im plem ented according to GHM I function w ith in a dynam ic m apping

environm ent. Furtherm ore, as described in [8, 6], bridge laws enable in teg ration

w ith m inim al change to the CO IS— often the hypertex t system just, has to in tercep t

in ternal com m unications w ith the original COIS interface.

3

1.2 Approach

Although hypertex t has been evolving rapidly, no w idely-accepted hypertex t da ta

model facilitates our goal for COIS in tegration . O ur efforts in th is d irection dem on

s tra te the power of dom ain m apping. In [96], we presented a logic m odeling approach ,

which m apped the dom ain of docum ent m anagem ent to the dom ain of hypertex t.

We fu rther extended th is work with com posite objects and higher-level construc ts

[95, 97]. In add ition to dom ain m apping, hypertex t system s based on ou r model

will also provide users w ith a rich set of navigation facilities. For exam ple, we

incorporate task-based backtracking [13] to facilitate navigation w ithin m ulti-w indow

environm ents.

Nevertheless as we develop our own hypertex t d a ta model, we take advan tage of

o th ers’ research. We chose the widely-recognized D exter H ypertex t Reference Model

[47] as the basis of GHM I. The D exter model (see §2.3) establishes a robust m odeling

foundation through a layered system architecture. D exter makes significant con tri

butions to providing a comm on, principled in terchange s tan d ard for diverse hypertex t

system s. Its separa ting hypertex t into three layers makes m odeling conceptually

clearer and m ore understandable. H ypertex t researchers addressed the usefulness

and robustness of D exter in a panel a t the IIy p e rte x t’89 conference and in research

using D exter as a paradigm of system interchange and hypertex t m odeling [38,

41, 39, 37, 40, 66, 50, 62, 35]. Building a hypertex t model as a D exter-based

hypertex t model would enable us to share and exchange common in terests and

ideas w ith o ther researchers. However, D exter is a general ab s trac t model grown

from a variety of existing system s. For our m odeling goal of in teg rating COISs,

we found some obstacles in m odeling GHM I using D exter. D exter has problem s

regarding com posite com ponents, anchors and link specifiers. We needed to extend

D exter to overcome these problem s. We dem onstra te the com patib ility of G H M I and

D exter by m odeling G IIM I’s capabilities using the extended D exter w ith ap p ro p ria te

4

specifications, including com ponent classes, typed links, com posite s truc tu res , typed

anchors, navigation s tructu res and the storage layer functions. T he extended D exter

storage layer functions (i.e., the accessor function, the com ponent resolver function

and the anchor resolver function) apply bridge laws in the hypertex t knowledge base

to m ap COISs to hypertex t a t run-tim e.

In th is thesis, we sum m arize our research to date in developing GHM I.

We illu s tra te by m apping relational da tabase m anagem ent system s (RD BM S) to

hypertex t. T his in tegration enables the RDBM S user to take advantage of hypertex t

functionalities (e.g., navigation, anno ta tion , analysis support, etc., as shown in §5.2)

while preserving s tandard RDBM S com putational facilities (e.g., query processing).

We also im plem ented G IIM I in a p ro to type to prove its concepts and functionality.

1.3 Contributions

G IIM I aim s a t enhancing COISs by adding hypertex t functionalities th rough

dynam ic m apping facilities. In tegrating w ith GHM I only imposes m inim al changes

on COISs. We view G H M I’s m ajor contribu tions from the following four aspects:

(1) GH M I vs. B ieber et a l.’s work [12, 9]: Taking its m otivation from B ieber et, a l.’s

original concept of bridge laws, GHM I extends and formalizes bridge laws w ith in

a com prehensive hypertex t d a ta model. GHM I m odels com posites which are not

found in B ieber et a l.’s work. Furtherm ore, GHM I formalizes the dynam ic m apping

concept in to a hypertex t d a ta model. Also, GHM I extended and im plem ented the

general C O IS /h y p ertex t in tegration arch itec tu re originally proposed by Dr. B ieber

bu t not yet im plem ented, as a running pro to type; (2) GHM I as a hypertex t d a ta

model: As a general hypertext d a ta model for supporting hypertex t and COIS

in tegration , GHM I uniquely provides a comprehensive set of hypertex t function

alities regarding hypertex t objects (com posites, behavioral link typing, and dynam ic

anchors), dom ain m apping m echanism s (bridge laws) and a variety of navigation

5

features (guided-tours, task-based backtracking, history, bookm arks, overviews);

(3) GHMT as a D exter-based model: GHM I uniquely com bines specific extensions

and specifications on D exter to m eet the requirem ents of our dynam ic dom ain

m apping environm ent. T his dem onstra tes both G H M I’s and D ex ter’s robustness

and generality. Extensions are in troduced on D exter’s com posites, link specifiers

and anchors. To m ap all GHM I capabilities to D exter, GHM I specifies D ex ter’s

com ponents, links, anchors, the resolver function and the accessor function; (4)

T he GHM I prototype: T he GHM I pro to type is th e first hypertex t system which

im plem ents the general arch itec tu re of supporting dynam ic in tegration of hypertex t

and m ultiple COTSs. I t proves the feasibility of the arch itec tu re and the GHMT

m odel.

1.4 An Outline

T his thesis is organized as follows. Each chapter contains a sum m ary section a t

its end. C h ap te r 2 discusses related work of o ther researchers regarding open

hypertex t system s, com bining hypertex t and da tabase technologies, the D exter

H ypertex t Reference Model and D exter-based models. We m otivate GHMT by

identifying the lim itations of these approaches. We also review o ther efforts on

add ing hypertex t functionality to DBM S— our sam ple dom ain. These efforts aim

a t providing trad itional DBM Ss w ith a hypertex t-based design and navigation

environm ent. C hap ter 3 presents G H M I’s basic concepts and functionality, including

an im plem enta tion system arch itectu re and basic elem ents regard ing com ponents,

links, anchors, navigation s truc tu res and the bridge law definition m echanism .

C h ap te r 4 m odels GHM I using D exter and builds GHM I as a D exter-based model

to ensure g rea ter in tegrity in the hypertex t comm unity. After first in troducing

the form alized D exter model, we present extensions to D exter to cover GHM I and

also specifications needed to m ap GHM I capabilities. C h ap te r 5 illustra tes how

6

th e GHM I hypertex t could im prove RDBM S and how to apply the bridge law

m echanism to m ap RDBM S to G H M I’s hypertex t model. C hap ter 6 discusses

a detailed GH M I im plem entation p ro to type a rch itec tu re and reports the cu rren t

GHM I im plem entation sta tu s . C hap ter 7 concludes th is thesis by discussing GH M I

in tegration guidelines, com paring GHM I w ith o ther hypertex t m odels and system s,

ou tlin ing po ten tia l research directions based on extensions to GHM I including

connecting GHM I to W W W , and identifying GH M I con tribu tions and lim ita tions.

To dem onstra te the generality of GHM I, A ppendix A gives bridge law exam ples

for m apping ano th er CO IS dom ain (a docum ent docum ent m anagem ent system

called T E X PR O S) which is quite different from RDBM Ss. A ppendix B gives sam ple

da tabase handler source code for generating and executing bridge laws.

CHAPTER 2

MOTIVATION AND RELATED WORK

T he effectiveness of inform ation system s can be im proved greatly by in troducing

hypertex t features (or functionalities) including inform ation s tru c tu rin g (i.e., infor

m ation pieces are organized as a network of nodes, links and anchors in a hypertex t),

navigation (i.e., m echanism s for direct access to inform ation over a hypertex t

network, including link traversal, guided-tours, network overviews, bookm arks,

backtracking, etc.) and anno ta tion (i.e., com m ents on nodes, links and anchors to

record im p o rtan t inform ation).

The m ajority of curren t generation hypertex t system s require th a t app lications

be im ported in to th e underlying hypertext system s. In these system s, app lications

need to model th e ir d a ta in term s of hypertex t concepts (i.e., nodes, links and

anchors) and im port these d a ta m anually into the m anagem ent of the hypertex t

system s. Therefore, such hypertext system s are closed system s which are hardly

extensible to access or link objects external to them [75]. A uthoring a hypertex t-

based application relies on the editing facilities provided by the hypertex t system .

And there is no way to connect existing objects w ithou t converting and im porting

them , and no way to suppo rt linking between existing applications. W ith closed

hypertex t system s, users may be a ttrac ted by helpful hypertex t functionalities, bu t

would have to give up (or reim plem ent) their curren t system and often much of

the functionality they provide. Aiming a t overcom ing these lim ita tions faced by

closed hypertex t system s, a variety of approaches tow ards developing open hypertex t

system s have appeared in the hypertext lite ra tu re and open hypertex t system has

become a prom ising research direction in the hypertex t field [23, 40, 75, 76, 78].

A lthough to da te there is no w idely-accepted definition for open hypertex t system s,

7

8

we believe it is essential for an open hypertex t system to have a robust model

supporting a broad range of hypertext features and to in tegrate existing app lications

and utilize d a ta created w ith these applications [81, 23, 91].

We aim a t developing a robust hypertex t d a ta model to su p p o rt in teg rating

hypertex t w ith COTSs. T he benefits of a formal hypertex t model have been addressed

already in [1, 46, 60]. An abstrac t formal model provides a m echanism to understand

and express the comm on structu res of different hypertex t system s, i.e., to construct a

globally acceptab le term inology from which both hypertex t researchers and users can

benefit [1]. A formal model also helps to separa te hypertex t s tru c tu re from content

and gives a consistent in terp re ta tion for im plem entation purposes [102], A lthough

there is no w idely-accepted d a ta model in hypertex t area, there are some well-known

models which are frequently cited by hypertex t researchers [2, 39, 37, 40, 63, 62,

50, 35, 66]. T he D exter model is widely referenced and accepted as a com m on,

principled in terchange s tan d ard for diverse hypertex t system s. H ypertex t researchers

addressed the usefulness of D exter in a panel a t H ypertex t’89 conference and later

as p a rt of research efforts under the paradigm of system interchange and hypertex t

m odeling [38, 41, 39, 37, 40, 66, 50, 62, 35]. D ex ter’s separa ting hypertex t in to th ree

arch itectu ral layers makes m odeling conceptually clearer and more understandab le .

Having such a model as our base enables us to share and com pare our work w ith o ther

researchers based on a comm on framework. To in tegrate hypertex t w ith COTSs, we

need to go beyond, extending and specifying the D exter concepts to m ake G IIM I a

com prehensive d a ta model supporting system integration.

In th is chapter, we m otivate our objective of developing GHM I through a

general review of related work from o ther researchers. We discuss re la ted work

regarding open hypertex t system s and D exter-re lated m odeling approaches. We

propose G H M I’s objective as a solution to th e existing lim ita tions of these system s

and m odels. As we use RDBM S as an exam ple dom ain for illu stra ting GH M I dom ain

9

m apping power, we also include a review on o ther related work concerning hypertex t

and DBMS.

2.1 Open Hypertext System s

Several open hypertex t approaches are reported in recent years, including Sun’s Link

Service [75], M icrocosm [23, 24, 27], SP3 [81, 63], C him era [5] and M ulticard [78].

2.1.1 Sun’s Link Service

S un’s Link Service [75] is a com m ercial p roduct shipped w ith Sun’s program mi ng-

in-the-large software developm ent environm ent, the Network Software Environm ent

(NSE). In tegration with the Link Service is a standard p a rt of each Sun w orkstation

application . T he Link Service provides an extrem ely loose coupling of applications

and stre tches openness to its lim its based on a com m unication protocol. Appli

cations in tegrate with the Link Service through a link lib rary which im plem ents

the protocol. I t allows users to make and m aintain explicit and persisten t in ter

app lication relationships. T he L ink Service m anages links and anchors while the

applications are responsible for supporting operations on linked data .

T he Link Service only provides link services a t a prim itive program m ing level.

Its bu ilt-in hypertex t functionality is very prim itive. I t provides only for a d istribu ted

linking m echanism and a way for representing and storing th e source and destination

of a link. T he application is responsible to define the link-related operations on linked

objects. The Link Service’s hypertex t concept is sim ply plain node, link and anchors.

T here is no typ ing or com posite and the links are s ta tic and binary.

2.1.2 Microcosm

M icrocosm [23, 24, 27] is an open hypertex t system developed a t the University of

S ou tham pton aim ing a t in teg rating th ird party applications. I ts system arch itec tu re

m anages the com m unication between a chain of independent filters and various node

10

content viewers. The viewers are partially or fully M icrocosm -aware applications and

responsible for displaying docum ents or o ther m edia da ta . Viewers should be able

to com m unicate w ith M icrocosm by generating messages on user actions. Messages

are passed through th e filter chain and handled by proper filters. Any filter can

consume, pass or generate messages to the message chain. Three special filters

(i.e., the Linkbase filter, th e Linker and the C om puted Linker) accom plish the basic

linking services. At the end of the filter chain, the link dispatcher presents th e user

any actions contained in the resulting messages. M icrocosm in tegrates hypertex t-

unaw are viewers by using a shared clipboard.

As opposed to GHM I, which aim s to suppo rt com putation-orien ted appli

cations, M icrocosm is p rim arily open to viewers which are d isplay-oriented app li

cations (IOSs in G H M I’s term inology). M icrocosm ’s system arch itec tu re does not

suppo rt in teg rating com putation-oriented applications which dynam ically generate

d a ta a t run-tim e (i.e., COISs). The Microscosm applications have to be changed to

em bed some m acro to handle com m unication w ith the link service. A M icrocosm ’s

linear filter chain is too restrictive and inefficient. F ilte rs have to be ordered carefully

to ensure they receive all messages they expect to handle. All messages are routed

through all filters regardless of their relatedness to individual filters. T his heavily

reduces the system perform ance when the message traffic is heavy and the filters are

still busy on delivering unrelated messages. Such a chain s tru c tu re is also p roblem atic

when two filters need to exchange messages before any actual action-invoking message

is produced for the link dispatcher. A more advanced filter m anagem ent s tru c tu re has

been proposed by th e M icrocosm authors to overcome these lim itations [52] tow ard

supporting d istribu tion . In the advanced M icrocosm, filters are grouped in to sm aller

chains. F ilte rs are asked to register message types regarding actions in a table.

However, the sm all chains still face the lim ita tions m entioned above. M icrocosm

supports no com posites and its links are s ta tic , untyped and binary.

11

2.1.3 SP3

Since 1991, researchers in The H yperm edia Research L aborato ry a t Texas A&M

University have been developing a series of hyperm edia pro to types SPO-3 [58, 63, 81]

along w ith a series of hyperbases (i.e., hypertex t database m anagem ent system s with

da tabase m anagem ent facilities such as query processing, access control, concurrency

control, e tc .) HBO-3 to support d a ta storage facilities. T he latest. SP3 defines a

flexible m odel which extends the concepts of D exter and suppo rts th e d istribu tion of

hyperm edia across w ide-area networks. SP3 employs a process-based system archi

tecture . Links and anchors are m odeled as independent processes which implement,

the characteristic hyperm edia behaviors such as link traversal. This approach enables

a wide range of flexible run-tim e sem antics (i.e., run-tim e behavior of links and

anchors could be defined as process p roperties and m ethods). Users can in tegrate

w ith services handled by link and anchor processes. SP3 and HB3 attem pt, to support

a hyperm edia-in-the-large environm ent (i.e., open hypertext system s) which can not

be m odeled by D exter. In SP3, applications are responsible to m anage persistent,

selections and m aintain anchor and link m arkers at, run-tim e.

SP3 has no system atic support for com putation-oriented applications which

handle dynam ically generated da ta . It is the app lication’s responsibility to extend

its functionality to support dynam ic da ta . SP3 also requires app lications to store

th e ir d a ta in the hyperbase in order to benefit from special hypertex t features such

as versioning. SP3 models links and anchors as first-class processes. T his allows

the behaviors of links and anchors to be flexibly extendible a t the price of m anaging

them in an inconsistent m anner. SP3 has no way to define anchors on links, as links

are not first, class com ponents (i.e., independent objects w ith th e ir own properties

and operations).

12

2.1.4 Chimera

C him era [5] is an open hypertex t system developed a t U niversity of C alifornia a t

Trvine, which supports in teg rating hypertext w ith heterogeneous software devel

opm ent environm ents. I t m odels hypertex t using a set of concepts including objects,

viewers, views, anchors, links, a ttribu te-value pairs and hyperwebs. A d istinctive

feature of C him era is th a t it defines links and anchors on views of objects com bined

w ith viewers (not on objects them selves). This allows viewers to im plem ent special

anchor and link behaviors. Anchors are defined and m anaged by viewers. A link is

defined as a set of anchors which allows n-ary links.

T he C him era system arch itec tu re follows a client-server approach to m eet

th e needs of m ultiple user environm ents. The arch itec tu re consists of a C him era

server, a process invoker, C him era clients and ex ternal system s. The C him era

server im plem ents the services based on C him era hypertex t concepts and m anages

the connections of C him era clients. The process invoker is responsible to invoke

C him era clients. A C him era client includes one or m ore viewers. The C him era

client is responsible for definition of objects, views and anchors. It also m anages

th e com m unication w ith th e C him era server on link traversal. One advantage of

client-server approach is to allow the client to be w ritten in different languages.

T he com m unication message details between C him era client and C him era server are

hidden from C him era client by C him era API and from th e C him era client by a

message A D T. The C him era’s m odeling links on views enables objects to be viewed

from different perspectives and provides a flexible way to include new viewer-specific

anchors. GH M I shares some of these ideas and differs in m any others.

C him era was developed specifically for the needs of tools in the software devel

opm ent environm ents. I ts application dom ain is restric ted on viewers which are

display-oriented applications. T here is no way in C him era to sup p o rt the dom ain of

com putation-orien ted applications like GHM I does. C him era hides message deta ils

13

from applications by using higher-level APT and ADT. This allows the Chim era

developer to change the message formats freely w ithout affecting the rest of the

system. B ut the tradeoff of this approach is th a t we have to modify pa rt ic ipa ting

applications to use C him era’s message ADT. Chim era associates anchors with views.

Such views consists of object views and the viewer which displays the object, views. A

chimera view could contain interface objects such as bu ttons and windows, depending

on how the viewer defines its views. This is flexible in handling multiple views of

a single object. It allows the viewers to freely implement viewer-specific features a t

the price of m anaging links and anchors inconsistently which makes it difficult, to

extend s tandard features in the Chim era server. C him era’s viewers are also heavily

burdened by having to define anchors and m ap anchors to objects.

2.1.5 Multicard

M ulticard is an open hypermedia system developed within the Esprit project

Multiworks [78]. M ulticard provides a hyperm edia system with a set, of hyperm edia

objects, an au thoring /nav iga tion tool, a scripting language and a m ultim edia compo

sition editor. I t allows integration of a single hyperm edia system with a various

editors and applications which run as separate processes. Applications com m unicate

with M ulticard using a message passing protocol M2000. M2000 com pliant editors

autom atically benefit from the M ulticard hyperm edia functionalities including

linking facilities and composite structures.

The M ulticard architecture consists four distinct layers: a set of hyperm edia

basic objects, a persistent, storage platform, an au thor ing/navigation tool, an M2000

protocol and a series of compliant editors. The M ulticard hypermedia objects include

nodes, groups, anchors, links, hyper-graphs, etc. Different editors m anage node

contents. Groups represent composites of nodes. A M ulticard link is viewed as a

communication channel between endpoints and acts as a handle or po r t to the desti

14

nation object. Scripts can be a ttached to M ulticard’s hyperm edia objects (nodes,

groups and anchors) to define their dynamic behavior. Scripting provides a powerful

means to extend the system functionality. Even M2000 is extensible using the

scripting language.

M ulticard ’s editors are display-oriented applications and they have to be

modified to be M2000 compliant to partic ipa te the integration. M ulticard’s links

and anchors are untyped and links are binary only.

2.1.6 Conclusion

As a summ ary, we see these m odels/system s have three limitations. (1) They

were designed prim arily for integration with interface-oriented systems [7] (referred

to as IOS, e.g., editors and document-display systems), which support interface-

level functionality. None of them supports integration with COISs effectively.

C om putation-orien ted systems (e.g., database systems, expert systems, decision

suppo rt systems) generate d a ta dynamically (e.g., query or com m and processing

results) a t run-tim e and COISs are primarily used for analytic functionality, ra ther

than navigation am ong displayable information networks [10]. The dynamic nature

of COISs requires the hypertext system to provide an efficient way to establish

dynam ic links am ong dynamic d a ta which can not be determ ined sta tically like

those m anaged by interface-oriented systems. While Microcosm and M ulticard

perhaps could be extended to serve a COIS, neither provides a system atic support to

do so. (2) Curren t open hypertext systems are primarily link services, which support

user-declared links between independent applications. W ith in these systems the

applications are “hypertext-aware.” The applications have to m aintain information

regarding hypertext links and anchors. Such an approach imposes changes on the

applications to facilitate the process of link traversal. (3) They do not directly

provide us a robust model supporting COIS integration a t a system level.

15

To date, there is 110 existing hypertext model to our knowledge supporting

dynamically linked COISs. Various modeling approaches have been reported in

hypertext literature, examples include approaches based on logic [33], graphs [74,

88], sets [73], Petri nets [84, 32, 85], object-orientation [61] and s ta techarts [102].

Although there is no widely-accepted d a ta model in hypertext area, there are some

well-known models which are frequently cited by m any hypertext researchers. Never

theless as we develop our own hypertext d a ta model, we hope to benefit from the

existing work from other hypertext researchers. We choose the frequently-cited

D exter Hypertext Reference Model [46, 47] as the basis of GHMI. The next section

discusses the Dexter model and o ther Dexter-based models and issues.

2.2 H ypertext and Databases

D uring our discussion in th is thesis, we take relational da tabase m anagem ent systems

(RDBM S) as an example domain to illustrate G H M I’s goal of domain m apping

and enhancing COISs with hypertext functionalities. RDBM Ss are basically charac

terized on the basis of information management style. Navigation in a RD BM S is

based on predefined queries. RDBM Ss have powerful query processing abilities. The

query results are dynamically generated and are not available beforehand. H ypertex t

is the science of relationships and is characterized by interactive access to information

and relationships. Recently, hypertext researchers have been combining hypertex t

with database facilities. These efforts regarding RD BM S fall into the following four

directions: m anaging hypertext da ta , information retrieval, hypertext application

design and enhancing RDBM S with hypertext functionality.

Managing Hypertext Data. Schnase et al. [82], Hyperform [100] and Hyperbase [79]

employ database facilities (e.g., query processing, access control, concurrency control,

event notification) to m anage d a ta and implement their underlying hypertex t d a ta

16

models. This approach uses database facilities to store and retrieve node, link and

anchor da ta . It pays no attention to adding hypertext functionality to da tabase

applications themselves, which is GH M I’s focus.

In formation Retrieval. Many systems and models address hypertext querying as

an extension to database information retrieval facilities [29, 29, 42, 28, 64, 21, 30, 65,

53, 4]. They focus on how to search for information over hypertext networks, ra ther

than on how to m ap databases information spaces to hypertext networks. As future

work, GIIM I could incorporate information retrieval technologies to explore useful

implicit relationships (e.g., through com puting object similarities) and make them

direct accessible through link traversals.

Hypertext Application Design. Some models and systems combine RD BM S and

hypertext concepts in application design and include hypertext functionality as part

of the applications. RM M [55] proposes a seven step relationship m anagem ent

methodology for the design and development of hyperm edia applications. I la ra et

al. [49] presents two types of relationship abstractions (augm entation and global

ization) as a facility to improve hypertext application design. Such a “design from

scratch” approach, which is common to these two models, results in a hypertex t

system whose s truc tu re is the same as the underlying da tabase ’s schema, bu t which

is not reusable for o ther applications and is no t able to add hypertext functionality

to existing applications.

Enhancing Databases with Hypertext Functionality. This is G H M I’s direction.

There is some related work in this direction. (1) In [48], H ara et al. adop t a two-step

approach to improve hypertext application design and mapping. At s tep one, the

designers use the RD BM S model to design the application objects and relationships.

Then a t step two, they employ an SQL-like specification language to t rans la te these

17

objects and relationships to hypertext. The second step is similar to G IIM I’s bridge

law m apping mechanism. This approach enables generating nodes and links dynam

ically. Once written, the same m apping rules can be reused for different, applications.

This reduces redundancies and inconsistencies resulting from individual application

design. However, [48]’s focus is also primarily on application design. Its hypertext

model is very primitive. Links are prim arily for built-in sem antic relationships.

H ypertex t only helps accessing these explicit relationships. It is also not clear

how to implement domain transla tions between database and hypertext. (2) The

E S P R IT Pro jec t HIFI [16] aims a t providing external databases with a hypertext-

based navigation interface. The hypertext interface model H D M + is an extension

of HDM [36]. The core approach of H IFI is to define a set of application m appings

between H D M + and database primitives, including the m apping between H D M + and

E R diagrams. The HIFI approach defines a hypertext interface according to the user

needs ra the r than the structure of the underlying databases. Both HIFI and GHMI

adop t a very similar approach toward m apping RDBMS dynamically. They differ in

three aspects, (a) HIFI primarily focuses on capturing explicit d a tabase elements in

term s of HDM-I- constructs (e.g., E R relationships, semantic relationships between

entities, etc). It focuses on m apping explicit and predefined object groups (e.g.,

entities) and relationships (e.g., entity relationships in E R d iagram s) which are the

s ta t ic aspects of an application. Once the database is designed using I ID M + terms,

all relationships become explicit. GHM I focuses on m apping implicit schematic

relationships and the generic underlying database structures (e.g., da tabases, tables,

records), (b) GHM I more faithfully preserves the original RD BM S s tructu res which

the users are familiar with while HIFI forces the user to adop t a hypertext-specific

struc ture . T he GHM I hypertext s truc tu re is defined according to the underlying

da tabase s tructures ra ther than individual application users’ needs, (c) The IIIFT

hypertext interfaces are specialized for individual applications. For example, the

18

interface of a medical application [51] is not reusable for a financial bank application

[17]. The GH M I architecture could provide a general interface for all applications

based on modeling generic RD BM S structures.

2.3 The Dexter Hypertext Reference Model

In this section, we outline the basic Dexter framework and identify its problems.

Then we review some o ther Dexter-related models and issues.

2.3.1 An Overview of the Dexter Model

T he D exter H ypertex t Reference Model [46, 47] (called D exter th roughou t this thesis)

is a hypertex t model developed as a result of two workshops of hypertext researchers

and based upon several well-known existing hypertext systems such as NotoCards

[45], N ep tune [25], KMS [3], In term edia [101, 77] and Augm ent [26]. In Dexter,

a hypertex t is divided into three separate layers, namely the run-tim e layer, the

s torage layer and the w ith in-com ponent layer as shown in Figure 2.1. A hypertext

is considered as a network of information. The run-time layer concerns the dynamic

behavior of a hypertext, regarding how to present it to the user and how the user

in terac ts with such a presentation under some interface environment. The storage

layer consists of a network of com ponen ts , which are information containers and inter

connected by relational links. The within-component layer deals with the internal

contents or s truc tu re of individual components. D exter focuses on the storage

layer. The reason for not modeling the within-component layer is th a t the range

of com ponent contents (e.g., tex t, graphics, animation, images, etc.) is too broad

to be captured by a single generic model. A similar argum ent applies to the run

tim e layer, due to the vast diversity of user interface tools for accessing a hypertext.

Nevertheless, Dexter does provide inter-layer interfaces to allow the storage layer

to com m unicate with the o ther two layers. Anchors are employed as the interface

19

W IT H IN -C O M P O N E N T
L A Y E R

S T O R A G E L A Y E R R U N -T IM E L A Y E R

Within-Component
Contents / Structures

Hypertext Database
(Components and Links)

Dynamic Presentation of
Hypertext Database

r----------- nr
Anchors Presentation Specification

F i g u r e 2 .1 The Three-Layer D exter Model

between the storage layer and the within-component layer to establish references

am ong portions of individual components. The interface between the storage layer

and the run-tim e layer includes a mechanism called p re se n ta t io n sp ec i f ica tio n which

allows the user interface presentation of a hypertex t to be encoded a t the storage

layer.

A component can be either an atom, a link or a composite component. The

atom ic component is the primitive unit in Dexter. Link components represent

relationships between components. A composite com ponent is constructed from

o ther components. The notion of composite components provides a hierarchical

component s truc tu r ing mechanism in Dexter and corresponds roughly to “nodes”

in o ther hypertext systems. A Dexter component is modeled as a two-part com po

sition: base com ponent and component i n fo r m a t io n (C O M P J N F O) . T he base

com ponent is recursively defined as an atom , a link, or a sequence of o ther base

components. The com ponent information includes a set of a ttr ibu tes , a presentation

specification (interpretable only in the run-tim e layer) and a sequence of anchors

pointing to a portion of this com ponent’s contents. Every component is identified

by its unique ID (UID) which is unique throughout a hypertext. The content of a

link component consists of a sequence of endpoint specifications. A link endpoin t is

specified by an entity called specifier which is a combination of a component speci

fication (C O M P O N E N T J S P E C) , an anchor id, a direction and a presentation

specification. Span-to-span links are supported by anchors. The direction of a link

20

endpoint, could be “FR O M ,” “T O ,” “B ID IR E C T ” and “N O N E.” A link must have

an endpoint with direction “T O ” which excludes dangling links (i.e., links missing

endpoints). An anchor is a composition of an anchor id (A N C H O R J D , identifying

an anchor within a component) and an anchor value (A N C H O R - V A L U E , location

information w ithin a component in terpretable by the w ith in-com ponent layer). The

Dexter storage layer also includes two fundamental functions: a reso lver function

and an accessor function. The resolver function is responsible for resolving the

component specification in a link specifier to an explicit UID. This enables a link

to point to a com puted component with its specification in the link specifier. The

accessor function is responsible for accessing a component given its UID.

Figure 2.2 shows an example of D exter component, link and anchor represen

tation. C o m p l , C om p2 and L in k l denote component UIDs. C o m p l is an a tom ic

component which defines an anchor as a portion of its content. C om p2 is a composite

component consisting of some direct tex t and two atoms. C om p2 also defines an

anchor in its tex t content. A th ird component L in k l represents the relationship

between the two tex t portions which are defined as anchors in C o m p l and Com p2.

L in k l has two endpoints represented as two specifiers. The “FR.OM” endpoin t is

anchor 1 in C o m p l and the “T O ” endpoint is anchor 1 in Comp2. L in k l has anchor

IDs instead of anchors in its specifier. The anchor value and the presentation speci

fication (P r e s e n ta t io n s pec) are denoted as black boxes indicating th a t their exact

specifications are out of the scope of the D exter storage layer model.

D exter also includes a simple model for the run-time layer. In the run-tim e

layer, the basic concept is the in s ta n t ia t io n of a s torage layer component. An instan

tia tion is a m apping of a component from its storage d a ta format to its presen

ta tion format. An entity called session keeps track of the dynamic m apping from

components to the ir instantiations. A session is a run-tim e access environm ent of a

21

U ID =C om pl (Atomic Node)

AttributcSpcc: NONE
PrcscntationSpcc: E3
Anchors IT"

U ID =Com p3 (Link)

AttributcSpcc: NONE
. Presentations pcc: EH

AqchorSpcc: NONE

Spccifrbr
CompSpcb^Comp 1
Anchor_ID: P
Direction: FROM
P re s c n tf lt in n S p e c ^

Specifier
CompSpcc: Comp2
Anchor_ID: 1
Direction: TO
PrcscntationSpcc: E3

U ID =C om p2 (C om posite Node)

AttributcSpcc: NONE
PrcscntationSpec: E3
Anchors [1, jSlT

A tom #200 Al^m #358

F i g u r e 2 .2 The D exter Component Representation

hypertext. All operations w ithin an opened session are recorded chronologically in

an en tity history .

2 .3 .2 P r o b l e m s in D e x t e r

D exter makes significant contributions to providing a common, principled in ter

change s tandard for diverse hypertext systems. Separating hypertext into three

layers makes modeling conceptually clearer and more understandable. However,

as a general model grown from a variety of existing systems, D exter is sometimes

too general to fit all systems. As a reference model, D exter aims to model only

the common features of different systems instead of the systems themselves in full.

Therefore, D exter is, by nature , general and incomplete. For our model focusing on

in tegrating COISs, we find the following are problems regarding modeling GHM I in

Dexter. By the term problem s here we mean those D exter aspects or concerns, for

which we need either e x te n s io n s or specif ica tions such th a t they fit GHM I and our

proposed hypertext system functionalities.

1. Components. Dexter has problems on the notion of composite components

in three aspects. (1) Com ponent Information: D exter does not distinguish

22

components m anaged by hypertext systems and those m anaged by th ird -par ty

applications. We can specify the component a t t r ib u tes to explicitly model the

ownership information as well as bridge laws used to m ap individual COTS

objects. (2) Base components: A Dexter composite component contains “bare-

bone” base components which are not independent components themselves.

The definition of component is recursive on base com ponent ra ther than on

com ponent itself. This implies th a t base components in a composite com ponent

are not components themselves. As UIDs are associated with components only,

base components have no UIDs. They can not be accessed by the accessor

function. They can not be ex terna l independent components (i.e., they do

not exist outside a composite com ponent’s content). On the o ther hand, base

components have no component information. There is no way to associate

a t t r ibu tes to base components. Base components have no anchors or presen

ta t ion specifications of their own either. W hen we construct a composite

component tak ing o ther components as base components, all o ther com ponents

lose their own properties (regarding a ttr ibu tes , anchors and presentation speci

fication). It is also difficult to create links am ong base components since they

are not independent components and have no UIDs. Therefore, such a notion

of a composite is too restrictive. In our domain of supporting multiple COISs,

we might have a composite component made up of components from different

COISs (with distinct ownership properties and other COIS a ttr ibu tes) . We

also try to model the internal linking structures of composite components to

facilitate navigation (e.g., create guided-tours based on the internal links of

a composite). We can not effectively model these GH M I composites using

Dexter. We need to extend D exter’s composite com ponents to allow e x te rn a l

components. (3) Atomic Components: Dexter does not model the content

of atom ic components. In our dynamic m apping environment, however, it is

23

possible and necessary to model internal s tructures of atom ic com ponents to

represent s truc tu red objects such as a da tabase records. M odeling s truc tu red

atomics enables defining links and anchors based on object s truc tu res (e.g.,

anchors on record fields or values).

2. Links. D exter links have three problems. (1) Dangling links: D ex te r’s intol

erance of these constructs has been widely criticized [39, 40, 63, 62], Tn

the environment of dynamic COIS mapping, a link endpoint could specify

a com puted component m apped from a COIS object (defined as a m apping

rule). If the COIS object is deleted inside the COIS (which is t ran sparen t to

the hypertext system), the execution of the m apping rule will result an empty

component. This causes the link to be “dangling.” If the anchor m arking a

link is deleted inside the COIS, the link will become dangling too. Since this

situation seems often to occur, it can not be ignored by simply excluding it

from a hypertex t model. We need to allow these links and a t the sam e time

develop some mechanisms to handle them properly. (2) Unary links: Dexter

links must a t least two specifiers. However, unary links (i.e., links with only

one specifier) could be useful for modeling COIS commands directly available

as menu items with a specifier directed as “T O .” Access to bookm arks can also

be modeled as a unary link with only one “T O ” specifier. (3) T yped Links:

Dexter links do not explicitly support a semantic or behavioral type. It has

been widely recognized th a t typed links reduce disorientation for users and

design overhead for designers [20, 67, 73, 87]. Dexter implies th a t link typing

is possible by a ttach ing a “type” a t t r ib u te to a component. We need to specify

D exter’s component a ttr ibu tes to support link types explicitly. We classify links

based on the ir behaviors. For example, links representing ad hoc relationships

should be distinguished from those for cross-referencing, those representing the

underlying hierarchical structures of COIS objects, and those resulted from

24

COTS-defined com putation (e.g., a link with an endpoint as a query result in

the domain of relational databases). We need an explicit m ethod to identify

object types based on the roles they play in the integrated hypertext system.

3. Anchors. D exter’s problems on anchors include two aspects: (1) External

anchors: Dexter defines anchors in the content of components. It is not

clear how to define anchors in base components. On the o ther hand, link

specifiers contain an A N C H O R J D which therefore must be consistent with

the definition in the component embedding the anchor. A link specifier’s

C O M P O N E N T S P E C needs to be resolved to UIDs and therefore may lead

to different UIDs in different computations. Using the actual A N C H O R J D

in a specifier requires an unbearable consistency burden on hypertex t systems,

requiring all possible components whose UIDs could be m apped from a given

C O M P O N E N T S P E C to have the same anchors, or a t least use the same

A N C H O R J D for th a t link. In our environment of dynam ic mapping,

C O M P O N E N T S P E C is frequently used in link specifiers to allow generating

link endpoints dynamically. Storing A N C H O R J D in link specifiers which

resolve to dynamic components would impose a heavy consistency burden.

It is difficult to m ap the specifier’s A N C H O R J D to the corresponding

A N C H O R J D in a dynamically computed component. (2) Typed Anchors:

In Dexter, it is not clear how to define keyword anchors [41] and dynamic

anchors. We need to extend D exter to allow the above external anchors and

classify them into three types: plain anchors, keyword anchors and dynamic

anchors. P lain anchors are defined statically with explicit location information

as their values. Keyword anchors represent a group of anchors with the same

tex t value. Dynamic anchors are dynamically computed anchors. In our case

of supporting COIS integration, dynamic anchors are com puted a t run-tim e

along with COIS components and links. We need a mechanism to model these

25

anchors in the storage layer. Dynamic anchors are resolved to plain anchors

or keyword anchors a t run-time according to the ir bridge laws. We need to

extend Dexter to include new resolver functions to resolve anchors from bridge

laws.

4. Dom ain Mapping. D exter was developed from closed hypertext systems.

It does not model facilities for dynamic integration of hypertex t and infor

m ation systems. We employ a mechanism called bridge laws to specify dom ain

mappings. Under our dynam ic m apping environment, all components m apped

from COIS objects or relationships are non-persistent v ir tu a l components.

The hypertext system does not keep any copy of the ir contents. Every tim e

they are required by the user, the system maps them by executing bridge laws.

These components could be computed components if they are dynamically

generated from COIS-dependent, operations (e.g., da tabase queries). Since

bridge laws are invoked a t run-tim e to generate components and links, we need

to specify the semantics of D exter’s resolver and accessor functions to apply

bridge laws.

2.3.3 Dexter-based Models and Systems

Over the past several years, models and systems have been developed following

Dexter. Some of them applied Dexter to build their systems and made necessary

extensions or specifications according to their specific needs; O thers addressed

Dexter-re lated issues regarding their experience on developing hypertext system and

d a ta models.

DHM (or DeVise hypermedia) [38, 41, 39, 37, 40] is a Dexter-based hyperm edia

p ro to type developed a t Aarhus University in Denmark. DHM extends D exter in

link directionality, dangling links, external anchors, keyword anchors, external

26

components, virtual components and computed components. [37] further extends

DHM composites to include a class hierarchy and four aspects of composites contents.

Leggett and Schnase criticize D exter’s abilities on hypermedia interchange and

hyperm edia-in-the-large (i.e., open hyperm edia systems) design [63]. They address

four issues from their experience on transla ting In termedia and KMS using D exter

as an exchange s tanda rd [62]. They discuss issues regarding D ex te r’s problem s on

dangling links, versioning, external components, deletion semantics for composites,

com posite’s internal linking and navigational link semantics. In addition, Leggett

et al. propose seven fundamental assum ptions for hyperm edia-in-thc-large system

design. Based on these assumptions they claim th a t Dexter does not support

hypermedia-in-the-large and it is not profitable to further extend the D exter model.

RH Y TH M [66] is a hypertext system developed the University of Bologna

in Italy. The au tho rs believe th a t modeling RH Y TH M using D exter proved the

usefulness, soundness and robustness of Dexter, although they m ade an extension on

external anchors. They introduce a primitive link typing to classify links into two

classes: navigation and inclusion links, but only allow binary links.

The Am sterdam Hypermedia Model (AIIM) [50] is a general framework

focusing on extending hypertext to hypermedia. AHM was developed as a Dexter-

based model with extensions on notions of time, high-level presentation a t t r ib u te s

and link context, and external components. Although AHM extends D exter from a

m ultim edia point of view, which is not the current focus of GHMI, we share common

points on modeling composite contents using referencing ra ther than em bedding

o ther components.

G arzo tto et al. [35] m ade extensions on D exter’s storage layer by in troducing

the concept of collections and on D exter’s run-tim e layer by related notions of

collection-navigation and collection-synchronization. The internal s tru c tu re of a

collection includes two aspects: a set of members and a s truc tu re of topologicnlly

27

arranged members. Index and guided-tours are two basic collection-based navigation

structures. Garzotto et al. addresses the Dexter problems on internal composite

s truc tu res (only as set) and the notion of navigation s tructures (guided-tour and

index). We can go beyond these extensions on composite structures.

2.3.4 Conclusion

Although all of the above approaches address some of the Dexter problems we

identified in 2.3.2, no hypertext l iterature to our knowledge addresses all of the above

D exter problems satisfactorily for our needs of supporting COIS integration. None

of them addresses our concern of dynamic domain m apping and the run-tim e layer

s truc tu res supporting task-based backtracking. The o ther issues they addressed,

such as the multimedia and collaboration related issues, are a t trac tive but not our

curren t focus. We will consider them in our future work on further extending GHMI.

GHM I develops its concepts and functionalities according to the requirements

of supporting integration of hypertext and COISs. We m ap G IIM I’s capabilities to

D exter with appropriate extensions and specifications to overcome the above D exter

problems. T he task of modeling GHM I in terms of D exter includes two aspects:

extensions on composite components, external anchors, dynam ic anchors, unary

links and dangling links; specifications on component a tt r ibu tes , a tom ic components,

com posite components, anchors, link specifiers, the resolver function and the accessor

function.

2.4 Summary

This chap ter motivates GHM I through a s ta te of the a r t review of hypertext research

on open hypertext systems, combining hypertext with database technology, the

D exter H ypertex t Reference Model and Dexter-related issues.

28

Open Hypertext Systems. Aiming a t overcoming the problems faced by closed

systems, a variety of open hypertext systems have been reported in recent years,

including Sun’s Link Service [75], Microcosm [23, 24, 27], SP3 [81, 63], Chim era

[5] and M ulticard [78] From our perspective of supporting COTS integration, we

find th a t these systems and their models have three limitations. (1) They were

designed prim arily for integration with interface-oriented systems [7]; and therefore,

(2) current open hypertex t systems are primarily link services, which su ppo rt user-

declared links between independent applications. W ith in these systems the appli

cations are “hypertext-aware;” and therefore, (3) they do not directly provide a

robust model to model a comprehensive set of hypertext functionalities for the

hypertext system we intend to develop.

Hypertext and Databases. H ypertext is the science of relationships and is charac

terized on the basis of the interactive access to information and relationships.

RDBM Ss have powerful query processing abilities. The query results are dynam

ically generated and are not available beforehand. Recently, hypertext researchers

have been combining hypertext with database facilities. These efforts regarding

RDBM S fall into the following four directions: m anaging hypertext d a ta , infor

m ation retrieval, hypertext application design and enhancing RDBM S with hypertex t

functionality. Most o ther hypertext research focus on the first, three. GH M I focuses

on enhancing existing RD BM S with hypertext functionality.

W hy Dexter. We aim to develop a hypertext system with a robust d a ta model to

support in tegrating hypertext with COISs. The Dexter model is widely referenced

and accepted as a common, principled interchange s tandard for diverse hypertext

systems. H ypertex t researchers addressed the usefulness of Dexter in a panel a t

H ypertex t’89 conference and later in research concerning the paradigm of system

interchange and hypertext modeling [2, 39, 37, 40, 63, 62, 50, 35, 66]. D ex te r’s

29

separa ting hypertext into three architectural layers makes modeling conceptually

clearer and more understandable. Having such a model as our base enables us to

share and compare our work with o ther researchers based on a common framework.

However, to meet the requirements of dynamic COIS integration, we need go beyond

and extend the Dexter concepts to develop a comprehensive d a ta model supporting

system integration facilities.

Dexter and Its Problems. The D exter Hypertext Reference Model [46, 47] divides

a hypertex t into three separate layers. The run-time layer concerns the dynamic

behavior of a hypertext. The storage layer consists of a network of com ponents

which are information containers and interconnected by relational links. The

w ith in-com ponent layer deals with the internal contents or s truc tu re of individual

components. The focus of D exter is on the storage layer. D exter employs anchors as

the interface between the storage layer and the w ithin-component layer. The interface

between the storage layer and the run-time layer is a mechanism called presen ta tion

spec if ica tion . For our modeling focused on integrating COISs, we found th a t D exter

has the following limitations. (1) Components: no model for com ponent structures;

subcom ponents in a composite component have no component information; no

com ponent ownership information; (2) Links: no dangling links; no link typing;

no unary links; (3) Anchors: no external anchors; no keyword anchors or dynamic

anchors; (4) Domain mapping: not modeled; We need to both extend and specify

all of these limitations in our goal of supporting COIS integration with a powerful

hypertex t d a ta model.

Dexter-based Systems and Issues. Over the past several years, models and systems

have been developed following Dexter, including DHM [38, 41, 39, 37, 40] Leggett

and Schnase [63], RHYTHM [66], AHM [50] and Garzotto et al. [35]. They made

extensions on Dexter concepts a n d /o r specified Dexter to m ap their models and

30

systems. However, no hypertext literature to our knowledge addresses all of the

above D exter lim itations satisfactorily for our needs of supporting hypertex t/C O IS

integration.

Goal o f GHMI. We adop t two steps to develop GHM I as a Dexter-based model:

F irst, we develop GHM I concepts and functionalities according to the requirements of

supporting integration of hypertext and COISs. Then, we m ap G H M I’s capabilities

to D exter with appropria te extensions and specifications to overcome the above

Dexter limitations. Therefore, the task of modeling GHM I in term s of D exter

includes two aspects: e x te n s io n s on composite components, external anchors,

dynam ic anchors, unary links and dangling links; and sp ec i f ica tio n s on com ponent

a ttr ibu tes , atomic components, composite components, anchors, link specifiers, the

resolver function and the accessor function.

CH APTER 3

GHMI: BASIC CONCEPTS

Figure 3.1 shows the layout of our proposed hypertext d a ta model G H M I (a General

H ypertex t d a ta Model supporting Integration). After a brief discussion on the

system architecture, this chapter focuses on the GHM I concepts including an object

class hierarchy, components, links, anchors, dynamic m apping and the bridge law

tem plate.

3.1 A System Architecture

T he purpose of th is section is to dem onstra te how the COIS m apping approach works

from an im plem entation viewpoint. This will support understand our discussions

regarding dom ain m apping in GHMI. Figure 3.1 presents a general system archi

tecture supporting implem entation of GHMI. This architecture consists of three

basic layers: the computation-oriented information systems (COISs), a hypertext

engine (IIT E [8]) and the interface-oriented systems (IOSs). An information system

typically comprises two functional components: an IOS front end and a COIS back

end. By assum ing t h a t information systems are designed following a m odu la r fashion

such th a t the ir IOSs can be replaced by o ther IOSs, we can augm ent an information

system with hypertex t functionality by incorporating a hypertext engine between

the IOS and the COIS. This means the H T E intercepts any messages the COIS

would send to its interface and generates all appropria te responses. Each COIS or

IOS is connected to the H T E by its own handler. A COIS handler is an extended

portion of the COIS and is responsible for t rans la ting the messages coming out of

the COIS into the CO IS-H TE communication format which the H T E can handle

and vice versa. A nother job of the COIS handlers is to “buffer” the H T E from the

31

32

IO S =In tcrfnce-O ricn ted System
C O IS = C om putation-O rien tcd In form ation System

COIS
HANDLER

IOS
HANDLER

IOSCOIS

Config

COIS
HANDLER

IOS
HANDLER

IOSKnowledgiCOIS Linkbasc

HYPERTEXT

ENGINE

(HTE)

COIS
HANDLER

IOS
HANDLER

IOSCOIS

Figure 3.1 A GHMI System Architecture

COIS: if the H T E expects the COIS to perform a function it can not,, the COIS

handler must implement this function to ensure seamless integration. Similarly, the

IOS handlers handle IO S-H TE communications and buffering. O ur purpose is to

design a system architecture which is general enough to apply to a variety of COISs

and IOSs, which means th a t every COIS can be arb itra ri ly combined with an IOS

th a t handles its media types. Currently our m ajor contribution focuses on the COIS-

H T E side. The HTE-IOS m apping would be another interesting research area. We

are developing GHM I as a general hypertext da ta model supporting integration of a

variety of COISs.

T he H T E has a knowledge base made up of COIS-dependent, m apping rules,

i.e., bridge laws, which m ap individual COISs to hypertext. Each COIS has its

own set of bridge laws. These rules are registered by the COIS builders during the

progress of system set-up. To in tegrate a COIS with a hypertex t system based on

our model, the COIS builders need to write the bridge laws stored in the H T E ’s

knowledge base and write the code for their individual COIS handler.

33

Besides a knowledge base, the H T E m aintains three databases: a Linkbase,

a Session DB and a Configuration DB. The Linkbase stores persistent hypertext

da ta , which are not m apped from COISs (e.g., m anually created s ta t ic links,

anno ta tions and bookmarks.). The Session DB stores dynamic d a ta with respect

to a navigation session (e.g., history information within a session) for constructing

dynamic navigation structures such as history list and backtracking. T he Configu

ration DB m ain ta ins configuration information for COISs and IOSs.

T he H T E relies on individual COIS handlers as preprocessors to facilitate

C O IS-H TE cooperation and is responsible for accomplishing the hypertex t function

alities defined in GHMI. It should m anage dynamic information exchange and

identify m apped hypertex t objects from COIS specifications. T he I IT E uses

predefined bridge laws to m ap COIS objects to hypertext objects. W hen the

H T E catches some user action which happens on the IOS, say, a link anchor being

selected, the H T E consults its knowledge base seeking appropria te semantics of the

action and identifies destination COIS objects needed or which COIS execution

procedure to invoke. Communication with the COIS is then activated through the

COIS handler, which executes its routines accordingly (e.g., executing the bridge

laws, a n d /o r consulting the underlying COIS database), often re tu rn ing a report to

display in response to the user action.

GHM I aims a t providing a robust d a ta model for representing the function

alities of the H T E toward integrating COISs with hypertext. The following sections

present the basic elements of the GHM I model. In C hap ter 6, we present a GHMT

prototype for implem enting the GHMI system architecture.

3.2 Object Classes

GHMI models objects as links and components. We employ an object-oriented

approach to illustrate the GHMI object class hierarchy, as shown in Figure 3.2.

34

Mavigation
Link

Set Graph

List Tree

Annotation
Link

Reference
Link

Structure
Link

Operation
Link

Specifiers

Link

ContentSpec

Plain
Atomic Composite

CompSet
LinkSct

ContentSpec

Structured
Atomic

Component

COISOhj

OwningSystemType

OwningSystemName
OwningAppNnmc
CompNam e
Attributes

BridgeLawSpec
PrcsentationSpcc

Object

F i g u r e 3 .2 GHMI Object Class Hierarchy

Symbol A means a genera liza t ion relationship between two object classes (the

upper-position class is the generalization of the lower-position class in the figure).

Generalization indicates property inheritance between classes. T h a t is, if class A is

the generalization of B, then we can construct B based on A. B will inherit all the

properties A has and will also have its own additional properties. These properties

include a tt r ibu tes and m ethods (or operations) applicable to the individual classes.

GHM I classifies links into six categories (see §3.4 for details). Components

fall in to three subclasses: Plain Atomic, Structured A tom ic , and Composite. GHM I

distinguishes composites based on their internal structures: Set, L is t , T re e and

G ra p h (see §3.5).

35

G IIM I’s object, class classification is based on the properties and operations

available on the objects of individual classes. As shown in Figure 3.2, all objects

have seven common properties: O w n in g S y s te m T y p e , O w n in g S y s t e m N a m e ,

O w n in g A p p N a m e , C o m p N a m e , A ttr ib u te s , B rid g eL a w S p ec and P re se n ta t io n S p e c

The O w n in g S y s te m T y p e of a component could be either “H yper tex t” or a COIS

handler name. COISs belonging to the same system type share a single COIS handler.

O w n in g S y s t e m N a m e is a COIS name. O zoning A p p N a m e is an application name

within a COIS. GHMI allows an object to have a name property C o m p N a m e to

emphasize its semantic origins. An object name plays a role as a sem antic type.

A ttr ibu te s is a sequence of a ttr ibu te-value pairs representing additional COIS-

dependent, object a ttr ibu tes . B rid g eL a w S p ec is a bridge law ID (BLID) identifying

a bridge law which maps the content of the component. The presentation specifi

cation P re sen ta t io n S p e c is a specification abou t how a component is presented to

the user a t run-time. It enables encoding a com ponent’s presentation style (e.g.,

positions in an overview graph and window size.) prior to run-time.

GHM I explicitly distinguishes hypertext components (e.g., annota tions) from

those m apped from a COIS using the ownership properties (i.e., O w n in g S y s te m T y p e ,

O w n in g S y s te m ,N a m e , O w n in g A ppN am e). For example, in the dom ain of RDBM S,

a com ponent’s O w n in g S y s t e m T ype could be “D atabase .” Its O w n in g S y s t e m N a m e

could be a general RDBM S name such as “MS-Access” or “Foxpro,” etc. Its

O xon ingA ppN am e could be a specific application database name such “Small

School,” “GHM I Linkbase,” etc. It is helpful to have such ownership information

as our intention is to support multiple COISs and applications simultaneously and

allow linking am ong them.

An object name C o m p N a m e plays a role as a semantic type. For example,

for those com ponents m apped from database tables, we can name them as “Table”

to depict their semantics in the originated COIS. Similarly, a link representing an

36

advisor-student, relationship and s ta r ting from the advisor’s record could have a name

“Advisor.” For hypertext components, such as annotations, we can nam e them as

“A nnota tion .”

A bridge law is a COIS-dependent m apping rule for m apping COIS objects and

relationships to hypertext constructs (i.e., components, links and anchors). Bridge

laws are stored in the H T E Knowledge Base. For those com ponents owned by

“H ypertex t ,” the B rid g eL a w S p ec is N O N E .

A GH M I link is a set of specifiers. Each link specifier contains a component

specification (C om pSpec), an anchor specification (A n c h o rS p e c), a direction and

a presentation specification (P re sen ta t io n S p e c). We shall discuss details on link

specifiers in §3.4. GHMI anchors are defined in link specifiers as A nchorSpec. An

A nchorSpec used in a link specifier combining with the C o m p S p ec in the same

specifier (which identifies the em bedding component) provides complete information

to identify an anchor in a com ponent externally.

All GH M I components have a common property C O I S O b j (see §3.5.3 for

details) which is a COIS-dependent expression indicating their COIS origins (i.e., the

original COIS objects they are m apped from). For components not m apped from any

COISs, the C O I S O b j is N O N E . The content of a composite component consists

of a set of components (C o m p S e t) and a set of links (L in kS e t .). Each component

in C o m p S e t is either identified by a component ID or a C O I S O b j expression which

resolves to components dynamically by applying corresponding bridge laws. The

content (C o n te n tS p e c) of a s truc tu red atom ic component is modeled as a sequence

of attribute-value pairs. This captures the internal s truc tu re of an a tom ic component.

For example, a database record could be modeled as a s truc tu red atom ic with a

content as a sequence of field-value pairs. The content of a plain atom ic is undefined

in GH M I and could be some direct d a ta content or reference to external d a ta content.

T he following sections discuss GHM I anchors, links and components in detail.

37

3.3 Anchors

A GHM I anchor is a portion in the content of a component which marks the endpoint

of a link departing from the component. GHM I defines anchors in link specifiers as

AnchorSpec:

A nchorSpec — (A n c h o rID , A nchorType , A n ch o rV a lu e)

which introduces the concept of anchor typing.

The A n c h o r lD is a COIS-dependent value which uniquely identifies an anchor

location within a com ponent’s content. For example, a database record value could

be identified by a combination of its key value and field name. On the o ther hand, a

tex t anchor in a tex t file can be identified by a combination of its length and ofTset

in the file.

GHM I anchors are typed into three categories: pla in anchors, keyw o rd anchors

and d yn a m ic anchors. The AnchorV a lue is the anchor content (i.e., the tex t for

a tex t anchor). The A n c h o r lD and A n ch o rV a lu e of different anchor types have

different semantics.

• Plain Anchors

A p la in anchor is an anchor whose A n c h o r lD contains explicit location

information in terpretable to COISs. P lain anchors are created m anually and

statically.

• Keyword Anchors

A keyw ord anchor is an anchor whose value is a s tring representing the keyword

(or keyphrase). The keyword indicates th a t its every occurrence inside the

contents of the em bedding component is an anchor with the same value. The

ID of a keyword anchor is statically defined as “N O N E ” and is resolved to

actual anchor IDs (i.e., locations) by the system a t run-time. Keyword anchors

are defined manually.

38

• Dynam ic Anchors

A d y n a m ic anchor is an anchor whose value is defined in a bridge law and

resolved to an explicit anchor dynamically a t run-time. The ID and value of

a dynam ic anchor is resolved by executing a link bridge law which maps the

link embedding this anchor in its “F R O M ” specifier. A RD BM S example of

a dynam ic anchor is a s tr ing in a record (probably generated from a query

result) which happens to be a tab le ’s name. Such an anchor can be defined in

M R D C with semantics like 11A is an anchor if it is a V a lu e of a record and also

the name of a table in a da tabase .” Em bedding such an A nchorSpec in a link

specifier of a bridge law defines the entire class of such anchors. We shall see

examples of dynamic anchors in §5.

3.4 Links

Besides common object properties, a GHM I link has p roperty L in k T y p e representing

six link categories. A link consists of a sequence of link S p e c i f i e r s which specify

the link endpoints. A hypertext under GHM I helps a COIS establish direct access

to explicit and implicit relationships am ong underlying COIS objects. This section

discusses link types and link specifiers.

3.4.1 Typed Links

Typed links provide an easier and clearer mechanism for both the readers and au thors

to unders tand a hypertext information network. Link typing enhances the power of

two navigational tactics: f i l t e r in g and zoom ing. Filtering occurs when the user is

presented by the system with a subset of links which can be followed. W ith untyped

links, however, the user could be overwhelmed by the cognitive overhead of dealing

with the whole set of links outgoing from components. F ilte ring on link types restrict

his or her navigation to link types of interest while disabling others. Links in GHMI

39

have a property L in k T y p e , representing six categories of links based on different

roles they are playing in a hypertext system.

L in k T y p e — “S tru c tu r e L in k " | “R e fe r e n c e L in k "

| “A n n o ta iio n L in k" | “A ssoc ia t ionL ink"

| “N a v ig a tio n L in k" | “O p e ra t io n L in k "

Structure links represent the underlying structu ra l inter-object, relationships

within a COIS domain. In a well-organized information system, am ong the various

types of inter-object relationships, there might be distinguishable relationships which

dom ina te the overall information organization and can be represented as s tru c tu re

links. For example, in a RDBMS, a da tabase consists of tables, a tab le consists of

records and a record consists of individual values. Such “consists o f ’ (or its reverse

direction) relationships can be m apped as s truc tu re links which allow direct access

from a parent object to a child object or vice versa. S tructu re links are dynam ic

links defined by bridge laws.

Reference links depict cross-reference relationships am ong components, which

can be generated au tom atically by the system according to predefined bridge laws.

In the domain of RDBM S, the ER, diagram itself represents a cross-referencing

relationship am ong entities. Although these relationships are lost when we map

the E R diagrams into flat database tables, GHM I could restore them as reference

links. O ther examples include defining a reference link from a record to ano ther

record which has the same key value. The system should be able to com pute such

links autom atically based on their bridge laws. Therefore, reference links are also

dynam ic links defined by bridge laws.

Annota tion links connect objects to their annotations. An anno ta t ion is a

com m entary docum ent a ttached to an object. We separa te an object from its

anno ta tion by placing the anno ta tion in a separate atom ic component and connecting

40

it to the object through an annota tion link. Unlike s tructure links and reference links,

anno ta tion links are pure hypertext features which have no corresponding m appings

in the underlying COIS. They are s ta t ic links created manually.

Association links are user-declared ad hoc links representing semantic

relationships am ong objects. Users can add such links to or delete them from a

hypertext network a t will. Association links are non-autom atable (otherwise they

would be reference links). Instead, they are defined manually based on a semantic

conceptualization in the user’s mind which is not in terpretable by the system. The

user can define any links among objects and give them semantic labels. In GHMI,

an association link could be an inter-COIS link which relates an object in a COIS to

an object in ano ther COIS. Association links are also static links created manually.

Navigation links are system-generated links for navigation purposes. Such links

are used to construct navigation structures (e.g., guided-tours, see §3.6). Navigation

links do not reflect, inter-object relationships. They are dynamic links and generated

au tom atica lly by the system according to the user’s navigation requests. Navigation

links are t ran sparen t to users. Users might have no knowledge ab o u t the existence

of these links.

Operation links model operational comm ands and queries over a hypertext

network. They are dynamic links defined by bridge laws. An operation conducted

on an object can be modeled as an operation link from the object pointing to the

operation results (which might be generated as destination components). O perations

invoked from an interface menu item can be modeled as an operation link with no

departing component. The com puta tion of the destination com ponents might be

completed by the cooperation of the H T E and the COIS. In the case of RDBM S,

operations such as da tabase queries can be modeled as operation links. The user

can access these links directly. For example, we can define a query as an operation

link. Another type of operation link in RDBM S is user-declared queries. The user

41

can define frequently-used specific queries as ready-to-follow operation links using a

C O IS-supported query language. W hen following such a link, instead of executing

it directly, the hypertext engine sends the operation to the COIS for solutions. The

destination of such a link would be the query results resolved dynamically by the

C O IS’s query processing system every time this link is followed.

3.4.2 Link Specifiers

T he “content” of a GHM I link is a sequence of link S p e c i f ie r s . A S p e c i f i e r defines

a link endpoint through four fields:

S p e d f i e r = C o m p S p e c , A nchorSpec , D ire c t io n , P resen ta t io n S p e c

C o m p S p e c is a component specification identifying a com ponent as a link endpoint.

The GHM I concept of C om pSpec reflects dynamic m apping between COIS objects

and GHM I components. The GHM I C om pSpec is either a hypertext object specifi

cation H T O b j (if not m apped from COIS) or a COIS object specification C O I S O b j ,

plus an optional sequence of ownership properties:

CompSpec = H T O bj
| (COISObj,
[OwningSystemType,OwningSystemName,OwningAppName])

A C om pSpec uniquely identifies an object in a GH M I hypertext system. An

H T O b j could be an explicit global component ID (GID) or a hypertext query

expression which resolves to a component ID by some hypertex t query processing

function. (The discussion on hypertext queries is ou t of the scope of this thesis.) A

C O I S O b j is an expression (see §3.5.3) which resolves to a component m apped from

COIS object contents a t run-time through bridge law execution. If the C o m p S p ec

of a link does not resolve to an explicit component, the link endpoint becomes a

dangling component and the link becomes a dangling link. This could happen when

42

the corresponding COIS object is deleted w ithout notifying the hypertext system.

The system should be able to provide users with information regarding this s ituation.

If there are no ownership properties in a specifier’s C om pSpec , the specifier inherits

the link’s ownership properties. §3.5.3 discusses more details a b o u t C o m p S p e c in

GHMI.

A nchorSpec specifies an anchor in the a link specifier to m ark a link endpoint.

A link specifier representing an entire component has “N O N E” as its AnchorSpec.

D irec t ion defines the directional na tu re of the link endpoint as one of “F R O M ” (a

departure), “T O ” (a destination), “B ID IR E C T ” (both departure and destination),

and “N O N E .” Such a notion of link specifiers is powerful for modeling multi-headed

ri-ary links (i.e., a link with more than two endpoints). Unidirectional b inary links

are modeled as two endpoints with one directed as “FR O M ” and the o ther directed

as “T O .” Bidirectional links (e.g., an association link “Co-workers”) have both

endpoints directed as “B ID IR E C T .” An operation link which is no t departing from

any com ponents (e.g., “Open D a tabase” com m and in RDBM S) could be modeled

as a unary link with a single endpoint (e.g., the destination da tabase of an “Open

D atabase” comm and) directed as “T O .”

Note th a t the P resen ta t io n S p ec in a link endpoint is a link p roperty different

from the P re sen ta t io n S p e c property of the endpoint component itself. For example,

to distinguish an expert-user presentation and a novice-user presentation of a

component, we can encode the accesses to the component as two links with d istinct

P resen ta t io n S p e c (e.g., one defines the endpoint as “editable” and the o ther defines

it as “read-only”) regardless of the com ponent’s own property P resen ta t io n S p ec . Tn

GHMI, em bedding P resen ta t io n S p ec in components is optional. P re se n ta t io n S p e c

can also be used to define the view style of a component (see §3.5.2).

43

3.5 Components

GHM I classifies com ponents in to three subclasses: plain a tom ic com ponents,

s tru c tu red atom ic com ponents and com posite com ponents.

3.5.1 Atom ic Components

An atom ic com ponent in GHM I can not embed o ther com ponents in its conten t.

An a tom ic com ponent could be struc tu red or unstruc tu red . A p la in a tom ic is

an unstruc tu red atom ic which has a content w ithou t any in ternal s truc tu re . Tn a

m ultim edia environm ent, typical exam ples of plain atom ics include a page of tex t, a

p ic tu re , a raster of image, a sho rt audio tape, a short an im ated sequence, etc. T he

conten t of a p lain atom ic com ponent is prim itive and unspecified in GHM I. C urren tly

we only consider tex t atom ics in GHM I and believe th a t th e model can be extended

to include o ther kinds of d a ta resources.

T he content of a s tru c tu red atom ic comprises a sequence o f aitribule-value

pairs interpret.able to COISs. Exam ples include a da tabase record, a hypertex t

link browser (consisting of a list of link references), etc. We model com ponents

w ith only a ttr ib u te s (e.g., a da tabase tab le schem a which is a sequence of field

nam es) as N O N E - v a lu e s tru c tu red atom ics by specifying N O N E in th e ir values.

For s tru c tu red atom ics, we can define certain s truc tu re-based operations, such as

linking to or from a dynam ic anchor defined on an a ttr ib u te or value. C om plicated

com ponent content s truc tu res, such as “table of con ten t” or a da tabase table, can

be represented as com posite com ponents with in ternal s tru c tu res (see below).

3.5.2 Composite Components

T he concept of com posite greatly improves the organization of a hypertex t network.

C om posites provide a more powerful way to construct a hypertex t network over the

pure low-level node-link model and assist both users and au tho rs a t various levels.

D uring navigation, for instance, w ith com posites the user can zoom in to a p a rticu la r

44

subcom ponent for details or zoom out, it to navigate along the overview stru c tu re

of a com posite. On the o ther hand, some COIS (such as DBM Ss) have th e ir own

d a ta m odels, i.e., objects of these COISs are w ell-structured. It, is essential for

a hypertext, system t,o capture these CO IS struc tu res and m ap them faithfully to

com patib le hypertext, structures.

A com posite component, (or sim ply composite) is constructed from other

com ponents. Individual com ponents em bedded in a com posite could be any type of

com ponents them selves, including com posites, plain atom ics and s tru c tu red atom ics.

GHM I explicitly classifies com posites based on the representation of their

in ternal s tru c tu re s as Set, List, Tree and Graph. A Set consists of a set, of

com ponents and no explicit links exist, am ong these com ponents. A L is t is com posed

of an ordered set of com ponents connected linearly. A T re e is constructed from a set

of com ponents connected as a tree-like s tru c tu re and has a distinguished com ponent

as its roo t. A G ra p h has com ponents as “nodes” and links as its “edges” .

One purpose of m odeling com posite struc tu res is to build m ultip le views from

a com posite based on its internal struc tu re . In GHM I, besides position inform ation,

the P re sen ta t io n S p e c can be used to define m ultiple views of a com ponent. Usually,

P re sen ta t io n S p e c is the same as the C om pC lass . For com posite com ponents,

however, we can view them in ano ther style coded in P resen ta t ionSpec . For

exam ple, in RD BM S, a database can be m apped to a Set com ponent which consists

of a set of tab les (identified by their nam es). A tab le , in tu rn , consists of a set of

records (identified by their keys). A regular Set, view of a da tabase object, would be

a set of tab le nam es. We can overwrite such a view by defining P re sen ta t io n S p e c

as “Tree.” A Tree view of a database object, expands all of its tab les and records.

T h a t m eans we would see a three-level tree: T he root in level 1 is the d a tab ase nam e

itself. Level 2 contains all tab le names. Level 3 contains all record keys. Clicking

on record keys will bring up record contents. We can also view a Set, as a default

45

gu ided-tou r (D G T , see the next section) by specifying P re sen ta t io n S p e c as “D G T .”

C om ponent view styles can be also coded in link specifier’s P resen ta t io n S p ec . W hen

a com ponent w ith its own P resen ta t io n S p e c is defined as a link endpoin t, the link

specifier’s P re sen ta t io n S p e c overw rites the com ponent’s P re sen ta t io n S p e c .

3.5.3 Virtual and Computed Components

From th e com ponent creation po in t of view, a GH M I com ponent is e ither a

hypertex t com ponent or COIS com ponent. Therefore, the com ponent specification

(C o m p S p e c) in G IIM I is e ither a hypertex t object {H T O b j) or a COIS object,

(C O I S O b j) along w ith ownership properties.

H T O b j specifies e ither an explicit hypertex t com ponent by an explicit ID or

a com puted hypertex t com ponent by a hypertex t query. A hypertex t query is a

CO IS-independent, query expression, which usually requires s tru c tu ra l inform ation

[44]. Exam ples of such queries are “F ind all com ponents w ith a n n o ta tio n s ,” “F ind

all com ponents w ith only one departu re link,” “F ind all unary links,” etc. The

hypertex t engine is responsible to resolve such kind of s tru c tu ra l queries in to UIDs.

T h is is an advanced hypertex t functionality which most, cu rren t hypertex t system s

do not suppo rt. We shall not discuss the details of hypertex t queries in th is thesis.

We consider C om pSpec as CO ISO bj (along w ith ownership p roperties) only.

GH M I employs the concept of dynam ic m apping. One of our m ajo r concerns

is to m ap COIS objects to GHM I com ponents and therefore the CO IS can take

advan tage of hypertex t functionality w ithou t changes on its underly ing organi

zation. On the o ther hand, the hypertex t system also w ants to su p p o rt th e com pu

ta tio n abilities (such as query processing) of COISs fully. A COIS com ponent is a

com ponent m apped from a COIS object dynam ically through predefined bridge laws.

T he m apped com ponent is no t persisten tly stored in the H T E Linkbase. Every tim e

it is required by the user, the H T E dynam ically generates its conten t. Therefore,

46

every COIS com ponent is a v ir tua l and computed component,. We m ap COIS objects

to GHM I com ponents only on-demand a t run-tim e according to th e ir specifications

in CO ISO bj and corresponding bridge laws. A CO IS object (C O I S O b j) can be

in ternally represented as an explicit COIS object expression:

C O I S O b j = (C O I S ID , C O I S T y p e , C O I S Label)

Once an explicit expression of CO ISO bj is defined, th e H T E is ready to app ly a bridge

law (according to the CO ISID and the CO ISType) to m ap its content. To accom plish

such a m apping, th e H T E packs up a message requesting the to -be-m apped object

inform ation from the COIS by specifying its CO ISID and m apping rules. A fter a

COIS object is m apped to a com ponent, the H T E executes bridge laws to generate

all link anchors d eparting from th is com ponent.

For dynam ic links whose endpoints contain im plicit inform ation (e.g., defined in

a bridge law), the H T E needs to apply a link bridge law to resolve im plicit inform ation

to explicit CO ISO bj expression. For exam ple, in RD BM S, the specification for the

endpoin t of “all tab les having the sam e key field w ith th e curren t tab le” could be

(X , “T a b le " ,Y) in a link bridge law, where A' and Y a re M RDC variables. The

H T E needs to resolve them to an explicit CO ISID and CO ISLabel based on the

M appingR ule in the bridge law in order to make th e ta rg e t tables directly accessible

by users. The corresponding tab le contents are not generated until these tab le s’

CO ISID s are selected by the user.

Only the contents of hypertex t com ponents (e.g., anno ta tion and association

links) are persisten t in the H TE Linkbase. T he contents of COIS com ponents are

dynam ically com puted whenever they are selected. T he entire hypertex t netw ork is

generated dynam ically from underlying COIS databases. Such an approach effec

tively separates the H T E from COISs and reduces the d a ta consistency problem

caused by IIT E -transparent, COIS operations (e.g., “E d it Table” and “D elete T able”

in RDBM S which could be happening outside and beyond the control of the IIT E).

47

3.6 Navigation Structures

In th e previous sections, we presented G H M I’s basic elem ents. We model navigation

s tru c tu re s in term s of GHM I com posite com ponents in th is section.

T he associative natu re of a hypertex t network s truc tu re enables hypertex t users

to m anage and access d a ta stored in a hypertex t database w ith g rea t flexibility. It is

th is flexibility, however, th a t frequently causes user cognitive overhead and disorien

ta tio n du ring navigation courses over the hypertex t network. T his classic hypertex t

navigation problem — user d isorien tation— has been identified and discussed ex ten

sively in hypertex t litera tu re [3, 18, 44, 72, 90]. A rb itrary linking even has been

com pared to the abuse of G O T O s in non-structured program m ing [22], Efforts

have been m ade to alleviate the d isorientation associated w ith h y p e rtex t’s non-

restric tive linking and direct user-access features. N avigation via graphical m aps

and overviews [31, 59, 71, 72, 90] has been proved a useful tool in m any hypertex t

system s such as In term edia [77, 101], gIBIS [20, 19], N oteC ards [45], PlaneTcxt,

[18] and N eptune [25]. Q uery-based filtered browsers [45, 25], history list [72],

bookm arks and In term edia’s W eb View [90] are also helpful m echanism s tow ards

d isorien ta tion reduction. N avigation via guided tours [89, 68, 42, 34], com bined with

o th e r techniques, reduces both d isorientation and user cognitive overhead.

Benefiting from the experience of o ther hypertex t researchers, GH M I provides a

com prehensive level of navigation structu res including bookm arks, netw ork overviews

and guided-tours. We include these s tructu res effectively m odeled in term s of

com posite com ponents. One m ajor contribution of GHM I on navigation m odeling

is the in troduction of the four guided-tour categories (query-based guided-tours,

defau lt guided-tours, user-defined guided-tours and navigation-based guided-tours)

which are no t found in any o ther hypertex t literature. T his section focuses on the

represen tation of navigation struc tu res regarding bookm arks, netw ork overviews

48

and guided-tours. We model some o ther navigation s truc tu res (e.g., sessions) and

facilities (e.g., backtracking) which rely on the run-tim e user in teraction in §3.8.

3.6.1 Bookmarks

Some com ponents in a hypertex t network may be of special im portance to the user. It,

is helpful to provide a d irect access to these com ponents from any navigation position.

These com ponents are called bookmarks. N avigation links are m aintained by the

system to allow d irect access to bookm arks. Bookm arks are special com ponents

in th e hypertex t netw ork which are d irectly accessible from all o ther com ponents.

GHM I models bookm arks as a S e t com posite w ith an index link poin ting to it.

This index link is a unary link of type “N avigationL ink” w ith only an endpoin t

d irected as “T O ” ind icating th is is a com ponent accessible from all com ponents

(usually through a menu bar item). Users are allowed to m an ipu la te (add or delete

a bookm ark) the bookm ark Set. The content of th is S e t is a set of com ponent

specifications (C om pSe t) . As a result of dynam ic m apping, th e content of a COIS-

m apped bookm ark is actually generated when the user selects it (on its icon or

label).

3.6.2 Network Overviews

Users often get lost when exploring hypertex t networks. A netw ork overview [71, 90]

(or sim ply called an overview) is a vision of a substruc tu re of a hypertex t network.

Overviews help alleviate the network d isorientation [18, 72] by giving the user a

sense of context. GHM I m odels overviews on com posite com ponents. A com ponent

overview is constructed as a v irtua l com ponent based on the com ponent’s in ternal

struc tu res, which could be a Set, L ist, Tree, or a G raphs, depending on the com plexity

of the original COIS object.

49

3.6.3 Guided-Tours

Froin a control po in t of view, navigation over a hypertex t network can be user-

controlled and system -controlled. In a user-controlled navigation, all p a th s are

determ ined by the user through navigation com m ands provided by th e system .

In system -controlled navigation, the navigation p a th s are prepared by the system

following some user in p u t com m ands. By default, the user is not allowed to use

navigation com m ands to choose his own pa th s once ge tting on a system -controlled

navigation path (though th e user may be able to overw rite th is). One typical exam ple

of system -controlled navigation is a guided-tour [34, 42, 68, 89] (G T) which is a

navigation s tru c tu re bu ilt from a sequence of com ponents as a linear p a th . W hen

navigating on a G T , th e user m ust follow th e G T to access inform ation. No branch

links are available unless an explicit request is applicable to overw rite the prepared

paths. The user can get on or off a G T from any o ther navigation p a tte rn . At

any stop of a G T , the user is allowed to invoke o ther links by pausing th e to u r and

retu rn ing back later.

GHM I m odels a G T as a L is t com posite consisting of a sequence of com ponents

and a set of links. Each link is a “N avigationL ink” nam ed “N ex tG tS top .” A link

endpoin t is called a G tS to p which can be any type of com ponent (e.g., a link, a

com ponent, or an o th er guided-tour). The user can only follow link “N ex tG tS to p ”

linearly to access Gt.Stops in the order they are connected in the G T . In a G T , two

links are distinguished to represent the s ta r tin g and ending Gt.Stops. T he s ta r tin g

link has only one endpoin t d irected as “T O ” while the ending link has only one

endpoin t directed as “FR O M .” All o ther links in a G T have two endpoin ts d irected

as “T O ” and “F R O M ” respectively. Figure 3.3 shows the concept of L is t representing

a G T . This G T contains four G tStops: com ponents C l , C 2, C3 and C 4, as shown

in F igure 3.3(b). In ternally th is G T is represented as four links L I, L2, L3 and

L4, as shown in F igure 3.3(a), which embed the com ponent UIDs in th e ir endpoin t

50

L I

CompSpec = Cl

Direction = TO

L2

CompSpec = Cl

Direction = FROM

CompSpec = C2

Directions TO

L3

CompSpec = C2

Direction = FROM

CompSpec = C3

Direction = TO

LA

CompSpec = C3

Direction = FROM

CompSpec = C4

Direction = TO

L1 Cl 12 C2
L3 C3

LA C4

(b)

Figure 3.3 A G uided-tour Exam ple

specifiers. In the figure we only show the D irec t ion and C om pSpec of each link and

the UIDs of each G tStop . The content of a link endpoin t is dynam ically com puted

one by one when the G T is followed by the user. For exam ple, a G T resu lted from a

RDBM S query “F ind all Ph.D . s tu d en ts’ nam es who take CIS 610” would be a set

of records as a G T consisting of studen t names.

GHM I classifies guided-tours in to four categories: default gu ided-tours (D G T s),

query-based guided-tours (Q G Ts), user-defined guided-tours (U G Ts) and navigation-

based guided-tours (N G Ts).

• Default Guided-tours (DGTs)

D G T s are derived from the struc tu ra l inform ation of a com posite. T hey are

created au tom atically by the system and directly available to the user. A

D G T of a com posite is a L is t over links of type N a v ig a t io n L in k au to m atica lly

derived from struc tu re links of the com posite . One way to ob tain a D G T from

a com posite is to expand the bread th-first search tree on the original s tru c tu re

links level by level and order the resulted com ponents in a linear m anner. A

D G T G tS to p could also be ano ther D G T if th e corresponding com ponent is a

com posite.

51

• Query-based Guided-tours (QGTs)

Q G Ts are created by the system representing query results. T he com ponents

resulting from a query are organized as G tStops. A G tS to p in a Q G T could be

an o th er guided-tour. If a G tS to p is a com posite, it could be ta rg e ted as a D G T

of the com posite instead of presenting the entire com posite and expecting the

user to browse it.

• User-defined Guided-tours (UGTs)

T he user is able to define a U G T on a set of com ponents in th e sam e way as

defining ad hoc association links. In th is case, the resu lted links would be ad hoc

navigation links which group p a rtic ip a tin g com ponents into a L is t com posite

as a U G T. Once defined, a U G T can be invoked a rb itra ry tim es until deleted

by th e user. T he user can m anipu la te a U G T (e.g., an n o ta tin g , deleting or

adding new com ponents, etc.) as a norm al com posite.

• Navigation-based Guided-tours (NGTs)

T he user can define an N G T based on his or her individual navigation history

sto red in the History Log (see §3.8). The user can select events from the

History Log to construct an N G T. Once constructed , an N G T (actually its

specifications) exists in the H T E Linkbase until the user deletes it explicitly.

As w ith U G Ts, the user can also m anipulate N G Ts a t run-tim e.

T he navigation struc tu res (bookm arks, network overviews and a variety

of gu ided-tour types) presented in th is section help reduce user d isorien tation

and provide the user a flexible, com prehensive and w ell-structured m echanism to

custom ize individual navigation environm ent over a hypertex t network.

52

3.7 A Bridge Law Template

In th is section, we discuss bridge law definitions. GHM I employs bridge laws to

m ap COIS objects and relationships to hypertex t constructs. A single bridge law

will m ap entire classes of COIS objects satisfying th e bridge law’s condition. All

com ponents which represent COIS objects are generated dynam ically th rough bridge

law m appings in response to user requests (e.g., traversing a link to bring up the

destination com ponent). W hen the user selects an object, bridge laws determ ine

w hat COIS objects, operations, or relationships will be m apped from the CO IS.

As an early step tow ards dem onstra ting the power of dom ain m apping, we explored

logical m odeling on the representations of both T E X PR O S and hypertex t in [96, 97].

In our work aim ing a t developing a general hypertex t d a ta m odel, we have fu rther

refined bridge laws using logic m odeling approach. T his section presents a bridge

law tem p la te as a s ta n d a rd form at for defining bridge laws. W e also discuss a sim ple

m apping rule definition convention (M RDC) for defining expressions used in COIS-

dependent com ponent p roperty specifications.

Bridge laws are stored in the H T E Knowledge Base and identified by th e ir

bridge law IDs (BLIDs). Each COIS has its own set of bridge laws w ritten by its

builders during the course of system set-up. T he H T E dynam ically invokes these

bridge laws using argum ent settings as input to generate com ponents. Defining a

bridge law requires specifying the properties of the com ponent to be m apped by

th is bridge law in term s of CO IS-dependent m apping rules. This section presents a

general tem pla te for w riting bridge laws and a m apping-rule definition convention

(M R D C). We shall also briefly illu stra te how to use th is bridge law tem p la te and

M RD C expressions (see §3.7.3) to define and execute bridge laws through RD BM S

exam ples.

We consider two types of bridge laws: com ponent bridge laws and link bridge

laws. A com ponent bridge law m aps a COIS ob ject to a com ponent. A link bridge

53

T a b le 3 .1 A Component, Bridge Law Tem plate
Com pClass
O w ningSystem Type
Com pNam e
PresentationSpec
CO ISObj
Com pSet
LinkSet
ContentSpec
M appingRule

law m aps a COIS relationship to a link. A CO IS object is m apped to a com ponent

when it is selected by the user (usually as an link endpoin t selected by a link traversal

com m and). W hen a COIS object is m apped to a com ponent th rough a com ponent

bridge law, the H T E executes link bridge laws to m ap all link anchors departing

from the m apped com ponent. These links are m arked by anchors em bedded in the

com ponent content. The m apping of link endpoints is delayed until th e links are

actually traversed.

3 .7 .1 C o m p o n e n t B r id g e L aw s

Table 3.1 shows a com ponent bridge law tem p la te which is a tw o-colum n table.

T he left colum n contains a list of com ponent p roperty names. To w rite a bridge

law is to define the properties in the corresponding right-colum n item s. A right-

colum n item of a bridge law tem pla te could be either a constan t (e.g., “H y p e rte x t,”

“Table,” etc.) or M RD C (see below) variables whose sem antics are defined in the

righ t colum n of the M appingR ule . A M app in g R u le is a set of M RD C predicates

representing C O IS-dependent inform ation.

3 .7 .2 L in k B r id g e L aw s

A link bridge law defines a COIS relationship which will be m apped to a GH M I link.

T he H T E executes a link bridge law when the com ponent em bedding the anchor

54

Table 3 .2 A Link Bridge Law Tem plate

Com pClass
O w ningSystem Type
Com pN am e
PresentationSpec
LinkType
{Specifier*}"1"
M appingR ule

m arking th is link is brought to display. T he link’s endpoints are not m apped until

th is link is ac tually traversed. Table 3.2 illustra tes a link bridge law tem pla te . A link

bridge law tem p la te is sim ilar to the com ponent bridge law tem p la te , except th a t a

link has a L in k T y p e and a list of S p e c i f i e r s instead of com ponent p roperties (i.e.,

C O I S O b j , C o m p S e t and L in k S e t) . A specifier is a com position of

{C om pSpec, AnchorSpec, D irection , P re s e n ta t io n S p e c } .

A link bridge law defines link p roperties in term s of M RD C expressions.

T he GHM I bridge law tem p la tes are greatly influenced by the bridge law

notions of B ieber et a l.’s work [12, 9], which has no com posites and m aps nodes,

links and anchors separately, which have not been im plem ented. (B ieber’s current

p ro to type uses bridge laws developed specifically w ith th is im plem entation in mind.

W hile they are general enough for any COIS, they do not come from a principled

m odel.) B ieber’s bridge laws correspond to GHM I bridge laws’ M a p p in g R u le part.

GH M I bridge laws m ap COIS objects to more complex hypertex t constructs. The

GH M I M a p p in g R u le is m ore form alized and sim pler (only th ree predicates, see

§3.7.3). By m odeling bridge laws in a tab le form at com bined w ith a sim ple set of

pred icates, GHM I makes bridge laws more understandable.

GH M I extends and form alizes the previous bridge law form ats to support

com posites and m appings from COIS to a GHM I hypertex t network. O ur previous

55

work on bridge laws [96, 97, 94, 93] was based on m odeling th e dom ain of a docum ent

m anagem ent system . In th is thesis we focus on the dom ain of RD BM S which is qu ite

different, from the docum ent m anagem ent dom ain. O ur goal of m odeling d istinc t

dom ains has led us to generalize bridge law tem p la tes and prove our idea of using

GHM I as a general model for all COISs. We present the GH M I version of T E X P R O S

bridge laws in A ppendix A.

3.7.3 MRDC: A M apping Rule Definition Convention

T he m ajo r p a r t of a bridge law tem p la te is the M a p p ingR u le . In order to provide a

form al tem p la te to define bridge laws, we need to form alize expressions representing

C O IS-dependent inform ation. Benefiting from our previous efforts on m odeling

bridge laws using logic, we m odel M RDC as a subset of P ro log which consists of

a set of constan t sym bols, variable sym bols, a sm all set of predicates and functions.

T he basic M RDC elem ents include the following.

1. P rim itive Symbols

• Propositional Connectives: -> (n eg a t io n) , V (d isjunction) ,

A (conjunction), —¥ (im plication), = (equivalence), = (equality), / (non

equality), V (universal quantifier) and 3 (existential quantifier).

• Set Connectives: u, n, C , C , D, D .

• Variable Symbols

- Simple Variables are upper-case-leading strings (e.g., X , Y , Z \) .

W hen used separately, symbol represents “a rb itra ry ” or “d o n ’t

care” values. M RD C has two types of variables: sim ple variables and

list variables.

56

- List Variables are variables denoted as a list of o th er variables, i.e.,

X = [X i, X 2 , ..., A'n], where X is a list variable and every A '/(l < i <

n) is e ither a sim ple variable or a ano ther list variable.

• Constant Symbols are strings quoted in quo tation m arks (e.g., “MS-

Access” , ‘R ecord1, etc.) which represent in stan tia ted variab le values.

• Function Symbols are upper-case strings, including sym bol ‘J (e.g.,

A P P L Y J B L jC O M P , G E T J P R O P E R T Y , etc.).

• Predicate Symbols are lower-case-leading strings (e.g., object , re la t io n ,

etc).

2. P red ica tes

T here are th ree predicates in M RDC:

• object(X,ClassNam e)

P red ica te o b je c t (X , C la s s N a m e) identifies an object A” belonging to a

class nam ed C la s s sN a m e . X is a variable. C la s s N a m e is a constan t

string. For exam ple, in a da tabase bridge law, ob jec t(X , 'Table') ind icates

th a t A' is a da tabase object belonging to a class nam ed “T able.”

• property(X,PropertyNam e,Y)

Pred ica te p ro p e r ty (X , P ro p e r ty N a m e , Y) indicates th a t ob ject A' has

p roperty nam ed P ro p e r ty N a m e and the value of th is p ro p erty is 1'.

A" is a variable. P r o p e r ty N a m e is a constan t string. Y could be a

variable, a constan t string, or a function which re tu rn s a value. For

exam ple, p r o p e r ty (F , 'k e y F ie ld ' , ' S S N ') indicates th a t F has a p roperty

“K eyField” as “SSN.”

• relation(X,Y,RelationNam e)

P red ica te re la t io n (X , Y, R e la t io n N a m e) indicates th a t ob jec t A' and

ob ject Y have a relationship nam ed R e la tio n N a m e . X and Y could be

57

variables. R e la t io n N a m e is a constan t string . For exam ple,

rela tion^A', Y, ‘L ik e s 1) indicates th a t X and Y have a relationship “Likes”

(i.e., X “Likes” Y).

3. A Special Function

O P E R A T I O N (Z , X , Y) is a special function which is available in M RDC

expressions. Function O P E R A T I O N (Z , X , Y) identifies a COTS-supported

operation on object Z . T he o p era tio n ’s nam e is X and it takes Y as an

argum ent list. X is a constan t sym bol representing an opera tion nam e (e.g.,

“Q uery” in a database). Y is a plain s tring expression in te rp re tab le to the COTS

when com bined w ith the operation nam e (e.g., in a da tabase, Y could an SQL

s ta tem en t) . Variables inside Y have prefix For exam ple, in a database,

O P E R A T I O N (‘Sma,\\ School1, 'Q uery ', 'Select N a m e from E m ployee where

S a la ry > 40,000') denotes a query on da tabase “Sm all School” w ith no

variables. Expression O P E R A T I O N ^ Small School', 'Q uery ', ‘Select N a m e

from $$X where S a la ry > 40,000') contains a variable A' (stands for a tab le

nam e) which needs to be in stan tia ted when th is query is passed to th e COTS

handler. T he re tu rn value of O P E R A T I O N {) is the operation results resolved

by the underlying COIS.

3.7.4 Executing a Bridge Law

A lthough we define bridge laws in form at of tables, th is by no m eans im plies th a t

bridge laws are only sim ple “look-up” tables. A bridge law is applied in the H T E (i.e.,

p reparing correct argum ents) and ac tually executed in a CO IS handler. Internally,

p rio r to executing a bridge law, th e COIS handler needs to tra n s la te it to a set of

P ro log predicates. Therefore, the entire tab le of a bridge law definition im plies a set

of predicates. An execution of a bridge law would take given variable values (e.g.,

CO ISID , CO ISType, etc.) to in stan tia te all o ther free variables in the predicates.

58

In o ther words, variables are “inferred” from the pred icates defined by a bridge law.

T h is procedure is sim ilar to running a query under Prolog. A COTS handler usually

has a bridge law engine to handle bridge law execution.

T he H T E employs th ree bridge law functions to apply bridge laws:

A P P L Y 'J 3 L .C O M P () , A P P L Y ' J B L J I N K () and A P P L Y 'J B L .A N C I I O R () ,

which apply a bridge law to generate com ponents, link endpoin ts and dynam ic

anchors, respectively.

• A P P L Y J 3 L . C O M P (B L I D , A rgum en tSpec)

T his function is responsible for in stan tia tin g a com ponent BL to a com ponent.

A P P L Y J 3 L . C O M P (B L I D , A rg u m en tS p ec) in stan tia te s com ponent bridge

laws in the IIT E Knowledge Base to construct v irtua l com ponents.

A P P L Y J 3 L . C O M P Q takes two param eters: a com ponent bridge law ID

specified by B L I D and a list of param eter specifications in A rg u m e n tS p e c .

For exam ple,

A P P L Y 'J 3 L . C O M P { B L r abie\i [D,T] = [‘S m a l lS c h o o l ‘, ‘ Doctoral S tu d e n t 1])

applies bridge law B L Tabie\ to generate a com ponent from the content of tab le

“D octo ra lS tuden t” in da tabase “Small School.”

• A P P L Y J 3 L J I N K (B L I D , A rg u m e n tS p e c)

T h is function is responsible for m apping a link endpoin t from a link bridge

law. I t takes a link bridge law and a list of argum ents to m ap a link endpoin t

specified in a link specifier with “T O ” direction. For exam ple,

A P P L Y ' J 3 L J I N K (B L SameKey, [D,T\ = [‘ S m a l l School ' , ‘D o c to ra lS tu d e n t '])

applies link bridge law BLsameKey to generate com ponents from tab les having

the sam e key as tab le “D octora lS tuden t” in d a tab ase “Sm all School.”

59

• A P P L Y J 3 L . A N C H O R { B L I D , A rgum en tSpec)

T his function is responsible for m apping dynam ic anchors defined in the

“F R O M ” specifiers of a link bridge law. Like A P P L Y J 3 L - L I N K () , th is

function also takes a link bridge law and a list of argum ents. B u t in stead of

genera ting the link endpoints in “T O ” specifiers like A P P L Y - B L - L I N K {)

does, instead it generates dynam ic anchors defined in “F R O M ” link specifiers

by app ly ing th e M appingRule in the bridge law. A fter m apping, a dynam ic

anchor is tem porarily stored in the H TE Linkbase and is ready to follow as if

it were a plain anchor. For exam ple,

A P P L Y J 3 L - A N C H O R (B L RefToTable,

[D , T , K] = [‘S m a llS ch o o l ‘, 'D o c to ra lS tuden t ' , ‘123456789'])

applies link bridge law B L n e/roTabie to generate com ponents from tab les whose

nam es ap p ear as a value in record “123456789” in tab le “D o c to ra lS tu d en t” of

da tabase “Small School.”

3.7.5 Bridge Law Examples

Table 3.3 shows a com ponent bridge law exam ple B L Tabie\ and Table 3.4 shows a

link bridge law exam ple BLnefToTabie-

BLmbiei m aps tables to set com ponents from records, as shown in Table

3.3. T he resulting com ponent contains a set of record com ponents m apped from

database records by the above B L R ecor(t ■ A tab le is identified by its tab le nam e and

the d a tab ase nam e in which it resides (i.e., [D, T]). The conten t of the resulting

com posite is a set of record com ponents. {[D , T , K], ‘Record ‘, A']}* m eans 0 or more

records. object.([D,T, K] , ‘Record') ind icates th a t K is a record residing in tab le T

of d a tab ase D. T he C o m p S e t does no t include ownership p roperties as the corre

sponding CO IS objects (i.e., records) inherit these properties from th e ir em bedding

table.

60

Table 3.3 Bridge Law BLTablel

Com pClass ‘Set/
O w ningSystem Type ‘D atabase1
Com pNam e ‘Table1
CO ISObj [[D, T], ‘Table1, T]
Com pSet { [[D ,T ,K } , ‘Record1, K}}*
LinkSet ‘N O N E1
C ontentSpec ‘N O N E 1
M appingR ule object.([D, T, K], ‘R ecord ‘).

T he following in stan tia tio n of BLrabie 1 m aps a the conten t of tab le “D octora l

S tu d en t:”

A P P L Y _ B L j C O M P { B L Tablei,

[D ,T \ = [S m a l lS c h o o l1, ‘ Doctoral Students])

BLft.efToTabie m aps an im plicit relationship between a record and a tab le whose

nam e appears in the record as a value, as shown in Table 3.4. T he C om pSpec in th is

link bridge law’s specifiers does not include ownership p roperties as the corresponding

endpoin t COIS objects (i.e., th e record and tables) inherit these p roperties from this

link.

BLRe/ToTabie defines a dynam ic anchor in the d eparting record. The anchor’s

value V happens to be a ta b le ’s nam e in the same DB. Based on such an im plicit

relationship , th is BL constructs a reference link from th e record to the tab le m arked

by its tab le nam e (highlighted as anchors) in the record’s content. B L Rcj Torabie bs

frequently used in the GHM I p ro to type to present a query result and o ther reference

link destina tion m appings to the user (see §6). We consider a query result as a

dynam ic table. T he user can navigate on its records v ia a query-based guided-tour

(Q G T). W e can apply BLiiejToTabie to th e records contained in all dynam ic tab les

(i.e., those resulted from operation links and reference links) as well as s ta tic tables

(i.e., regular tab les in a DB).

61

T a b le 3 .4 Bridge Law BLR e fT o T a b le

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
Com pN am e ‘RefToTable1
L inkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
D irection

[[D ,T ,K \, ‘R ecord1, _]
[[D, T, K , F] , 1D y n a m ic ‘, V]
‘FR O M 1

S p ec ifie r
Com pSpec
AnchorSpec
D irection

[[D, V], T a b le 1,.}
‘N O N E1
‘T O 1

M appingR ule object([D, T, K] , 1R ecord ‘),
object([D ,T , K , F], ‘V a lu e 1),
object([D, V], ‘T ab le1),
property([D , T , K , F], ‘Content.1, V) .

We illu s tra te m ore bridge laws in §5 and §A. §5 discusses how to use M RD C

and o ther GHM I constructs to m ap RDBM S to hypertex t. §A gives bridge law

exam ples on ano th er dom ain— T EX PR O S, a docum ent m anagem ent system .

3 .8 S e s s io n S t r u c tu r e s

In m odern hypertex t system s, it is crucial to provide users w ith a friendly,

flexible and reliable navigation environm ent over a hypertex t network. Such an

environm ent heavily relies on w hat run-tim e struc tu res the underly ing hypertex t

model provides. A well-organized navigation environm ent should be able to efficiently

reduce user d iso rien tation as much as possible. Over a session of in teractive

activ ities, the user can invoke m any run-tim e navigation p a tte rn s such as forw ard

browsing, backtracking and backjum ping. We in troduced the concept of task-based

backtracking in m ulti-w indow environm ents in [13]. T his section focuses on the

run-tim e struc tu res for the H T E Session DB, including event struc tu res and system

62

traversal logs. The H TE Session DB stores history inform ation regard ing a user

navigation session based on these structu res. More details can be found in [13],

where we illu stra ted how these struc tu res support navigation facilities and presented

a prelim inary algorithm for im plem enting task-based backtracking based on these

struc tu res.

3.8.1 The Event Structure

We define an even t as any user action which affects the system s ta tu s . These

actions usually cause some change on the user interface such as crea ting a new

window or closing an existing one. We classify events into f o r w a r d , backwards and

sw itc h in g events. Link traversal is a fo r w a r d event. B acktracking (executing a

backtrack com m and) is a backwards event. Selecting, opening and closing com prise

th e sw itc h in g events as each deactivates the current window and activates a different

one. (C losing a window activates the window beneath it, if any.) To su p p o rt different

kinds of backtracking and o ther navigation facilities (e.g., c rea ting history-based

guided-tours), th e system keeps a com plete set of user event in form ation , which we

record in the following event s truc ture .

We represent each event by a tup le (I , A). The event identifier I provides a

unique reference to the event. A contains the set of a ttr ib u te s which characterizes

the event. Event a ttr ib u tes include the following:

Event-type. An event can be one of five types:

• traversal - traverse a link to a new (or already displayed) window;

• open - create a new window (or activate an a lready displayed window)

explicitly by executing an “open window,” “open new docum ent,” or

“open new com ponent” com m and;

• select - activate an existing window directly by selecting it, not through

any link traversal;

63

• close close an existing window directly by executing a “close w indow ’1

or “close com ponent” com m and; and

• backtrack - backtrack or backjum p along a link, or more generally, along

a previous event by executing a “backtrack” com m and.

Departure-component T his field contains the UTD of the “d ep a rtu re” com ponent

from which an event originates.

Destination-component T his field identifies the UID of th e “d estina tion” com ponent

th a t the event activates.

Subtask-log-id This field ind icates the Subtask Log (see §3.8.2) referencing th is event.

Log-index This field contains an integer indicating th e even t’s chronological position

in th e Chronological Log (see §3.8.2). This a ttr ib u te applies only to traversal

events.

T he system stores events in a system session s tru c tu re called System Traversal

Logs, which we describe next.

3.8.2 S y stem T raversal Logs

To track user actions and enable m ultiple types of backtracking, G IIM I m ain tains a

System Traversal Log s tru c tu re consisting of three types of traversal logs:

• History Log

T he History Log records the com plete event s tru c tu re for every user event,

including its event identifier and all a ttribu tes . In add ition to backtracking,

users could employ the History Log to create guided tou rs. E xperim enters could

use it to trace and analyze user actions.

• Chronological Log

Unlike the History Log, th e Chronological Log only registers forward (traversal)

64

events. Each en try contains an event identifier corresponding to an event in

the History Log.

• Subtask Logs

Similarly, Subtask Logs only contain forward events. Each Subtask Log contains

all un in te rrup ted forw ard traversals. T he system s ta r ts a new Subtask Log

whenever a forw ard event happens after a backw ards or sw itching event. Each

en try contains an event identifier corresponding to an event in the History Log.

3.9 Summary

In th is chapter, we presented G H M I’s system arch itec tu re and basic concepts. T he

GHM I system arch itec tu re consists of th ree basic layers: the com putation-orien ted

inform ation system s (COISs), a hypertext engine (H TE) and the interface-oriented

system s (IOSs), each runn ing as independent processes. COISs and TOSs are

connected to th e H T E by th e ir handlers. C urren tly our m ajor contribu tion focuses

on the C O IS-H TE side. To in tegrate a COIS to a hypertex t system based on

our m odel, the COIS builders have to w rite th e bridge laws stored in th e H T E ’s

Knowledge Base and w rite the handler code for th e ir individual COISs. T he H T E

uses predefined bridge laws to m ap COIS to hypertex t. GHM I aim s a t p roviding a

robust d a ta model for representing the functionalities of the H T E tow ard in teg ra ting

COISs w ith hypertex t.

GHM I presents a hierarchical object class representation. Basic GHM I

concepts include dynam ic anchors, behavioral link typing, com posite struc tu res,

s tru c tu red atom ic com ponents, v irtual com ponents, dynam ic m apping and com puted

com ponents. GHM I also includes several navigation s truc tu res (bookm arks, netw ork

overviews and guided-tours). GHM I enables dynam ic m apping of COIS ob jects and

relationships through a bridge law mechanism. Each bridge law is defined using a

tem p la te and a sim ple Prolog-like m apping rule definition convention M RDC. All

65

of these provide a powerful and com prehensive d a ta representation fram ew ork for

our p latfo rm of supporting COIS-hypertext, in tegration . G IIM I’s basic concepts

include th e following: (1) O bject class hierarchy: GHM I m odels ob jects as links

and com ponents. Com ponents are classified in to atom com ponents and com posite

com ponents. GHM I distinguishes plain a tom ic and s truc tu red a tom ic com ponents

and m odels four subclasses of com posites based on their in ternal struc tu res; (2)

Anchors: G H M I m odels external anchors, anchor typ ing and the concept of dynam ic

anchors. D ynam ic anchors are generated through bridge law m apping; (3) Links:

GHM I links are classified into six categories based on the roles th ey play in the

hypertex t system ; (4) N avigation structu res: GHM I m odels navigation s tru c tu res as

s tru c tu red com posites. These struc tu res include bookm arks, netw ork overviews and

four categories of guided-tours; (5) V irtual and com puted com ponents: In GHM I,

all com ponents m apped from COIS bridge laws are com puted com ponents and also

v irtua l com ponents. They are not stored in the H T E Linkbase. Every tim e they

are required by users, th e H T E applies bridge laws to dynam ically generate them ;

(6) T he bridge law tem plate: GHM I classifies bridge laws as com ponent bridge laws

and link bridge laws. GHM I provides a bridge law tem pla te and a Prolog-like sim ple

language M RD C for defining bridge laws; (7) Session structures: G H M I m odels a

set of session struc tu res (i.e., the event s tru c tu re and the system traversal logs) to

sup p o rt dynam ic navigation facilities.

B oth the builders of the hypertex t system and the COISs benefit from the

G H M I’s concept of bridge laws. Bridge laws act as the bridges between the hypertex t

system and a range of heterogeneous COISs, providing the CO IS builders w ith a

com prehensive m echanism to in tegrate th e ir COISs w ith the hypertex t system . The

GHM I bridge law tem pla tes are largely influenced by the bridge law notions of Bieber

et, a l.’s work [12, 9], which has no com posites. GHM I extends and form alizes the

previous bridge law form ats to support com posites and m appings from COISs.

66

GHM I aim s to utilize the D exter H ypertex t Reference Model [46, 47] to build

its m odel. We shall discuss how we apply D exter to m odel G H M I w ith p roper

extensions and specifications in the next chapter.

CHAPTER 4

GHMI: A DEXTER-BASED HYPERTEXT MODEL

T he D exter H ypertex t Reference Model [46, 47] is a widely recognized hypertex t

model serving as an interchange s tandard for hypertex t system s. H ypertex t

researchers addressed the usefulness and robustness of D exter in a panel a t the

H y p ertex t’89 conference and la te r in research concerning the paradigm o f system

interchange and hypertex t modeling, including DHM [38, 41, 39, 37, 40], R H Y TH M

[66], AHM [50], in terchange between In term edia and KMS [62], and Garz.ot.to ot,

a l.’s model [35]. In th is chapter, we aim a t m odeling GHM I in the term s of D exter

to m ake GHM I a D exter-based model. We first, present a general review of the

form alized D exter model. T hen we illu stra te why D exter is not strong enough to

model GHM I, and ou r necessary ex tens ions . Finally, we present how we model

GHM I using th e extended D exter model by ta ilo ring it w ith GHM I sp ec i f ica tio n s .

4.1 The Dexter Model

In D exter, a hypertex t is divided into th ree separa te layers, nam ely th e run-tim e

layer, the storage layer and the w ith in-com ponent layer. D exter focuses on the

storage layer. In th is section, we present basic elem ents of the D exter sto rage layer

m odel. In the next two sections, we will ex tend and specify D exter to m odel GHM I.

T he D exter storage layer consists of a netw ork of com ponents which are infor

m ation containers and interconnected by relational links. A component, contains a

base com ponent (i.e., th e content of the com ponent) along with associated com ponent

inform ation, including a set of a ttrib u tes , a presen tation specification (in te rp re tab le

in the run-tim e layer) and a set of anchors poin ting to portions of th is com ponen t’s

contents. A base com ponent is recursively defined as an atom ic, a link or a sequence

67

68

of o th er base com ponents. T he notion of com posite com ponents provides a hierar

chical com ponent s truc tu ring m echanism . The atom ic com ponent is the prim itive

un it in D exter. Links are com ponents representing relationships am ong com ponents.

D efining links as com ponents enables links to be defined am ong links.

D exter is form ulated in Z [83], which is a formal specification language based

on typed set theory. We shall only roughly follow the Z no tations used in D exter and

shall describe complex concepts in words so th a t understand ing of our description

does not rely on a knowledge of Z.

A D exter hypertext system consists of a set of com ponents. Every com ponent

is identified uniquely by its in ternal UID. An accessor function is responsible for

accessing a com ponent given its UID. UIDs provide a direct com ponent addressing

m echanism . In some cases, though, we need to address a com ponent th rough some

s ta tem en t (e.g., a da tabase SQL sta tem en t), so th a t the UIDs are unknown. In these

cases, the UID m echanism is insufficient and D exter provides an ind irect addressing

m echanism which resolves a specification to a UID and then th e accessor function

is ab le to access the resulting com ponent. Therefore, D exter includes a resolver

function which is responsible for resolving a com ponent specification in to a UTD.

T he UID is prim itive in D exter, i.e., it is left unspecified.

[U W \

C om ponent specification and presentation specification are also p rim itive in

D exter from the set C O M P O N E N T . S P E C and the set P R E S E N T J S P E C (in

Z , upper-case strings in a pa ir of brackets represent given sets, which are prim itive):

[C O M P O N E N T . S P E C , P R E S E N T . S P E C]

69

Anchors specify link endpoin ts and are defined in com ponents. An anchor has

an A N C H O R J D and an A N C H O R - V A L U E from two given sets. The anchor

value represents anchor location inform ation w ithin a com ponent, and is in te r

p retab le by the w ith in-com ponent layer. A com ponent m ain tains an anchor lookup

tab le w ith each entry as a p a ir of A N C H O R J D and A N C H O R - V A L U E . We call

such an anchors in te rna l anchors as they are defined explicitly in a lookup tab le in

com ponents. An anchor id uniquely identifies an anchor in a com ponent.

[A N C H O R J D , A N C H O R - V A L U E)

A N C H O R = = A N C H O R J D x A N C H O R - V A L U E

T he above anchor definition can be read as “an anchor is defined as an

A N C H O R J D and A N C H O R - V A L U E pa ir.” A link consists of a sequence of

sp e c i f ie r s . Each link specifier contains a com ponent specification, an anchor speci

fication, a p resentation specification and a direction.

D I R E C T I O N ::= F R O M \ T O | B I D I R E C T \ N O N E

— S P E C IF IE R ---------------------------------------
com ponentSpec : C O M PO N EN T_SPEC
anchorSpec : A N C H O R JD
presentSpec : P R E S E N T .S P E C
direction : D IR E C T IO N

Z employs the notion of a “half-box” (open to the right) to define an

ob ject (upper-case leading strings) schema. The above half-box defines an object

70

S P E C I F I E R , which has four a ttr ib u tes (or fields, denoted as lower-case leading

strings), each being defined by corresponding given set nam es (i.e., upper-case strings

to the right of which have been defined p rio r to th is definition).

T he C O M P O N E N T . S P E C in a link specifier enables a link endpoin t to be

defined im plicitly and com puted dynam ically. This is a powerful m echanism for

constructing com puted com ponents.

D exter requires a link to have a t least two specifiers and a t least one specifier

w ith direction “T O :”

_ L IN K --
specifiers : seq S P E C IF IE R

s p e c i f ie r s > 2
3s : r a n s p e c i f ie r s • s .d irection — T O

Here, seq s tan d s for “a sequence of.” T he lower p a rt of the above half-box

contains constra in ts specifications on object a ttr ib u tes . stands for “num ber o f ’,

ran s tands for “in range o f ’ and V stands for “such th a t .”

A D exter com ponent is m odeled as a tw o-part com position: a c om pB ase and

a c o m p ln fo . A com pB ase represents a base com ponent which is recursively defined

as an atom , a link com ponent, or a sequence of o ther base com ponents. An atom is

m odeled by the p rim itive type A T O M ,

[ATO M]

We use th e recursive type B A S E . C O M P O N E N T to represent base com ponents

recursively:

B A SE .C O M PO N E N T ::= a tom ((A T O M))
| link((LINI<))
j com posite((seq B A SE .C O M PO N E N T))

71

C om ponents can have a rb itra ry associated inform ation as a ttrib u te -v a lu e pairs

from two given sets:

[.A T T R I B U T E , V A L U E \

T he c o m p l n fo includes a set of a ttr ib u tes , a p resentation specification and a

sequence of anchors:

— C O M P J N F O ---------------------------------------
a ttr ib u tes : A TTR IB U TE »-> VALUE
anchors: seq AN CH OR
presentSepc: P R E S E N T .S P E C

anchors = # (f i r s t . (\ ra n anchors |))

Sym bol ‘h-P indicates a function m apping an a ttr ib u te (in set A T T R I B U T E)

to its dom ain value (in set V A L U E) .

T he schem a C O M P O N E N T represents a base com ponent and associated

inform ation:

— C O M P O N E N T -------------------------
com pB ase : B A SE .C O M PO N E N T
com plnfo : C O M P.IN FO

A link component is a com ponent w ith a link as its base com ponent:

72

- L in k C o m p ------------
C O M PO N E N T

com pB ase £ ran l in k

Finally, a hypertex t system can be m odeled by th e schem a

P R O T O - H Y P E R T E X T which has th ree parts: (1) a finite set of com ponents; (2)

a reso lver function which re tu rns th e UID for a given com ponent specification; (3)

an accessor function which given a UID retu rns a com ponent:

— P R O T O _ H Y P E R T E X T ---------------------------
com ponents : F C O M PO N EN T
reso lver : C O M P O N E N T S P E C i-> U I D
accessor : U I D i-» C O M P O N E N T

F stands for “a finite se t.”

A D exter H Y P E R T E X T can be constructed as an instance of the schem a

P R O T O J 1 Y P E R T E X T by satisfying four constrain ts: (1) T he accessor function

m ust generate a value for every com ponent (i.e., every com ponent m ust have a UID);

(2) T he resolver function m ust produce all possible valid UIDs (i.e., all com ponent

specifications m ust resolve to existing UIDs); (3) A com ponent can not contain itse lf

e ither d irectly or ind irectly in its base com ponent; (4) T he anchor id of a com ponent

m ust be the sam e as the anchor ids in link specifiers resolving to th is com ponent.

4 .2 E x te n s io n s t o D e x te r

D exter emerged from m odeling existing hypertex t system s. As hypertex t field

evolves, D exter becomes insufficient to fit all system s especially those have em erged

afte r D exter. We found m any obstacles in m odeling G IIM I using D exter. D exter

73

has problem s w ith its model for com posite com ponents, anchors and links. Tn

th is section, we discuss the problem s we encountered and our solutions to them as

extensions to D exter.

4.2.1 Components

D exter has problem s on the definition for com posite com ponents. A D exter

com posite com ponent contains “bare-bone” base com ponents which are not

independent com ponents. The definition for com ponent is recursive on base

component ra th e r th an on component . This im plies th a t base com ponents in a

com posite com ponent are not com ponents. Since UIDs are only associated w ith

com ponents, base com ponents have no UIDs. Base com ponents can not be accessed

by the accessor function. Furtherm ore, base com ponents have no C O M P J N F O .

T here is no way to associate a ttr ib u tes to base com ponents. Base com ponents have

no anchors or presen tation specifications of th e ir own either. W hen we construct

a com posite com ponent tak ing o ther com ponents as base com ponents, all o ther

com ponents lose th e ir own properties (regarding a ttr ib u tes , anchors and presen

ta tio n specification). I t is also difficult to create links am ong base com ponents since

they are not independent com ponents and have no UIDs. Therefore, such a notion

of com posite is too restrictive.

For exam ple, in our dom ain of supporting m ultip le COISs, we m ight have a

com posite com ponent m ade up of com ponents from different COISs (w ith d istinct

ownership p roperties and o ther COIS a ttr ib u tes) . We also try to model the in ternal

linking struc tu res of com posite com ponents to facilita te navigation (e.g., create

guided-tours based on the internal links of a com posite). We can not effectively

model these GHM I com posites in term s of D exter. We need to extend the D exter

base com ponent definition. The following is our solution:

B A SE .C O M PO N E N T ::= atom ((A TO M))
| link((L IN K))
| com posite((seq C O M PO N EN T))

74

W ith th is im proved base com ponent definition, a com ponent can be m ade up

of o ther independen t com ponents having UIDs and properties. T his su p p o rts the

concept of ex te rna l com ponents (or “reference vs. con ta in”), i.e., a com ponen t’s

contain ing o ther independent com ponents can be tre a te d as “referencing” o ther

com ponents instead of em bedding “bare-bone” base com ponents. (D ex te r’s not

allowing ex ternal com ponents has been widely criticized [38, 41, 39, 37, 40, 63, 50].)

This solves the problem of constructing com posite com ponents from independen t

com ponents and enables m odeling in ternal s truc tu res of com posite com ponents.

4.2.2 Anchors

D exter defines anchors in the content of com ponents. Link specifiers contain an

A N C H O R J D which m ust be consistent w ith the definition in the com ponent

em bedding the anchor. Since the C O M P O N E N T - S P E C in a link specifier needs

to be resolved to UIDs, it may lead to different UIDs in different com putations. Using

an actual A N C H O R J D in a specifier requires an unbearable consistency burden

on hypertex t system s: all possible com ponents whose UIDs could be m apped from

a given C O M P O N E N T J S P E C need to have the sam e anchors, or a t least need to

use the sam e A N C H O R J D for th a t link. In our environm ent of dynam ic m apping,

C O M P O N E N T J 5 P E C is frequently used in link specifiers to allow genera ting link

endpoints dynam ically. S toring A N C H O R J D in link specifiers which resolve to

dynam ic com ponents would impose a heavy consistency burden. I t is difficult to m ap

the specifier’s A N C H O R J D to the corresponding A N C H O R J D in a dynam ically

com puted com ponent.

75

As suggested by Maioli et al. [66], we m odify D exter anchor notions to replace

the A N C H O R J D in a link specifier w ith an anchor specification A N C H O R S P E C

which, along w ith C O M P O N E N T S P E C , resolves to anchors in the link endpoint:

— S P E C IF IE R -------------------------------------
com ponentSpec : C O M PO N EN T_SPEC
anchorSpec : A N C H O R .SPE C
presentSpec : PR E SE N T JSPE C
direction : D IR E C TIO N

As we m entioned before, D exter only supports internal anchors which are

defined in com ponents. Here we define ex te rna l anchors in link specifiers (ra th e r

th an in com ponents) using an A N C H O R S P E C . To resolve A N C H O R S P E C

to anchors, we in troduce two new resolver functions: an A i r e so lver function

and an A V r e s o lv e r function. Given UID (resolved by the resolver function

from C O M P O N E N T S P E C), th e A l r e s o l v e r resolves A N C H O R S P E C to

A N C H O R J D and th e A V re so lv e r resolves A N C H O R S P E C to

A N C H O R S A L U E .

resolver : C O M P O N E N T S P E C U I D

A l r e s o l v e r : U I D x A N C H O R S P E C i-> A N C H O R J D

A V r e s o lv e r : U I D x A N C H O R S P E C ■-> A N C H O R S A L U E

T he A l r e s o l v e r function m aps A N C H O R S P E C to A N C H O R J D , to

retain th e original D exter model of in ternal anchors. In the original D ex ter m odel,

links sto re A N C H O R J D s and C O M P J N F O s store a sequence of anchors (i.e.,

76

a lookup tab le of pairs of A N C H O R J D and A N C H O R - V A L U E) . Given an

A N C H O R J D , we can easily determ ine the A N C H O R - V A L U E , which is w hat we

need to ac tually determ ine the exact location of the link end-poin t. T he A V r e s o lv e r

function m aps A N C H O R S P E C to A N C H O R S A L J J E to in troduce the concept

of external anchors, i.e., s itua tions in which the com ponent does no t know which

of its p a rts have been selected as link endpoints and therefore there is no way to

define anchors in the com ponent’s C O M P J N F O . Therefore, we ex tend the D exter

hypertex t system schem a P R O T O J J Y P E R T E X T by add ing the two anchor

resolver functions:

— P R O T O _ H Y P E R T E X T --
com ponents : F C O M PO N E N T
resolver : C O M P O N E N T S P E C i—► U I D
A l r e s o l v e r : A N C H O R S P E C ■-> A N C H O R J D
A V r e s o lv e r : A N C H O R S P E C A N C H O R S A L U E
accessor : U I D i-> C O M P O N E N T

W ith the extended D exter, com puting a link endpoin t involves resolving both

com ponents and anchors a t run-tim e. This is exactly w h a t we need to support

dynam ic m apping.

4 .2 .3 L in k s

D exter requires links to have a t least two identifiers. T his excludes unary links.

D ex ter also excludes dangling links by requiring all links to have a t least one

specifier w ith direction “T O ” and C O M P O N E N T S P E C to be resolved to

existing com ponents. D ex ter’s restriction on these construc ts has been widely

criticized [39, 40, 63, 62].

In our approach of supporting COIS and hypertex t in teg ration , we also

find these restrictions are too narrow. U nary links are useful for m odeling COTS

77

com m ands directly available as menu item s. Access to bookm arks can also bo

m odeled as a unary link w ith only one “T O ” specifier. O n the o ther hand, D exter

allows ne ither “explicit” dangling links (i.e., all links m ust have a t least a “T O ”

specifier) nor “po ten tia l” dangling links (i.e., all C O M P O N E N T S P E C s m ust

resolve to existing com ponents). Such exclusion of dangling links is too restrictive

in m any cases [39, 40, 63, 62]. In the environm ent of dynam ic COIS m apping, a

link endpoin t could specify a com puted com ponent m apped from a COIS ob jec t

(defined as a m apping rule). If the CO IS object is deleted inside the COIS (which is

tra n sp a ren t to th e hypertex t system), th e execution of the m apping rule will result

in an em pty com ponent. T h is causes the link poin ting to the com ponent to become

“dang ling .” If the anchor m arking a link is deleted inside th e COIS, the link becomes

dangling too. Therefore, we ex tend D ex ter’s link definition as follows by reducing

the m inim al specifier num ber to 1 and removing the restrictive condition on “T O ”

specifiers:

— L IN K ---------------------------
specifiers : seq S P E C IF IE R

spe c i f i e r s > 1

4.3 Specifications to D exter

D exter is a high level ab s tra c t reference model. It aim s a t cap tu ring the comm on

features of different hypertex t system s bu t does not specify any system s in full. To

create a model for the GH M I hypertex t system using the above extended D exter

m odel, we need to m ap G H M I’s capabilities to D exter. Once m apped to D exter,

G H M I becom es a D exter-based model which proves bo th G H M I’s and D ex te r’s

78

robustness and generality. T his section illu stra tes our specifications of all GTIMT

features th a t fall in D exter and therefore build GHM I as a D exter-based model.

4.3.1 Component Information

In GIIM I, we specify the A T T R I B U T E in D exter C O M P J N F O to explicitly

model ob ject p roperties as well as o ther COIS-dependent, a ttr ib u tes .

We specify link types and com ponent classes as follows:

L I N K T Y P E ::=
“S tructu reL ink” | “ReferenceLink”
| “A nnotationL ink” | “A ssociationLink”
| “N avigationLink” | “O perationL ink”

C O M PO S IT E ::= “Set” | “List” | “Tree” | “G raph”

C O M P C L A S S ::= “P lainA tom ic” | “S tructu redA tom ic” | C O M PO S IT E

GHM I objects have specific properties. We can specify D exter’s A T T R I B U T E

to represent them . GHM I object comm on p roperties include link type, com ponent

classes and o ther CO IS-dependent a ttr ib u tes as follows:

[VALU E]

[OST, O S N , O A N , C N , BLS]

79

A T T R IB U T E -------------------------------
ow ningSystem Type : OST
owningSystem Nam e: OSN
owningAppName: OAN
com pN am e : CN
bridgeLawSpec : BLS
linkType : L IN K TY PE
com pClass : COM PCLASS
a ttr ib u te s : A TTR IB U TES 1-4 VALUE

A GHM I link has no compC la ss a ttr ib u te and a GHM I com ponent has 110

l i n k T y p e a ttr ib u te .

4.3.2 UIDs

GHM I distinguishes hypertex t com ponents from COIS com ponents according to

their origins. H ypertex t com ponents are com ponents not m apped from COIS

objects. They are identified by their UIDs as system -generated in teger values,

called G lobal IDs (GIDs). Exam ples of hypertex t com ponents include anno ta tion

com ponents which contain com m entary inform ation of o ther com ponents, anno ta tion

links which connect com ponents to their annotations, association links which are

crea ted m anually, etc. These objects are persistent objects in the H T E Linkbase.

COIS com ponents are m apped from COIS objects by applying bridge laws. They

are not persisten t in the H T E Linkbase and therefore can not be identified by sim ple

in teger IDs. Instead , a COIS object is identified uniquely by a C O I S O B J plus

ownership properties. Therefore, GHM I specifies the D exter UID as e ither a GTD or

a C O I S O B J p lus ownership properties:

[GID, C O I S I D , C O I S T Y P E , C O I S L A B E L \

80

C O I S O B J = = C O I S I D x C O I S T Y P E x C O I S L A B E L

UTD ::= GID
| (CO ISO BJ,
O w ningSystem Type, Ow ningSystem N am e, O w ningA ppN am e)

CO ISID is an ob ject ID w ithin a COIS application. CO ISLABEL defines

a display label for an object. C O IST Y PE is an object class nam e in a COIS.

Bridge laws are defined on entire classes of objects. C O IS T Y PE determ ines which

bridge law should be applied to generate an object given CO ISID and O w ningSys

tem T ype. O w ningSystem Type identifies a COIS handler which works for a group

of COISs w ith a comm on d a ta model (e.g., a single DB hand ler for all RD BM Ss).

O w ningSystem N am e identifies individual COISs (e.g., MS-Access, Oracle, Sybase,

etc.). O w ningA ppN am e identifies individual applications w ith in a COIS. T he

ow nership inform ation is optional as some COIS m ight encode these inform ation as

a p a r t of COISIDs.

4.3.3 Components and the Accessor Function

G H M I’s com ponents are com patib le to D exter’s com ponents. Besides th e above

com ponent classes specified as a D exter A T T R I B U T E , we can also specify D ex te r’s

a tom s and base com ponents to model GHM I atom ics and com posites.

GH M I explicitly models atom ic com ponents as e ither unstruc tu red atom ics

(i.e., p lain atom ics) or s tru c tu red atom ics. conten iSpec defines the content of atom ic

com ponents. The con tentSpec of a s truc tu red a tom ic com ponent is a sequence

of C O IS-dependent attribute-value pairs. The contentSpec of a plain a tom ic is

prim itive. It is C O IS-in terpretab le (could be some d a ta content or reference to

ex ternal d a ta content). We obtain th is by specifying D ex ter’s atom s:

81

[P L A T N . A T O M I C]

[CO I S . A T T R I B U T E , C O I S - V A L U E)

S T R U C T U R E D - C O N T E N T = = C O I S - A T T R I B U T E x C O I S - V A L U E

— S T R U C T U R E D JV T O M IC ------------------------------
contentSpec : seq STR U C TU R ED _C O N T EN T

A T O M ::= P L A I N - A T O M I C \ S T R U C T U R E D - A T O M I C

A GHM I com ponent could be an atom (i.e., plain atom ic or s tru c tu red atom ic),

a link (the sam e as a D exter link), or a com posite com ponent. The conten t of a GITMT

com posite com ponent contains a set of non-link com ponents (C o m p S e t) and a set

of link com ponents (L i n k S e t). Recall th a t D exter defines a link com ponent as:

— L in k C o m p ---------------------------
C O M PO N E N T

c om pB ase G ran l ink

We define a GH M I non-link com ponent sim ilarly:

— N on L in k C o m p ---------------------------
C O M PO N E N T

com pB ase $ ran l ink

82

Wo therefore specify D ex ter’s base.component to represent GHM I com ponents:

L i n k S e t ::= ((seq LinkCom p))

C o m p S e t :\= ((seq N onLinkC om p))

B A SE .C O M PO N E N T ::= a to m ((ATOM))
| link((LINI<))
| com posite((C om pSet, L inkSet)),

Here we define a base com ponent as a e ither an A T O M , a L I N K , or

a com posite consisting of a L i n k S e t and a C o m p S e t , which are sequences of

com ponents (link com ponents and non-link com ponents respectively). Therefore, in

fact, a GHM I base com ponent is still a sequence of com ponents. T h is is consistent

w ith the extended D exter base com ponent definition. T he only difference is we

explicitly d istinguish link com ponents from non-link com ponents, and th is does not

v io late th e definition consistency.

All GH M I com ponents m apped from COIS objects are com puted com ponents.

T he accessor function is responsible for m apping a GHM I UID (i.e., C O ISO B J plus

ownership properties) to ac tua l COIS object contents by applying a bridge law. The

accessor function takes a UID and m aps it to the associated com ponent. In GHM I, we

need to specify the functionality of the D exter accessor function to include applying

bridge laws to obtain the conten t of a com ponent. In GH M I, hypertex t com ponents

are s ta tic and th e ir UIDs are explicit. Given a UID for a hypertex t com ponent,

the accessor function can d irectly obtain the com ponent (i.e., its content) from the

H T E Linkbase w ithou t applying any bridge law. On th e contrary , CO IS com ponents

are m apped a t run tim e. T he UIDs for COIS com ponents are sym bols representing

a C O IS O B J plus ownership inform ation (see the above §4.3.2). Given such UIDs,

83

th e content of COIS com ponents is not d irectly available from the H T E Linkbase.

Instead , the accessor function needs to apply a com ponent bridge law to generate

the com ponent. Therefore, the accessor function is equivalent to G H M I’s function

A P P L Y J B L jC O M P (B L I D , A r g u m e n t S p e c) which takes a com ponent bridge law

(identified by the B L I D) and includes a given UID in its A r g u m e n t S p e c to m ap a

com ponent:

accessor = = A P P L Y J 3 L . C O M P (B L I D , Argum e n tSpe c)

Therefore, a GH M I com ponent bridge law defines a m apping from a UID to a

com ponent. T his is exactly w hat the D exter accessor function does. A com ponent

bridge law specifies O w ningSystem Type for identifying COIS handlers. O ther

ownership p roperties should be also available a t the tim e of applying a bridge law

to identify COISs and applications w ith in individual COISs. Given a C O IS O B J and

ownership properties, the H T E searches the H T E Knowledge Base for a bridge law

m atching the C O IS T Y P E and O w ningSystem Type, and passes these as param eters

to the accessor function. The accessor function generates a message contain ing the

UID and the bridge law’s M appingR ule and sends it to the corresponding COIS

handler (identified by O w ningSystem Type). A fter receiving the responses from the

COIS handler, the accessor function generates the content of the com ponent based

on the COIS hand ler’s responses and o ther given inform ation. At th is tim e, the

com ponent is ready to be in stan tia ted by the run-tim e layer for display.

4.3.4 Anchors and Anchor Resolver Functions

D exter m odels an anchor as an A N C H O R J D and A N C H O R . V A L U E .

A N C H O R J D provides a way to reference an in ternal anchor through a lookup tab le

in a com ponent. In GHM I, however, all anchors are external anchors. C om ponents

have no lookup tab les for anchors. Therefore, G H M I’s anchor ID is qu ite dilTercnt

from D exter’s concept of A N C H O R J D . A GHM I anchor ID identifies an anchor by

84

its location inform ation. A G IIM I value is the actual anchor tex t. Therefore, a GHM I

anchor ID (i.e., anchor locations) along with a GHM I anchor value (i.e., an anchor

tex t) m aps to D ex ter’s A N C H O R J / A L U E . G H M I’s anchor types can also be

included in D exter’s A N C H O R J / A L U E . We specify D ex ter’s A N C H O R J / A L U E

to m odel these typed anchors:

[G H M I - A N C H O R J D , G H M I - A N C H O R J / A L U E]

A N C H O R / T Y P E ::= “P l a in ” \ “K e y w o r d ” | “D y n a m i c ”

A N C H O R J / A L U E = = G H M I . A N C H O R J D x A N C H O R - T Y P E x

G H M I - A N C H O R J / A L U E

In GHM I, unlike plain anchors and keyword anchors which are created

statically , dynam ic anchors are resolved from A N C H O R S P E C through link

bridge laws. A link bridge law defines a D exter link and anchor specifications. T he

GH M I A N C H O R S P E C is defined as an M RDC (i.e., th e M apping Rule definition

Convention which are Prolog-like logical expressions, see §3.7.3.) anchor value

expression M R D C - A N C H O R - V A L U E (i.e., an A N C H O R . V A L U E expression

con ta in ing unresolved M RDC variables), along with a link bridge law:

[CO M P J 3 R I D G E J A W , L I N K - B R I D G E J A W]

[M R D C - A N C H O R - V ALUE]

A N C H O R S P E C = = M R D C - A N C H O R - V A L U E x L I N K - B R I D G E J A W

85

GHM I does not need the A lr e s o l v e r function as it does not use any D exter

A N C H O R J D . GHM I relies on the A V resolver to resolve an A N C H O R S P E C

to an A N C H O R - V A L U E . A link bridge law’s M appingR ule gives th e m apping

inform ation for a dynam ic anchor. The A V r e s o lv e r function is responsible resolve an

A N C H O R S P E C to explicit A N C H O R - V A L U E . In GHM I, A N C H O R S P E C s

are used in “FR O M ” specifiers of link bridge laws. A fter a com ponent is m apped and

displayed on screen, the A V reso lver is invoked to m ap all dynam ic anchors in th a t

com ponent. T h is is done by partially applying a link bridge law which resolves only

A N C H O R S P E C from its M appingRule. A fter resolving to an explicit anchor, a

dynam ic anchor is tem porarily stored in the H T E Linkbase as if it were a s ta tic anchor

and is readily accessible. Selecting a dynam ic anchor would ac tua lly invoke the

execution of a link bridge law to m ap the “T O ” specifier’s C O M P O N E N T S P E C

(see below §4.3.5) to a com ponent. Therefore, the A V r e s o lv e r function is equivalent

to G H M I’s function A P P L Y J 3 L - A N C H O R (B L I D , A r g u m e n tS p e c) which takes

a link bridge law (identified by the B L I D) and includes a given source C O ISO B J

in its A r g u m e n t S p e c to m ap a dynam ic anchor. Here, the B L I D a long w ith the

A r g u e m e n tS p e c is equivalent to the above A N C H O R S P E C - .

A V r e s o lv e r = = A P P L Y J B L - A N C H O R (B L I D , A r g u m e n tS p e c)

4.3.5 Links and the Resolver Function

GHM I classifies links behaviorally in to six types: s truc tu re , reference, anno ta tion ,

association, navigation, and operation links. As illu stra ted previously, th is link

typing feature can be represented as an a ttr ib u te L I N K T Y P E (in the above

A T T R I B U T E) :

L I N K T Y P E
“S tructureL ink” | “ReferenceLink”
| “A nnotationL ink” | “AssociationLink”
| “N avigationLink” | “O perationL ink”

86

G HM I links could be s ta tic or dynam ic. S ta tic links arc not m apped by bridge

laws (e.g., anno ta tion links, association links). D ynam ic links are m apped by bridge

laws (e.g., struc tu re links, reference links and operation links). In a link bridge law,

each link specifier contains an A N C H O R S P E C instead of an A N C H O R J D . T he

end po in t of a dynam ic link is defined as a C O M P O N E N T S P E C and resolved

dynam ically by the resolver function.

T he resolver function is responsible for resolving a C O M P O N E N T S P E C in

a link bridge law to a UID. (Then the accessor function takes the UID and generates

th e conten t of the com ponent as described above). T he C O M P O N E N T S P E C

in GH M I only considers CO IS com ponents. (H ypertex t queries or search is o u t of

scope of th is thesis.) T he D exter version of GHM I C O M P O N E N T S P E C is an

M RD C UID (i.e., a UID expression with M RDC variables) along with a link bridge

law:

[.M R D C J J I D }

C O M P O N E N T S P E C = = M R D C J J I D x L I N K S R I D G E J A W

W hen following a link, the “FR O M ” specifier’s C O M P O N E N T S P E C

has been already resolved to an explicit UID (not an M R D C J J I D) p rio r to

displaying the source com ponent (which enables th is “FollowLink” com m and). T he

resolver function executes a bridge law to in stan tia te C O M P O N E N T S P E C in

“T O ” specifiers to UIDs. Therefore, we specify the D exter resolver function as

G H M I’s special function A P P L Y J B L J I N K (B L I D , A rg u m e n tS p e c) which takes

a link bridge law (identified by the B L I D) and includes a given source COISOB.I

in its A r g u m e n tS p e c to m ap a link endpoint. Here the B L I D along w ith the

A r g u m e n t S p e c is equivalent to the above C O M P O N E N T S P E C :

87

resolver = = A P P L Y J 3 L J ^ I N K (B L I D , Argum en tSpec)

A GH M I link bridge law defines a m apping from a C O M P O N E N T . S P E C to

an explicit UID in a dynam ic link. W hen such a dynam ic link is selected by the user

and the UID of th e curren t com ponent (i.e., th e link’s source) is given, the H T E finds

a link bridge law by m atching C O IST Y PE in the UID against those C O IS T Y PE s

in all link bridge laws’ “FR O M ” specifiers. A fter finding a m atch, the H T E invokes

the resolver function to com pute the C O M P O N E N T . S P E C in th e “T O ” .specifier

of th e sam e link bridge law. The resolver function takes all given pa ram ete rs along

w ith the content of th e link bridge law and sends a request to a corresponding COIS

handler for resolution. Then it collects the results from th e COIS hand ler to m ap

the C O M P O N E N T . S P E C to one or m ore UIDs.

T he H T E then asks the IOS to display th e results (as some interface m apping

of the resulted UIDs). W hen the user selects one of these UIDs, the H T E calls the

accessor function to m ap its content by applying a com ponent bridge law. At th is

tim e, th e H T E finds and asks the IOS to m ark up all link anchors associated w ith

th is com ponent. T he H T E calls the A V r e s o lv e r to com pute dynam ic anchors (as

discussed in §4.3.4). T he com m and “FollowLink” is now ready to execute again.

A lthough all links are m arked on screen, the content of link endpoin ts are not

com puted until th e user actually selects to “follow” th a t link.

4.4 Summary

In th is chapter, we have m odeled GHM I in term s of D exter and m ake G H M I a D exter-

based m odel w ith extensions and specifications. We first presented a general review of

the form alized D exter model. Then we illu s tra ted why D exter is not s trong enough to

88

model G IIM I and necessary extensions. Finally, we presented how we model G IIM I

in term s of the extended D exter and tailoring it w ith GHM I specifications.

D exter emerged from m odeling existing hypertex t system s. As the h ypertex t

field evolves, D exter grows m ore and more insufficient to fit all system s, especially

those have emerged after the form alization of D exter. We found m any obstacles

in m odeling GHM I using D exter. D exter has problem s on its model for com posite

com ponents, anchors and links. We discussed the problem s we encountered and ou r

solutions to them as extensions to Dexter: We extend the D exter base com ponent

to be recursively defined on com ponents (instead of on base com ponents) to allow

base com ponents to be independent com ponents having UIDs and properties. T his

enables com posite com ponents to be constructed from external com ponents; We

in troduce th e concept of A N C H O R S P E C and replace the A N C H O R J D in link

specifiers by A N C H O R S P E C . This enables dynam ic anchors; We also in troduce

two new resolver functions: an A lr e s o l v e r which resolves A N C H O R S P E C to

A N C H O R J D and an A V r e s o lv e r which resolves A N C H O R S P E C to

A N C H O R J / A L U E . T his enables dynam ic anchors to be resolved to explicit

A N C H O R J D s and A N C H O R J / A L U E s a t run-tim e; We also extend D exter

links to allow dangling links and unary links.

D exter is a high-level a b s trac t reference m odel. It aim s a t cap tu ring the

com m on features of different hypertex t system s b u t does not specify any system s

in full. To create a GH M I hypertex t system using th e ex tended D exter m odel,

we need to m ap G H M I’s capabilities to Dexter. Once m apped to D exter, GIIMT

becomes a D exter-based model which proves both G H M I’s and D exter’s robustness

and generality. We illu s tra ted our specifications of all GHM I features th a t fall in

D exter and build GHM I as a D exter-based model:

• We specify D exter’s A T T R I B U T E as GHM I object, com m on properties, link

types, com ponent classes and o ther COIS-dependent, a ttr ib u tes ;

89

• We specify D ex ter’s UID as e ither a GID (i.e., G lobal ID for a hypertex t

ob ject no t m apped from COISs) or a C O I S O B J (i.e, { ID , Ty pe , Label)) plus

ow nership properties;

• We specify D exter’s A T O M to ob tain G H M I’s atom ics;

• We specify D exter’s base com ponents as a C o m p S e t and a L i n k S e t which are

non-link com ponents and link com ponents, respectively;

• We specify D exter’s anchor values as G H M I’s typed anchors;

• We specify D exter’s accessor function as G H M I’s function

A P P L Y J 3 L . C O M P {) in order to utilize GHM I com ponent bridge laws;

• We specify the extended D exter’s A V r e s o lv e r as G H M I’s function

A P P L Y - B L - A N C H O R () in order to utilize GHM I anchor definitions in link

bridge laws;

• We specify D exter’s resolver function as G H M I’s function A P P L Y J 3 L - L I N K ()

in o rder to utilize GHM I link bridge laws.

CHAPTER 5

M A PPIN G RELATIONAL DATABASES TO HYPERTEXT

T he purpose of m apping RDBM S to hypertext is to provide a hypertex t-based front-

end to external heterogeneous databases m anaged by RDBM Ss. RDBM Ss usually do

not sup p o rt a hypertex t-based navigation style for accessing inform ation. Instead ,

they are based on predefined queries. This im plies th a t the resulting app lications are

difficult to use or to navigate through. As a fu rther lim ita tion , different, d a tab ases can

not be accessed unless specific ad hoc program s are developed. We aim a t com bining

hypertex t and RDBM S technologies. In GH M I system s, th e hypertex t interface

has its own d a ta m odel and visual s truc tu re defined in the popu lar hypertex t style,

ra th e r th an the s tru c tu res of its external heterogeneous databases. In th is section, we

present a fram ework for m apping RDBM S to hypertex t, based on G H M I’s constructs

and M RD C. A pplying hypertex t functionality enhances the effectiveness of R D BM S

for users. A fter identifying how GHM I could help RDBM S, we illu s tra te dom ain

m apping between RD BM S and hypertex t th rough bridge law examples.

5.1 Identifying RDBM S Objects

T he hypertex t representation under GHM I helps a RD BM S user establish direct

access to explicit or im plicit relationships am ong its underlying DBMS objects. We

view a relational da tabase as a com position of five types of objects (see F igure 5.1):

(1) Value: a individual value in a table; (2) Record: a set of field-value pairs in a

tab le (i.e., a tuple); (3) Field: a field nam e along w ith a sequence of values under

under th a t field name; (4) Table: a set of records (or fields); (5) D atabase: a set of

tables.

90

91

Database

Table

Value K
\ Record

Field

Figure 5.1 D atabase O bjects

We can m ap the above objects using GHM I constructs. We m ap individual

values to anchors, records to s tru c tu red atom ics, fields to s tru c tu red atom ics (w ith

the sam e a ttr ib u te for all values), tab les to a Se t of records or fields and da tabases

to a S e t of tables.

F igure 5.1 shows the in ter-object hierarchical relationships. GHM I represents

these s tru c tu ra l relationships as struc tu re links. We give bridge laws for m apping the

RD BM S objects and s tru c tu re links in §5.5. Besides these s tru c tu ra l relationships,

GH M I also helps directly access o ther im plicit relationships as discussed in the next

section.

5.2 Applying Hypertext Functionality

A fter m apping database objects to hypertext com ponents, we can apply hypertex t

functionalities on database objects, including browsing or navigating am ong in te r

92

object relationships, anno ta ting (e.g., add ing com m ents, bookm arks, etc), generating

overviews, providing guided-tours, and supporting analysis (i.e., th rough connecting

related inpu ts , com putations and ou tpu ts). Links can be defined as a powerful m eans

for d irectly accessing explicit and im plicit in ter-object relationships.

Object linking. GHM I enable th e user to create and access inter-object, links repre

senting sem antic relationships. Such links could be in tra -da tabase or in te r-da tabase

links.

Direct access to structural relationships. GHM I helps the user d irectly access the

s tru c tu ra l in ter-ob jec t relationships w ithin a da tabase shown in F igure 5.1. Once

d a tabase ob jects are m apped to hypertex t com ponents, th e user is able to access

da tabase ob jec ts by following the s tru c tu re links in the details of various levels.

Direct access to schema-based relationships. T he relational d a tab ase model concep

tually represents in ter-object relationships as E ntity -R elationsh ip (ER) diagram s.

W hen we ac tua lly im plem ent an E R diagram w ithin a relational d a tab ase system , all

inform ation has to be m apped to independent schem ata. T he original E R inform ation

s tru c tu re becom es implicit . In GHM I, we can m ap schem ata to s tru c tu red atom ics

(w ith only fields) and E R diagram s to G raphs (in which entities are com ponents and

the E R rela tionships are links). GHM I gives users direct access to these ob jects and

their re la ted im plicit relationships through m apping them to reference links defined

by bridge laws.

Direct access to R D B M S operations. GHM I facilitates d irect access to RD BM S

operations by m odeling them as operation links on database objects. W hen users

select them , GHM I does not reim plem ent RDBM S com m ands, ra th e r it gives users

d irect m anipu la tion access to them . O peration links directly access dynam ic objects

93

generated by user com m ands and queries. All da tabase queries can be m apped to

operation links e ither on particu la r da tabase objects, or as m enu item s w ith no

d ep artu re com ponents and accessible from all locations (i.e., unary links). We can

also define frequently-used specific queries as reference links. Once defined as an

operation link, a specific query is directly executable and reusable.

Direct access to meta- information. D atabase objects could have two types of

m eta-inform ation: anno ta tion and system -controlled inform ation. G IIM I allows

the user to m an ipu la te anno ta tions on objects th rough annotat ion links. Users

can access system -controlled m eta-inform ation through operation links. Such infor

m ation includes ob ject size, field type, ob ject description, tim estam ps (e.g., creation

tim e, u pda te tim e, e tc .), and o ther object s ta tis tic s— inform ation often no t d irectly

accessible from objects.

Navigation assistance. GHM I provides RD BM S users w ith a variety of navigation

facilities including backtracking, history list, bookm arks, network overviews and

guided-tours. M ost of these features are supported by navigation links. N avigation

links can be defined e ither sta tically or dynam ically. W ith a com posite com ponent,

such as a tab le or a da tabase, the user can sim ply follow the default gu ided-tou r

au tom atically generated by th e system to explore the com ponent’s conten t. On the

o ther hand, for instance, the user can select m anually a small group of records in

tab les “Faculty” and “S tuden t” representing a group of people involved in a pro ject.

T he selected records can be connected in a gu ided-tour through navigation links.

A guided-tour can consist of a sequence of au to m ated queries (called a query-based

gu ided-tour in G H M I). W hen such a guided-tour is followed a t run-tim e, th e queries

are dynam ically resolved to explicit d a tabase objects (or GHM I com ponents m apped

from them). H istory-based guided-tours enable the user to access session histories

directly.

94

Analysis guidance. H ypertex t can help the user control the process of a well-

defined analysis procedure on databases [6]. H ypertex t could guide the ana ly st

by au tom atica lly retriev ing the d a ta needed and connecting w ith the a p p ro p ria te

analysis routines. All steps of the procedure could be a n n o ta ted by the p rocedure

bu ilder or the analysis. R eaders could select any item w ith in th e final report and get

in fo rm ation on how it was calculated. For exam ple, suppose th a t an ana ly st often

com pares the contents of two related databases DB1 and DB2 and has declared a

s ta n d a rd procedure to assist in th is process. (1) T he ana ly st selects certain values

in a d a tab ase report (th is rep o rt could be a tab le , a record, or a tex t file). (2)

T he system determ ines to which objects they correspond in DB1. (3) T he system

determ ines to which objects they correspond in DB2. (4) T he system guides the

a n a ly st th rough a series of s ta tis tica l analyses com paring th e values from the two

d a tabases. (5) The analyst constructs a final report, in which num eric elem ents are

highlighted as anchors. Users can select them and see the process used to ca lcu la te

them . T his analysis procedure can be im plem ented as a GH M I guided-tour. Every

s top on th is tra il is anno ta tab le .

5.3 The Schema DB

In th is section we discuss an im plem entation d a ta s tru c tu re suppo rting schem a-

based rela tionship m apping. To take advantage of th e GHM I style da tabase (DB)

schem a m apping, every DB needs to a schem a represen tation sto red in a associated

d a tab ase called schem a DB (or in the sam e DB w ith d istinguished tab le nam es).

Here by “p rim ary” DB, we m ean the database itse lf consisting of tab les in s ta n tia te d

from its original E R d iagram . By “schem a D B” we m ean the special DB m anaged

by the D B handler which m ain tains the original E R d iagram inform ation to rela te

th e p rim ary DB tables to each other. Therefore, every schem a DB has a p rim ary

D B associated to it. We nam e a schem a DB using its p rim ary D B ’s nam e plus

95

SYSTables
TableName SchemaName

SYSSchemata
SchemaName SchemaType SchemaNamel Keyl SchemaName2 Key2

(a) System Tables

Entity Schemata Relation Schemata

Key Field 1 Keyl Key2

Key Field 1

(b) Schema Tables

F ig u r e 5 .2 A Schem a DB R epresentation

word “schem a” for consistent identification and easy association. F igure 5.2 shows a

general representation of a schem a DB.

A schem a DB consists of two sets of tables: the system tab les (i.e., m eta

tables) and schem a tables. (1) T here are two system tables: SY SE R Schem ata and

SYSTables. SY SER Schem ata records all schem ata in the schem a DB derived from

the E R diagram . S c h e m a N a m e identifies each schema. S c h e m a T y p e could be

E n t i t y or Rela t ion representing the en tities and relationships in an E R diagram

respectively. To sim plify discussion, we only consider b inary en try relationships

(o ther com plex relationships can be decom posed into b inary re la tionships). The

o ther fields in S Y S E R S c h e m a t a a re for the Relat ion schem a only, identifying the

96

two p artic ip an t en tity schem a nam es and key field names. S Y S T a b l e s records all

tab les in the p rim ary D B and their corresponding schem ata in th e schem a DB.

(2) The schem a tab les of a schem a DB are the actual schem ata (both en tities and

relations) m apped from an E R diagram . A schem a could have m ultip le instances in

th e prim ary DB (recorded in S Y S T a b l e s) .

Figure 5.3 shows a sim ple schem a DB representation for a sm all DB called

“Sm allSchool.” (a) is an E R diagram . N orm ally we convert it to the schem ata in

(b), which are in stan tia ted to plain tables. Therefore the original E R rela tionships

am ong tab les are no longer directly accessible, (c) shows a corresponding schem a

DB which restores all ER inform ation am ong tables. We can easily w rite a query

to find the original E R relationships. In add ition , based on th is schem a DB, we can

direct access o ther im plicit schem atic relationships through bridge laws. Exam ples

include “F ind all o th er tab les with the sam e schem a as the curren t tab le ,” “F ind all

o th er tables having th e sam e key field as the curren t tab le ,” etc.

5.4 RDBM S Bridge Law Design Guidelines

T he objective of designing RDBM S bridge laws is to enable direct access to RD BM S

objects, relationships and m eta-inform ation through dynam ically m apping them to

G HM I constructs. To com plete our dom ain m odeling on RDBM S and d em onstra te

th e power of dom ain m apping, we define a set of bridge laws to m ap R D BM S. To

define bridge laws, we need to find out po ten tia l explicit or im plicit rela tionships or

ob jects which can be m apped by a bridge law. The following gives some guidelines

for defining RDBM S bridge laws.

• Object BLs. We need BLs for the five database objects as described above

(i.e., values, fields, records, tables and databases), as well as schem ata and ER

diagram s in th e associated schema DB. O bject BLs m ap o b jec ts’ contents.

M ap records to struc tu red atom ics

97

Takes

SSN

Teaches,

CNum

FacultyStudent

Course

Schemata

Course
CNum

Faculty
SSN

Student
SSN

Takes
SSN CNum

Teaches
SSN CNum

(a) An ER Diagram (b) Schema Mapping o f ER Diagram

SYSSchemata
SchemaName SchemaType SchemaNamel K eyl SchemaName2 Key2
Course Entity

Faculty Entity

Student Entity

Takes Relation Student SSN Course CNum

Teaches Relation Faculty SSN Course CNum

SYSTables Entity Schemata Relation Schemata
TableName SchemaName
DoctoralStudcnt Student Course Takes
M aslerStudent Student CNum SSN CNum

GradualeCourse Course

VisitingScholar Faculty Faculty Teaches
UndcrgraduatcStuder : Student SSN SSN CNum

DayClass Takes

EvcningClass Takes Student
TeachingPlanl Teaches SSN

TeachingPlan2 Teaches

(c) A Schema DB

Figure 5 .3 A Schem a DB Exam ple: Sm allSchool-Schem a

98

M ap fields to s truc tu red atom ics

- M ap tab les to sets of records

- M ap tab les to sets of fields

- M ap databases to sets of tables

- M ap schem ata to s tru c tu red atom ics

M ap E R diagram s to graphs

• Structure BLs. We need bridge laws to m ap objects upw ards to their

em bedding com posites. S truc tu re BLs would include: m apping records to

tab les, records to a DB, fields to tables, fields to a DB and tab les to DB.

• Operation BLs. We need BLs for SQL queries and O D B C operations. From

th e im plem entation poin t of view, these operations should include all operations

supported by ODBC. Frequently used specific queries can also be m apped to

operations links.

• Schema-based BLs. We store schem ata as tables. Therefore, all BLs on

regular tab les should apply to schem a DB too. Besides these schem a tab le

BLs, we need BLs to m ap im plicit inter-object relationships im plied by the

schem ata in the schem a DB of a p rim ary DB. We can m ap these relationships

to reference links.

• Meta-information BLs. C ertain users such as developers should be able

to access object sta tistics, such as field type, field size, record size, tab le size

(num ber of records in a tab le), DB size (num ber of tab les in a D B), refer

ential constrain ts, etc. Accessible m eta-inform ation also includes dynam ic

inform ation supported by O D BC (e.g., such as “u p d a tab le”). Bridge laws

help access these by defining reference links.

99

5.5 RDBM S Bridge Laws

In the following subsections, we present bridge laws for m apping RD BM S objects,

s tru c tu ra l relationships, operations, schem atic relationships and m eta-inform ation .

5.5.1 Object Bridge Laws

1. B L Record: Mapping Records to S t r u c tu r e d A tom ic components , as shown

in Table 5.1. The GHM I H T E in stan tia tes the bridge law for each required

record m apping. We specify the com ponent class (C o m p C l a s s) as ‘S truc

tu red A tom ic.1 The C o m p N a m e ‘R ecord1 indicates th is bridge law applies

to record objects. The hypertex t identifier (C O I S I D) is a com position of

[D ,T ,K] , where symbols D , T and K are defined in the M a p p in g R u l e p a rt

of the bridge law. In M a p p in g R u l e , predicate object([D, T, K] , 1 Record.1)

indicates D, T, K is a record object which is in ternally identified by its key K ,

em bedding tab le T and em bedding da tabase D. The content C of record K is

represented by p redicate property([D, T, K], ‘C o n t e n t 1, C) . From th is exam ple,

we can see th a t hypertex t system uniquely represents the C O I S I D of a record

by a com bination of the em bedding tab le ’s C O I S I D and the record’s key

value. T he DB handler would find ou t from th is m apping rule th a t D s tands

for a da tabase object, T is a tab le and K is the record’s key value. We represent

the com ponent set (CompSet) and the link set (L in k S e t) as “N O N E ” because

th is m apped com ponent is ‘a tom ic1 w ith no o ther com ponents or links in its

content.

2. B L p ieid: Mapping Fie lds to S t r u c tu r e d A tom ic components, as shown in Table

5.2. T his bridge law is sim ilar to B L Record. T he only difference is th a t a field is

identified by its field nam e instead of a key value of a record and the C O ISType

is ‘F ie ld1 instead of ‘R ecord.1

100

T a b le 5.1 Bridge Law BLRecord

Com pC lass ‘S tructu redA tom ic1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘R ecord1
CO ISO bj [[D,T, K] , 1 Record1, K]
CompSet, ‘N O N E 1
LinkSet ‘N O N E 1
C ontentSpec C
M appingR ule object([D, T , K], ‘Record ‘),

property([D, T , K], 'C o n te n t1, C).

T a b le 5 .2 Bridge Law BL Fie ld

Com pClass ‘S truc tu red A tom ic1
O w ningSystem Type ‘D atabase1
C om pN am e ‘F ie ld1
C O ISO bj [[D,T, K \ , 1 F ie ld 1, K]
C om pSet ‘N O N E 1
LinkSet ‘N O N E 1
C ontentSpec C
M appingR ule o b j e c t ([D , T , K] , ‘F i e ld 1),

property ([D , T , K \ , 1C o n t e n t ‘, C).

101

Table 5.3 Bridge Law BLTafc/el

Com pClass ‘S et1
O w ningSystem Type ‘D atabase1
Com pNam e ‘Table1
CO ISO bj [[D, T], ‘Table1, T]
Com pSet {[[D,T, K] , 1 Record1, K}}*
LinkSet ‘N O N E 1
ContentSpec ‘N O N E 1
M appingRule object([D, T, K], ‘Record1).

3. BLrabiei- Mapping Tables to Se t components f rom records, as shown in Table

5.3. T he resulting com ponent contains a set of record com ponents m apped

from da tabase records by the above B L Record. A tab le is identified by its tab le

nam e and the da tabase in which it resides (i.e., [D,T]) . T he conten t of the

resulting com posite is a set of record com ponents. {[D, T, K] , 1 Record1, A']}*

m eans 0 o r more K . object([D,T, K] , ‘Record1) ind icates th a t K is a record

residing in tab le T of da tabase D.

T he following in stan tia tion of BLrabiei m aps th e conten t of tab le “D octoral-

S tuden t:”

A P P L Y J B L jC O M P (B L Tablei ,

[D , T] = [‘S m a l lS c h o o l ‘, ‘D o c to ra lS tude n t ‘])

4. B L rpabie2 - Mapping Tables to S e t components f rom fields , as shown in Table

5.4. T he resulting com ponent contains a set of field com ponents m apped from

da tabase fields by the above B L Fieid. This bridge law is sim ilar to B L Tabiei

except it provides ano ther perspective of viewing a tab le and an a lte rna tive

way to navigate a com posite’s content. Here K represents a field object and 0

or m ore K ' s are m apped to th e content of a table.

102

Table 5.4 Bridge Law BLTable2

Com pClass ‘S et1
O w ningSystem Type ‘D atab ase1
Com pN am e ‘T able1
C O ISO bj [[D ,T] ,‘Tab le1,T]
Com pSet {[[D,T, K], ‘F ie ld 1, K]}*
LinkSet ‘N O N E 1
ContentSpec ‘N O N E 1
M appingR ule object ([D,T, K] , ‘Field,1).

T a b le 5 .5 Bridge Law BL Database

Com pClass ‘S e t1
O w ningSystem Type ‘D atab ase1
Com pNam e ‘D a tab ase1
PresentationSpec ‘Tree1
CO ISO bj [[D],1 Database ' , D]
Com pSet {[[D,T], ‘Table1, T]}*
LinkSet ‘N O N E 1
ContentSpec ‘N O N E 1
M appingR ule object([D,T], ‘Table‘).

5. j3 L n atai,aiie: Mapping Databases to Se t components , as shown in Table 5.5.

T he resu lting com ponent is labeled by its nam e and contains a set of tab le

com ponents m apped from da tabase tab les by the above B L r abie\ or BLmbici-

W ith th is bridge law, we view a da tabase as a com posite S e t consisting of tab le

com ponents. A da tabase object is identified by its name.

6. BLschema • Mapping Table S c he m a ta to S t ru c tu r ed A to m ic components , as

shown in Table 5.6.

7. B L rR p i ag ra m ■ Mapping an E R d iagram s to Hybr idgraphs , as shown in Table

5.7.

103

Table 5.6 Bridge Law BL Sc h e m a

Com pClass ‘S truc tu red A tom ic1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘Schem a1
C O ISO bj [[D ,T] ,‘S c h e m a 1, T]
C om pSet ‘N O N E 1
LinkSet ‘N O N E 1
C ontentSpec C
M appingR ule object([D, T], ‘S c h e m a 1),

property([D , T] , 1C o n te n t ', C).

T a b le 5 .7 Bridge Law B L E R D ia g r a m

C om pClass ‘G raph1
O w ningSystem Type ‘D atabase1
Com pN am e ‘E R D iagram 1
PresentationSpec ‘G raph1
CO ISO bj [[D, ‘E R D ia g ra m '] , 'E R D ia g r a m ” , _]
Com pSet {[[D, 5], ‘S chem a ', _]}*
LinkSet {[[[D, 51], 'S chem a ', 'From'],

[[[D, 52], 'S chem a ', _], _, 'To']}*
C ontentSpec ‘N O N E1
M appingR ule object(D , 'Database'),

object.([D, 51], 'S chem a ') ,
objeci([D, 52], 'S chem a ') ,
object([D, 5], 'S chem a ') ,
r e la t io n (S \ , 52 , 'E R R e la t io n ') .

104

An instan tia tion of th is BL in the above exam ple schem a DB would be:

A P P L Y J3L-.COM P (B L RRDiagram,D = ‘Sm a llS ch o o V)

T he variables would be in stan tia ted as:

D = ‘Small School',

S = {‘S tuden t1, ‘C ourse1, ‘Facu lty1}

{[51 ,52]} = {[‘S tu d e n t1, 'C o u rse 1}, [‘F a c u l ty 1, ‘C o u r s e 1]}

A graphical view of an E R diagram com ponent would be sim ilar to F igure

5.2(a).

5.5.2 Structure Link Bridge Laws

S tru c tu re links help direct access RDBM S objects th rough th e ir s truc tu ra l relationships.

We do not need a s tru c tu re link to access records in a tab le because the records

are contained as the tab le ’s content and can be accessed by applying B L Tahiel.

However, we need to access in the reverse direction: from records to tab les, from

tab les to databases, etc. We give five s tructu re link bridge laws, m apping access

from records to their contain ing table, fields to th e ir contain ing table, tab les to

th e ir contain ing database, records to th e ir contain ing da tabase and fields to th e ir

contain ing database.

1. B L RecortiroTabie: Accessing a table from Us records, as shown in Table 5.8.

T he following in stan tia tion of B L RecordToTaue m aps a record w ith key “123456789”

to its containing tab le “M asterS tuden t.”

A P P L Y -B L -L IN K {B L Recor(iToTablei

[D ,T ,F l] — [‘S m a llS ch o o l‘, ‘M a s te r S tu d e n t1, T234567891])

2. B L Fieid.ToTa.bie• Accessing a table from its fields, as shown in Table 5.9.

105

Table 5.8 Bridge Law BLRecordToTable

Com pClass ‘Link1
O w ningSystem Type ‘D atabase1
C om pN am e ‘RecordToTable1
LinkType ‘S tructu reL ink1
Specifier

Com pSpec [[D,T, F I] , 1 Record,1,.]
AnchorSpec ‘N O N E1
Direction ‘F R O M 1

Specifier
Com pSpec []D,T], ‘Table1,-]
AnchorSpec ‘N O N E 1
Direction ‘T O 1

M appingR ule object([D, T, F I] , 1R ecord ‘).

T a b le 5 .9 Bridge Law B L F ie ldT oT ab le

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
C om pN am e ‘FieldToTable1
LinkType ‘S tructu reL ink1
Specifier!

Com pSpec [[D,T, F I] , ‘F ie ld 1,-]
AnchorSpec ‘N O N E1
Direction ‘F R O M 1

S pecifier
Com pSpec [[D ,T] ,‘Table1,-]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule object([D, T , F I] , ‘F ie ld 1).

106

Table 5.10 Bridge Law BLTableToDatabase

Com pClass ‘L ink1
Ow ningSystem Type ‘Database*
Com pN am e ‘T ableT oD atabase1
LinkType ‘S tructu reL ink1
Specifier]

CompSpec [[D, F I] , ‘Table1, _]
AnchorSpec ‘NONE*
Direction ‘F R O M 1

Specifier
Com pSpec [[D], ‘Database ', _]
AnchorSpec ‘NONE*
Direction ‘TO*

M appingRule object([D, F I] , lTable‘).

3. B L Tabier 0Database: Accessing a database from its tables, as shown in Table 5.10.

4. B L ftecordToDatabase- Accessing a database from its records, as shown in Table

5.11.

5. B L FteidToDatabase■ Accessing a database from its fields, as shown in Table 5.12.

5.5.3 Operation Link Bridge Laws

We can m ap a generic query to an operation link.

• B L Q ueTy: Mapping a query to an Operation Link, as shown in Table 5.13.

BLQ uery in Table 5.13 m aps a query represented by SQL s trin g Q to a

com ponent. T he following in stan tia tion of B L Q Uery m aps an operation link

generating all studen t nam es from tab le “D octora lS tuden t.”

A P P L Y J B L J j I N K (B L Query,

[F 1 ,Q] = [‘S m a l l S c h o o l ' / S E L E C T N a m e F R O M D oc tora lS tuden t1])

107

Table 5.11 Bridge Law TiLRecordToDatabase

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
Com pN am e ‘ R ecordToD atabase'
L inkType ‘S tructu reL ink1
Specifieri

Com pSpec [[D, T, F I] , 1R e c o r d _]
AnchorSpec ‘N O N E 1
D irection ‘F R O M 1

S pecifier
Com pSpec [[jD], ‘Database1, _]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule object([D, T, Fi], ‘Record1).

Table 5.12 Bridge Law BLFie ldToDatabase

Com pClass ‘L ink1
O w ningSystem Type ‘D atab ase1
Com pN am e ‘F ieldT oD atabase1
LinkType ‘S tructu reL ink1
Specifieri

Com pSpec [[D , T , F I] , ‘F ie ld ‘s }
AnchorSpec ‘N O N E 1
D irection ‘F R O M 1

S pecifier
Com pSpec [[D], ‘Database ', _]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule ob jec t ([D ,T , F I] , ‘Field').

108

Table 5.13 Bridge Law BLQ u ery

CoinpClass ‘Link'
O w ningSystem T ype ‘D atabase1
C om pN am e ‘Q uery1
LinkType ‘O perationL ink1
Specifieri

Com pSpec [F I, ‘Database ', _]
AnchorSpec ‘NO N E'
D irection ‘F R O M 1

S pecifier
Com pSpec [[F I, F2], ‘Table1, _]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule objec t(F l , ‘Da tabase‘),
propert .y(F 1, ‘Operat ion' , ‘Query'),
objec t {[F\ , F 2] ,1D ynam icTable ‘),
property (F2 , 'Content' , O P E R A T I O N (FI , 'Query' ,Q)) .

The result is a dynam ic tab le holding th e s tuden t names. T he tab le does not.

exist in the DB prio r to the execution of th is bridge law. This is why we include an

object p red icate object([F\ , F 2] , ‘ DynamicTable') instead of objecl([F 1, F 2], ‘Table1)

(which represents a DB fact th a t F 2 is an existing tab le) in the above MappingRule .

All dynam ic tab les have a p roperty “C onten t” whose value is some M RD C function

specification and is evaluated upon execution of th e bridge law. (We will see sim ilar

results as dynam ic tab les when we discuss reference links bridge laws la te r in th is

section.) T he query expression Q in B L q uetv could be a rb itra rily com plicated as

long as it is a valid SQL sta tem en t. W hen th e RD BM S sends back the query result

(along w ith the CO ISID s) and m arks the C O ISType as “Table,” th e H T E applies

BLj'abie to m ap it to a Set com ponent as if it is a regular table. These dynam ically

generated records are organized in to a guided-tour (i.e., a query-based guided-tour)

facilita ting user navigation.

109

Besides the generic query, we can also m ap frequently accessed specific queries

to operations links as varian ts of the above B L Q Uery. Consider the following specific

queries on our sam ple DB “Sm all School:”

(1) Given a course, find all dayclass studen ts tak ing th a t course.

(2) F ind all professors (nam es) teaching undergraduate courses.

(3) F ind all professors a s tuden t takes courses with.

(4) F ind all courses a s tuden t taking.

(5) F ind all courses taken by undergraduates.

These queries could be frequently used for access cross-table inform ation. BLs enable

such queries to be defined as “ready-to-execute” com m ands m odeled as operation

links. We take (1) as an exam ple. Table 5.14 shows bridge law BLcourseQuery which

m aps the above query (1).

BLcourseQuery is ac tua lly an in stan tia tion of B L q uery. T he following in sta n

tia tio n of BLcourseQuery m aps all studen ts tak ing course “CIS610” :

A P P L Y _ B L -L I N K (B L CourseQuery, N = ‘C /S 610‘)

T he above in stan tia tion is equivalent to the following in stan tia tion of B L Q Uery:

A P P L Y J 3 L J ^ I N K (B L Query,

[F1,N,Q] = [‘Small School1,

‘CIS6101,

‘SEL EC T N am e FR O M

D octoralS tuden t, M asterS tudent,

U nderg raduatestuden t, DayClass W H ER E

D ayC lass.CN um = $$ N AND

(DayClass.SSN = D octoralStudent.SSN

O R DayClass.SSN = M asterStudent.SSN

DayClass.SSN = U ndergraduateS tuden t. SSN)‘])

110

T a b le 5 .1 4 Bridge Law B L C o u rse Q u ery

Com pC lass ‘L ink1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘C ourseQ uery1
L inkType ‘O pera tionL ink1
Specifieri

Com pSpec
AnchorSpec
D irection

[[‘S m a llS ch o o l1], ‘Database ', _]
‘N O N E 1
‘F R O M 1

Specifier2
Com pSpec
AnchorSpec
Direction

[['SmallSchool', F2], ‘Table1, _]
‘N O N E 1
‘T O 1

M appingR ule object(‘Sm a llS ch o o l ' , 'Database'),
p ro p e r ty (‘S m a llS ch o o l ' , 'O p era tio n ', 'Q uery ') ,
object([‘S m a llS ch o o l ' , F 2], 'D ynam icTab le ') ,
property (F 2 , 'C onten t',
O P E R A T I O N S S m a l lS c h o o l ' , 'Q u e ry ' ,
‘SEL EC T Nam e FROM
D octoralS tudent, M asterS tudent,
U ndergraduatestudent,, D ayC lass W H E R E
D ayC lass.CN um = $$ N AND
(DayClass.SSN = D octoralS tudent.SSN
O R DayClass.SSN = M asterS tudent.SSN
DayClass.SSN = U ndergraduateS tuden t.S S N)1)).

I l l

5.5.4 Schema-Based Bridge Laws

Bridge laws help d irectly access schem a-related im plicit relationships. C onsider the

following exam ples:

(1) Given a tab le , find all tables which have the sam e schema.

(2) Given a tab le , find all tables having the sam e key field.

(3) Given a tab le , find all tables which have an E R relationship w ith it.

(4) Given a record, find all tables whose nam es ap p ear in th is record.

(5) Given a non-key field, find all o ther tab les which have it as a key field (i.e., the

non-key field in a tab le is a foreign key field in o ther tables).

(6) Given a record and a non-key value, find all o ther records which have th is value

as their key value (i.e., th is value is a foreign key value).

(7) Given a schem a, find all tables under th is schema.

(8) Given an application database, find its E R diagram .

(9) Given a record, find all records which have an E R relationship w ith it.

(10) Given a tab le , find all tables which have an indirect E R rela tionsh ip w ith it

(i.e., E R rela tiosh ip through transitiv ity).

(11) F ind all tab les which include a given tab le ’s fields.

(12) F ind all tab les which include all of a given ta b le ’s fields except X .

We give bridge laws for (1) to (7).

1. BLsameSchema '■ Given a table, find all tables which have the same schema , as

shown in Table 5.15.

An in stan tia tio n of th is BL in the above exam ple schem a DB would be:

A P P L Y J 3 L J L I N K (B LsameSchemai

[D , F I] = [‘Sm all School‘, ‘M a s te r S tu d e n t1])

112

Table 5.15 Bridge Law BL S a m e S c h e m a

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
Com pN am e ‘Sam eSchem a1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
D irection

[[D, F I] , ‘Table1,
‘N O N E1
‘FR O M 1

S pecifier
Com pSpec
AnchorSpec
D irection

{ [D ,F2] , ‘Table1, _]
‘N O N E1
‘T O 1

M appingR ule object([D, F I] , ‘Table1),
object([D, F2], ‘Table),
object([D, 5], ‘Schem a1),
relat ion([D, F I] , S, ‘H a sS c h e m a 1),
relat ion([D, F2], S, ‘H a sS c h e m a 1).

V ariables would be in stan tia ted as:

S = ‘S tuden t1

F 2 = {‘D o c to ra lS tuden t1, ‘M asterS tuden t', ‘U n d e rg ra d u a tes tu d en t1}

T he resulted tab les would be three tables “M asterS tuden t,” “D o c to ra lS tu d en t”

and “U nderg raduateS tuden t.” W henever a bridge law execution results in

m ultiple tables, the DB handler organizes them in to a dynam ic tab le w ith

each tab le nam e highlighted as dynam ic anchors. Each dynam ic anchor in a

dynam ic tab le m arks a reference link RefT oT ab le (see below B L Ref ToTahie).

T he user can select on any of these anchors to access the underlying ta b le ’s

content.

2. BLsameKey•' Given a table, find, all tables having the same key field, as shown

in Table 5.16.

113

Table 5.16 Bridge Law BLS a m e K e y

Com pClass ‘L ink1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘Sam eK ey1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
A nchorSpec
D irection

[[D, F I] , 'Table', _]
‘N O N E 1
‘F R O M 1

S p ec ifie r
Com pSpec
AnchorSpec
D irection

[[£>, F2],'Table', _]
‘N O N E 1
‘T O 1

M appingR ule object([D, F I] , 'Table'),
object([D, F2], 'Table),
propei'ty([D, F I], 'KeyFie ld ' , K) ,
property([D, F2], ‘K e y F i e l d ', K) .

An in stan tia tio n of BLsameKey >n DB SmallSchool would be:

A P P L Y J B L _ L I N K (B L Samef<ey,

[D, F I] = [‘SmallSchool' , ‘V is i t in gScho lar1])

V ariables are in stan tia ted as:

K = ‘SSN 1,

F I = {‘D octo ra lS tuden t1, ‘M aste rS tuden t1, ‘U nderg radua testuden t,1}

3. B L RRReiation •’ Given a table, find all tables which have an ER relationship with

it, as shown in Table 5.17.

An in stan tia tio n of B L RRReiation in the above SmallSchool — Schema would

be:

A P P L Y J 3 L J , I N K (B L ERRelalion,

[D, FI] — [' SmallSchool' , 'GraduateCourse'])

114

Table 5.17 Bridge Law BLE R R e la t io n

Com pClass ‘Link1
O w ningSystem Type ‘D atabase1
Com pN am e ‘E R R ela tion1
LinkType ‘ReferenceLink1
Specifier:

Com pSpec
AnchorSpec
D irection

[[D, F I] , 'T ab le ' , J
‘N O N E1
‘FR O M 1

S pecifier
Com pSpec
AnchorSpec
D irection

[[D, F 2], 'Table1, _]
‘N O N E1
‘T O 1

M appingR ule object([D, F I] , ‘Table'),
object([D, F2], 'Table'),
relation([D, F I] , 51 , 'H a sS c h e m a ') ,
relation([D, F2], 52 , 'H a sS c h e m a ') ,
r e la t io n (S l , 52 , 'E R R e la t io n ') .

Variables are in stan tia ted as:

51 = {‘S tuden t1, ‘F acu lty1}, 52 = ‘C ourse1

F 2 = {‘D o c to ra lS tuden t1, ‘M asterS tuden t1, ‘V isitingScholar1, ‘U nd erg rad u a t

e s tu d e n t1}

T he query result contains tab le names which are organized in records of a

dynam ic table. T he user can access these tab les by selecting on th e ir nam es

which are highlighted as anchors in the dynam ic tab le ind icating reference link

“RefToTable,” m apped by B L Ref ToTable (see below).

4. B L Rep'oTabie: Given a record, f ind all tables whose names appear in this record,

as shown in Table 5.18.

T his BL defines a dynam ic anchor in the d eparting record. The anchor’s value

V happens to be a ta b le ’s nam e in the sam e DB. As represented by p red icate

115

Table 5.18 Bridge Law B L R e fT o T a b le

Com pClass ‘Link*
O w ningSystem Type ‘D atab ase1
Com pNam e ‘RefToTable1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec [[D, T , K], ‘Record1, _]
AnchorSpec [[D, T , K , F\, ‘D y n a m ic 1, V]
D irection ‘FROM*

S pecifier
Com pSpec [[D, V], ‘Table1, _]
AnchorSpec ‘N O N E'
Direction ‘T 0 ‘

M appingRule object([D, T , K \ , ‘Record1),
object([D, V], ‘Table1),
property([D , T , K , F], ‘V a lu e 1, V).

p r o p e r ty ([D ,T ,K , F] , ‘V a lu e 1, V) , th is value V is identified by a key value K

and a field nam e F in record [D, T , K \ . Based on such an im plicit relationship,

th is BL constructs a reference link from the record to th e tab le m arked by

its tab le nam e in the record content. B L Rej ToTat,ie is frequently used in the

G IIM I p ro to type to present a query result and o ther reference link destination

m appings to the user. We consider a query result as a dynam ic tab le . The

user can navigate on its records v ia a query-based gu ided-tour (Q G T). We can

apply B L RefToTabie to the records contained in all dynam ic tab les (i.e., those

resulted from operation links and reference links) as well as s ta tic tab les (i.e.,

regular tab les in a DB).

5. B L ForeignKeyField-' Given a non-key field, find all other tables which have it as a

key field (i.e., the non-key field in a table is a foreign key field in other tables),

as shown in Table 5.19.

116

Table 5.19 Bridge Law B L F o re ig n K e y F ie ld

Com pClass ‘L ink1
Own ingSy stem Typ e ‘D atabase1
Com pN am e ‘ForeignK eyField1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
D irection

[[D, T l , F I] , 'F ie ld 1, _]
‘N O N E1
‘FR O M '

S pec ifier
Com pSpec
A nchorSpec
D irection

[[D, T2], ‘Tab le1, _]
‘N O N E1
‘T O 1

M appingR ule ob jec t{[D ,T l , F I] , 1 F ie ld 1),
object([D,T2], ‘Tab le1),
proper ty ([D ,T l] , ‘K e y F ie ld 1, K l) ,
property([D , T2], ‘K e y F ie ld 1, F I) ,
K l ^ F I .

B L Foreign Key Field reveals an im plicit relationship “foreign key” in a da tabase:

a tab le ’s (T l) non-key field (F I) happens to be ano ther tab le ’s (F2) key field.

6. B L Foreign KeyVaiue ■ Given a record and a non-key value, f ind all other records

which have this value as their key value (i.e., this value is a foreign key value),

as shown in Table 5.20.

BLporeignKeyVaiue reveals an im plicit relationship regarding foreign key values:

a non-key value V , identified by key value V I and field nam e F I in record

[D ,T l , V I] (w ith key field K l) , happens to be the key value of a n o th e r record

[D ,T 2 ,V] (w ith key field K 2). The non-key na tu re of V is ind icated by K l ^

F I where K l is the record’s key field nam e and F I is the value’s field name.

D irect selecting the anchor defined in the departu re record will dynam ically

lead to a sequence of destination records.

117

T a b le 5 .2 0 Bridge Law B LF o r e ignK eyV a lue

Com pClass ‘L ink1
O w ningSystem Type ‘D atab ase1
Com pNam e ‘ForeignKey Value'
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
Direction

[[D, T l , V I], ‘Record1, _]
[[£>, T l , V I, F I] , ' D y n am ic 1, V]
‘FR O M '

S pec ifier
Com pSpec
AnchorSpec
Direction

[[D ,T 2 ,V], ‘Record1, _]
‘N O N E 1
‘T 0 ‘

M appingRule object([D, T l , V I], ‘Record‘),
object([D, T2, V], ‘Record‘),
ob jec t ([D ,T 1, F I] , ‘F ie ld ‘),
property([D, T l], ‘K e y F i e l d ', F T),
proper ty ([D , T2], ‘K e y F i e l d ‘, F 2) ,
prope?-ty([D , T l , F I] , ‘Value ‘, V),
p roperty ([D , T2, F 2], ‘Va lue1, V),
F I ^ F I .

118

Table 5.21 Bridge Law BLSchem aToTab le

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
Com pN am e ‘Schem aToTable1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec [[D, F I]] ,1S c h e m a ", _]
AnchorSpec ‘N O N E1
D irection ‘FR O M 1

S pecifier
Com pSpec [[D, F2], ‘T ab le1, _]
A nchorSpec ‘N O N E1
D irection ‘T O 1

M appingR ule object([D, F I] , ‘S c h e m a 1),
object([D, F2], ‘Table1),
relation{[D, F2], F I , ‘H a s S c h e m a 1).

7. B L SchemaToTable: Given a schema, f ind all tables under this schem a, as shown

in Table 5.21.

An in stan tia tion of th is BL in the above exam ple schem a DB would be:

A P P L Y JBLJLINKiBLschema.ToTa.ble-,

[D , F I] = [‘S m a ll School1, F I = ‘S tu d e n t1])

The variables would be in stan tia ted as:

F 2 = {‘D o c to ra lS tu d en t1, ‘M asterS tuden tV U nderg radua teS tuden t1}

8. BLf)f}T0RRDiagram ■ Given an application database, f ind its E R diagram, as

shown in Table 5.22.

An instan tia tion of th is BL in the above exam ple schem a DB would be:

A P P L Y J 3 L J I N K { B L nBToniaaram, D = ‘S m a l l School‘)

119

Table 5.22 Bridge Law B L D B T o E R D ia g r a m

Com pClass ‘Link'
O w ningSystem Type ‘Database*
Com pNam e ‘D B ToER D iagram ‘
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
Direction

[D, ‘Database1, _]
‘N O N E 1
‘F R O M 1

S pecifier
Com pSpec
AnchorSpec
D irection

[[£>, ‘E R D ia g r a m 1], ‘E R D ia g r a m ‘, _]
‘NONE*
‘TO*

M appingR ule object(D , ‘Database1).

T he execution of B L nRToFlRRiagram will invoke the execution of B L RRr)iagrain

to m ap the destination E R diagram to a G raph.

5.5.5 Meta-information BLs

We can define bridge laws to d irectly access m eta-inform ation on DB objects. Such

inform ation could relate to ob ject s ta tis tics , such as field type, field size, record

size, tab le size (num ber of records in a tab le), DB size (num ber of tables in a D B),

etc. T h is also could include dynam ic inform ation supported by O D BC (e.g., such as

“u p d a tab le”). Bridge laws help access these inform ation through m apping them to

reference links. T he D atabase hand ler dynam ically ob tains these d a ta and p u ts them

in a dynam ic table. The following are m eta-inform ation bridge laws for DB objects:

da tab ase , table, records and fields. These BLs define reference links from the ob jects

to th e ir m etainform ation. The D atabase handler is responsible for generating each

type of m eta-inform ation when executing these bridge laws. Each of the following

bridge laws re tu rns all m eta-inform ation of an object. (To ob tain specific m ete-

inform ation, we can define o ther specific bridge laws.)

120

Table 5.23 Bridge Law BLM etaR ecord

Com pClass ‘L ink1
O w ningSystem T ype ‘Database*
Com pN am e ‘MetaRecord*
L inkType ‘ReferenceLink1
Specifieri

Com pSpec
A nchorSpec
D irection

[[D, T, F I] , ‘Record1, _]
‘N O N E1
‘FROM*

S pecifier
Com pSpec
AnchorSpec
D irection

[[D, F2], ‘Table', _]
‘NONE*
‘TO*

M appingR ule object([D, T, F I] , ‘Record1),
object.([D, F2], ‘Dynam icTable ‘),
p roper ty ([D , T, F I] , ‘Operat ion1, ‘M e t a i n f o r m a t i o n 1),
property([D, F2], ‘C o n te n t ,
O P E R A T I O N ([D , T, F I] , ‘M e t a l n f o rm a t ion 1, ‘Record1)).

1. B L MetaRecor(i■ Mapping Record meta-information , as shown in Table 5.23.

Record m eta-inform ation exam ples include the record key field nam e, key

value, num ber of values, tim e stam ps (creating, updating , accessing tim es),

a ttr ib u te s , non-key field nam e, etc.

2. B L m e i a p i e i d ' . Mapping Field meta-information, as shown in Table 5.24. Field

m eta-inform ation exam ples include field type, field size, etc.

3. B L MetaTabie: Mapping Table meta-information , as shown in Table 5.25. Table

m eta-inform ation exam ples include num ber of records, num ber of fields, key

field nam e, referential constrain ts, tim estam ps, etc.

4. B L m etaDatabase■ Mapping Database meta-information, as shown in Table 5.26.

D atabase m eta-inform ation exam ples include num ber of tab les, tim e stam ps,

da tabase handler nam e, access control, etc.

121

Table 5.24 Bridge Law BLM e ta F ie ld

Com pClass ‘L ink1
O w ningSystem Type ‘D a tab ase1
C om pN am e ‘M etaF ie ld1
LinkType ‘ReferenceLink1
Specifier]

Com pSpec [[D ,T ,F l] , ‘F ie ld ‘,.\
AnchorSpec ‘N O N E 1
D irection ‘F R O M 1

Specifier2

Com pSpec [[D, F2], ‘Table1, _]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule object([D, T , F I] , ‘F ie ld 1),
object([D, F2], ‘D yn a m icT a b le1),
p roper ty ([D ,T , F I] , ‘O pera tion1, ‘ M e t a l n f o r m a t io n ') ,
p roperty ([D , F 2] ,1C o n te n t ‘,
O P E R A T I O N ([D , T , F I] , ‘M e t a i n f o r m a t i o n 1, ‘Field,1)).

T a b le 5 .2 5 Bridge Law B LM etaTab le

Com pClass ‘L ink1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘M etaT able1
L inkType ‘ReferenceLink1
Specifier]

Com pSpec \ [D ,F \] , ‘Table‘,_)
AnchorSpec ‘N O N E1
D irection ‘F R O M 1

S p ec ifie r
Com pSpec [[D, F 2] ,‘Table1,.]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule object([D, F I] , ‘Table1),
object([D, F 2] ,1D yn a m ic T a b le ‘),
property([D , F I] , ‘O pera tion1, ‘M e t a i n f o r m a t i o n 1),
property([D , F2], ‘C o n te n t ,
O P E R A T I O N ([D , F I] , ‘M e t a i n f o r m a t i o n 1, ‘T ab lc ‘)).

122

Table 5.26 Bridge Law BLM etaD atabase

Com pClass ‘L ink1
O w ningSystem T ype ‘D atabase1
C om pN am e ‘M etaD atabase1
LinkType ‘ReferenceLink1
Specifier]

Com pSpec [[FI], ‘Database1, _]
A nchorSpec ‘N O N E1
D irection ‘FR O M 1

S p ec ifie r
Com pSpec [[F I, F2], ‘Table', _]
A nchorSpec ‘N O N E1
D irection ‘T O 1

M appingR ule objec t(F \ , ‘Da tabase‘),
object{[F\ , F 2] ,1DynamicTable ‘),
proper ty (F 1 ,1Operat ion', ‘M e ta in f o r m a t io n ') ,
property ([Fl , F2], 'Content',
O P E R A T I O N (F \ , ‘M e ta in f o rm a t io n ' , 'Database')) .

In th is section, we presented bridge law exam ples for RD BM S. We do not mean

to enum erate all possible BLs a RD BM S user m ight have. T he user can add new

BLs a t any tim e.

5.6 Summary

In th is chap ter we dem onstrated how GH M I can be used to provide an independent

application (i.e., a COIS) w ith supplem ental hypertex t functionality. We presented

the m apping from relational databases to hypertex t, based on th e GH M I model. We

use RD BM S as our application dom ain. A pplying hypertex t functionality enhances

the effectiveness of RDBM S for users. T he hypertex t representation under GIIMT

helps a RD BM S user establish direct access to explicit or im plicit relationships am ong

underlying RDBM S objects. Such help includes direct access to s tru c tu ra l in ter

object relationships, direct access to E R relationships, d irect access to RDBM S

operations, direct access to m etainform ation (e.g., anno ta tion and system infor

123

m ation such as object size, field type, object description and tim estam ps.) on objects

selected by users, navigation assistance, and analysis guidance.

We discuss a d a ta s tru c tu re (i.e., th e Schema DB) which im plem ents schem atic

bridge law (BL) m apping. To com plete our dom ain m odeling on RDBM S and dem on

s tra te th e power of dom ain m apping, we defined a set of bridge laws to m ap a

RD BM S, including the following categories:

• Object BLs. We need BLs to m ap the five da tabase objects (i.e., values,

fields, records, tab les and databases) as well as the schem ata and E R d iagram s

in the corresponding schem a DB. O bject BLs m ap ob jec ts’ contents.

- M ap records to s truc tu red atom ics

M ap fields to s tru c tu red atom ics

M ap tables to sets of records

- M ap tables to sets of fields

- M ap database to sets of tables

- M ap schem ata to s tru c tu red atom ics

- M ap E R diagram s to graphs

• Structure BLs. We need bridge laws to m ap objects upw ards to th e ir

em bedding com posites. S tructu re BLs would include: m apping record to

tab le , record to DB, field to tab le , field to DB and tab le to DB.

• Operation BLs. We need BLs for SQL queries and O D BC operations. From

th e im plem entation po in t of view, these operations should include all operations

supported by OD BC. Frequently used specific queries can also be m apped to

operations links.

• Schema-based BLs. We store schem ata as tables. Therefore, all BLs on

regular tables should apply to schem a DB too. Besides these schem a tab le BLs,

we BLs to m ap im plicit inter-object relationships im plied by the schem ata in

124

th e schem a DB of a prim ary DB. We can m ap these rela tionships to reference

links.

• Meta-information BLs. C erta in users such as developers should be able

to access object sta tistics, such as field type, field size, record size, tab le size

(num ber of records in a tab le), DB size (num ber of tab les in a D B), refer

ential constra in ts, etc. Accessible m eta-inform ation also includes dynam ic

inform ation supported by O D BC (e.g., such as “u p d a ta b le ”). B ridge laws

help access these by defining reference links.

CHAPTER 6

IMPLEMENTATION: THE GHMI PROTOTYPE

In th is chapter, we present an im plem entation p ro to type to prove the correctness

and robustness of the GHM I model. We discuss the in stan tia ted im plem enta tion

arch itec tu re and its individual com ponents.

6.1 The Implementation Architecture

Figure 6.1 shows G H M I’s p ro to type im plem entation arch itectu re as an in stan tia ted

im plem entation a rch itec tu re of Figure 3.1 in C h ap te r 3. T he p ro to type a rch itec tu re

com prises a hypertex t engine (H TE), th ree COISs (MS Access, T E X PR O S and MS-

DOS) and an IOS (i.e., Interface-O riented System). Every COIS or IOS connects

to the H TE through its own handler. H andlers tran s la te the H T E ’s m essages to a

form at the COIS or IOS understands, and vice versa. COIS handlers tra n s la te bridge

laws to access C O IS’ operations, objects and d a ta . To in tegrate a COIS, th e only

change th is arch itec tu re requires of the COIS is th a t its com m unications p a th be

rou ted through th e handlers [10]. COIS developers or builders very fam iliar w ith the

COIS m ust w rite th e CO IS handler, as well as bridge laws for each class of objects

and relationships accessible to users. RDBM S is so w ell-understood th a t we were

able to do th is ourselves for MS Access. The com plexity of the bridge laws and COIS

handlers depends on the C O IS’ complexity. T he following subsections describe each

functional com ponent in th e architecture.

6.1.1 The H ypertext Engine

T he H T E consists of four databases (DBs) and six m anagers. The K now ledge Base

stores bridge laws for m apping individual COISs to hypertex t. The L inkbase contains

125

126

’’BL-Engine
COIS Invoker*"
COIS Buffering*
Confgu ration
Communication

inowledgt
_ Base__

Config.
DB

session
DB

Linkbase

ConfigApp. DB
Prototype’s

IOSDB Manager
Graph

ViewerDatabase
Handler

MS-Access
Inference
Manager

Configure
Manager Browser

M ain
V iew erTEXPROS

Handler
TEXPROS HT Manager

DB
V iew er

Prototype’s
IOS Handler

COIS
Manager

IOS
Manager

File System
Handler

Text
V iew er

MS-DOS The Hypertext Engine
(HTE)

Figure 6.1 T he GH M I Im plem entation A rchitecture

persis ten t CO IS-independent d a ta including links, anchors, anno ta tion com ponents,

gu ided-tours and bookm arks. T he Session DB contains navigation-rela ted dynam ic

s tru c tu re s including the Traversal Logs (i.e., H istory Log, the Chronological Log and

the Task Logs [13]. T he Configuration DB contains C O IS /IO S configuration d a ta

including handler identities and available C O IS /IO S com m ands. T he DB M anager

m anages m anipulation of the four H T E DBs. The Inference M anager validates and

invokes bridge laws. T he Configuration M anager is responsible for C O IS /IO S config

u ra tion and invoking the COIS handlers a t run tim e if they are no t active. T he

CO IS M anager handles com m unication w ith COIS handlers. It encodes and decodes

messages according to th e com m unication protocol. Sim ilarly, th e IOS M anager

handles com m unication w ith IOS handlers. The central p a rt of the H T E is th e IIT

(i.e, H yperText) M anager which m anages the im plem entation of all GHM I hypertex t

functionalities.

127

The Knowledge Base m aintains th ree bridge law tables: SY SBLC om ponents,

SYSBLLinks and SYSBLSpecifiers. SY SBLC om ponents contains com ponent bridge

laws. SY SBLLinks and SYSBLSpecifiers together contain link bridge laws.

SYSBLLinks contains link header inform ation (e.g., including O w ningSystem Type,

L inkType, etc). SYSBLSpecifiers contains definition and m apping rules for individual

specifiers of each link in SYSBLLinks.

The Linkbase contains persistent d a ta . C orresponding tab les include SYSLinks,

SYSSpecifiers, SYSAnchors, SY SCom ponents, SY SBookm arks and SY SG Ts. Tn

G H M I’s dynam ic m apping environm ent, all com ponents m apped from COISs are

v ir tua l com ponents. T he H TE does not store th e ir contents persis ten tly in the

Linkbase. T he only persisten t com ponents are anno ta tions, which are not m apped

from COISs. T he H T E stores o ther com ponents in the Linkbase only when th ey are

registered in persisten t navigation s truc tu res by the user a t run-tim e (e.g., guided-

tours and bookm arks). W hen a com ponent is brought to display, the H T E stores it

in the traversal logs. Sim ilarly to com ponents, not all links are persisten t. Only

association links and anno ta tion links which are hypertext-ow ned are persisten t

links. O ther links become persistent only when they are em bedded in th e content of

persisten t com ponents (e.g., guided-tours). The Linkbase has two tab les for links:

SYSLinks and SYSSpecifiers. All persisten t links are stored in tab le SYSLinks. Each

link en try has an ID and contains general header inform ation in G H M I (e.g., owning

system , class nam e, BLID, etc). T he link specifiers are stored in a separa te tab le

SYSSpecifiers w ith each entry storing link directionality, filtering, component, ID,

and SYSLinks en try ID. Separating link specifiers from links ensures the im plem en

ta tion of n-ary links. An n-ary link can have n entries in SYSSpecifiers. Anchors are

stored in SYSAnchors. P lain and keyword anchors are persisten t in na tu re . D ynam ic

anchors are not persistent.

128

The Session D B contains session-based dynam ic struc tu res (i.e., traversal logs)

consisting of th ree tables: SYSHistoryLog, SYSChronologicLog and SYSTaskLogs.

SY SHistoryLog keeps a com plete record of the user navigation history represented

as event s truc tu res (see [13]). SYSChronologicLog contains a subset of entries

in SY SHistoryLog which consists of com ponents no t generated from backtracking.

SYSTaskLogs groups navigation history in a task-based m anner to su p p o rt task-

based backtracking in m ulti-w indow environm ents [13].

The Configuration D B m ain tains th ree tables: SYSCOISs, SY SC om m ands

and SYSIOSs. SYSCOISs contains registered COIS hand ler’s inform ation including

nam e, pa th , reg istration tim e, s ta tus, etc. The SY SCom m ands contains COIS

com m ands including com m and name, owning system name, pa ram ete r num ber

and param eter types. T he H T E im plem ents these com m ands as operation links.

SYSIOSs contains inform ation sim ilar to the SYSCOISs for all p a rtic ip a tin g IOS

handlers.

The D B Manager m anages m anipulations on the H T E DBs. I t consists of

subroutines supporting operations on database objects (databases, tables, records),

including open, close, insert, ed it, find, list-all, query, etc. These routines are w ritten

in V isual Basic and OD BC. Therefore, although we im plem ent these da tabases on MS

Access, the subroutines are essentially portab le to any o ther RDBM S suppo rting

O D BC, such as Oracle, Paradox, FoxPro, d B ase lll and dBaselV . T he cu rren t

p ro to type only supports MS Access. It is easy to ex tend it to sup p o rt o thers

provided th e ir proper O D BC drivers are available.

The Inference M anager validates and invokes bridge laws. T here are two

m odules in the Inference M anager: a BL-parser and a BL-invoker. T he B L -parser

parses a bridge law to ensure its syntax correctness. W hen m apping an ob ject, the

BL-invoker finds the p roper BL according to the o b jec t’s CO ISType and O w ningSys

tem T ype from SY SBLC om ponents and sends it to the IIT M anager. T he IIT

129

M anager then sends the BL to the COIS M anager as a message for the corresponding

COIS handler. T he BL-invoker is also responsible for collecting BL executing results

and m apping them to GHM I com ponents by invoking o ther BLs (if necessary).

The Configuration Manager m anages the s ta tic and dynam ic system config

uration . T he s ta tic configuration includes the registration of C O IS /IO S handlers,

C O IS s/IO Ss, COIS com m ands, bridge laws, etc., during the process of system setup.

T he dynam ic configuration includes dynam ic m anipulation of th e configuration infor

m ation , m essage address validation, and inactive application (C O IS /IO S handlers)

invoking.

The C O IS Manager is responsible for com m unicating w ith th e COIS handlers.

It has two m odules: an A PI m odule and a D D E module. T he A PI (A pplication

P rogram m er Interface) routines perform standard message m anipu la tion (e.g., set a

tag , get a ta g value, etc.). The D D E (D ynam ic D a ta Exchange) routines conduct the

ac tua l inter-process com m unication for sending messages to and receiving messages

from specific destinations through W indow s95’s DDE protocol.

The IO S Manager perform s sim ilarly as the COIS M anager except th a t it

m anages com m unication w ith IOS handlers instead of COIS handlers.

The H T Manager is the control center of the H TE. I t im plem ents of all

GHM I hypertex t functionalities (e.g., link traversal, linking, anchoring, anno ta ting ,

navigating on guided-tours, backtracking, history,etc.) by m anaging and cooperating

w ith o th er H T E m anagers.

6.1.2 The COISs

In th is p ro to type , we consider th ree diverse COISs: a da tabase system (MS Access),

a docum ent m anagem ent system T E X PR O S and a file system (M S-DOS). O ur focus

is on MS Access. We m ap objects and relationships defined by bridge laws in §5.5

and [92]. T E X PR O S is still under developm ent. We only m ap its ob jects (i.e.,

130

folders, fram e tem p la tes and fram e instances) and file struc tu res to com ponents

according to bridge laws [92]. A lthough file system s are hardly COISs, we include

them to dem onstra te our system functionalities on suppo rting tex t docum ents and

anno ta tions. We m odel files as plain atom ic com ponents. A nnotations could be

m odeled as atom ic com ponents w ith tex t contents.

6.1.3 The IOS

We only have one IOS in th is pro to type as our focus is on the C O IS-H TE side. T he

curren t IOS consists of five viewers: a Text Viewer, a DB Viewer, a Browser, a G raph

Viewer and a M ain Viewer. Each viewer has its own menu item s for viewer-specific

com m ands. Some s ta n d a rd com m ands are com m on to all viewers, including History,

Backtracking, Overview, Bookm ark, G uidedTour, etc. An IOS usually has one M ain

Viewer and m ultip le o ther viewers sim ultaneously.

T he Text Viewer is responsible for displaying unstruc tu red tex t d a ta . I t should

be able to: (1) display tex t content; (2) tell th e s ta r tin g position and length of

the tex t selected by the user; (3) highlight a certain portion of the te x t based

on s ta r tin g position and length sent by the IOS handler. T he menu item s of the

Text Viewer include AddA nchor, DeleteAnchor, S ta rtL ink , EndLink, D eleteL ink,

ShowLink, Show Bookm ark, Show GuidedTour, etc.

The DB Viewer should be able to display d a ta in the form at of a tab le (i.e.,

a spreadsheet or its sim ulation). It should a t least: (1) display a tab le in a two-

dim ension tab le w ith a row header and a colum n header; (2) identify user selection on

an tab le item (corresponding to a DB record value) by a row header (corresponding

to a DB record key) and a colum n header (corresponding to a DB field nam e).

This requires every row or colum n to have a unique header and m atches th e case

of a DB record. T he menu item s for the DB Viewer are the sam e as the m enu for

the Text Viewer b u t the ir in ternal processing could be different. For exam ple, the

131

identification of a user selection is different, in the Text Viewer (by a string s ta r tin g

position and length) and the DB Viewer (by a row header and a colum n header).

T hus the event reports for the H T E would have different, contents.

T he Browser displays overview inform ation in a tree-like s truc tu re , including:

(1) Overviews of com ponents in a tree-like structure; (2) A list of all available links

on a selected object, including destinations, s ta rtin g anchors, ending anchors and

link types. T he user should be able to select (double click on an item) or delete

(click one and select a D elete menu item) an item in th e list. Selecting an item

triggers a link traversal; (3) T he history list of a user navigation session: T he user

can select an item (double click) to trigger a backjum p to a previous component,;

(4) A list of bookm arks. User com m ands on bookm arks include A ddC urrent, D elete

and GoTo. D ouble click on a selected item is equivalent to a GoTo com m and; (5) A

list of guided-tours for user to navigate and m anipulate.

T he G raph Viewer displays graphical d a ta in the GH M I system (e.g., im ages,

g raphical overviews of com posites, etc.) which can not be displayed in the Browser.

T he g raph viewer should be able to: (1) display images as atom ic com ponents; (1)

d isplay a com posite as links and com ponents in its LinkSet, and Com pSet; (2) enable

selection on a com ponent to see its content; (3) enable add ing or deleting com ponents

and links; (4) enable position ad justing on com ponents; (5) enable saving changes on

com ponen t’s screen positions. A typical graphical exam ple in the current, p ro to type

is an E R diagram in a RD BM S which is m apped to a G raph component,. Such a

com posite is displayed in the G raph Viewer as list boxes (representing en tities or

schem ata) connected by d irected lines (representing relationships). T he user is able

to a d d /d e le te entities (i.e., schem ata) or relationships, change and save p resentation

positions of entities. Selecting an en tity (i.e., schema) will enable th e user to see all

tab les under th is schem a (m apped as a reference link).

132

Every tim e th e system is activated , the user reaches the M ain Viewer. W hen

the user selects a curren t COIS, th e system will display th e overview of the COIS

on th e Browser. T he M ain viewer is responsible for: (1) displaying configuration

com m ands and dialogues for COIS and IOS handlers; (2) inpu ting and ed iting of

bridge laws; (3) se tting up a cu rren t COIS by sw itching am ong registered COISs;

(4) guiding th e user to inpu t the p roper param eters required by a COIS com m and;

(5) displaying dialogues for link creation; (6) displaying all o ther inform ation not

displayed in the o ther th ree viewers (e.g., error or w arning m essages). The menu

com m ands in the M ain Viewer correspond to the above functionalities.

F igure 6.2 and Figure 6.3 are exam ple screen dum ps of the G IIM I p ro to type

showing th e IOS viewers.

F igure 6.2 shows an exam ple screen dum p of the IOS. T he screen shows four

viewers, each being a separate window. T he Main Viewer on th e back is a root

window covering all the o ther windows. The active window a t th is m om ent is

the Text Viewer window on top of the others. I t has an anchor highlighted on

string “L ISTB O X .FR M .” T he tex t window identifies its anchors by offsets and

tex t lengths. T he M ain Viewer menu item s are always for the curren t active

window (in th is case, the Text Viewer window). D irectly under th e tex t window

is the Browser window which is able to show tree-like s tru c tu res for com ponent

overviews. T he current content of the Browser is th e overview of a com posite

com ponent m apped from a da tabase object “Small School.” U nder th e Browser is

the DB Viewer window, which contains a spreadsheet and is displaying a da tabase

record. T he DB Viewer displays records as a two-column spreadsheet corresponding

to field nam e and value pairs. T he current record on the DB Viewer has an

anchor on tex t value “Redw ood.” T he bo ttom p a rt of the M ain viewer contains

b u tto n s for navigation facilities, including jum ping to a landm ark which shu ts

down all child w indow s(button “Hom e”), backtracking (b u tto n “Back”), forw arding

133

on backtracking (b u tton “Forw ard”), displaying com ponent overviews (bu tton

“Overview”) and ed iting bookm arks (bu tton “B ookm ark”).

F igure 6.3 shows ano ther sim ilar screen dum p. This screen contains the G raph

Viewer, th e M ain Viewer and the Browser. The graph viewer is d isplaying a graphic

representation of the E R diagram in F igure 6.4. The sm all scrollable list boxes

represent en tities (i.e., tab le schem ata) and the lines represent relationships.

6.1.4 The COIS Handlers

T he COIS H andlers are essential com ponents of the GHM I p ro to type . T hey actually

execute bridge laws to generate responses to H T E requests. A CO IS handler usually

has four m odules addressing four aspects of its responsibilities. (1) E xecu ting bridge

laws: T his includes two subm odules: a general bridge law engine (BL-Engine) and a

COIS invoker. T he BL-Engine tran sla tes bridge laws to executable codes (e.g., Prolog

queries). T he COIS invoker actually invokes CO IS routines com bining w ith the

ou tp u t of the B L-Engine to produce results of the bridge law execution. (2) Buffering

COISs: T he CO IS buffering m odule of a COIS handler im plem ents functions th a t

the original CO IS does not provide b u t are required by a bridge law execution (e.g.,

retrieving im plicit relationships and object sta tistics); (3) C om m unicating w ith the

IITE : T he com m unication m odule is responsible for com m unicating w ith the H TE

following th e GH M I protocol and form ats. (4) M anaging the configuration of COISs:

A COIS hand ler m anaging m ultiple COISs should m ain tain a configuration database

and invoke inactive COISs when a bridge execution needs C O ISs’ partic ipa tion . All

of the five m odules w ritten for a COIS handler can be m ade as A PIs and reusable for

o ther COIS handlers, except the the COIS buffering module. We have m ade these

APIs in th e cu rren t prototype.

This p ro to type has th ree COIS handers: a da tabase (DB) handler, a T E X PR O S

handler and a file system handler. The T E X PR O S handler handles T E X P R O S bridge

134

SHIPP*

S S *

2
Cl

£ £ 2 LL QL

. , Q l. o
I g E " 2„ < g U X 3

0 2 5 m u z

2 ^ „
:: S IT 5 « Oi: 5 u .2 £

\j: F J F O V)
. .':i| F _ j > C C

h O < 5 5

!;2 O') <

' :•:«

u □ a a

*

Fi
gu

re

6.2

G
H

M
I

Pr
ot

ot
yp

e
IO

S
Sc

re
en

Ex

am
pl

e
1

135

 I I Ml

|

m m
***: ^ isiiiiiimr n ^ emm&

l l M H i i : I I I□
7

iiiiipi
l i i i i f '* '

§

Iplillll
JSSS5SSSSSS&TO^

r r u r i i» » » » » » »
< < < < < < < WW W W V

J ,1 ,1

1 1 5 0

1
;

&

Fi
gu

re

6.3

G
H

M
I

Pr
ot

ot
yp

e
IO

S
Sc

re
en

Ex

am
pl

e
2

136

Credits
icription

DegreeDirector CoreCourses

OffersAvailable
Location

Rent
Phone

Enrolls.AptNum ManaiDepartment
Director

NameM d in jp — j Appartment

LocationAptID
Hires

Rents Phone Chairperson SSN

Name
C ™ > - ~

("Name Y /

C Advisory

Course
Notes

Student Writes Faculty
Title

AuthorCNum Phone
CName

Takes Teach* Office

Course

CName

Figure 6 .4 An E R D iagram Exam ple

137

law m appings and com m unications. T he file system handler d irectly accesses files

in MS-DOS on response to a bridge laws execution. A COIS handler w orking for

m ultiple CO ISs (e.g., th e DB H andler works for all RDBM Ss) m ain ta in s a configu

ration DB for its CO ISs’ inform ation.

T his p ro to ty p e focuses on the D B handler which employs a B L-Engine w ritten

in Prolog to execute bridge laws. A fter receiving a bridge law along w ith param eters

from the H T E , th e DB handler analyzes it and decides w hat ac tions it should take.

This m ight be one of these three cases: (1) For a bridge law which requires purely

object m appings (e.g., an object bridge law), the DB handler tra n s la tes th e bridge

law in to an executable Prolog p red icate along w ith in stan tia ted variables from the

H TE param eters . T hen the DB handler passes the p red icate to th e BL-Engine and

invokes the BL-Engine to execute it. T he BL-Engine executes th is p red icate based

on predefined DB facts and a set of inference rules (m anaged by th e COIS buffering

m odule) and sends back the results to th e DB handler. The D B hand ler collects the

results and sends them to the H T E. (2) For a bridge law re la ting a CO IS operation

(e.g., an opera tion link bridge law), the DB hand ler’s COIS buffing m odule either

d irectly executes, or asks the COIS to execute th is operation to generate p roper

responses. (3) For a bridge law which involving both of bridge law execution (by

the BL-Engine) and CO IS operations (e.g., a reference link bridge law w ith function

M RDC O P E R A T O N Q in its M a p p ingR u le) , th e DB handler com bines the results

generated from the BL-Engine and the COIS buffing m odule and creates proper

responses for the H TE.

6.1.5 The IOS Handler

This p ro to type only has one IOS which is w ritten in Visual Basic. T he IOS handler

d ispatches messages to the proper viewer based on specifications coded in the

messages: com m and dialogues are for the M ain Viewer; tex t m essages are for the

138

T ext Viewer; d a tab ase tables, records and fields are for the DB Viewer; overviews

and link browsers are for th e Browser; graphical d a ta are for the G raph Viewer.

6.2 Inter-process Communication

T his section discusses the inter-process com m unication protocol and a com m uni

cation scenario for dynam ic m apping.

6.2.1 The Communication Protocol

In th is p ro to type , the H TE, the COIS handlers and the IOS hand ler run as

independent processes. They com m unicate w ith each o ther th rough m essage passing

a t run-tim e v ia a com m on message bus. F igure 6.5 shows the com m unication archi

tecture. W hen a process (i.e., th e H T E o r a C O IS /IO S handler) w ants to send a

message to an o th er process, it prepares a m essage w ith specific d e s tin a tio n ’s iden tity

and pu ts the message onto the message bus. W henever the m essage bus has a

message, each process checks w hether it is the receiver. If not, it ju s t ignores the

message. O therw ise, it handles the message and generates app rop ria te responses on

th e message bus for the sender.

We em ploy a com m unication protocol G H M IC P (i.e., GHM I C om m unication

P rotocol) for interprocess com m unications. In GHM ICP, a m essage consists of a

sequence of tag-value pairs. Message lengths and contents vary according to message

types. We classify messages into four categories based on th e ir directions: IOS-

H T E messages (from IOS handler to H T E), H TE-IO S messages (from H T E to

IOS handlers), H T E-C O IS messages (from H T E to COIS handler) and C O IS-IIT E

messages (from COIS handler to H T E). (We do not consider C O IS-C O IS or IOS-IOS

com m unications in th is p ro to type.) Table 6.1 shows G H M IC P messages. Colum n

“Tag” shows th e message tags a message contains and colum n “Sam ple V alue” gives

an exam ple value. Colum n “Msg Type" ind icates th e message types to which this

139

TEXPROS MS-DOS

IOS

MS-Access]

TEXPROS
Handler

File Systeir
Handler

DB
Handler

HandlerHTE

F ig u r e 6 .5 T he Process C om m unication A rchitecture

corresponding tag-value p a ir applies. “IH ” stands for IO S-H TE messages. “HI”

stan d s for H TE-IO S messages. “IIC ” stands for H TE-C O IS messages. “C H ” stands

for C O IS-H TE messages. “All” indicates the tag applies to all m essage types.

A message consists of th e following types of tags. (1) address: “Sender”

and “Receiver” app ly to all messages; (2) COIS identity : “System T ype” and

“System N am e” identify a COIS by its type and nam e. “A ppN am e” identifies the

application nam e w ith in a COIS. For exam ple, In Table 6.1, “Sm allSchool” is an

application in “MS Access” . COISs of the sam e ty p e share a single CO IS handler. For

exam ple, as shown in F igure 6.1, all the application DBs share a single DB handler;

(3) event report: T he IOS handler m anages user events. W henever a user selects an

object on screen, the handler sends an event report message to the H T E. Tag “E vent”

ind icates the event nam e and tag “B u tton” ind icates the corresponding b u tto n (or

menu item , depending on th e IOS im plem entation) name. If the user does no t select

any bu tto n , the message will contain no “B u tto n ” tag; (4) object, identity : O bject

en tity inform ation “C O ISID ,” “CO ISType” and “CO ISLabel” correspond to G IIM I’s

140

T a b le 6 .1 G H M IC P Messages

T a g S a m p le V a lu e M s g T y p e
Sender ”DB H andler” All
Receiver ” H T E ”
System Type ’’D atabase” All
System N am e ” MS Access”
A ppN am e ’’Small School”
Viewer ” DB Viewer”
Event ’’S electB utton” IH
B utton ’’ShowLink”
Com m and ’’Show” HC, HI
COISID ’’SYSLinks” All
C O ISType ’’Table”
COISLabel ’’S tuden t” CH
TotalO bjs ” 2” CH, III
O bjlndex
A nchorD ataT ype ”D B ” III, III
AnchorCO ISID ”S m allS choo l##G raduateC ourse

S S N # # 1 23456789”
A nchorStart ” 20”
A nchorLength ”8”
A nchorText ’’Hello”
C ontent record content All

141

explicit COIS object expression (i.e., (C 0 I S I D , C 0 1 S T y p e , C 0 I S L c i b e l) identifies

a CO IS object). “C O ISID ” and “CO ISType” apply to all messages to ensure object

identity. “CO ISLabel” applies to CO IS-H TE messages only. The H T E is responsible

for defining proper display message settings (based on o b jec t’s P re sen ta t ionSpec)

when an object is sent to th e IOS for display; (5) message grouping: M essage

grouping enables a process to pass a group of messages in response to a single

request (e.g., a da tabase query m ay result in a set of records). “T o ta lO b js” indicates

the to ta l num ber of messages in th is group while “O bjlndex” indicates th e index of

the curren t message w ith in the message group. Message grouping tags are available

to all messages. T he message receiver (e.g., th e H T E or handlers) is responsible

for keeping track of message groups. Usually, a the message sender becom es a

m essage receiver afte r sending out a message requesting responses. I t will w ait until

all responding messages o f a single group have been received; (6) anchor identity:

T he anchor related tags identify anchors. “A nchorD ataT ype” indicates th e anchor’s

d a ta type, which could be a DB anchor or a tex t anchor. “A nchorS tart,” “Anchor-

L eng th” and “A nchorText” apply to tex t anchors. Text anchors can be em bedded

in all COIS objects (e.g., tex t files, da tabase tab les or records). (We in tend to

extend GHM I for m ulti-m edia anchors). “A nchorCO ISID ” defines a DB anchor.

For exam ple, “S m a llS c h o o l# # D o c to ra lS tu d e n t# # 1 2 3 4 5 6 7 8 9 # # N am e ” defines an

anchor as a value in tab le “D octoralS tuden t” of da tabase “Sm allSchool” w ith key

value “123456789” and field nam e “Name;” (7) com m and: “C om m and” indicates

an H T E com m and to a COIS or an IOS; (8) content: “C onten t” specifies com m and

p aram eters or actual d a ta associated w ith o ther tags in a message. It could be a file

nam e, p lain tex t, record content, SQL sta tem en t, com m and param eters, etc. For

exam ple, a database “Q uery” event can be accom panied by an “C on ten t” as a SQL

sta tem en t.

142

6.2.2 Dynamic Mapping: A Communication Scenario

Figure 6.6 shows a dynam ic m apping and interprocess com m unication scenario in

th e GH M I prototype.

T he user selects an object or an anchor on screen (a t 1). T he IOS handler m akes an

event report message to the H T E (a t 3,4,5). T he H T E finds ou t (from SY SAnchors)

which ob ject th is selection stands for (at 3) and finds out all links available on th is

ob ject m arked by the selected anchor (at 4, 5). S ta tic links (i.e., association links and

an n o ta tio n links) can be found in the Linkbase (at 4). D ynam ic links (i.e., opera tion

links, reference links and s tru c tu re links) can be found in the Knowledge Base based

on the o b jec t’s CO ISType (at 5). The H T E then sends a “ShowLink” com m and to

th e IOS handler to display all available links on the Browser (a t 6,7). T he user can

then select one of these links to follow (at 8). A fter receiving a user selection on the

Browser, the IOS handler makes ano ther message to report the link selection event

(a t 9). T he H T E then finds a link BL which m aps th is link from th e Knowledge

Base (a t 10, assum ing th a t the selected link is a dynam ic link). T he H T E sends

th is BL to th e COIS handler asking to m ap the link (a t 11, 12). The COIS handler

e ither d irectly ob tains the requested endpoint from the COIS da tabase or invokes the

p roper CO IS routines to com pute the link endpoint (a t 13). T he COIS handler m akes

th e resu lting object expressions (in term s of { C O I S I D ,C O I S T y p e ,C O I S L a b e l))

as messages and sends them to the H T E (at 14). T he H T E finds BLs for m apping

th e resulted COIS objects (a t 15) and asks the CO IS handler again to execute an

ob jec t BL to generate ob ject contents (at 16, 17). T he COIS handler generates the

requested object content and sends it to the H T E (a t 18, 19). T he H T E then m aps

the CO IS objects to hypertex t com ponents (a t 20), stores them in the Session DB

(a t 21), and sends them to the IOS handler for display (a t 22,23 24). T he I IT E ’s

next task is to find all links departing from the cu rren t com ponent. These links could

be s ta tic or dynam ic. For s ta tic links found in the L inkbase, the H T E needs to find

143

all the anchors (a t 24). For dynam ic links w ith dynam ic anchors, the H T E finds link

bridge laws applying to the curren t com ponent and sends them to COIS handler to

com pute the anchors (at 25, 26, 27 28, 29). The H T E collects all th e results and

asks th e IOS to m ark up the link anchors on screen (a t 30, 31). A fter the m ark up

(a t 32), the system is ready for ano th er round of dynam ic m apping triggered by a

user selection on screen.

6 .3 I m p le m e n t in g G H M I F u n c t io n a l i t ie s

T his section discusses how th is p ro to type im plem ents G H M I’s functionalities.

6 .3 .1 C o m p o n e n ts

C om ponents m apped by bridge laws are not persisten t in th e L inkbase. T he H T E

stores th e ir specifications (i.e., param eters and identifiers which are enough for

regenerating com ponent contents) in th e SY SHistoryLog w ith in a session. T he

P r e sen ta t io n S p e c can be used to specify the view style of a com ponent. For exam ple,

the user can view a Set com ponent as e ither a Set view or a Tree view. A Set view

expands a Set by one level (i.e., w ithou t fu rther expanding its subsets). U sing a

Tree view, however, the user can see a global overview of a Set in a single view w ith

each subset expanded upon clicking. T he following parag raphs discuss com ponents

m apped from th e three COISs in th e p ro to type.

• R D B M S C o m p o n e n ts . For the RDBM S dom ain, we need bridge laws to

m ap:

- Values to anchors.

- R ecords to struc tu red atom ics

- F ields to struc tu red atom ics

- Tables to sets (of records)

Tables to sets (of fields)

144

(COIS H andler)

\ f—
Compute Link Endpi

\--------
Find Obj(l8)

f--------
Find Obj (28)

f The Hypertext Engine IOS/IOS H andler)

Eveni Report (2)

(Td u TT --------
f

User Selection (i)
 |

K nowledge

BL Request (12

f (select COIS Obj)
Find J»bj<3> T

- Find Static Links on Obj(4) i
I !

i Find Dynamic Links on Obj 1(5)
^____________ Commaifd{(>)_________

(showjlink) ^
| Display Links on Obj

! f IDLE]

(execute link B
ointo 3)

\
Find Link BLdO)

Apply Link BLdi)

Event Report)9) User ̂ election (8)

(select a dynamic link)

BL Response (14) ______
(COIS obj exPr e s s ^ n d c+omp

I
Apply Comp BL(I6)

BL Request (17)___________ |
(execute obj BL)

BL Response (19)_________
(COIS obj content) j

Map to Comp (20)

Save^Comp (2))

Find Static Links (24)

Session DB

Linkbase

Knowledge

Con

Find Dynamic Links (25)

Apply Link BL for Anchors ($)
B L Request (27)

(execute anchor mapping rules)

BL Response (29)
(COIS obj expression) }

Collect Results (30)
I_______

mand (22)
(show obj)

Display Obj (23)

Coni,mando\)
(markup anchors) 1

M arkup Obj (32)
I_______

Figure 6.6 A C om m unication Scenario

145

D atabase to sets (of tables)

- Schem ata to s truc tu red atom ics

- E R d iagram s to graphs

A da tabase or a tab le is displayed e ither as a Set view or a Tree view. GIIMT

bridge laws rely on object identifiers. T he basic assum ptions for identifying

da tabase objects are: (1) every D B has a unique nam e (and p a th) th roughou t

the scope of a DB handler; (2) every tab le has a unique nam e w ith in a DB;

(3) every field has a unique nam e in a table; (4) every record has a unique key

value w ith in a table.

• T E X P R O S C o m p o n e n ts . T E X PR O S objects (see A ppendix A) include

folders, fram e tem plates, fram e instances and original docum ents. GHM I

m odels folders as Set com ponents, fram e tem plates an d fram e instances

as s tru c tu red a tom ic com ponents, and original docum ents as plain atom ic

com ponents. An overview of a T E X PR O S folder could be a Set view or a Tree

view which is m apped a t run-tim e. T he fram e tem pla tes and fram e instances

are stored in the T E X PR O S DB which are also accessible as an application

of the DB handler. Original docum ents are under m anagem ent of MS-DOS

and are therefore accessible th rough th e file system handler too . We include

T E X PR O S bridge laws in A ppendix A.

• F i le S y s te m C o m p o n e n ts . For th e dom ain of file system s, we only model

one type of objects: files (advanced m apping would distinguish directories from

files). File bridge laws m ap files to plain atom ics and file system overviews to

Tree com ponents. A file system is not a real COIS exam ple since it has few

com puta tion features. We model plain files because they are basic s tru c tu re

of hypertex t an n o ta tio n s in GHMI. By partia lly m odeling file system , we can

prove our concept of m apping an no ta tions and plain atom ic com ponents which

146

are not available in th e RDBM S dom ain. O ther advanced features provided by

file m anagers are ou t of the scope of th is p ro to type.

• H y p e r t e x t C o m p o n e n ts . H ypertex t com ponents are anno ta tion com ponents

which have in ternal file nam es and therefore are trea ted as file ob jects under

m anagem ent of th e file system . All such com ponents are persisten t ob jects in

th e Linkbase.

6.3.2 Anchors

T he user should be able to define anchors on: any tex t of a file, the file itself, a

record value, a record, a field, a tab le and an entire DB. Text anchors are identified

by < s ta r t , leng th> and record value anchors are identified by th e ir field nam e and

key value. S ta tic anchors include plain anchors and keyword anchors. Users can

define these s ta tic anchors m anually a t run-tim e. S ta tic anchors are persis ten t in

th e L inkbase while dynam ic anchors are not. D ynam ic anchors are defined by bridge

laws in content of dynam ic links’ specifiers and com puted a t run-tim e.

6.3.3 Typed Links

GHM I supports COISs w ith th e following six link types. O ur discussion focuses on

supporting RDBM Ss.

- S tru c tu re links: All struc tu re links are m apped from COISs. T hey are not

persis ten t in Linkbase. In the case of D B links, all DB objects should able to

reference upwards to th e ir em bedding objects th rough s tru c tu re links. W e m ap the

following s tru c tu re links (accessing objects in the reverse direction has been m odeled

as accessing th e conten ts of com posites by ob ject bridge laws):

record —» table, record —> D B , f i e ld -4 table, f i e l d —» table, table -4 D B .

- A ssociation links: A ssociation links are hypertext-ow ned persisten t links stored

in th e Linkbase. They could be inter-CO IS or in tra-C O IS links. T he user is able

147

to define ad hoc links along with anchors across all app lication objects a t run-tim e.

Clicking on anchors should lead link traversal to the anchor position of destina tion

com ponent. These links do not need bridge laws.

- Reference links: These links are not persistent. Im plic it schem atic relationships

we lost when m apping E R diagram s to tables could be restored through bridge law

m apping as reference links. W e consider exam ples such as d irect E R relationships in

th e E R d iagram , tab les w ith the sam e schema, tables contain ing th e sam e key field,

etc.

- A nnotation links: These are persisten t links owned by hypertex t. We do no t need

bridge laws for th is kind of links. They are s ta tic and are created by th e system

when th e user add an n o ta tio n s to com ponents.

O pera tion links: O peration links model hypertex t operations and COIS operations.

T hey should model all RD BM S and ODBC operations.

- N avigation links: These could be v irtua l links when dynam ically generated on user

requests. T hey also could be persisten t links when the user explicitly requests (e.g,

when being included in a U G T). These links do not need bridge laws. W hen the user

defines a navigation s tru c tu re (e.g., a guided-tour), th e H T E adds navigation links

for accessing th is s tru c tu re autom atically . The H T E could generate both navigation

s tru c tu re and navigation links (e.g., for default guided-tours) au tom atically . T he

com ponents in a G T could be dynam ic. They are generated a t run-tim e th rough

bridge laws when the users actually traverse them on a G T .

6.3.4 Navigation

G H M I suppo rts six navigation features: browsing, backtracking, history, guided-

tours, bookm arks and overviews. Simple link traversal im plem ents browsing. T he

Session DB structu res sup p o rt backtracking and history. G uided-tours, bookm arks

and overviews are m odeled and im plem ented as as com posite com ponents.

148

6.3.4.1 Guided-tours This subsection discusses guided-tours (G Ts) and their

construction algorithm s. GHM I m odels four types of guided-tours as L ist com ponents

which consist of a set of com ponents and a set of links. Each link contains a set

of specifiers representing endpoints in the com ponent set. Each com ponent in

a G T is e ither s ta tic or dynam ic. S ta tic com ponents have th e ir conten ts in the

Linkbase. A tab le SYSGTs stores all s ta tic G Ts (see below). G T s can be nested

with a rb itra ry depths. A stop in a G T implies a D G T (i.e., D efault G uided-T our) if

it is a com posite. T he D G T of a G T is itself. All com ponent conten ts of dynam ic

G Ts are dynam ically com puted every tim e the com ponent is displayed on screen.

Such com puta tion is based on the com ponent specification used to generate the

com ponent originally.

D G T s are dynam ic and are generated au tom atically for com posites on their

s truc tu re links when the user explicitly asks to traverse th is com posite th rough D G T.

D G Ts are no t stored in SYSGTs. The user invokes a D G T by selecting a com posite

and a D G T b u tto n on screen. T he system then com putes th e D G T by applying

bridge laws. N G Ts (i.e., N avigation-based Guided-Tours) are s ta tic and m anually

specified by the user from the history list. The user only needs to select an item

from the h istory and click an corresponding “add to N G T ” m enu item . Then an

N G T is generated and added into tab le SYSGTs. Every N G T could have a user-

defined sem antic nam e for fu ture reference. Q G Ts (i.e., Q uery-based G uided-Tours)

are dynam ic. W henever the user makes a query resulting a set of objects, th e system

generates a Q G T to hold them into a single com posite com ponent. T h is com ponent

is dynam ic and is not stored in the Linkbase unless the user explicitly saves it as

a U G T (i.e., User-defined G uided-Tour). U G Ts are sta tic . T he user can add any

current ob jects including all of the above guided-tours into a custom ized collection,

i.e., a U G T.

149

The following gives algorithm s for crea ting G Ts and navigating on G Ts. Wo

assum e th a t these s ta n d a rd functions have been defined: S e tJG etN ex tC o rn p (A)

re tu rns and removes a com ponent from a set of com ponents in A. L i s t J ' i n d L a s t (L)

re tu rns the com ponent poin ted by the last link in a L ist L. S e t - A d d L in k (X , L) adds

link L to a link set X . S e t-A d d C o m p {X , C) adds com ponent C to a com ponent set

A'.

1. C reate D G T s

• DGT_On_Set() creates a D G T on a Set com ponent.

List DGT_On-Set(Component aComp)

begin

/* D eclare variables * /

C om ponent C l;

L ist GT;

Link aLink;

/* G et com ponent * /

G T .L inkS et = NONE;

C l = Set_G etN extC om p(aC om p.C om pSet);

/* Add com ponent and link to G T * /

if C l < > N O N E then

begin

/* A dd G T ’s first com ponent * /

aL ink .T ype = ’’N avigationLink” ;

aL ink .C onten t =

{(C om pSpec = C l , D irection = ” to”)};

Set_A ddLink(G T.LinkSet, aLink);

Set_A ddC om p(G T.C om pSet, C l) ;

C l = Set_G etN ext,Com p(aCom p.Com pSet);

/* Add G T ’s o ther com ponents * /

while C l < > N O N E do

begin

aL ink.T ype = ’’N avigationLink” ;

aL ink.C ontent =

{(C o m p S p ec = L i s t - F in d L a s t{ G T), D irec t ion = " f r o m ”),

(C om pSpec — C l , D irection = ’To”)};

Set_A ddLink(G T.L inkSet, aLink);

Set_A ddC om p(G T.C om pSet, C l);

C l = Set_G etN extC om p(aC om p.C om pSet);

end

end

G T .O w ningSystem T ype = ’’H ypertex t” ;

G T .O w ningSystem N am e = ’’GHM I P ro to ty p e” ;

G T .C om pN am e = ”D G T ” ;

re tu rn (G T);

end

• DGT_On_List() creates a D G T on a List com ponent by copying

original com ponent w ith changes on its p roperties.

List DGT_On_List(List Comp)

begin

L ist GT;

G T = Comp;

for all aLink in G T .L inkSet do

aL ink.Type = ’’N avigationL ink” ;

151

/* Change properties * /

G T .O w ningSystem Type = ” H ypertex t” ;

G T .O w ningSystem N am e = "G H M I P ro to ty p e” ;

G T .C om pN am e = ”D G T ” ;

re tu rn (G T);

end

• DGT_On_Tree() creates a D G T on a Tree com ponent by constructing

a D G T on its b readth-first search sequence. Assum e th a t function

G raph ,-B read thF irs tSearch () re tu rns a L ist com posite w ith an ordered

set o f com ponents as its content.

List DGT_On_Set(Tree Comp)

begin

List G T , C l;

C l = G raph_B readthFirstSearch(C om p);

G T = D G T_O n_List(C l);

re tu rn (G T);

end

• DG T_On_RootedD AG () creates a D G T on a RootedD A G com ponent by

constructing a D G T on its b readth-first search sequence

List DGT_On_Set(RootedDAG Comp)

begin

List G T , C l;

/* ordered o u tp u t of breadth-first-search * /

C l = G raph_B readthFirstSearch(C om p);

G T = D G T_O n_List(C l);

152

re tu rn (G T);

end

2. C reate N G Ts

N G T () takes a G T (in itially as NONE) and a user selected com ponent (from

the H istory Log) and adds the com ponent in to the GT.

List NGT(List GT, Component aComp)

begin

Link aLink;

If aC om p < > N O N E then

begin

aL ink.Type = ’’N avigationLink” ;

aL ink.C ontent =

{ (C o m p S p e c = L is tJ F in d L a s t (G T), D irec t ion = ” f r o m ”),

('C om pSpec = aCom p, D irection — ” /o”)};

Set_A ddLink(G T.LinkSet, aLink);

Set_A ddC om p(G T.C om pSet, aCom p);

end

G T .O w ningSystem T ype = ’’H ypertex t” ;

G T .O w ningSystem N am e = ’’GHM I P ro to ty p e” ;

G T .C om pN am e = ” N G T ” ;

re tu rn (G T);

end

3. C reate UG Ts

U G T Q takes a G T (in itially as NONE) along w ith a user selected com ponent

and adds the com ponent into the GT.

153

List UGT(List GT, Component aComp)

begin

Link aLink;

If aC om p < > N O N E then

begin

aL ink.Type = ’’N avigationL ink” ;

aL ink.C ontent =

{ (C om pSpec = F in d L a s t (G T) , D irection = ” f r o m ”),

(C om pSpec — aC om p, D irection = ” /o”)};

Set_A ddLink(G T.LinkSet, aLink);

Set_A ddC om p(G T.C om pSet, aCom p);

end

G T.O w ningSystem Type = ’’H ypertex t” ;

G T .O w ningSystem N am e = ’’GHM I P ro to type” ;

G T .C om pN am e = ”U G T ” ;

re tu rn (G T);

end

4. C reate Q G Ts

Q G T () constructs a G T (in itially as NONE) from a set of com ponents (from

any query result). I t calls U G T () to add com ponent one by one and then

changes G T nam e to Q G T.

List QGT(ComponentSet aCompSet)

begin

L ist GT;

C om ponent aCom p;

G T = NONE;

154

W hile aC om pSet is not em pty do

begin

aC om p = Set_G etN extC om p(aC om pSet);

G T = U G T (G T , aCom p);

end

G T .C om pN am e = ” Q G T ” ;

re tu rn (G T);

end

5. N avigating on a G T

N a v ig a te O n G T () navigates on a G T through following the links in its

L in k S e t . We assume: H T ^ A p p ly B L B y O b jQ applies bridge laws (according

to the CO ISType of the object) to generate the destina tion com ponent.

H T _5how C om ponen t(C om p) sends a com ponent conten t to a proper IOS

viewer for display; L i s t J 'm d F i r s t (L) is a s tandard L ist operation which

re tu rns the first com ponent in L ist L\ L i s t - F i n d N e x t (L ,C) is a s tan d a rd List

operation which returns the com ponent next to C in L ist L. If C is NO NE, it

re tu rn s th e first com ponent.

Navigate_On_GT(List GT)

begin

C om ponent aCom p, NewComp;

If G T = NO NE then return

/* F ind and show first com ponent * /

aC om p = L ist_F indF irst(G T);

HT_A pplyBLByO bj (aComp);

IIT_Show Com ponent(aCom p);

/* F ind and show next com ponent * /

155

aC om p = L ist_FindN ext(G T, aCom p);

while aC om p < > NO NE do

begin

H T_A pplyBLB yO bj (aCom p);

H T_Show Com ponent (aC om p);

aC om p = L ist_FindN ext(G T, aCom p);

end

end

6.3.4.2 Bookmarks Bookm arks are persisten t in Linkbase. GH M I m odels

bookm arks as a special Set object. T he user clicks on “bookm ark” bu tton for

accessing a bookm ark overview on the Browser, on which the user can perform

operations including add ing current, deleting a selected item and ju m p in g to a

selected item . All bookm arks are stored in a tab le SY SBookm arks in th e Linkbase.

Its entries are copied from the SY SHistoryLog in the Session DB.

6.3.4.3 Overviews Overviews are v irtua l and com puted com ponents m odeled as

Trees or G raphs. T he H T E can derive object overviews from th e ir s tru c tu re links by

applying bridge laws. We im plem ent overviews for com posite com ponents as trees

(on the Browser) and graphs (on the G raph Viewer) derived from th e ir CompSct,

and LinkSet.

6.3.4.4 Backtracking and History T he Session DB stores G H M I’s run-tim e

layer s truc tu res include SYSHistoryLog, SYSChronologicLog and SYSTaskLogs.

SY SHistoryLog contains com plete inform ation regarding generated com ponents

and their in stan tia tio n s in term s of event structu res. SY SChronologicLog and

SYSTaskLogs have the sam e struc tu re as the h istory log.

156

6.4 Current Implementation Status

To com pletely im plem ent the p ro to type proposed in th is chap ter is far more th an a

year’s work for one person. Nevertheless, we were able to im plem ent those essential

p a rts th a t we believe are enough to serve as a proof of concept for GHM I. In th is

section, we sum m arize our curren t im plem entation s ta tu s in term s of the GHM I

p ro to type arch itec tu re and GHM I functionality.

The im plem entation architecture. T he current p ro to type includes all com ponents

of th e im plem entation a rch itec tu re in F igure 6.1: th ree CO IS handlers, an IOS (with

five viewers), an IOS handler, six H T E m anagers, four H T E DBs, the DB han d le r’s

C onfiguration DB, an exam ple application DB (“Small School”), and a T E X PR O S

DB. A lthough we explicitly define one application DB w ith E R schem ata to prove

our RD BM S m apping, all of the DBs in F igure 6.1 (i.e., the Knowledge Base, the

Linkbase, the Session DB, th e H T E Configuration DB, the D B hand ler’s Configu

ration D B and the T E X PR O S DB) are also trea ted as norm al application DBs under

th e m anagem ent of the DB handler. All functionalities GHM I adds to the app li

cation DB apply to all of these DBs too. The H T E Inference M anager is p a rtia lly

im plem ented as a BL-invoker (the m issing p a rt is the B L -parser). T he H T E Config

u ration M anager is com pleted on th e COIS side and is incom plete on the IOS side

as we only have one IOS. T he com m unication protocol G H M IC P and its A PI (i.e.,

s ta n d a rd functions) are fully im plem ented. The IOS is fully im plem ented w ith all

viewers and is able to com m unicate w ith the H T E th rough DD E. T he DB handler

is also com pleted (including a Prolog BL-Engine). T he T E X PR O S handler and

th e File System handler work for ob ject m apping and generating overview trees and

com m unicating w ith the H T E . T he pro to type also suppo rts configuration of m ultiple

COISs. T he H T E is able to ac tivate COISs if they are no t runn ing when a message

exchange is needed.

157

T he H T E , the IOS, the DB handler, th e T E X PR O S handler and th e file system

handler run as independent processes and com m unicate to each o ther th rough DD E.

T he p ro to type s ta r ts from the IOS. T he IOS is responsible for ac tiv a tin g the IIT E .

Upon receiving a user event, the IOS con tac ts the H TE for processing. T he H T E

then activates p roper COIS handlers to generate responses.

Components. T he curren t p ro to type suppo rts m apping of these G H M I com ponents:

plain atom ics (tex t files), struc tu red atom ics (DB records, DB fields), Set (database ,

tables, query results), L ist (guided-tours), Trees (tree-overviews) and G raph (ER

diagram s). We w rote bridge laws to m ap these com ponents from CO IS objects.

Links. T he curren t p ro to type supports creation and traversal of five GHM I link

types (except an n o ta tio n links): association, s truc tu re , reference, opera tion and

navigation. A ssociation links can be m anually created as in tra-C O IS or int.er-COIS

links. We m ap s truc tu re , reference and operation links using bridge laws. Reference

links can be m apped au tom atically in dynam ically generated docum ents (e.g., query

resulted tab les).

Anchors. We im plem ented two of the th ree GHM I anchor types: plain anchors

and dynam ic anchors. P lain anchors are created m anually and can be em bedded in

association links. D ynam ic anchors are generated from link bridge laws. T he anchors

in a dynam ically generated tab le are dynam ic anchors. W henever a dynam ic tab le

is resulted from an operation link or a reference link, the H T E in stru c ts the IOS to

m ark it up w ith dynam ic anchors for fu rther access.

Navigation. T he curren t p ro to type includes these navigation features: browsing

(i.e., link traversal), h istory (accessible from all viewers), backtracking (chronological

158

only), overview (for Sets, Trees, and G raphs), bookm arks (accessible from all viewers)

and guided-tours (default guided-tours and query-based guided-tours only).

Bridge Laws. We w rote bridge laws for th ree COISs: RD BM S, File System and

T E X PR O S.

(1) RDBM S: We im plem ented the m ost of RDBM S bridge laws defined in §5.5:

- O bject BLs: B L ReC0Td, B L j ,af>ie\ ̂ B L n atai)ase, BLschemai B L FRDiagram

— S tru c tu re link BLst BLRecordToTable') B LtTableToDataba.se

- O pera tion link BLs: B LQ Uery

— Reference link BLs: BLsameSchemai BLgameKey) B L Re f To!'able: BLnitjteiation,

BLj)fjToRR.niagrami B LgciiemarpQ'fa(,/e, BLtrfetaTablei B L m etaDatabase

(2) T E X PR O S: We im plem ented B L f 0ner and B L Fi in §A. T his enables us to

explore the T E X PR O S folders and fram e instances from a hierarchical overview

(viewed as a tree).

(3) F ile system : We have one bridge law B L File for m apping tex t files to plain

a tom ic com ponents.

6.5 Summary

In th is chap ter, we presented the GHM I p ro to type im plem entation details. The

p ro to ty p e arch itec tu re com prises a hypertext engine (H TE), th ree COISs (MS

Access, T E X PR O S and M S-DOS) and an IOS. Every COIS or IOS connects to

th e H T E through its own handler. H andlers tra n s la te th e I IT E ’s messages to a

fo rm at the COIS or IOS understands, and vice versa. COIS handlers tran s la te

bridge laws (in the H T E ’s M RD C form at) to access C O IS’ operations, objects and

d a ta . To in tegrate a COIS, th e only change th is a rch itec tu re requires of the COTS

is th a t its com m unications pa th be routed through th e hand ler [10]. Developers

and builders very fam iliar w ith the COIS m ust w rite th e COIS handler, as well as

159

bridge laws for each class of objects or relationships accessible to users. RDBM S

is so w ell-understood th a t we were able to do th is ourselves for MS Access. The

com plexity of th e bridge laws depends on the C O IS’ complexity.

The H T E consists of six m anagers and four databases (m anaged under MS

Access). T he m anagers are: the COIS M anager, the IOS M anager, the H T M anager,

th e Inference M anager, the Configuration M anager and the DB M anager. The

databases are: th e Knowledge Base, the Linkbase, the Session DB and the Configu

ration DB.

In th is p ro to type , we consider three diverse COISs: a da tabase system (MS

Access), a docum ent m anagem ent system T E X PR O S and a file system (M S-DOS).

O ur focus is on MS Access. We m ap objects and relationships defined by bridge laws

in §5.5. T E X PR O S is still under developm ent. We only m ap its objects (i.e., folders,

fram e tem pla tes and fram e instances, see §A) and file s truc tu res to com ponents

according to the bridge laws in §A. A lthough file system s are hardly COISs, we

include them to dem onstra te how GHM I supports tex t docum ents and anno ta tions.

W e model tex t files as plain atom ic com ponents.

We only have one IOS in th is p ro to type, as our focus is on the C O IS -IIT E side.

T he curren t IOS consists of five viewers: a Text Viewer, a DB Viewer, a Browser, a

G raph Viewer and a M ain Viewer. Each viewer has its own menu item s for viewer-

specific com m ands. Some s tan d ard com m ands are comm on to all viewers, including

History, B acktracking, Overview, Bookm ark, G uidedTour, etc.

The H T E and the handlers run as independent processes. T hey com m unicate

w ith each o ther a t run tim e through m essage passing. We em ploy a com m uni

cation protocol G H M IC P (i.e., GHM I C om m unication Protocol) for in terprocess

com m unications. In GH M ICP, a message consists of a sequence of tag-value pairs.

Message lengths and contents vary according to message types (i.e., message sender

and receiver types).

160

A lthough th is pro to type is not com pletely im plem ented, the curren t im ple

m entation does include all essential p a rts to serve as a proof of the GHMT concepts

proposed in th is d issertation. We sum m arized our curren t im plem entation s ta tu s

in term s of GHM I pro to type a rch itec tu re and GHMI functionality. These include

all com ponents of the im plem entation arch itecture in F igure 6.1. In term s of

G HM I functionality, the curren t p ro to type supports: (1) com ponents: plain atom ic

com ponents (tex t files), s truc tu red atom ic com ponents (from DB records, DB fields),

Set com ponents (database, tables, query results), List com ponents (guided-tours),

Tree com ponents (tree overviews) and G raph com ponents (graphical overviews);

(2) Links: five GHM I link types (except anno ta tion links): association, s truc tu re ,

reference, operation and navigation links; (3) anchors: plain anchors and dynam ic

anchors; (4) navigation: browsing (i.e., link traversal), h istory (accessible from all

viewers), backtracking (chronological only), overviews (for Sets, Trees and G raphs),

bookm arks (accessible from all viewers) and guided-tours (default guided-tours and

query-based guided-tours); (5) bridge laws: bridge laws for m apping the above

functionalities. These include m ost of bridge laws we defined in §5.5 and §A.

As p a rt of our fu ture work, we plan to continue im plem enting th is p ro to type

to m ake it a com plete GHM I hypertex t system .

CHAPTER 7

S U M M A R Y A N D F U T U R E W O R K

In th is chapter, we discuss guidelines for using GHM I, com pare GHM I w ith o ther

system s and models, identify both GH M I’s m ajo r con tribu tions and lim ita tions, and

briefly outline fu ture research th a t could em anate from GHM I.

7 .1 G u id e lin e s : U s in g G H M I

In §5.4, we discussed the guidelines for in teg rating RDBM S with hypertex t. This

section discusses general COIS in tegration guidelines. To in tegrate a CO IS with

a GHM I hypertex t system , the COIS builders (or developers) need to follow the

following steps.

1. Study the G H M I Model

To add the full GHM I functionalities to a COIS, it is essential for th e COIS

builders to have a good understanding of the GHM I model. T he first step

tow ard build ing an in tegration system is to s tudy the GH M I hypertex t

concepts, including com ponents, links, anchors, navigation features and

especially the bridge law tem plate.

2. Identify Potential G H M I Constructs

T he next step is to identify COIS objects, relationships, m eta-inform ation and

operations (or com m ands), which could be m apped to GHM I construc ts (i.e.,

com ponent classes and typed links).

• I d e n t i f y C O IS O b je c ts : We need to identify all COIS ob jects which

m ight be m apped to GHM I com ponents and therefore m ade directly

accessible to users.

161

• Identify Useful Relationships: We need to identify both explicit,

and im plicit relationships. M apping these relationships to GTIMT links

makes them d irectly accessible to users. G H M I enables m apping COTS

relationships to app rop ria te link types based on th e ir behaviors (e.g.,

m apping a hierarchical relationship to a s tru c tu re link; m apping an

im plicit relationship to a r e fe re n c e link). M apping im plicit relationships

to reference links makes them “explicit” and directly accessible.

• Identify Meta-information: C ertain users such as developers should

be able to access m eta-inform ation associated w ith an object, such as the

object type, tim e stam ps, referential constra in ts, etc. GHM I could help

users access these inform ation by m apping them to reference links.

• Identify Useful Operations: COISs usually provide powerful ob ject

m anipulation operations (e.g., open, delete, modify, query, com pute).

GHM I enables direct access to these operations by m apping them to

operation links.

Software Engineering

A fter identifying the po ten tia l GHM I constructs, the next s tep is to w rite the

m apping rules (i.e., bridge laws) and the COIS handler code.

• W rite Bridge Laws. We need to w rite all bridge laws to m ap the

above identified po ten tia l GHM I constructs using the GHM I bridge law

tem plate . C om ponent bridge laws m ap GHM I com ponent and link bridge

laws m ap GHM I links and dynam ic anchors. It would be necessary to

understand some sim ple syntax of Prolog as bridge laws’ M a p p in g R u le

p a rt employs a Prolog-like syntax. The com plexity of bridge laws depends

on the com plexity of the COIS.

163

• W r i t e t h e C O IS H a n d le r . W riting the COIS handler code is the most,

difficult and tedious work in th is in tegration procedure. T he COIS handler

actually executes bridge laws to generate responses to H T E requests. T he

responsibilities of a COIS handler include: (1) executing bridge laws;

(2) m anaging the configuration of COISs; (3) calling CO IS routines to

generate responses for H T E requests; (4) com m unicating w ith the H T E.

Bridge law execution is accom plished by a bridge law engine (probably

w ritten in some Prolog-like language because heavy inference functionality

is involved in executing a bridge law’s M app ingR u le) . Skillful experience

of some program m ing language(s) m ight be essential for th is step too.

U nderstand ing the GHM I com m unication protocol is also im p o rtan t for

building the com m unication module.

7 .2 C o m p a r is o n w i th O th e r S y s te m s a n d M o d e ls

GHM I and its p ro to type share ideas and common constructs w ith o ther system s

developed by hypertex t researchers, especially in the field of providing hypertex t

functionality to th ird -p a rty applications and D exter-based m odeling.

7 .2 .1 O p e n H y p e r te x t S y s te m s

We com pare GHM I w ith o ther open hypertex t system s including S un ’s Link Service

[75], M icrocosm [23, 24, 27], SP3 [58, 63, 81], C him era [5] and M ulticard [78]. We

com pare GH M I w ith these system s and m odels with respect to th ree aspects: the

app lication dom ain, the system arch itec tu re and the hypertex t model.

F igure 7.1 shows the arch itec tu re and application dom ain com parison and Table

7.2 shows th e hypertex t d a ta model com parison w ith open system s an d models.

S u n ’s L ink Service. GHM I shares w ith the Sun’s Link Service [75] separa ting links

from app lication d a ta bu t provides more complex hypertex t features. (1) Appli-

164

p 4 .2
CO

TJ

CX

CODW)

T3
.5 oo•P t—(

'aJoo TJ

X)

*0 fli

a *na 59< a MCu X c/3

S -8 a a

M
COu SCCO
CO

Fi
gu

re

7.1

A
rc

hi
te

ct
ur

e
C

om
pa

ris
on

wi

th

O
pe

n
H

yp
er

te
xt

Sy

st
em

s

165

Aspects Links Anchors
Composites

Models Typed n-ary Dynamic Typed Dynamic

GHM I Yes Yes Yes Yes Yes Yes

Microcosm No No No Yes No No

Sun’s
Link Service No No No No No No

SP3 No Yes No No No Yes

Chimera No Yes No No No Yes

Multicard No No No No No No

F ig u r e 7 .2 Model Com parison w ith Open Hypertext, System s

cation dom ain: The dom ain of the Link Service could be any app lication running

on a Sun w orkstation while GHM I is designed specifically for com puta tion -o rien ted

applications. However, the Link Service only provides link services a t a very p rim itive

level. I t only m ain tains link sources and destinations. GHM I provides app lications

w ith a much richer set of hypertex t features. (2) A rchitecture: T he Link Service

was provided as a s tan d a rd feature on Sun w orkstations. Therefore it is open to

applications a t the program m ing level and its built-in hypertex t functionality is very

prim itive. The application is responsible to define th e link-related opera tions on

linked objects. (3) H ypertex t model: The Link Service’s hypertex t m odel is sim ply

plain node, link and anchors. There is no typ ing or com posites. Links are s ta tic and

only b inary links. (4) Link Traversal: Link Service’s applications are link-aw are (i.e.,

applications have to m anage link inform ation) while G H M I’s applications are not.

In GHM I, applications are link-unaware and th e hypertex t engine is responsible for

invoking applications.

166

Microcosm. GHM I and M icrocosm [23, 24, 27] have m any common points. T hey

bo th separa te links and anchors from application objects and both adop t a message-

based A PI to establish hypertex t-application com m unication w ith a sim ilar m essage

form at (i.e., a tag-value pa ir form at). They also share anchor concepts: M icrocosm ’s

specific anchors and local anchors are com patible w ith G H M I’s plain anchors and

keyword anchors respectively. However, GHM I differs from M icrocosm in m any

ways. (1) A pplication dom ain: As opposed to GHM I, which aim s a t su p p o rtin g

com putation-orien ted applications, Microcosm is p rim arily open to viewers which

are display-oriented applications (i.e., IOSs in G H M I’s term inology). M icrocosm ’s

system architecture does not support in tegrating com putation-orien ted app lications

(i.e., COISs) which dynam ically generate d a ta a t run-tim e. (2) A rchitecture:

M icrocosm applications have to be changed to em bed some m acros to handle

com m unication w ith the link service, while G H M I’s arch itec tu re requires separa te

handlers to handle com m unication and thus the applications rem ain unchanged.

M icrocosm ’s linear “filter” message passing chain is too restrictive and inefficient.

“F ilte rs” (program m odules) have to be ordered carefully to ensure they receive all

messages they expect to handle. GHM I adopts a message bus and allows m odules

to com m unicate w ith each o ther by routing through the hypertex t engine. (3)

H ypertex t Model: M icrocosm ’s links are sta tic , un typed and binary. GH M I allows

n-ary links and a broader range of behavioral link types. GHM I also su p p o rts

dynam ic links which are m apped from COIS dom ains a t run-tim e through bridge

laws. M icrocosm ’s anchors are s ta tic while GHM I allows dynam ic anchors to be

inferred through bridge laws. Furtherm ore, M icrocosm does not have a m odel for

com posites. (4) Link traversal: M icrocosm ’s viewers are responsible for com m uni

ca ting w ith Microcosm. In teg rating w ith independent viewers is still an ongoing

issue. T he au thors proposed a m echanism to in teg rate hypertext-unaw are viewers

[24] which supports anchors through content search instead of identifying them

167

using some underlying COIS objects IDs. In GHM I, however, COTS handlers

located between the COIS and the hypertex t engine handle the com m unication

details. T he COIS itself is hypertext-unaw are. The hypertex t model is hidden from

th e COISs. Such an approach enables effectively in teg ra ting existing applications

w ith m inim um changes. Changes are im posed on the handlers only.

SP3. GHM I and SP3 [58, 63, 81] both address issues regarding the D exter model

bu t GH M I follows a quite different approach. (1) A pplication dom ain: In SP3,

there is no system atic suppo rt for com putation-oriented app lications which handle

dynam ically generated d a ta . T he application has the responsibility to extend its

functionality to support dynam ic da ta . (2) A rchitecture: T he application needs to

com m unicate w ith o ther hypertex t com ponents using IP C (inter-process com m u

nication). GHM I takes th is burden off applications and pu ts it on th e ir handlers,

enab ling applications to rem ain unchanged (except to com m unicate w ith th e ir

handlers). SP3 requires applications to store application d a ta in order to benefit

from special hypertex t features such as versioning. In stead of sto ring application

d a ta , G H M I dynam ically m aps applications to hypertext. Versioning is not available

in GH M I yet. (3) H ypertex t model: B oth GHM I and SP3 su p p o rt n-ary links. Tn

con trast to S P 3’s m odeling links and anchors to be first-class processes, GHM I

m odels links and anchors as ob jects m anaged by the hypertex t engine. This allows

links and anchors to be handled in a consistent m anner. O n the o ther hand, SP3

has no way to define anchors on links, as links are processes in stead of first class

com ponents. GHM I m odels links as com ponents. All opera tions on com ponents

also app ly to links. (4) Link traversal: SP3’s applications have to m ain tain link-

rela ted d a ta which implies m ore changes would be m ade when in teg rating existing

applications. G H M I’s applications (COISs) are hypertext-unaw are. They have no

knowledge of links or anchors. A pplication objects are m apped to hypertex t ob jects

168

dynam ically th rough bridge laws. (5) O ther features: SP3 su p p o rts versioning,

d istribu tion and co llaboration which are not in curren t stage of GHM I developm ent.

Chimera.. (1) A pplication dom ain: C him era [5] was developed specifically for

the needs of tools in software developm ent environm ents. I ts app lication dom ain

is restricted to viewers which are display-oriented applications. T here is no way in

C him era to su p p o rt the dom ain of com putation-orien ted app lications like GIIM I

does. (2) A rchitecture: GHM I uses a m essage-based A PI to su p p o rt inter-process

com m unication. T he message form at is sim ply ASCII tags. In con tras t, C him era

hides message details by a using higher-level API and A D T (i.e., A bstrac t D a ta

Type). T his allows the Chim era developers to change message form ats freely

w ithout affecting the rest of the system . B u t the tradeoff of th is approach is th a t

applications have to be changed to use the m essage ADT. (3) H ypertex t model:

C him era associates anchors with views including an object view an d the viewer

displaying th e ob ject view. The C him era concept of views is independen t of where

it is stored. A C him era view could contain interface objects such as b u tto n s and

windows, depend ing on how the viewer defines its views. This is flexible in handling

m ultiple views of a single object. T here is no analogous concept of such anchors in

GHM I. T he way to m ultiply view an object in GHM I is to define a link po in ting to a

com ponent w ith p roper presentation specifications. C him era’s approach allows the

viewers to freely im plem ent viewer-specific features a t the price of m anaging links

and anchors inconsistently, which makes it difficult to extend s ta n d a rd features in

the C him era server. (4) Link traversal: G H M I’s applications are hypertex t-unaw are

and do not p a rtic ip a te in link traversal. C h im era’s viewers, however, are heavily

burdened to define anchors and m ap anchors to objects.

Multicard. (1) A pplication dom ain: In con trast to GHM I, M ulticard [78] is

prim arily open to editors which are display-oriented applications. T he au th o rs of

169

M ulticard m entioned th a t M ulticard can provides in tegration w ith large range of

app lications from basic tex t editors to sophisticated system s such as expert system s

and object-oriented da tabase system s. B ut it is still an ongoing issue and it is not

clear how to suppo rt these dynam ic system s a t the system level. In [4], th e au th o rs

connect M ulticard to an object-oriented da tabase system 0 2 to su p p o rt querying

hyperdocum ents. T hey only use da tabase system s to im plem ent th e ir h ypertex t

facilities, ra th e r th an take da tabase system s as an application dom ain and add

hypertex t functionality to them . (2) A rchitecture: M u ltica rd ’s editors have to be

m odified to be use M2000 to p artic ipa te in in tegration . GHM I does th is by sep ara tin g

th e applications from th e ir handlers. An application is hypertex t unaware and thus

m inim al changes are im posed for cooperating w ith its own handler. T he dom ain

m apping between app lication objects and hypertex t objects happens a t run -tim e by

app ly ing appropria te bridge laws. (3) H ypertex t model: M ulticard includes a sim ple

version of com posites which is a node hierarchy consisting of nested nodes, sim ilar

to G H M I’s Tree com posites. M ulticard ’s links and anchors are untyped and links

a re b inary only. M ulticard ’s scrip t-a ttached links are sim ilar to G H M I’s concept of

opera tion links. G H M I’s concept of bridge laws is sim ilar to the M ulticard scrip t

language in the sense of defining dynam ic behavior of operation links. T he behavior

of a G H M I operation link is specified in bridge laws. T he difference is th a t GHM I

provides bridge laws for the purpose of m apping applications, while M ulticard aim s

a t providing a tool to ex tend its system functionality.

7.2.2 The Dexter-based Models

T he D exter model [47] is widely referenced and accepted as a com m on, principled

in terchange s tan d ard for diverse hypertex t system s. I ts separa ting hypertex t in to

th ree layers makes m odeling conceptually clearer and m ore understandab le . H aving

such a m odel as our base enables us to share and com pare our work w ith o ther

170

researchers based on a com m on framework. Over the p as t several years, m odels and

system s have been developed following the D exter approach. F igure 7.3 shows the

com parison of GHM I w ith o ther D exter-based models.

DIIM (or DeVise hyperm edia) [38, 41, 39, 37, 40] is a D exter-based hyperm edia

p ro to ty p e developed a t A arhus U niversity in D enm ark. DHM extends D exter in link

directionality , dangling links, anchor typing, struc tu res and com ponent contents.

Besides D ex ter’s four constan t link directions (i.e., “From ” , “To” , “B inary” , “N one”),

DHM em ploys a broader concept including three orthogonal notions of link direc

tionality : sem antic directions, creation directions and traversal directions. In

co n tra s t to D exter, DHM allows dangling links which have no “To” directions.

D H M ’s anchors are typed to include whole-com ponent anchor, m arked anchors and

unm arked anchors. By storing th e references instead th e contents of com ponents,

DH M suppo rts linking to objects created by ex ternal applications. G H M I have

m any sim ilarities w ith DHM . G H M I’s external com ponents and keyword anchors are

s im ilar to D H M ’s. GHM I also models com ponent’s in te rnal s truc tu res and shares the

concern of d istinguishing hypertex t-m anaged com ponents from application-m anaged

com ponents w ith DHM. In [37], Grpnbaek further ex tends DHM com posites to a class

hierarchy and four aspects of com posite contents. T he class hierarchies of GHM I and

DHM are sim ilar bu t follow different perspectives. DHM focuses on m odeling th e

en tire storage layer and run-tim e layer objects while GHM I separates the navigation

s tru c tu re s from the underlying classes w ith the belief th a t the navigation s tru c tu res

can be m odeled w ith the underlying com ponent s truc tu res. DHM provides an archi

tec tu re for cooperative work suppo rt [39] which is not the curren t focus of GH M I.

D H M ’s s tru c tu re dimension of m odeling com posite’s conten ts is sim ilar to G IIM I’s

com posite subclasses. D H M ’s v irtua l com puted com posites are sim ilar to G H M I’s

com puted com ponents. However, G H M I’s com ponent content com puta tion could

171

D
is

tin
ct

iv
e

Fe
at

ur
es

- Hy
pe

rte
xt

 i
nt

er
ch

an
ge

-S
ta

nd
ar

d
m

od
el

* I
nte

gra

on
w

ith

dy
na

m
ic

in

fo
rm

at
io

n

sy
st

em
s

- O
bj

ec
t-o

rie
nt

ed

de
si

gn

* C
oo

pe
ra

tiv
e

hy
pe

rm
ed

ia

sy
st

em
s

&

i i
1 1
* i 3

-5

1 1 1 §=3 & j*Vs? ! I> - Ex
ten

di
ng

hy

pe
rte

xt

to
hy

pe
rm

ed
ia

- M
ul

tim
ed

ia

su
pp

or
t

Th
e

Ru
n-

tim
e

L
ay

er

- S
es

sio
n

(s
im

pl
e)

-
Ev

en
t

st
ru

ct
ur

es

• Sys
tem

tra

ve
rs

al
 l

og
s

1 - C
las

s
hi

er
ar

ch
y

(se
ssi

on

and

in
st

an
tia

tio
n)

- Co
nt

ex
t

ac
ro

ss
-h

yp
et

ex
t

lin
ks

B
!8

1 ̂£ is. tS

Pr
es

en
ta

tio
n

Sp
ec

ifi
ca

tio
n

|

-O
pt

io
na

l

- Mu
lti

pl
e

vi
ew

s
of

co
m

po
si

te
s

s
1

1 1 1
f 1 1 • At

om
ic

s:
 c

ha
nn

el
,

du
ra

tio
n

- Co
np

os
itc

s

sy
bc

hr
or

az
ai

on

ar
cs l I1 a>• £ t» S oI t t a•? o o .2"8 f % J ̂ ̂ "go u u &

Th
e

St
or

ag
e

La
ye

r

O
th

er

- H
yp

er
te

xt
 k

no
w

le
dg

e

ba
se

• H
ie

ra
rc

hi
ca

l
st

ru
ct

ur
in

g

(h
ier

ar
ch

y
by

re
fe

re
nc

e

&

hi
er

ar
ch

y
by

in
cl

us
io

n)

| f
l l
I i t
i l l

g
3 1
| I
I I |
■? I 6- - C

ol
le

ct
io

n
an

d

sy
nc

hr
on

iz
at

io
n

N
av

ig
at

io
n

- G
uid

ed

to
ur

s,b
oo

 k
m

ar
ks

ov
er

vi
ew

s,
hi

st
or

y,

br
ow

si
ng

-G
uid

ed

to
ur

s,
ta

bl
et

op
s,

lin
k

br
ow

se
rs

J!

a b fi
i 1 1 §■ 5" *8 I S | a l i |
j | |]

• S
ix

be
ha

vi
or

-b
as

ed

ty
pe

s

-F
ilt

er
in

g

- Dy
na

m
ic

m
ap

pi
ng

- D
an

gl
in

g
lin

ks

-
Da

ng
lin

g
lin

ks

-
D

ire
ct

io
na

lit
y;

 3
no

tio
ns

-
Da

ng
lin

g
lin

ks

•
Lin

k
be

ha
vi

or
s

- O
pe

n
lin

k
ty

pe
s

-
M

od
ele

d
as

pr
oc

es
se

s

-
Lin

k
di

re
ct

io
na

lit
y,

in
cl

us
io

n,
 f

ro
m

,
to

- Two link

ty
pe

s:
in

cl
us

io
n

and

na
vi

ga
tio

n
lin

ks

- Link co
nt

ex
t:

co
mp

co

lle
ct

io
n

af
fe

ct
ed

by
a

lin
k

tra
ve

rs
al

Iu - Atomic,
 c

om
po

si
te

-C
om

pu
te

d
co

m
po

ne
nt

s

: - Embed
di

ng

an
ch

or
s

i a
nd

ot

he
r

co
m

po
ne

nt
s K a

1 ! | E£ S 1 1 H | M 0 c3 1 &

| 1
J 1 f |
I I I 1 -V

er
si

on
in

g

• External
 c

om
po

ne
nt

s

- External
 c

om
po

ne
nt

s

• Composi
te

in
te

rn
al

lin
ki

ng

•F
ile

s,
do

cu
m

en
ts

,

ve
rs

io
ns • External

 c
om

po
ne

nt
s

• Synchro
ni

za
tio

n
ar

cs

• Compos
ite

ty

pe
s:

pa
ra

lle
l

and

ch
oi

ce

- Co
lle

ct
io

ns
:

in
ne

r

str
uc

tur
e

and

op
er

at
io

ns

A
nc

ho
rs

-<
ID

,
Va

lue
>

pa
ir

s

- Em
be

dd
ed

in

co
m

po
ne

nt

-T
hr

ee

ty
pe

s

(p
la

in
,

ke
yw

or
d,

 d
yn

am
ic

)

- D
yn

am
ic

an

ch
or

s

- Ex
te

rn
al

 a
nc

ho
rs I iI I
■ a l l
-r S t - Op

en

an
ch

or

ty
pe

s

- M
od

ele
d

as
pr

oc
es

se
s

- Ex
te

rn
al

 a
nc

ho
rs

a
Cl.

i
3 &o
! -8 •? 2

IJ2 /
6 tyja
8 / -g7 s D

ex
te

r
(H

al
as

zf
t

Sc
hw

ar
tz

)

G
H

M
I

(W
an

'9
6)

sf

° i
i

O '

i |
p 4

■ 1
§!1

W
H

LA
H

H

i

hi
a £

1X "A
dd

in
g.

.."
(G

ar
zo

ao

et
al

’9
4)

Fi
gu

re

7.3

C
om

pa
ris

on

wi
th

O

th
er

D

ex
te

r-
ba

se
d

M
od

el
s

172

involve dynam ic m apping rule execution in applications while D H M ’s com putation

takes place w ithin the hypertex t dom ain.

Leggett and Schnase criticizes D exter’s abilities on hyperm edia interchange and

hyperm edia-in-the-large (i.e., open hyperm edia system s) design [63]. They address

four issues from th e ir experience on tran sla tin g In term edia and KMS using D exter

as an exchange s tan d ard [62], including underlying model confliction, m ultidesti-

national links, link directionality and m ethods of defining hyperm edia boundaries.

A lthough they consider D exter a robust model for hyperm edia system s as an in te r

change s tan d a rd , th ey discuss issues regarding D exter’s problem s on: not allowing

dangling com ponents, no notion of versioning, no external com ponents, no notion

of deletion sem antics for com posites, no notion of com posite’s in ternal linking and

restrictive navigational link sem antics. GHM I addresses all of these issues except

versioning. In add ition , Leggett e t al. proposes seven fundam ental assum ptions for

hyperm edia-in-the-large system design. Based on these assum ptions they claim th a t

D exter does not support hyperm edia-in-the-large and it is not profitable to fu rther

extend the D exter model. GHM I addresses sim ilar issues on broader link services

(by provid ing a larger range of hypertex t functionalities) and heterogeneous app li

cation suppo rt. However, GHM I differs from Leggett e t a l.’s work in th ree m ajor

ways. (1) different focuses: Leggett e t al. focuses on issues for general hyperm edia-

in -the-large system design while GHM I focuses on suppo rting dynam ic m apping

of com putation-orien ted applications; (2) different perspectives of view ing Dexter:

GHM I follows only the sp ir it of D exter on layered m odeling and consistent represen

ta tio n of hypertex t elem ents as storage layer com ponents. T aking D exter as a base

did not prevent us from extending and specifying D exter to fit ou r needs. It is unnec

essary to recom m end th e term ina tion of Dexter; (3) different m odels for link and

anchor behaviors: Leggett et a l.’s SP3 employs a process-based design by m odeling

links and anchors as processes and allowing open types. Such an approach allows

173

broader and extensible application in tegration a t th e price of heavy perform ance

(especially in d istribu ted system s), inconsistent link /ancho r behaviors and heavy

app lication burden (the applications have to define link and anchor behaviors). Tn

con trast, in GHM I, the applications are hypertext-unaw are.

R H Y TH M [66] is a hypertex t system developed a t the U niversity of Bologna

in Italy. T he au tho rs believe th a t m odeling RH Y TH M using D exter proved the

usefulness, soundness and robustness of D exter, a lthough they m ade a few extensions.

R H Y TH M com ponents are files, docum ents and versions which can be m apped

to D exter com ponents. Files are entities storing ac tual da ta . A version is an

en tity showing d a ta to users th rough a list of references. Versions are collected in

large en tities called docum ents which establish relations between them . R H Y TH M

allows only b inary links and divides links in to two disjo int classes: navigation links

and inclusion links. Versions are com posites m ade exclusively of links and can

include previous versions through inclusion links. N avigation links include all b inary

links o th er th an inclusion links. RH Y TH M extends the D exter anchor concept to

suppo rt ex ternal anchors. GHM I has sim ilarities w ith R H Y TH M concerning the

concepts of ex ternal anchors, com puted anchors, anchor resolver and link typing,

bu t differs from RH Y TH M in th ree aspects: (1) R H Y TH M does not explicitly

model keyword anchors. Furtherm ore, R H Y TH M ’s concept of com puted anchors is

sim ilar to G H M I’s dynam ic anchors. B u t RH YTH M does not include a m echanism

to define com puted anchors. GHM I defines dynam ic anchors using bridge laws. (2)

R H Y T H M ’s restric tion on binary links is too narrow for m odeling complex links in

large hypertex t application environm ents; (3) RH Y TH M includes a prim itive notion

of link typ ing w ith a d istinction of navigation links and inclusion links while GHM I

m odels a broader range of behavioral link types. R H Y T H M ’s inclusion links are a

subset of G H M I’s s tru c tu re links.

174

T he A m sterdam H yperm edia Model (AHM) [50] is a general fram ew ork

focusing on extending hypertex t to hyperm edia. AHM was developed as a com bi

nation of the D exter m odel and the CM IF m ultim edia m odel [14] w ith extensions on

D exter by in troducing the notions of tim e, high-level presen tation a ttr ib u te s and link

context. AHM extends D ex ter’s presentation specification on atom ic com ponents

to include channel and du ra tion inform ation. C hannels define global a ttr ib u te s

in docum ents, including m edia-type independent specifications (e.g., background,

foreground and highlight colors) and m edia-type dependen t specifications (e.g., font

and size for tex ts; scaling factor for graphs; volume for voices; etc.). An AHM

com posite does not contain any direct da ta . Instead, a com posite references its d a ta

v ia an a tom ic com ponent. A com posite’s content contains a collection of a tom ic or

o th er com posites. The presen tation specification of com posites contains a collection

of synchronization arcs which are struc tu res defining relative ordering inform ation .

AHM in troduces the notion of link context which is a com ponent contain ing a

group o f com posites or atom ics affected by a linking opera tion a t run-tim e. Link

contex t allows a “follow link” operation to affect only p a rt of a docum ent s tru c tu re .

N evertheless AHM extends D exter from a m ultim edia po in t of view which is no t the

curren t focus of GHM I, bo th m odels share comm on po in ts on ex ternal com ponents.

G arzo tto e t al. [35] m ade extensions on D exter’s storage layer by in troducing

the concept of collections and on D ex ter’s run-tim e layer using related notions of

collection-navigation and collection-synchronization. A collection is a com posite

consisting of m em ber nodes (or com ponents). The in te rnal s tru c tu re of a collection

includes two aspects: a set of m em bers and a s tru c tu re of topologically a rranged

m em bers. These structu res are sim ilar to G H M I’s Set and G raph com posites.

O pera tions on a collection include definition of the m em ber set, definition of its

in ternal s tru c tu re and definition of the association node which represents the

collection. Indices and guided-tours are two basic collection-based navigation

175

s tru c tu res . GHM I shares the notion of guided-tours, especially the nested guided-

to u rs [34] and defines a richer set of gu ided-tour categories. A nother difference is

th a t G arzo tto e t al. m odels navigation as an extension to the D exter run-tim e layer

w ith th e consideration of active m edia while GHM I m odels guided-tours and o th er

navigation struc tu res using the storage layer constructs.

7.2.3 GHMI and W W W

A lthough both provide hypertex t features, the W orld-W ide-W eb (W W W) and

GH M I are quite different in th e ir design purpose and system arch itec tu re . T he

W W W provides a world-wide access and browsing environm ent in a hypertex t

m anner. GHM I aim s a t providing in tegrating COISs w ith hypertex t and providing

COISs w ith hypertex t functionalities dynamically. We view th e ir differences from

th e following aspects. (1) D a ta Model: Unlike GHM I, th e W W W ’s hypertex t

d a ta m odel is simple. It consists of plain nodes and b inary links. It has ne ither

s tru c tu re s nor com posites. T he W W W does not su p p o rt bidirectional links as it

em ploys HTM L which em beds links only in d epartu re docum ents. Links are also

unlabeled and untyped (neither sem antically nor behaviorally). This could cause

navigation d isorientation by overw helm ing users w ith a vast of structu re-less infor

m ation . G H M I’s model im proves th is s itua tion by including com posite s tru c tu res ,

n -ary links, bidirectional links, and behavioral link typing. (2) N avigation: GHM I

shares W W W w ith the functionalities on link traversal (i.e., browsing), query ing

(COIS suppo rted), history, backtracking and bookm arks. W hen navigating around

th e W W W , however, users can be easily disoriented and lost due to its insuf

ficient navigation struc tu res and tools. A nother tradeoff of m ost W W W viewers

is th e ir single-window environm ent which worsens d isorien tation ; GHM I provides a

richer se t of navigation facilities, including guided-tours, overviews and task-based

backtracking, which are not available in the W W W . (3) D ocum ent M arkup: W W W

176

forces its au tho rs to use a m arkup language HTM L to reproduce their docum ents in

order to be accessible through W W W viewers. This reduces th e W W W ’s openness

and flexibility severely. All links and anchors are s ta tic and have to be encoded

in an H TM L form at in application docum ents’ content. T here is no easy way

to link existing docum ents dynam ically or even add a link a t run -tim e m anually.

All docum ents have to be rew ritten to em bed s ta tic links and anchors which are

read-only a t run-tim e. To im plem ent these linking features, users have to w rite

specific program s using some scrip t language (e.g., CGI scrip ts), which is complex

and overw helm ing to average au tho rs. GHM I in tegrates COIS app lications through

dynam ic m apping and supports dynam ic links in a much easier way. I t separates

links from the original docum ents and therefore does no t im pose any m arkup 011

original applications. This enables dynam ic links and anchors to be generated a t

run-tim e. (4) D istribu tion: T he m ajo r d istinctive feature of the W W W lies in

its w orld-w ide d istribu tion and ab ility of in teropera ting am ong a large range of

heterogeneous hardw are and software environm ents. This is no t available in current

GHM I. I t would be an in teresting fu tu re research to enhance GH M I by m aking the

W W W an IOS, com bining the W W W ’s d istribu tion w ith GH M I functionalities.

7.3 GHMI Contributions and Limitations

In th is thesis, we presented a general hypertex t model GH M I, which is a D exter-

based h ypertex t m odel supporting in teg ration of hypertex t and com puta tion-orien ted

inform ation system s (COISs). T his section sum m arizes G H M I’s m ajo r contribu tions

as well as its lim itations.

7.3.1 GHMI Contributions

GHM I aim s a t enhancing COISs by adding hypertex t functionalities through

dynam ic linking facilities. In teg ra ting w ith GHM I only im poses m inim al changes

177

on COISs. We view G H M I’s m ajor con tribu tions from the following four po in ts of

views: (1) GH M I vs. B ieber et a l.’s work [12, 9]: Taking its m otivation from B iebcr

et a l.’s original concept of bridge laws, GHM I extends and form alizes bridge laws

w ith in a com prehensive hypertext d a ta m odel. GHM I m odels com posites which

are not found in B ieber e t a l.’s work. Furtherm ore, GHM I form alizes the dynam ic

m apping concepts in to a hypertex t d a ta m odel (through its M RD C processing).

Also, GHM I extended and im plem ented the general system a rch itec tu re in F igure

3.1, originally proposed by Dr. B ieber b u t not yet im plem ented, as a running

prototype; (2) G H M I as a hypertex t d a ta model: As a general hypertex t d a ta model

for supporting hypertex t and COIS in tegration , GHM I uniquely provides a com pre

hensive set of hypertex t functionalities regarding hypertex t ob jects (com posites,

behavioral link typ ing , and dynam ic anchors), dom ain m apping m echanism s (bridge

laws) and a varie ty of navigation features (guided-tours, task-based backtracking,

history, bookm arks, overviews); (3) GHM I as a D exter-based model: G H M I uniquely

combines specific extensions and specifications on D exter to m eet the requirem ents

of our dynam ic dom ain m apping environm ent. This dem onstrates bo th GHMT’s

and D ex ter’s robustness and generality. Extensions are in troduced on D ex te r’s

com posites, link specifiers and anchors. To m ap all GHM I capabilities in term s of

D exter, GHM I specifies D exter’s com ponents, links, anchors, the resolver function

and the accessor function; (4) The GHM I P ro to type: T he GHM I p ro to type is the

first hypertex t system which im plem ents th e general arch itec tu re of supporting

dynam ic in tegration of hypertex t and m ultip le COISs. It proved the feasibility of

the arch itectu re and th e GHM I model.

7.3.2 Potential Limitations

T he GHM I approach has lim itations in th ree aspects: (1) O bject Identities: GHM I

relies on resolvable [47] COIS object identifiers to m ap explicit COIS objects to

178

hypertex t objects. T his approach benefits from the fact th a t object iden tities are

widely adop ted in system s w ith th e increasingly-popular object-oriented designs. (2)

Softw are Engineering: T he COIS builders have to w rite bridge laws and the COTS

handlers. They need to learn the bridge law tem p la te syntax. The com plexity of

bridge laws and COIS handlers depends on th e com plexity of COISs. In com plicated

COISs, w riting bridge laws and COIS handlers could be difficult and tedious. The

burden of w riting COIS handers could be greatly reduced by providing (by the GIIMT

developers) a set of built-in APIs for those m odules com m on to all COIS handlers.

A ctually th is is possible for all the COIS handler m odules except the COIS buffering

m odule and the COIS invoker (see §6.1.4). (3) Speed: T he speed of dynam ic m apping

could be slow. Bridge law m apping involves H T E-C O IS com m unication and COIS

program execution, which could be tim e-consum ing. Speed depends on how much

inference the bridge laws do and how much COIS execution is needed to generate

ou tpu ts . In certain environm ents (such as real-tim e applications) when speed is the

highest concern, G H M I’s approach m ight not be satisfactory, although softw are and

hardw are optim ization could help some.

7.4 Future Research

GHM I is a robust m odel for supporting C O IS-hypertext in tegration . E xtensions

in several directions can be m ade to enhance the curren t version of G H M I an d its

p ro to type resulting from th is dissertation. This section outlines the fu tu re work we

plan to pursue after th is d isserta tion .

Implem entation Issues. (1) U nim plem ented Features: We plan to continue

im plem enting those features defined in the GHM I m odel bu t not included in the

G H M I prototype. T his includes: system configuration, bridge law configuration,

anno ta tions, navigation based guided-tours, user-defined guided-tours, task-based

179

backtracking, bridge law parser, etc. (2) D ynam ically u p da ting objects: T he current

GHM I p ro to type does not consider how to dynam ically u p d a te objects which are

curren tly displayed on screen. In the curren t GHM I pro to type, ne ither th e Linkbase

nor the Session DB stores these ob jec ts’ interface-related d a ta (e.g., a t which window

and w hat position the objects are displayed). T he current G H M I assum es th a t d a ta

processing is triggered by user events in the IOSs. However, in some inform ation

system s, in ternal triggers will cause events to occur (e.g., an office au tom ation system

m ight include a week trigger for display all m eetings for the week every M onday

a t 8am). In o ther system s, some item s on the screen need to be u p d a ted a u to m a t

ically (e.g., a financial system interface w ith stock prices fluctuating over tim e).

GHM I needs to provide a m echanism to facilita te these s itua tions. (3) D estructive

operations: C urren t GHM I p ro to type m aps operation results as dynam ic tables. It

does not consider th e situation of a destructive operation which generates no explicit

results b u t m ight delete COIS objects w ithou t notifying th e H T E. This could make

th e d a ta in the Linkbase out of d a te (e.g., links to a deleted COIS object). U pdating

d a ta as a resu lt of outside changes is still an open issue in th e a rea of open hypertex t

system s [23, 24, 27, 81, 63, 5, 78]. GHM I assum es the COIS hand ler is responsible for

notifying th e H T E abou t such operations. If any dangling com ponent occurs (e.g.,

link traversal, backtracking or accessing anno ta tions to a deleted COIS ob jec t), the

H T E gives the user a w arning m essage and deletes the corresponding link resolving

to th e dangling com ponent. T he po ten tia l dangling objects due to such destructive

operations can not be found until the user follows a link po in ting to them . T he COIS

could notify the H T E on such an action. This p ro to type does not require COISs to

report destructive operations. An effective solution is not available in cu rren t GHM I

and is open for fu tu re exploration.

180

Distribution and W W W . In recent years, delivering electronic info rm ation via

com puter networks has been gaining significant grow th. There are num erous

hypertex t system s opera ting in a d istribu ted environm ent [3, 75, 100, 52, 15]. The

m ost well-known and widely used d istribu ted hypertex t system is W W W , which

provides a robust navigation environm ent am ong a large range of heterogeneous infor

m ation resources. A W W W docum ent w ith hypertex t links is constructed based on

a m arkup language H TM L which is a sim ple version of SGML. We could com bine

G H M I’s functionalities w ith W W W ’s d istribu tion feature by ex tending th e GHM I

m odel and m aking it W W W -com patib le. O ur first plan tow ard th is goal is to develop

a W W W handler which connects GHM I to W W W and m ake it d irectly accessible

from the In ternet. We can build basing on th e curren t p ro to type by replacing (or

adding , if we w ant bo th) th e curren t IOS handler w ith a W W W handler w ritten

as a C G I scrip t and the cu rren t IOS w ith a W W W browser (e.g., N etscape). Such

replacem ent will no t affect any code in the H T E and the C O IS /C O IS handlers

(except to add some H T E configuration inform ation). T he W W W handler would

in tercep t messages previously sent to the curren t IOS handler. I t would convert

ob jec t conten ts to H TM L docum ents with em bedded links by com bining ob ject

conten t messages w ith anchor m arkup messages from th e H T E. T he five cu rren t IOS

viewers could be re-im plem ented in W W W browsers (e.g., N etscape) by m eans of

W W W scrip ting languages (e.g., Pearl, JAVA scrip ts). Menu item s, bu ttons, trees

and graphs can be easily im plem ented using these languages.

Hypertext Searching and Querying. GHM I allows a com ponent specification to be

e ither a COIS query or a hypertex t query. A CO IS query is dynam ically resolved by

th e CO IS and the results are m apped to hypertex t com ponents. T he m echanism s

su p p o rtin g hypertex t query processing are left ou t of th e current GHM I. Issues

regard ing searching and querying on hypertex t s truc tu res have been addressed

181

by hypertex t researchers [29, 42, 28, 64, 21, 30, 65, 53, 4], In G IIM I’s dynam ic

m apping environm ent, s truc tu ra l querying (or search) on a hypertex t netw ork

becomes com plicated as the hypertex t netw ork is not d irectly available prior to

dynam ic conten t m apping. The hypertex t engine would have to execute bridge

laws to m ap all com ponents to build the hypertex t network (or m apped a subset of

com ponents, depending on p articu la r queries) p rior to resolving a hypertex t query.

An a lte rna tive way which avoids heavy bridge law execution is th a t the hypertex t

engine em ploys some query mapping m echanism to tra n s la te a hypertex t query to a

COIS query and relies on the COIS to resolve the query. Such an approach works

on the assum ption th a t the COIS has some query processing ab ility and the query

tran sla tion is less com plicated th an the generation of th e en tire hypertex t network

through bridge law execution com bined w ith s truc tu ra l search of th e hypertex t

objects (e.g., anno ta tions, association links).

Versioning. V ersioning is an im p o rtan t feature of hypertex t system s and has

been included in some system s [69, 43, 81, 63]. Versioning enables users to access

and m an ipu la te a history of inform ation changes to th e ir hypertex t network. T he

curren t GH M I does not support versioning. We can ex tend G H M I’s com ponent

p roperties to include versioning inform ation. Each com ponent could have its own

version history, p robab ly modeled as a linear L is t or a m ore com plicated vers io n

T ree . V ersioning w ith com posites could be m odeled a t two levels: versioning on

a com posite itse lf as a whole, and versioning on its individual subcom ponents and

links. In G H M I’s CO IS in tegrating environm ent, ano ther unsolved issue is: should

versioning be supported by the H T E or the COISs? In e ither way, G H M I needs to

identify versioning properties and include them in the bridge law tem plate .

Collaboration. Supporting cooperative work on a shared hypertex t network am ong

m ultiple users is ano th e r im portan t feature of to d ay ’s hypertex t system s [81, 63, 38,

182

86]. C urren tly GHM I does not include collaboration supporting . We need to ex tend

GH M I to include notions of m anaging asynchronous access on a single com ponent

or an en tire hypertex t network. T he collaboration supporting m echanism s typically

include ow nership identity, locking, transaction m anagem ent, concurrency control

and event notification.

Multimedia. There are existing hypertext m odels and system s su p p o rtin g

m ultim ed ia [50, 35, 14]. Exam ples of m ultim edia com ponents include a CAD

p ictu re , a ras te r image, a sho rt video clip, a short audio tape , a sho rt an im ated

sequence, etc. C urren tly GHM I only considers tex t com ponents. The com ponent

fram ew ork in GHM I can be extended to support m ultim edia. G H M I’s s tru c tu red

com posites allow a separation of com ponent contents from th e ir hypertex t represen

ta tio n s . For exam ple, a d a ta file storing a raster im age can be represented as an

atom ic which contains th e reference to it. The collections of run-tim e m ultim edia

p resen tations can also be m odeled as s truc tu red com posites in GHM I. For exam ple,

when th e user w ants to watch a movie while reading a tex t caption and listening

to an audio tape , the collected presentation of these th ree types of m edia can be

m odeled as a s truc tu red com posite. We need to extend the com ponent p roperties

to su p p o rt tim e synchronization and m edia-related a ttr ib u te specifications. We also

need to su p p o rt anchors in m ultim edia com ponents.

7.5 Summary

In th is chap ter, we discuss guidelines for using GHM I, com pare GHM I w ith o ther

system s and m odels, identify bo th G H M I’s m ajor contribu tions and lim ita tions, and

briefly ou tline fu tu re research th a t can em anate from GHM I.

To in teg rate a COIS w ith a GHM I hypertext system , the COIS builders (or

developers) need to follow these guidelines. (1) S tudy the GHM I Model: T he first

183

step tow ard building an in tegration system is to s tudy the G IIM I hypertex t concepts,

including com ponents, links, anchors, navigation features and especially th e bridge

law tem pla te . (2) Identify Po ten tial GHM I C onstructs: This step is to identify

CO IS objects, relationships, m eta-inform ation and operations (or com m ands), which

could be m apped to GH M I constructs (i.e., com ponent classes and typed links). (3)

Softw are Engineering: T h is step is to w rite the m apping rules (i.e., bridge laws) and

the COIS handler code.

GHM I and its p ro to type share ideas and comm on constructs w ith o ther system s

developed by hypertex t researchers, especially in the field of providing h ypertex t

functionality to th ird -p a rty applications and D exter-based modeling. We com pared

GHM I (and the current GHM I pro totype) w ith open hypertex t system s (including

S u n ’s Link Service [75], M icrocosm [23, 24, 27], SP3 [58, 63, 81], C him era [5] and

M ulticard [78]), the D exter-based models and th e W W W .

We identified G H M I’s m ajo r contributions and lim itations. G H M I’s con tri

bu tions include four aspects: GHM I vs. B ieber et a l.’s work, GHM I as a general

hypertex t m odel, GHM I as a D exter-based m odel and the GHM I pro to type. G H M I’s

lim ita tions include th ree aspects: relying on object identities, heavy softw are

engineering for bridge laws and COIS handlers and slow speed for dynam ic m apping.

G HM I is a robust m odel for supporting C O IS /h y p ertex t in tegration . E xtensions

in several d irections can be m ade to enhance th e curren t version of GHM I and its

p ro to type resulting from th is dissertation. These issues include im proving im plem en

ta tio n , connecting GH M I to W W W , hypertext searching and querying, versioning,

co llaboration and m ultim edia.

Conclusion Remarks

In th is thesis, we presented a general hypertex t model GHM I, which is a D exter-

based hypertex t model supporting integration of hypertex t and com putation-orien ted

184

inform ation system s (COISs). GHM I enhances COISs by add ing hypertex t function

alities th rough dynam ic m apping mechanisms. In teg rating w ith GHM I only im poses

m inim al changes on COISs. GHM I extends and specifies the original D exter model

w ith add itional concepts which are fundam ental to our goal of dynam ically add ing

hypertex t functionalities to COISs. We also proved th e feasibility and u tility o f the

GH M I concepts by im plem enting it as a prototype. In our fu ture research we shall

enhance GHM I by following several directions.

A PPEN D IX A

SECOND MODELING DOMAIN: TEXPROS

T his chap ter dem onstrates how to apply GHM I to model a CO IS through an exam ple

system called TE X PR O S [99], which is an intelligent docum ent m anagem ent system

developed by researchers in our in stitu te .

A .l TEXPROS’s Data M odel

T E X P R O S is a personal docum ent processing system com bining filing and retrieval

system s. I t supports storing, ex tracting , classifying, categorizing, retrieving and

brow sing inform ation from a variety of docum ents. D ocum ents are grouped in to

classes. Each class is associated w ith a sem antic docum ent type to describe the

com m on properties for the class of docum ents. A d a ta s tru c tu re called a f r a m e

tem p la te represents the docum ent class type. A f r a m e tem pla te can be in stan tia ted

by filling its a ttr ib u te s w ith values ex tracted from the original docum ent. T he in stan

tia te d object is a f r a m e in s ta n ce , representing a synopsis of a single docum ent,

ra th e r th an its original contents. W indow 2 in Figure A .2 shows an in stan tia ted

fram e instance for the frame tem p la te of type “A ssistantship .” T he tem p la te ’s left-

hand colum n contains its a ttr ib u te s and the right-hand colum n contains the fram e

in stance’s values.

A fo ld e r , identified by its title , is a logical repository of docum ents com prising

a set of fram e instances. Folders represent the user’s logical file s tructu res. They

are connected v ia the “D epends O n” relationships. A folder depending on ano ther

folder is called a sub fo lder or child folder while the depended-on folder is called a

p a re n t folder. Subfolders are categorized v ia some user-declared criteria . A folder

could depend on m ultiple paren t folders. Figure A .l shows a simplified logic file

185

186

CIS
Dept.

Ph.D.
Student

M.S.
Student

Faculty

Alex
Brown John

W ilson

Carol
Thomas

Mike
Smith

Mary
Poth

Paul
Johnson

Figure A .l A D epartm ent C hairperson’s Logical File S tru c tu re

s tru c tu re —the hypothetical folder organization of a departm en t chairperson. Arrows

signal the rela tionship “Depends O n.” A set of operations can be applied on folders

to m anipu la te the file struc tu re . O perations include insert,, move, m erge , prune ,

query and delete. Form al definitions and sem antic descriptions of opera tions can be

found in [98].

A .2 Mapping TEXPROS to GHMI

In th is subsection, we identify po ten tia l bridge laws which m ap T E X P R O S to GHM I

com ponents and links.

• Object BLs

T E X PR O S objects include fram e tem plates, fram e instances, original docum ents

and folders. W e can w rite BLs to m ap fram e tem plates to s tru c tu re d atom ics,

fram e instances to s truc tu red atom ics, original docum ents to p lain atom ics

and folders to Sets (containing folders and fram e instances).

187

(Insert) (M ovd) (Merge) (D clctfl fPrnnd) (ju c ry)

Window 1:

Paul
Johnson

Assis-
tantahlp

Window 3:

IS. IS.
Project Article Resume

Ph.D. Student Folder

Mary
Poth

Mike
Smith

C I S
D e p t . .

Window 2: A « b ta n U h ip fto m P h J).8 lu d tn <

Alex Brown

Student
Duty

Supervisor
Hours
Weeks

Semester
Stipend

Fees
Folder

I k i i l t y

Paul Johnson
R A

Alex Brown
15
20

Spring 1992
$3200
None

c=» «=>

F ig u r e A .2 An Exam ple H yperdocum ent for TE X PR O S

• S t r u c t u r e B L s

S truc tu ra l relationships help d irectly access a com ponent’s em bedding com posite

We can m ap T E X P R O S ’s “D epends O n” as a s tru c tu re link from a child folder

to a paren t folder. O ther s truc tu ra l relationships include fram e instances to

folders. Accessing a folder from its residing fram e instances is ano ther exam ple

of s tru c tu ra l relationship.

• O p e r a t io n B L s All T E X PR O S operations can be m apped as GHM I opera tion

links, including i n s e r t , m o v e , merge, prune, query and delete. Specific queries

on folders, such as “F ind all Ph.D . studen ts who have financial su p p o rt” could

be m apped to opera tional links departing from folder “Ph.D . S tu d en t” and

ending w ith a list of com puted folder titles.

• R e fe re n c e B L s Im plic it relationships am ong T E X PR O S objects can be

m odeled by explicit GHM I reference links, which provide a d irect access to

188

these relationships. Consider the following examples:

(1) Given a fram e instance, find all folders whose title s ap p ear in th is fram e

instance as a value.

(2) Given a fram e instance, find all o ther fram e instances of the sam e fram e

tem plate .

(3) Given a fram e instance, find its fram e tem plate .

(4) Given a fram e instance, find its original docum ent.

(5) Given a fram e tem pla te , find all of its fram e instances.

Suppose, as shown in F igure A .2, th a t a fram e instance in the “Ph .D . S tu d en t”

folder contains a reference to “Alex Brown.” “Alex Brow n” is also a folder,

b u t is not connected to the “Ph.D . S tuden t” folder by a “Depends O n”

relationship . T E X P R O S ’s original model included no way of cap tu ring or

representing such an “im plic it” relationship am ong folders. Once m apped to

reference links, GHM I allows direct access to folder “Alex Brow n” from folder

“Ph.D . S tuden t.”

• Meta-information BLs M eta-inform ation for T E X PR O S objects includes

file s tru c tu re size (num ber of folders), num ber of fram e instances in a folder,

num ber of subfolders in a folder, ob ject tim estam ps, etc.

A.3 Bridge Law Examples

T his section presents some bridge law exam ples to illu s tra te the dom ain m apping

from T E X PR O S to GHM I hypertex t.

1. B L j 0ider: Mapping F o lders to S e t components , as shown in Table A .l.

189

Table A .l Bridge Law BLFolder

C om pClass ‘S e t1
O w ningSystem T ype ‘T E X P R O S '
C om pN am e ‘Folder'
P resen ta tionS pec ‘Tree1
C O ISO bj [F, ‘F o ld e r1, F]
C om pSet { [N 1, ‘F o ld e r1, ATI], [A2, ‘ F r a m e I n s ta n c e 1 ,T]}*
LinkSet ‘N O N E'
C ontentSpec ‘N O N E'
M appingR ule object.(F, ‘F o ld e r1),

o b je c t (N l , ‘F o ld e r1),
object(N 2, ‘F r a m e ln s ta n c e ‘),
r e la t io n (N l , F, ‘D e p e n d sO n ') ,
propert.y(N2, ‘T y p e ‘,T) ,
re la t ion (N 2 , F, ‘R e s id e s ln ‘).

T he following in stan tia tion of B L f 0ider m aps folder ‘Ph .D . S tu d en t' to a Set. in

F igure A .2 w ith a content including all of its th ree subfolders:

A P P L Y J 3 L j C O M P (B L Foider, F = ‘P h .D . S tuden t.1)

T he resu lting com ponent will have CO ISO bj as

[C I S D e p t .1, ‘C I S D ep t .1, ‘F o ld e r1}

2. B L Fi: Mapping Fram e Instances to S truc tu red Atom ic components, as shown

in Table A .2.

T his bridge law is executed to m ap fram e instances when th e user selects a

fram e instance icon to explore its contents. For exam ple, when the user selects

the icon labeled as “A ssistan tsh ip” in W indow 1 of F igure A .2, the hypertex t

engine executes B L Fi to m ap the individual fram e instances one by one. P rio r

to th is m apping, every such fram e instance has been deno ted as a CO ISO bj in

190

Table A .2 Bridge Law BLF i

Com pClass ‘S tructu redA tom ic1
O w ningSystem Type ‘T E X P R O S 1
C om pN am e ‘F ram elnstance1
CO ISO bj [F ,1F r a m e ln s ta n c e ', T]
Com pSet ‘N O N E 1
LinkSet ‘N O N E 1
ContentSpec C
M appingRule object(F, 'F r a m e ln s ta n c e ') ,

p ro p er ty (F , 1C o n te n t ', C),
property (F , ‘T y p e ‘,T) .

th e CompSet. of folder “Ph.D . S tuden t” previously m apped by B L Foider (see

Table A .l) . Therefore, the in stan tia tio n of B L Fi will be expressed as:

A P P L Y - B L j C O M P { B L Fi,

C O I S O b j = [F, ‘ F r a m e In s ta n c e 1, ' A s s is ta n ts h ip ‘])

w here COISID F is ex tracted from C o m p S e t of folder “Ph .D . S tu d en t.”

3. B L nepends0n: Mapping relationship “D ependsO n” to a S t r u c tu r e link, as

shown in Table A .3.

T his BL allows a child folder to access its paren t folder following th e direction

of “D epends O n.” The “FR O M ” and “T O ” endpoints of th is link are specified

using two variable names F I and F 2, which represent COIS objects defined in

th e M app ingR u le . The M app in g R u le of th is BL consists of th ree predicates.

o b j e c t (F l , ‘Folder ') and o b je c t (F 2 ,‘Folder') indicate F I and F 2 are two

existing folders in T E X PR O S database. r e la t io n (F l , F 2 , ‘D ependsO n ')

ind icates folder F I “depends on” folder F 2. W hen the conten t of F I is

m apped to a com ponent and is on display, the hypertex t engine executes

th is BL to m ap all “D ependsO n” links departing from F I . T he following

in stan tia tio n of BLnependsOn m aps a link “Depends O n” m arked by icon “CIS

191

Table A.3 Bridge Law BL D ependsO n

Com pClass ‘L ink1
O w ningSystem Type ‘T E X P R O S '
Com pN am e ‘D ependsO n1
LinkType ‘S truc tu reL ink1
Specifieri

Com pSpec [F I , 'F o ld er1, F I]
AnchorSpec ‘N O N E 1
D irection ‘F R O M 1

S pecifier
Com pSpec [F2, ‘F o ld e r1, F2]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule o b jec t(F \ , ‘F o ld e r ‘),
object(F2, ‘Folder),
r e la t io n (F \ , F2, ‘D e p e n d sO n 1).

Dept,.” in W indow 1 of Figure A .2:

A P P L Y JB L J L IN K (B L DependsOn, F I = 1 Ph.D .Student1)

4. B L Ref ToD0i(ier-' Given a frame instance, f ind all folders whose titles appear in

this fram e instance as a value, as shown in Table A.4.

The “FR O M ” endpo in t’s CompSpec is specified by F I and the “T O ”

endpo in t’s CompSpec is specified by F 2 . T he “FR O M ” endpoin t has anchors

of type “D ynam ic” ex tracted from the content of F I .

Bridge law B L RejroFoider is au tom atically executed to generate all “RefTo-

Folder” links departing from a fram e instance when its is m apped to an atom ic

com ponent. All corresponding anchors are highlighted in some m anner to single

the existence of these reference links. In F igure A.2, when th e user reaches

W indow 2, all folder titles occurring in the content of the fram e instances of

type “A ssistan tsh ip” are highlighted as anchors m arking links “R efToFolder.”

192

Table A .4 Bridge Law BL R e f T oFolder

C om pClass ‘L ink1
O w ningSystem Type ‘T E X P R O S 1
C om pN am e ‘RefToFolder1
LinkType ‘R eferenceLink1
Specifieri

Com pSpec
AnchorSpec
D irection

[F I, ‘F r a m e ln s ta n c e ‘, _]
[A, ‘D y n a m ic ‘, V]
‘FR O M 1

Specifier2
Com pSpec
AnchorSpec
D irection

[F 2 ,1 F o ld e r1, _]
‘N O N E1
‘T O 1

M appingR ule object(F 1 ,1F r a m e ln s ta n c e ‘),
object(F2, ‘F o ld e r ‘),
object(A, ‘V a lu e '),
re la tion(A , F I , ‘In C o n te n t ') ,
object(F2, ‘F o ld e r ‘),
pro p e r ty (F 2 , ‘ F o ld e rT i t le ‘, V).

Let F i l D represent the fram e instance in W indow 2 of F igure A .2. T he

following in stan tia tio n of BLj^jroFoider generates all links m arked by anchors

representing folder titles in W indow 2 (e.g., “Alex Brow n”):

A P P L Y J 3 L J j I N K (B L RefToFolder, F I = F i lD)

A PPEN D IX B

SAMPLE SOURCE CODE FOR DATABASE HANDLER

B .l Prolog BL-Engine Code

193

194

\ s m a l l
/ * T h is i s th e P r o lo g BL_Engine program * /

/ * (o r i g i n a l t t . p l)
/ * L a st m o d if ie d : 4 /1 8 /9 6 * /
/***** /
/ * Loop u n t i l f l a g i s s e t * /
/* BLEngine S t a r t s h e r e * /
/* I t c a l l s B L .p l * /
/ * I f n o t ru n , ch eck f l a g t e x t . p l * /
: - i n i t i a l i z a t i o n (s t a r t u p) .

s t a r t u p : -
l o a d _ f i l e s ([f a c t s]) ,
r e p e a t ,
s e e (’d i r t y . p i ’) , / * d i r t y f l a g from VB * /

r e a d (X) ,
s e e n ,
c h e c k l(X) ,

s e e (’ f l a g t e x t . p l ’) , / * f l a g from VB * /
r e a d (X) ,
s e e n ,
c h e c k (X) ,
f a i l .

/ * I f d a ta i s rea d y from VB, e x e c tu e BL * /
c h e c k l(X) : - X = ‘Y‘ ,
s e e (’d i r t y . p i ’) ,
f i n d (‘Nf)
-> se e n ;
t a s k l .

/ * I f d a ta i s rea d y from VB, e x e c tu e BL * /

c h e c k (X): - X = ‘ Y ‘ ,
s e e (’ f l a g t e x t . p i ’) ,
f i n d (‘N‘)
-> se e n ;
t a s k .

/ * Old d a ta , w a it f o r new * /
f a i l e d : - p r in t ('0 1 d d a t a ‘) , n l ,
s e e n .

/ * Load and s e t f l a g * /

t a s k l : - s e e n ,

195

l o a d _ f i l e s ([f a c t s]) ,
t e l l (’ d i r t y . p i ’) ,
w r i t e ('N . ') ,
t o l d .

/ * S e t f l a g * /
t a s k : - p r i n t (‘ I g o t i t ') , n l ,
s e e n ,
e x e c u t e _ b l ,
t e l l (’ f l a g t e x t . p l ') ,
w r i t e (‘N. ') ,
t o l d .

/* E x ecu te b l in b l . p l a u to m a t ic a l ly upon lo a d in g * /
e x e c u t e _ b l : -
l o a d _ f i l e s ([f a c t s]) ,
l o a d _ f i l e s (’b l . p i ’) .

/ * * /

196

B.2 Visual Basic BL-Engine Code

197

\ s m a l l
’ / * T h is i s th e VB_BL_Engine s u b r o u t in e s in VB’ s DBHand.bas * /
’ / * I t c o o p e r a te s w ith th e P rolog_B L _E ngine t o * /
' / * g e n e r a te and e x e c u te b r id g e la w s . * /
’ / * L a st m o d if ie d : 4 /1 8 /9 6 * /

O p tion E x p l i c i t
’ / * C onst f o r t a b le f i e l d ty p e s * /
C onst FIELD_B00LEAN = 1
C onst FIELD.BYTE = 2
C onst FIELD.INTEGER = 3
C onst FIELD.CURRENCY = 5
C onst FIELD.TEXT = 10
C onst FIELD.MEMO = 1 2

G lo b a l gHandDB As D atabase

Sub BLEngine.BLComp (M sg$, AppDB As D atab ase)
’ /* C rea te a Comp BL in f i l e b l . p l ; * /
’ / * C le a r and s e t ‘Y. 1 in f l a g t e x t . p l ; * /
’ / * W ait and c o l l e c t r e s u l t in C om p S et.p l, L in k S e t .p l and C o n te n t .p l * /
’ / * from P r o lo g when 'N . ' i s s e t in f l a g t e x t . p l ; * /

Dim P r e d ic a t e s , CompSet$, l i n k s e t $, C o n te n ts , C o n te n t1$
Dim BLCOISIDS, BLCOISTypeS, BLCOISLabelS
Dim COISQbjS, BLCOISQbjS, COISIDS, COISTypeS, CO ISLabelS, AppNameS,

TmpTypeS
Dim BLNameS, F ileN am eS, M appingRuleS
Dim L i s t l S , L is t 2 $, L is t3 $
Dim DBNameS, TableNameS, RecordK eyS, FielNam eS
Dim n l , SpacesS
Dim p i'/,, FNuml'/,, Fnum2'/,, ObjCount/,

n l = C hr(13)
S p acesS = " "

’ / * Get in p u t from Msg * /

BLNameS = M sg.G etT agV alue(M sgS, "blName")
BLCOISIDS = M sg.G etTagV alue(M sgS, " b lc o is id ")
BLCOISTypeS = M sg.G etTagV alue(M sgS, " b lc o is ty p e ")
BLCOISLabelS = M sg.G etTagV alue(M sgS, " b lc o is la b e l")
I f BLCOISLabelS = "" Then

BLCOISLabelS =
End I f
COISIDS = M sg.G etT agV alue(M sgS, " c o is id ")
V * Trim sp a c e s around " \\" * /
pi*/, = I n S t r (1 , COISIDS, " \ \ ")
W hile p i <> 0

198

COISID$ = M id(COISID$, 1 , p i + 1) & Mid(COISID$, p i + 3)
pi*/. = I n S t r (l , COISID$, " \ \ ")

Wend
COISTypeS = M sg_G etTagV alue(H sg$, " c o is ty p e ")
COISLabelS = M sg_G etTagValue(M sg$, " c o is la b e l")
I f COISLabelS = "" Then

COISLabelS =
End I f
CompSetS = M sg_G etTagValue(M sg$, "compSet")
l in k s e t S = M sg_G etTagV alue(H sg$, "L inkSet")
C o n ten ts = M sg_GetTagValue(M sg$, "C ontentSpec")
M appingRuleS = M sg_GetTagValue(M sg$, "MappingRule")

’ /* COISObj = " ['C O ISID ', ‘ CO ISType', ‘C O IS L ab el']"
’ /* C o n str u c t COISObj * /
’ s : - a p p ly _ b l (‘B L _ T a b le l‘ , [[‘ S m all S c h o o l‘ , ' A ppartm ent‘] , ‘T a b le ' ,_] ,

[Com pSet, [] , []]) .
’ C a ll DB_SeparateCOISID(COISIDS, DBNameS, TableNameS, R ecordK eyS,

F ieldN am eS, TmpTypeS)
C a ll BLEngine_BuildCOISObj(COISObjS, COISIDS, COISTypeS, CO ISLabelS,

T rue)
C a ll BLEngine_BuildCOISObj(BLCOISObjS, BLCOISIDS, BLCOISTypeS,

BLCOISLabelS, F a ls e)
’ /* Open f i l e * /

FNumiy, = F r e e F i le
FileN am eS = " c :\w a n \g h m i\P r o 3 8 6 w \b le n g in e \b l.p l"
Open F ileN am eS For Output As FNuml

’ /* C rea te f i l e h ea d er * /

’ / * Id ea : bridge_law_com p(BLNam e, COISObj, [CompSet, L in k S e t ,
C o n te n tS p e c]) * /

’ / * Make " : - i n i t i a l i z a t i o n (a p p l y _ b l (‘b l_ d a ta b s e ‘ , [‘ S m all S c h o o l‘ ,
‘D a ta b a s e ' , ‘ S m all S c h o o l '] , [CompSet, [] , []])) . "

L i s t lS = " []"
L is t2 $ = " []"
L is t3 $ = " []"
I f CompSetS <> "NONE" Then

L i s t l S = "CompSet"
End I f
I f l in k s e t S <> "NONE" Then

L is t2 $ = "LinkSet"
End I f
I f C o n ten ts <> "NONE" Then

L is t3 $ = "Content"
End I f
P r e d ic a t e s = " :- i n i t i a l i z a t i o n (a p p l y _ b l (" & BLName & " ," & COISObjS &

I t M
9

199

P r e d ic a t e s = P r e d ic a te s & "[" & L i s t lS & & L is t2 $ & & L is t 3 $ &
"])) . "

P r in t #FNuml, P r e d ic a t e s , n l

’ / * Hake: ’a p p ly _ b l ('b l_ d a t a a s e ' , [D ,'D a ta b a s e ' , _] , [C om p S et.L in k S et,
C o n te n tS p e c]) :

> / * apply_bl(B L N am e, COISObj, [CompSet, L in k S e t , C o n te n t]) : -"
P r e d ic a t e s = "apply_bl(B L N am e," & BLCOISObjS & ", [CompSet, L in k S e t ,

C o n te n t]) : - "
P r in t #FNuml, P r e d ic a t e , n l

' / * Make: " b a g o f([[D IT], ‘T a b le ' , T] , com p set([[D IT], ‘T a b le ' , T]) , CompSet) ,
II

I f CompSetS <> "NONE" Then
V * H andle o n ly s i n g l e CompSet o n ly * /
pi*/. = I n S t r (1 , CompSetS, "*")
I f pi*/, <> 0 Then

’ / * E lim in a te a t end * /

CompSetS = M id(CompSet$, 1 , Len(CompSetS) - 1)
End I f
P r e d ic a t e s = " b a g o f(" & CompSetS & ", com pset(" & CompSetS & ") ,
C om pSet), "
P r in t #FNuml, S p a c e s , P r e d ic a t e , n l

End I f
I f l in k s e t S <> "NONE" Then

V * H andle o n ly s in g l e CompSet o n ly * /

pi*/, = I n S t r (l , l i n k s e t S , "*")
I f pi*/, <> 0 Then

’ / * E lim in a te a t end * /

l in k s e t S = M id (l in k s e t $, 1 , L e n (l in k s e tS) - 1)
End I f
P r e d ic a t e s = " b a g o f(" & l in k s e t S & ", l i n k s e t C & l in k s e t S & ") ,
L in k S e t) , "
P r in t #FNuml, S p a c e s , P r e d ic a t e , n l

End I f
C o n te n t1$ = C o n ten ts
I f C o n te n ts <> "NONE" Then

’ / * H andle o n ly s in g l e C on ten t o n ly * /

pi*/, = I n S t r (l , C o n te n ts , "*")
I f pi*/, <> 0 Then

’ / * E lim in a te a t end * /

C o n te n ts = M id (C on ten t$, 1 , L en (C on ten tS) - 1)
End I f
’ / * For r e c o r d s , add BLCOISID t o C ontent "C" * * * /

C o n te n t1 = BLCOISIDS
C o n te n tlS = "[" & C o n ten tlS & "," & C o n ten ts & "]"
P r e d ic a t e s = " b a g o f(" & C o n ten ts & ", c o n te n tC & C o n te n tlS & ") ,

200

C o n t e n t) , "
P r in t #FNuml, S p a c e s , P r e d ic a t e , n l

End I f

’ /* Hake c o n tr o l p r e d ic a t e s * /

P r e d ic a te $ = S p acesS & " f c r e a t e (' c o m p s e t .p i ' , 0) , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " t e l l (’ c o m p s e t .p i ’) , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " w r ite (C o m p S e t) ,n l, " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " t o ld , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " f c r e a t e (’ l i n k s e t . p i ’ , 0) , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " t e l l (’ l i n k s e t . p i ’) , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " w r i t e (L in k S e t) ,n l , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " to ld , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " f c r e a t e (’ c o n t e n t .p i ’ , 0) ," & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " t e l l (’ c o n t e n t .p i ’) , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " w r i t e (C o n t e n t) ,n l , " & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & " to ld . " & n l
P r in t #FNuml, P r e d ic a t e s

’ / # Make: c o m p se t(C o m p S e t)M a p p in g R u le
P r e d ic a t e s = "com pset(" & CompSetS & ") : -" & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & M appingRuleS & " " & n l
P r in t #FNuml, P r e d ic a t e s

P r e d ic a t e s = " l in k s e t (" & l in k s e t S & "): -" & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & M appingRuleS & " " & n l
P r in t #FNuml, P r e d ic a t e s

P r e d ic a t e s = " c o n te n t(" & C o n ten tlS & ") : -" & n l
P r e d ic a t e s = P r e d ic a t e s & SpacesS & M appingRuleS & " " k n l
P r in t #FNuml, P r e d ic a t e s
C lo se #FNuml

’ /* Invoke BLEngine * . /

’ / * R eturn when d a ta rea d y * /
C a ll B L E ngine_SendProlog

’ /* C o n stru ct CompSet, L in k S e t , C ontent from P r o lo g f i l e s * /

C a ll B L E ngine.G etP rologD ata(C om pSetS , l i n k s e t S , C o n ten ts)

’ /* Count O b je c ts * /

pi'/, = I n S t r (l , CompSetS, "<")
Ob j Count*/, = 0
W hile pi*/, <> 0

Ob j Count'/, = Ob j Count'/, + 1
pi'/, = I n S t r (p i + 1 , CompSetS, "<")

Wend

201

’ /* U pdate Msg * /
AppNameS = M sg_G etTagValue(M sg$, "AppName")
C a ll M sg_SetT agV alue(M sg$, "COISID", AppNameS)
’C a ll M sg_SetT agV alue(M sg$, "COISTYPE", "D atabase")
C a ll M sg_SetT agV alue(M sg$, "CompSet", CompSet$)
C a ll M sg_SetT agV alue(M sg$, "L inkSet" , l i n k s e t $)
C a ll M sg_SetT agV alue(M sg$, "C ontent" , C o n ten ts)
C a ll M sg_SetTagV alue(M sgS, " o b jin d ex " , "1")
C a ll M sg_SetTagV alue(M sgS, " t o t a lo b j s " , T rim (Str(O bjC ount'/,)))

End Sub

Sub BLEngine_BLLink (MsgS, AppDB As D atab ase)
’ / * C rea te a L ink BL in f i l e b l . p l ; * /
’ / * C lea r and s e t 'Y . ‘ in f l a g t e x t . p l ; * /
’ / * W ait and c o l l e c t r e s u l t in C om p S et.p l, L in k S e t .p l and C o n te n t .p l * /
’ / * from P r o lo g when ‘N. ' i s s e t in f l a g t e x t . p l ; * /
’ / *
’ / * BLCOISObj: ‘From’ s p e c i f i e r ’ s CompSpec
’ / * BLCOISObj2: ‘T of s p e c i f i e r ’ s CompSpec
’ / * N ote: H ere, C om pSet.p l c o n ta in s fT 0‘ B L s p e c i f i e r ’ s CompSpec * /
’ / * A nother sub c o n v e r t CompSet t o t a b le Q u ery R esu lts * /

Dim P r e d ic a t e s , CompSetS, l in k s e t S , C o n te n ts , C o n ten tlS
Dim BLCOISIDS, BLCOISTypeS, BLCOISLabelS
Dim BLC0ISID2S, BLC0ISType2$, BLC0ISLabel2$
Dim COISObjS, BLCOISObjS, BLCOISObj2 $, COISIDS, COISTypeS, CO ISLabelS,

AppNameS, TmpTypeS
Dim BLNameS, F ileN am eS , MappingRuleS
Dim L i s t l S , L i s t 2 $, L is t3 $
Dim DBNameS, TableNam eS, RecordKeyS, FielNam eS
Dim n l , SpacesS
Dim pi*/,, FNuml*/,, Fnum2*/,, p2'/,

n l = Chr(13)
S p acesS = " "

’ /* Get in p u t from Msg * /
BLNameS = M sg_G etTagValue(M sgS, "blName")
BLCOISIDS = M sg_G etTagValue(M sgS, " b lc o is id ")
BLCOISTypeS = M sg_GetTagValue(M sg$, " b lc o is ty p e ")
BLCOISLabelS = M sg_GetTagValue(M sgS, " b lc o is la b e l")
’ /* New: F ind ‘T o‘ s p e c i f i e r ’ s obj * /

BLC0ISID2S = M sg_GetTagValue(M sgS, " b lc o is id 2 ")
BLC0ISType2$ = M sg_GetTagValue(M sgS, " b lc o is ty p e 2 ")

202

BLC0ISLabel2$ = M sg_GetTagValue(M sgS, " b lc o is la b e l2 ")

I f BLCOISLabel$ = "" Then
BLCOISLabelS =

End I f
I f BLC0ISLabel2$ = "" Then

BLC0ISLabel2$ =
End I f

COISIDS = M sg_GetTagValue(M sg$, " c o is id ")
' / * Trim sp a c e s around " \\" * /

p i ’/, = I n S t r (i , COISIDS, " \ \ ")
W hile p i <> 0

COISIDS = Mid(COISID$, 1 , p i + 1) & Mid(COISID$, p i + 3)
p i ’/. = I n S t r (1 , COISIDS, " \ \ ")

Wend
COISTypeS = M sg_GetTagValue(M sgS, " c o is ty p e ")
COISLabelS = M sg_GetTagValue(M sg$, " c o is la b e l")
I f COISLabelS = "" Then

COISLabelS = "_"
End I f
CompSetS = M sg_GetTagValue(M sgS, "compSet")
l in k s e t S = M sg_GetTagValue(M sgS, "L inkSet")
C o n ten ts = M sg_GetTagValue(M sgS, "C ontentSpec")
M appingRuleS = M sg_GetTagValue(M sg$, "M appingRule")

V * COISObj = " ['C O IS ID ', 'C O ISType', ‘C O IS L a b el']"
' / * C o n stru c t COISObj: a c t u a l p aram eters * /

’ s : - a p p ly _ b l (‘B L _ T a b le l‘ , [[‘ S m all S c h o o l ' , ‘ A ppartm ent‘] , ‘T a b le ‘ , _] ,
[Com pSet, [] , []]) .

'C a l l DB_SeparateCOISID(COISIDS, DBNameS, TableNam eS, RecordKeyS,
F ieldN am eS , TmpTypeS)

C a ll BLEngineJBuildCOISObj(COISObjS, COISIDS, COISTypeS, COISLabelS,
T rue)

C a ll BLEngine.BuildCOISObj(BLCOISObj$, BLCOISIDS, BLCOISTypeS,
BLCOISLabelS, F a ls e)

C a ll BLEngine.BuildCOISObj(BLCOISObj2 $, BLC0ISID2S, BLC0ISType2$,
B L C 0ISL abel2$, F a ls e)

’ /* New: Mimic CompSet o f BLEngine_BLComp * /

’ / * U sin g b o th ‘From* and ‘T o‘ s p e c i f i e r s
CompSetS = BLCOISObj & & BLCOISObj2$

V * Open f i l e * /
FNuml1/, = F r e e F ile
FileN am eS = " c :\w a n \g h m i\P r o 3 8 6 w \b le n g in e \b l.p l"
Open FileNam eS For Output As FNuml

203

’ / * C rea te f i l e h ead er * /
’ / * Id ea : bridge_law_com p(BLNam e, COISObj, [CompSet, L in k S e t ,

C o n te n tS p e c]) * /
’ / * Hake " : - i n i t i a l i z a t i o n (a p p l y _ b l (' b l _ d a t a b s e ‘ , [‘ Sm all S c h o o l ' ,

'D a ta b a s e ' , ‘ S m all S c h o o l '] , [CompSet, [] , []])) . "
L i s t l $ =
L is t2 $ = " []"
L is t3 $ = " []"
I f CompSetS <> "NONE" Then

L i s t l S = "CompSet"
End I f
I f l in k s e t S <> "NONE" Then

L is t2 $ = "LinkSet"
End I f
I f C o n ten ts <> "NONE" Then

L is t3 $ = "Content"
End I f
P r e d ic a t e s = " :- i n i t i a l i z a t i o n (a p p l y _ b l (" & BLName & & COISObjS &

II II
»

P r e d ic a t e s = P r e d ic a te s & "[" & L i s t l S & & L is t2 $ & & L is t 3 $ &
"])) . "

P r in t #FNuml, P r e d ic a t e s , n l

’ / * Make: ’a p p ly _ b l(' b l_ d a t a a s e ‘ , [D, ‘D a ta b a se ‘ , _] , [CompSet, L in k S e t ,
C o n te n tS p e c]) :

' / * U sin g BLCOISObj: 'From' s p e c i f i e r
’ /* apply_bl(B L N am e, BLCOISObj, [CompSet, L in k S e t, C o n te n t]) : -"
P r e d ic a t e s = "apply_bl(BLN am e," & BLCOISObjS & ", [CompSet, L in k S e t ,

C o n te n t]) :
P r in t #FNuml, P r e d ic a t e , n l

V * Make: " b a g o f([[D I T] , ' T a b le ' ,T] , co m p set([[D |T] , 'T a b le ' ,T]) .C om p S et),
II

’ / * New: "bagof(BLCOISObj2 , compset(BLCOISObj + BLCOISObj2) , C om pSet), "
I f CompSetS <> "NONE" Then

’ / * H andle o n ly s i n g l e CompSet o n ly * /
pi*/, = I n S t r (1 , CompSetS, "*")
I f p i ’/, <> 0 Then

' / * E lim in a te a t end * /

CompSetS = M id(CompSet$, 1 , Len(CompSetS) - 1)
End I f
P r e d ic a te s = " b a g o f(" & BLC0IS0bj2$ & ", com pset(" & CompSetS & ") ,
C om pSet), "
P r in t #FNuml, S p a c e s , P r e d ic a te , n l

End I f
I f l in k s e t S <> "NONE" Then

204

’ / * H andle o n ly s i n g l e CompSet o n ly * /
pi*/, = I n S t r (l , l i n k s e t S , "*")
I f pi'/, <> 0 Then

’ /* E lim in a te a t end * /
l in k s e t $ = M id (l in k s e t $, 1 , L e n (l in k s e tS) - 1)

End I f
P r e d ic a t e s = " b a g o f(" ft l in k s e t S ft ", l in k s e t (" ft l in k s e t S ft ") ,
L in k S e t) , "
P r in t #FNuml, S p a c e s , P r e d ic a t e , n l

End I f
C o n te n tlS = C o n ten ts
I f C o n ten ts <> "NONE" Then

’ / * H andle o n ly s i n g l e C on ten t o n ly * /

pi'/, = I n S t r (l , C o n te n ts , "*")
I f pi'/, <> 0 Then

’ /* E lim in a te a t end * /

C o n ten ts = M id (C o n ten t$, 1 , L en(C ontentS) - 1)
End I f
’ / * For r e c o r d s , add BLCOISID t o C ontent "C" * * * /
C o n te n t1 = BLCOISIDS
C o n te n tlS = "[" ft C o n te n tlS & ft C o n ten ts ft "]"
P r e d ic a t e s = " b a g o f(" ft C o n ten ts ft ", c o n te n tC ft C o n te n tlS ft ") ,
C o n te n t) , "
P r in t #FNuml, S p a c e s , P r e d ic a t e , n l

End I f

’ /* Make c o n tr o l p r e d ic a t e s * /
P r e d ic a t e s = S p acesS ft " f c r e a t e d c o m p s e t .p i ’ , 0) , " ft n l
P r e d ic a te s = P r e d ic a t e s ft SpacesS & " t e l l (’ c o m p s e t .p i*) , " k n l
P r e d ic a te s = P r e d ic a t e s k SpacesS & "w rite(C om pSet) , n l , " k n l
P r e d ic a te s = P r e d ic a t e s ft SpacesS ft " to ld , " ft n l
P r e d ic a te s = P r e d ic a t e s ft SpacesS ft " f c r e a t e (' l i n k s e t . p i ’ , 0) , "
P r e d ic a te s = P r e d ic a t e s ft SpacesS ft " t e l l (’ l i n k s e t . p i ’) , " ft n l
P r e d ic a t e s = P r e d ic a t e s ft SpacesS ft " w r it e (L in k S e t) ,n l , " ft n l
P r e d ic a t e s = P r e d ic a t e s ft SpacesS ft " to ld , " ft n l
P r e d ic a t e s = P r e d ic a t e s ft SpacesS ft " f c r e a t e (’ c o n t e n t .p i ’ ,0) ," ft
P r e d ic a t e s = P r e d ic a t e s ft SpacesS ft " t e l l (’ c o n t e n t .p i ’) , " ft n l
P r e d ic a t e s = P r e d ic a t e s ft SpacesS ft " w r i t e (C o n t e n t) ,n l , " ft n l
P r e d ic a t e s = P r e d ic a t e s ft SpacesS ft " to ld . " ft n l
P r in t #FNuml, P r e d ic a t e s

’ /* Make: com p set(C om p S et): - MappingRule
P r e d ic a te s = "com pset(" ft CompSetS ft ") : -" ft n l
P r e d ic a te s = P r e d ic a t e s ft SpacesS ft M appingRuleS ft " " ft n l
P r in t #FNuml, P r e d ic a t e s

ft n l

n l

P r e d ic a te s = " l in k s e t C ft l in k s e t S ft ") : -" ft n l

205

P r e d ic a te $ = P r e d ic a te s & S p acesS & MappingRuleS & " " & n l
P r in t #FNuml, P r e d ic a te s

P r e d ic a t e s = " c o n te n tC & C o n te n tlS & & n l
P r e d ic a t e s = P r e d ic a te s St S p acesS & MappingRuleS & " " & n l
P r in t #FNuml, P r e d ic a te s
C lo se #FNuml

’ / * Invoke BLEngine * . /
’ / * R eturn when d a ta read y * /
C a ll B L E ngine_SendProlog

’ / * C o n stru c t CompSet, L in k S e t , C ontent from P r o lo g f i l e s * /

C a ll B L E ngine.G etP rologD ata(C om pSetS , l in k s e t S , C o n te n ts)

’ / * I f o n ly one o b je c t in CompSet, d i r e c t l y show i t * /
’ / * O th erw ise b u i ld SY SQ ueryR esults from CompSet * /

pi'/. = I n S t r (l , CompSet, "<")
I f pl*/t <> 0 Then

p2'/, = I n S t r (p l + 1 , CompSet, "<")
I f p2‘/, <> 0 Then

’ / * C o n str u c t t a b le SYSQ ueryResult from CompSet * /

V * U pdate and sen d back Msg in s id e i t * /
C a ll B L E ngine_B uild Q ueryR esu lt(M sgS , AppDB, CompSetS)

E ls e
V * B u ild CorapBL r e s u l t f o r s i n g l e o b je c t * /
’ / * T h is i s u s e f u l f o r s t r u c t u r e l i n k s * /
C a ll BLEngine_BuildCompBL(Msg$, AppDB, CompSet)

End I f

End I f

’ / * U pdate Msg * /
’ AppNameS = M sg_GetTagValue(M sgS, "AppName")
’C a ll M sg_SetTagV alue(M sgS, "COISID", AppNameS)
’ C a ll M sg_SetTagV alue(M sgS, "CompSet", CompSetS)
’ C a ll M sg_SetTagV alue(M sgS, " L in k S et" , l in k s e t S)
’ C a ll M sg_SetTagV alue(M sgS, "C ontent" , C o n ten ts)

End Sub

Sub BLEngine_B uildC 0IS0bj (COISObjS, COISIDS, COISTypeS, CO ISLabelS,
AddCJuotes*/,)
’ / * B u ild COISObj u s in g n e s te d " [" , "]" * /

’ / * For BLCOISObj, n o t ad d in g ‘ * /

Dim pi*/,, p2’/,, Counter*/,, i */,

206

Dim TempID$, DBNameS, TableNam e$, RecordKeyS, F ieldN am e$

’ /* B u ild ID * /
TempIDS = ""

C a ll DB_SeparateCOISID(COISIDS, DBNameS, TableNam e$, R ecordK ey$,
F ieldN am e$, "")

I f DBName$ <> "" Then
I f AddQuotes0/, = True Then

TempID$ = TempID$ ft ft DBName ft
E ls e

TempID$ = TempID$ ft DBName
End I f

End I f
I f TableNameS <> "" Then

I f AddQuotes0/, = True Then
TempID$ = TempID$ ft " , ‘ " ft TableName ft

E ls e
TempID$ = TempID$ ft TableName

End I f
End I f
I f RecordKey$ <> "" Then

I f AddQuotes0/, = True Then
TempID$ = TempID$ ft ", ‘ " ft RecordKey$ ft "‘ "

E ls e
TempID$ = TempID$ ft RecordKey$

End I f
End I f
I f F ieldN am e$ <> "" Then

I f AddQuotes0/, = True Then
TempID$ = TempID$ ft V " ft FieldN am e ft

E ls e
TempID$ = TempID$ ft FieldNam e

End I f
End I f
TempID$ = " [" ft TempID$ ft "] "

’ / * B u ild COISObj * /
I f AddQuotes0/, = True Then

COISObjS = "[" ft TempID$ ft ft COISTypeS ft " V ft COISLabelS ft
ll*j II

E ls e
COISObjS = "[" ft TempIDS ft ft COISTypeS ft ft COISLabelS ft "
] "

End I f

207

End Sub

Sub BLEngine_BuildCompBL (M sg$, AppDB As D a ta b a se , CompSet$)
’ /* New: B u ild LinkBL r e s u l t w ith s i n g l e Obj in CompSet * /
’ / * a s i f we w ere a p p ly in g a CompBL * /
’ / * B u ild t a b le SYSQ ueryResult from CompSet$ * /
’ / * Form at: CompSet = <Sm all S c h o o lW M a ste r S tu d e n t,T a b le ,_ 8 9 0 5 8 7 4 > ,< . . . >
V * C a lle d by BLEngine_BLLink() f o r r e f e r e n c e l i n k s * /
’ / * I f o n ly one o b je c t in CompSet, d i r e c t l y show t a b le o r d a ta b a se

Dim C 0ISID $, COISTypeS
Dim pi*/,, p2‘/ , , p37,

’ / * F in d ta b len a m es or db names * /

pi*/. = I n S t r (1 , CompSetS, "<")
p2'/, = In S tr (p i , CompSetS, " ,")
p37, = In S tr (p 2 + 1 , CompSetS, " ,")
I f pi'/, <> 0 And p2'/, <> 0 And p3 <> 0 Then

COISIDS = M id(CompSet$, p i + 1 , p2 - p i - 1)
COISTypeS = M id(CompSetS, p2 + 1 , p3 - p2 - 1)

End I f

’ / * U pdate Msg * /
C a ll M sg_SetTagV alue(M sgS, "COISID", COISIDS)
C a ll M sg_SetTagV alue(M sgS, "COISType", COISTypeS)

S e le c t Case LCase(COISTypeS)
Case " ta b le"

C a ll DBHand_BLTable(MsgS, AppDB)
C ase "record"

C a ll DBHand_BLRecord(Msg$, AppDB)
Case " f ie ld "

C a ll DBHand_BLField(M sg$, AppDB)
Case "database"

C a ll DBHand_BLDatabase(MsgS, AppDB)
End S e le c t

End Sub

Sub B L E ngine_B uild Q ueryR esu lt (MsgS, AppDB As D a ta b a se , CompSetS)
’ /* B u ild t a b le SYSQ ueryResult from CompSetS * /
’ / * Form at: CompSet = <Sm all S ch o o lW M a sterS tu d en t, T a b le ,_ 8 9 0 5 8 7 4 > ,< .. .>
’ / * SYSQ ueryR esult f i e l d s : <SYSID, TableName>
’ / * C a lle d by BLEngine_BLLink() f o r r e f e r e n c e l i n k s * /

’ / * I f o n ly one o b je c t in CompSet, d i r e c t l y show t a b l e o r d a ta b a se
Dim T hisT ableN am eS, SQL$, COISIDS
Dim DS As D ynaset
Dim KeyValue'/,

208

Dim NewTableName$, AppName$
Dim N ew F ie ld l As New F ie ld
Dim N ew F ield2 As New F ie ld
’ Dim N ew F ield3 As New F ie ld
Dim NewTable As New T a b le d e f
Dim pi*/., p2'/,

’ / * P erp are q u e r y r e s u lt t a b le * /

NewTableName$ = "SYSQueryResult"

’ /* D e le te SYSQ ueryResult * /
’ On E rror Resume Next
AppDB. T a b le D e fs . D e le te NewTableName$
’ On E rror GoTo 0
’ /* C rea te a new t a b le * /
N ew T able. Name = NewTableName$

’ ’ / * Add a Key f i e l d * /
N ew F ield l.N am e = "SYSID"
N e w F ie ld l.T y p e = FIELD_TEXT ’V a ria n t in t e g e r
N e w F ie ld l .S iz e = 50
N ew T able. F i e l d s . Append N ew F ie ld l
’ /* Add a n o th er f i e l d * /
N ew Field2.N am e = "TableName"
N e w F ie ld 2 . Type = FIELD_TEXT ’t e x t
N e w F ie ld 2 .S iz e = 50
N ew T a b le .F ie ld s.A p p en d N ew Field2
’ / * Add t a b le t o d a ta b a se * /
AppDB. T a b le D e fs . Append NewTable
’ / * Open SYSQ ueryResult * /
SqL$ = "SELECT * FROM SYSQueryResult"
S e t DS = AppDB.CreateDynaset(SQ L$)
KeyValue'/, = 1

’ / * F in d a l l ta b len a m es * /
pi'/, = I n S t r (l , CompSet$, "<")
p2'/, = I n S t r (p l , CompSet$, " ,")
W hile pi'/, <> 0 And p2'/, <> 0

C0ISID$ = M id(Com pSet$, p i + 1 , p2 - p i - 1)
’ / * Get T a b le Name * /
C a ll D B_SeparateC 0ISID (C 0ISID $, "", T hisT ableN am e$, "")
’ / * Add t a b l e name * /
DS.AddNew
’ /* Add K e y f ie ld f i r s t * /

DS. F ie l d s (0) = T r im (S tr (KeyValue'/.))
’ / * Add a row * /
D S .F ie ld s (1) = ThisTableNam e$
D S.U pdate

209

KeyValue'/, = KeyValue'/, + 1
’ /* F in d n e x t t a b le name * /
pi'/. = In S tr (p 2 + 1 , CompSet$, "<")
I f p i > 0 Then p2'/, = I n S t r (p l , CompSet$,

Wend

’ /* U pdate P r o lo g DB
C a ll D B H a n d _ In it ia liz e

’ /* U pdate Msg * /

AppName$ = M sg_G etTagValue(M sg$, "AppName")
C a ll M sg_SetT agV alue(M sg$, "COISID", AppName$ & " \\" & NewTableName$)
C a ll M sg_SetT agV alue(M sg$, "COISType", " ta b le ")

’ /* C a ll DBHand_BLTable() * /
C a ll DBHand.BLTable(M sg$, AppDB)

On E rror Resume Next
D S .C lo se

End Sub

Sub BLEngine_FactsDB ()
’ / * g e n e r a te DB f a c t s * /

Dim HandDB As D atabase
Dim AppDB As D atabase
Dim SQL$, F ileN am e$, TableNam e$, R ecordK ey$, Atom$
Dim DBName$, DBPath$, RowContent$, C o n ten t$, KeyValue$
Dim DS As D yn aset ’ / f o r HandDB
Dim DS1 As D yn aset ’ / f o r appDB
Dim DS2 As D yn aset ’ / f o r t a b l e s
Dim n l
Dim T ablelD '/,, i'/., FNum'/,

n l = C hr(1 0)
FNum'/, = F r e e F ile

’ /* Open f i l e * /

FileN am e$ = " c : \w a n \g h m i\P r o 3 8 6 w \b le n g in e \fa c ts .p l"
Open F ileN am e$ For Output As FNum'/,

’ / * F in d DBs * /
S e t HandDB = O p en D atab ase(" c:\w a n \g h m i\co is \rd b m s\d b h a n d .m d b " , F a l s e ,

F a ls e)
SqL$ = "SELECT * FROM DBApps WHERE SystemName = ’ S m all S c h o o l’ "
S e t DS = H andDB.CreateDynaset(SQ L$)
I f DS. EOF Then

210

D S .C lo se
E x it Sub

End I f

’ /* t o sa v e s p a c e , work fo r Sm all S ch o o l o n ly * /

I f Not DS. EOF Then
DBName = "Sm all School"
DBPathS = DS!D B F ullP ath
S e t AppDB = O penD atabase(D BPath$, F a l s e , F a ls e)
’ / * C rea te a P r o lo g F a ct * /
Atom$ = " o b j e c t (' n ft DBNameS ft , 'D a t a b a s e ') . " ft n l
P r in t #FNum, Atom$

V * F in d t a b le s * /
For TablelD*/, = 0 To A ppD B .T ableD efs.C ount - 1

V * Skip sy ste m t a b l e s * /
I f LCase (L e f t (AppDB. T a b leD efs (TablelD '/,) .Name, 4)) <> "msys"

Then
’ / * F in d t a b le name * /
TableName$ = AppDB. T a b leD efs (T ab le ID'/,) .Name

V * Add a P r o lo g f a c t * /
V * o b j e c t (D ,T , 'T a b le ') .
Atom$ = " o b j e c t (' n & DBName$ ft h^ ' h & TableName$ ft " ' ,
' T a b l e ') . " & n l
P r in t #FNum, Atom$

’ / * F in d r e c o r d s * /
SQL$ = "SELECT * FROM " & TableName$
S e t DS1 = AppDB.CreateDynaset(SQ L$)
W hile Not DS1.E0F

V * C reate f a c t s on r e c o r d s * /

RecordKey$ = DB_FindKeyField(AppDB, TableName$)
KeyValue$ = T r im (S tr (D S l(R eco rd K ey $)))

V * Add an atom * /

’ /* p r o p e r ty (D ,T ,'K e y F ie ld ' ,K) .
Atom$ = " p r o p e r t y ('n & DBName$ & * • ' , f " & TableName$ &

, 'K e y F ie ld ' , '" & RecordKeyS & " ' " & ") . " & n l
P r in t #FNum, Atom$

’ /* Add an atom * /
’ / * o b j e c t (D ,T ,R ,'R e c o r d ') .
Atom$ = " o b je c t ('" & DBName$ & " ‘ , '" & TableNameS &

& KeyValue$ ft " ' , 'R e c o r d ') . " ft n l
P r in t #FNum, Atom$

211

’ / * F in d r e co rd c o n te n t s * /
’ / * M ajorly c o p ie d from o ld DBHand_BLRecord * /
C on ten t$ = ""
I f Not DS1.E0F Then

’ / * F in d f i e l d names * /
RowContentS = ""
For i*/, = 0 To D S 1 .F ie ld s .C o u n t - 1

RowContentS = RowContentS & MSG_COL_SEP &
D S1. F ie l d s (i*/.) .Name
N ext i'/,
RowContentS = M id(R ow C ontent, Len(MSG_COL_SEP) + 1)
& MSG_COL_SEP & MSG_ROW_SEP
C o n ten ts = C ontent & RowContentS

End I f

’ /* B u ild r e c o r d c o n te n t * /
I f Not DS1.E0F Then

RowContentS = ""
For i = 0 To D S 1 .F ie ld s .C o u n t - 1

RowContentS = RowContentS & MSG_COL_SEP &
D S 1 .F ie ld s (i*/,)
N ext i*/,
RowContentS = M id(R ow C ontent, Len(MSG_COL_SEP) + 1)
& MSG_COL_SEP & MSG_ROW_SEP
C o n ten ts = C ontent & RowContentS

End I f

’ /* Add an atom * /
’ / * p r o p e r ty (D ,T ,R ,'C o n te n t ‘ ,C) .
’ / * Form at: C ontent = f i e ld iQ Q f ie ld 2 0 0 . . . 0 0 # # v a lu e l0 0 v a

l u e 2 0 0 . . . * /

‘ / * T h is can be d i r e c t l y u sed by DBHand_BLRecord * /
AtomS = " p r o p e r ty /" & DBNameS & "r " & TableNameS &

"‘ / " & KeyValueS & "‘ / C o n t e n t ' , ' " & C o n ten ts & " ') . " & n l
P r in t #FNum, Atom$

’ / * Add an atom * /
’ /* r e la t io n (D ,T ,S /H a s S c h e m a ') .
I f LCase(TableNam eS) = " scm sy sta b le s" Then

Atom$ = " r e l a t i o n / " & DBNameS & " ‘ t ‘ n &

(D SiITableN am e) & " ' / " & (D S1!SchemaName) & " ' /H a s S c h e m a ') . " & n l
P r in t #FNum, AtomS

End I f

’ / * Add an atom * /
' / * o b j e c t (D ,S /S c h e m a ') .
’ / * r e l a t i o n a l ,S 2 /E R R e la t io n ‘) .

212

I f LCase(TableNam eS) = " scm syserschem ata" Then
Atom$ = " o b j e c t / " & DBNameS & &
(D S I! SchemaName) & " ' /S c h e m a ') . " & n l
P r in t #FNum, Atom$

’ /* Add ER r e l a t i o n O * /
I f (D S i!SchemaType) = " R ela tion " Then

AtomS = " r e l a t i o n / " & (D S i! SchemaNamel) &
& (D S I!SchemaName2) & " ' , 'E R R e la t io n ') . " & n l

P r in t #FNum, Atom$
End I f

End I f

V * Get n e x t r e c o r d * /

D SI.M oveNext
Wend
On E rror Resume N ext
D S I.C lo se

End I f
’ / * Get n e x t t a b le
N ext TablelD*/.
On E rror Resume N ext
AppDB. C lo se
'DS.M oveNext

End I f
C lo se #FNum

On E rro r Resume Next
D S .C lo se
HandDB. C lo se
AppDB. C lo se

End Sub

Sub B L E ngine_G etP rologD ata (Com pSet$, l i n k s e t $, C on ten t$)
’ / * C o n str u c t BL e x e c u t io n r e s u l t from P r o lo g f i l e s * /

V * f i l e s : c o m p s e t .p l , l i n k s e t . p l , c o n t e n t .p l * /
Dim FNum*/,
Dim F ileN am e$

CompSet = ""
l i n k s e t = ""
C on ten t = ""

’ / * Open f i l e * /
On E rror Resume Next
F ileN am e$ = " c : \w a n \g h m i\p r o 3 8 6 w \b le n g in e \c o m p se t .p l"
FNum*/, = F r e e F ile

213

Open FileN am eS For In p u t As #FNum
L in e Input #FNum, CompSetS
C lo se #FNum
’ /* P o l i s h o u tp u t from P r o lo g t o HTE form at
C a ll BLEngine_PolishC om pSet(C om pSet$)

V * Open f i l e * /
FileN am e$ = " c : \u a n \g h m i\p r o 3 8 6 w \b le n g in e \ l in k s e t .p l"
FNum'/, = F r e e F i le
Open F ileN am e$ For In p u t As #FNum
L in e Input #FNum, l in k s e t $
’ / * P o l i s h o u tp u t from P r o lo g t o HTE form at
C a ll B L E n g in e _ P o lish L in k S e t(lin k se t$)

V * Open f i l e * /
FileN am e$ = " c : \w a n \g h m i\p r o 3 8 6 w \b le n g in e \C o n te n t .p l"
FNum'/, = F r e e F i le
Open FileN am e$ For Input As #FNum
L in e In p u t #FNum, C ontent$
V * P o l i s h o u tp u t from P r o lo g t o HTE form at
C a ll B L E n g in e_ P o lish C o n ten t(C o n ten t$)

End Sub

Sub B L E ngine_PolishC om pSet (P ro logO u tP u t$)
V * P o l i s h P r o lo g o u tp u t CompSet t o HTE form at * /
’ / * [[[A p p a r tm en t].T a b le ,[A p p a r tm en t]] , [[C o u r s e N o te s] .T a b le ,[C o u r s e N o te s]]]
* /

Dim pi*/., p2'/,, p3‘/.
Dim S$

S$ = P rologO utP utS

' / * E lim in a te o u te r " [" , "]" * /
S$ = H id (S , 2 , L en (S $) - 2)

’ / * R ep la ce " [] " , t o " \\" * /
P2V. = I n S t r (l , S $, " [[")
W hile p2 <> 0

M id(S, p 2 , 2) = " ["
p3 = I n S tr (p 2 , S , " ,")
p i = I n S tr (p 2 , S , "]")
H id (S , p i , 1) = " "
W hile (p3 <> 0 And p3 < p i)

S = M id(S, 1 , p3 - 1) k " \\" & M id(S , p3 + 1)
p3 = I n S tr (p 3 , S , " ,")

Wend

214

p2’/. = In S tr (1 , S $, " [[")
Wend
V * R ep la ce " [] 11 t o "<>" * /
p2'/, = I n S t r (1 , S $, "[")
W hile p2 <> 0

M id(S , p 2 , 2) = "<"
p2*/. = In S tr (p2 + 1 , S $, " [")

Wend
p27, = I n S t r (1 , S $, "]")
W hile p2‘/, <> 0

M id(S , p 2 , 2) = ">"
P27. = I n S t r (i , S$, "]")

Wend

' / * Remove sp a c e s * /
p27, = In S tr (1 , S $, " ")
W hile p2’/, <> 0

I f (p2 = 1) Then
S = M id(S , 2)

E ls e
} II II II II II < 1 1 II < 1 1 II > 1 1 l l > II ^ j

I f H id (S , p2 - 1 , 1) = Or MidCS, p2 + 1 , 1)
S = M id (S , 1 , p2 - 1) & M id(S , p2 + 1)

E ls e
I f H id (S , p2 - 1 , 1) = •'<" Or H id e s , p2 + 1 ,

S = H id e s , 1 , p2 - 1) & H id e s , p2 + 1)
E ls e

I f H id e s , p2 - 1 , 1) = ">" Or H id e s , p2 + 1 , 1)
S = Hides, 1 , p2 - 1) & Hides, p2 + 1)

End I f
End I f

End I f
End I f

p2'/, = In S tr ep2 + 1 , S $, " ")
Wend

P rologO u tP u t$ = S

End Sub

Sub B L E n gin e_P o lish C on ten t eC ontent$)
V * P o l i s h c o n te n t o u tp u t from P r o lo g * /
1/ * Remove " []" * /

C on ten t$ = H id eC on ten t$, 2 , L en (C on ten t) - 1)

Then

1) = "<" Then

">" Then

215

End Sub

Sub B L E n gin e_P o lish L in k S et (l in k s e t $)
’ /* P o l i s h l i n k s e t * /

C a ll B L E n g in e_ P o lish C o m p S et(lin k se t$)
End Sub

Sub B L E ngine_SendProlog 0
’ /* Communicate w ith BL en g in e * /

Dim FileN am e$
Dim FNuml*/,, Fnum2*/,
Dim F i le S iz e l ' / i , F ile S iz e 2 '/ ,

’ / * I n i t i a l i z e f o r c o n s is t e n c y * /
’C a ll D B H a n d _ In itia liz e

’ / * D e le t e f i l e s * /
On E rror Resume Next
F ileN am e$ = " c :\w a n \g h m i\P r o 3 8 6 w \b le n g in e \c o m p se t .p l"
K i l l FileN am eS
F ileN am e$ = " c : \w a n \g h m i\P r o 3 8 6 w \b le n g in e \l in k s e t .p l"
K i l l FileN am eS
F ileN am e$ = " c : \w a n \g h m i\P r o 3 8 6 w \b le n g in e \c o n te n t .p l"
K i l l F ileN am e$

’ / * R ew r ite f i l e * /

F ileN am e$ = " c : \w a n \g h m i\P r o 3 8 6 w \b le n g in e \f la g te x t .p l"
FNuml = F r e e F i le
’ Open F ileN am e$ For Random A ccess Read W rite As #Fnum2
Open F ileN am e$ For Output As #FNuml
P r in t #FNuml, "Y. "
C lo se #FNuml
F i l e S i z e l = F ileL en (F ileN a m e$)

V * W ait u n t i l d a ta read y from P r o lo g * /
F i l e S iz e 2 = F ileL en (F ileN a m e$)
W hile F i l e S iz e 2 <= F i l e S i z e l

F i le S iz e 2 = F ileL en (F ileN a m e$)
D oEvents

Wend

End Sub

REFERENCES

1. F. A frati and C. K outras, “A H ypertex t Model S uppo rting Q uery
M echanism s,” in H Y P E R T E X T : C O N C E P TS, S Y S T E M S A N D
A P P L IC A T IO N S , Proceedings o f European Conference on H ypertext
(E C H T ’90) (A. Rizk, N. S treitz , and J . Andre, eds.), C am bridge
U niversity Press, Versailles, France, pp. 52-66, Nov. 1990.

2. R. Akscyn, F . Halasz, T. Oren, V. Riley, and L. W elch, “In terchanging
H ypertex ts ,” Panel o f the H ypertex t’89 Conference, AC M , Pittsburgh,
1989.

3. R. Akscyn, D. M cCracken, and E. Yoder, “KMS: A D istribu ted H yperm edia
System for M anaging Knowledge in O rganizations,” C om m unications o f
the A C M , vol. 37, no. 7, pp. 820-835, 1988.

4. B. A m ann, M. Scholl, and A. Rizk, “Q uerying T yped H ypertex ts in
M u ltic a rd /0 2 ,” in Proceedings o f the A C M European Conference on
Hypermedia Technologies (E C H T '94), E dinburgh, Scotland, pp. 198-205,
Sept. 1994.

5. K. Anderson, R .N .Taylor, and J. E .J . W hitehead , “C him era: H ypertex t
for Heterogeneous Software E nvironm ents,” in Proceedings o f the
A C M European Conference on Hypermedia Technologies (E C H T '94),
E dinburgh, Scotland, pp. 94-107, Sept. 1994.

6. M. Bieber, “A u tom ating H yperm edia for Decision S uppo rt,” Hypermedia ,
vol. 4, no. 2, pp. 83-110, 1992.

7. M. B ieber, “Providing Inform ation System s w ith Full H yperm edia
Functionality ,” in Proceedings o f the Tw enty-Sixth Hawaii Internationa,I
Conference on System Sciences (H IC SS), Vol. I l l , M aui, Hawaii, Jan .
1993.

8. M. B ieber, “On In teg rating H yperm edia in to Decision Support and O ther Infor
m ation System s,” Decision Support System s , vol. 14, pp. 251-267, 1995.

9. M. B ieber and T. Isakowitz, “Bridge Laws in H ypertext: A Logic M odeling
A pproach,” tech. rep., New York University, C enter for Research on
Inform ation System s, July 1991. (Technical R eport # S T E R N IS-91-17).

10. M. B ieber and C. K acm ar, “Designing H ypertex t Support for C om putational
A pplications,” C om m unications o f the A C M , vol. 38, no. 8, pp. 99-107,
1995.

11. M. B ieber and S. K im brough, “On G eneralizing the Concept of H y p ertex t,”
M anagem ent In form ation System s Quarterly, vol. 16, no. 1, pp. 77-93,
1992.

216

217

12. M. Bieber and S. K im brough, “On the Logic of Generalized H y p e rte x t,”
Decision Support System s, vol. 11, pp. 241-257, 1994.

13. M. B ieber and J. W an, “Backtracking in a M ultiple-w indow H ypertex t
E nvironm ent,” in Proceedings o f the A C M European Conference on
Hypermedia Technologies (E C H T'94), E dinburgh, Scotland, pp. 158-166,
Sept. 1994.

14. D. B ulterm an, “Specifying and Support of A dap tab le Networked M ultim ed ia ,”
A C M M ultim edia System s, vol. 1, no. 2, pp. 68-76, 1993.

15. A. Burger, B. Meyer, C. Jung, and K. Long, “The V irtua l N otebook System ,”
in Hypertext'91 Proceedings, San A ntonio, TX , pp. 395-402, Dec. 1991.

16. U. Cavallaro, “H IFI - H ypertex t Interface to E x ternal D atabases,” in D esigning
User Interfaces fo r Hypermedia (W. Schuler, J. H annem ann, and
N. S treitz , eds.), Springer, Germany, pp. 219-224, 1995.

17. U. Cavallaro and M. Tentori, “H IFIN B IP O P - H ypertex t Interface to F inancial
D a ta in B IP O P B ank (Ita ly),” in D esigning User In terfaces fo r
Hypermedia (W . Schuler, J. H annem ann, and N. S treitz , eds.), Springer,
Germany, pp. 236-246, 1995.

18. E. Conklin, “H ypertex t: A Survey and In tro d u c tio n ,” IE E E Com puter, vol. 20,
no. 9, pp. 17-41, 1987.

19. J . Conklin and M. Begem an, “gIBIS: A H ypertex t Tool for E xplo ra to ry Policy
Discussion,” A C M Transactions on In form ation System s, vol. 6, no. 4,
pp. 303-331, 1988.

20. J. Conklin and M. Begem an, “gIBIS: A Tool for All Reasons,” Journa l o f the
A m erican Society fo r In form ation Science, vol. 20, pp. 200-213, 1989.

21. W . Croft and H. T urtle , “A Retrieval Model for Incorporating H ypertex t
Links,” in H ypertex t’89 Proceedings, P ittsb u rg h , pp. 213-224, Nov. 1989.

22. A. V. D am , “H y p ertex t’87 Keynote A ddress,” C om m unications o f ACM ,
vol. 31, no. 7, pp. 887-895, 1988.

23. H. Davis, W . Hall, I. H eath, G. Hill, and R. W ilkins, “Tow ards an
In tegrated Inform ation Environm ent w ith O pen H yperm edia System s,”
in Proceeding o f the A C M Conference on Hypertext, M ilan, Italy, pp. 181
190, Nov. 1992.

24. H. Davis, S .K night, and W .Hall, “Light H yperm edia Link Services: A
S tudy of T h ird P a rty A pplication In teg ration ,” in Proceedings o f the
A C M European Conference on Hypermedia Technologies (E C IIT '9 4),
E dinburgh, Scotland, pp. 41-50, Sept. 1994.

218

25. N. Delisle, “Neptune: A H ypertex t System for CAD A pplications,” in
Proceedings o f A C M SIG M O D In ternational Conference on M anagem ent
o f Data, W ashington, D .C ., pp. 132-143, 1986.

26. D. E nglebart, “C ollaboration Support Provisions in A ugm ent,” in O A C Digest:
Proceedings of the 1984 A FI PS Office Automation Conference, Los
Angeles, C.A., pp. 51-58, Feb. 1984.

27. A. Fountain , W . Hall, I. H eath , and H. Davis, “M ICRO COSM : An O pen M odel
for H ypertex t W ith D ynam ic Linking,” in H Y P E R T E X T : C O N C E P T S ,
S Y S T E M S A N D A P P L IC A T IO N S , Proceedings o f European Conference
on H ypertext (E C H T ’90) (A. Rizk, N. S tre itz , and J. Andre, eds.),
Cam bridge U niversity Press, Versailles, France, pp. 298-311, Nov. 1990.

28. E. Fox, Q. Chen, and R. France, “In teg rating Search and Retrieval w ith
H ypertex t,” in H ypertext/H yperm edia Handbook (E. Berk and J. D evlin,
eds.), M cGraw-Hill P ublish ing Co., Inc., New York, 1991.

29. H. Frei and D. Stieger, “M aking Use of H ypertex t Links when R etrieving Infor
m ation ,” in Proceeding o f the A C M Conference on Hypertext, M ilan,
Italy, pp. 102-111, Nov. 1992.

30. M. Frisse and S. Cousins, “Inform ation Retrieval From H ypertext: U pda te on
the D ynam ic M edical H andbook P ro jec t,” in H ypertex t’89 Proceedings,
P ittsb u rg h , pp. 199-212, Nov. 1989.

31. M. Frisse, S. Cousins, and S. Hassan, “WALT: A Research E nvironm ent for
M edical H ypertex t,” in H ypertext’91 Proceedings, San Antonio, pp. 389
394, Dec. 1991.

32. R. F u ru ta and D. S to tts , “T he Trellis H ypertex t Reference M odel,” in
Proceeding o f the F isrt Hypertext N IS T Standardization W orkshop
(J. Moline, D. Benigni, and J. Baronas, eds.), US G overnm ent P rin tin g
Office, W ashington, G aithersburg , MD, pp. 83-93, Jan . 1990.

33. P. G arg, “A bstraction M echanism s in H ypertex t,” C om m unications o f the
ACM , vol. 31, no. 7, pp. 862-870, 1988.

34. F . G arzo tto , L. M ainetti, and P. Paolini, “N avigation P a tte rn s in H yperm edia
D a ta Bases,” in Proceedings of the Twenty-Sixth Hawaii International
Conference on System Sciences (HICSS), Vol. III, M aui, Hawaii, Jan .
1993.

35. F . G arzo tto , L. M ainetti, and P. Paolini, “A dding M ultim edia Collections to
the D exter M odel,” in Proceedings of the ACM European Conference on
Hypermedia Technologies (ECH T’94), E dinburgh, Scotland, pp. 70 80,
Sept. 1994.

219

36. F . G arzo tto , P. Paolini, and D. Schwabe, “HDM - A M odel-Based A pproach
to H ypertex t A pplication Design,” A C M Transactions on In form ation
System s , vol. 11, no. 1, pp. 1-26, 1993.

37. K. Grpnbaek, “Com posites in a D exter-Based H yperm edia Fram ew ork,”
in Proceedings o f the A C M European Conference on Hypermedia
Technologies (E C H T ’94), Edinburgh, Scotland, pp. 59-69, Sept. 1994.

38. I<. Grpnbaek, J. A. Hem, O. L. M adsen, and L. Sloth, “D esigning D exter-based
C ooperative H yperm edia System s,” in H ypertex t’93 Proceedings, S eattle ,
WA, pp. 25-38, Nov. 1993.

39. K. Grpnbaek, J. A. Hem , O. L. M adsen, and L. Sloth, “System s: A D exter-based
A rchitecture,” C om m unications o f the A C M , vol. 37, no. 2, pp. 65 74,
1994.

40. K. Grpnbaek and R. Trigg, “Design Issues for a D exter-based H yperm edia
System ,” in Proceeding o f the A C M Conference on Hypertext, M ilan,
Italy, pp. 191-200, Nov. 1992.

41. I<. Grpnbaek and R. Trigg, “Design Issues for a D exter-based H yperm edia
System ,” C om m unications o f the ACM , vol. 37, no. 2, pp. 41-49, 1994.

42. C. G uinan and A. Sm eaton, “Inform ation R etrieval from H ypertex t Using
D ynam ically P lanned G uided Tours,” in Proceeding o f the A C M
Conference on Hypertext, M ilan, Italy, pp. 122-130, Nov. 1992.

43. A. H aake, “CoVer: A C ontextual Version Server for H ypertex t A pplications,”
in Proceeding o f the A C M Conference on Hypertext, M ilan, Italy, pp. 43-
52, Nov. 1992.

44. F . Halasz, “Reflections on N oteCards: Seven Issues for the N ext G eneration
of H yperm edia System s,” Com m unications o f the AC M , vol. 31, no. 7,
pp. 836-852, 1988.

45. F . Halasz, T. M oran, and R. Trigg, “N oteC ards in a N utshell,” in Proceeding
o f the 1987 A C M Conference o f H um an Factors in C om puter System s
(C H I+ G I87), Totonto , O ntario , pp. 45-52, April 1987.

46. F . H alasz and M. Schwartz, “The D exter H ypertex t Reference M odel,”
in Proceeding o f the F irst Hypertext N IS T Standardization W orkshop
(J. Moline, D. Benigni, and J. Baronas, eds.), G aithersburg , MD, pp. 95
133, Jan . 1990.

47. F . H alasz and M. Schwartz, “T he D exter H ypertex t Reference M odel,” C om m u
nications o f the AC M , vol. 37, no. 2, pp. 30-39, 1994.

48. Y. H ara and R. Botafogo, “H yperm edia D atabases: A Specification and Form al
Language,” in D E X A ’94, pp. 521-529, 1994.

220

49. Y. H ara, A. Keller, and G. W iederhold, “R elationship A bstractions for
an Effective H ypertex t Design: A ugm entation and G lobalization ,” in
D E X A ’91, pp. 270-274, 1991.

50. L. H ardm an, D. C. B ulterm an , and C. V. Rossum , “The A m sterdam
H yperm edia Model: A dding T im e and C ontext to th e D exter M odel,”
C om m unications o f the AC M , vol. 37, no. 2, pp. 50-62, 1994.

51. K. Hertw ig, “T he E S P R IT P ro jec t H IFI Medical A pplica tion ,” in D esigning
User Interfaces fo r Hypermedia (W. Schuler, J . H annem ann, and
N. S treitz , eds.), Springer, Germ any, pp. 225-235, 1995.

52. G. Hill and W .H all, “E xtend ing the Microcosm M odel to a D istribu ted
E nvironm ent,” in Proceedings o f the A C M European Conference on
Hypermedia Technologies (E C H T ’94), Edinburgh, Scotland, pp. 32-40,
Sept. 1994.

53. K. H ira ta , Y. H ara, N. Shibata, and F. H irabayashi, “M edia-based N avigation
for H yperm edia System s,” in H ypertext'93 Proceedings, S eattle , WA,
pp. 159-173, Nov. 1993.

54. T . Isakow itz, “H yperm edia, Inform ation System s and O rganizations: A
Research Agenda,” in Proceedings o f the Tw enty-S ixth A nnua l Hawaii
In terna tiona l Conference on System Sciences (H IC SS), Vol. I l l , M aui,
Hawaii, pp. 370-379, Jan . 1993.

55. T. Isakow itz, E. S tohr, and P. B alasubram anian , “RM M : A M ethodology for
S tru c tu red H yperm edia D esign,” C om m unications o f the AC M , vol. 38,
no. 8, pp. 34-44, 1995.

56. C. K acm ar, “Supporting H yperm edia Services in th e User In terface,”
Hypermedia, vol. 5, no. 2, pp. 85-101, 1993.

57. C. K acm ar, “A Process A pproach for Providing H yperm edia Services
to Existing, N on-H yperm edia A pplications,” Journal o f Electronic
Publishing: Organization, D issem ination and Design, (Forthcom ing).

58. C. K acm ar and J. Leggett, “PROXH Y: A Process-O rien ted Extensible
H ypertex t A rchitecture,” A C M Transactions on In form ation System s,
vol. 9, no. 4, pp. 399-419, 1991.

59. G. Landow, “P opular Fallacies A bout H ypertex t,” in D esigning Hypermedia
fo r Learning (D. Jonassen and H. M andl, eds.), Springer-V erlag, New
York, pp. 39-59, 1990.

60. D. Lange, “A Form al Model for H ypertex t,” in Proceeding o f the F irst Hypertext
N IS T Standardization W orkshop (J. Moline, D. Benigni, and J. Baronas,
eds.), G aithersburg, MD, Jan . 1990.

221

61. D. Lange, “O bject-O rien ted H yperm odeling of H ypertex t S upported Infor
m ation System s,” in Proceedings o f the Tw enty-Sixth A nnual Hawaii
In terna tiona l Conference on System Sciences (H IC SS), Vol. I ll , M aui,
Hawaii, Jan . 1993.

62. J. Leggett and R. Killough, “Issues in H ypertex t In terchange,” Hypermedia,
vol. 3, no. 3, pp. 159-186, 1991.

63. J. Leggett and J . Schnase, “Viewing D exter w ith Open Eyes,” C om m unications
o f the ACM , vol. 37, no. 2, pp. 77-86, 1994.

64. D. Lucarella, “A Model for H ypertext-B ased Inform ation R etrieval,”
in H Y P E R T E X T : C O N C E P TS, S Y S T E M S A N D A P P L IC A T IO N S ,
Proceedings o f European Conference on Hypertext (E C H T ’90) (A. Rizk,
N. S tre itz , and J. Andre, eds.), Cam bridge U niversity Press, Versailles,
France, pp. 81-94, Nov. 1990.

65. D. Lucarella, S .Pariso tto , and A. Zanzi, “M ORE: M ultim edia O bject Retrieval
E nvironm ent,” in H ypertext’93 Proceedings, Seattle , W A, pp. 39-50, Nov.
1993.

66. C. M aioli, W . Penzo, S. Sola, and F. V itali, “Using a Reference Model for Infor
m ation System s C om patib ility ,” in Proceedings o f the Tw enty-Seventh
A nnua l Hawaii International Conference on System Sciences (H IC SS),
Vol. I l l , M aui, Hawaii, pp. 376-385, Jan . 1994.

67. K. M alcolm , S. Poltrock, and D. Schuler, “Industria l S treng th H yperm edia:
R equirem ents for a Large E ngineering E nterprise ,” in H ypertext'91
Proceedings, pp. 313-328, D ecem ber 1991.

68. C. M arshall and P. Irish, “G uided Tours and O n-Line P resentations:
How A uthors Make Existing H ypertex t Intelligible for R eaders,” in
H ypertext'89 Proceedings, P ittsbu rgh , pp. 15-42, Nov. 1989.

69. K. O sterbye, “S truc tu re and Cognitive Problem s in Provid ing Version Control
for H y p ertex t,” in Proceeding o f the A C M Conference on Hypertext,
M ilan, Italy, pp. 33-42, Nov. 1992.

70. N. M eyrowitz, “T he Missing Link: W hy W e’re All Doing H ypertex t W rong,” in
The Society o f Text: Hypertext, Hypermedia, and the Social C onstruction
o f In form ation (E. B arre tt, ed.), M IT Press, Cam bridge, pp. 107-114,
1989.

71. R. M inch, “A pplication and Research Areas for H ypertex t in Decision Support
System s,” Journal o f M anagem ent In form ation System s, vol. 6, no. 3,
pp. 119-138, 1990.

72. J. N ielsen, “T he A rt of N avigating T hrough H ypertex t,” C om m unications o f
the AC M , vol. 33, no. 3, pp. 296-310, 1990.

222

73. H. P a ru n ak , “D on’t Link Me In: Set Based H yperm edia for Taxonom ic
R easoning,” in Hypertext '91 Proceedings, San Antonio, pp. 233-242, Dec.
1991.

74. H. P a ru n ak , “O rdering the Inform ation G raph ,” in Hypertext/Hypermedia,
Handbook (E. Berk and J. Devlin, eds.), M cGraw-Hill Pub lish ing Co.,
Inc., New York, pp. 299-325, 1991.

75. A. Pearl, “S un ’s Link Service: A Protocol for Open L inking,” in H ypertext'89
Proceedings, P ittsbu rgh , pp. 137-146, Nov. 1989.

76. V. Q uin t an d I. V atton , “Com bining H ypertex t and S tru c tu red D ocum ents in
G rif,” in Proceeding o f the A C M Conference on H ypertext, M ilan, Italy,
pp. 23-32, Nov. 1992.

77. V. Riley, “An Interchange Form at for Hypertext, Systems: T he In term edia
M odel,” in Proceeding o f the F irst Hypertext N IS T Standardization
W orkshop (J. Moline, D. Benigni, and J. Baronas, eds.), G aithersburg ,
MD, pp. 213-222, US G overnm ent P rin ting Office, W ashington, Jan.
1990.

78. A. R izk and L. Sauter, “M ulticard: An O pen H yperm edia System ,” in
Proceeding o f the A C M Conference on H ypertext, M ilan, Italy, pp. 4
10, Nov. 1992.

79. H. Sch iitt and N. S treitz, “H yperbase: A H yperm edia Engine based
on a R elational D atabase M anagem ent System ,” in H Y P E R T E X T :
C O N C E P T S, S Y S T E M S A N D A P P L IC A T IO N S , Proceedings o f
European Conference on H ypertext (E C H T ’90) (A. Rizk, N. S treitz , and
J. A ndre, eds.), C am bridge U niversity Press, Versailles, France, pp. 95-
108, Nov. 1990.

80. J. Schnase and J. Leggett, “C om putational H ypertex t in Biological M odelling,”
in H ypertext'89 Proceedings, P ittsb u rg h , pp. 181-197, Nov. 1989.

81. J. Schnase, J. Leggett, D. Hicks, P. N iirnberg, and J. A. Sanchez, “Open
A rchitectures for In tegrated H yperm edia-based Inform ation System s,”
in Proceedings o f the Tw enty-Seventh A nnual Hawaii In ternational
Conference on System Sciences (H IC SS), Vol. I ll , M aui, Hawaii,
pp. 386-395, J a n . 1994.

82. J. Schnase, J. Leggett, D. Hicks, and R. Szabo, “Sem antic D a ta M odeling of
H yperm edia A ssociation,” A C M Transaction on In form ation System s,
vol. 11, no. 1, pp. 27-50, 1993.

83. J. Spivey, The Z Notation, Prentice-H all In ternational, H ertfordshire, England,
1989.

223

84. P. S to tts and R. F uru ta , “Petri-N et-B ased H ypertext: D ocum ent S tru c tu re
w ith Browsing Sem antics,” A C M Transaction on In form ation System s,
vol. 7, no. 1, pp. 3-29, 1989.

85. P. S to tts , R. F u ru ta , and J. Ruiz, “H yperdocum ents as A utom ata : T race-based
Browsing P roperty Verification,” in Proceeding o f the A C M Conference
on Hypertext, M ilan, Italy, pp. 272-281, Nov. 1992.

86. N. S treitz , J . Haake, J. H annem ann, A. Lemke, W . Schuler, and M. Thiiring,
“SEPIA : A Cooperative H yperm edia A uthoring E nv ironm en t,” in
Proceeding o f the A C M Conference on Hypertext, M ilan, Italy , pp. 11-22,
Nov. 1992.

87. M. Thiiring, J . H annem ann, and J. Haake, “H yperm edia and Cognition:
D esigning for C om prehension,” C om m unications o f the AC M , vol. 38,
no. 8, pp. 57-66, 1995.

88. F . Tom pa, “A D a ta Model for H ypertex t D atabase System s,” A C M Trans
actions on In form ation System s, vol. 7, no. 1, pp. 85-100, 1989.

89. R. Trigg, “G uided Tours and Tabletops: Tools for C om m unicating in a
H ypertex t Environm ent,” A C M Transactions on In form ation System s,
vol. 6, no. 4, pp. 398-414, 1988.

90. Iv. U ttin g and N. Yankelovich, “C ontext and O rien tation in H yperm edia
Networks,” A C M Transactions on In form ation System s, vol. 7, no. 1,
pp. 58-84, 1989.

91. A. Vanzyl, “O pen H yperm edia System s Com parisons and Suggestions for
Im plem entation S trategies,” in Proceedings o f the E C H T '94 W orkshop
on Open Hypermedia, E dinburgh, Scotland, Sept. 1994.

92. J. W an, “In teg ra ting H ypertex t w ith Inform ation System s th rough D ynam ic
M apping ,” Ph .D . D issertation, New Jersey In stitu te of Technology, CIS
D epartm en t, Newark N J 07102, April 1996.

93. J . W an and M. Bieber, “GHMI: A G eneral H ypertex t D a ta Model Supporting
In teg ration of H ypertex t and Inform ation System s,” in Proceedings o f
the Tw enty-N in th A nnual Hawaii In terna tiona l Conference on System
Sciences (H IC SS), Vol. 2, M aui, Hawaii, pp. 47-56, Jan . 1996.

94. J. W an, M. B ieber, P. Ng, and J. W ang, “GHM I: A G eneral H ypertex t
D a ta M odel for In tegrating H ypertex t and Inform ation System s,” in
Proceedings o f Workshop on Intelligent Hypertext,, in C onjunction w ith
the ACM Conference on Inform ation and Knowledge M anagem ent
(C IK M ’94), G aithersburg, M aryland, Dec. 2 1994.

95. J. W an, M. Bieber, J . W ang, and P. Ng, “A Logic-based A pproach to
In teg rating H ypertex t and Inform ation System s,” D ecision Support
System s, (subm itted).

224

96. J. W an, M. B ieber, J . W ang, and P. Ng, “D ocum ent M anagem ent Through
H ypertext: A Logic M odeling A pproach,” in Proceedings o f the Tw enty-
Seventh A nnua l Hawaii In ternational Conference on S ys tem Sciences
(H IC SS), Vol. I l l , M aui, Hawaii, pp. 558-568, Jan . 1994.

97. J . W an, M. B ieber, J. W ang, and P. Ng, “LHM: A Logic-based H ypertex t
D a ta M odel for In tegrating H ypertex t and Inform ation System s,”
in Proceedings o f the Tw enty-E ighth A nnual Hawaii In terna tiona l
Conference on System Sciences (H IC SS), M aui, Hawaii, pp. 350-359,
Jan . 1995.

98. J. W ang, F. M hlanga, Q. Liu, W. Shang, and P. Ng, “An In telligent D ocum en
ta tion S upport Environm ent,” in Proceedings o f the F ifth In terna tiona l
Conference on Software Engineering and Knowledge Engineering , San
Francisco, CA, pp. 429-436, June 1993.

99. J. W ang and P. Ng, “TEX PRO S: An Intelligent D ocum ent Processing
System ,” In terna tiona l Journal o f Software Engineering and Knowledge
Engineering , vol. 2, no. 2, pp. 171-196, 1992.

100. U. W iil and J. Leggett, “Hyperform : Using Extensib ility to Develop D ynam ic,
O pen and D istribu ted H ypertex t System s,” in Proceeding o f the A C M
Conference on Hypertext, M ilan, Italy, pp. 251-261, Nov. 1992.

101. N. Yankelovich, B. H aan, N. M eyrowitz, and S. Drucker, “In term edia: The
Concept and the C onstruction of a Seamless Inform ation Envirom ent.,”
IE E E C om puter, vol. 21, no. 1, 1988.

102. Y. Zheng and M. Pong, “Using S ta techarts to M odel H ypertex t,” in Proceeding
o f the A C M Conference on Hypertext, M ilan, Italy, pp. 242-250, Nov.
1992.

	Integrating hypertext with information systems through dynamic mapping
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Motivation and Related Work
	Chapter 3: GHMI: Basic Conceptstitled
	Chapter 4: GHMI: A Dexter-Based Hypertext Model
	Chapter 5: Mapping Relational Databases To Hypertext
	Chapter 6: Implementation: The GHMI Prototype
	Chapter 7: Summary and Future Work
	Appendix A: Second Modeling Domain: TEXPROS
	Appendix B: Sample Source Code for Database Handler
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures

