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ABSTRACT

INTEGRATING HYPERTEXT W ITH INFORMATION SYSTEMS 
THROUGH DYNAM IC M APPING  

by 
Jiangling Wan

T his d isserta tion  presents a  general hypertext model (G IIM I) supporting  

in teg ration  of hypertex t and inform ation system s through dynam ic m apping. Infor

m ation  system s in tegrated  based on th is  model benefit from hypertex t function

alities (such as linking, backtracking, history, guided tours, anno ta tions , etc.) 

while preserving their own com puta tion  capabilities. A lthough system s supporting  

in teg ration  of hypertex t and interface-oriented inform ation system s do exist in 

hypertex t litera tu re , there  is no existing model or system  effectively supporting  

in teg ra tion  of hypertex t and com putation-orien ted  inform ation  system s. GIIMT 

m akes its  m ajor contribu tions by both  extending and specifying the  well-known 

D ex ter H ypertex t Reference M odel. G IIM I extends the  D exter model to  overcome 

its lim ita tions. G IIM I also m aps its capabilities to  the  ex tended  D exter model 

w ith  ap p ro p ria te  specifications to  m eet the  requirem ents of our dynam ic m apping 

environm ent. T he extended D exter functions apply bridge laws in the  hypertex t 

knowledge base to  m ap inform ation system  objects and relationships to  hypertex t 

construc ts  a t  run-tim e. We have im plem ented GHM I as a  p ro to type  to  prove its 

feasibility.
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CHAPTER 1

INTRODUCTION

T his chap ter presents an overview of this d isserta tion , including its m otivation, 

approach, contribu tions and  chap ter outlines.

1.1 Motivation

T he overall goal of th is  research is to  add hypertex t functionality  to  inform ation 

system s and therefore m ake these system s more friendly, powerful and effective 

for users. Incorporating  direct, context-sensitive access to  pieces of inform ation 

and th e ir  in terrela tionships w ithin inform ation system s im proves system  effec

tiveness. We have developed a general hypertext,1 d a ta  model GH M I (i.e., a  General 

H ypertex t d a ta  Model supporting  Integration) [94, 93], which supports  in tegration  of 

hypertex t w ith com putation-orien ted  inform ation system s (called COIS th roughou t 

th is  thesis). COISs dynam ically  generate their o u tp u ts  [6, 10, 80, 44], in con trast to  

m ost hypertex t system s which display predeclared contents. Therefore, in COISs, 

users are  unable to  create  an inform ation network m anually.

In general, there  are two d istinct approaches for in teg ra ting  hypertex t w ith 

inform ation systems: e ither including hypertext functionality  as p a rt  of the  in itial 

prem ises of the inform ation system  design, or adding  hypertex t functionality  to  

existing inform ation system s through some dynam ic m apping m echanism . We 

adop t the second approach, i.e., in tegrating hypertex t and inform ation system s 

dynam ically. Given a GHM I hypertex t system , inform ation system s’ developers (or 

builders) in tegrate  th e ir  system s by defining bridge laws. Bridge laws are schem ata

LWe do not distinguish the terms hypertext and hypermedia. We always use hypertext. 
with the belief that our discussion applies to multimedia environments with proper 
extensions.

1
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which specify the dom ain m apping from an inform ation system  to the hypertex t 

system . This ensures th a t  the  inform ation system  rem ains hypertext-unaware  and  

the im posed changes are m inim al— two of our m ajor contribu tions. We build GIIMT 

upon the  concept of generalized hypertext [11, 12], developed to  im prove the  concept 

of basic hypertext employed by m any existing system s. G eneralized hypertex t 

in troduces dynam ic m apping, which allows the  hypertex t system  to  infer links at, 

run tim e based on s tru c tu ra l specifications of th e  inform ation system  application .

T he m ajority  of to d ay ’s hypertex t system s are still designed for standalone, 

isolated applications [54]. They are usually non-in tegrated  specialized system s 

[58, 67, 70]. To take advantage of hypertext functionalities (navigation, an n o ta tio n , 

and s tru c tu ra l representation) users have to  give up the  fam iliar applications they  

use everyday and rebuild th e ir  inform ation fram ework to  fit in to  these specialized 

system s. By con trast, in an in tegrated  system , readily-available hypertex t function

alities can be added to  inform ation system s w ith slight cooperative ad ju stm en t [57]. 

R ecent efforts tow ards open hypertex t system s [56, 58, 75, 78, 91] have a llev iated  

some of the  lim itations of specialized system s, especially for display-oriented  infor

m ation system s which p rim arily  facilitate accessing and m anaging large docum ent- 

oriented inform ation [10]. However, none of these efforts su p p o rt COISs which 

calcu late or otherw ise generate their ou tpu ts  dynam ically  as effectively as our 

approach does. Exam ples of COISs include docum ent m anagem ent system s, expert 

system s, decision suppo rt system s and  database  m anagem ent system s [8, 10]. We 

have developed GHM I to  suppo rt in tegration of a  varie ty  of COISs w ith hypertex t. 

System s im plem ented according to  GHM I function w ith in  a dynam ic m apping  

environm ent. Furtherm ore, as described in [8, 6], bridge laws enable in teg ration  

w ith m inim al change to  the  CO IS— often the hypertex t system  just, has to  in tercep t 

in ternal com m unications w ith the  original COIS interface.
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1.2 Approach

Although hypertex t has been evolving rapidly, no w idely-accepted hypertex t da ta  

model facilitates our goal for COIS in tegration . O ur efforts in th is d irection dem on

s tra te  the  power of dom ain m apping. In [96], we presented a  logic m odeling approach , 

which m apped the  dom ain of docum ent m anagem ent to  the  dom ain of hypertex t. 

We fu rther extended th is work with com posite objects and higher-level construc ts  

[95, 97]. In add ition  to  dom ain m apping, hypertex t system s based on ou r model 

will also provide users w ith a  rich set of navigation facilities. For exam ple, we 

incorporate  task-based backtracking [13] to  facilitate  navigation w ithin m ulti-w indow  

environm ents.

Nevertheless as we develop our own hypertex t d a ta  model, we take advan tage  of 

o th ers’ research. We chose the  widely-recognized D exter H ypertex t Reference Model 

[47] as the  basis of GHM I. The D exter model (see §2.3) establishes a  robust m odeling 

foundation through  a  layered system  architecture. D exter makes significant con tri

butions to  providing a comm on, principled in terchange s tan d ard  for diverse hypertex t 

system s. Its separa ting  hypertex t into three layers makes m odeling conceptually  

clearer and m ore understandable. H ypertex t researchers addressed the  usefulness 

and robustness of D exter in a  panel a t  the  IIy p e rte x t’89 conference and in research 

using D exter as a  paradigm  of system interchange and hypertex t m odeling [38, 

41, 39, 37, 40, 66, 50, 62, 35]. Building a hypertex t model as a  D exter-based 

hypertex t model would enable us to  share and  exchange common in terests and 

ideas w ith o ther researchers. However, D exter is a  general ab s trac t model grown 

from a  variety of existing system s. For our m odeling goal of in teg rating  COISs, 

we found some obstacles in m odeling GHM I using D exter. D exter has problem s 

regarding com posite com ponents, anchors and  link specifiers. We needed to  extend 

D exter to  overcome these problem s. We dem onstra te  the  com patib ility  of G H M I and 

D exter by m odeling G IIM I’s capabilities using the  extended D exter w ith ap p ro p ria te
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specifications, including com ponent classes, typed links, com posite s truc tu res , typed 

anchors, navigation s tructu res and the  storage layer functions. T he extended D exter 

storage layer functions (i.e., the accessor function, the  com ponent resolver function 

and the  anchor resolver function) apply bridge laws in the  hypertex t knowledge base 

to  m ap COISs to  hypertex t a t  run-tim e.

In th is  thesis, we sum m arize our research to  date  in developing GHM I. 

We illu s tra te  by m apping relational da tabase  m anagem ent system s (RD BM S) to  

hypertex t. T his in tegration enables the  RDBM S user to  take advantage of hypertex t 

functionalities (e.g., navigation, anno ta tion , analysis support, etc., as shown in §5.2) 

while preserving s tandard  RDBM S com putational facilities (e.g., query processing). 

We also im plem ented G IIM I in a p ro to type  to  prove its concepts and functionality.

1.3 Contributions

G IIM I aim s a t  enhancing COISs by adding hypertex t functionalities th rough 

dynam ic m apping facilities. In tegrating  w ith GHM I only imposes m inim al changes 

on COISs. We view G H M I’s m ajor contribu tions from the  following four aspects: 

(1) GH M I vs. B ieber et a l.’s work [12, 9]: Taking its  m otivation from B ieber et, a l.’s 

original concept of bridge laws, GHM I extends and  formalizes bridge laws w ith in  

a  com prehensive hypertex t d a ta  model. GHM I m odels com posites which are not 

found in B ieber et a l.’s work. Furtherm ore, GHM I formalizes the  dynam ic m apping  

concept in to  a  hypertex t d a ta  model. Also, GHM I extended and  im plem ented the  

general C O IS /h y p ertex t in tegration arch itec tu re  originally proposed by Dr. B ieber 

bu t not yet im plem ented, as a  running pro to type; (2) GHM I as a  hypertex t d a ta  

model: As a  general hypertext d a ta  model for supporting  hypertex t and  COIS 

in tegration , GHM I uniquely provides a  comprehensive set of hypertex t function

alities regarding hypertex t objects (com posites, behavioral link typing, and dynam ic 

anchors), dom ain m apping m echanism s (bridge laws) and a  variety  of navigation
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features (guided-tours, task-based  backtracking, history, bookm arks, overviews); 

(3) GHMT as a D exter-based model: GHM I uniquely com bines specific extensions 

and  specifications on D exter to  m eet the requirem ents of our dynam ic dom ain 

m apping  environm ent. T his dem onstra tes both G H M I’s and  D ex ter’s robustness 

and  generality. Extensions are  in troduced on D exter’s com posites, link specifiers 

and  anchors. To m ap all GHM I capabilities to  D exter, GHM I specifies D ex ter’s 

com ponents, links, anchors, the  resolver function and  the  accessor function; (4) 

T he GHM I prototype: T he GHM I pro to type is th e  first hypertex t system  which 

im plem ents the  general arch itec tu re  of supporting  dynam ic in tegration  of hypertex t 

and  m ultiple COTSs. I t  proves the  feasibility of the  arch itec tu re  and  the  GHMT 

m odel.

1.4 An Outline

T his thesis is organized as follows. Each chapter contains a  sum m ary  section a t  

its end. C h ap te r 2 discusses related  work of o ther researchers regarding open 

hypertex t system s, com bining hypertex t and da tabase  technologies, the  D exter 

H ypertex t Reference Model and  D exter-based models. We m otivate  GHMT by 

identifying the  lim itations of these approaches. We also review o ther efforts on 

add ing  hypertex t functionality  to  DBM S— our sam ple dom ain. These efforts aim  

a t providing trad itional DBM Ss w ith a hypertex t-based  design and  navigation 

environm ent. C hap ter 3 presents G H M I’s basic concepts and  functionality, including 

an im plem enta tion  system  arch itectu re  and basic elem ents regard ing  com ponents, 

links, anchors, navigation s truc tu res  and  the  bridge law definition m echanism . 

C h ap te r 4 m odels GHM I using D exter and  builds GHM I as a  D exter-based model 

to  ensure g rea ter in tegrity  in the  hypertex t comm unity. After first in troducing  

the  form alized D exter model, we present extensions to  D exter to  cover GHM I and  

also specifications needed to  m ap GHM I capabilities. C h ap te r 5 illustra tes how
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th e  GHM I hypertex t could im prove RDBM S and  how to  apply  the  bridge law 

m echanism  to  m ap RDBM S to G H M I’s hypertex t model. C hap ter 6 discusses 

a  detailed  GH M I im plem entation  p ro to type  a rch itec tu re  and reports the  cu rren t 

GHM I im plem entation  sta tu s . C hap ter 7 concludes th is thesis by discussing GH M I 

in tegration  guidelines, com paring GHM I w ith o ther hypertex t m odels and system s, 

ou tlin ing  po ten tia l research directions based on extensions to  GHM I including 

connecting GHM I to  W W W , and identifying GH M I con tribu tions and lim ita tions. 

To dem onstra te  the  generality  of GHM I, A ppendix A gives bridge law exam ples 

for m apping ano th er CO IS dom ain (a docum ent docum ent m anagem ent system  

called T E X PR O S) which is quite  different from RDBM Ss. A ppendix B gives sam ple 

da tabase  handler source code for generating and  executing bridge laws.



CHAPTER 2

MOTIVATION AND RELATED WORK

T he effectiveness of inform ation system s can be im proved greatly  by in troducing  

hypertex t features (or functionalities) including inform ation s tru c tu rin g  (i.e., infor

m ation pieces are organized as a  network of nodes, links and  anchors in a  hypertex t), 

navigation (i.e., m echanism s for direct access to  inform ation over a  hypertex t 

network, including link traversal, guided-tours, network overviews, bookm arks, 

backtracking, etc.) and  anno ta tion  (i.e., com m ents on nodes, links and anchors to  

record im p o rtan t inform ation).

The m ajority  of curren t generation hypertex t system s require th a t  app lications 

be im ported  in to  th e  underlying hypertext system s. In these system s, app lications 

need to  model th e ir d a ta  in term s of hypertex t concepts (i.e., nodes, links and 

anchors) and im port these d a ta  m anually into the  m anagem ent of the  hypertex t 

system s. Therefore, such hypertext system s are closed  system s which are hardly  

extensible to  access or link objects external to  them  [75]. A uthoring a  hypertex t- 

based application relies on the  editing  facilities provided by the  hypertex t system . 

And there  is no way to  connect existing objects w ithou t converting and im porting  

them , and no way to  suppo rt linking between existing applications. W ith  closed 

hypertex t system s, users may be a ttrac ted  by helpful hypertex t functionalities, bu t 

would have to  give up (or reim plem ent) their curren t system  and  often much of 

the  functionality  they  provide. Aiming a t overcom ing these lim ita tions faced by 

closed hypertex t system s, a  variety of approaches tow ards developing open  hypertex t 

system s have appeared  in the  hypertext lite ra tu re  and open hypertex t system  has 

become a  prom ising research direction in the  hypertex t field [23, 40, 75, 76, 78]. 

A lthough to  da te  there  is no w idely-accepted definition for open hypertex t system s,

7



8

we believe it is essential for an open hypertex t system  to  have a robust model 

supporting  a  broad range of hypertext features and  to  in tegrate  existing app lications 

and utilize d a ta  created  w ith these applications [81, 23, 91].

We aim  a t  developing a robust hypertex t d a ta  model to  su p p o rt in teg rating  

hypertex t w ith  COTSs. T he benefits of a  formal hypertex t model have been addressed 

already in [1, 46, 60]. An abstrac t formal model provides a  m echanism  to  understand  

and express the  comm on structu res of different hypertex t system s, i.e., to  construct a 

globally acceptab le term inology from which both  hypertex t researchers and users can 

benefit [1]. A formal model also helps to  separa te  hypertex t s tru c tu re  from content 

and gives a  consistent in terp re ta tion  for im plem entation  purposes [102], A lthough 

there is no w idely-accepted d a ta  model in hypertex t area, there  are some well-known 

models which are frequently cited by hypertex t researchers [2, 39, 37, 40, 63, 62, 

50, 35, 66]. T he D exter model is widely referenced and  accepted as a  com m on, 

principled in terchange s tan d ard  for diverse hypertex t system s. H ypertex t researchers 

addressed the  usefulness of D exter in a  panel a t H ypertex t’89 conference and  later 

as p a rt  of research efforts under the paradigm  of system  interchange and  hypertex t 

m odeling [38, 41, 39, 37, 40, 66, 50, 62, 35]. D ex ter’s separa ting  hypertex t in to  th ree  

arch itectu ral layers makes m odeling conceptually  clearer and more understandab le . 

Having such a  model as our base enables us to  share and  com pare our work w ith o ther 

researchers based on a  comm on framework. To in tegrate  hypertex t w ith COTSs, we 

need to  go beyond, extending and specifying the  D exter concepts to  m ake G IIM I a 

com prehensive d a ta  model supporting  system  integration.

In th is  chapter, we m otivate our objective of developing GHM I through a 

general review of related  work from o ther researchers. We discuss re la ted  work 

regarding open hypertex t system s and D exter-re lated  m odeling approaches. We 

propose G H M I’s objective as a  solution to  th e  existing lim ita tions of these system s 

and m odels. As we use RDBM S as an exam ple dom ain for illu stra ting  GH M I dom ain
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m apping  power, we also include a  review on o ther related  work concerning hypertex t 

and DBMS.

2.1 Open Hypertext System s

Several open hypertex t approaches are  reported  in recent years, including Sun’s Link 

Service [75], M icrocosm [23, 24, 27], SP3 [81, 63], C him era [5] and M ulticard  [78].

2.1.1 Sun’s Link Service

S un’s Link Service [75] is a  com m ercial p roduct shipped w ith  Sun’s program  mi ng- 

in-the-large software developm ent environm ent, the  Network Software Environm ent 

(NSE). In tegration  with the  Link Service is a standard  p a rt of each Sun w orkstation 

application . T he Link Service provides an extrem ely loose coupling of applications 

and stre tches openness to  its lim its based on a  com m unication protocol. Appli

cations in tegrate  with the Link Service through a  link lib rary  which im plem ents 

the  protocol. I t  allows users to  make and m aintain explicit and persisten t in ter

app lication  relationships. T he L ink Service m anages links and  anchors while the 

applications are responsible for supporting  operations on linked data .

T he Link Service only provides link services a t  a  prim itive program m ing level. 

Its  bu ilt-in  hypertex t functionality  is very prim itive. I t  provides only for a d istribu ted  

linking m echanism  and a  way for representing and storing  th e  source and  destination  

of a  link. T he application is responsible to  define the  link-related  operations on linked 

objects. The Link Service’s hypertex t concept is sim ply plain node, link and  anchors. 

T here is no typ ing  or com posite and  the  links are  s ta tic  and binary.

2.1.2 Microcosm

M icrocosm  [23, 24, 27] is an open hypertex t system developed a t  the  University of 

S ou tham pton  aim ing a t in teg rating  th ird  party  applications. I ts  system  arch itec tu re  

m anages the com m unication between a  chain of independent filters and various node
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content viewers. The viewers are partially  or fully M icrocosm -aware applications and 

responsible for displaying docum ents or o ther m edia da ta . Viewers should be able 

to  com m unicate w ith M icrocosm by generating messages on user actions. Messages 

are passed through th e  filter chain and handled by proper filters. Any filter can 

consume, pass or generate messages to  the message chain. Three special filters 

(i.e., the Linkbase filter, th e  Linker and the  C om puted Linker) accom plish the  basic 

linking services. At the  end of the filter chain, the  link dispatcher presents th e  user 

any actions contained in the  resulting messages. M icrocosm in tegrates hypertex t- 

unaw are viewers by using a  shared clipboard.

As opposed to  GHM I, which aim s to  suppo rt com putation-orien ted  appli

cations, M icrocosm is p rim arily  open to  viewers which are d isplay-oriented app li

cations (IOSs in G H M I’s term inology). M icrocosm ’s system  arch itec tu re  does not 

suppo rt in teg rating  com putation-oriented applications which dynam ically  generate 

d a ta  a t run-tim e (i.e., COISs). The Microscosm applications have to  be changed to 

em bed some m acro to  handle com m unication w ith the  link service. A M icrocosm ’s 

linear filter chain is too  restrictive and inefficient. F ilte rs  have to  be ordered carefully 

to  ensure they  receive all messages they expect to  handle. All messages are  routed 

through all filters regardless of their relatedness to  individual filters. T his heavily 

reduces the  system  perform ance when the  message traffic is heavy and the  filters are 

still busy on delivering unrelated  messages. Such a  chain s tru c tu re  is also p roblem atic  

when two filters need to  exchange messages before any actual action-invoking message 

is produced for the  link dispatcher. A more advanced filter m anagem ent s tru c tu re  has 

been proposed by th e  M icrocosm authors to  overcome these lim itations [52] tow ard 

supporting  d istribu tion . In the  advanced M icrocosm, filters are grouped in to  sm aller 

chains. F ilte rs  are asked to  register message types regarding actions in a  table. 

However, the  sm all chains still face the lim ita tions m entioned above. M icrocosm 

supports  no com posites and its links are s ta tic , untyped and binary.
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2.1.3 SP3

Since 1991, researchers in The H yperm edia Research L aborato ry  a t Texas A&M 

University have been developing a  series of hyperm edia pro to types SPO-3 [58, 63, 81] 

along w ith a  series of hyperbases (i.e., hypertex t database m anagem ent system s with 

da tabase  m anagem ent facilities such as query processing, access control, concurrency 

control, e tc .) HBO-3 to  support d a ta  storage facilities. T he latest. SP3 defines a  

flexible m odel which extends the  concepts of D exter and suppo rts  th e  d istribu tion  of 

hyperm edia across w ide-area networks. SP3 employs a  process-based system  archi

tecture . Links and anchors are m odeled as independent processes which implement, 

the  characteristic  hyperm edia behaviors such as link traversal. This approach enables 

a  wide range of flexible run-tim e sem antics (i.e., run-tim e behavior of links and 

anchors could be defined as process p roperties and m ethods). Users can in tegrate  

w ith services handled by link and anchor processes. SP3 and HB3 attem pt, to  support 

a  hyperm edia-in-the-large environm ent (i.e., open hypertext system s) which can not 

be m odeled by D exter. In SP3, applications are responsible to  m anage persistent, 

selections and  m aintain  anchor and  link m arkers at, run-tim e.

SP3 has no system atic support for com putation-oriented applications which 

handle dynam ically  generated da ta . It is the  app lication’s responsibility  to  extend 

its functionality  to  support dynam ic da ta . SP3 also requires app lications to  store 

th e ir d a ta  in the  hyperbase in order to  benefit from special hypertex t features such 

as versioning. SP3 models links and anchors as first-class processes. T his allows 

the  behaviors of links and anchors to  be flexibly extendible a t  the  price of m anaging 

them  in an inconsistent m anner. SP3 has no way to  define anchors on links, as links 

are not first, class com ponents (i.e., independent objects w ith th e ir  own properties 

and operations).
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2.1.4 Chimera

C him era [5] is an open hypertex t system  developed a t U niversity of C alifornia a t 

Trvine, which supports in teg rating  hypertext w ith heterogeneous software devel

opm ent environm ents. I t  m odels hypertex t using a  set of concepts including objects, 

viewers, views, anchors, links, a ttribu te-value  pairs and  hyperwebs. A d istinctive 

feature  of C him era is th a t  it defines links and anchors on views of objects com bined 

w ith  viewers (not on objects them selves). This allows viewers to  im plem ent special 

anchor and  link behaviors. Anchors are  defined and m anaged by viewers. A link is 

defined as a  set of anchors which allows n-ary links.

T he C him era system  arch itec tu re  follows a  client-server approach to  m eet 

th e  needs of m ultiple user environm ents. The arch itec tu re  consists of a  C him era 

server, a  process invoker, C him era clients and ex ternal system s. The C him era 

server im plem ents the  services based on C him era hypertex t concepts and m anages 

the  connections of C him era clients. The process invoker is responsible to  invoke 

C him era clients. A C him era client includes one or m ore viewers. The C him era  

client is responsible for definition of objects, views and  anchors. It also m anages 

th e  com m unication w ith th e  C him era server on link traversal. One advantage of 

client-server approach is to  allow the  client to  be w ritten  in different languages. 

T he com m unication message details between C him era client and  C him era server are  

hidden from C him era client by C him era API and from th e  C him era client by a  

message A D T. The C him era’s m odeling links on views enables objects to  be viewed 

from different perspectives and  provides a  flexible way to  include new viewer-specific 

anchors. GH M I shares some of these ideas and differs in m any others.

C him era was developed specifically for the needs of tools in the  software devel

opm ent environm ents. I ts  application dom ain is restric ted  on viewers which are 

display-oriented applications. T here is no way in C him era to  sup p o rt the  dom ain of 

com putation-orien ted  applications like GHM I does. C him era hides message deta ils
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from applications by using higher-level APT and ADT. This allows the  Chim era  

developer to  change the message formats freely w ithout affecting the rest of the  

system. B ut the  tradeoff of this approach is th a t  we have to  modify pa rt ic ipa ting  

applications to  use C him era’s message ADT. Chim era associates anchors with views. 

Such views consists of object views and the viewer which displays the  object, views. A 

chimera view could contain interface objects such as bu ttons  and windows, depending 

on how the viewer defines its views. This is flexible in handling multiple views of 

a  single object. It allows the viewers to  freely implement viewer-specific features a t  

the  price of m anaging links and anchors inconsistently which makes it difficult, to 

extend s tandard  features in the Chim era server. C him era’s viewers are also heavily 

burdened by having to  define anchors and  m ap anchors to  objects.

2.1.5 Multicard

M ulticard is an open hypermedia system developed within the  Esprit  project 

Multiworks [78]. M ulticard provides a  hyperm edia system with a  set, of hyperm edia  

objects, an au thoring /nav iga tion  tool, a  scripting language and a  m ultim edia  compo

sition editor. I t  allows integration of a single hyperm edia system with a various 

editors and applications which run as separate  processes. Applications com m unicate  

with M ulticard using a  message passing protocol M2000. M2000 com pliant editors 

autom atically  benefit from the M ulticard hyperm edia functionalities including 

linking facilities and  composite structures.

The M ulticard  architecture consists four distinct layers: a  set of hyperm edia  

basic objects, a  persistent, storage platform, an au thor ing/navigation  tool, an M2000 

protocol and a  series of compliant editors. The M ulticard hypermedia objects include 

nodes, groups, anchors, links, hyper-graphs, etc. Different editors m anage node 

contents. Groups represent composites of nodes. A M ulticard link is viewed as a 

communication channel between endpoints and acts as a  handle or po r t  to  the  desti
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nation object. Scripts can be a ttached  to M ulticard’s hyperm edia objects (nodes, 

groups and  anchors) to  define their  dynamic behavior. Scripting provides a  powerful 

means to  extend the system functionality. Even M2000 is extensible using the 

scripting language.

M ulticard ’s editors are display-oriented applications and they have to  be 

modified to  be M2000 compliant to  partic ipa te  the  integration. M ulticard’s links 

and  anchors are untyped and links are binary only.

2.1.6 Conclusion

As a  summ ary, we see these m odels/system s have three limitations. (1) They 

were designed prim arily  for integration with interface-oriented systems [7] (referred 

to as IOS, e.g., editors and document-display systems), which support  interface- 

level functionality. None of them  supports  integration with COISs effectively. 

C om putation-orien ted  systems (e.g., database systems, expert systems, decision 

suppo rt  systems) generate d a ta  dynamically (e.g., query or com m and processing 

results) a t  run-tim e and COISs are primarily used for analytic  functionality, ra ther  

than  navigation am ong displayable information networks [10]. The dynamic nature  

of COISs requires the  hypertext system to provide an efficient way to establish 

dynam ic links am ong dynamic d a ta  which can not be determ ined sta tically  like 

those m anaged by interface-oriented systems. While Microcosm and M ulticard 

perhaps could be extended to serve a  COIS, neither provides a  system atic  support  to 

do so. (2) Curren t open hypertext systems are primarily link services, which support 

user-declared links between independent applications. W ith in  these systems the 

applications are “hypertext-aware.” The applications have to  m aintain information 

regarding hypertext links and anchors. Such an approach imposes changes on the 

applications to facilitate the  process of link traversal. (3) They  do not directly 

provide us a  robust model supporting  COIS integration a t  a system level.
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To date, there is 110 existing hypertext model to  our knowledge supporting  

dynamically linked COISs. Various modeling approaches have been reported  in 

hypertext literature, examples include approaches based on logic [33], graphs [74, 

88], sets [73], Petri nets [84, 32, 85], object-orientation [61] and  s ta techarts  [102]. 

Although there is no widely-accepted d a ta  model in hypertext area, there are some 

well-known models which are  frequently cited by m any hypertext researchers. Never

theless as we develop our own hypertext d a ta  model, we hope to benefit from the  

existing work from other  hypertext researchers. We choose the  frequently-cited 

D exter Hypertext Reference Model [46, 47] as the  basis of GHMI. The next section 

discusses the Dexter model and o ther Dexter-based models and  issues.

2.2 H ypertext and Databases

D uring our discussion in th is  thesis, we take relational da tabase  m anagem ent systems 

(RDBM S) as an example domain to illustrate G H M I’s goal of domain m apping  

and  enhancing COISs with hypertext functionalities. RDBM Ss are basically charac

terized on the basis of information management style. Navigation in a  RD BM S is 

based on predefined queries. RDBM Ss have powerful query processing abilities. The 

query results are dynamically generated and are not available beforehand. H ypertex t  

is the  science of relationships and is characterized by interactive access to  information 

and relationships. Recently, hypertext researchers have been combining hypertex t 

with database  facilities. These efforts regarding RD BM S fall into the following four 

directions: m anaging hypertext da ta , information retrieval, hypertext application 

design and  enhancing RDBM S with hypertext functionality.

Managing Hypertext Data. Schnase et al. [82], Hyperform [100] and Hyperbase [79] 

employ database  facilities (e.g., query processing, access control, concurrency control, 

event notification) to  m anage d a ta  and implement their  underlying hypertex t d a ta
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models. This approach uses database facilities to  store and retrieve node, link and 

anchor da ta . It pays no attention to  adding hypertext functionality to  da tabase  

applications themselves, which is GH M I’s focus.

In formation Retrieval. Many systems and models address hypertext querying as 

an extension to  database  information retrieval facilities [29, 29, 42, 28, 64, 21, 30, 65, 

53, 4]. They focus on how to search for information over hypertext networks, ra ther  

than  on how to m ap  databases information spaces to hypertext networks. As future 

work, GIIM I could incorporate information retrieval technologies to  explore useful 

implicit relationships (e.g., through com puting object similarities) and make them  

direct accessible through link traversals.

Hypertext Application Design. Some models and systems combine RD BM S and 

hypertext concepts in application design and include hypertext functionality as part  

of the  applications. RM M  [55] proposes a  seven step  relationship m anagem ent 

methodology for the  design and development of hyperm edia applications. I la ra  et 

al. [49] presents two types of relationship abstractions (augm entation and  global

ization) as a  facility to  improve hypertext application design. Such a  “design from 

scratch” approach, which is common to  these two models, results in a  hypertex t 

system whose s truc tu re  is the  same as the  underlying da tabase ’s schema, bu t which 

is not reusable for o ther applications and is no t able to add  hypertext functionality  

to  existing applications.

Enhancing Databases with Hypertext Functionality. This is G H M I’s direction. 

There is some related work in this direction. (1) In [48], H ara  et al. adop t a  two-step 

approach to  improve hypertext application design and mapping. At s tep  one, the 

designers use the RD BM S model to design the application objects and relationships. 

Then a t  step two, they employ an SQL-like specification language to t rans la te  these
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objects and relationships to hypertext. The second step is similar to  G IIM I’s bridge 

law m apping  mechanism. This approach enables generating nodes and  links dynam 

ically. Once written, the same m apping rules can be reused for different, applications. 

This reduces redundancies and inconsistencies resulting from individual application 

design. However, [48]’s focus is also primarily on application design. Its hypertext 

model is very primitive. Links are prim arily  for built-in sem antic  relationships. 

H ypertex t  only helps accessing these explicit relationships. It is also not clear 

how to  implement domain transla tions  between database and hypertext. (2) The 

E S P R IT  Pro jec t  HIFI [16] aims a t  providing external databases with a  hypertext- 

based navigation interface. The hypertext interface model H D M +  is an extension 

of HDM  [36]. The core approach of H IFI is to  define a set of application m appings 

between H D M +  and database primitives, including the m apping between H D M +  and 

E R  diagrams. The HIFI approach defines a hypertext interface according to the  user 

needs ra the r  than  the structure  of the  underlying databases. Both HIFI and GHMI 

adop t a  very similar approach toward m apping RDBMS dynamically. They  differ in 

three aspects, (a) HIFI primarily focuses on capturing explicit d a tabase  elements in 

term s of HDM-I- constructs (e.g., E R  relationships, semantic relationships between 

entities, etc). It focuses on m apping explicit and predefined object groups (e.g., 

entities) and  relationships (e.g., entity  relationships in E R  d iagram s) which are the 

s ta t ic  aspects of an application. Once the  database  is designed using I ID M +  terms, 

all relationships become explicit. GHM I focuses on m apping implicit schematic 

relationships and the generic underlying database structures (e.g., da tabases, tables, 

records), (b) GHM I more faithfully preserves the  original RD BM S s tructu res  which 

the  users are familiar with while HIFI forces the  user to  adop t a  hypertext-specific 

struc ture . T he  GHM I hypertext s truc tu re  is defined according to  the  underlying 

da tabase  s tructures  ra ther than  individual application users’ needs, (c) The IIIFT 

hypertext interfaces are specialized for individual applications. For example, the
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interface of a  medical application [51] is not reusable for a  financial bank application 

[17]. The GH M I architecture could provide a  general interface for all applications 

based on modeling generic RD BM S structures.

2.3 The Dexter Hypertext Reference Model

In this section, we outline the  basic Dexter framework and  identify its problems. 

Then  we review some o ther  Dexter-related models and issues.

2.3.1 An Overview of the Dexter Model

T he D exter H ypertex t Reference Model [46, 47] (called D exter th roughou t this thesis) 

is a  hypertex t model developed as a  result of two workshops of hypertext researchers 

and  based upon several well-known existing hypertext systems such as NotoCards 

[45], N ep tune  [25], KMS [3], In term edia  [101, 77] and  Augm ent [26]. In Dexter, 

a  hypertex t  is divided into three  separate  layers, namely the run-tim e layer, the  

s torage layer and the w ith in-com ponent layer as shown in Figure 2.1. A hypertext 

is considered as a  network of information. The run-time layer concerns the  dynamic 

behavior of a hypertext, regarding how to  present it  to  the  user and  how the user 

in terac ts  with such a  presentation under some interface environment. The storage 

layer consists of a network of com ponen ts , which are information containers and inter

connected by relational links. The within-component layer deals with the  internal 

contents or s truc tu re  of individual components. D exter focuses on the storage 

layer. The reason for not modeling the  within-component layer is th a t  the  range 

of com ponent contents (e.g., tex t, graphics, animation, images, etc.) is too broad 

to  be captured  by a  single generic model. A similar argum ent applies to the run

tim e  layer, due to  the vast diversity of user interface tools for accessing a  hypertext. 

Nevertheless, Dexter does provide inter-layer interfaces to  allow the  storage layer 

to  com m unicate  with the o ther two layers. Anchors  are employed as the interface
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F i g u r e  2 .1  The Three-Layer D exter Model

between the storage layer and  the within-component layer to  establish references 

am ong portions of individual components. The interface between the storage layer 

and the  run-tim e layer includes a  mechanism called p re se n ta t io n  sp ec i f ica tio n  which 

allows the user interface presentation of a hypertex t to  be encoded a t  the  storage 

layer.

A component can be either an atom, a  link or a  composite component. The 

atom ic component is the  primitive unit in Dexter. Link components represent 

relationships between components. A composite com ponent is constructed  from 

o ther  components. The notion of composite components provides a  hierarchical 

component s truc tu r ing  mechanism in Dexter and  corresponds roughly to  “nodes” 

in o ther  hypertext systems. A Dexter component is modeled as a  two-part com po

sition: base com ponent  and  component i n fo r m a t io n  ( C O M P J N F O ) . T he  base 

com ponent is recursively defined as an atom , a  link, or a  sequence of o ther  base 

components. The com ponent information includes a  set of a ttr ibu tes ,  a  presentation 

specification (interpretable  only in the  run-tim e layer) and a  sequence of anchors 

pointing to  a portion of this com ponent’s contents. Every component is identified 

by its unique ID (UID) which is unique throughout a  hypertext. The content of a 

link component consists of a  sequence of endpoint specifications. A link endpoin t is 

specified by an entity  called specifier which is a  combination of a  component speci

fication ( C O M P O N E N T J S P E C ) ,  an anchor id, a  direction and a  presentation 

specification. Span-to-span links are supported  by anchors. The direction of a  link
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endpoint, could be “FR O M ,” “T O ,” “B ID IR E C T ” and  “N O N E.” A link must have 

an endpoint with direction “T O ” which excludes dangling links (i.e., links missing 

endpoints). An anchor is a  composition of an anchor id  (A N C H O R J D , identifying 

an anchor within a  component) and an anchor value ( A N C H O R - V  A L U  E ,  location 

information w ithin a  component in terpretable by the  w ith in-com ponent layer). The 

Dexter storage layer also includes two fundamental functions: a  reso lver  function 

and an accessor  function. The resolver function is responsible for resolving the 

component specification in a  link specifier to  an explicit UID. This enables a  link 

to  point to  a  com puted component with its specification in the  link specifier. The 

accessor function is responsible for accessing a component given its UID.

Figure 2.2 shows an example of D exter component, link and  anchor represen

tation. C o m p l ,  C om p2  and L in k l  denote component UIDs. C o m p l  is an a tom ic 

component which defines an anchor as a  portion of its content. C om p2  is a  composite 

component consisting of some direct tex t  and  two atoms. C om p2  also defines an 

anchor in its tex t  content. A th ird  component L in k l  represents the  relationship 

between the  two tex t  portions which are defined as anchors in C o m p l  and  Com p2.  

L in k l  has two endpoints represented as two specifiers. The “FR.OM” endpoin t is 

anchor 1 in C o m p l  and the  “T O ” endpoint is anchor 1 in Comp2. L in k l  has anchor 

IDs instead of anchors in its specifier. The anchor value and the  presentation speci

fication (P r e s e n ta t io n s  pec) are denoted as black boxes indicating th a t  their  exact 

specifications are out of the  scope of the  D exter storage layer model.

D exter also includes a simple model for the run-time layer. In the  run-tim e 

layer, the  basic concept is the  in s ta n t ia t io n  of a  s torage layer component. An instan

tia tion is a  m apping  of a  component from its storage d a ta  format to  its presen

ta tion  format. An entity called session  keeps track of the  dynamic m apping  from 

components to  the ir  instantiations. A session is a  run-tim e access environm ent of a
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F i g u r e  2 .2  The D exter Component Representation

hypertext. All operations w ithin an opened session are recorded chronologically in 

an en tity  history .

2 .3 .2  P r o b l e m s  in  D e x t e r

D exter makes significant contributions to  providing a  common, principled in ter

change s tandard  for diverse hypertext systems. Separating hypertext into three 

layers makes modeling conceptually clearer and more understandable. However, 

as a  general model grown from a  variety of existing systems, D exter is sometimes 

too  general to  fit all systems. As a  reference model, D exter aims to  model only 

the  common features of different systems instead of the  systems themselves in full. 

Therefore, D exter is, by nature , general and incomplete. For our model focusing on 

in tegrating  COISs, we find the following are problems regarding modeling GHM I in 

Dexter. By the  term problem s  here we mean those D exter aspects or concerns, for 

which we need either e x te n s io n s  or specif ica tions  such th a t  they fit GHM I and  our 

proposed hypertext system functionalities.

1. Components. Dexter has problems on the notion of composite components 

in three aspects. (1) Com ponent Information: D exter does not distinguish
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components m anaged by hypertext systems and  those m anaged by th ird -par ty  

applications. We can specify the component a t t r ib u tes  to  explicitly model the  

ownership information as well as bridge laws used to  m ap  individual COTS 

objects. (2) Base components: A Dexter composite component contains “bare- 

bone” base components which are not independent components themselves. 

The definition of component is recursive on base com ponent  ra ther than  on 

com ponent  itself. This implies th a t  base components in a  composite com ponent 

are not components themselves. As UIDs are associated with components only, 

base components have no UIDs. They can not be accessed by the accessor  

function. They  can not be ex terna l  independent components (i.e., they  do 

not exist outside a  composite com ponent’s content). On the o ther hand, base 

components have no component information. There is no way to  associate 

a t t r ibu tes  to  base components. Base components have no anchors or presen

ta t ion  specifications of their  own either. W hen we construct a  composite  

component tak ing  o ther  components as base components, all o ther com ponents  

lose their own properties (regarding a ttr ibu tes , anchors and presentation speci

fication). It is also difficult to  create links am ong base components since they  

are not independent components and have no UIDs. Therefore, such a  notion 

of a  composite is too  restrictive. In our domain of supporting  multiple COISs, 

we might have a  composite component made up of components from different 

COISs (with distinct ownership properties and  other COIS a ttr ibu tes) .  We 

also try  to  model the  internal linking structures of composite components to 

facilitate navigation (e.g., create guided-tours based on the internal links of 

a  composite). We can not effectively model these GH M I composites using 

Dexter. We need to  extend D exter’s composite com ponents to allow e x te rn a l  

components. (3) Atomic Components: Dexter does not model the  content 

of atom ic components. In our dynamic m apping environment, however, it is



23

possible and necessary to model internal s tructures of atom ic com ponents  to 

represent s truc tu red  objects such as a da tabase  records. M odeling s truc tu red  

atomics enables defining links and anchors based on object s truc tu res  (e.g., 

anchors on record fields or values).

2. Links. D exter links have three problems. (1) Dangling links: D ex te r’s intol

erance of these constructs has been widely criticized [39, 40, 63, 62], Tn 

the environment of dynamic COIS mapping, a  link endpoint could specify 

a com puted  component m apped from a  COIS object (defined as a  m apping 

rule). If the  COIS object is deleted inside the COIS (which is t ran sparen t  to 

the hypertext system), the  execution of the  m apping rule will result an empty 

component. This causes the link to  be “dangling.” If the  anchor m arking a 

link is deleted inside the COIS, the  link will become dangling too. Since this 

situation seems often to occur, it can not be ignored by simply excluding it 

from a  hypertex t model. We need to  allow these links and a t  the  sam e time 

develop some mechanisms to  handle them  properly. (2) Unary links: Dexter 

links must a t  least two specifiers. However, unary links (i.e., links with only 

one specifier) could be useful for modeling COIS commands directly available 

as menu items with a  specifier directed as “T O .” Access to  bookm arks can also 

be modeled as a  unary link with only one “T O ” specifier. (3) T yped  Links: 

Dexter links do not explicitly support a  semantic or behavioral type. It has 

been widely recognized th a t  typed links reduce disorientation for users and 

design overhead for designers [20, 67, 73, 87]. Dexter implies th a t  link typing 

is possible by a ttach ing  a “type” a t t r ib u te  to  a  component. We need to  specify 

D exter’s component a ttr ibu tes  to  support  link types explicitly. We classify links 

based on the ir  behaviors. For example, links representing ad hoc relationships 

should be distinguished from those for cross-referencing, those representing the 

underlying hierarchical structures of COIS objects, and those resulted from
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COTS-defined com putation (e.g., a  link with an endpoint as a query result in 

the  domain of relational databases). We need an explicit m ethod to  identify 

object types based on the roles they play in the integrated  hypertext system.

3. Anchors. D exter’s problems on anchors include two aspects: (1) External 

anchors: Dexter defines anchors in the  content of components. It is not 

clear how to define anchors in base components. On the  o ther  hand, link 

specifiers contain an A N C H O R J D  which therefore must be consistent with 

the  definition in the  component embedding the anchor. A link specifier’s 

C O M  P O N  E N T S  P E C  needs to  be resolved to  UIDs and therefore may lead 

to  different UIDs in different computations. Using the  actual A N C H O R J D  

in a  specifier requires an unbearable consistency burden on hypertex t systems, 

requiring all possible components whose UIDs could be m apped from a  given 

C O M  P O N  E N T S  P E C  to  have the same anchors, or a t  least use the same 

A N C H O R J D  for th a t  link. In our environment of dynam ic mapping, 

C O M P O N E N T S P E C  is frequently used in link specifiers to  allow generating 

link endpoints dynamically. Storing A N C H O R J D  in link specifiers which 

resolve to  dynamic components would impose a  heavy consistency burden. 

It is difficult to m ap the  specifier’s A N C H O R J D  to  the  corresponding 

A N C H O R J D  in a  dynamically computed component. (2) Typed Anchors: 

In Dexter, it is not clear how to define keyword anchors [41] and  dynamic 

anchors. We need to  extend D exter to  allow the above external anchors and 

classify them  into three types: plain anchors, keyword anchors and  dynamic 

anchors. P lain anchors are defined statically  with explicit location information 

as their  values. Keyword anchors represent a  group of anchors with the same 

tex t  value. Dynamic anchors are dynamically computed anchors. In our case 

of supporting  COIS integration, dynamic anchors are com puted  a t  run-tim e 

along with COIS components and  links. We need a  mechanism to model these
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anchors in the  storage layer. Dynamic anchors are resolved to  plain anchors 

or keyword anchors a t  run-time according to  the ir  bridge laws. We need to 

extend Dexter to  include new resolver functions to  resolve anchors from bridge 

laws.

4. Dom ain Mapping. D exter was developed from closed hypertext systems. 

It does not model facilities for dynamic integration of hypertex t and infor

m ation systems. We employ a  mechanism called bridge laws to  specify dom ain 

mappings. Under our dynam ic m apping environment, all components m apped 

from COIS objects or relationships are non-persistent v ir tu a l  components. 

The hypertext system does not keep any copy of the ir  contents. Every tim e 

they are required by the  user, the  system maps them  by executing bridge laws. 

These components could be computed components if they are dynamically 

generated from COIS-dependent, operations (e.g., da tabase  queries). Since 

bridge laws are invoked a t  run-tim e to  generate components and  links, we need 

to  specify the semantics of D exter’s resolver and accessor functions to  apply 

bridge laws.

2.3.3 Dexter-based Models and Systems

Over the  past several years, models and systems have been developed following 

Dexter. Some of them  applied Dexter to  build their  systems and made necessary 

extensions or specifications according to  their specific needs; O thers  addressed 

Dexter-re lated  issues regarding their  experience on developing hypertext system and 

d a ta  models.

DHM  (or DeVise hypermedia) [38, 41, 39, 37, 40] is a  Dexter-based hyperm edia 

p ro to type  developed a t  Aarhus University in Denmark. DHM extends D exter in 

link directionality, dangling links, external anchors, keyword anchors, external
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components, virtual components and computed components. [37] further extends 

DHM  composites to  include a class hierarchy and four aspects of composites contents.

Leggett and Schnase criticize D exter’s abilities on hypermedia interchange and 

hyperm edia-in-the-large (i.e., open hyperm edia systems) design [63]. They  address 

four issues from their  experience on transla ting  In termedia and KMS using D exter 

as an exchange s tanda rd  [62]. They discuss issues regarding D ex te r’s problem s on 

dangling links, versioning, external components, deletion semantics for composites, 

com posite’s internal linking and navigational link semantics. In addition, Leggett 

et al. propose seven fundamental assum ptions for hyperm edia-in-thc-large system 

design. Based on these assumptions they claim th a t  Dexter does not support  

hypermedia-in-the-large and  it is not profitable to  further extend the  D exter  model.

RH Y TH M  [66] is a  hypertext system developed the University of Bologna 

in Italy. The au tho rs  believe th a t  modeling RH Y TH M  using D exter proved the  

usefulness, soundness and  robustness of Dexter, although they m ade an extension on 

external anchors. They  introduce a  primitive link typing to  classify links into two 

classes: navigation and  inclusion links, but only allow binary links.

The Am sterdam  Hypermedia Model (AIIM) [50] is a  general framework 

focusing on extending hypertext to  hypermedia. AHM was developed as a Dexter- 

based model with extensions on notions of time, high-level presentation a t t r ib u te s  

and  link context, and  external components. Although AHM extends D exter  from a  

m ultim edia  point of view, which is not the  current focus of GHMI, we share common 

points on modeling composite contents using referencing ra ther  than  em bedding 

o ther  components.

G arzo tto  et al. [35] m ade extensions on D exter’s storage layer by in troducing  

the  concept of collections  and on D exter’s run-tim e layer by related notions of 

collection-navigation and collection-synchronization. The internal s tru c tu re  of a 

collection includes two aspects: a set of members and a  s truc tu re  of topologicnlly



27

arranged  members. Index and  guided-tours are two basic collection-based navigation 

structures. Garzotto  et al. addresses the  Dexter problems on internal composite 

s truc tu res  (only as set) and the notion of navigation s tructures  (guided-tour and 

index). We can go beyond these extensions on composite structures.

2.3.4 Conclusion

Although all of the above approaches address some of the  Dexter problems we 

identified in 2.3.2, no hypertext l iterature to our knowledge addresses all of the  above 

D exter  problems satisfactorily for our needs of supporting  COIS integration. None 

of them  addresses our concern of dynamic domain m apping  and the run-tim e layer 

s truc tu res  supporting task-based backtracking. The o ther  issues they addressed, 

such as the  multimedia and  collaboration related issues, are a t trac tive  but not our 

curren t focus. We will consider them  in our future work on further extending GHMI.

GHM I develops its concepts and functionalities according to  the  requirements 

of supporting  integration of hypertext and COISs. We m ap G IIM I’s capabilities to  

D exter  with appropriate  extensions and  specifications to  overcome the above D exter 

problems. T he  task of modeling GHM I in terms of D exter includes two aspects: 

extensions on composite components, external anchors, dynam ic anchors, unary  

links and dangling links; specifications on component a tt r ibu tes ,  a tom ic components, 

com posite  components, anchors, link specifiers, the resolver function and  the accessor 

function.

2.4 Summary

This chap ter  motivates GHM I through a  s ta te  of the a r t  review of hypertext research 

on open hypertext systems, combining hypertext with database  technology, the  

D exter  H ypertex t Reference Model and Dexter-related issues.
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Open Hypertext Systems. Aiming a t  overcoming the  problems faced by closed 

systems, a  variety of open  hypertext systems have been reported in recent years, 

including Sun’s Link Service [75], Microcosm [23, 24, 27], SP3 [81, 63], Chim era  

[5] and M ulticard [78] From our perspective of supporting  COTS integration, we 

find th a t  these systems and  their models have three limitations. (1) They  were 

designed prim arily  for integration with interface-oriented systems [7]; and therefore, 

(2) current open hypertex t systems are primarily link services, which su ppo rt  user- 

declared links between independent applications. W ith in  these systems the  appli

cations are “hypertext-aware;” and therefore, (3) they do not directly provide a 

robust model to  model a  comprehensive set of hypertext functionalities for the  

hypertext system we intend to  develop.

Hypertext and Databases. H ypertext is the  science of relationships and is charac

terized on the  basis of the  interactive access to  information and relationships. 

RDBM Ss have powerful query processing abilities. The query results are dynam 

ically generated and  are not available beforehand. Recently, hypertext researchers 

have been combining hypertext with database  facilities. These efforts regarding 

RDBM S fall into the  following four directions: m anaging hypertext d a ta ,  infor

m ation retrieval, hypertext application design and  enhancing RDBM S with hypertex t 

functionality. Most o ther hypertext research focus on the  first, three. GH M I focuses 

on enhancing existing RD BM S with hypertext functionality.

W hy Dexter. We aim to develop a  hypertext system with a robust d a ta  model to 

support  in tegrating hypertext with COISs. The Dexter model is widely referenced 

and accepted as a  common, principled interchange s tandard  for diverse hypertext 

systems. H ypertex t researchers addressed the  usefulness of Dexter in a  panel a t  

H ypertex t’89 conference and later in research concerning the  paradigm  of system 

interchange and hypertext modeling [2, 39, 37, 40, 63, 62, 50, 35, 66]. D ex te r’s
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separa ting  hypertext into three architectural layers makes modeling conceptually 

clearer and more understandable. Having such a  model as our base enables us to 

share and  compare our work with o ther  researchers based on a common framework. 

However, to meet the  requirements of dynamic COIS integration, we need go beyond 

and extend the Dexter concepts to  develop a  comprehensive d a ta  model supporting  

system integration facilities.

Dexter and Its Problems. The  D exter Hypertext Reference Model [46, 47] divides 

a  hypertex t into three separate  layers. The run-time layer concerns the  dynamic 

behavior of a  hypertext. The storage layer consists of a  network of com ponents  

which are  information containers and  interconnected by relational links. The 

w ith in-com ponent layer deals with the internal contents or s truc tu re  of individual 

components. The focus of D exter is on the storage layer. D exter  employs anchors  as 

the  interface between the storage layer and the  w ithin-component layer. The interface 

between the storage layer and the run-time layer is a  mechanism called presen ta tion  

spec if ica tion .  For our modeling focused on integrating COISs, we found th a t  D exter 

has the  following limitations. (1) Components: no model for com ponent structures; 

subcom ponents  in a composite component have no component information; no 

com ponent ownership information; (2) Links: no dangling links; no link typing; 

no unary  links; (3) Anchors: no external anchors; no keyword anchors or dynamic 

anchors; (4) Domain mapping: not modeled; We need to  both  extend and  specify 

all of these limitations in our goal of supporting COIS integration with a  powerful 

hypertex t d a ta  model.

Dexter-based Systems and Issues. Over the past several years, models and systems 

have been developed following Dexter, including DHM [38, 41, 39, 37, 40] Leggett 

and Schnase [63], RHYTHM  [66], AHM [50] and Garzotto  et al. [35]. They made 

extensions on Dexter concepts a n d /o r  specified Dexter to m ap  their  models and
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systems. However, no hypertext literature to  our knowledge addresses all of the  

above D exter lim itations satisfactorily for our needs of supporting  hypertex t/C O IS  

integration.

Goal o f  GHMI. We adop t two steps to  develop GHM I as a Dexter-based model: 

F irst, we develop GHM I concepts and functionalities according to  the  requirements of 

supporting  integration of hypertext and COISs. Then, we m ap  G H M I’s capabilities 

to  D exter with appropria te  extensions and specifications to  overcome the  above 

Dexter limitations. Therefore, the task of modeling GHM I in term s of D exter 

includes two aspects: e x te n s io n s  on composite components, external anchors,

dynam ic anchors, unary  links and dangling links; and sp ec i f ica tio n s  on com ponent 

a ttr ibu tes , atomic components, composite components, anchors, link specifiers, the  

resolver function and the  accessor function.



CH APTER 3

GHMI: BASIC CONCEPTS

Figure 3.1 shows the  layout of our proposed hypertext d a ta  model G H M I (a General 

H ypertex t d a ta  Model supporting Integration). After a  brief discussion on the 

system architecture, this chapter focuses on the  GHM I concepts including an object 

class hierarchy, components, links, anchors, dynamic m apping and the  bridge law 

tem plate.

3.1 A System  Architecture

T he purpose of th is  section is to  dem onstra te  how the  COIS m apping approach works 

from an im plem entation  viewpoint. This will support  understand our discussions 

regarding dom ain m apping in GHMI. Figure 3.1 presents a  general system archi

tecture  supporting  implem entation of GHMI. This architecture consists of three 

basic layers: the  computation-oriented information systems (COISs), a  hypertext 

engine (IIT E  [8]) and  the interface-oriented systems (IOSs). An information system 

typically comprises two functional components: an IOS front end and  a  COIS back 

end. By assum ing t h a t  information systems are designed following a  m odu la r  fashion 

such th a t  the ir  IOSs can be replaced by o ther  IOSs, we can augm ent an information 

system with hypertex t functionality by incorporating a  hypertext engine between 

the  IOS and the  COIS. This means the  H T E  intercepts any messages the COIS 

would send to  its interface and generates all appropria te  responses. Each COIS or 

IOS is connected to  the H T E  by its own handler.  A COIS handler is an  extended 

portion of the  COIS and  is responsible for t rans la ting  the messages coming out of 

the  COIS into the  CO IS-H TE communication format which the H T E  can handle 

and vice versa. A nother job  of the COIS handlers is to  “buffer” the  H T E  from the

31
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IO S =In tcrfnce-O ricn ted  System
C O IS = C om putation-O rien tcd  In form ation  System
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Figure 3.1  A GHMI System Architecture

COIS: if the  H T E  expects the  COIS to  perform a  function it can not,, the  COIS 

handler must implement this function to  ensure seamless integration. Similarly, the 

IOS handlers handle IO S-H TE communications and buffering. O ur purpose is to 

design a  system architecture which is general enough to  apply  to  a  variety of COISs 

and  IOSs, which means th a t  every COIS can be arb itra ri ly  combined with an IOS 

th a t  handles its media types. Currently  our m ajor contribution focuses on the COIS- 

H T E  side. The HTE-IOS m apping  would be another  interesting research area. We 

are developing GHM I as a  general hypertext da ta  model supporting  integration of a  

variety of COISs.

T he  H T E  has a  knowledge base made up of COIS-dependent, m apping rules, 

i.e., bridge laws, which m ap individual COISs to  hypertext. Each COIS has its 

own set of bridge laws. These rules are registered by the COIS builders during  the 

progress of system set-up. To in tegrate a  COIS with a  hypertex t system based on 

our model, the  COIS builders need to  write the bridge laws stored in the  H T E ’s 

knowledge base and write the  code for their individual COIS handler.
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Besides a  knowledge base, the  H T E  m aintains three databases: a Linkbase, 

a  Session DB and a  Configuration DB. The Linkbase stores persistent hypertext 

da ta , which are  not m apped from COISs (e.g., m anually created s ta t ic  links, 

anno ta tions  and  bookmarks.). The Session DB stores dynamic d a ta  with respect 

to  a  navigation session (e.g., history information within a  session) for constructing 

dynamic navigation structures such as history list and  backtracking. T he  Configu

ration DB m ain ta ins  configuration information for COISs and IOSs.

T he  H T E  relies on individual COIS handlers as preprocessors to  facilitate 

C O IS-H TE cooperation and is responsible for accomplishing the  hypertex t  function

alities defined in GHMI. It should m anage dynamic information exchange and 

identify m apped hypertex t objects from COIS specifications. T he  I IT E  uses 

predefined bridge laws to  m ap COIS objects to  hypertext objects. W hen the 

H T E  catches some user action which happens on the IOS, say, a  link anchor being 

selected, the  H T E  consults its knowledge base seeking appropria te  semantics of the 

action and  identifies destination COIS objects needed or which COIS execution 

procedure to  invoke. Communication with the  COIS is then activated  through the 

COIS handler, which executes its routines accordingly (e.g., executing the  bridge 

laws, a n d /o r  consulting the  underlying COIS database), often re tu rn ing  a  report to 

display in response to  the  user action.

GHM I aims a t  providing a robust d a ta  model for representing the  function

alities of the  H T E  toward integrating COISs with hypertext. The following sections 

present the  basic elements of the GHM I model. In C hap ter  6, we present a  GHMT 

prototype for implem enting the GHMI system architecture.

3.2 Object Classes

GHMI models objects as links and components. We employ an object-oriented 

approach to  illustrate  the  GHMI object class hierarchy, as shown in Figure 3.2.
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F i g u r e  3 .2  GHMI Object Class Hierarchy

Symbol A  means a  genera liza t ion  relationship between two object classes (the 

upper-position class is the  generalization of the lower-position class in the figure). 

Generalization indicates property  inheritance between classes. T h a t  is, if class A is 

the  generalization of B,  then we can construct B  based on A. B  will inherit all the  

properties  A  has and will also have its own additional properties. These properties 

include a tt r ibu tes  and m ethods (or operations) applicable to  the individual classes.

GHM I classifies links into six categories (see §3.4 for details). Components  

fall in to  three subclasses: Plain Atomic, Structured A tom ic , and Composite. GHM I 

distinguishes composites based on their  internal structures: Set,  L is t ,  T re e  and 

G ra p h  (see §3.5).
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G IIM I’s object, class classification is based on the properties and  operations 

available on the  objects of individual classes. As shown in Figure  3.2, all objects 

have seven common properties: O w n in g S y s te m T y p e ,  O w n in g  S y s t e m  N a m e ,

O w n in g A p p N a m e ,  C o m p N a m e , A ttr ib u te s , B rid g eL a w S p ec  and  P re se n ta t io n S p e c  

The O w n in g S y s te m T y p e  of a  component could be either “H yper tex t” or a  COIS 

handler name. COISs belonging to the same system type share a  single COIS handler. 

O w n in g  S y s t e m  N a m e  is a  COIS name. O zoning A p p N a m e  is an application name 

within a  COIS. GHMI allows an object to  have a  name property  C o m p N a m e  to 

emphasize its semantic  origins. An object name plays a role as a  sem antic  type. 

A ttr ibu te s  is a  sequence of a ttr ibu te-value pairs representing additional COIS- 

dependent, object a ttr ibu tes . B rid g eL a w S p ec  is a  bridge law ID (BLID) identifying 

a  bridge law which maps the content of the  component. The presentation  specifi

cation P re sen ta t io n S p e c  is a  specification abou t how a  component is presented to 

the  user a t  run-time. It enables encoding a  com ponent’s presentation style (e.g., 

positions in an overview graph and window size.) prior to  run-time.

GHM I explicitly distinguishes hypertext components (e.g., annota tions)  from 

those m apped from a  COIS using the  ownership properties (i.e., O w n in g S y s te m T y p e ,  

O w n in g  S y s te m ,N a m e , O w n in g  A ppN am e).  For example, in the  dom ain of RDBM S, 

a  com ponent’s O w n in g  S y s t e m T  ype  could be “D atabase .” Its  O w n in g  S y s t e m N a m e  

could be a  general RDBM S name such as “MS-Access” or “Foxpro,” etc. Its 

O xon ingA ppN am e  could be a  specific application database  name such “Small 

School,” “GHM I Linkbase,” etc. It is helpful to  have such ownership information 

as our intention is to  support multiple COISs and applications simultaneously and 

allow linking am ong them.

An object name C o m p N a m e  plays a  role as a  semantic type. For example, 

for those com ponents m apped from database  tables, we can name them  as “Table” 

to depict their semantics in the  originated COIS. Similarly, a  link representing an
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advisor-student, relationship and  s ta r ting  from the advisor’s record could have a name 

“Advisor.” For hypertext components, such as annotations, we can nam e them  as 

“A nnota tion .”

A bridge law is a  COIS-dependent m apping rule for m apping  COIS objects and 

relationships to  hypertext constructs (i.e., components, links and anchors). Bridge 

laws are stored in the H T E  Knowledge Base. For those com ponents owned by 

“H ypertex t ,” the  B rid g eL a w S p ec  is N O N E .

A GH M I link is a  set of specifiers. Each link specifier contains a  component 

specification (C om pSpec ), an anchor specification (A n c h o rS p e c ), a  direction and 

a  presentation specification (P re sen ta t io n S p e c ). We shall discuss details on link 

specifiers in §3.4. GHMI anchors are defined in link specifiers as A nchorSpec.  An 

A nchorSpec  used in a  link specifier combining with the  C o m p S p ec  in the  same 

specifier (which identifies the  em bedding component) provides complete information 

to  identify an anchor in a  com ponent externally.

All GH M I components have a  common property C O I S O b j  (see §3.5.3 for 

details) which is a COIS-dependent expression indicating their  COIS origins (i.e., the  

original COIS objects they are m apped from). For components not m apped from any 

COISs, the  C O I S O b j  is N O N E .  The content of a  composite component consists 

of a  set of components (C o m p S e t ) and a set of links (L in kS e t .). Each component 

in C o m p S e t  is either identified by a component ID or a  C O I S O b j  expression which 

resolves to  components dynamically by applying corresponding bridge laws. The 

content (C o n te n tS p e c ) of a  s truc tu red  atom ic component is modeled as a  sequence 

of attribute-value  pairs. This captures the  internal s truc tu re  of an a tom ic component. 

For example, a  database record could be modeled as a  s truc tu red  atom ic with a 

content as a  sequence of field-value pairs. The content of a  plain atom ic is undefined 

in GH M I and  could be some direct d a ta  content or reference to  external d a ta  content.

T he  following sections discuss GHM I anchors, links and  components in detail.
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3.3 Anchors

A GHM I anchor is a  portion in the  content of a  component which marks the  endpoint 

of a  link departing  from the component. GHM I defines anchors in link specifiers as 

AnchorSpec:

A nchorSpec  — (A n c h o rID , A nchorType , A n ch o rV a lu e )

which introduces the  concept of anchor typing.

The A n c h o r lD  is a  COIS-dependent value which uniquely identifies an anchor 

location within a  com ponent’s content. For example, a  database record value could 

be identified by a  combination of its key value and field name. On the o ther  hand, a 

tex t  anchor in a  tex t  file can be identified by a  combination of its length and  ofTset 

in the  file.

GHM I anchors are typed into three categories: pla in  anchors, keyw o rd  anchors 

and  d yn a m ic  anchors. The AnchorV a lue  is the  anchor content (i.e., the  tex t  for 

a  tex t  anchor). The A n c h o r lD  and A n ch o rV a lu e  of different anchor types have 

different semantics.

• Plain Anchors

A p la in  anchor is an anchor whose A n c h o r lD  contains explicit location 

information in terpretable  to COISs. P lain anchors are created m anually  and 

statically.

• Keyword Anchors

A keyw ord  anchor is an anchor whose value is a  s tring representing the  keyword 

(or keyphrase). The keyword indicates th a t  its every occurrence inside the 

contents of the  em bedding component is an anchor with the same value. The 

ID of a keyword anchor is statically defined as “N O N E ” and is resolved to 

actual anchor IDs (i.e., locations) by the system a t  run-time. Keyword anchors 

are defined manually.
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• Dynam ic Anchors

A d y n a m ic  anchor is an anchor whose value is defined in a  bridge law and 

resolved to  an explicit anchor dynamically a t run-time. The ID and value of 

a  dynam ic  anchor is resolved by executing a  link bridge law which maps the 

link embedding this anchor in its “F R O M ” specifier. A RD BM S example of 

a  dynam ic anchor is a  s tr ing  in a  record (probably generated from a query 

result) which happens to  be a  tab le ’s name. Such an anchor can be defined in 

M R D C  with semantics like 11A  is an anchor if it is a  V a lu e  of a  record and also 

the  name of a  table in a  da tabase .” Em bedding such an A nchorSpec  in a  link 

specifier of a  bridge law defines the  entire class of such anchors. We shall see 

examples of dynamic anchors in §5.

3.4 Links

Besides common object properties, a  GHM I link has p roperty  L in k T y p e  representing 

six link categories. A link consists of a  sequence of link S p e c i f i e r s  which specify 

the  link endpoints. A hypertext under GHM I helps a  COIS establish direct access 

to  explicit and  implicit relationships am ong underlying COIS objects. This section 

discusses link types and link specifiers.

3.4.1 Typed Links

Typed links provide an easier and  clearer mechanism for both the  readers and  au thors 

to  unders tand  a  hypertext information network. Link typing enhances the power of 

two navigational tactics: f i l t e r in g  and  zoom ing.  Filtering occurs when the  user is 

presented by the  system with a  subset of links which can be followed. W ith  untyped 

links, however, the  user could be overwhelmed by the cognitive overhead of dealing 

with the whole set of links outgoing from components. F ilte ring  on link types restrict 

his or her navigation to  link types of interest while disabling others. Links in GHMI
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have a  property L in k T y p e , representing six categories of links based on different 

roles they are playing in a  hypertext system.

L in k T y p e  — “S tru c tu r e L in k "  | “R e fe r e n c e L in k "

| “A n n o ta iio n L in k"  | “A ssoc ia t ionL ink"

| “N a v ig a tio n L in k"  | “O p e ra t io n L in k "

Structure links represent the  underlying structu ra l  inter-object, relationships 

within a  COIS domain. In a  well-organized information system, am ong the  various 

types of inter-object relationships, there might be distinguishable relationships which 

dom ina te  the  overall information organization and  can be represented as s tru c tu re  

links. For example, in a  RDBMS, a  da tabase consists of tables, a  tab le  consists of 

records and a  record consists of individual values. Such “consists o f ’ (or its reverse 

direction) relationships can be m apped as s truc tu re  links which allow direct access 

from a  parent object to  a  child object or vice versa. S tructu re  links are dynam ic 

links defined by bridge laws.

Reference links  depict cross-reference relationships am ong components, which 

can be generated au tom atically  by the system according to  predefined bridge laws. 

In the  domain of RDBM S, the  ER, diagram itself represents a  cross-referencing 

relationship am ong entities. Although these relationships are lost when we map 

the  E R  diagrams into flat database tables, GHM I could restore them  as reference 

links. O ther  examples include defining a reference link from a record to  ano ther  

record which has the  same key value. The system should be able to  com pute  such 

links autom atically  based on their  bridge laws. Therefore, reference links are  also 

dynam ic links defined by bridge laws.

Annota tion  links connect objects to  their annotations. An anno ta t ion  is a 

com m entary  docum ent a ttached  to  an object. We separa te  an object from its 

anno ta tion  by placing the anno ta tion  in a  separate  atom ic component and connecting
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it to  the  object through an annota tion  link. Unlike s tructure  links and  reference links, 

anno ta tion  links are pure hypertext features which have no corresponding m appings 

in the  underlying COIS. They are s ta t ic  links created manually.

Association links are user-declared ad hoc links representing semantic  

relationships am ong objects. Users can add such links to  or delete them  from a 

hypertext network a t  will. Association links are non-autom atable  (otherwise they 

would be reference links). Instead, they are defined manually based on a  semantic 

conceptualization in the  user’s mind which is not in terpretable by the  system. The 

user can define any links among objects and give them  semantic labels. In GHMI, 

an association link could be an inter-COIS link which relates an object in a  COIS to 

an object in ano ther  COIS. Association links are also static  links created manually.

Navigation links are system-generated links for navigation purposes. Such links 

are used to  construct navigation structures  (e.g., guided-tours, see §3.6). Navigation 

links do not reflect, inter-object relationships. They are dynamic links and generated 

au tom atica lly  by the system according to  the  user’s navigation requests. Navigation 

links are t ran sparen t  to  users. Users might have no knowledge ab o u t  the  existence 

of these links.

Operation links model operational comm ands and queries over a hypertext 

network. They  are dynamic links defined by bridge laws. An operation conducted 

on an object can be modeled as an operation link from the object pointing to  the  

operation results (which might be generated as destination components). O perations 

invoked from an interface menu item can be modeled as an operation link with no 

departing  component. The com puta tion  of the  destination com ponents might be 

completed by the cooperation of the  H T E  and the  COIS. In the  case of RDBM S, 

operations such as da tabase  queries can be modeled as operation links. The user 

can access these links directly. For example, we can define a  query as an operation 

link. Another type of operation link in RDBM S is user-declared queries. The user
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can define frequently-used specific queries as ready-to-follow operation links using a  

C O IS-supported query language. W hen following such a  link, instead of executing 

it directly, the hypertext engine sends the operation to  the  COIS for solutions. The 

destination of such a  link would be the query results resolved dynamically  by the  

C O IS’s query processing system every time this link is followed.

3.4.2 Link Specifiers

T he “content” of a  GHM I link is a  sequence of link S p e c i f ie r s .  A  S p e c i f i e r  defines 

a  link endpoint through four fields:

S p e d f i e r  =  C o m p S p e c , A nchorSpec , D ire c t io n , P resen ta t io n S p e c

C o m p S p e c  is a  component specification identifying a  com ponent as a  link endpoint. 

The GHM I concept of C om pSpec  reflects dynamic m apping between COIS objects 

and GHM I components. The GHM I C om pSpec  is either a  hypertext object specifi

cation H T O b j  (if not m apped from COIS) or a COIS object specification C O I S O b j ,  

plus an optional sequence of ownership properties:

CompSpec =  H T O bj
| (COISObj,
[OwningSystemType,OwningSystemName,OwningAppName])

A C om pSpec  uniquely identifies an object in a  GH M I hypertext system. An 

H T O b j  could be an explicit global component ID (GID) or a  hypertext query 

expression which resolves to  a  component ID by some hypertex t query processing 

function. (The discussion on hypertext queries is ou t of the scope of this thesis.) A 

C O I S O b j  is an expression (see §3.5.3) which resolves to  a  component m apped from 

COIS object contents a t  run-time through bridge law execution. If the C o m p S p ec  

of a  link does not resolve to  an explicit component, the  link endpoint becomes a 

dangling component and  the  link becomes a  dangling link. This could happen when
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the corresponding COIS object is deleted w ithout notifying the hypertext system. 

The system should be able to provide users with information regarding this s ituation. 

If there  are no ownership properties in a  specifier’s C om pSpec , the  specifier inherits 

the  link’s ownership properties. §3.5.3 discusses more details a b o u t  C o m p S p e c  in 

GHMI.

A nchorSpec  specifies an anchor in the  a  link specifier to  m ark a  link endpoint. 

A link specifier representing an entire component has “N O N E” as its AnchorSpec.  

D irec t ion  defines the  directional na tu re  of the  link endpoint as one of “F R O M ” (a 

departure), “T O ” (a destination), “B ID IR E C T ” (both departure  and  destination), 

and “N O N E .” Such a  notion of link specifiers is powerful for modeling multi-headed 

ri-ary links (i.e., a  link with more than  two endpoints). Unidirectional b inary links 

are modeled as two endpoints with one directed as “FR O M ” and the  o ther  directed 

as “T O .” Bidirectional links (e.g., an association link “Co-workers” ) have both 

endpoints directed as “B ID IR E C T .” An operation link which is no t departing  from 

any com ponents (e.g., “Open D a tabase” com m and in RDBM S) could be modeled 

as a  unary  link with a  single endpoint (e.g., the  destination da tabase  of an “Open 

D atabase” comm and) directed as “T O .”

Note th a t  the  P resen ta t io n S p ec  in a  link endpoint is a  link p roperty  different 

from the P re sen ta t io n S p e c  property of the  endpoint component itself. For example, 

to distinguish an expert-user presentation and a  novice-user presentation of a 

component, we can encode the accesses to  the  component as two links with d istinct 

P resen ta t io n S p e c  (e.g., one defines the  endpoint as “editable” and  the  o ther  defines 

it as “read-only” ) regardless of the  com ponent’s own property P resen ta t io n S p ec .  Tn 

GHMI, em bedding P resen ta t io n S p ec  in components is optional. P re se n ta t io n S p e c  

can also be used to  define the view style of a component (see §3.5.2).
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3.5 Components

GHM I classifies com ponents in to  three subclasses: plain a tom ic com ponents,

s tru c tu red  atom ic com ponents and com posite com ponents.

3.5.1 Atom ic Components

An atom ic com ponent in GHM I can not embed o ther com ponents in its conten t. 

An a tom ic com ponent could be struc tu red  or unstruc tu red . A p la in  a tom ic is 

an unstruc tu red  atom ic which has a  content w ithou t any in ternal s truc tu re . Tn a 

m ultim edia  environm ent, typical exam ples of plain atom ics include a  page of tex t, a 

p ic tu re , a  raster of image, a  sho rt audio tape, a  short an im ated  sequence, etc. T he 

conten t of a  p lain  atom ic com ponent is prim itive and unspecified in GHM I. C urren tly  

we only consider tex t atom ics in GHM I and believe th a t  th e  model can be extended 

to  include o ther kinds of d a ta  resources.

T he content of a  s tru c tu red  atom ic comprises a  sequence o f aitribule-value  

pairs interpret.able to  COISs. Exam ples include a  da tabase  record, a  hypertex t 

link browser (consisting of a list of link references), etc. We model com ponents 

w ith  only a ttr ib u te s  (e.g., a  da tabase  tab le  schem a which is a  sequence of field 

nam es) as N O N E - v a lu e  s tru c tu red  atom ics by specifying N O N E  in th e ir values. 

For s tru c tu red  atom ics, we can define certain  s truc tu re-based  operations, such as 

linking to  or from a  dynam ic anchor defined on an a ttr ib u te  or value. C om plicated  

com ponent content s truc tu res, such as “table of con ten t” or a  da tabase  table, can 

be represented as com posite com ponents with in ternal s tru c tu res  (see below).

3.5.2 Composite Components

T he concept of com posite greatly  improves the organization of a hypertex t network. 

C om posites provide a  more powerful way to  construct a  hypertex t network over the  

pure  low-level node-link model and assist both users and au tho rs a t  various levels. 

D uring  navigation, for instance, w ith com posites the user can zoom  in to  a p a rticu la r
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subcom ponent for details or zoom  out, it to  navigate along the  overview stru c tu re  

of a  com posite. On the o ther hand, some COIS (such as DBM Ss) have th e ir  own 

d a ta  m odels, i.e., objects of these COISs are w ell-structured. It, is essential for 

a  hypertext, system  t,o capture  these CO IS struc tu res and m ap them  faithfully  to  

com patib le hypertext, structures.

A com posite  component, (or sim ply composite)  is constructed  from other 

com ponents. Individual com ponents em bedded in a  com posite could be any type of 

com ponents them selves, including com posites, plain atom ics and s tru c tu red  atom ics.

GHM I explicitly  classifies com posites based on the representation  of their 

in ternal s tru c tu re s  as Set, List, Tree and  Graph. A Set  consists of a  set, of 

com ponents and  no explicit links exist, am ong these com ponents. A L is t  is com posed 

of an ordered set of com ponents connected linearly. A T re e  is constructed  from a  set 

of com ponents connected as a tree-like s tru c tu re  and has a  distinguished com ponent 

as its roo t. A G ra p h  has com ponents as “nodes” and  links as its “edges” .

One purpose of m odeling com posite struc tu res is to  build m ultip le views from 

a  com posite based on its  internal struc tu re . In GHM I, besides position  inform ation, 

the  P re sen ta t io n S p e c  can be used to  define m ultiple views of a  com ponent. Usually, 

P re sen ta t io n S p e c  is the  same as the  C om pC lass .  For com posite com ponents, 

however, we can view them  in ano ther style coded in P resen ta t ionSpec .  For 

exam ple, in RD BM S, a  database can be m apped to  a  Set com ponent which consists 

of a  set of tab les (identified by their nam es). A tab le , in tu rn , consists of a  set of 

records (identified by their keys). A regular Set, view of a  da tabase  object, would be 

a  set of tab le  nam es. We can overwrite such a  view by defining P re sen ta t io n S p e c  

as “Tree.” A Tree view of a  database object, expands all of its tab les and  records. 

T h a t m eans we would see a  three-level tree: T he root in level 1 is the  d a tab ase  nam e 

itself. Level 2 contains all tab le  names. Level 3 contains all record keys. Clicking 

on record keys will bring up record contents. We can also view a  Set, as a  default
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gu ided-tou r (D G T , see the next section) by specifying P re sen ta t io n S p e c  as “D G T .” 

C om ponent view styles can be also coded in link specifier’s P resen ta t io n S p ec .  W hen 

a  com ponent w ith  its own P resen ta t io n S p e c  is defined as a  link endpoin t, the  link 

specifier’s P re sen ta t io n S p e c  overw rites the  com ponent’s P re sen ta t io n S p e c .

3.5.3 Virtual and Computed Components

From  th e  com ponent creation po in t of view, a  GH M I com ponent is e ither a  

hypertex t com ponent or COIS com ponent. Therefore, the  com ponent specification 

(C o m p S p e c ) in G IIM I is e ither a  hypertex t object {H T O b j)  or a  COIS object, 

(C O I S O b j ) along w ith ownership properties.

H T O b j  specifies e ither an explicit hypertex t com ponent by an explicit ID or 

a  com puted  hypertex t com ponent by a  hypertex t query. A hypertex t query is a 

CO IS-independent, query expression, which usually requires s tru c tu ra l inform ation 

[44]. Exam ples of such queries are  “F ind  all com ponents w ith a n n o ta tio n s ,” “F ind 

all com ponents w ith only one departu re  link,” “F ind  all unary  links,” etc. The 

hypertex t engine is responsible to  resolve such kind of s tru c tu ra l queries in to  UIDs. 

T h is  is an advanced hypertex t functionality  which most, cu rren t hypertex t system s 

do not suppo rt. We shall not discuss the  details of hypertex t queries in th is  thesis. 

We consider C om pSpec  as CO ISO bj (along w ith ownership p roperties) only.

GH M I employs the  concept of dynam ic m apping. One of our m ajo r concerns 

is to  m ap  COIS objects to  GHM I com ponents and therefore the  CO IS can take 

advan tage  of hypertex t functionality  w ithou t changes on its underly ing organi

zation. On the  o ther hand, the  hypertex t system  also w ants to  su p p o rt th e  com pu

ta tio n  abilities (such as query processing) of COISs fully. A COIS com ponent is a 

com ponent m apped from a  COIS object dynam ically through predefined bridge laws. 

T he m apped com ponent is no t persisten tly  stored in the  H T E  Linkbase. Every tim e 

it is required by the  user, the  H T E  dynam ically generates its  conten t. Therefore,
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every COIS com ponent is a v ir tua l  and computed  component,. We m ap COIS objects 

to  GHM I com ponents only on-demand  a t run-tim e according to  th e ir  specifications 

in CO ISO bj and  corresponding bridge laws. A CO IS object (C O I S O b j ) can be 

in ternally  represented as an explicit COIS object expression:

C O I S O b j  =  ( C O I S  ID ,  C O I S T y p e , C O I S  Label)

Once an explicit expression of CO ISO bj is defined, th e  H T E  is ready to  app ly  a  bridge 

law (according to  the  CO ISID  and the CO ISType) to  m ap its  content. To accom plish 

such a  m apping, th e  H T E  packs up a message requesting the to -be-m apped  object 

inform ation from the  COIS by specifying its CO ISID  and m apping rules. A fter a 

COIS object is m apped to  a  com ponent, the  H T E  executes bridge laws to  generate 

all link anchors d eparting  from th is com ponent.

For dynam ic links whose endpoints contain im plicit inform ation (e.g., defined in 

a  bridge law), the  H T E  needs to  apply a  link bridge law to  resolve im plicit inform ation 

to  explicit CO ISO bj expression. For exam ple, in RD BM S, the  specification for the 

endpoin t of “all tab les having the  sam e key field w ith  th e  curren t tab le” could be 

(X ,  “T a b le " ,Y )  in a  link bridge law, where A' and Y  a re  M RDC variables. The 

H T E  needs to  resolve them  to  an explicit CO ISID  and CO ISLabel based on the 

M appingR ule in the  bridge law in order to  make th e  ta rg e t tables directly  accessible 

by users. The corresponding tab le  contents are not generated until these tab le s’ 

CO ISID s are selected by the  user.

Only the contents of hypertex t com ponents (e.g., anno ta tion  and association 

links) are  persisten t in the  H TE Linkbase. T he contents of COIS com ponents are 

dynam ically  com puted whenever they  are selected. T he entire  hypertex t netw ork is 

generated  dynam ically  from underlying COIS databases. Such an approach effec

tively separates the  H T E  from COISs and reduces the d a ta  consistency problem  

caused by IIT E -transparent, COIS operations (e.g., “E d it Table” and “D elete T able” 

in RDBM S which could be happening outside and beyond the control of the  IIT E ).



47

3.6 Navigation Structures

In th e  previous sections, we presented G H M I’s basic elem ents. We model navigation 

s tru c tu re s  in term s of GHM I com posite com ponents in th is section.

T he associative natu re  of a  hypertex t network s truc tu re  enables hypertex t users 

to  m anage and access d a ta  stored in a  hypertex t database w ith g rea t flexibility. It is 

th is  flexibility, however, th a t  frequently causes user cognitive overhead and  disorien

ta tio n  du ring  navigation courses over the  hypertex t network. T his classic hypertex t 

navigation problem — user d isorien tation— has been identified and  discussed ex ten

sively in hypertex t litera tu re  [3, 18, 44, 72, 90]. A rb itrary  linking even has been 

com pared  to  the  abuse of G O T O s  in non-structured  program m ing  [22], Efforts 

have been m ade to  alleviate the  d isorientation associated w ith h y p e rtex t’s non- 

restric tive  linking and direct user-access features. N avigation via graphical m aps 

and  overviews [31, 59, 71, 72, 90] has been proved a useful tool in m any hypertex t 

system s such as In term edia  [77, 101], gIBIS [20, 19], N oteC ards [45], PlaneTcxt, 

[18] and  N eptune [25]. Q uery-based filtered browsers [45, 25], history  list [72], 

bookm arks and In term edia’s W eb View [90] are  also helpful m echanism s tow ards 

d isorien ta tion  reduction. N avigation via guided tours [89, 68, 42, 34], com bined with 

o th e r techniques, reduces both  d isorientation and user cognitive overhead.

Benefiting from the experience of o ther hypertex t researchers, GH M I provides a 

com prehensive level of navigation structu res including bookm arks, netw ork overviews 

and  guided-tours. We include these s tructu res effectively m odeled in term s of 

com posite  com ponents. One m ajor contribution of GHM I on navigation m odeling 

is the  in troduction  of the four guided-tour categories (query-based guided-tours, 

defau lt guided-tours, user-defined guided-tours and navigation-based guided-tours) 

which are no t found in any o ther hypertex t literature. T his section focuses on the 

represen tation  of navigation struc tu res  regarding bookm arks, netw ork overviews
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and guided-tours. We model some o ther navigation s truc tu res  (e.g., sessions) and  

facilities (e.g., backtracking) which rely on the  run-tim e user in teraction  in §3.8.

3.6.1 Bookmarks

Some com ponents in a  hypertex t network may be of special im portance  to  the  user. It, 

is helpful to  provide a  d irect access to  these com ponents from any navigation position. 

These com ponents are called bookmarks.  N avigation links are m aintained by the  

system  to  allow d irect access to  bookm arks. Bookm arks are  special com ponents 

in th e  hypertex t netw ork which are d irectly  accessible from all o ther com ponents. 

GHM I models bookm arks as a  S e t  com posite w ith an  index  link poin ting  to  it. 

This index link is a  unary  link of type “N avigationL ink” w ith  only an endpoin t 

d irected  as “T O ” ind icating  th is is a com ponent accessible from all com ponents 

(usually  through a  menu bar item ). Users are allowed to  m an ipu la te  (add or delete 

a bookm ark) the bookm ark Set.  The content of th is  S e t  is a  set of com ponent 

specifications (C om pSe t) .  As a  result of dynam ic m apping, th e  content of a COIS- 

m apped bookm ark is actually  generated when the  user selects it (on its icon or 

label).

3.6.2 Network Overviews

Users often get lost when exploring hypertex t networks. A netw ork overview [71, 90] 

(or sim ply called an overview )  is a  vision of a  substruc tu re  of a  hypertex t network. 

Overviews help alleviate the  network d isorientation [18, 72] by giving the  user a 

sense of context. GHM I m odels overviews on com posite com ponents. A com ponent 

overview is constructed  as a  v irtua l com ponent based on the  com ponent’s in ternal 

struc tu res, which could be a  Set, L ist, Tree, or a  G raphs, depending on the com plexity 

of the  original COIS object.
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3.6.3 Guided-Tours

Froin a  control po in t of view, navigation over a  hypertex t network can be user- 

controlled and system -controlled. In a  user-controlled navigation, all p a th s  are 

determ ined by the  user through navigation com m ands provided by th e  system . 

In system -controlled navigation, the  navigation p a th s  are prepared by the  system  

following some user in p u t com m ands. By default, the  user is not allowed to  use 

navigation com m ands to  choose his own pa th s  once ge tting  on a system -controlled  

navigation path  (though th e  user may be able to  overw rite th is). One typical exam ple 

of system -controlled navigation is a  guided-tour  [34, 42, 68, 89] (G T ) which is a 

navigation s tru c tu re  bu ilt from a  sequence of com ponents as a  linear p a th . W hen 

navigating on a  G T , th e  user m ust follow th e  G T  to  access inform ation. No branch 

links are  available unless an explicit request is applicable to  overw rite the  prepared  

paths. The user can get on or off a G T  from any o ther navigation p a tte rn . At 

any stop  of a  G T , the  user is allowed to  invoke o ther links by pausing th e  to u r  and 

retu rn ing  back later.

GHM I m odels a  G T  as a  L is t  com posite consisting of a sequence of com ponents 

and  a  set of links. Each link is a “N avigationL ink” nam ed “N ex tG tS top .” A link 

endpoin t is called a  G tS to p  which can be any type  of com ponent (e.g., a  link, a 

com ponent, or an o th er guided-tour). The user can only follow link “N ex tG tS to p ” 

linearly to  access Gt.Stops  in the  order they are connected in the  G T . In a  G T , two 

links are distinguished to  represent the  s ta r tin g  and  ending Gt.Stops. T he  s ta r tin g  

link has only one endpoin t d irected  as “T O ” while the  ending link has only one 

endpoin t directed as “FR O M .” All o ther links in a  G T  have two endpoin ts d irected  

as “T O ” and “F R O M ” respectively. Figure 3.3 shows the  concept of L is t  representing 

a  G T . This G T  contains four G tStops:  com ponents C l ,  C 2, C3 and C 4, as shown 

in F igure  3.3(b). In ternally  th is G T  is represented as four links L I, L2, L3 and  

L4, as shown in F igure 3.3(a), which embed the  com ponent UIDs in th e ir endpoin t
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L I

CompSpec = Cl 

Direction = TO

L2

CompSpec = Cl 

Direction = FROM

CompSpec = C2 

Directions TO

L3

CompSpec =  C2 

Direction = FROM

CompSpec = C3 

Direction = TO

LA

CompSpec = C3 

Direction = FROM

CompSpec = C4 

Direction = TO

L1 Cl 12 C2
L3 C3

LA C4

(b)

Figure 3.3  A G uided-tour Exam ple

specifiers. In the  figure we only show the  D irec t ion  and  C om pSpec  of each link and  

the  UIDs of each G tStop .  The content of a  link endpoin t is dynam ically  com puted  

one by one when the  G T  is followed by the  user. For exam ple, a  G T  resu lted  from a 

RDBM S query “F ind  all Ph.D . s tu d en ts’ nam es who take CIS 610” would be a  set 

of records as a G T  consisting of studen t names.

GHM I classifies guided-tours in to  four categories: default gu ided-tours (D G T s), 

query-based guided-tours (Q G Ts), user-defined guided-tours (U G Ts) and  navigation- 

based guided-tours (N G Ts).

• Default Guided-tours (DGTs)

D G T s are derived from the struc tu ra l inform ation of a  com posite. T hey are 

created  au tom atically  by the  system  and  directly  available to  the  user. A 

D G T  of a  com posite is a  L is t  over links of type N a v ig a t io n L in k  au to m atica lly  

derived from struc tu re  links of the  com posite . One way to  ob tain  a  D G T  from 

a  com posite  is to  expand the  bread th-first search tree on the  original s tru c tu re  

links level by level and order the  resulted  com ponents in a  linear m anner. A 

D G T  G tS to p  could also be ano ther D G T  if th e  corresponding com ponent is a 

com posite.
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• Query-based Guided-tours (QGTs)

Q G Ts are created  by the  system  representing query results. T he com ponents 

resulting  from a  query are  organized as G tStops.  A G tS to p  in a  Q G T  could be 

an o th er guided-tour. If  a  G tS to p  is a  com posite, it could be ta rg e ted  as a D G T  

of the  com posite instead of presenting the  entire com posite and  expecting  the 

user to  browse it.

• User-defined Guided-tours (UGTs)

T he user is able to  define a  U G T  on a  set of com ponents in th e  sam e way as 

defining ad hoc association links. In th is  case, the  resu lted  links would be ad hoc 

navigation links which group p a rtic ip a tin g  com ponents into a L is t  com posite 

as a  U G T. Once defined, a  U G T  can be invoked a rb itra ry  tim es until deleted 

by th e  user. T he user can m anipu la te  a  U G T (e.g., an n o ta tin g , deleting or 

adding  new com ponents, etc.) as a  norm al com posite.

• Navigation-based Guided-tours (NGTs)

T he user can define an N G T  based on his or her individual navigation history 

sto red  in the  History Log (see §3.8). The user can select events from the  

History Log to  construct an N G T. Once constructed , an N G T  (actually  its 

specifications) exists in the  H T E  Linkbase until the  user deletes it explicitly. 

As w ith U G Ts, the user can also m anipulate  N G Ts a t run-tim e.

T he navigation struc tu res (bookm arks, network overviews and  a  variety 

of gu ided-tour types) presented in th is section help reduce user d isorien tation  

and  provide the  user a  flexible, com prehensive and  w ell-structured  m echanism  to 

custom ize individual navigation environm ent over a hypertex t network.
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3.7 A Bridge Law Template

In th is  section, we discuss bridge law definitions. GHM I employs bridge laws to  

m ap COIS objects and relationships to  hypertex t constructs. A single bridge law 

will m ap entire classes of COIS objects satisfying th e  bridge law’s condition. All 

com ponents which represent COIS objects are generated  dynam ically  th rough  bridge 

law m appings in response to  user requests (e.g., traversing  a  link to  bring up the  

destination  com ponent). W hen the  user selects an object, bridge laws determ ine 

w hat COIS objects, operations, or relationships will be m apped from the  CO IS. 

As an early step  tow ards dem onstra ting  the power of dom ain m apping, we explored 

logical m odeling on the  representations of both T E X PR O S and hypertex t in [96, 97]. 

In our work aim ing a t  developing a  general hypertex t d a ta  m odel, we have fu rther 

refined bridge laws using logic m odeling approach. T his section presents a  bridge 

law tem p la te  as a  s ta n d a rd  form at for defining bridge laws. W e also discuss a  sim ple 

m apping rule definition convention (M RDC) for defining expressions used in COIS- 

dependent com ponent p roperty  specifications.

Bridge laws are stored  in the  H T E Knowledge Base and  identified by th e ir 

bridge law IDs (BLIDs). Each COIS has its own set of bridge laws w ritten  by its 

builders during  the  course of system  set-up. T he H T E  dynam ically  invokes these 

bridge laws using argum ent settings as input to  generate  com ponents. Defining a 

bridge law requires specifying the  properties of the  com ponent to  be m apped by 

th is bridge law in term s of CO IS-dependent m apping rules. This section presents a 

general tem pla te  for w riting  bridge laws and  a  m apping-rule definition convention 

(M R D C ). We shall also briefly illu stra te  how to  use th is  bridge law tem p la te  and 

M RD C expressions (see §3.7.3) to  define and execute bridge laws through RD BM S 

exam ples.

We consider two types of bridge laws: com ponent bridge laws and link bridge 

laws. A com ponent bridge law m aps a  COIS ob ject to  a  com ponent. A link bridge



53

T a b le  3 .1  A Component, Bridge Law Tem plate
Com pClass
O w ningSystem Type
Com pNam e
PresentationSpec
CO ISObj
Com pSet
LinkSet
ContentSpec
M appingRule

law m aps a  COIS relationship  to  a  link. A CO IS object is m apped to  a  com ponent 

when it is selected by the  user (usually as an link endpoin t selected by a  link traversal 

com m and). W hen a  COIS object is m apped to  a  com ponent th rough a  com ponent 

bridge law, the  H T E  executes link bridge laws to  m ap all link anchors departing  

from the m apped com ponent. These links are m arked by anchors em bedded in the  

com ponent content. The m apping of link endpoints is delayed until th e  links are 

actually  traversed.

3 .7 .1  C o m p o n e n t  B r id g e  L aw s

Table 3.1 shows a  com ponent bridge law tem p la te  which is a  tw o-colum n table. 

T he left colum n contains a  list of com ponent p roperty  names. To w rite  a  bridge 

law is to  define the  properties in the  corresponding right-colum n item s. A right- 

colum n item  of a  bridge law tem pla te  could be either a  constan t (e.g., “H y p e rte x t,” 

“Table,” etc.) or M RD C (see below) variables whose sem antics are defined in the  

righ t colum n of the  M appingR ule .  A M app in g R u le  is a  set of M RD C predicates 

representing C O IS-dependent inform ation.

3 .7 .2  L in k  B r id g e  L aw s

A link bridge law defines a  COIS relationship which will be m apped to  a  GH M I link. 

T he H T E  executes a  link bridge law when the  com ponent em bedding the  anchor
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Table 3 .2  A Link Bridge Law Tem plate

Com pClass
O w ningSystem Type
Com pN am e
PresentationSpec
LinkType
{Specifier*}"1"
M appingR ule

m arking  th is link is brought to  display. T he link’s endpoints are not m apped until 

th is  link is ac tually  traversed. Table 3.2 illustra tes a  link bridge law tem pla te . A link 

bridge law tem p la te  is sim ilar to  the  com ponent bridge law tem p la te , except th a t a 

link has a  L in k T y p e  and a list of S p e c i f i e r s  instead of com ponent p roperties (i.e., 

C O I S O b j ,  C o m p S e t  and L in k S e t ) .  A specifier is a  com position of

{C om pSpec, AnchorSpec, D irection , P re s e n ta t io n S p e c } .

A link bridge law defines link p roperties in term s of M RD C expressions.

T he  GHM I bridge law tem p la tes are  greatly  influenced by the  bridge law 

notions of B ieber et a l.’s work [12, 9], which has no com posites and  m aps nodes, 

links and  anchors separately, which have not been im plem ented. (B ieber’s current 

p ro to type  uses bridge laws developed specifically w ith th is im plem entation  in mind. 

W hile they  are  general enough for any COIS, they  do not come from a  principled 

m odel.) B ieber’s bridge laws correspond to  GHM I bridge laws’ M a p p in g R u le  part. 

GH M I bridge laws m ap COIS objects to  more complex hypertex t constructs. The 

GH M I M a p p in g R u le  is m ore form alized and  sim pler (only th ree  predicates, see 

§3.7.3). By m odeling bridge laws in a  tab le  form at com bined w ith a  sim ple set of 

pred icates, GHM I makes bridge laws more understandable.

GH M I extends and form alizes the  previous bridge law form ats to  support 

com posites and  m appings from COIS to  a GHM I hypertex t network. O ur previous
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work on bridge laws [96, 97, 94, 93] was based on m odeling th e  dom ain of a  docum ent 

m anagem ent system . In th is  thesis we focus on the  dom ain of RD BM S which is qu ite  

different, from the  docum ent m anagem ent dom ain. O ur goal of m odeling d istinc t 

dom ains has led us to  generalize bridge law tem p la tes and  prove our idea of using 

GHM I as a  general model for all COISs. We present the  GH M I version of T E X P R O S  

bridge laws in A ppendix A.

3.7.3 MRDC: A M apping Rule Definition Convention

T he m ajo r p a r t  of a  bridge law tem p la te  is the  M a p p ingR u le .  In order to  provide a  

form al tem p la te  to  define bridge laws, we need to  form alize expressions representing  

C O IS-dependent inform ation. Benefiting from our previous efforts on m odeling 

bridge laws using logic, we m odel M RDC as a  subset of P ro log  which consists of 

a  set of constan t sym bols, variable sym bols, a  sm all set of predicates and functions. 

T he basic M RDC elem ents include the  following.

1. P rim itive  Symbols

•  Propositional Connectives: -> (n eg a t io n ) ,  V (d isjunction) ,

A (conjunction), —¥ (im plication), =  (equivalence), =  (equality), /  (non

equality), V (universal quantifier) and 3 (existential quantifier).

• Set Connectives: u, n, C , C , D, D .

• Variable Symbols

-  Simple Variables are  upper-case-leading strings (e.g., X , Y ,  Z \ ) .  

W hen used separately, symbol represents “a rb itra ry ” or “d o n ’t 

care” values. M RD C has two types of variables: sim ple variables and  

list variables.
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-  List Variables are variables denoted as a  list of o th er variables, i.e., 

X  =  [X i, X 2 , ..., A'n], where X  is a  list variable and every A '/(l <  i < 

n)  is e ither a sim ple variable or a  ano ther list variable.

• Constant Symbols are strings quoted in quo tation  m arks (e.g., “MS- 

Access” , ‘R ecord1, etc.) which represent in stan tia ted  variab le values.

•  Function Symbols are upper-case strings, including sym bol ‘J  (e.g., 

A P P L Y J B L jC O M P ,  G E T J P R O P E R T Y , etc.).

• Predicate Symbols are lower-case-leading strings (e.g., object , re la t io n , 

etc).

2. P red ica tes

T here are th ree predicates in M RDC:

•  object(X,ClassNam e)

P red ica te  o b je c t (X , C la s s N a m e )  identifies an object A” belonging to  a 

class nam ed C la s s sN a m e .  X  is a  variable. C la s s N a m e  is a  constan t 

string. For exam ple, in a  da tabase  bridge law, ob jec t(X , 'Table')  ind icates 

th a t  A' is a  da tabase  object belonging to  a class nam ed “T able.”

• property(X,PropertyNam e,Y)

Pred ica te  p ro p e r ty (X ,  P ro p e r ty  N a m e ,  Y )  indicates th a t  ob ject A' has 

p roperty  nam ed P ro p e r ty N a m e  and  the  value of th is  p ro p erty  is 1'. 

A" is a  variable. P r o p e r ty N a m e  is a constan t string. Y  could be a 

variable, a  constan t string, or a  function which re tu rn s  a  value. For 

exam ple, p r o p e r ty (F , 'k e y F ie ld ' , ' S S N ') indicates th a t  F  has a  p roperty  

“K eyField” as “SSN.”

• relation(X,Y,RelationNam e)

P red ica te  re la t io n (X ,  Y, R e la t io n N a m e )  indicates th a t  ob jec t A' and 

ob ject Y  have a relationship nam ed R e la tio n N a m e . X  and  Y  could be
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variables. R e la t io n N a m e  is a  constan t string . For exam ple, 

rela tion^A', Y, ‘L ik e s 1) indicates th a t  X  and Y have a  relationship  “Likes” 

(i.e., X  “Likes” Y).

3. A Special Function

O P E R A T I O N ( Z , X , Y ) is a  special function which is available in M RDC 

expressions. Function O P E R A T I O N  ( Z , X , Y )  identifies a  COTS-supported 

operation  on object Z .  T he o p era tio n ’s nam e is X  and  it takes Y  as an 

argum ent list. X  is a  constan t sym bol representing an opera tion  nam e (e.g., 

“Q uery” in a  database). Y  is a  plain s tring  expression in te rp re tab le  to  the  COTS 

when com bined w ith the  operation  nam e (e.g., in a  da tabase, Y  could an SQL 

s ta tem en t) . Variables inside Y  have prefix For exam ple, in a  database,

O P E R A T I O N ( ‘Sma,\\ School1, 'Q uery ', 'Select N a m e  from E m ployee  where 

S a la ry  > 40,000') denotes a  query on da tabase  “Sm all School” w ith no 

variables. Expression O P E R A T I O N ^ Small School', 'Q uery ', ‘Select N a m e  

from $$X where S a la ry  > 40,000') contains a  variable A' (stands for a tab le  

nam e) which needs to  be in stan tia ted  when th is  query is passed to  th e  COTS 

handler. T he re tu rn  value of O P E R A T I O N { )  is the  operation  results resolved 

by the  underlying COIS.

3.7.4 Executing a Bridge Law

A lthough we define bridge laws in form at of tables, th is  by no m eans im plies th a t  

bridge laws are only sim ple “look-up” tables. A bridge law is applied  in the  H T E  (i.e., 

p reparing  correct argum ents) and ac tually  executed  in a  CO IS handler. Internally, 

p rio r to  executing a bridge law, th e  COIS handler needs to  tra n s la te  it  to  a  set of 

P ro log  predicates. Therefore, the  entire  tab le  of a  bridge law definition im plies a set 

of predicates. An execution of a  bridge law would take given variable values (e.g., 

CO ISID , CO ISType, etc.) to  in stan tia te  all o ther free variables in the  predicates.
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In o ther words, variables are  “inferred” from the  pred icates defined by a  bridge law. 

T h is procedure is sim ilar to  running a  query under Prolog. A COTS handler usually  

has a  bridge law engine to  handle bridge law execution.

T he H T E employs th ree  bridge law functions to  apply  bridge laws:

A P P L Y 'J 3 L .C O M  P () ,  A P P L Y ' J B L J I N K () and  A P P L Y 'J B L .A N C I I O R ( ) ,  

which apply  a  bridge law to  generate com ponents, link endpoin ts and  dynam ic 

anchors, respectively.

•  A P P L Y  J 3 L . C O M P ( B L I D ,  A rgum en tSpec)

T his function is responsible for in stan tia tin g  a  com ponent BL to  a  com ponent. 

A P P L Y  J 3 L . C O M  P ( B L I D ,  A rg u m en tS p ec)  in stan tia te s  com ponent bridge 

laws in the  IIT E  Knowledge Base to  construct v irtua l com ponents.

A P P L Y J 3 L . C O M P Q  takes two param eters: a  com ponent bridge law ID 

specified by B L I D  and  a  list of param eter specifications in A rg u m e n tS p e c .  

For exam ple,

A P P L Y 'J 3 L . C O M  P { B L r abie\i [D,T] = [‘S m a l lS c h o o l ‘, ‘ Doctoral S tu d e n t 1])

applies bridge law B L Tabie\ to  generate a com ponent from the  content of tab le  

“D octo ra lS tuden t” in da tabase  “Small School.”

•  A P P L Y  J 3 L  J I N K  ( B L I D ,  A rg u m e n tS p e c )

T h is function is responsible for m apping a  link endpoin t from a  link bridge 

law. I t takes a  link bridge law and a list of argum ents to  m ap a  link endpoin t 

specified in a  link specifier with “T O ” direction. For exam ple,

A P P L Y '  J 3 L J I N K ( B L SameKey, [D,T\  =  [‘ S m a l l  School ' , ‘D o c to ra lS tu d e n t '])

applies link bridge law BLsameKey to  generate com ponents from tab les having 

the  sam e key as tab le  “D octora lS tuden t” in d a tab ase  “Sm all School.”
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•  A P P L Y  J 3 L . A N C H O R { B L I D ,  A rgum en tSpec)

T his function is responsible for m apping dynam ic anchors defined in the 

“F R O M ” specifiers of a  link bridge law. Like A P P L Y J 3 L - L I N K ( ) ,  th is 

function also takes a  link bridge law and a  list of argum ents. B u t in stead  of 

genera ting  the  link endpoints in “T O ” specifiers like A P P L Y - B L - L I N K  {) 

does, instead  it generates dynam ic anchors defined in “F R O M ” link specifiers 

by app ly ing  th e  M appingRule in the  bridge law. A fter m apping, a  dynam ic 

anchor is tem porarily  stored in the  H TE Linkbase and is ready to  follow as if 

it  were a  plain anchor. For exam ple,

A P P L Y  J 3 L - A N C H O R ( B L RefToTable, 

[D , T , K] =  [‘S m a llS ch o o l ‘, 'D o c to ra lS tuden t ' , ‘123456789'])

applies link bridge law B L n e/roTabie to  generate com ponents from tab les whose 

nam es ap p ear as a  value in record “123456789” in tab le  “D o c to ra lS tu d en t” of 

da tabase  “Small School.”

3.7.5 Bridge Law Examples

Table 3.3 shows a com ponent bridge law exam ple B L Tabie\ and  Table 3.4 shows a 

link bridge law exam ple BLnefToTabie-

BLmbiei m aps tables to  set  com ponents from records, as shown in Table 

3.3. T he resulting  com ponent contains a  set of record com ponents m apped from 

database  records by the  above B L R ecor(t ■ A tab le  is identified by its  tab le  nam e and  

the  d a tab ase  nam e in which it resides (i.e., [D, T ]). The conten t of the  resulting  

com posite is a  set of record com ponents. {[D , T , K], ‘Record ‘, A']}* m eans 0 or more 

records. object.([D,T, K ] , ‘Record')  ind icates th a t  K  is a record residing in tab le  T  

of d a tab ase  D. T he C o m p S e t  does no t include ownership p roperties as the  corre

sponding CO IS objects (i.e., records) inherit these properties from th e ir  em bedding 

table.
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Table 3.3 Bridge Law BLTablel

Com pClass ‘Set/
O w ningSystem Type ‘D atabase1
Com pNam e ‘Table1
CO ISObj [[D, T], ‘Table1, T]
Com pSet { [ [ D ,T ,K } , ‘Record1, K}}*
LinkSet ‘N O N E1
C ontentSpec ‘N O N E 1
M appingR ule object.([D, T, K], ‘R ecord ‘).

T he following in stan tia tio n  of BLrabie 1 m aps a  the  conten t of tab le  “D octora l

S tu d en t:”

A P P L Y  _ B L j C O M P { B L Tablei,

[D ,T \ =  [ S m a l lS c h o o l1, ‘ Doctoral Students])

BLft.efToTabie m aps an im plicit relationship between a record and a tab le  whose 

nam e appears in the record as a  value, as shown in Table 3.4. T he C om pSpec  in th is 

link bridge law’s specifiers does not include ownership p roperties as the  corresponding 

endpoin t COIS objects (i.e., th e  record and tables) inherit these p roperties from this 

link.

BLRe/ToTabie defines a  dynam ic anchor in the  d eparting  record. The anchor’s 

value V  happens to  be a  ta b le ’s nam e in the  same DB. Based on such an im plicit 

relationship , th is  BL constructs a  reference link from th e  record to  the  tab le  m arked 

by its  tab le  nam e (highlighted as anchors) in the record’s content. B L Rcj Torabie bs 

frequently  used in the  GHM I p ro to type  to  present a  query result and  o ther reference 

link destina tion  m appings to  the  user (see §6). We consider a  query result as a  

dynam ic table. T he user can navigate on its records v ia a  query-based guided-tour 

(Q G T ). W e can apply BLiiejToTabie to  th e  records contained in all dynam ic tab les 

(i.e., those resulted from operation  links and reference links) as well as s ta tic  tables 

(i.e., regular tab les in a  DB).
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T a b le  3 .4  Bridge Law BLR e fT o T a b le

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
Com pN am e ‘RefToTable1
L inkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
D irection

[ [D ,T ,K \,  ‘R ecord1, _]
[[D, T, K , F ] , 1D y n a m ic ‘, V] 
‘FR O M 1

S p ec ifie r
Com pSpec
AnchorSpec
D irection

[[D, V], T a b le 1,.}
‘N O N E1
‘T O 1

M appingR ule object([D, T, K ] , 1R ecord ‘), 
object([D ,T , K , F], ‘V a lu e 1), 
object([D, V ], ‘T ab le1), 
property([D , T , K ,  F], ‘Content.1, V ) .

We illu s tra te  m ore bridge laws in §5 and §A. §5 discusses how to  use M RD C 

and  o ther GHM I constructs to  m ap RDBM S to  hypertex t. §A gives bridge law 

exam ples on ano th er dom ain— T EX PR O S, a  docum ent m anagem ent system .

3 .8  S e s s io n  S t r u c tu r e s

In m odern hypertex t system s, it is crucial to  provide users w ith a  friendly, 

flexible and  reliable navigation environm ent over a  hypertex t network. Such an 

environm ent heavily relies on w hat run-tim e struc tu res the  underly ing hypertex t 

model provides. A well-organized navigation environm ent should be able to  efficiently 

reduce user d iso rien tation  as much as possible. Over a session of in teractive 

activ ities, the  user can invoke m any run-tim e navigation p a tte rn s  such as forw ard 

browsing, backtracking and backjum ping. We in troduced  the concept of task-based  

backtracking in m ulti-w indow  environm ents in [13]. T his section focuses on the 

run-tim e struc tu res  for the  H T E  Session DB, including event struc tu res and system
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traversal logs. The H TE Session DB stores history inform ation regard ing  a  user 

navigation session based on these structu res. More details can be found in [13], 

where we illu stra ted  how these struc tu res  support navigation facilities and presented 

a  prelim inary  algorithm  for im plem enting task-based backtracking based on these 

struc tu res.

3.8.1 The Event Structure

We define an even t  as any user action which affects the  system  s ta tu s . These 

actions usually cause some change on the  user interface such as crea ting  a  new 

window or closing an existing one. We classify events into f o r w a r d , backwards  and 

sw itc h in g  events. Link traversal is a  fo r w a r d  event. B acktracking  (executing a 

backtrack com m and) is a backwards  event. Selecting, opening and  closing com prise 

th e  sw itc h in g  events as each deactivates the current window and  activates a  different 

one. (C losing a  window activates the  window beneath it, if any.) To su p p o rt different 

kinds of backtracking and o ther navigation facilities (e.g., c rea ting  history-based 

guided-tours), th e  system  keeps a  com plete set of user event in form ation , which we 

record in the  following event s truc ture .

We represent each event by a  tup le  (I ,  A).  The event identifier I  provides a 

unique reference to  the  event. A  contains the  set of a ttr ib u te s  which characterizes 

the  event. Event a ttr ib u tes  include the  following:

Event-type. An event can be one of five types:

•  traversal -  traverse a  link to  a  new (or already displayed) window;

•  open -  create a  new window (or activate an a lready  displayed window) 

explicitly by executing an “open window,” “open new docum ent,” or 

“open new com ponent” com m and;

•  select -  activate an existing window directly by selecting it, not through 

any link traversal;
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•  close close an existing window directly by executing a  “close w indow ’1 

or “close com ponent” com m and; and

•  backtrack -  backtrack or backjum p along a  link, or more generally, along 

a  previous event by executing a  “backtrack” com m and.

Departure-component  T his field contains the  UTD of the  “d ep a rtu re” com ponent 

from which an event originates.

Destination-component  T his field identifies the UID of th e  “d estina tion” com ponent 

th a t  the  event activates.

Subtask-log-id  This field ind icates the Subtask Log (see §3.8.2) referencing th is event.

Log-index  This field contains an integer indicating th e  even t’s chronological position 

in th e  Chronological Log (see §3.8.2). This a ttr ib u te  applies only to  traversal 

events.

T he system  stores events in a  system  session s tru c tu re  called System  Traversal 

Logs, which we describe next.

3.8.2 S y stem  T raversal Logs

To track  user actions and  enable m ultiple types of backtracking, G IIM I m ain tains a 

System  Traversal Log s tru c tu re  consisting of three types of traversal logs:

•  History Log

T he History Log records the  com plete event s tru c tu re  for every user event, 

including its event identifier and all a ttribu tes . In add ition  to  backtracking, 

users could employ the  History Log to  create guided tou rs. E xperim enters could 

use it to  trace and analyze user actions.

•  Chronological Log

Unlike the  History Log, th e  Chronological Log only registers forward (traversal)



64

events. Each en try  contains an event identifier corresponding to  an event in 

the  History Log.

• Subtask Logs

Similarly, Subtask Logs only contain forward events. Each Subtask Log contains 

all un in te rrup ted  forw ard traversals. T he system  s ta r ts  a  new Subtask Log 

whenever a  forw ard event happens after a  backw ards or sw itching event. Each 

en try  contains an event identifier corresponding to  an event in the  History Log.

3.9 Summary

In th is  chapter, we presented G H M I’s system  arch itec tu re  and  basic concepts. T he 

GHM I system  arch itec tu re  consists of th ree basic layers: the  com putation-orien ted  

inform ation system s (COISs), a  hypertext engine (H TE) and  the  interface-oriented 

system s (IOSs), each runn ing  as independent processes. COISs and TOSs are 

connected to  th e  H T E  by th e ir handlers. C urren tly  our m ajor contribu tion  focuses 

on the  C O IS-H TE side. To in tegrate  a  COIS to  a  hypertex t system  based on 

our m odel, the  COIS builders have to  w rite th e  bridge laws stored in th e  H T E ’s 

Knowledge Base and  w rite  the  handler code for th e ir  individual COISs. T he H T E  

uses predefined bridge laws to  m ap COIS to  hypertex t. GHM I aim s a t p roviding a 

robust d a ta  model for representing the functionalities of the  H T E  tow ard in teg ra ting  

COISs w ith hypertex t.

GHM I presents a  hierarchical object class representation. Basic GHM I 

concepts include dynam ic anchors, behavioral link typing, com posite struc tu res, 

s tru c tu red  atom ic com ponents, v irtual com ponents, dynam ic m apping and com puted  

com ponents. GHM I also includes several navigation s truc tu res  (bookm arks, netw ork 

overviews and guided-tours). GHM I enables dynam ic m apping of COIS ob jects and  

relationships through a  bridge law mechanism. Each bridge law is defined using a 

tem p la te  and a  sim ple Prolog-like m apping rule definition convention M RDC. All
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of these provide a  powerful and com prehensive d a ta  representation fram ew ork for 

our p latfo rm  of supporting  COIS-hypertext, in tegration . G IIM I’s basic concepts 

include th e  following: (1) O bject class hierarchy: GHM I m odels ob jects as links 

and com ponents. Com ponents are classified in to  atom  com ponents and com posite 

com ponents. GHM I distinguishes plain a tom ic and  s truc tu red  a tom ic com ponents 

and m odels four subclasses of com posites based on their in ternal struc tu res; (2) 

Anchors: G H M I m odels external anchors, anchor typ ing  and the  concept of dynam ic 

anchors. D ynam ic anchors are generated  through bridge law m apping; (3) Links: 

GHM I links are classified into six categories based on the  roles th ey  play in the 

hypertex t system ; (4) N avigation structu res: GHM I m odels navigation s tru c tu res  as 

s tru c tu red  com posites. These struc tu res include bookm arks, netw ork overviews and 

four categories of guided-tours; (5) V irtual and com puted com ponents: In GHM I, 

all com ponents m apped from COIS bridge laws are  com puted com ponents and also 

v irtua l com ponents. They are not stored  in the  H T E Linkbase. Every tim e they 

are required by users, th e  H T E applies bridge laws to  dynam ically  generate  them ; 

(6) T he bridge law tem plate: GHM I classifies bridge laws as com ponent bridge laws 

and link bridge laws. GHM I provides a  bridge law tem pla te  and a  Prolog-like sim ple 

language M RD C for defining bridge laws; (7) Session structures: G H M I m odels a 

set of session struc tu res (i.e., the  event s tru c tu re  and the system  traversal logs) to  

sup p o rt dynam ic navigation facilities.

B oth  the  builders of the hypertex t system  and  the COISs benefit from the 

G H M I’s concept of bridge laws. Bridge laws act as the  bridges  between the  hypertex t 

system  and  a  range of heterogeneous COISs, providing the  CO IS builders w ith  a 

com prehensive m echanism  to  in tegrate  th e ir  COISs w ith the hypertex t system . The 

GHM I bridge law tem pla tes are largely influenced by the  bridge law notions of Bieber 

et, a l.’s work [12, 9], which has no com posites. GHM I extends and  form alizes the 

previous bridge law form ats to  support com posites and m appings from COISs.
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GHM I aim s to  utilize the  D exter H ypertex t Reference Model [46, 47] to  build 

its  m odel. We shall discuss how we apply D exter to  m odel G H M I w ith p roper 

extensions and specifications in the  next chapter.



CHAPTER 4

GHMI: A DEXTER-BASED HYPERTEXT MODEL

T he D exter H ypertex t Reference Model [46, 47] is a  widely recognized hypertex t 

model serving as an interchange s tandard  for hypertex t system s. H ypertex t 

researchers addressed the  usefulness and robustness of D exter in a  panel a t  the  

H y p ertex t’89 conference and la te r in research concerning the paradigm  o f system  

interchange and  hypertex t modeling, including DHM  [38, 41, 39, 37, 40], R H Y TH M  

[66], AHM [50], in terchange between In term edia  and KMS [62], and  Garz.ot.to ot, 

a l.’s model [35]. In th is  chapter, we aim  a t  m odeling GHM I in the term s of D exter 

to  m ake GHM I a D exter-based model. We first, present a general review of the 

form alized D exter model. T hen we illu stra te  why D exter is not strong  enough to  

model GHM I, and ou r necessary ex tens ions .  Finally, we present how we model 

GHM I using th e  extended D exter model by ta ilo ring  it w ith  GHM I sp ec i f ica tio n s .

4.1 The Dexter Model

In D exter, a  hypertex t is divided into th ree  separa te  layers, nam ely th e  run-tim e 

layer, the  storage layer and the  w ith in-com ponent layer. D exter focuses on the 

storage layer. In th is  section, we present basic elem ents of the  D exter sto rage layer 

m odel. In the  next two sections, we will ex tend  and  specify D exter to  m odel GHM I.

T he D exter storage layer consists of a  netw ork of com ponents  which are  infor

m ation  containers and  interconnected by relational links. A component, contains a 

base com ponent (i.e., th e  content of the  com ponent) along with associated com ponent 

inform ation, including a  set of a ttrib u tes , a  presen tation  specification (in te rp re tab le  

in the  run-tim e layer) and a set of anchors poin ting  to  portions of th is  com ponen t’s 

contents. A base com ponent is recursively defined as an atom ic, a link or a sequence

67
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of o th er base com ponents. T he notion of com posite com ponents provides a  hierar

chical com ponent s truc tu ring  m echanism . The atom ic com ponent is the  prim itive 

un it in D exter. Links are com ponents representing relationships am ong com ponents. 

D efining links as com ponents enables links to  be defined am ong links.

D exter is form ulated in Z  [83], which is a  formal specification language based 

on typed  set theory. We shall only roughly follow the  Z  no tations used in D exter and 

shall describe complex concepts in words so th a t  understand ing  of our description 

does not rely on a  knowledge of Z.

A D exter hypertext system  consists of a  set of com ponents. Every com ponent 

is identified uniquely by its in ternal UID. An accessor  function is responsible for 

accessing a  com ponent given its  UID. UIDs provide a  direct com ponent addressing 

m echanism . In some cases, though, we need to  address a  com ponent th rough  some 

s ta tem en t (e.g., a  da tabase  SQL sta tem en t), so th a t  the UIDs are unknown. In these 

cases, the  UID m echanism  is insufficient and D exter provides an ind irect addressing 

m echanism  which resolves a  specification to  a  UID and then  th e  accessor  function 

is ab le  to  access the  resulting  com ponent. Therefore, D exter includes a  resolver  

function which is responsible for resolving a  com ponent specification in to  a  UTD. 

T he UID  is prim itive in D exter, i.e., it is left unspecified.

[ U W \

C om ponent specification and presentation  specification are also p rim itive in 

D exter from  the  set C O M P O N E N T . S P E C  and the set P R E S E N T J S P E C  (in 

Z , upper-case strings in a pa ir of brackets represent given sets, which are  prim itive):

[ C O M P O N E N T . S P E C ,  P R E S E N T . S P E C ]
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Anchors specify link endpoin ts and are  defined in com ponents. An anchor has 

an A N C H O R J D  and an A N C H O R - V A L U E  from two given sets. The anchor 

value represents anchor location inform ation w ithin a  com ponent, and is in te r

p retab le  by the  w ith in-com ponent layer. A com ponent m ain tains an anchor lookup 

tab le  w ith each entry  as a  p a ir  of A N C H O R J D  and A N C H O R - V  A L U E .  We call 

such an anchors in te rna l  anchors as they  are defined explicitly  in a  lookup tab le  in 

com ponents. An anchor id uniquely identifies an anchor in a  com ponent.

[ A N C H O R J D ,  A N C H O R - V  A L U  E)

A N C H O R  = =  A N C H O R J D  x  A N C H O R - V A L U E

T he above anchor definition can be read as “an anchor is defined as an 

A N C H O R J D  and A N C H O R - V  A L U E  pa ir.” A link consists of a sequence of 

sp e c i f ie r s .  Each link specifier contains a  com ponent specification, an  anchor speci

fication, a  p resentation  specification and  a  direction.

D I R E C T I O N  ::=  F R O M  \ T O  | B I D I R E C T  \ N O N E

—  S P E C IF IE R ---------------------------------------
com ponentSpec : C O M PO N EN T_SPEC  
anchorSpec : A N C H O R JD  
presentSpec : P R E S E N T .S P E C  
direction : D IR E C T IO N

Z  employs the notion of a  “half-box” (open to  the  right) to  define an 

ob ject (upper-case leading strings) schema. The above half-box defines an object
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S P E C I F I E R ,  which has four a ttr ib u tes  (or fields, denoted as lower-case leading 

strings), each being defined by corresponding given set nam es (i.e., upper-case strings 

to  the  right of which have been defined p rio r to  th is definition).

T he C O M P O N E N T . S P E C  in a  link specifier enables a  link endpoin t to  be 

defined im plicitly  and  com puted dynam ically. This is a  powerful m echanism  for 

constructing  com puted  com ponents.

D exter requires a  link to  have a t least two specifiers and a t least one specifier 

w ith  direction “T O :”

_  L IN K ----------------------------------------------
specifiers : seq S P E C IF IE R

# s p e c i f ie r s  > 2
3s : r a n  s p e c i f ie r s  •  s .d irection — T O

Here, seq s tan d s for “a sequence of.” T he lower p a rt  of the  above half-box 

contains constra in ts specifications on object a ttr ib u tes . stands for “num ber o f ’, 

ran  s tands for “in range o f ’ and V  stands for “such th a t .”

A D exter com ponent is m odeled as a tw o-part com position: a  c om pB ase  and 

a  c o m p ln fo .  A com pB ase  represents a base com ponent which is recursively defined 

as an atom , a  link com ponent, or a sequence of o ther base com ponents. An atom  is 

m odeled by the  p rim itive type  A T O M ,

[ATO M ]

We use th e  recursive type B A S E  . C O M P O N E N T  to  represent base com ponents 

recursively:



B A SE .C O M PO N E N T  ::=  a tom ((A T O M ))
| link((LINI<))
j  com posite((seq B A SE .C O M PO N E N T ))
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C om ponents can have a rb itra ry  associated inform ation as a ttrib u te -v a lu e  pairs 

from two given sets:

[.A T T R I B U T E , V A L U E \

T he c o m p l n fo  includes a  set of a ttr ib u tes , a  p resentation  specification and  a 

sequence of anchors:

— C O M P J N F O ---------------------------------------
a ttr ib u tes : A TTR IB U TE »-> VALUE 
anchors: seq AN CH OR 
presentSepc: P R E S E N T .S P E C

# anchors  =  # ( f i r s t . ( \  ra n  anchors  |))

Sym bol ‘h-P indicates a  function m apping an a ttr ib u te  (in set A T T R I B U T E ) 

to  its dom ain  value (in set V A L U E ) .

T he schem a C O M P O N E N T  represents a  base com ponent and  associated 

inform ation:

— C O M P O N E N T -------------------------
com pB ase : B A SE .C O M PO N E N T  
com plnfo : C O M P.IN FO

A link component is a com ponent w ith a  link as its base com ponent:
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-  L in k C o m p ------------
C O M PO N E N T

com pB ase  £  ran  l in k

Finally, a  hypertex t system  can be m odeled by th e  schem a 

P R O T O - H Y P E R T E X T  which has th ree parts: (1) a  finite set of com ponents; (2) 

a  reso lver  function which re tu rns th e  UID for a  given com ponent specification; (3) 

an accessor  function which given a  UID retu rns a com ponent:

— P R O T O _ H Y P E R T E X T ---------------------------
com ponents : F  C O M PO N EN T 
reso lver  : C O M P O N E N T S P E C  i-> U I D  
accessor : U I D  i-» C O M P O N E N T

F  stands for “a  finite se t.”

A D exter H Y P E R T E X T  can be constructed  as an instance of the  schem a 

P R O T O  J 1 Y  P E R T  E X T  by satisfying four constrain ts: (1) T he accessor  function 

m ust generate  a  value for every com ponent (i.e., every com ponent m ust have a  UID); 

(2) T he resolver  function m ust produce all possible valid UIDs (i.e., all com ponent 

specifications m ust resolve to  existing UIDs); (3) A com ponent can not contain  itse lf 

e ither d irectly  or ind irectly  in its base com ponent; (4) T he anchor id of a  com ponent 

m ust be the  sam e as the  anchor ids in link specifiers resolving to  th is com ponent.

4 .2  E x te n s io n s  t o  D e x te r

D exter emerged from m odeling existing hypertex t system s. As hypertex t field 

evolves, D exter becomes insufficient to  fit all system s especially those have em erged 

afte r D exter. We found m any obstacles in m odeling G IIM I using D exter. D exter
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has problem s w ith its model for com posite com ponents, anchors and  links. Tn 

th is  section, we discuss the  problem s we encountered and our solutions to  them  as 

extensions to  D exter.

4.2.1 Components

D exter has problem s on the definition for com posite com ponents. A D exter 

com posite com ponent contains “bare-bone” base com ponents which are not 

independent com ponents. The definition for com ponent is recursive on base 

component  ra th e r th an  on component .  This im plies th a t  base com ponents in a 

com posite com ponent are not  com ponents. Since UIDs are only associated  w ith 

com ponents, base com ponents have no UIDs. Base com ponents can not be accessed 

by the  accessor  function. Furtherm ore, base com ponents have no C O M P J N F O .  

T here is no way to  associate a ttr ib u tes  to  base com ponents. Base com ponents have 

no anchors or presen tation  specifications of th e ir  own either. W hen we construct 

a  com posite com ponent tak ing  o ther com ponents as base com ponents, all o ther 

com ponents lose th e ir own properties (regarding a ttr ib u tes , anchors and  presen

ta tio n  specification). I t  is also difficult to  create  links am ong base com ponents since 

they  are not independent com ponents and have no UIDs. Therefore, such a  notion 

of com posite is too  restrictive.

For exam ple, in our dom ain of supporting  m ultip le COISs, we m ight have a 

com posite com ponent m ade up of com ponents from different COISs (w ith d istinct 

ownership p roperties and o ther COIS a ttr ib u tes ) . We also try  to  model the  in ternal 

linking struc tu res  of com posite com ponents to  facilita te  navigation (e.g., create 

guided-tours based on the  internal links of a  com posite). We can not effectively 

model these GHM I com posites in term s of D exter. We need to  extend the  D exter 

base com ponent definition. The following is our solution:



B A SE .C O M PO N E N T  ::=  atom  ((A TO M ))
| link((L IN K ))
| com posite((seq C O M PO N EN T ))
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W ith  th is im proved base com ponent definition, a  com ponent can be m ade up 

of o ther independen t com ponents having UIDs and  properties. T his su p p o rts  the  

concept of ex te rna l  com ponents (or “reference vs. con ta in” ), i.e., a  com ponen t’s 

contain ing o ther independent com ponents can be tre a te d  as “referencing” o ther 

com ponents instead  of em bedding “bare-bone” base com ponents. (D ex te r’s not 

allowing ex ternal com ponents has been widely criticized [38, 41, 39, 37, 40, 63, 50].) 

This solves the  problem  of constructing  com posite com ponents from independen t 

com ponents and  enables m odeling in ternal s truc tu res  of com posite com ponents.

4.2.2 Anchors

D exter defines anchors in the  content of com ponents. Link specifiers contain  an 

A N C H O R J D  which m ust be consistent w ith the  definition in the  com ponent 

em bedding the  anchor. Since the C O M P O N E N T - S P E C  in a  link specifier needs 

to  be resolved to  UIDs, it may lead to  different UIDs in different com putations. Using 

an actual A N C H O R J D  in a  specifier requires an unbearable consistency burden 

on hypertex t system s: all possible com ponents whose UIDs could be m apped  from 

a  given C O M P O N E N T J S P E C  need to  have the  sam e anchors, or a t  least need to  

use the  sam e A N C H O R J D  for th a t link. In our environm ent of dynam ic m apping, 

C O M P O N E N T J 5 P E C  is frequently used in link specifiers to  allow genera ting  link 

endpoints dynam ically. S toring A N C H O R J D  in link specifiers which resolve to  

dynam ic com ponents would impose a  heavy consistency burden. I t is difficult to  m ap 

the  specifier’s A N C H O R J D  to  the  corresponding A N C H O R J D  in a  dynam ically  

com puted com ponent.



75

As suggested by Maioli et al. [66], we m odify D exter anchor notions to  replace 

the A N C H O R J D  in a  link specifier w ith an anchor specification A N C H O R S P E C  

which, along w ith  C O M P O N E N T S P E C ,  resolves to  anchors in the  link endpoint:

— S P E C IF IE R -------------------------------------
com ponentSpec : C O M PO N EN T_SPEC  
anchorSpec : A N C H O R .SPE C  
presentSpec : PR E SE N T JSPE C  
direction  : D IR E C TIO N

As we m entioned before, D exter only supports  internal anchors which are 

defined in com ponents. Here we define ex te rna l  anchors in link specifiers (ra th e r 

th an  in com ponents) using an A N C H O R S P E C .  To resolve A N C H O R S P E C  

to  anchors, we in troduce two new resolver functions: an A i r e  so lver  function

and an A V r e s o lv e r  function. Given UID (resolved by the  resolver function 

from C O M P O N E N T S P E C ), th e  A l r e s o l v e r  resolves A N C H O R S P E C  to  

A N C H O R J D  and th e  A V re so lv e r  resolves A N C H O R S P E C  to  

A N C H O R S  A L U E .

resolver  : C O M P O N E N T S P E C  U I D  

A l r e s o l v e r  : U I D  x A N C H O R S P E C  i-> A N C H O R J D  

A V r e s o lv e r  : U I D  x A N C H O R S P E C  ■-> A N C H O R S  A L U E

T he A l r e s o l v e r  function m aps A N C H O R S P E C  to  A N C H O R J D , to 

retain  th e  original D exter model of in ternal anchors. In the  original D ex ter m odel, 

links sto re  A N C H O R J D s  and C O M P J N F O s  store a  sequence of anchors (i.e.,
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a  lookup tab le  of pairs of A N C H O R J D  and  A N C H O R - V  A L U E ) .  Given an 

A N C H O R J D , we can easily determ ine the A N C H O R - V  A L U E ,  which is w hat we 

need to  ac tually  determ ine the  exact location of the  link end-poin t. T he A V r e s o lv e r  

function m aps A N C H O R S P E C  to  A N C H O R S A L J J E  to  in troduce  the  concept 

of external anchors, i.e., s itua tions  in which the  com ponent does no t know which 

of its  p a rts  have been selected as link endpoints and therefore there  is no way to  

define anchors in the  com ponent’s C O M P J N F O .  Therefore, we ex tend  the  D exter 

hypertex t system  schem a P R O T O  J J Y  P E R T  E X T  by add ing  the  two anchor 

resolver functions:

— P R O T O _ H Y P E R T E X T ----------------------------------------------
com ponents : F  C O M PO N E N T  
resolver  : C O M P O N E N T S P E C  i—► U I D  
A l r e s o l v e r  : A N C H O R S P E C  ■-> A N C H O R J D  
A V r e s o lv e r  : A N C H O R S P E C  A N C H O R S  A L U E  
accessor  : U I D  i-> C O M P O N E N T

W ith  the  extended D exter, com puting a link endpoin t involves resolving both 

com ponents and anchors a t  run-tim e. This is exactly w h a t we need to  support 

dynam ic m apping.

4 .2 .3  L in k s

D exter requires links to  have a t  least two identifiers. T his excludes unary  links. 

D ex ter also excludes dangling links by requiring all links to  have a t  least one 

specifier w ith direction “T O ” and  C O M P O N E N T S P E C  to  be resolved to  

existing com ponents. D ex ter’s restriction on these construc ts  has been widely 

criticized [39, 40, 63, 62].

In our approach of supporting  COIS and hypertex t in teg ration , we also 

find these restrictions are too  narrow. U nary links are useful for m odeling COTS
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com m ands directly  available as menu item s. Access to  bookm arks can also bo 

m odeled as a unary  link w ith  only one “T O ” specifier. O n the  o ther hand, D exter 

allows ne ither “explicit” dangling links (i.e., all links m ust have a t  least a  “T O ” 

specifier) nor “po ten tia l” dangling links (i.e., all C O M P O N E N T  S P E C s  m ust 

resolve to  existing com ponents). Such exclusion of dangling links is too  restrictive 

in m any cases [39, 40, 63, 62]. In the  environm ent of dynam ic COIS m apping, a 

link endpoin t could specify a  com puted com ponent m apped from a COIS ob jec t 

(defined as a  m apping  rule). If the  CO IS object is deleted  inside the  COIS (which is 

tra n sp a ren t to  th e  hypertex t system ), th e  execution of the  m apping  rule will result 

in an em pty  com ponent. T h is causes the link poin ting  to  the  com ponent to  become 

“dang ling .” If the anchor m arking  a  link is deleted inside th e  COIS, the link becomes 

dangling  too. Therefore, we ex tend  D ex ter’s link definition as follows by reducing 

the  m inim al specifier num ber to  1 and removing the  restrictive condition on “T O ” 

specifiers:

— L IN K ---------------------------
specifiers : seq S P E C IF IE R

# spe c i f i e r s  > 1

4.3 Specifications to D exter

D exter is a high level ab s tra c t reference model. It aim s a t  cap tu ring  the comm on 

features of different hypertex t system s bu t does not specify any system s in full. To 

create  a  model for the  GH M I hypertex t system  using the  above extended D exter 

m odel, we need to  m ap G H M I’s capabilities to  D exter. Once m apped to  D exter, 

G H M I becom es a  D exter-based model which proves bo th  G H M I’s and D ex te r’s
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robustness and generality. T his section illu stra tes  our specifications of all GTIMT 

features th a t  fall in D exter and therefore build  GHM I as a  D exter-based model.

4.3.1 Component Information

In GIIM I, we specify the  A T T R I B U T E  in D exter C O M P J N F O  to  explicitly  

model ob ject p roperties as well as o ther COIS-dependent, a ttr ib u tes .

We specify link types and com ponent classes as follows:

L I N K T Y P E  ::=
“S tructu reL ink” | “ReferenceLink”
| “A nnotationL ink” | “A ssociationLink”
| “N avigationLink” | “O perationL ink”

C O M PO S IT E  ::=  “Set” | “List” | “Tree” | “G raph”

C O M P C L A S S  ::=  “P lainA tom ic” | “S tructu redA tom ic” | C O M PO S IT E

GHM I objects have specific properties. We can specify D exter’s A T T R I B U T E  

to  represent them . GHM I object comm on p roperties include link type, com ponent 

classes and  o ther CO IS-dependent a ttr ib u tes  as follows:

[VALU E]

[OST,  O S N , O A N , C N ,  BLS]
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A T T R IB U T E -------------------------------
ow ningSystem Type : OST 
owningSystem Nam e: OSN 
owningAppName: OAN 
com pN am e : CN 
bridgeLawSpec : BLS 
linkType : L IN K TY PE 
com pClass : COM PCLASS 
a ttr ib u te s  : A TTR IB U TES 1-4 VALUE

A GHM I link has no compC la ss  a ttr ib u te  and a GHM I com ponent has 110 

l i n k T y p e  a ttr ib u te .

4.3.2 UIDs

GHM I distinguishes hypertex t com ponents from COIS com ponents according to  

their origins. H ypertex t com ponents are com ponents not m apped from COIS 

objects. They are identified by their UIDs as system -generated  in teger values, 

called G lobal IDs (GIDs). Exam ples of hypertex t com ponents include anno ta tion  

com ponents which contain com m entary  inform ation of o ther com ponents, anno ta tion  

links which connect com ponents to  their annotations, association links which are 

crea ted  m anually, etc. These objects are persistent objects in the  H T E  Linkbase. 

COIS com ponents are m apped from COIS objects by applying bridge laws. They 

are not persisten t in the  H T E  Linkbase and therefore can not be identified by sim ple 

in teger IDs. Instead , a  COIS object is identified uniquely by a  C O I S O B J  plus 

ownership properties. Therefore, GHM I specifies the  D exter UID as e ither a  GTD or 

a  C O I S O B J  p lus ownership properties:

[GID,  C O I S I D ,  C O I S T Y P E ,  C O I S  L A B E L \
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C O I S O B J  = =  C O I S I D  x  C O I S T Y P E  x C O I S L A B E L

UTD ::=  GID
| (CO ISO BJ,
O w ningSystem Type, Ow ningSystem N am e, O w ningA ppN am e)

CO ISID is an ob ject ID w ithin a  COIS application. CO ISLABEL defines 

a  display label for an object. C O IST Y PE  is an object class nam e in a  COIS. 

Bridge laws are defined on entire  classes of objects. C O IS T Y PE  determ ines which 

bridge law should be applied  to  generate an object given CO ISID and O w ningSys

tem T ype. O w ningSystem Type identifies a  COIS handler which works for a  group 

of COISs w ith a comm on d a ta  model (e.g., a  single DB hand ler for all RD BM Ss). 

O w ningSystem N am e identifies individual COISs (e.g., MS-Access, Oracle, Sybase, 

etc.). O w ningA ppN am e identifies individual applications w ith in  a  COIS. T he 

ow nership inform ation is optional as some COIS m ight encode these inform ation as 

a  p a r t  of COISIDs.

4.3.3 Components and the Accessor Function

G H M I’s com ponents are  com patib le to  D exter’s com ponents. Besides th e  above 

com ponent classes specified as a  D exter A T T R I B U T E , we can also specify D ex te r’s 

a tom s and base com ponents to  model GHM I atom ics and  com posites.

GH M I explicitly models atom ic com ponents as e ither unstruc tu red  atom ics 

(i.e., p lain  atom ics) or s tru c tu red  atom ics. conten iSpec  defines the  content of atom ic 

com ponents. The con tentSpec  of a  s truc tu red  a tom ic com ponent is a  sequence 

of C O IS-dependent attribute-value pairs. The contentSpec  of a  plain a tom ic is 

prim itive. It is C O IS-in terpretab le (could be some d a ta  content or reference to  

ex ternal d a ta  content). We obtain  th is by specifying D ex ter’s atom s:
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[ P L A T N . A T O M I C ]

[CO I S  . A T T R I B U T E ,  C O I S - V A L U E )

S T R U C T U R E D - C O N T E N T  = =  C O  I S - A T T R I B U T E  x  C O  I S - V A L U E

—  S T R U C T U R E D JV T O M IC ------------------------------
contentSpec : seq STR U C TU R ED _C O N T EN T

A T O M  ::=  P L A I N - A T O M I C  \ S T R U C T U R E D - A T O M I C

A GHM I com ponent could be an atom  (i.e., plain atom ic or s tru c tu red  atom ic), 

a  link (the sam e as a  D exter link), or a  com posite com ponent. The conten t of a  GITMT 

com posite com ponent contains a  set of non-link com ponents (C o m p S e t )  and a  set 

of link com ponents (L i n k S e t ). Recall th a t  D exter defines a  link com ponent as:

— L in k C o m p ---------------------------
C O M PO N E N T

c om pB ase  G ran  l ink

We define a  GH M I non-link com ponent sim ilarly:

— N on L in k C o m p ---------------------------
C O M PO N E N T

com pB ase  $  ran  l ink
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Wo therefore specify D ex ter’s base.component  to  represent GHM I com ponents:

L i n k S e t  ::=  ((seq LinkCom p))

C o m p S e t  :\= ((seq N onLinkC om p))

B A SE .C O M PO N E N T  ::=  a to m (( ATOM ))
| link((LINI<))
| com posite((C om pSet, L inkSet)),

Here we define a  base com ponent as a  e ither an A T O M , a  L I N K ,  or 

a  com posite  consisting of a  L i n k S e t  and a  C o m p S e t ,  which are  sequences of 

com ponents (link com ponents and  non-link com ponents respectively). Therefore, in 

fact, a  GHM I base com ponent is still a  sequence of com ponents. T h is  is consistent 

w ith  the  extended D exter base com ponent definition. T he only difference is we 

explicitly  d istinguish link com ponents from non-link com ponents, and  th is does not 

v io late th e  definition consistency.

All GH M I com ponents m apped from COIS objects are com puted  com ponents. 

T he  accessor  function is responsible for m apping a  GHM I UID (i.e., C O ISO B J plus 

ownership properties) to  ac tua l COIS object contents by applying a  bridge law. The 

accessor function takes a  UID and m aps it to  the  associated com ponent. In GHM I, we 

need to  specify the  functionality  of the  D exter accessor function to  include applying 

bridge laws to  obtain  the  conten t of a  com ponent. In GH M I, hypertex t com ponents 

are s ta tic  and  th e ir UIDs are explicit. Given a  UID for a  hypertex t com ponent, 

the  accessor function can d irectly  obtain  the  com ponent (i.e., its  content) from the  

H T E  Linkbase w ithou t applying any bridge law. On th e  contrary , CO IS com ponents 

are m apped a t run tim e. T he UIDs for COIS com ponents are  sym bols representing 

a  C O IS O B J plus ownership inform ation (see the above §4.3.2). Given such UIDs,
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th e  content of COIS com ponents is not d irectly  available from the  H T E  Linkbase. 

Instead , the  accessor function needs to  apply  a  com ponent bridge law to  generate 

the  com ponent. Therefore, the  accessor function is equivalent to  G H M I’s function 

A P P L Y  J B L jC O M P ( B L I D ,  A r g u m e n t S p e c ) which takes a com ponent bridge law 

(identified by the  B L I D )  and  includes a  given UID in its A r g u m e n t S p e c  to  m ap a 

com ponent:

accessor  = =  A P P L Y J 3 L . C O M P ( B L I D ,  Argum e n tSpe c)

Therefore, a  GH M I com ponent bridge law defines a  m apping from a  UID to  a 

com ponent. T his is exactly  w hat the  D exter accessor function does. A com ponent 

bridge law specifies O w ningSystem Type for identifying COIS handlers. O ther 

ownership p roperties should be also available a t  the tim e of applying a  bridge law 

to  identify COISs and  applications w ith in  individual COISs. Given a  C O IS O B J and  

ownership properties, the  H T E  searches the  H T E  Knowledge Base for a  bridge law 

m atching the  C O IS T Y P E  and O w ningSystem Type, and passes these as param eters  

to  the  accessor function. The accessor function generates a  message contain ing  the 

UID and the  bridge law’s M appingR ule and  sends it to  the corresponding  COIS 

handler (identified by O w ningSystem Type). A fter receiving the  responses from the 

COIS handler, the  accessor function generates the  content of the  com ponent based 

on the  COIS hand ler’s responses and o ther given inform ation. At th is  tim e, the 

com ponent is ready to  be in stan tia ted  by the  run-tim e layer for display.

4.3.4 Anchors and Anchor Resolver Functions

D exter m odels an anchor as an A N C H O R J D  and A N C H O R . V A L U E .  

A N C H O R J D  provides a  way to  reference an in ternal anchor through a  lookup tab le  

in a  com ponent. In GHM I, however, all anchors are  external anchors. C om ponents 

have no lookup tab les for anchors. Therefore, G H M I’s anchor ID is qu ite  dilTercnt 

from D exter’s concept of A N C H O R J D .  A GHM I anchor ID identifies an anchor by
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its location inform ation. A G IIM I value is the  actual anchor tex t. Therefore, a GHM I 

anchor ID (i.e., anchor locations) along with a GHM I anchor value (i.e., an anchor 

tex t)  m aps to  D ex ter’s A N C H O R J / A L U E .  G H M I’s anchor types can also be 

included in D exter’s A N C H O R J / A L U E .  We specify D ex ter’s A N C H O R J / A L U E  

to  m odel these typed anchors:

[ G H M I - A N C H O R J D ,  G H M I - A N C H O R J / A L U E ]  

A N C H O R / T Y P E  ::=  “P l a in ” \ “K e y w o r d ” | “D y n a m i c ” 

A N C H O R J / A L U E  = =  G H M I . A N C H O R J D  x  A N C H O R - T Y P E  x 

G H  M I - A N C H O R J / A L U  E

In GHM I, unlike plain anchors and keyword anchors which are created  

statically , dynam ic anchors are  resolved from A N C H O R S P E C  through link 

bridge laws. A link bridge law defines a  D exter link and anchor specifications. T he 

GH M I A N C H O R S P E C  is defined as an M RDC (i.e., th e  M apping Rule definition 

Convention which are Prolog-like logical expressions, see §3.7.3.) anchor value 

expression M R D C - A N C H O R - V A L U E  (i.e., an A N C H O R . V A L U E  expression 

con ta in ing  unresolved M RDC variables), along with a link bridge law:

[CO M P J 3  R I D G E  J A W ,  L I N K  - B R I D G E  J A W ]  

[ M R D C - A N C H O R - V  ALUE]

A N C H O R S P E C  = =  M R D C - A N C H O R - V  A L U  E x  L I N K - B  R I D G E  J  A W
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GHM I does not need the  A lr e s o l v e r  function as it does not use any D exter 

A N C H O R J D .  GHM I relies on the  A V  resolver  to  resolve an A N C H O R S  P E C  

to  an A N C H O R - V  A L U E .  A link bridge law’s M appingR ule gives th e  m apping  

inform ation for a  dynam ic anchor. The A V r e s o lv e r  function is responsible resolve an 

A N C H O R S P E C  to  explicit A N C H O R - V  A L U E .  In GHM I, A N C H O R S  P E C s  

are used in “FR O M ” specifiers of link bridge laws. A fter a  com ponent is m apped and 

displayed on screen, the  A V reso lver  is invoked to  m ap all dynam ic anchors in th a t  

com ponent. T h is is done by partially  applying a  link bridge law which resolves only 

A N C H O R S P E C  from its M appingRule. A fter resolving to  an explicit anchor, a 

dynam ic anchor is tem porarily  stored in the  H T E  Linkbase as if it were a  s ta tic  anchor 

and  is readily accessible. Selecting a  dynam ic anchor would ac tua lly  invoke the 

execution of a  link bridge law to  m ap the  “T O ” specifier’s C O M P O N E N T S P E C  

(see below §4.3.5) to  a  com ponent. Therefore, the  A V r e s o lv e r  function is equivalent 

to  G H M I’s function A P P L Y J 3 L - A N C H O R ( B L I D ,  A r g u m e n tS p e c )  which takes 

a  link bridge law (identified by the  B L I D )  and includes a given source C O ISO B J 

in its  A r g u m e n t S p e c  to  m ap a  dynam ic anchor. Here, the B L I D  a long w ith the 

A r g u e m e n tS p e c  is equivalent to  the  above A N C H O R S P E C - .

A V r e s o lv e r  = =  A P P L Y J B L - A N C H O R ( B L I D ,  A r g u m e n tS p e c )

4.3.5 Links and the Resolver Function

GHM I classifies links behaviorally in to  six types: s truc tu re , reference, anno ta tion , 

association, navigation, and  operation links. As illu stra ted  previously, th is link 

typing feature can be represented as an a ttr ib u te  L I N K T Y P E  (in the  above 

A T T R I B U T E ) :

L I N K T Y P E
“S tructureL ink” | “ReferenceLink”
| “A nnotationL ink” | “AssociationLink”
| “N avigationLink” | “O perationL ink”
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G HM I links could be s ta tic  or dynam ic. S ta tic  links arc not m apped by bridge 

laws (e.g., anno ta tion  links, association links). D ynam ic links are m apped by bridge 

laws (e.g., struc tu re  links, reference links and operation  links). In a  link bridge law, 

each link specifier contains an A N C H O R S P E C  instead  of an A N C H O R J D .  T he  

end po in t of a  dynam ic link is defined as a C O M P O N E N T S P E C  and resolved 

dynam ically  by the resolver function.

T he resolver function is responsible for resolving a  C O M P O N E N T S P E C  in 

a  link bridge law to  a  UID. (Then the  accessor function takes the  UID and generates 

th e  conten t of the com ponent as described above). T he C O M P O N E N T S P E C  

in GH M I only considers CO IS com ponents. (H ypertex t queries or search is o u t of 

scope of th is thesis.) T he D exter version of GHM I C O M P O N E N T S P E C  is an 

M RD C UID  (i.e., a UID expression with M RDC variables) along with a link bridge 

law:

[.M R D C J J I D }

C O M P O N E N T S P E C  = =  M R D C J J I D  x  L I N K S R I D G E J A W

W hen following a  link, the  “FR O M ” specifier’s C O M P O N E N T S P E C  

has been already  resolved to  an explicit UID (not an M R D C J J I D )  p rio r to  

displaying the  source com ponent (which enables th is “FollowLink” com m and). T he 

resolver function executes a  bridge law to  in stan tia te  C O M P O N E N T S P E C  in 

“T O ” specifiers to  UIDs. Therefore, we specify the  D exter resolver function as 

G H M I’s special function A P P L Y  J B L  J I N K  ( B L I D ,  A rg u m e n tS p e c )  which takes 

a  link bridge law (identified by the  B L I D )  and includes a given source COISOB.I 

in its  A r g u m e n tS p e c  to  m ap  a  link endpoint. Here the  B L I D  along w ith  the 

A r g u m e n t S p e c  is equivalent to  the  above C O M P O N E N T S P E C :
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resolver  = =  A P P L Y  J 3 L J ^ I N K ( B L I D ,  Argum en tSpec)

A GH M I link bridge law defines a  m apping  from a  C O M P O N E N T . S P E C  to  

an explicit UID in a  dynam ic link. W hen such a  dynam ic link is selected by the  user 

and the  UID of th e  curren t com ponent (i.e., th e  link’s source) is given, the  H T E  finds 

a  link bridge law by m atching C O IST Y PE  in the  UID against those C O IS T Y PE s 

in all link bridge laws’ “FR O M ” specifiers. A fter finding a  m atch, the  H T E  invokes 

the  resolver function to  com pute the C O M  P O N  E N T . S P E C  in th e  “T O ” .specifier 

of th e  sam e link bridge law. The resolver function takes all given pa ram ete rs  along 

w ith the  content of th e  link bridge law and sends a  request to  a  corresponding  COIS 

handler for resolution. Then it collects the  results from  th e  COIS hand ler to  m ap 

the  C O M P O N E N T  . S P E C  to  one or m ore UIDs.

T he H T E  then  asks the  IOS to  display th e  results (as some interface m apping 

of the  resulted UIDs). W hen the user selects one of these UIDs, the  H T E  calls the  

accessor function to  m ap its content by applying a  com ponent bridge law. At th is 

tim e, th e  H T E  finds and asks the  IOS to  m ark up all link anchors associated  w ith 

th is  com ponent. T he H T E calls the A V r e s o lv e r  to  com pute dynam ic anchors (as 

discussed in §4.3.4). T he com m and “FollowLink” is now ready to  execute again. 

A lthough all links are m arked on screen, the  content of link endpoin ts are not 

com puted until th e  user actually  selects to  “follow” th a t  link.

4.4 Summary

In th is chapter, we have m odeled GHM I in term s of D exter and m ake G H M I a  D exter- 

based m odel w ith  extensions and  specifications. We first presented a  general review of 

the  form alized D exter model. Then we illu s tra ted  why D exter is not s trong  enough to



88

model G IIM I and  necessary extensions. Finally, we presented how we model G IIM I 

in term s of the  extended D exter and tailoring it w ith GHM I specifications.

D exter emerged from m odeling existing hypertex t system s. As the  h ypertex t 

field evolves, D exter grows m ore and more insufficient to  fit all system s, especially 

those have emerged after the  form alization of D exter. We found m any obstacles 

in m odeling GHM I using D exter. D exter has problem s on its model for com posite  

com ponents, anchors and  links. We discussed the  problem s we encountered and  ou r 

solutions to  them  as extensions to  Dexter: We extend  the  D exter base com ponent 

to  be recursively defined on com ponents (instead of on base com ponents) to  allow 

base com ponents to  be independent com ponents having UIDs and properties. T his 

enables com posite com ponents to  be constructed  from external com ponents; We 

in troduce th e  concept of A N C H O R S P E C  and replace the  A N C H O R J D  in link 

specifiers by A N C H O R S P E C . This enables dynam ic anchors; We also in troduce  

two new resolver functions: an A lr e s o l v e r  which resolves A N C H O R S P E C  to  

A N C H O R J D  and an A V r e s o lv e r  which resolves A N C H O R S P E C  to  

A N C H O R J / A L U E .  T his enables dynam ic anchors to  be resolved to  explicit 

A N C H O R J D s  and A N C H O R J / A L U E s  a t run-tim e; We also extend D exter 

links to  allow dangling links and  unary links.

D exter is a  high-level a b s trac t reference m odel. It aim s a t cap tu ring  the  

com m on features of different hypertex t system s b u t does not specify any system s 

in full. To create a GH M I hypertex t system  using th e  ex tended  D exter m odel, 

we need to  m ap G H M I’s capabilities to  Dexter. Once m apped to  D exter, GIIMT 

becomes a  D exter-based model which proves both G H M I’s and D exter’s robustness 

and generality. We illu s tra ted  our specifications of all GHM I features th a t  fall in 

D exter and  build GHM I as a  D exter-based model:

•  We specify D exter’s A T T R I B U T E  as GHM I object, com m on properties, link

types, com ponent classes and o ther COIS-dependent, a ttr ib u tes ;
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•  We specify D ex ter’s UID as e ither a  GID (i.e., G lobal ID for a hypertex t 

ob ject no t m apped from COISs) or a  C O I S O B J  (i.e, { ID ,  Ty pe ,  Label))  plus 

ow nership properties;

•  We specify D exter’s A T O M  to  ob tain  G H M I’s atom ics;

•  We specify D exter’s base com ponents as a  C o m p S e t  and a L i n k S e t  which are 

non-link com ponents and link com ponents, respectively;

•  We specify D exter’s anchor values as G H M I’s typed  anchors;

•  We specify D exter’s accessor function as G H M I’s function

A P P L Y J 3 L . C O M P { )  in order to  utilize GHM I com ponent bridge laws;

•  We specify the extended D exter’s A V r e s o lv e r  as G H M I’s function 

A P P L Y - B L - A N C H O R ( )  in order to  utilize GHM I anchor definitions in link 

bridge laws;

•  We specify D exter’s resolver function as G H M I’s function A P P L Y  J 3 L - L I N K () 

in o rder to  utilize GHM I link bridge laws.



CHAPTER 5

M A PPIN G  RELATIONAL DATABASES TO HYPERTEXT

T he purpose of m apping RDBM S to  hypertext is to  provide a  hypertex t-based  front- 

end to  external heterogeneous databases m anaged by RDBM Ss. RDBM Ss usually  do 

not sup p o rt a  hypertex t-based  navigation style for accessing inform ation. Instead , 

they  are based on predefined queries. This im plies th a t  the  resulting  app lications are 

difficult to  use or to  navigate through. As a  fu rther lim ita tion , different, d a tab ases  can 

not be accessed unless specific ad hoc program s are developed. We aim  a t  com bining 

hypertex t and RDBM S technologies. In GH M I system s, th e  hypertex t interface 

has its  own d a ta  m odel and  visual s truc tu re  defined in the  popu lar hypertex t style, 

ra th e r th an  the  s tru c tu res  of its external heterogeneous databases. In th is section, we 

present a  fram ework for m apping  RDBM S to  hypertex t, based on G H M I’s constructs 

and M RD C. A pplying hypertex t functionality  enhances the  effectiveness of R D BM S 

for users. A fter identifying how GHM I could help RDBM S, we illu s tra te  dom ain 

m apping  between RD BM S and hypertex t th rough bridge law examples.

5.1 Identifying RDBM S Objects

T he hypertex t representation  under GHM I helps a  RD BM S user establish  direct 

access to  explicit or im plicit relationships am ong its  underlying DBMS objects. We 

view a  relational da tabase  as a  com position of five types of objects (see F igure  5.1):

(1) Value: a  individual value in a  table; (2) Record: a  set of field-value pairs in a 

tab le  (i.e., a  tuple); (3) Field: a  field nam e along w ith  a  sequence of values under 

under th a t  field name; (4) Table: a  set of records (or fields); (5) D atabase: a  set of 

tables.

90
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Database

Table

Value K
\ Record

Field

Figure 5.1 D atabase O bjects

We can m ap the  above objects using GHM I constructs. We m ap individual 

values to  anchors, records to  s tru c tu red  atom ics, fields to  s tru c tu red  atom ics (w ith 

the  sam e a ttr ib u te  for all values), tab les to  a Se t  of records or fields and da tabases  

to  a  S e t  of tables.

F igure 5.1 shows the  in ter-object hierarchical relationships. GHM I represents 

these s tru c tu ra l relationships as struc tu re  links. We give bridge laws for m apping  the  

RD BM S objects and s tru c tu re  links in §5.5. Besides these s tru c tu ra l relationships, 

GH M I also helps directly access o ther im plicit relationships as discussed in the  next 

section.

5.2 Applying Hypertext Functionality

A fter m apping  database objects to  hypertext com ponents, we can apply hypertex t 

functionalities on database  objects, including browsing or navigating am ong in te r
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object relationships, anno ta ting  (e.g., add ing  com m ents, bookm arks, etc), generating  

overviews, providing guided-tours, and supporting  analysis (i.e., th rough connecting 

related  inpu ts , com putations and ou tpu ts). Links can be defined as a  powerful m eans 

for d irectly  accessing explicit and  im plicit in ter-object relationships.

Object linking. GHM I enable th e  user to  create  and access inter-object, links repre

senting sem antic  relationships. Such links could be in tra -da tabase  or in te r-da tabase  

links.

Direct access to structural relationships. GHM I helps the  user d irectly  access the 

s tru c tu ra l in ter-ob jec t relationships w ithin a  da tabase  shown in F igure 5.1. Once 

d a tabase  ob jects are m apped to  hypertex t com ponents, th e  user is able to  access 

da tabase  ob jec ts by following the  s tru c tu re  links in the  details of various levels.

Direct access to schema-based relationships. T he relational d a tab ase  model concep

tually  represents in ter-object relationships as E ntity -R elationsh ip  (ER) diagram s. 

W hen we ac tua lly  im plem ent an E R  diagram  w ithin a  relational d a tab ase  system , all 

inform ation has to  be m apped to  independent schem ata. T he original E R  inform ation 

s tru c tu re  becom es implicit .  In GHM I, we can m ap schem ata to  s tru c tu red  atom ics 

(w ith only fields) and E R  diagram s to  G raphs (in which entities are com ponents and 

the  E R  rela tionships are  links). GHM I gives users direct access to  these ob jects and 

their re la ted  im plicit relationships through m apping them  to  reference links defined 

by bridge laws.

Direct access to R D B M S  operations. GHM I facilitates d irect access to  RD BM S 

operations by m odeling them  as operation  links on database  objects. W hen users 

select them , GHM I does not reim plem ent RDBM S com m ands, ra th e r it gives users 

d irect m anipu la tion  access to  them . O peration  links directly access dynam ic objects
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generated  by user com m ands and queries. All da tabase  queries can be m apped to  

operation  links e ither on particu la r da tabase  objects, or as m enu item s w ith no 

d ep artu re  com ponents and  accessible from all locations (i.e., unary  links). We can 

also define frequently-used specific queries as reference links. Once defined as an 

operation  link, a  specific query is directly executable and  reusable.

Direct access to meta- information.  D atabase  objects could have two types of 

m eta-inform ation: anno ta tion  and system -controlled inform ation. G IIM I allows 

the  user to  m an ipu la te  anno ta tions on objects th rough  annotat ion links. Users 

can access system -controlled m eta-inform ation through operation links. Such infor

m ation includes ob ject size, field type, ob ject description, tim estam ps (e.g., creation 

tim e, u pda te  tim e, e tc .), and o ther object s ta tis tic s— inform ation often no t d irectly  

accessible from objects.

Navigation assistance. GHM I provides RD BM S users w ith a  variety  of navigation 

facilities including backtracking, history list, bookm arks, network overviews and  

guided-tours. M ost of these features are supported  by navigation links. N avigation 

links can be defined e ither sta tically  or dynam ically. W ith  a  com posite com ponent, 

such as a  tab le  or a  da tabase, the user can sim ply follow the  default gu ided-tou r 

au tom atically  generated  by th e  system to  explore the  com ponent’s conten t. On the  

o ther hand, for instance, the  user can select m anually  a  small group of records in 

tab les “Faculty” and  “S tuden t” representing a  group of people involved in a  pro ject. 

T he selected records can be connected in a  gu ided-tour through navigation  links. 

A guided-tour can consist of a  sequence of au to m ated  queries (called a  query-based 

gu ided-tour in G H M I). W hen such a  guided-tour is followed a t run-tim e, th e  queries 

are dynam ically  resolved to  explicit d a tabase  objects (or GHM I com ponents m apped 

from them ). H istory-based guided-tours enable the  user to  access session histories 

directly.
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Analysis guidance.  H ypertex t can help the  user control the  process of a  well- 

defined analysis procedure on databases [6]. H ypertex t could guide the  ana ly st 

by au tom atica lly  retriev ing  the  d a ta  needed and  connecting  w ith the  a p p ro p ria te  

analysis routines. All steps of the  procedure could be a n n o ta ted  by the  p rocedure 

bu ilder or the  analysis. R eaders could select any item  w ith in  th e  final report and  get 

in fo rm ation  on how it was calculated. For exam ple, suppose th a t  an ana ly st often 

com pares the  contents of two related  databases DB1 and  DB2 and  has declared a 

s ta n d a rd  procedure to  assist in th is process. (1) T he ana ly st selects certain  values 

in a  d a tab ase  report (th is rep o rt could be a tab le , a  record, or a  tex t file). (2) 

T he  system  determ ines to  which objects they correspond in DB1. (3) T he system  

determ ines to  which objects they  correspond in DB2. (4) T he system  guides the  

a n a ly st th rough  a  series of s ta tis tica l analyses com paring  th e  values from the  two 

d a tabases. (5) The analyst constructs a  final report, in which num eric elem ents are 

highlighted as anchors. Users can select them  and  see the  process used to  ca lcu la te  

them . T his analysis procedure can be im plem ented as a  GH M I guided-tour. Every 

s top  on th is  tra il is anno ta tab le .

5.3 The Schema DB

In th is  section we discuss an im plem entation d a ta  s tru c tu re  suppo rting  schem a- 

based rela tionship  m apping. To take advantage of th e  GHM I style da tabase  (DB) 

schem a m apping, every DB needs to  a schem a represen tation  sto red  in a  associated  

d a tab ase  called schem a DB (or in the  sam e DB w ith  d istinguished tab le  nam es). 

Here by “p rim ary” DB, we m ean the  database  itse lf consisting of tab les in s ta n tia te d  

from  its  original E R  d iagram . By “schem a D B” we m ean the  special DB m anaged 

by the  D B handler which m ain tains the  original E R  d iagram  inform ation to  rela te  

th e  p rim ary  DB tables to  each other. Therefore, every schem a DB has a  p rim ary  

D B associated  to  it. We nam e a schem a DB using its p rim ary  D B ’s nam e plus
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SYSTables
TableName SchemaName

SYSSchemata
SchemaName SchemaType SchemaNamel Keyl SchemaName2 Key2

(a) System Tables

Entity Schemata Relation Schemata

Key Field 1 Keyl Key2

Key Field 1

(b) Schema Tables 

F ig u r e  5 .2  A Schem a DB R epresentation

word “schem a” for consistent identification and easy association. F igure  5.2 shows a 

general representation  of a  schem a DB.

A schem a DB consists of two sets of tables: the system  tab les (i.e., m eta  

tables) and  schem a tables. (1) T here  are  two system  tables: SY SE R Schem ata and 

SYSTables. SY SER Schem ata records all schem ata in the  schem a DB derived from 

the  E R  diagram . S c h e m a N a m e  identifies each schema. S c h e m a T y p e  could be 

E n t i t y  or Rela t ion  representing the  en tities and  relationships in an E R  diagram  

respectively. To sim plify discussion, we only consider b inary  en try  relationships 

(o ther com plex relationships can be decom posed into b inary  re la tionships). The 

o ther fields in S Y S E R S c h e m a t a  a re  for the  Relat ion  schem a only, identifying the
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two p artic ip an t en tity  schem a nam es and key field names. S Y S T a b l e s  records all 

tab les in the  p rim ary  D B  and their corresponding schem ata in th e  schem a DB.

(2) The schem a tab les of a  schem a DB are  the  actual schem ata (both  en tities and 

relations) m apped from an E R  diagram . A schem a could have m ultip le instances in 

th e  prim ary  DB (recorded in S Y S T a b l e s ) .

Figure 5.3 shows a  sim ple schem a DB representation for a  sm all DB called 

“Sm allSchool.” (a) is an E R  diagram . N orm ally we convert it to  the  schem ata  in 

(b), which are in stan tia ted  to  plain tables. Therefore the  original E R  rela tionships 

am ong tab les are no longer directly accessible, (c) shows a corresponding schem a 

DB which restores all ER  inform ation am ong tables. We can easily w rite  a  query 

to  find the  original E R  relationships. In add ition , based on th is schem a DB, we can 

direct access o ther im plicit schem atic relationships through  bridge laws. Exam ples 

include “F ind  all o th er tab les with the  sam e schem a as the  curren t tab le ,” “F ind  all 

o th er tables having th e  sam e key field as the  curren t tab le ,” etc.

5.4 RDBM S Bridge Law Design Guidelines

T he objective of designing RDBM S bridge laws is to  enable direct access to  RD BM S 

objects, relationships and m eta-inform ation through  dynam ically m apping  them  to  

G HM I constructs. To com plete our dom ain m odeling on RDBM S and  d em onstra te  

th e  power of dom ain m apping, we define a  set of bridge laws to  m ap R D BM S. To 

define bridge laws, we need to  find out po ten tia l explicit or im plicit rela tionships or 

ob jects which can be m apped by a  bridge law. The following gives some guidelines 

for defining RDBM S bridge laws.

• Object BLs. We need BLs for the  five database  objects as described above 

(i.e., values, fields, records, tables and databases), as well as schem ata  and  ER  

diagram s in th e  associated schema DB. O bject BLs m ap o b jec ts’ contents.

M ap records to  struc tu red  atom ics
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Takes

SSN

Teaches,

CNum

FacultyStudent

Course

Schemata

Course
CNum

Faculty
SSN

Student
SSN

Takes
SSN CNum

Teaches
SSN CNum

(a) An ER Diagram (b) Schema Mapping o f ER Diagram

SYSSchemata
SchemaName SchemaType SchemaNamel K eyl SchemaName2 Key2
Course Entity

Faculty Entity

Student Entity

Takes Relation Student SSN Course CNum

Teaches Relation Faculty SSN Course CNum

SYSTables Entity Schemata Relation Schemata
TableName SchemaName
DoctoralStudcnt Student Course Takes
M aslerStudent Student CNum ...... SSN CNum

GradualeCourse Course

VisitingScholar Faculty Faculty Teaches
UndcrgraduatcStuder : Student SSN SSN CNum

DayClass Takes

EvcningClass Takes Student
TeachingPlanl Teaches SSN

TeachingPlan2 Teaches

(c) A Schema DB

Figure 5 .3  A Schem a DB Exam ple: Sm allSchool-Schem a
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M ap fields to  s truc tu red  atom ics

- M ap tab les to  sets of records

-  M ap tab les to  sets of fields

-  M ap databases to  sets of tables

-  M ap schem ata to  s tru c tu red  atom ics 

M ap E R  diagram s to  graphs

• Structure BLs. We need bridge laws to  m ap objects upw ards to  their 

em bedding com posites. S truc tu re  BLs would include: m apping  records to  

tab les, records to  a DB, fields to  tables, fields to  a  DB and  tab les to  DB.

• Operation BLs. We need BLs for SQL queries and O D B C  operations. From 

th e  im plem entation poin t of view, these operations should include all operations 

supported  by ODBC. Frequently  used specific queries can also be m apped to  

operations links.

• Schema-based BLs. We store schem ata as tables. Therefore, all BLs on 

regular tab les should apply  to  schem a DB too. Besides these schem a tab le  

BLs, we need BLs to  m ap im plicit inter-object relationships im plied by the  

schem ata  in the  schem a DB of a  p rim ary  DB. We can m ap these relationships 

to  reference links.

• Meta-information BLs. C ertain  users such as developers should be able 

to  access object sta tistics, such as field type, field size, record size, tab le  size 

(num ber of records in a  tab le), DB size (num ber of tab les in a  D B), refer

ential constrain ts, etc. Accessible m eta-inform ation also includes dynam ic 

inform ation supported  by O D BC (e.g., such as “u p d a tab le” ). Bridge laws 

help access these by defining reference links.
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5.5 RDBM S Bridge Laws

In the  following subsections, we present bridge laws for m apping RD BM S objects, 

s tru c tu ra l relationships, operations, schem atic relationships and  m eta-inform ation .

5.5.1 Object Bridge Laws

1. B L Record: Mapping Records to S t r u c tu r e d  A tom ic  components , as shown 

in Table 5.1. The GHM I H T E  in stan tia tes  the bridge law for each required 

record m apping. We specify the  com ponent class (C o m p C l a s s ) as ‘S truc

tu red  A tom ic.1 The C o m p N a m e  ‘R ecord1 indicates th is  bridge law applies 

to  record objects. The hypertex t identifier (C O I S I D ) is a  com position of 

[ D ,T ,K ] ,  where symbols D , T  and  K  are defined in the  M a p p in g R u l e  p a rt 

of the  bridge law. In M a p p in g R u l e , predicate object([D, T,  K ] , 1 Record.1) 

indicates D, T,  K  is a  record object which is in ternally  identified by its  key K ,  

em bedding tab le  T  and em bedding da tabase  D.  The content C  of record K  is 

represented by p redicate property([D,  T,  K], ‘C o n t e n t 1, C) .  From  th is exam ple, 

we can see th a t  hypertex t system  uniquely represents the  C O I S I D  of a  record 

by a  com bination of the  em bedding tab le ’s C O I S I D  and  the  record’s key 

value. T he DB handler would find ou t from th is m apping rule th a t  D  s tands 

for a  da tabase  object, T  is a  tab le  and K  is the  record’s key value. We represent 

the  com ponent set (CompSet)  and  the  link set (L in k S e t )  as “N O N E ” because 

th is m apped  com ponent is ‘a tom ic1 w ith no o ther com ponents or links in its 

content.

2. B L p ieid: Mapping Fie lds  to S t r u c tu r e d  A tom ic  components,  as shown in Table

5.2. T his bridge law is sim ilar to  B L Record. T he only difference is th a t  a field is 

identified by its field nam e instead of a  key value of a  record and  the  C O ISType 

is ‘F ie ld1 instead  of ‘R ecord.1
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T a b le  5.1 Bridge Law BLRecord

Com pC lass ‘S tructu redA tom ic1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘R ecord1
CO ISO bj [[D,T, K ] , 1 Record1, K]
CompSet, ‘N O N E 1
LinkSet ‘N O N E 1
C ontentSpec C
M appingR ule object([D, T , K], ‘Record ‘), 

property([D,  T , K], 'C o n te n t1, C ).

T a b le  5 .2  Bridge Law BL Fie ld

Com pClass ‘S truc tu red  A tom ic1
O w ningSystem Type ‘D atabase1
C om pN am e ‘F ie ld1
C O ISO bj [[D,T, K \ , 1 F ie ld 1, K]
C om pSet ‘N O N E 1
LinkSet ‘N O N E 1
C ontentSpec C
M appingR ule o b j e c t ( [ D , T , K ] , ‘F i e ld 1), 

property ([D , T , K \ , 1C o n t e n t ‘, C ).
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Table 5.3 Bridge Law BLTafc/el

Com pClass ‘S et1
O w ningSystem Type ‘D atabase1
Com pNam e ‘Table1
CO ISO bj [[D, T], ‘Table1, T]
Com pSet {[[D,T,  K ] , 1 Record1, K}}*
LinkSet ‘N O N E 1
ContentSpec ‘N O N E 1
M appingRule object([D, T,  K], ‘Record1).

3. BLrabiei- Mapping Tables  to Se t  components f rom records, as shown in Table

5.3. T he resulting  com ponent contains a  set of record com ponents m apped 

from da tabase  records by the  above B L Record. A tab le  is identified by its tab le  

nam e and the da tabase  in which it resides (i.e., [D,T]) .  T he conten t of the 

resulting  com posite is a  set of record com ponents. {[D, T, K ] , 1 Record1, A']}* 

m eans 0 o r more K .  object([D,T,  K ] , ‘Record1) ind icates th a t  K  is a record 

residing in tab le  T  of da tabase  D.

T he following in stan tia tion  of BLrabiei m aps th e  conten t of tab le  “D octoral- 

S tuden t:”

A P P L Y  J B L jC O M P (B L Tablei ,

[D , T ] =  [‘S m a l lS c h o o l ‘, ‘D o c to ra lS tude n t ‘])

4. B L rpabie2 - Mapping Tables  to S e t  components f rom fields , as shown in Table

5.4. T he resulting com ponent contains a  set of field com ponents m apped from 

da tabase  fields by the  above B L Fieid. This bridge law is sim ilar to  B L Tabiei 

except it provides ano ther perspective of viewing a  tab le  and an a lte rna tive  

way to  navigate a com posite’s content. Here K  represents a  field object and 0 

or m ore K ' s  are m apped to  th e  content of a  table.
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Table 5.4 Bridge Law BLTable2

Com pClass ‘S et1
O w ningSystem Type ‘D atab ase1
Com pN am e ‘T able1
C O ISO bj [ [D ,T ] ,‘Tab le1,T]
Com pSet {[[D,T,  K], ‘F ie ld 1, K]}*
LinkSet ‘N O N E 1
ContentSpec ‘N O N E 1
M appingR ule object ([D,T,  K ] , ‘Field,1).

T a b le  5 .5  Bridge Law BL Database

Com pClass ‘S e t1
O w ningSystem Type ‘D atab ase1
Com pNam e ‘D a tab ase1
PresentationSpec ‘Tree1
CO ISO bj [[D ],1 Database ' , D]
Com pSet {[[D,T], ‘Table1, T]}*
LinkSet ‘N O N E 1
ContentSpec ‘N O N E 1
M appingR ule object([D,T],  ‘Table‘).

5. j3 L n atai,aiie: Mapping Databases to Se t  components , as shown in Table 5.5. 

T he resu lting  com ponent is labeled by its nam e and contains a  set of tab le  

com ponents m apped from da tabase  tab les by the  above B L r abie\ or BLmbici-  

W ith  th is  bridge law, we view a  da tabase  as a  com posite S e t  consisting of tab le  

com ponents. A da tabase  object is identified by its name.

6. BLschema • Mapping Table S c he m a ta  to S t ru c tu r ed  A to m ic  components , as 

shown in Table 5.6.

7. B L rR p i ag ra m ■ Mapping an  E R  d iagram s to Hybr idgraphs ,  as shown in Table 

5.7.
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Table 5.6 Bridge Law BL Sc h e m a

Com pClass ‘S truc tu red  A tom ic1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘Schem a1
C O ISO bj [[D ,T ] ,‘S c h e m a 1, T]
C om pSet ‘N O N E 1
LinkSet ‘N O N E 1
C ontentSpec C
M appingR ule object([D, T], ‘S c h e m a 1), 

property([D , T ] , 1C o n te n t ', C).

T a b le  5 .7  Bridge Law B L E  R D ia g r a m

C om pClass ‘G raph1
O w ningSystem Type ‘D atabase1
Com pN am e ‘E R D iagram 1
PresentationSpec ‘G raph1
CO ISO bj [[D, ‘E R D ia g ra m '] ,  'E R D ia g r a m ” , _]
Com pSet {[[D, 5], ‘S chem a ',  _]}*
LinkSet {[[[D, 51], 'S chem a ',  'From'],  

[[[D, 52], 'S chem a ',  _], _, 'To']}*
C ontentSpec ‘N O N E1
M appingR ule object(D , 'Database'), 

object.([D, 51], 'S chem a ') ,  
objeci([D, 52], 'S chem a ') ,  
object([D, 5], 'S chem a ') ,  
r e la t io n ( S \ , 52 , 'E R R e la t io n ') .
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An instan tia tion  of th is BL in the above exam ple schem a DB would be:

A P P L Y  J3L-.COM P (B L RRDiagram,D  =  ‘Sm a llS ch o o V )

T he variables would be in stan tia ted  as:

D  =  ‘Small School',

S  =  {‘S tuden t1, ‘C ourse1, ‘Facu lty1}

{[51 ,52 ]}  =  {[‘S tu d e n t1, 'C o u rse 1}, [‘F a c u l ty 1, ‘C o u r s e 1]}

A graphical view of an E R  diagram  com ponent would be sim ilar to  F igure  

5.2(a).

5.5.2 Structure Link Bridge Laws

S tru c tu re  links help direct access RDBM S objects th rough  th e ir s truc tu ra l relationships. 

We do not need a  s tru c tu re  link to  access records in a  tab le  because the  records 

are  contained  as the tab le ’s content and can be accessed by applying B L Tahiel. 

However, we need to  access in the  reverse direction: from records to  tab les, from 

tab les to  databases, etc. We give five s tructu re  link bridge laws, m apping access 

from records to  their contain ing  table, fields to  th e ir contain ing table, tab les to  

th e ir  contain ing  database, records to  th e ir contain ing da tabase  and fields to  th e ir  

contain ing  database.

1. B L RecortiroTabie: Accessing a table from  Us records, as shown in Table 5.8.

T he following in stan tia tion  of B L RecordToTaue m aps a  record w ith key “123456789” 

to  its containing tab le  “M asterS tuden t.”

A P P L Y  -B L -L IN  K {B L Recor(iToTablei

[ D ,T ,F l]  — [‘S m a llS ch o o l‘, ‘M a s te r  S tu d e n t1, T234567891])

2. B L Fieid.ToTa.bie• Accessing a table from  its fields, as shown in Table 5.9.
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Table 5.8 Bridge Law BLRecordToTable

Com pClass ‘Link1
O w ningSystem Type ‘D atabase1
C om pN am e ‘RecordToTable1
LinkType ‘S tructu reL ink1
Specifier

Com pSpec [[D,T, F I ] , 1 Record,1,.]
AnchorSpec ‘N O N E1
Direction ‘F R O M 1

Specifier
Com pSpec []D,T], ‘Table1,-]
AnchorSpec ‘N O N E 1
Direction ‘T O 1

M appingR ule object([D, T, F I ] , 1R ecord ‘).

T a b le  5 .9  Bridge Law B L F ie ldT oT ab le

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
C om pN am e ‘FieldToTable1
LinkType ‘S tructu reL ink1
Specifier!

Com pSpec [[D,T, F I ] , ‘F ie ld 1,-]
AnchorSpec ‘N O N E1
Direction ‘F R O M 1

S pecifier
Com pSpec [[D ,T] ,‘Table1,-]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule object([D, T , F I ] , ‘F ie ld 1).
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Table 5.10 Bridge Law BLTableToDatabase

Com pClass ‘L ink1
Ow ningSystem Type ‘Database*
Com pN am e ‘T ableT oD atabase1
LinkType ‘S tructu reL ink1
Specifier]

CompSpec [[D, F I ] ,  ‘Table1, _]
AnchorSpec ‘NONE*
Direction ‘F R O M 1

Specifier
Com pSpec [[D], ‘Database ', _]
AnchorSpec ‘NONE*
Direction ‘TO*

M appingRule object([D,  F I] , lTable‘).

3. B L Tabier 0Database: Accessing a database from its tables, as shown in Table 5.10.

4. B L ftecordToDatabase- Accessing a database from its records, as shown in Table 

5.11.

5. B L FteidToDatabase■ Accessing a database from its fields, as shown in Table 5.12.

5.5.3 Operation Link Bridge Laws

We can m ap  a  generic query to  an operation  link.

•  B L Q ueTy: Mapping a query to an Operation Link, as shown in Table 5.13.

BLQ uery in Table 5.13 m aps a  query represented by SQL s trin g  Q  to  a 

com ponent. T he following in stan tia tion  of B L Q Uery m aps an operation  link 

generating  all studen t nam es from tab le  “D octora lS tuden t.”

A P P L Y  J B L J j I N K ( B L Query,

[F 1 ,Q ] =  [‘S m a l l S c h o o l ' / S E L E C T  N a m e  F R O M  D oc tora lS tuden t1])
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Table 5.11 Bridge Law TiLRecordToDatabase

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
Com pN am e ‘ R ecordToD atabase'
L inkType ‘S tructu reL ink1
Specifieri

Com pSpec [[D, T, F I ] , 1R e c o r d _]
AnchorSpec ‘N O N E 1
D irection ‘F R O M 1

S pecifier
Com pSpec [[jD], ‘Database1, _]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule object([D, T, Fi], ‘Record1).

Table 5.12 Bridge Law BLFie ldToDatabase

Com pClass ‘L ink1
O w ningSystem Type ‘D atab ase1
Com pN am e ‘F ieldT oD atabase1
LinkType ‘S tructu reL ink1
Specifieri

Com pSpec [ [ D , T , F I ] , ‘F ie ld ‘s }
AnchorSpec ‘N O N E 1
D irection ‘F R O M 1

S pecifier
Com pSpec [[D], ‘Database ', _]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule ob jec t ( [D ,T , F I ] , ‘Field').
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Table 5.13 Bridge Law BLQ u ery

CoinpClass ‘Link'
O w ningSystem T ype ‘D atabase1
C om pN am e ‘Q uery1
LinkType ‘O perationL ink1
Specifieri

Com pSpec [F I, ‘Database ', _]
AnchorSpec ‘NO N E'
D irection ‘F R O M 1

S pecifier
Com pSpec [[F I, F2], ‘Table1, _]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule objec t(F l ,  ‘Da tabase‘),
propert .y(F 1, ‘Operat ion' , ‘Query'),  
objec t {[F\ , F 2 ] ,1D ynam icTable ‘),
property (F2 ,  'Content' ,  O P E R A T  I O N  ( FI ,  'Query' ,Q)) .

The result is a  dynam ic tab le  holding th e  s tuden t names. T he tab le  does not. 

exist in the  DB prio r to  the  execution of th is bridge law. This is why we include an 

object p red icate  object([F\ ,  F 2 ] , ‘ DynamicTable')  instead  of objecl([F 1, F 2], ‘Table1) 

(which represents a  DB fact th a t  F 2 is an existing tab le) in the  above MappingRule .  

All dynam ic tab les have a  p roperty  “C onten t” whose value is some M RD C function 

specification and is evaluated upon execution of th e  bridge law. (We will see sim ilar 

results as dynam ic tab les when we discuss reference links bridge laws la te r in th is 

section.) T he query expression Q  in B L q uetv could be a rb itra rily  com plicated  as 

long as it is a  valid SQL sta tem en t. W hen th e  RD BM S sends back the  query  result 

(along w ith the  CO ISID s) and m arks the  C O ISType as “Table,” th e  H T E  applies 

BLj'abie to  m ap it to  a  Set com ponent as if it is a  regular table. These dynam ically  

generated  records are organized in to  a  guided-tour (i.e., a  query-based guided-tour) 

facilita ting  user navigation.
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Besides the  generic query, we can also m ap frequently accessed specific queries 

to  operations links as varian ts of the above B L Q Uery. Consider the  following specific 

queries on our sam ple DB “Sm all School:”

(1) Given a  course, find all dayclass studen ts tak ing  th a t  course.

(2) F ind  all professors (nam es) teaching undergraduate  courses.

(3) F ind  all professors a s tuden t takes courses with.

(4) F ind  all courses a  s tuden t taking.

(5) F ind  all courses taken by undergraduates.

These queries could be frequently used for access cross-table inform ation. BLs enable 

such queries to  be defined as “ready-to-execute” com m ands m odeled as operation  

links. We take  (1) as an exam ple. Table 5.14 shows bridge law BLcourseQuery which 

m aps the  above query (1).

BLcourseQuery is ac tua lly  an in stan tia tion  of B L q uery. T he following in sta n 

tia tio n  of BLcourseQuery m aps all studen ts tak ing  course “CIS610” :

A P P L Y _ B L -L I N K ( B L CourseQuery, N  =  ‘C /S 610‘)

T he above in stan tia tion  is equivalent to  the following in stan tia tion  of B L Q Uery:

A P P L Y  J 3 L J ^ I N K ( B L Query,

[F1,N,Q] =  [‘Small School1,

‘CIS6101,

‘SEL EC T N am e FR O M  

D octoralS tuden t, M asterS tudent,

U nderg raduatestuden t, DayClass W H ER E 

D ayC lass.CN um  =  $$ N AND 

(DayClass.SSN =  D octoralStudent.SSN  

O R  DayClass.SSN =  M asterStudent.SSN  

DayClass.SSN =  U ndergraduateS tuden t. SSN )‘])
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T a b le  5 .1 4  Bridge Law B L C o u rse Q u ery

Com pC lass ‘L ink1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘C ourseQ uery1
L inkType ‘O pera tionL ink1
Specifieri

Com pSpec
AnchorSpec
D irection

[[‘S m a llS ch o o l1], ‘Database ', _]
‘N O N E 1
‘F R O M 1

Specifier2
Com pSpec
AnchorSpec
Direction

[['SmallSchool', F2], ‘Table1, _]
‘N O N E 1
‘T O 1

M appingR ule object(‘Sm a llS ch o o l ' , 'Database'),  
p ro p e r ty ( ‘S m a llS ch o o l ' , 'O p era tio n ', 'Q uery ') ,  
object([‘S m a llS ch o o l ' , F 2], 'D ynam icTab le ') ,  
property (F 2 , 'C onten t',
O P E R A T I O N S  S m a l lS c h o o l ' , 'Q u e ry ' ,  
‘SEL EC T Nam e FROM  
D octoralS tudent, M asterS tudent, 
U ndergraduatestudent,, D ayC lass W H E R E  
D ayC lass.CN um  =  $$ N AND 
(DayClass.SSN =  D octoralS tudent.SSN  
O R  DayClass.SSN =  M asterS tudent.SSN  
DayClass.SSN =  U ndergraduateS tuden t.S S N )1)).
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5.5.4 Schema-Based Bridge Laws

Bridge laws help d irectly  access schem a-related im plicit relationships. C onsider the  

following exam ples:

(1) Given a  tab le , find all tables which have the  sam e schema.

(2) Given a  tab le , find all tables having the  sam e key field.

(3) Given a  tab le , find all tables which have an E R  relationship  w ith  it.

(4) Given a  record, find all tables whose nam es ap p ear in th is  record.

(5) Given a  non-key field, find all o ther tab les which have it as a  key field (i.e., the

non-key field in a  tab le  is a  foreign key field in o ther tables).

(6) Given a  record and  a  non-key value, find all o ther records which have th is  value 

as their key value (i.e., th is value is a  foreign key value).

(7) Given a  schem a, find all tables under th is  schema.

(8) Given an application  database, find its  E R  diagram .

(9) Given a  record, find all records which have an E R  relationship  w ith  it.

(10) Given a  tab le , find all tables which have an indirect E R  rela tionsh ip  w ith it 

(i.e., E R  rela tiosh ip  through  transitiv ity ).

(11) F ind  all tab les which include a  given tab le ’s fields.

(12) F ind  all tab les which include all of a  given ta b le ’s fields except X .

We give bridge laws for (1) to  (7).

1. BLsameSchema '■ Given a table, find all tables which have the same schema , as 

shown in Table 5.15.

An in stan tia tio n  of th is BL in the  above exam ple schem a DB would be:

A P  P  L Y  J 3  L J L I N  K  (B  LsameSchemai 

[D , F I]  =  [‘Sm all  School‘, ‘M a s te r S tu d e n t1])
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Table 5.15 Bridge Law BL S a m e  S c h e m a

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
Com pN am e ‘Sam eSchem a1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
D irection

[[D, F I] , ‘Table1,
‘N O N E1
‘FR O M 1

S pecifier
Com pSpec
AnchorSpec
D irection

{ [D ,F2] , ‘Table1, _]
‘N O N E1
‘T O 1

M appingR ule object([D, F I ] ,  ‘Table1), 
object([D, F2], ‘Table ), 
object([D,  5], ‘Schem a1), 
relat ion([D,  F I ] ,  S, ‘H a sS c h e m a 1), 
relat ion([D,  F2], S, ‘H a sS c h e m a 1).

V ariables would be in stan tia ted  as:

S  =  ‘S tuden t1

F 2  =  {‘D o c to ra lS tuden t1, ‘M asterS tuden t', ‘U n d e rg ra d u a tes tu d en t1}

T he resulted tab les would be three tables “M asterS tuden t,” “D o c to ra lS tu d en t” 

and  “U nderg raduateS tuden t.” W henever a  bridge law execution results in 

m ultiple tables, the  DB handler organizes them  in to  a  dynam ic tab le  w ith 

each tab le  nam e highlighted as dynam ic anchors. Each dynam ic anchor in a 

dynam ic tab le  m arks a  reference link RefT oT ab le  (see below B L Ref ToTahie). 

T he  user can select on any of these anchors to  access the  underlying ta b le ’s 

content.

2. BLsameKey•' Given a table, find, all tables having the same key field, as shown 

in Table 5.16.
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Table 5.16 Bridge Law BLS a m e  K e y

Com pClass ‘L ink1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘Sam eK ey1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
A nchorSpec
D irection

[[D, F I ] , 'Table', _]
‘N O N E 1
‘F R O M 1

S p ec ifie r
Com pSpec
AnchorSpec
D irection

[[£>, F2],'Table',  _]
‘N O N E 1
‘T O 1

M appingR ule object([D, F I ] , 'Table'), 
object([D, F2], 'Table ), 
propei'ty([D, F I], 'KeyFie ld ' ,  K ) ,  
property([D,  F2], ‘K e y F i e l d ', K ) .

An in stan tia tio n  of BLsameKey >n DB SmallSchool  would be:

A P P L Y  J B L _ L I N K ( B L Samef<ey,

[D, F I]  =  [‘SmallSchool' , ‘V is i t in gScho lar1])

V ariables are  in stan tia ted  as:

K  =  ‘SSN 1,

F I  =  {‘D octo ra lS tuden t1, ‘M aste rS tuden t1, ‘U nderg radua testuden t,1}

3. B L RRReiation •’ Given a table, find all tables which have an ER relationship with 

it, as shown in Table 5.17.

An in stan tia tio n  of B L RRReiation in the  above SmallSchool  — Schema  would 

be:

A P P L Y  J 3 L J , I N K ( B L ERRelalion,

[D, FI] — [' SmallSchool' , 'GraduateCourse'])
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Table 5.17 Bridge Law BLE R R e la t io n

Com pClass ‘Link1
O w ningSystem Type ‘D atabase1
Com pN am e ‘E R R ela tion1
LinkType ‘ReferenceLink1
Specifier:

Com pSpec
AnchorSpec
D irection

[[D, F I] , 'T ab le ' ,  J
‘N O N E1
‘FR O M 1

S pecifier
Com pSpec
AnchorSpec
D irection

[[D, F 2 ], 'Table1, _]
‘N O N E1
‘T O 1

M appingR ule object([D, F I ] ,  ‘Table'), 
object([D, F2], 'Table'), 
relation([D, F I ] ,  51 , 'H a sS c h e m a ') ,  
relation([D,  F2], 52 , 'H a sS c h e m a ') ,  
r e la t io n (S l ,  52 , 'E R R e la t io n ') .

Variables are  in stan tia ted  as:

51 =  {‘S tuden t1, ‘F acu lty1}, 52  =  ‘C ourse1

F 2 =  {‘D o c to ra lS tuden t1, ‘M asterS tuden t1, ‘V isitingScholar1, ‘U nd erg rad u a t

e s tu d e n t1}

T he query result contains tab le  names which are  organized in records of a  

dynam ic table. T he user can access these tab les by selecting on th e ir  nam es 

which are highlighted as anchors in the  dynam ic tab le  ind icating  reference link 

“RefToTable,” m apped  by B L Ref ToTable (see below).

4. B L Rep'oTabie: Given a record, f ind  all tables whose names appear in this record, 

as shown in Table 5.18.

T his BL defines a  dynam ic anchor in the d eparting  record. The anchor’s value 

V  happens to  be a  ta b le ’s nam e in the sam e DB. As represented by p red icate
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Table 5.18 Bridge Law B L R e fT o T a b le

Com pClass ‘Link*
O w ningSystem Type ‘D atab ase1
Com pNam e ‘RefToTable1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec [[D, T , K], ‘Record1, _]
AnchorSpec [[D, T , K ,  F\, ‘D y n a m ic 1, V]
D irection ‘FROM*

S pecifier
Com pSpec [[D, V], ‘Table1, _]
AnchorSpec ‘N O N E'
Direction ‘T 0 ‘

M appingRule object([D, T , K \ ,  ‘Record1), 
object([D, V], ‘Table1), 
property([D , T , K ,  F ], ‘V a lu e 1, V).

p r o p e r ty ( [ D ,T ,K ,  F ] , ‘V a lu e 1, V ) ,  th is value V  is identified by a key value K  

and  a  field nam e F  in record [D, T , K \ .  Based on such an im plicit relationship, 

th is  BL constructs a  reference link from the record to  th e  tab le  m arked by 

its  tab le  nam e in the record content. B L Rej ToTat,ie is frequently  used in the 

G IIM I p ro to type  to  present a  query result and o ther reference link destination  

m appings to  the  user. We consider a query result as a  dynam ic tab le . The 

user can navigate on its records v ia a  query-based gu ided-tour (Q G T ). We can 

apply  B L RefToTabie to  the  records contained in all dynam ic tab les (i.e., those 

resulted  from operation links and reference links) as well as s ta tic  tab les (i.e., 

regular tab les in a  DB).

5. B L ForeignKeyField-' Given a non-key field, find all other tables which have it as a 

key field (i.e., the non-key field in a table is a foreign key field in other tables), 

as shown in Table 5.19.
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Table 5.19 Bridge Law B L F o re ig n K e y F ie ld

Com pClass ‘L ink1
Own ingSy stem  Typ e ‘D atabase1
Com pN am e ‘ForeignK eyField1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
D irection

[[D, T l ,  F I ] , 'F ie ld 1, _]
‘N O N E1
‘FR O M '

S pec ifier
Com pSpec
A nchorSpec
D irection

[[D, T2], ‘Tab le1, _]
‘N O N E1
‘T O 1

M appingR ule ob jec t{[D ,T l ,  F I ] , 1 F ie ld 1), 
object([D,T2], ‘Tab le1), 
proper ty ( [D ,T l] , ‘K e y F ie ld 1, K l ) ,  
property([D , T2], ‘K e y F ie ld 1, F I ) ,  
K l  ^  F I .

B  L  Foreign Key Field reveals an im plicit relationship  “foreign key” in a  da tabase: 

a  tab le ’s (T l)  non-key field ( F I )  happens to  be ano ther tab le ’s (F2) key field.

6. B L  Foreign KeyVaiue ■ Given a record and a non-key value, f ind  all other records 

which have this value as their key value (i.e., this value is a foreign key value), 

as shown in Table 5.20.

BLporeignKeyVaiue reveals an im plicit relationship  regarding foreign key values: 

a  non-key value V ,  identified by key value V I  and field nam e F I  in record 

[ D ,T l ,  V I ] (w ith key field K l ) ,  happens to  be the  key value of a n o th e r record 

[ D ,T 2 ,V ]  (w ith key field K 2).  The non-key na tu re  of V  is ind icated  by K l  ^  

F I  where K l  is the  record’s key field nam e and  F I  is the  value’s field name. 

D irect selecting the  anchor defined in the  departu re  record will dynam ically  

lead to  a  sequence of destination records.
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T a b le  5 .2 0  Bridge Law B LF o r e ignK eyV a lue

Com pClass ‘L ink1
O w ningSystem Type ‘D atab ase1
Com pNam e ‘ForeignKey Value'
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
Direction

[[D, T l ,  V I], ‘Record1, _]
[[£>, T l ,  V I, F I ] , ' D y n am ic 1, V] 
‘FR O M '

S pec ifier
Com pSpec
AnchorSpec
Direction

[[D ,T 2 ,V ], ‘Record1, _]
‘N O N E 1
‘T 0 ‘

M appingRule object([D,  T l ,  V I], ‘Record‘), 
object([D, T2, V], ‘Record‘), 
ob jec t ([D ,T  1, F I ] , ‘F ie ld ‘), 
property([D,  T l], ‘K e y F i e l d ', F T ), 
proper ty ([D , T2], ‘K e y F i e l d ‘, F 2 ) ,  
prope?-ty([D , T l ,  F I ] , ‘Value ‘, V), 
p roperty ([D , T2, F 2 ], ‘Va lue1, V), 
F I  ^  F I .
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Table 5.21 Bridge Law BLSchem aToTab le

Com pClass ‘L ink1
O w ningSystem Type ‘D atabase1
Com pN am e ‘Schem aToTable1
LinkType ‘ReferenceLink1
Specifieri

Com pSpec [[D, F I ] ] ,1S c h e m a ", _]
AnchorSpec ‘N O N E1
D irection ‘FR O M 1

S pecifier
Com pSpec [[D, F2], ‘T ab le1, _]
A nchorSpec ‘N O N E1
D irection ‘T O 1

M appingR ule object([D, F I ] ,  ‘S c h e m a 1), 
object([D, F2], ‘Table1), 
relation{[D, F2], F I ,  ‘H a s S c h e m a 1).

7. B L  SchemaToTable: Given a schema, f ind  all tables under this schem a, as shown 

in Table 5.21.

An in stan tia tion  of th is BL in the above exam ple schem a DB would be:

A P P L Y  JBLJLINKiBLschema.ToTa.ble-,

[D , F I]  =  [‘S m a ll  School1, F I  =  ‘S tu d e n t1])

The variables would be in stan tia ted  as:

F 2  =  {‘D o c to ra lS tu d en t1, ‘M asterS tuden tV U nderg radua teS tuden t1}

8. BLf)f}T0RRDiagram ■ Given an application database, f ind  its E R  diagram, as 

shown in Table 5.22.

An instan tia tion  of th is  BL in the above exam ple schem a DB would be:

A P P L Y J 3 L J I N K { B L nBToniaaram, D =  ‘S m a l l  School‘)
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Table 5.22 Bridge Law B L D B T o E R D ia g r a m

Com pClass ‘Link'
O w ningSystem Type ‘Database*
Com pNam e ‘D B ToER D iagram ‘
LinkType ‘ReferenceLink1
Specifieri

Com pSpec
AnchorSpec
Direction

[D, ‘Database1, _]
‘N O N E 1
‘F R O M 1

S pecifier
Com pSpec
AnchorSpec
D irection

[[£>, ‘E R D ia g r a m 1], ‘E R D ia g r a m ‘, _] 
‘NONE*
‘TO*

M appingR ule object(D , ‘Database1).

T he execution of B L nRToFlRRiagram will invoke the  execution of B L RRr)iagrain 

to  m ap the  destination E R  diagram  to  a  G raph.

5.5.5 Meta-information BLs

We can define bridge laws to  d irectly  access m eta-inform ation on DB objects. Such 

inform ation  could relate  to  ob ject s ta tis tics , such as field type, field size, record 

size, tab le  size (num ber of records in a  tab le), DB size (num ber of tables in a  D B ), 

etc. T h is also could include dynam ic inform ation supported  by O D BC (e.g., such as 

“u p d a tab le” ). Bridge laws help access these inform ation through  m apping them  to  

reference links. T he D atabase  hand ler dynam ically ob tains these d a ta  and p u ts  them  

in a  dynam ic table. The following are m eta-inform ation bridge laws for DB objects: 

da tab ase , table, records and  fields. These BLs define reference links from the  ob jects 

to  th e ir  m etainform ation. The D atabase  handler is responsible for generating  each 

type  of m eta-inform ation when executing these bridge laws. Each of the  following 

bridge laws re tu rns all m eta-inform ation of an object. (To ob tain  specific m ete- 

inform ation, we can define o ther specific bridge laws.)
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Table 5.23 Bridge Law BLM etaR ecord

Com pClass ‘L ink1
O w ningSystem T ype ‘Database*
Com pN am e ‘MetaRecord*
L inkType ‘ReferenceLink1
Specifieri

Com pSpec
A nchorSpec
D irection

[[D, T, F I ] ,  ‘Record1, _]
‘N O N E1
‘FROM*

S pecifier
Com pSpec
AnchorSpec
D irection

[[D, F2], ‘Table', _] 
‘NONE*
‘TO*

M appingR ule object([D, T, F I] , ‘Record1),
object.([D, F2], ‘Dynam icTable ‘),
p roper ty ([D , T, F I ] ,  ‘Operat ion1, ‘M e t a i n f o r m a t i o n 1),
property([D,  F2], ‘C o n te n t ,
O P E R A T I O N ( [ D ,  T, F I ] ,  ‘M e t a l n f  o rm a t ion 1, ‘Record1)).

1. B L MetaRecor(i■ Mapping Record meta-information , as shown in Table 5.23. 

Record m eta-inform ation exam ples include the  record key field nam e, key 

value, num ber of values, tim e stam ps (creating, updating , accessing tim es), 

a ttr ib u te s , non-key field nam e, etc.

2. B L m e i a p i e i d ' .  Mapping Field meta-information, as shown in Table 5.24. Field 

m eta-inform ation  exam ples include field type, field size, etc.

3. B L MetaTabie: Mapping Table meta-information , as shown in Table 5.25. Table 

m eta-inform ation  exam ples include num ber of records, num ber of fields, key 

field nam e, referential constrain ts, tim estam ps, etc.

4. B L m etaDatabase■ Mapping Database meta-information, as shown in Table 5.26. 

D atabase  m eta-inform ation exam ples include num ber of tab les, tim e stam ps, 

da tabase  handler nam e, access control, etc.
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Table 5.24 Bridge Law BLM e ta F ie ld

Com pClass ‘L ink1
O w ningSystem Type ‘D a tab ase1
C om pN am e ‘M etaF ie ld1
LinkType ‘ReferenceLink1
Specifier]

Com pSpec [ [ D ,T ,F l ] , ‘F ie ld ‘,.\
AnchorSpec ‘N O N E 1
D irection ‘F R O M 1

Specifier2

Com pSpec [[D, F2], ‘Table1, _]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule object([D, T ,  F I ] , ‘F ie ld 1),
object([D, F2], ‘D yn a m icT a b le1),
p roper ty ([D ,T ,  F I ] , ‘O pera tion1, ‘ M e t a l n f  o r m a t io n ') ,
p roperty ([D , F 2 ] ,1C o n te n t ‘,
O P E R A T I O N ( [ D ,  T ,  F I ] ,  ‘M e t a i n f o r m a t i o n 1, ‘Field,1)).

T a b le  5 .2 5  Bridge Law B LM etaTab le

Com pClass ‘L ink1
O w ningSystem Type ‘D atab ase1
C om pN am e ‘M etaT able1
L inkType ‘ReferenceLink1
Specifier]

Com pSpec \ [ D ,F \ ] , ‘Table‘,_)
AnchorSpec ‘N O N E1
D irection ‘F R O M 1

S p ec ifie r
Com pSpec [[D, F 2 ] ,‘Table1,.]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule object([D, F I ] ,  ‘Table1),
object([D, F 2 ] ,1D yn a m ic T a b le ‘),
property([D ,  F I ] , ‘O pera tion1, ‘M e t a i n f o r m a t i o n 1),
property([D ,  F2], ‘C o n te n t ,
O P E R A T I O N ( [ D ,  F I ] , ‘M e t a i n f o r m a t i o n 1, ‘T ab lc ‘)).
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Table 5.26 Bridge Law BLM etaD atabase

Com pClass ‘L ink1
O w ningSystem T ype ‘D atabase1
C om pN am e ‘M etaD atabase1
LinkType ‘ReferenceLink1
Specifier]

Com pSpec [[FI], ‘Database1, _]
A nchorSpec ‘N O N E1
D irection ‘FR O M 1

S p ec ifie r
Com pSpec [[F I, F2], ‘Table', _]
A nchorSpec ‘N O N E1
D irection ‘T O 1

M appingR ule objec t(F \ ,  ‘Da tabase‘),
object{[F\ ,  F 2 ] ,1DynamicTable ‘), 
proper ty (F  1 ,1Operat ion', ‘M e ta in f o r m a t io n ' ) ,  
property ([Fl ,  F2], 'Content',
O P E R A T I O N ( F \ ,  ‘M e ta in f o rm a t io n ' ,  'Database')) .

In th is  section, we presented bridge law exam ples for RD BM S. We do not mean 

to  enum erate  all possible BLs a  RD BM S user m ight have. T he user can add  new 

BLs a t any tim e.

5.6 Summary

In th is chap ter we dem onstrated  how GH M I can be used to  provide an  independent 

application  (i.e., a  COIS) w ith supplem ental hypertex t functionality. We presented 

the  m apping from  relational databases to  hypertex t, based on th e  GH M I model. We 

use RD BM S as our application dom ain. A pplying hypertex t functionality  enhances 

the  effectiveness of RDBM S for users. T he hypertex t representation  under GIIMT 

helps a  RD BM S user establish direct access to  explicit or im plicit relationships am ong 

underlying RDBM S objects. Such help includes direct access to  s tru c tu ra l in ter

object relationships, direct access to  E R  relationships, d irect access to  RDBM S 

operations, direct access to  m etainform ation  (e.g., anno ta tion  and system  infor
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m ation  such as object size, field type, object description and tim estam ps.) on objects 

selected by users, navigation assistance, and analysis guidance.

We discuss a  d a ta  s tru c tu re  (i.e., th e  Schema DB) which im plem ents schem atic 

bridge law (BL) m apping. To com plete our dom ain m odeling on RDBM S and  dem on

s tra te  th e  power of dom ain m apping, we defined a  set of bridge laws to  m ap  a

RD BM S, including the  following categories:

• Object BLs. We need BLs to  m ap the  five da tabase  objects (i.e., values, 

fields, records, tab les and databases) as well as the  schem ata and E R  d iagram s 

in the  corresponding schem a DB. O bject BLs m ap ob jec ts’ contents.

-  M ap records to  s truc tu red  atom ics 

M ap fields to  s tru c tu red  atom ics 

M ap tables to  sets of records

- M ap tables to  sets of fields

-  M ap database  to  sets of tables

- M ap schem ata to  s tru c tu red  atom ics

-  M ap E R  diagram s to  graphs

• Structure BLs. We need bridge laws to  m ap  objects upw ards to  th e ir  

em bedding com posites. S tructu re  BLs would include: m apping record to  

tab le , record to  DB, field to  tab le , field to  DB and  tab le  to  DB.

• Operation BLs. We need BLs for SQL queries and  O D BC operations. From 

th e  im plem entation  po in t of view, these operations should include all operations 

supported  by OD BC. Frequently  used specific queries can also be m apped to  

operations links.

• Schema-based BLs. We store schem ata as tables. Therefore, all BLs on 

regular tables should apply  to  schem a DB too. Besides these schem a tab le  BLs, 

we BLs to  m ap im plicit inter-object relationships im plied by the schem ata in
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th e  schem a DB of a  prim ary DB. We can m ap these rela tionships to  reference 

links.

• Meta-information BLs. C erta in  users such as developers should be able 

to  access object sta tistics, such as field type, field size, record size, tab le  size 

(num ber of records in a  tab le), DB size (num ber of tab les in a  D B), refer

ential constra in ts, etc. Accessible m eta-inform ation also includes dynam ic 

inform ation  supported  by O D BC (e.g., such as “u p d a ta b le ” ). B ridge laws 

help access these by defining reference links.



CHAPTER 6

IMPLEMENTATION: THE GHMI PROTOTYPE

In th is  chapter, we present an im plem entation p ro to type  to  prove the  correctness 

and robustness of the  GHM I model. We discuss the  in stan tia ted  im plem enta tion  

arch itec tu re  and its individual com ponents.

6.1 The Implementation Architecture

Figure 6.1 shows G H M I’s p ro to type  im plem entation  arch itectu re  as an in stan tia ted  

im plem entation  a rch itec tu re  of Figure 3.1 in C h ap te r 3. T he p ro to type  a rch itec tu re  

com prises a  hypertex t engine (H TE), th ree  COISs (MS Access, T E X PR O S and  MS- 

DOS) and an IOS (i.e., Interface-O riented System ). Every COIS or IOS connects 

to  the  H TE through  its  own handler. H andlers tran s la te  the  H T E ’s m essages to  a 

form at the  COIS or IOS understands, and  vice versa. COIS handlers tra n s la te  bridge 

laws to  access C O IS’ operations, objects and  d a ta . To in tegrate  a  COIS, th e  only 

change th is arch itec tu re  requires of the  COIS is th a t  its  com m unications p a th  be 

rou ted  through th e  handlers [10]. COIS developers or builders very fam iliar w ith the  

COIS m ust w rite  th e  CO IS handler, as well as bridge laws for each class of objects 

and relationships accessible to  users. RDBM S is so w ell-understood th a t  we were 

able to  do th is ourselves for MS Access. The com plexity of the  bridge laws and  COIS 

handlers depends on the  C O IS’ complexity. T he following subsections describe each 

functional com ponent in th e  architecture.

6.1.1 The H ypertext Engine

T he H T E  consists of four databases (DBs) and six m anagers. The K now ledge Base 

stores bridge laws for m apping  individual COISs to  hypertex t. The L inkbase contains
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Figure 6.1 T he GH M I Im plem entation A rchitecture

persis ten t CO IS-independent d a ta  including links, anchors, anno ta tion  com ponents, 

gu ided-tours and bookm arks. T he Session DB contains navigation-rela ted  dynam ic 

s tru c tu re s  including the  Traversal Logs (i.e., H istory Log, the  Chronological Log and  

the  Task Logs [13]. T he Configuration DB contains C O IS /IO S  configuration d a ta  

including handler identities and available C O IS /IO S com m ands. T he DB M anager 

m anages m anipulation  of the  four H T E  DBs. The Inference M anager validates and 

invokes bridge laws. T he Configuration M anager is responsible for C O IS /IO S  config

u ra tion  and  invoking the  COIS handlers a t run tim e if they  are  no t active. T he 

CO IS M anager handles com m unication w ith COIS handlers. It encodes and decodes 

messages according to  th e  com m unication protocol. Sim ilarly, th e  IOS M anager 

handles com m unication w ith IOS handlers. The central p a rt  of the  H T E  is th e  IIT  

(i.e, H yperText) M anager which m anages the  im plem entation  of all GHM I hypertex t 

functionalities.
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The Knowledge Base  m aintains th ree  bridge law tables: SY SBLC om ponents, 

SYSBLLinks and  SYSBLSpecifiers. SY SBLC om ponents contains com ponent bridge 

laws. SY SBLLinks and  SYSBLSpecifiers together contain link bridge laws. 

SYSBLLinks contains link header inform ation (e.g., including O w ningSystem Type, 

L inkType, etc). SYSBLSpecifiers contains definition and m apping rules for individual 

specifiers of each link in SYSBLLinks.

The Linkbase  contains persistent d a ta . C orresponding tab les include SYSLinks, 

SYSSpecifiers, SYSAnchors, SY SCom ponents, SY SBookm arks and  SY SG Ts. Tn 

G H M I’s dynam ic m apping environm ent, all com ponents m apped from COISs are 

v ir tua l  com ponents. T he H TE does not store th e ir contents persis ten tly  in the 

Linkbase. T he only persisten t com ponents are anno ta tions, which are  not m apped 

from COISs. T he H T E stores o ther com ponents in the  Linkbase only when th ey  are 

registered in persisten t navigation s truc tu res  by the  user a t run-tim e (e.g., guided- 

tours and bookm arks). W hen a  com ponent is brought to  display, the  H T E  stores it 

in the  traversal logs. Sim ilarly to  com ponents, not all links are persisten t. Only 

association links and  anno ta tion  links which are hypertext-ow ned are persisten t 

links. O ther links become persistent only when they  are em bedded in th e  content of 

persisten t com ponents (e.g., guided-tours). The Linkbase has two tab les for links: 

SYSLinks and  SYSSpecifiers. All persisten t links are stored in tab le  SYSLinks. Each 

link en try  has an  ID and contains general header inform ation in G H M I (e.g., owning 

system , class nam e, BLID, etc). T he link specifiers are stored in a  separa te  tab le  

SYSSpecifiers w ith  each entry  storing link directionality, filtering, component, ID, 

and SYSLinks en try  ID. Separating  link specifiers from links ensures the  im plem en

ta tion  of n-ary  links. An n-ary link can have n  entries in SYSSpecifiers. Anchors are 

stored in SYSAnchors. P lain  and keyword anchors are  persisten t in na tu re . D ynam ic 

anchors are not persistent.
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The Session D B  contains session-based dynam ic struc tu res (i.e., traversal logs) 

consisting of th ree tables: SYSHistoryLog, SYSChronologicLog and SYSTaskLogs. 

SY SHistoryLog keeps a  com plete record of the  user navigation history represented 

as event s truc tu res (see [13]). SYSChronologicLog contains a  subset of entries 

in SY SHistoryLog which consists of com ponents no t generated  from backtracking. 

SYSTaskLogs groups navigation history in a  task-based m anner to  su p p o rt task- 

based backtracking in m ulti-w indow  environm ents [13].

The Configuration D B  m ain tains th ree  tables: SYSCOISs, SY SC om m ands 

and SYSIOSs. SYSCOISs contains registered COIS hand ler’s inform ation including 

nam e, pa th , reg istration  tim e, s ta tus, etc. The SY SCom m ands contains COIS 

com m ands including com m and name, owning system  name, pa ram ete r num ber 

and  param eter types. T he H T E im plem ents these com m ands as operation  links. 

SYSIOSs contains inform ation sim ilar to  the  SYSCOISs for all p a rtic ip a tin g  IOS 

handlers.

The D B Manager  m anages m anipulations on the  H T E  DBs. I t consists of 

subroutines supporting  operations on database  objects (databases, tables, records), 

including open, close, insert, ed it, find, list-all, query, etc. These routines are  w ritten  

in V isual Basic and OD BC. Therefore, although we im plem ent these da tabases on MS 

Access, the  subroutines are  essentially portab le  to  any o ther RDBM S suppo rting  

O D BC, such as Oracle, Paradox, FoxPro, d B ase lll and  dBaselV . T he cu rren t 

p ro to type  only supports  MS Access. It is easy to  ex tend  it to  sup p o rt o thers 

provided th e ir proper O D BC drivers are available.

The Inference M anager  validates and invokes bridge laws. T here  are two 

m odules in the  Inference M anager: a  BL-parser and  a  BL-invoker. T he B L -parser 

parses a  bridge law to  ensure its syntax correctness. W hen m apping an ob ject, the  

BL-invoker finds the  p roper BL according to  the  o b jec t’s CO ISType and O w ningSys

tem T ype from SY SBLC om ponents and sends it  to  the  IIT  M anager. T he IIT
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M anager then  sends the BL to  the  COIS M anager as a message for the  corresponding 

COIS handler. T he BL-invoker is also responsible for collecting BL executing results 

and m apping  them  to  GHM I com ponents by invoking o ther BLs (if necessary).

The Configuration Manager  m anages the  s ta tic  and dynam ic system  config

uration . T he s ta tic  configuration includes the  registration of C O IS /IO S  handlers, 

C O IS s/IO Ss, COIS com m ands, bridge laws, etc., during the  process of system  setup. 

T he dynam ic configuration includes dynam ic m anipulation of th e  configuration infor

m ation , m essage address validation, and inactive application (C O IS /IO S  handlers) 

invoking.

The C O IS  Manager  is responsible for com m unicating w ith th e  COIS handlers. 

It has two m odules: an A PI m odule and a  D D E module. T he A PI (A pplication 

P rogram m er Interface) routines perform  standard  message m anipu la tion  (e.g., set a  

tag , get a  ta g  value, etc.). The D D E (D ynam ic D a ta  Exchange) routines conduct the 

ac tua l inter-process com m unication for sending messages to  and  receiving messages 

from specific destinations through W indow s95’s DDE protocol.

The IO S  Manager  perform s sim ilarly  as the  COIS M anager except th a t  it 

m anages com m unication w ith IOS handlers instead of COIS handlers.

The H T  Manager  is the  control center of the H TE. I t im plem ents of all 

GHM I hypertex t functionalities (e.g., link traversal, linking, anchoring, anno ta ting , 

navigating  on guided-tours, backtracking, history,etc.) by m anaging and  cooperating  

w ith o th er H T E  m anagers.

6.1.2 The COISs

In th is  p ro to type , we consider th ree  diverse COISs: a da tabase  system  (MS Access), 

a  docum ent m anagem ent system  T E X PR O S and a  file system  (M S-DOS). O ur focus 

is on MS Access. We m ap objects and  relationships defined by bridge laws in §5.5 

and [92]. T E X PR O S is still under developm ent. We only m ap its ob jects (i.e.,
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folders, fram e tem p la tes and fram e instances) and file struc tu res to  com ponents 

according to  bridge laws [92]. A lthough file system s are hardly  COISs, we include 

them  to  dem onstra te  our system  functionalities on suppo rting  tex t docum ents and 

anno ta tions. We m odel files as plain atom ic com ponents. A nnotations could be 

m odeled as atom ic com ponents w ith tex t contents.

6.1.3 The IOS

We only have one IOS in th is pro to type as our focus is on the  C O IS-H TE side. T he 

curren t IOS consists of five viewers: a  Text Viewer, a  DB Viewer, a  Browser, a  G raph 

Viewer and a  M ain Viewer. Each viewer has its own menu item s for viewer-specific 

com m ands. Some s ta n d a rd  com m ands are com m on to  all viewers, including History, 

Backtracking, Overview, Bookm ark, G uidedTour, etc. An IOS usually has one M ain 

Viewer and  m ultip le o ther viewers sim ultaneously.

T he Text Viewer is responsible for displaying unstruc tu red  tex t d a ta . I t  should 

be able to: (1) display tex t content; (2) tell th e  s ta r tin g  position and  length of 

the  tex t selected by the  user; (3) highlight a  certain  portion  of the  te x t based 

on s ta r tin g  position  and  length sent by the  IOS handler. T he menu item s of the  

Text Viewer include AddA nchor, DeleteAnchor, S ta rtL ink , EndLink, D eleteL ink, 

ShowLink, Show Bookm ark, Show GuidedTour, etc.

The DB Viewer should be able to  display d a ta  in the  form at of a  tab le  (i.e., 

a spreadsheet or its  sim ulation). It should a t least: (1) display a  tab le  in a  two- 

dim ension tab le  w ith a  row header and a colum n header; (2) identify user selection on 

an tab le  item  (corresponding to  a  DB record value) by a  row header (corresponding 

to  a  DB record key) and a  colum n header (corresponding to  a  DB field nam e). 

This requires every row or colum n to  have a  unique header and m atches th e  case 

of a  DB record. T he menu item s for the DB Viewer are the  sam e as the  m enu for 

the  Text Viewer b u t the ir in ternal processing could be different. For exam ple, the



131

identification of a  user selection is different, in the  Text Viewer (by a  string  s ta r tin g  

position  and  length) and the  DB Viewer (by a row header and a  colum n header). 

T hus the  event reports for the  H T E  would have different, contents.

T he Browser displays overview inform ation in a  tree-like s truc tu re , including: 

(1) Overviews of com ponents in a  tree-like structure; (2) A list of all available links 

on a  selected object, including destinations, s ta rtin g  anchors, ending anchors and  

link types. T he user should be able to  select (double click on an item ) or delete 

(click one and  select a  D elete menu item ) an item  in th e  list. Selecting an item  

triggers a  link traversal; (3) T he history  list of a  user navigation session: T he user 

can select an item  (double click) to  trigger a  backjum p to  a  previous component,;

(4) A list of bookm arks. User com m ands on bookm arks include A ddC urrent, D elete 

and  GoTo. D ouble click on a  selected item  is equivalent to  a  GoTo com m and; (5) A 

list of guided-tours for user to  navigate and m anipulate.

T he G raph Viewer displays graphical d a ta  in the  GH M I system  (e.g., im ages, 

g raphical overviews of com posites, etc.) which can not be displayed in the  Browser. 

T he g raph  viewer should be able to: (1) display images as atom ic com ponents; (1) 

d isplay a  com posite as links and  com ponents in its LinkSet, and  Com pSet; (2) enable 

selection on a  com ponent to  see its content; (3) enable add ing  or deleting com ponents 

and  links; (4) enable position ad justing  on com ponents; (5) enable saving changes on 

com ponen t’s screen positions. A typical graphical exam ple in the  current, p ro to type  

is an  E R  diagram  in a RD BM S which is m apped to  a  G raph  component,. Such a  

com posite  is displayed in the  G raph  Viewer as list boxes (representing en tities or 

schem ata) connected by d irected  lines (representing relationships). T he user is able 

to  a d d /d e le te  entities (i.e., schem ata) or relationships, change and  save p resentation  

positions of entities. Selecting an en tity  (i.e., schema) will enable th e  user to  see all 

tab les under th is  schem a (m apped as a  reference link).
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Every tim e th e  system  is activated , the  user reaches the  M ain Viewer. W hen 

the  user selects a  curren t COIS, th e  system  will display th e  overview of the  COIS 

on th e  Browser. T he M ain viewer is responsible for: (1) displaying configuration 

com m ands and dialogues for COIS and IOS handlers; (2) inpu ting  and  ed iting  of 

bridge laws; (3) se tting  up a  cu rren t COIS by sw itching am ong registered COISs;

(4) guiding th e  user to  inpu t the  p roper param eters required by a  COIS com m and;

(5) displaying dialogues for link creation; (6) displaying all o ther inform ation not 

displayed in the  o ther th ree viewers (e.g., error or w arning m essages). The menu 

com m ands in the  M ain Viewer correspond to  the above functionalities.

F igure  6.2 and Figure 6.3 are  exam ple screen dum ps of the  G IIM I p ro to type  

showing th e  IOS viewers.

F igure  6.2 shows an exam ple screen dum p of the  IOS. T he screen shows four 

viewers, each being a  separate  window. T he Main Viewer on th e  back is a  root 

window covering all the  o ther windows. The active window a t th is  m om ent is 

the  Text Viewer window on top  of the  others. I t  has an anchor highlighted on 

string  “L ISTB O X .FR M .” T he tex t window identifies its  anchors by offsets and  

tex t lengths. T he M ain Viewer menu item s are always for the  curren t active 

window (in th is case, the Text Viewer window). D irectly  under th e  tex t window 

is the  Browser window which is able to  show tree-like s tru c tu res  for com ponent 

overviews. T he current content of the  Browser is th e  overview of a  com posite 

com ponent m apped from a  da tabase  object “Small School.” U nder th e  Browser is 

the  DB Viewer window, which contains a spreadsheet and  is displaying a  da tabase  

record. T he DB Viewer displays records as a  two-column spreadsheet corresponding 

to  field nam e and value pairs. T he current record on the  DB Viewer has an 

anchor on tex t value “Redw ood.” T he bo ttom  p a rt of the  M ain viewer contains 

b u tto n s  for navigation facilities, including jum ping  to  a  landm ark  which shu ts  

down all child w indow s(button “Hom e” ), backtracking (b u tto n  “Back” ), forw arding
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on backtracking (b u tton  “Forw ard” ), displaying com ponent overviews (bu tton  

“Overview” ) and  ed iting  bookm arks (bu tton  “B ookm ark” ).

F igure 6.3 shows ano ther sim ilar screen dum p. This screen contains the  G raph 

Viewer, th e  M ain Viewer and  the  Browser. The graph viewer is d isplaying a  graphic 

representation  of the  E R  diagram  in F igure  6.4. The sm all scrollable list boxes 

represent en tities (i.e., tab le  schem ata) and the  lines represent relationships.

6.1.4 The COIS Handlers

T he COIS H andlers are essential com ponents of the  GHM I p ro to type . T hey actually  

execute bridge laws to  generate responses to  H T E  requests. A CO IS handler usually 

has four m odules addressing four aspects of its  responsibilities. (1) E xecu ting  bridge 

laws: T his includes two subm odules: a  general bridge law engine (BL-Engine) and a 

COIS invoker. T he BL-Engine tran sla tes  bridge laws to  executable codes (e.g., Prolog 

queries). T he COIS invoker actually  invokes CO IS routines com bining w ith the 

ou tp u t of the  B L-Engine to  produce results of the  bridge law execution. (2) Buffering 

COISs: T he CO IS buffering m odule of a  COIS handler im plem ents functions th a t  

the  original CO IS does not provide b u t are  required by a  bridge law execution (e.g., 

retrieving im plicit relationships and object sta tistics); (3) C om m unicating  w ith the 

IITE : T he com m unication m odule is responsible for com m unicating w ith the  H TE 

following th e  GH M I protocol and form ats. (4) M anaging the  configuration of COISs: 

A COIS hand ler m anaging m ultiple COISs should m ain tain  a  configuration database  

and invoke inactive COISs when a bridge execution needs C O ISs’ partic ipa tion . All 

of the five m odules w ritten  for a  COIS handler can be m ade as A PIs and  reusable for 

o ther COIS handlers, except the  the  COIS buffering module. We have m ade these 

APIs in th e  cu rren t prototype.

This p ro to type  has th ree  COIS handers: a  da tabase  (DB) handler, a  T E X PR O S 

handler and a  file system  handler. The T E X PR O S handler handles T E X P R O S  bridge



134

SHIPP*

S S *

2
Cl

£  £  2  LL  QL 

. ,  Q l.  o
I g E " 2„ <  g U  X 3

0 2  5  m u z

2  ^  „
:: S  IT 5  « Oi: 5  u  .2 £

\j: F  J  F  O  V)
. .':i| F  _ j  >  C  C

h O < 5 5

!;2 O') <

' :•:«

u  □ a  a

*

Fi
gu

re
 

6.2
 

G
H

M
I 

Pr
ot

ot
yp

e 
IO

S 
Sc

re
en

 
Ex

am
pl

e 
1



135

  I  I .............. Ml

|

m m
***: ^ isiiiiiimr n ^ emm&

l l M H i i : I I I□
7

iiiiipi
l i i i i f '* '

§

Iplillll
JSSS5SSSSSS&TO^

r r u r i i» » » » » » »
< < < < < < <  WW W  W  V

J  ,1 ,1

1 1  5 0

1
;

&

Fi
gu

re
 

6.3
 

G
H

M
I 

Pr
ot

ot
yp

e 
IO

S 
Sc

re
en

 
Ex

am
pl

e 
2



136

Credits
icription

DegreeDirector CoreCourses

OffersAvailable
Location

Rent
Phone

Enrolls.AptNum ManaiDepartment
Director

NameM d in jp — j  Appartment

LocationAptID
Hires

Rents Phone Chairperson SSN

Name
C ™ > - ~

("Name Y  /  

C Advisory

Course
Notes

Student Writes Faculty
Title

AuthorCNum Phone
CName

Takes Teach* Office

Course

CName

Figure 6 .4  An E R  D iagram  Exam ple



137

law m appings and com m unications. T he file system  handler d irectly  accesses files 

in MS-DOS on response to  a  bridge laws execution. A COIS handler w orking for 

m ultiple CO ISs (e.g., th e  DB H andler works for all RDBM Ss) m ain ta in s a  configu

ration DB for its  CO ISs’ inform ation.

T his p ro to ty p e  focuses on the  D B handler which employs a  B L-Engine w ritten  

in Prolog to  execute bridge laws. A fter receiving a  bridge law along w ith param eters 

from the  H T E , th e  DB handler analyzes it and decides w hat ac tions it should take. 

This m ight be one of these three cases: (1) For a  bridge law which requires purely 

object m appings (e.g., an object bridge law), the  DB handler tra n s la tes  th e  bridge 

law in to  an executable Prolog p red icate  along w ith in stan tia ted  variables from the  

H TE param eters . T hen the  DB handler passes the  p red icate to  th e  BL-Engine and 

invokes the  BL-Engine to  execute it. T he  BL-Engine executes th is  p red icate  based 

on predefined DB facts and a  set of inference rules (m anaged by th e  COIS buffering 

m odule) and sends back the  results to  th e  DB handler. The D B hand ler collects the  

results and sends them  to  the  H T E. (2) For a  bridge law re la ting  a  CO IS operation 

(e.g., an opera tion  link bridge law), the  DB hand ler’s COIS buffing m odule either 

d irectly  executes, or asks the  COIS to  execute th is operation  to  generate  p roper 

responses. (3) For a  bridge law which involving both  of bridge law execution (by 

the  BL-Engine) and  CO IS operations (e.g., a  reference link bridge law w ith  function 

M RDC O P E R A T O N Q  in its M a p p ingR u le ) ,  th e  DB handler com bines the  results 

generated from the  BL-Engine and the  COIS buffing m odule and  creates proper 

responses for the  H TE.

6.1.5 The IOS Handler

This p ro to type  only has one IOS which is w ritten  in Visual Basic. T he IOS handler 

d ispatches messages to  the  proper viewer based on specifications coded in the 

messages: com m and dialogues are for the  M ain Viewer; tex t m essages are for the
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T ext Viewer; d a tab ase  tables, records and  fields are  for the  DB Viewer; overviews 

and link browsers are for th e  Browser; graphical d a ta  are for the  G raph Viewer.

6.2 Inter-process Communication

T his section discusses the  inter-process com m unication protocol and  a  com m uni

cation scenario for dynam ic m apping.

6.2.1 The Communication Protocol

In th is p ro to type , the  H TE, the  COIS handlers and the  IOS hand ler run as 

independent processes. They com m unicate w ith each o ther th rough  m essage passing 

a t run-tim e v ia  a  com m on message bus. F igure 6.5 shows the  com m unication  archi

tecture. W hen a  process (i.e., th e  H T E  o r a  C O IS /IO S  handler) w ants to  send a  

message to  an o th er process, it  prepares a  m essage w ith specific d e s tin a tio n ’s iden tity  

and  pu ts the  message onto the message bus. W henever the  m essage bus has a  

message, each process checks w hether it is the  receiver. If not, it  ju s t ignores the  

message. O therw ise, it handles the message and generates app rop ria te  responses on 

th e  message bus for the  sender.

We em ploy a  com m unication protocol G H M IC P (i.e., GHM I C om m unication 

P rotocol) for interprocess com m unications. In GHM ICP, a  m essage consists of a 

sequence of tag-value pairs. Message lengths and contents vary according to  message 

types. We classify messages into four categories based on th e ir  directions: IOS- 

H T E  messages (from IOS handler to  H T E ), H TE-IO S messages (from  H T E  to 

IOS handlers), H T E-C O IS messages (from  H T E  to  COIS handler) and  C O IS-IIT E  

messages (from COIS handler to  H T E ). (We do not consider C O IS-C O IS or IOS-IOS 

com m unications in th is p ro to type.) Table 6.1 shows G H M IC P messages. Colum n 

“Tag” shows th e  message tags a  message contains and colum n “Sam ple V alue” gives 

an exam ple value. Colum n “Msg Type" ind icates th e  message types to  which this
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corresponding tag-value p a ir  applies. “IH ” stands for IO S-H TE messages. “HI” 

stan d s for H TE-IO S messages. “IIC ” stands for H TE-C O IS messages. “C H ” stands 

for C O IS-H TE messages. “All” indicates the  tag  applies to  all m essage types.

A message consists of th e  following types of tags. (1) address: “Sender”

and  “Receiver” app ly  to  all messages; (2) COIS identity : “System T ype” and

“System N am e” identify  a  COIS by its type and  nam e. “A ppN am e” identifies the  

application  nam e w ith in  a  COIS. For exam ple, In Table 6.1, “Sm allSchool” is an 

application in “MS Access” . COISs of the  sam e ty p e  share a  single CO IS handler. For 

exam ple, as shown in F igure  6.1, all the  application  DBs share a  single DB handler; 

(3) event report: T he IOS handler m anages user events. W henever a  user selects an 

object on screen, the  handler sends an event report message to  the  H T E. Tag “E vent” 

ind icates the event nam e and tag  “B u tton” ind icates the  corresponding b u tto n  (or 

menu item , depending on th e  IOS im plem entation) name. If  the user does no t select 

any bu tto n , the  message will contain no “B u tto n ” tag; (4) object, identity : O bject 

en tity  inform ation “C O ISID ,” “CO ISType” and  “CO ISLabel” correspond to  G IIM I’s
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T a b le  6 .1  G H M IC P Messages

T a g S a m p le  V a lu e M s g  T y p e
Sender ”DB H andler” All
Receiver ” H T E ”
System Type ’’D atabase” All
System N am e ” MS Access”
A ppN am e ’’Small School”
Viewer ” DB Viewer”
Event ’’S electB utton” IH
B utton ’’ShowLink”
Com m and ’’Show” HC, HI
COISID ’’SYSLinks” All
C O ISType ’’Table”
COISLabel ’’S tuden t” CH
TotalO bjs ” 2” CH, III
O bjlndex
A nchorD ataT ype ”D B ” III, III
AnchorCO ISID ”S m allS choo l##G raduateC ourse  

# # S S N # # 1 23456789”
A nchorStart ” 20”
A nchorLength ”8”
A nchorText ’’Hello”
C ontent record content All
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explicit COIS object expression (i.e., (C 0 I S I D , C 0 1 S T y p e , C 0 I S L c i b e l ) identifies 

a  CO IS object). “C O ISID ” and “CO ISType” apply  to  all messages to  ensure object 

identity. “CO ISLabel” applies to  CO IS-H TE messages only. The H T E is responsible 

for defining proper display message settings (based on o b jec t’s P re sen ta t ionSpec )  

when an  object is sent to  th e  IOS for display; (5) message grouping: M essage 

grouping enables a process to  pass a  group of messages in response to  a  single 

request (e.g., a  da tabase  query m ay result in a  set of records). “T o ta lO b js” indicates 

the  to ta l num ber of messages in th is group while “O bjlndex” indicates th e  index of 

the  curren t message w ith in  the message group. Message grouping tags are  available 

to  all messages. T he message receiver (e.g., th e  H T E  or handlers) is responsible 

for keeping track of message groups. Usually, a the  message sender becom es a 

m essage receiver afte r sending out a message requesting responses. I t  will w ait until 

all responding messages o f a single group have been received; (6) anchor identity: 

T he anchor related tags identify anchors. “A nchorD ataT ype” indicates th e  anchor’s 

d a ta  type, which could be a  DB anchor or a  tex t anchor. “A nchorS tart,” “Anchor- 

L eng th” and  “A nchorText” apply to  tex t anchors. Text anchors can be em bedded 

in all COIS objects (e.g., tex t files, da tabase  tab les or records). (We in tend  to  

extend GHM I for m ulti-m edia anchors). “A nchorCO ISID ” defines a  DB anchor. 

For exam ple, “S m a llS c h o o l# # D o c to ra lS tu d e n t# # 1 2 3 4 5 6 7 8 9 # # N am e ” defines an 

anchor as a  value in tab le  “D octoralS tuden t” of da tabase  “Sm allSchool” w ith key 

value “123456789” and  field nam e “Name;” (7) com m and: “C om m and” indicates 

an H T E  com m and to  a  COIS or an IOS; (8) content: “C onten t” specifies com m and 

p aram eters  or actual d a ta  associated w ith o ther tags in a  message. It could be a file 

nam e, p lain  tex t, record content, SQL sta tem en t, com m and param eters, etc. For 

exam ple, a  database “Q uery” event can be accom panied by an “C on ten t” as a  SQL 

sta tem en t.
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6.2.2 Dynamic Mapping: A Communication Scenario

Figure 6.6 shows a  dynam ic m apping and interprocess com m unication scenario in 

th e  GH M I prototype.

T he user selects an object or an anchor on screen (a t 1). T he IOS handler m akes an 

event report message to  the  H T E  (a t 3,4,5). T he H T E  finds ou t (from SY SAnchors) 

which ob ject th is selection stands for (at 3) and finds out all links available on th is  

ob ject m arked by the  selected anchor (at 4, 5). S ta tic  links (i.e., association links and 

an n o ta tio n  links) can be found in the  Linkbase (at 4). D ynam ic links (i.e., opera tion  

links, reference links and s tru c tu re  links) can be found in the  Knowledge Base based 

on the  o b jec t’s CO ISType (at 5). The H T E then  sends a “ShowLink” com m and to  

th e  IOS handler to  display all available links on the  Browser (a t 6,7). T he user can 

then  select one of these links to  follow (at 8). A fter receiving a  user selection on the 

Browser, the  IOS handler makes ano ther message to  report the  link selection event 

(a t 9). T he H T E then  finds a  link BL which m aps th is  link from th e  Knowledge 

Base (a t 10, assum ing th a t  the  selected link is a  dynam ic link). T he H T E  sends 

th is  BL to  th e  COIS handler asking to  m ap the  link (a t 11, 12). The COIS handler 

e ither d irectly  ob tains the  requested endpoint from the  COIS da tabase  or invokes the  

p roper CO IS routines to  com pute the  link endpoint (a t 13). T he COIS handler m akes 

th e  resu lting  object expressions (in term s of { C O I S I D ,C O I S T y p e ,C O I S L a b e l ) )  

as messages and sends them  to  the  H T E  (at 14). T he H T E finds BLs for m apping  

th e  resulted  COIS objects (a t 15) and  asks the  CO IS handler again to  execute an 

ob jec t BL to  generate ob ject contents (at 16, 17). T he COIS handler generates the  

requested object content and sends it to  the  H T E  (a t 18, 19). T he H T E then  m aps 

the  CO IS objects to  hypertex t com ponents (a t 20), stores them  in the  Session DB 

(a t 21), and  sends them  to  the  IOS handler for display (a t 22,23 24). T he I IT E ’s 

next task  is to  find all links departing  from the  cu rren t com ponent. These links could 

be s ta tic  or dynam ic. For s ta tic  links found in the  L inkbase, the  H T E needs to  find
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all the  anchors (a t 24). For dynam ic links w ith dynam ic anchors, the  H T E finds link 

bridge laws applying to  the  curren t com ponent and sends them  to  COIS handler to  

com pute the  anchors (at 25, 26, 27 28, 29). The H T E  collects all th e  results and  

asks th e  IOS to  m ark up the  link anchors on screen (a t 30, 31). A fter the  m ark up 

(a t 32), the  system  is ready for ano th er round of dynam ic m apping triggered by a 

user selection on screen.

6 .3  I m p le m e n t in g  G H M I  F u n c t io n a l i t ie s

T his section discusses how th is  p ro to type  im plem ents G H M I’s functionalities.

6 .3 .1  C o m p o n e n ts

C om ponents m apped by bridge laws are not persisten t in th e  L inkbase. T he H T E  

stores th e ir  specifications (i.e., param eters  and identifiers which are enough for 

regenerating  com ponent contents) in th e  SY SHistoryLog w ith in  a  session. T he 

P r e sen ta t io n S p e c  can be used to  specify the  view style of a  com ponent. For exam ple, 

the  user can view a  Set com ponent as e ither a  Set view or a  Tree view. A Set view 

expands a  Set by one level (i.e., w ithou t fu rther expanding  its  subsets). U sing a 

Tree view, however, the user can see a  global overview of a  Set in a  single view w ith 

each subset expanded upon clicking. T he following parag raphs discuss com ponents 

m apped from th e  three COISs in th e  p ro to type.

•  R D B M S  C o m p o n e n ts .  For the  RDBM S dom ain, we need bridge laws to  

m ap:

-  Values to  anchors.

-  R ecords to  struc tu red  atom ics

-  F ields to  struc tu red  atom ics

-  Tables to  sets (of records)

Tables to  sets (of fields)
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145

D atabase  to  sets (of tables)

-  Schem ata to  s truc tu red  atom ics

-  E R  d iagram s to  graphs

A da tabase  or a tab le  is displayed e ither as a  Set view or a  Tree view. GIIMT 

bridge laws rely on object identifiers. T he basic assum ptions for identifying 

da tabase  objects are: (1) every D B has a  unique nam e (and  p a th ) th roughou t 

the  scope of a  DB handler; (2) every tab le  has a  unique nam e w ith in  a  DB; 

(3) every field has a  unique nam e in a  table; (4) every record has a  unique key 

value w ith in  a  table.

•  T E X P R O S  C o m p o n e n ts .  T E X PR O S objects (see A ppendix  A) include 

folders, fram e tem plates, fram e instances and original docum ents. GHM I 

m odels folders as Set com ponents, fram e tem plates an d  fram e instances 

as s tru c tu red  a tom ic com ponents, and  original docum ents as plain atom ic 

com ponents. An overview of a  T E X PR O S folder could be a  Set view or a  Tree 

view which is m apped a t run-tim e. T he fram e tem pla tes and  fram e instances 

are stored  in the  T E X PR O S DB which are also accessible as an application 

of the  DB handler. Original docum ents are under m anagem ent of MS-DOS 

and are therefore accessible th rough th e  file system  handler too . We include 

T E X PR O S bridge laws in A ppendix A.

•  F i le  S y s te m  C o m p o n e n ts .  For th e  dom ain of file system s, we only model 

one type  of objects: files (advanced m apping  would distinguish  directories from 

files). File bridge laws m ap files to  plain atom ics and  file system  overviews to  

Tree com ponents. A file system  is not a  real COIS exam ple since it  has few 

com puta tion  features. We model plain files because they  are basic s tru c tu re  

of hypertex t an n o ta tio n s  in GHMI. By partia lly  m odeling file system , we can 

prove our concept of m apping an no ta tions  and plain atom ic com ponents which
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are  not available in th e  RDBM S dom ain. O ther advanced features provided by 

file m anagers are  ou t of the  scope of th is p ro to type.

•  H y p e r t e x t  C o m p o n e n ts .  H ypertex t com ponents are anno ta tion  com ponents 

which have in ternal file nam es and therefore are trea ted  as file ob jects under 

m anagem ent of th e  file system . All such com ponents are persisten t ob jects in 

th e  Linkbase.

6.3.2 Anchors

T he user should be able to  define anchors on: any tex t of a  file, the  file itself, a  

record value, a  record, a  field, a  tab le  and an entire  DB. Text anchors are identified 

by < s ta r t ,  leng th>  and  record value anchors are  identified by th e ir field nam e and  

key value. S ta tic  anchors include plain anchors and keyword anchors. Users can 

define these s ta tic  anchors m anually  a t run-tim e. S ta tic  anchors are persis ten t in 

th e  L inkbase while dynam ic anchors are not. D ynam ic anchors are  defined by bridge 

laws in content of dynam ic links’ specifiers and  com puted  a t run-tim e.

6.3.3 Typed Links

GHM I supports  COISs w ith  th e  following six link types. O ur discussion focuses on 

supporting  RDBM Ss.

-  S tru c tu re  links: All struc tu re  links are  m apped from COISs. T hey  are not 

persis ten t in Linkbase. In the  case of D B links, all DB objects should able to  

reference upwards to  th e ir  em bedding objects th rough  s tru c tu re  links. W e m ap the  

following s tru c tu re  links (accessing objects in the  reverse direction has been m odeled 

as accessing th e  conten ts of com posites by ob ject bridge laws):

record  —» table, record  —> D B ,  f i e ld  -4  table, f i e l d  —» table, table -4  D B .

-  A ssociation links: A ssociation links are hypertext-ow ned persisten t links stored  

in th e  Linkbase. They could be inter-CO IS or in tra-C O IS links. T he user is able
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to  define ad hoc links along with anchors across all app lication  objects a t run-tim e. 

Clicking on anchors should lead link traversal to  the  anchor position of destina tion  

com ponent. These links do not need bridge laws.

-  Reference links: These links are not persistent. Im plic it schem atic relationships 

we lost when m apping E R  diagram s to  tables could be restored through bridge law 

m apping  as reference links. W e consider exam ples such as d irect E R  relationships in 

th e  E R  d iagram , tab les w ith the  sam e schema, tables contain ing  th e  sam e key field, 

etc.

-  A nnotation  links: These are  persisten t links owned by hypertex t. We do no t need 

bridge laws for th is kind of links. They are s ta tic  and  are created  by th e  system  

when th e  user add  an n o ta tio n s  to  com ponents.

O pera tion  links: O peration  links model hypertex t operations and COIS operations. 

T hey  should model all RD BM S and  ODBC operations.

-  N avigation links: These could be v irtua l links when dynam ically  generated  on user 

requests. T hey also could be persisten t links when the  user explicitly requests (e.g, 

when being included in a  U G T). These links do not need bridge laws. W hen the  user 

defines a  navigation s tru c tu re  (e.g., a  guided-tour), th e  H T E  adds navigation links 

for accessing th is s tru c tu re  autom atically . The H T E  could generate  both  navigation  

s tru c tu re  and navigation links (e.g., for default guided-tours) au tom atically . T he 

com ponents in a  G T  could be dynam ic. They are  generated  a t  run-tim e th rough  

bridge laws when the  users actually  traverse them  on a  G T .

6.3.4 Navigation

G H M I suppo rts  six navigation features: browsing, backtracking, history, guided- 

tours, bookm arks and overviews. Simple link traversal im plem ents browsing. T he 

Session DB structu res sup p o rt backtracking and history. G uided-tours, bookm arks 

and  overviews are m odeled and  im plem ented as as com posite com ponents.
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6.3.4.1 Guided-tours This subsection discusses guided-tours (G Ts) and  their 

construction algorithm s. GHM I m odels four types of guided-tours as L ist com ponents 

which consist of a  set of com ponents and  a  set of links. Each link contains a  set 

of specifiers representing endpoints in the  com ponent set. Each com ponent in 

a  G T  is e ither s ta tic  or dynam ic. S ta tic  com ponents have th e ir  conten ts in the 

Linkbase. A tab le  SYSGTs stores all s ta tic  G Ts (see below). G T s can be nested 

with a rb itra ry  depths. A stop in a  G T  implies a  D G T  (i.e., D efault G uided-T our) if 

it is a  com posite. T he D G T  of a  G T  is itself. All com ponent conten ts of dynam ic 

G Ts are  dynam ically  com puted every tim e the  com ponent is displayed on screen. 

Such com puta tion  is based on the  com ponent specification used to  generate the 

com ponent originally.

D G T s are  dynam ic and are  generated  au tom atically  for com posites on their 

s truc tu re  links when the  user explicitly asks to  traverse th is com posite  th rough  D G T. 

D G Ts are  no t stored  in SYSGTs. The user invokes a  D G T by selecting a com posite 

and a  D G T  b u tto n  on screen. T he system  then  com putes th e  D G T  by applying 

bridge laws. N G Ts (i.e., N avigation-based Guided-Tours) are s ta tic  and  m anually 

specified by the  user from the  history  list. The user only needs to  select an item  

from the  h istory and  click an corresponding “add to  N G T ” m enu item . Then an 

N G T is generated  and added into tab le  SYSGTs. Every N G T  could have a  user- 

defined sem antic  nam e for fu ture reference. Q G Ts (i.e., Q uery-based G uided-Tours) 

are dynam ic. W henever the user makes a  query resulting a  set of objects, th e  system 

generates a  Q G T  to hold them  into  a  single com posite com ponent. T h is com ponent 

is dynam ic and  is not stored in the  Linkbase unless the  user explicitly  saves it as 

a  U G T  (i.e., User-defined G uided-Tour). U G Ts are sta tic . T he user can add any 

current ob jects including all of the  above guided-tours into a  custom ized collection,

i.e., a  U G T.
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The following gives algorithm s for crea ting  G Ts and navigating on G Ts. Wo 

assum e th a t  these s ta n d a rd  functions have been defined: S e tJG etN ex tC o rn p (A )  

re tu rns and removes a  com ponent from a  set of com ponents in A. L i s t J ' i n d L a s t ( L )  

re tu rns the  com ponent poin ted  by the  last link in a  L ist L. S e t - A d d L in k (X ,  L)  adds 

link L  to  a  link set X .  S e t-A d d C o m p {X , C) adds com ponent C  to  a  com ponent set 

A'.

1. C reate  D G T s

•  DGT_On_Set() creates a D G T  on a  Set com ponent.

List DGT_On-Set(Component aComp)

begin

/*  D eclare variables * /

C om ponent C l;

L ist GT;

Link aLink;

/*  G et com ponent * /

G T .L inkS et =  NONE;

C l =  Set_G etN extC om p(aC om p.C om pSet);

/*  Add com ponent and link to  G T  * /

if C l < >  N O N E then

begin

/*  A dd G T ’s first com ponent * /  

aL ink .T ype =  ’’N avigationLink” ; 

aL ink .C onten t =

{(C om pSpec  = C l ,  D irection  =  ” to” )};

Set_A ddLink(G T.LinkSet, aLink);

Set_A ddC om p(G T.C om pSet, C l) ;



C l =  Set_G etN ext,Com p(aCom p.Com pSet);

/*  Add G T ’s o ther com ponents * /

while C l < >  N O N E do

begin

aL ink.T ype =  ’’N avigationLink” ;

aL ink.C ontent =

{(C o m p S p ec  =  L i s t - F in d L a s t{ G T ), D irec t ion  =  " f r o m ”), 

(C om pSpec  — C l ,  D irection  =  ’To” )};

Set_A ddLink(G T.L inkSet, aLink);

Set_A ddC om p(G T.C om pSet, C l);

C l =  Set_G etN extC om p(aC om p.C om pSet); 

end 

end

G T .O w ningSystem T ype =  ’’H ypertex t” ;

G T .O w ningSystem N am e =  ’’GHM I P ro to ty p e” ;

G T .C om pN am e =  ”D G T ” ; 

re tu rn (G T ); 

end

•  DGT_On_List() creates a  D G T  on a  List com ponent by copying 

original com ponent w ith  changes on its p roperties.

List DGT_On_List(List Comp)

begin 

L ist GT;

G T  =  Comp;

for all aLink in G T .L inkSet do 

aL ink.Type =  ’’N avigationL ink” ;
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/*  Change properties * /

G T .O w ningSystem Type =  ” H ypertex t” ;

G T .O w ningSystem N am e =  "G H M I P ro to ty p e” ;

G T .C om pN am e =  ”D G T ” ; 

re tu rn (G T ); 

end

•  DGT_On_Tree() creates a  D G T  on a  Tree com ponent by constructing  

a  D G T  on its b readth-first search sequence. Assum e th a t  function 

G raph ,-B read thF irs tSearch ()  re tu rns a  L ist com posite w ith  an ordered 

set o f com ponents as its content.

List DGT_On_Set(Tree Comp)

begin

List G T , C l;

C l =  G raph_B readthFirstSearch(C om p);

G T  =  D G T_O n_List(C l); 

re tu rn (G T ); 

end

•  DG T_On_RootedD AG () creates a  D G T  on a  RootedD A G  com ponent by 

constructing  a  D G T  on its  b readth-first search sequence

List DGT_On_Set(RootedDAG Comp)

begin

List G T , C l;

/*  ordered o u tp u t of breadth-first-search * /

C l =  G raph_B readthFirstSearch(C om p);

G T  =  D G T_O n_List(C l);
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re tu rn  (G T); 

end

2. C reate  N G Ts

N G T () takes a  G T  (in itially  as NONE) and  a  user selected com ponent (from 

the  H istory Log) and adds the  com ponent in to  the  GT.

List NGT(List GT, Component aComp)

begin

Link aLink;

If aC om p < >  N O N E then 

begin

aL ink.Type =  ’’N avigationLink” ; 

aL ink.C ontent =

{ (C o m p S p e c  =  L is tJ F in d L a s t (G T ), D irec t ion  =  ” f r o m ” ),

('C om pSpec  = aCom p, D irection  — ” /o” )};

Set_A ddLink(G T.LinkSet, aLink);

Set_A ddC om p(G T.C om pSet, aCom p); 

end

G T .O w ningSystem T ype =  ’’H ypertex t” ;

G T .O w ningSystem N am e =  ’’GHM I P ro to ty p e” ;

G T .C om pN am e =  ” N G T ” ; 

re tu rn (G T ); 

end

3. C reate  UG Ts

U G T Q  takes a  G T  (in itially  as NONE) along w ith a user selected com ponent 

and adds the  com ponent into the  GT.
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List UGT(List GT, Component aComp)

begin

Link aLink;

If aC om p < >  N O N E then 

begin

aL ink.Type =  ’’N avigationL ink” ; 

aL ink.C ontent =

{ (C om pSpec  =  F in d L a s t (G T ) ,  D irection  =  ” f r o m ” ),

(C om pSpec  — aC om p, D irection  =  ” /o” )};

Set_A ddLink(G T.LinkSet, aLink);

Set_A ddC om p(G T.C om pSet, aCom p); 

end

G T.O w ningSystem Type =  ’’H ypertex t” ;

G T .O w ningSystem N am e =  ’’GHM I P ro to type” ;

G T .C om pN am e =  ”U G T ” ; 

re tu rn (G T ); 

end

4. C reate  Q G Ts

Q G T ()  constructs a  G T  (in itially  as NONE) from a  set of com ponents (from 

any query result). I t  calls U G T ()  to  add com ponent one by one and then 

changes G T  nam e to  Q G T.

List QGT(ComponentSet aCompSet)

begin 

L ist GT;

C om ponent aCom p;

G T  =  NONE;
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W hile aC om pSet is not em pty do 

begin

aC om p =  Set_G etN extC om p(aC om pSet);

G T  =  U G T (G T , aCom p); 

end

G T .C om pN am e =  ” Q G T ” ; 

re tu rn (G T ); 

end

5. N avigating  on a  G T

N a v ig a te O n G T () navigates on a  G T  through following the  links in its 

L in k S e t .  We assume: H T ^ A p p ly B L B y O b jQ  applies bridge laws (according 

to  the  CO ISType of the  object) to  generate the  destina tion  com ponent. 

H T _5how C om ponen t(C om p)  sends a  com ponent conten t to  a  proper IOS 

viewer for display; L i s t J 'm d F i r s t ( L )  is a  s tandard  L ist operation  which 

re tu rns the  first com ponent in L ist L\ L i s t - F i n d N e x t ( L ,C )  is a  s tan d a rd  List 

operation  which returns the  com ponent next to  C  in L ist L. If C  is NO NE, it 

re tu rn s  th e  first com ponent.

Navigate_On_GT(List GT)

begin

C om ponent aCom p, NewComp;

If G T  =  NO NE then  return  

/*  F ind  and  show first com ponent * / 

aC om p =  L ist_F indF irst(G T );

HT_A pplyBLByO bj (aComp);

IIT_Show Com ponent(aCom p);

/*  F ind  and show next com ponent * /
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aC om p =  L ist_FindN ext(G T, aCom p);

while aC om p < >  NO NE do

begin

H T_A pplyBLB yO bj (aCom p);

H T_Show Com ponent (aC om p); 

aC om p =  L ist_FindN ext(G T, aCom p); 

end 

end

6.3.4.2 Bookmarks Bookm arks are persisten t in Linkbase. GH M I m odels 

bookm arks as a  special Set object. T he user clicks on “bookm ark” bu tton  for 

accessing a  bookm ark overview on the  Browser, on which the  user can perform  

operations including add ing  current, deleting  a  selected item  and  ju m p in g  to  a 

selected item . All bookm arks are stored  in a  tab le  SY SBookm arks in th e  Linkbase. 

Its entries are copied from the  SY SHistoryLog in the  Session DB.

6.3.4.3 Overviews Overviews are v irtua l and com puted com ponents m odeled as 

Trees or G raphs. T he H T E  can derive object overviews from th e ir s tru c tu re  links by 

applying bridge laws. We im plem ent overviews for com posite com ponents as trees 

(on the  Browser) and  graphs (on the  G raph Viewer) derived from th e ir  CompSct, 

and LinkSet.

6.3.4.4 Backtracking and History T he Session DB stores G H M I’s run-tim e 

layer s truc tu res  include SYSHistoryLog, SYSChronologicLog and SYSTaskLogs. 

SY SHistoryLog contains com plete inform ation regarding generated  com ponents 

and their in stan tia tio n s  in term s of event structu res. SY SChronologicLog and  

SYSTaskLogs have the  sam e struc tu re  as the  h istory log.
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6.4 Current Implementation Status

To com pletely im plem ent the  p ro to type  proposed in th is  chap ter is far more th an  a 

year’s work for one person. Nevertheless, we were able to  im plem ent those essential 

p a rts  th a t  we believe are  enough to  serve as a  proof of concept for GHM I. In th is  

section, we sum m arize our curren t im plem entation s ta tu s  in term s of the  GHM I 

p ro to type  arch itec tu re  and  GHM I functionality.

The im plem entation architecture. T he current p ro to type  includes all com ponents 

of th e  im plem entation  a rch itec tu re  in F igure 6.1: th ree CO IS handlers, an IOS (with 

five viewers), an IOS handler, six H T E  m anagers, four H T E  DBs, the  DB han d le r’s 

C onfiguration DB, an exam ple application DB ( “Small School” ), and  a  T E X PR O S 

DB. A lthough we explicitly  define one application DB w ith  E R  schem ata to  prove 

our RD BM S m apping, all of the  DBs in F igure 6.1 (i.e., the  Knowledge Base, the  

Linkbase, the  Session DB, th e  H T E  Configuration DB, the  D B hand ler’s Configu

ration  D B and  the  T E X PR O S DB) are also trea ted  as norm al application  DBs under 

th e  m anagem ent of the  DB handler. All functionalities GHM I adds to  the  app li

cation  DB apply  to  all of these DBs too. The H T E Inference M anager is p a rtia lly  

im plem ented as a  BL-invoker (the m issing p a rt is the  B L -parser). T he H T E Config

u ration  M anager is com pleted on th e  COIS side and is incom plete on the  IOS side 

as we only have one IOS. T he com m unication protocol G H M IC P and  its A PI (i.e., 

s ta n d a rd  functions) are fully im plem ented. The IOS is fully im plem ented w ith all 

viewers and is able to  com m unicate w ith the  H T E  th rough  DD E. T he DB handler 

is also com pleted (including a  Prolog BL-Engine). T he T E X PR O S handler and 

th e  File System  handler work for ob ject m apping and generating  overview trees and  

com m unicating  w ith the  H T E . T he pro to type also suppo rts  configuration of m ultiple 

COISs. T he  H T E  is able to  ac tivate  COISs if they  are no t runn ing  when a message 

exchange is needed.
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T he H T E , the  IOS, the  DB handler, th e  T E X PR O S handler and  th e  file system  

handler run as independent processes and com m unicate to  each o ther th rough  DD E. 

T he p ro to type  s ta r ts  from the  IOS. T he IOS is responsible for ac tiv a tin g  the  IIT E . 

Upon receiving a  user event, the  IOS con tac ts the  H TE for processing. T he H T E  

then activates p roper COIS handlers to  generate responses.

Components. T he  curren t p ro to type  suppo rts  m apping of these G H M I com ponents: 

plain atom ics (tex t files), struc tu red  atom ics (DB records, DB fields), Set (database , 

tables, query results), L ist (guided-tours), Trees (tree-overviews) and  G raph (ER  

diagram s). We w rote bridge laws to  m ap these com ponents from CO IS objects.

Links. T he  curren t p ro to type  supports  creation and traversal of five GHM I link 

types (except an n o ta tio n  links): association, s truc tu re , reference, opera tion  and 

navigation. A ssociation links can be m anually  created  as in tra-C O IS  or int.er-COIS 

links. We m ap s truc tu re , reference and  operation  links using bridge laws. Reference 

links can be m apped au tom atically  in dynam ically  generated docum ents (e.g., query 

resulted tab les).

Anchors. We im plem ented two of the  th ree  GHM I anchor types: plain anchors 

and dynam ic anchors. P lain  anchors are created  m anually  and  can be em bedded in 

association links. D ynam ic anchors are  generated  from link bridge laws. T he anchors 

in a  dynam ically  generated  tab le  are  dynam ic anchors. W henever a  dynam ic tab le  

is resulted from an operation  link or a  reference link, the  H T E  in stru c ts  the  IOS to 

m ark it up w ith  dynam ic anchors for fu rther access.

Navigation. T he  curren t p ro to type  includes these navigation features: browsing 

(i.e., link traversal), h istory  (accessible from all viewers), backtracking (chronological
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only), overview (for Sets, Trees, and G raphs), bookm arks (accessible from all viewers) 

and  guided-tours (default guided-tours and query-based guided-tours only).

Bridge Laws. We w rote bridge laws for th ree  COISs: RD BM S, File System  and  

T E X PR O S.

(1) RDBM S: We im plem ented the  m ost of RDBM S bridge laws defined in §5.5:

-  O bject BLs: B L ReC0Td, B L j ,af>ie\  ̂ B L n atai)ase, BLschemai B L FRDiagram

— S tru c tu re  link BLst BLRecordToTable') B LtTableToDataba.se

-  O pera tion  link BLs: B LQ Uery

— Reference link BLs: BLsameSchemai BLgameKey) B L Re f  To!'able: BLnitjteiation, 

BLj)fjToRR.niagrami B  LgciiemarpQ'fa(,/e, BLtrfetaTablei B  L  m etaDatabase

(2) T E X PR O S: We im plem ented B L f 0ner and B L Fi in §A. T his enables us to  

explore the  T E X PR O S folders and fram e instances from  a  hierarchical overview 

(viewed as a  tree).

(3) F ile system : We have one bridge law B L File for m apping  tex t files to  plain 

a tom ic  com ponents.

6.5 Summary

In th is  chap ter, we presented the  GHM I p ro to type  im plem entation  details. The 

p ro to ty p e  arch itec tu re  com prises a  hypertext engine (H TE), th ree  COISs (MS 

Access, T E X PR O S and  M S-DOS) and an IOS. Every COIS or IOS connects to  

th e  H T E  through its own handler. H andlers tra n s la te  th e  I IT E ’s messages to  a 

fo rm at the  COIS or IOS understands, and vice versa. COIS handlers tran s la te  

bridge laws (in the  H T E ’s M RD C form at) to  access C O IS’ operations, objects and  

d a ta . To in tegrate  a  COIS, th e  only change th is a rch itec tu re  requires of the COTS 

is th a t  its  com m unications pa th  be routed through th e  hand ler [10]. Developers 

and builders very fam iliar w ith the  COIS m ust w rite th e  COIS handler, as well as
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bridge laws for each class of objects or relationships accessible to  users. RDBM S 

is so w ell-understood th a t  we were able to  do th is ourselves for MS Access. The 

com plexity of th e  bridge laws depends on the  C O IS’ complexity.

The H T E  consists of six m anagers and  four databases (m anaged under MS 

Access). T he m anagers are: the  COIS M anager, the  IOS M anager, the  H T  M anager, 

th e  Inference M anager, the  Configuration M anager and the  DB M anager. The 

databases are: th e  Knowledge Base, the  Linkbase, the  Session DB and  the  Configu

ration  DB.

In th is p ro to type , we consider three diverse COISs: a  da tabase  system  (MS 

Access), a  docum ent m anagem ent system  T E X PR O S and  a  file system  (M S-DOS). 

O ur focus is on MS Access. We m ap objects and  relationships defined by bridge laws 

in §5.5. T E X PR O S is still under developm ent. We only m ap its objects (i.e., folders, 

fram e tem pla tes and  fram e instances, see §A) and file s truc tu res to  com ponents 

according to  the  bridge laws in §A. A lthough file system s are hardly  COISs, we 

include them  to  dem onstra te  how GHM I supports  tex t docum ents and  anno ta tions. 

W e model tex t files as plain atom ic com ponents.

We only have one IOS in th is p ro to type, as our focus is on the  C O IS -IIT E  side. 

T he curren t IOS consists of five viewers: a  Text Viewer, a  DB Viewer, a  Browser, a  

G raph Viewer and  a  M ain Viewer. Each viewer has its  own menu item s for viewer- 

specific com m ands. Some s tan d ard  com m ands are  comm on to all viewers, including 

History, B acktracking, Overview, Bookm ark, G uidedTour, etc.

The H T E and  the  handlers run as independent processes. T hey com m unicate 

w ith each o ther a t run tim e through m essage passing. We em ploy a  com m uni

cation protocol G H M IC P (i.e., GHM I C om m unication Protocol) for in terprocess 

com m unications. In GH M ICP, a  message consists of a  sequence of tag-value pairs. 

Message lengths and  contents vary according to  message types (i.e., message sender 

and receiver types).
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A lthough th is  pro to type is not com pletely im plem ented, the  curren t im ple

m entation  does include all essential p a rts  to  serve as a  proof of the  GHMT concepts 

proposed in th is d issertation. We sum m arized our curren t im plem entation  s ta tu s  

in term s of GHM I pro to type a rch itec tu re  and GHMI functionality. These include 

all com ponents of the  im plem entation arch itecture  in F igure 6.1. In term s of 

G HM I functionality, the  curren t p ro to type  supports: (1) com ponents: plain atom ic 

com ponents (tex t files), s truc tu red  atom ic com ponents (from DB records, DB fields), 

Set com ponents (database, tables, query results), List com ponents (guided-tours), 

Tree com ponents (tree overviews) and  G raph com ponents (graphical overviews); 

(2) Links: five GHM I link types (except anno ta tion  links): association, s truc tu re , 

reference, operation  and navigation links; (3) anchors: plain anchors and dynam ic 

anchors; (4) navigation: browsing (i.e., link traversal), h istory  (accessible from all 

viewers), backtracking (chronological only), overviews (for Sets, Trees and  G raphs), 

bookm arks (accessible from all viewers) and guided-tours (default guided-tours and 

query-based guided-tours); (5) bridge laws: bridge laws for m apping the  above 

functionalities. These include m ost of bridge laws we defined in §5.5 and §A.

As p a rt of our fu ture work, we plan  to  continue im plem enting th is  p ro to type  

to  m ake it a  com plete GHM I hypertex t system .



CHAPTER 7

S U M M A R Y  A N D  F U T U R E  W O R K

In th is  chapter, we discuss guidelines for using GHM I, com pare GHM I w ith  o ther 

system s and models, identify  both  GH M I’s m ajo r con tribu tions and lim ita tions, and 

briefly outline fu ture research th a t  could em anate  from GHM I.

7 .1  G u id e lin e s :  U s in g  G H M I

In §5.4, we discussed the  guidelines for in teg rating  RDBM S with hypertex t. This 

section discusses general COIS in tegration guidelines. To in tegrate  a  CO IS with 

a  GHM I hypertex t system , the  COIS builders (or developers) need to  follow the  

following steps.

1. Study the G H M I Model

To add the  full GHM I functionalities to  a  COIS, it is essential for th e  COIS 

builders to  have a  good understanding  of the  GHM I model. T he first step 

tow ard build ing an  in tegration system  is to  s tudy  the GH M I hypertex t 

concepts, including com ponents, links, anchors, navigation features and 

especially the  bridge law tem plate.

2. Identify Potential G H M I Constructs

T he next step  is to  identify COIS objects, relationships, m eta-inform ation  and 

operations (or com m ands), which could be m apped to  GHM I construc ts  (i.e., 

com ponent classes and typed  links).

•  I d e n t i f y  C O IS  O b je c ts :  We need to  identify all COIS ob jects which 

m ight be m apped to  GHM I com ponents and  therefore m ade directly  

accessible to  users.
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• Identify Useful Relationships: We need to  identify both explicit, 

and  im plicit relationships. M apping these relationships to  GTIMT links 

makes them  d irectly  accessible to  users. G H M I enables m apping COTS 

relationships to  app rop ria te  link types based on th e ir  behaviors (e.g., 

m apping a  hierarchical relationship to  a s tru c tu re  link; m apping an 

im plicit relationship  to  a  r e fe re n c e  link). M apping im plicit relationships 

to  reference links makes them  “explicit” and directly  accessible.

• Identify Meta-information: C ertain  users such as developers should 

be able to  access m eta-inform ation associated w ith  an object, such as the  

object type, tim e  stam ps, referential constra in ts, etc. GHM I could help 

users access these inform ation by m apping them  to  reference links.

• Identify Useful Operations: COISs usually provide powerful ob ject 

m anipulation  operations (e.g., open, delete, modify, query, com pute). 

GHM I enables direct access to  these operations by m apping them  to  

operation  links.

Software Engineering

A fter identifying the po ten tia l GHM I constructs, the  next s tep  is to  w rite  the  

m apping rules (i.e., bridge laws) and the COIS handler code.

• W rite Bridge Laws. We need to  w rite  all bridge laws to  m ap the  

above identified po ten tia l GHM I constructs using the  GHM I bridge law 

tem plate . C om ponent bridge laws m ap GHM I com ponent and link bridge 

laws m ap GHM I links and dynam ic anchors. It would be necessary to  

understand  some sim ple syntax of Prolog as bridge laws’ M a p p in g R u le  

p a rt  employs a  Prolog-like syntax. The com plexity of bridge laws depends 

on the  com plexity of the  COIS.
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•  W r i t e  t h e  C O IS  H a n d le r .  W riting the COIS handler code is the  most, 

difficult and  tedious work in th is in tegration procedure. T he COIS handler 

actually  executes bridge laws to  generate responses to  H T E  requests. T he 

responsibilities of a  COIS handler include: (1) executing bridge laws;

(2) m anaging the  configuration of COISs; (3) calling CO IS routines to  

generate responses for H T E  requests; (4) com m unicating  w ith the  H T E. 

Bridge law execution is accom plished by a  bridge law engine (probably  

w ritten  in some Prolog-like language because heavy inference functionality  

is involved in executing a  bridge law’s M app ingR u le ) .  Skillful experience 

of some program m ing language(s) m ight be essential for th is  step  too. 

U nderstand ing  the  GHM I com m unication protocol is also im p o rtan t for 

building the  com m unication module.

7 .2  C o m p a r is o n  w i th  O th e r  S y s te m s  a n d  M o d e ls

GHM I and  its  p ro to type  share ideas and common constructs w ith o ther system s 

developed by hypertex t researchers, especially in the  field of providing hypertex t 

functionality  to  th ird -p a rty  applications and D exter-based m odeling.

7 .2 .1  O p e n  H y p e r te x t  S y s te m s

We com pare GHM I w ith o ther open hypertex t system s including S un ’s Link Service 

[75], M icrocosm  [23, 24, 27], SP3 [58, 63, 81], C him era [5] and  M ulticard  [78]. We 

com pare GH M I w ith  these system s and  m odels with respect to  th ree  aspects: the  

app lication  dom ain, the  system  arch itec tu re  and  the  hypertex t model.

F igure 7.1 shows the  arch itec tu re  and application dom ain com parison and  Table

7.2 shows th e  hypertex t d a ta  model com parison w ith open system s an d  models.

S u n ’s L ink Service. GHM I shares w ith  the  Sun’s Link Service [75] separa ting  links 

from app lication  d a ta  bu t provides more complex hypertex t features. (1) Appli-
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Aspects Links Anchors
Composites

Models Typed n-ary Dynamic Typed Dynamic

GHM I Yes Yes Yes Yes Yes Yes

Microcosm No No No Yes No No

Sun’s 
Link Service No No No No No No

SP3 No Yes No No No Yes

Chimera No Yes No No No Yes

Multicard No No No No No No

F ig u r e  7 .2  Model Com parison w ith Open Hypertext, System s

cation dom ain: The dom ain of the  Link Service could be any app lication  running  

on a  Sun w orkstation while GHM I is designed specifically for com puta tion -o rien ted  

applications. However, the  Link Service only provides link services a t  a  very p rim itive 

level. I t  only m ain tains link sources and destinations. GHM I provides app lications 

w ith  a  much richer set of hypertex t features. (2) A rchitecture: T he Link Service 

was provided as a  s tan d a rd  feature on Sun w orkstations. Therefore it is open to  

applications a t the  program m ing level and its built-in hypertex t functionality  is very 

prim itive. The application is responsible to  define th e  link-related opera tions on 

linked objects. (3) H ypertex t model: The Link Service’s hypertex t m odel is sim ply 

plain node, link and  anchors. There is no typ ing  or com posites. Links are s ta tic  and 

only b inary  links. (4) Link Traversal: Link Service’s applications are link-aw are (i.e., 

applications have to  m anage link inform ation) while G H M I’s applications are not. 

In GHM I, applications are  link-unaware and  th e  hypertex t engine is responsible for 

invoking applications.
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Microcosm. GHM I and M icrocosm [23, 24, 27] have m any common points. T hey 

bo th  separa te  links and anchors from application objects and both adop t a  message- 

based A PI to  establish hypertex t-application  com m unication w ith a sim ilar m essage 

form at (i.e., a tag-value pa ir form at). They also share anchor concepts: M icrocosm ’s 

specific anchors and local anchors are com patible w ith  G H M I’s plain anchors and 

keyword anchors respectively. However, GHM I differs from M icrocosm in m any 

ways. (1) A pplication dom ain: As opposed to  GHM I, which aim s a t su p p o rtin g  

com putation-orien ted  applications, Microcosm is p rim arily  open to  viewers which 

are  display-oriented applications (i.e., IOSs in G H M I’s term inology). M icrocosm ’s 

system  architecture  does not support in tegrating  com putation-orien ted  app lications 

(i.e., COISs) which dynam ically  generate d a ta  a t  run-tim e. (2) A rchitecture: 

M icrocosm  applications have to  be changed to  em bed some m acros to  handle 

com m unication w ith the  link service, while G H M I’s arch itec tu re  requires separa te  

handlers to  handle com m unication and thus the  applications rem ain unchanged. 

M icrocosm ’s linear “filter” message passing chain is too  restrictive and inefficient. 

“F ilte rs” (program  m odules) have to  be ordered carefully to  ensure they receive all 

messages they  expect to  handle. GHM I adopts a  message bus and allows m odules 

to  com m unicate w ith  each o ther by routing through  the  hypertex t engine. (3) 

H ypertex t Model: M icrocosm ’s links are sta tic , un typed  and binary. GH M I allows 

n-ary  links and a  broader range of behavioral link types. GHM I also su p p o rts  

dynam ic links which are m apped from COIS dom ains a t run-tim e through  bridge 

laws. M icrocosm ’s anchors are  s ta tic  while GHM I allows dynam ic anchors to  be 

inferred through  bridge laws. Furtherm ore, M icrocosm does not have a  m odel for 

com posites. (4) Link traversal: M icrocosm ’s viewers are responsible for com m uni

ca ting  w ith Microcosm. In teg rating  w ith independent viewers is still an ongoing 

issue. T he au thors proposed a  m echanism  to  in teg rate  hypertext-unaw are viewers 

[24] which supports anchors through content search instead  of identifying them
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using some underlying COIS objects IDs. In GHM I, however, COTS handlers 

located  between the  COIS and  the  hypertex t engine handle the  com m unication 

details. T he COIS itself is hypertext-unaw are. The hypertex t model is hidden from 

th e  COISs. Such an approach enables effectively in teg ra ting  existing applications 

w ith m inim um  changes. Changes are im posed on the  handlers only.

SP3. GHM I and SP3 [58, 63, 81] both  address issues regarding the  D exter model 

bu t GH M I follows a  quite different approach. (1) A pplication dom ain: In SP3, 

there  is no system atic suppo rt for com putation-oriented app lications which handle 

dynam ically  generated d a ta . T he application has the  responsibility  to  extend its 

functionality  to  support dynam ic da ta . (2) A rchitecture: T he application  needs to  

com m unicate w ith o ther hypertex t com ponents using IP C  (inter-process com m u

nication). GHM I takes th is burden off applications and  pu ts  it on th e ir handlers, 

enab ling  applications to  rem ain unchanged (except to  com m unicate w ith th e ir  

handlers). SP3 requires applications to  store application d a ta  in order to  benefit 

from special hypertex t features such as versioning. In stead  of sto ring  application  

d a ta , G H M I dynam ically m aps applications to  hypertext. Versioning is not available 

in GH M I yet. (3) H ypertex t model: B oth GHM I and  SP3 su p p o rt n-ary  links. Tn 

con trast to  S P 3’s m odeling links and anchors to  be first-class processes, GHM I 

m odels links and  anchors as ob jects m anaged by the  hypertex t engine. This allows 

links and  anchors to  be handled in a  consistent m anner. O n the  o ther hand, SP3 

has no way to  define anchors on links, as links are processes in stead  of first class 

com ponents. GHM I m odels links as com ponents. All opera tions on com ponents 

also app ly  to  links. (4) Link traversal: SP3’s applications have to  m ain tain  link- 

rela ted  d a ta  which implies m ore changes would be m ade when in teg rating  existing 

applications. G H M I’s applications (COISs) are hypertext-unaw are. They have no 

knowledge of links or anchors. A pplication objects are m apped to  hypertex t ob jects
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dynam ically  th rough  bridge laws. (5) O ther features: SP3 su p p o rts  versioning, 

d istribu tion  and co llaboration  which are not in curren t stage of GHM I developm ent.

Chimera.. (1) A pplication dom ain: C him era [5] was developed specifically for 

the  needs of tools in software developm ent environm ents. I ts  app lication  dom ain 

is restricted  to  viewers which are display-oriented applications. T here  is no way in 

C him era to  su p p o rt the  dom ain of com putation-orien ted  app lications like GIIM I 

does. (2) A rchitecture: GHM I uses a  m essage-based A PI to  su p p o rt inter-process 

com m unication. T he message form at is sim ply ASCII tags. In con tras t, C him era 

hides message details by a  using higher-level API and A D T (i.e., A bstrac t D a ta  

Type). T his allows the  Chim era developers to  change message form ats freely 

w ithout affecting the  rest of the  system . B u t the  tradeoff of th is  approach is th a t  

applications have to  be changed to  use the  m essage ADT. (3) H ypertex t model: 

C him era associates anchors with views including an  object view an d  the  viewer 

displaying th e  ob ject view. The C him era concept of views is independen t of where 

it is stored. A C him era view could contain interface objects such as b u tto n s  and 

windows, depend ing  on how the viewer defines its views. This is flexible in handling 

m ultiple views of a  single object. T here is no analogous concept of such anchors in 

GHM I. T he way to  m ultiply view an object in GHM I is to  define a  link po in ting  to  a 

com ponent w ith p roper presentation specifications. C him era’s approach  allows the 

viewers to  freely im plem ent viewer-specific features a t the  price of m anaging  links 

and anchors inconsistently, which makes it  difficult to  extend s ta n d a rd  features in 

the  C him era server. (4) Link traversal: G H M I’s applications are hypertex t-unaw are 

and do not p a rtic ip a te  in link traversal. C h im era’s viewers, however, are heavily 

burdened to  define anchors and m ap anchors to  objects.

Multicard. (1) A pplication dom ain: In con trast to  GHM I, M ulticard  [78] is 

prim arily  open to  editors which are display-oriented applications. T he  au th o rs  of
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M ulticard  m entioned th a t  M ulticard can provides in tegration  w ith large range of 

app lications from basic tex t editors to  sophisticated  system s such as expert system s 

and object-oriented da tabase  system s. B ut it is still an ongoing issue and  it is not 

clear how to  suppo rt these dynam ic system s a t  the  system  level. In [4], th e  au th o rs  

connect M ulticard  to  an object-oriented da tabase  system  0 2  to  su p p o rt querying 

hyperdocum ents. T hey  only use  da tabase  system s to  im plem ent th e ir h ypertex t 

facilities, ra th e r th an  take da tabase  system s as an application  dom ain and  add 

hypertex t functionality  to  them . (2) A rchitecture: M u ltica rd ’s editors have to  be 

m odified to  be use M2000 to  p artic ipa te  in in tegration . GHM I does th is by sep ara tin g  

th e  applications from th e ir  handlers. An application is hypertex t unaware and  thus 

m inim al changes are im posed for cooperating  w ith its  own handler. T he dom ain 

m apping  between app lication  objects and hypertex t objects happens a t run -tim e by 

app ly ing  appropria te  bridge laws. (3) H ypertex t model: M ulticard  includes a  sim ple 

version of com posites which is a  node hierarchy consisting of nested nodes, sim ilar 

to  G H M I’s Tree com posites. M ulticard ’s links and anchors are untyped  and  links 

a re  b inary  only. M ulticard ’s scrip t-a ttached  links are  sim ilar to  G H M I’s concept of 

opera tion  links. G H M I’s concept of bridge laws is sim ilar to  the  M ulticard  scrip t 

language in the  sense of defining dynam ic behavior of operation  links. T he behavior 

of a  G H M I operation link is specified in bridge laws. T he difference is th a t  GHM I 

provides bridge laws for the  purpose of m apping applications, while M ulticard  aim s 

a t providing a  tool to  ex tend  its system  functionality.

7.2.2 The Dexter-based Models

T he D exter model [47] is widely referenced and accepted as a  com m on, principled  

in terchange s tan d ard  for diverse hypertex t system s. I ts  separa ting  hypertex t in to  

th ree  layers makes m odeling conceptually clearer and  m ore understandab le . H aving 

such a m odel as our base enables us to  share and com pare our work w ith o ther
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researchers based on a  com m on framework. Over the  p as t several years, m odels and  

system s have been developed following the  D exter approach. F igure 7.3 shows the  

com parison of GHM I w ith o ther D exter-based models.

DIIM  (or DeVise hyperm edia) [38, 41, 39, 37, 40] is a  D exter-based hyperm edia  

p ro to ty p e  developed a t A arhus U niversity in D enm ark. DHM  extends D exter in link 

directionality , dangling links, anchor typing, struc tu res and com ponent contents. 

Besides D ex ter’s four constan t link directions (i.e., “From ” , “To” , “B inary” , “N one” ), 

DHM  em ploys a broader concept including three orthogonal notions of link direc

tionality : sem antic directions, creation directions and  traversal directions. In 

co n tra s t to  D exter, DHM  allows dangling links which have no “To” directions. 

D H M ’s anchors are typed  to  include whole-com ponent anchor, m arked anchors and  

unm arked anchors. By storing  th e  references instead  th e  contents of com ponents, 

DH M  suppo rts  linking to  objects created  by ex ternal applications. G H M I have 

m any sim ilarities w ith DHM . G H M I’s external com ponents and keyword anchors are 

s im ilar to  D H M ’s. GHM I also models com ponent’s in te rnal s truc tu res  and  shares the  

concern of d istinguishing hypertex t-m anaged  com ponents from application-m anaged  

com ponents w ith DHM. In [37], Grpnbaek further ex tends DHM  com posites to  a  class 

hierarchy and  four aspects of com posite contents. T he class hierarchies of GHM I and  

DHM  are sim ilar bu t follow different perspectives. DHM  focuses on m odeling th e  

en tire  storage layer and run-tim e layer objects while GHM I separates the  navigation 

s tru c tu re s  from the  underlying classes w ith the belief th a t  the  navigation s tru c tu res  

can be m odeled w ith the  underlying com ponent s truc tu res. DHM  provides an archi

tec tu re  for cooperative work suppo rt [39] which is not the  curren t focus of GH M I. 

D H M ’s s tru c tu re  dimension of m odeling com posite’s conten ts is sim ilar to  G IIM I’s 

com posite  subclasses. D H M ’s v irtua l com puted com posites are sim ilar to  G H M I’s 

com puted  com ponents. However, G H M I’s com ponent content com puta tion  could
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involve dynam ic m apping rule execution in applications while D H M ’s com putation  

takes place w ithin the  hypertex t dom ain.

Leggett and Schnase criticizes D exter’s abilities on hyperm edia interchange and 

hyperm edia-in-the-large (i.e., open hyperm edia system s) design [63]. They address 

four issues from th e ir experience on tran sla tin g  In term edia  and  KMS using D exter 

as an exchange s tan d ard  [62], including underlying model confliction, m ultidesti- 

national links, link directionality  and  m ethods of defining hyperm edia boundaries. 

A lthough they  consider D exter a  robust model for hyperm edia system s as an in te r

change s tan d a rd , th ey  discuss issues regarding D exter’s problem s on: not allowing 

dangling com ponents, no notion of versioning, no external com ponents, no notion 

of deletion sem antics for com posites, no notion of com posite’s in ternal linking and 

restrictive navigational link sem antics. GHM I addresses all of these issues except 

versioning. In add ition , Leggett e t al. proposes seven fundam ental assum ptions for 

hyperm edia-in-the-large system  design. Based on these assum ptions they  claim th a t  

D exter does not support hyperm edia-in-the-large and it is not profitable to  fu rther 

extend the  D exter model. GHM I addresses sim ilar issues on broader link services 

(by provid ing  a  larger range of hypertex t functionalities) and  heterogeneous app li

cation suppo rt. However, GHM I differs from Leggett e t a l.’s work in th ree  m ajor 

ways. (1) different focuses: Leggett e t al. focuses on issues for general hyperm edia- 

in -the-large system  design while GHM I focuses on suppo rting  dynam ic m apping 

of com putation-orien ted  applications; (2) different perspectives of view ing Dexter: 

GHM I follows only the  sp ir it  of D exter on layered m odeling and  consistent represen

ta tio n  of hypertex t elem ents as storage layer com ponents. T aking D exter as a  base 

did not prevent us from extending and  specifying D exter to  fit ou r needs. It is unnec

essary to  recom m end th e  term ina tion  of Dexter; (3) different m odels for link and  

anchor behaviors: Leggett et a l.’s SP3 employs a process-based design by m odeling 

links and anchors as processes and  allowing open types. Such an approach allows
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broader and extensible application in tegration a t th e  price of heavy perform ance 

(especially in d istribu ted  system s), inconsistent link /ancho r behaviors and  heavy 

app lication  burden (the applications have to  define link and  anchor behaviors). Tn 

con trast, in GHM I, the  applications are hypertext-unaw are.

R H Y TH M  [66] is a  hypertex t system  developed a t  the  U niversity of Bologna 

in Italy. T he au tho rs believe th a t  m odeling RH Y TH M  using D exter proved the  

usefulness, soundness and robustness of D exter, a lthough they  m ade a few extensions. 

R H Y TH M  com ponents are files, docum ents and versions which can be m apped 

to  D exter com ponents. Files are entities storing ac tual da ta . A version is an 

en tity  showing d a ta  to  users th rough a  list of references. Versions are  collected in 

large en tities called docum ents which establish relations between them . R H Y TH M  

allows only b inary  links and divides links in to  two disjo int classes: navigation links 

and inclusion links. Versions are  com posites m ade exclusively of links and  can 

include previous versions through inclusion links. N avigation links include all b inary  

links o th er th an  inclusion links. RH Y TH M  extends the  D exter anchor concept to  

suppo rt ex ternal anchors. GHM I has sim ilarities w ith R H Y TH M  concerning the  

concepts of ex ternal anchors, com puted  anchors, anchor resolver and link typing, 

bu t differs from RH Y TH M  in th ree  aspects: (1) R H Y TH M  does not explicitly  

model keyword anchors. Furtherm ore, R H Y TH M ’s concept of com puted anchors is 

sim ilar to  G H M I’s dynam ic anchors. B u t RH YTH M  does not include a  m echanism  

to  define com puted  anchors. GHM I defines dynam ic anchors using bridge laws. (2) 

R H Y T H M ’s restric tion  on binary links is too  narrow for m odeling complex links in 

large hypertex t application environm ents; (3) RH Y TH M  includes a  prim itive notion 

of link typ ing  w ith a d istinction of navigation links and  inclusion links while GHM I 

m odels a  broader range of behavioral link types. R H Y T H M ’s inclusion links are a 

subset of G H M I’s s tru c tu re  links.



174

T he A m sterdam  H yperm edia Model (AHM) [50] is a  general fram ew ork 

focusing on extending hypertex t to  hyperm edia. AHM was developed as a  com bi

nation  of the  D exter m odel and  the  CM IF m ultim edia m odel [14] w ith extensions on 

D exter by in troducing  the  notions of tim e, high-level presen tation  a ttr ib u te s  and  link 

context. AHM extends D ex ter’s presentation specification on atom ic com ponents 

to  include channel and du ra tion  inform ation. C hannels define global a ttr ib u te s  

in docum ents, including m edia-type independent specifications (e.g., background, 

foreground and highlight colors) and m edia-type dependen t specifications (e.g., font 

and size for tex ts; scaling factor for graphs; volume for voices; etc.). An AHM  

com posite  does not contain any direct da ta . Instead, a  com posite references its  d a ta  

v ia  an a tom ic  com ponent. A com posite’s content contains a  collection of a tom ic  or 

o th er com posites. The presen tation  specification of com posites contains a  collection 

of synchronization arcs which are  struc tu res defining relative ordering inform ation . 

AHM in troduces the notion of link context which is a  com ponent contain ing  a  

group o f com posites or atom ics affected by a  linking opera tion  a t run-tim e. Link 

contex t allows a  “follow link” operation  to  affect only p a rt of a  docum ent s tru c tu re . 

N evertheless AHM extends D exter from a  m ultim edia po in t of view which is no t the  

curren t focus of GHM I, bo th  m odels share comm on po in ts on ex ternal com ponents.

G arzo tto  e t al. [35] m ade extensions on D exter’s storage layer by in troducing  

the  concept of collections  and on D ex ter’s run-tim e layer using related  notions of 

collection-navigation and collection-synchronization. A collection is a  com posite  

consisting of m em ber nodes (or com ponents). The in te rnal s tru c tu re  of a  collection 

includes two aspects: a  set of m em bers and a s tru c tu re  of topologically  a rranged  

m em bers. These structu res are  sim ilar to  G H M I’s Set and G raph com posites. 

O pera tions on a  collection include definition of the  m em ber set, definition of its 

in ternal s tru c tu re  and definition of the  association node which represents the  

collection. Indices and guided-tours are two basic collection-based navigation
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s tru c tu res . GHM I shares the  notion of guided-tours, especially the  nested guided- 

to u rs  [34] and defines a  richer set of gu ided-tour categories. A nother difference is 

th a t  G arzo tto  e t al. m odels navigation as an extension to  the  D exter run-tim e layer 

w ith th e  consideration of active m edia while GHM I m odels guided-tours and  o th er 

navigation struc tu res using the  storage layer constructs.

7.2.3 GHMI and W W W

A lthough both  provide hypertex t features, the  W orld-W ide-W eb (W W W ) and  

GH M I are quite  different in th e ir  design purpose and  system  arch itec tu re . T he 

W W W  provides a  world-wide access and browsing environm ent in a  hypertex t 

m anner. GHM I aim s a t providing in tegrating  COISs w ith  hypertex t and  providing 

COISs w ith  hypertex t functionalities dynamically. We view th e ir differences from 

th e  following aspects. (1) D a ta  Model: Unlike GHM I, th e  W W W ’s hypertex t 

d a ta  m odel is simple. It consists of plain nodes and  b inary  links. It has ne ither 

s tru c tu re s  nor com posites. T he W W W  does not su p p o rt bidirectional links as it 

em ploys HTM L which em beds links only in d epartu re  docum ents. Links are also 

unlabeled  and  untyped (neither sem antically nor behaviorally). This could cause 

navigation  d isorientation by overw helm ing users w ith a  vast of structu re-less infor

m ation . G H M I’s model im proves th is s itua tion  by including com posite s tru c tu res , 

n -ary  links, bidirectional links, and  behavioral link typing. (2) N avigation: GHM I 

shares W W W  w ith the  functionalities on link traversal (i.e., browsing), query ing  

(COIS suppo rted ), history, backtracking and bookm arks. W hen navigating  around  

th e  W W W , however, users can be easily disoriented and  lost due to  its  insuf

ficient navigation  struc tu res and tools. A nother tradeoff of m ost W W W  viewers 

is th e ir  single-window environm ent which worsens d isorien tation ; GHM I provides a 

richer se t of navigation facilities, including guided-tours, overviews and task-based  

backtracking, which are not available in the  W W W . (3) D ocum ent M arkup: W W W
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forces its  au tho rs  to  use a  m arkup language HTM L to reproduce their docum ents in 

order to  be accessible through W W W  viewers. This reduces th e  W W W ’s openness 

and flexibility severely. All links and  anchors are s ta tic  and  have to  be encoded 

in an H TM L form at in application  docum ents’ content. T here  is no easy way 

to  link existing docum ents dynam ically  or even add a link a t  run -tim e m anually. 

All docum ents have to  be rew ritten  to  em bed s ta tic  links and  anchors which are 

read-only a t  run-tim e. To im plem ent these linking features, users have to  w rite 

specific program s using some scrip t language (e.g., CGI scrip ts), which is complex 

and overw helm ing to  average au tho rs. GHM I in tegrates COIS app lications through 

dynam ic m apping  and supports dynam ic links in a  much easier way. I t separates 

links from the  original docum ents and  therefore does no t im pose any m arkup  011 

original applications. This enables dynam ic links and  anchors to  be generated  a t 

run-tim e. (4) D istribu tion: T he m ajo r d istinctive feature of the  W W W  lies in 

its w orld-w ide d istribu tion  and  ab ility  of in teropera ting  am ong a  large range of 

heterogeneous hardw are and software environm ents. This is no t available in current 

GHM I. I t  would be an in teresting  fu tu re  research to  enhance GH M I by m aking the  

W W W  an IOS, com bining the W W W ’s d istribu tion  w ith GH M I functionalities.

7.3 GHMI Contributions and Limitations

In th is  thesis, we presented a  general hypertex t model GH M I, which is a  D exter- 

based h ypertex t m odel supporting  in teg ration  of hypertex t and  com puta tion-orien ted  

inform ation system s (COISs). T his section sum m arizes G H M I’s m ajo r contribu tions 

as well as its  lim itations.

7.3.1 GHMI Contributions

GHM I aim s a t  enhancing COISs by adding  hypertex t functionalities through 

dynam ic linking facilities. In teg ra ting  w ith GHM I only im poses m inim al changes
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on COISs. We view G H M I’s m ajor con tribu tions from the following four po in ts of 

views: (1) GH M I vs. B ieber et a l.’s work [12, 9]: Taking its m otivation from B iebcr 

et a l.’s original concept of bridge laws, GHM I extends and form alizes bridge laws 

w ith in  a  com prehensive hypertext d a ta  m odel. GHM I m odels com posites which 

are not found in B ieber e t a l.’s work. Furtherm ore, GHM I form alizes the  dynam ic 

m apping concepts in to  a  hypertex t d a ta  m odel (through its M RD C processing). 

Also, GHM I extended and im plem ented the  general system  a rch itec tu re  in F igure 

3.1, originally proposed by Dr. B ieber b u t not yet im plem ented, as a  running  

prototype; (2) G H M I as a  hypertex t d a ta  model: As a  general hypertex t d a ta  model 

for supporting  hypertex t and COIS in tegration , GHM I uniquely provides a  com pre

hensive set of hypertex t functionalities regarding hypertex t ob jects (com posites, 

behavioral link typ ing , and dynam ic anchors), dom ain m apping m echanism s (bridge 

laws) and a  varie ty  of navigation features (guided-tours, task-based backtracking, 

history, bookm arks, overviews); (3) GHM I as a  D exter-based model: G H M I uniquely 

combines specific extensions and specifications on D exter to  m eet the  requirem ents 

of our dynam ic dom ain m apping environm ent. This dem onstrates bo th  GHMT’s 

and D ex ter’s robustness and  generality. Extensions are in troduced  on D ex te r’s 

com posites, link specifiers and anchors. To m ap all GHM I capabilities in term s of 

D exter, GHM I specifies D exter’s com ponents, links, anchors, the  resolver function 

and the  accessor function; (4) The GHM I P ro to type: T he GHM I p ro to type  is the 

first hypertex t system  which im plem ents th e  general arch itec tu re  of supporting  

dynam ic in tegration  of hypertex t and m ultip le COISs. It proved the  feasibility of 

the  arch itectu re  and  th e  GHM I model.

7.3.2 Potential Limitations

T he GHM I approach has lim itations in th ree aspects: (1) O bject Identities: GHM I 

relies on resolvable [47] COIS object identifiers to  m ap explicit COIS objects to
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hypertex t objects. T his approach benefits from the  fact th a t  object iden tities are 

widely adop ted  in system s w ith th e  increasingly-popular object-oriented designs. (2) 

Softw are Engineering: T he COIS builders have to  w rite  bridge laws and the  COTS 

handlers. They need to  learn the  bridge law tem p la te  syntax. The com plexity of 

bridge laws and COIS handlers depends on th e  com plexity of COISs. In com plicated  

COISs, w riting  bridge laws and  COIS handlers could be difficult and tedious. The 

burden of w riting  COIS handers could be greatly reduced by providing (by the  GIIMT 

developers) a set of built-in  APIs for those m odules com m on to  all COIS handlers. 

A ctually  th is  is possible for all the  COIS handler m odules except the  COIS buffering 

m odule and  the COIS invoker (see §6.1.4). (3) Speed: T he speed of dynam ic m apping  

could be slow. Bridge law m apping involves H T E-C O IS com m unication and COIS 

program  execution, which could be tim e-consum ing. Speed depends on how much 

inference the  bridge laws do and  how much COIS execution is needed to  generate  

ou tpu ts . In certain environm ents (such as real-tim e applications) when speed is the  

highest concern, G H M I’s approach m ight not be satisfactory, although softw are and  

hardw are optim ization  could help some.

7.4 Future Research

GHM I is a  robust m odel for supporting  C O IS-hypertext in tegration . E xtensions 

in several directions can be m ade to  enhance the  curren t version of G H M I an d  its 

p ro to type  resulting  from th is  dissertation. This section outlines the fu tu re  work we 

plan to  pursue after th is  d isserta tion .

Implem entation Issues. (1) U nim plem ented Features: We plan to  continue

im plem enting those features defined in the GHM I m odel bu t not included in the  

G H M I prototype. T his includes: system configuration, bridge law configuration, 

anno ta tions, navigation based guided-tours, user-defined guided-tours, task-based
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backtracking, bridge law parser, etc. (2) D ynam ically u p da ting  objects: T he current 

GHM I p ro to type  does not consider how to dynam ically u p d a te  objects which are 

curren tly  displayed on screen. In the  curren t GHM I pro to type, ne ither th e  Linkbase 

nor the  Session DB stores these ob jec ts’ interface-related d a ta  (e.g., a t which window 

and w hat position  the  objects are displayed). T he current G H M I assum es th a t  d a ta  

processing is triggered by user events in the  IOSs. However, in some inform ation 

system s, in ternal triggers will cause events to  occur (e.g., an office au tom ation  system  

m ight include a  week trigger for display all m eetings for the  week every M onday 

a t 8am ). In o ther system s, some item s on the  screen need to  be u p d a ted  a u to m a t

ically (e.g., a  financial system  interface w ith stock prices fluctuating  over tim e). 

GHM I needs to  provide a  m echanism  to  facilita te  these s itua tions. (3) D estructive 

operations: C urren t GHM I p ro to type  m aps operation  results as dynam ic tables. It 

does not consider th e  situation  of a  destructive operation which generates no explicit 

results b u t m ight delete COIS objects w ithou t notifying th e  H T E. This could make 

th e  d a ta  in the Linkbase out of d a te  (e.g., links to  a  deleted COIS object). U pdating  

d a ta  as a  resu lt of outside changes is still an open issue in th e  a rea  of open hypertex t 

system s [23, 24, 27, 81, 63, 5, 78]. GHM I assum es the  COIS hand ler is responsible for 

notifying th e  H T E  abou t such operations. If  any dangling com ponent occurs (e.g., 

link traversal, backtracking or accessing anno ta tions to  a  deleted  COIS ob jec t), the 

H T E  gives the user a  w arning m essage and  deletes the  corresponding link resolving 

to  th e  dangling  com ponent. T he po ten tia l dangling objects due to  such destructive 

operations can not be found until the  user follows a  link po in ting  to  them . T he COIS 

could notify  the  H T E  on such an action. This p ro to type  does not require COISs to  

report destructive operations. An effective solution is not available in cu rren t GHM I 

and is open for fu tu re  exploration.
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Distribution and W W W .  In recent years, delivering electronic info rm ation  via 

com puter networks has been gaining significant grow th. There are num erous 

hypertex t system s opera ting  in a  d istribu ted  environm ent [3, 75, 100, 52, 15]. The 

m ost well-known and widely used d istribu ted  hypertex t system  is W W W , which 

provides a  robust navigation environm ent am ong a large range of heterogeneous infor

m ation  resources. A W W W  docum ent w ith hypertex t links is constructed  based on 

a  m arkup  language H TM L which is a sim ple version of SGML. We could com bine 

G H M I’s functionalities w ith W W W ’s d istribu tion  feature  by ex tending  th e  GHM I 

m odel and  m aking it W W W -com patib le. O ur first plan tow ard th is goal is to  develop 

a  W W W  handler which connects GHM I to  W W W  and  m ake it d irectly  accessible 

from the  In ternet. We can build basing on th e  curren t p ro to type  by replacing (or 

adding , if we w ant bo th ) th e  curren t IOS handler w ith a  W W W  handler w ritten  

as a  C G I scrip t and the  cu rren t IOS w ith a  W W W  browser (e.g., N etscape). Such 

replacem ent will no t affect any code in the  H T E  and  the  C O IS /C O IS  handlers 

(except to  add some H T E  configuration inform ation). T he W W W  handler would 

in tercep t messages previously sent to  the  curren t IOS handler. I t  would convert 

ob jec t conten ts to  H TM L docum ents with em bedded links by com bining ob ject 

conten t messages w ith anchor m arkup messages from th e  H T E. T he five cu rren t IOS 

viewers could be re-im plem ented in W W W  browsers (e.g., N etscape) by m eans of 

W W W  scrip ting  languages (e.g., Pearl, JAVA scrip ts). Menu item s, bu ttons, trees 

and  graphs can be easily im plem ented using these languages.

Hypertext Searching and Querying. GHM I allows a  com ponent specification to  be 

e ither a  COIS query or a  hypertex t query. A CO IS query is dynam ically  resolved by 

th e  CO IS and  the  results are m apped to  hypertex t com ponents. T he m echanism s 

su p p o rtin g  hypertex t query processing are left ou t of th e  current GHM I. Issues 

regard ing  searching and  querying on hypertex t s truc tu res  have been addressed



181

by hypertex t researchers [29, 42, 28, 64, 21, 30, 65, 53, 4], In G IIM I’s dynam ic 

m apping environm ent, s truc tu ra l querying (or search) on a  hypertex t netw ork 

becomes com plicated  as the  hypertex t netw ork is not d irectly  available prior to  

dynam ic conten t m apping. The hypertex t engine would have to  execute bridge 

laws to  m ap all com ponents to  build the  hypertex t network (or m apped a  subset of 

com ponents, depending on p articu la r queries) p rior to  resolving a  hypertex t query. 

An a lte rna tive  way which avoids heavy bridge law execution is th a t  the  hypertex t 

engine em ploys some query mapping  m echanism  to  tra n s la te  a  hypertex t query to  a  

COIS query and  relies on the  COIS to  resolve the  query. Such an approach works 

on the  assum ption  th a t  the  COIS has some query processing ab ility  and  the query 

tran sla tion  is less com plicated th an  the  generation of th e  en tire  hypertex t network 

through bridge law execution com bined w ith s truc tu ra l search of th e  hypertex t 

objects (e.g., anno ta tions, association links).

Versioning. V ersioning is an im p o rtan t feature of hypertex t system s and has 

been included in some system s [69, 43, 81, 63]. Versioning enables users to  access 

and  m an ipu la te  a  history  of inform ation changes to  th e ir hypertex t network. T he 

curren t GH M I does not support versioning. We can ex tend  G H M I’s com ponent 

p roperties to  include versioning inform ation. Each com ponent could have its own 

version history, p robab ly  modeled as a  linear L is t  or a  m ore com plicated  vers io n  

T ree .  V ersioning w ith com posites could be m odeled a t  two levels: versioning on 

a  com posite itse lf as a  whole, and versioning on its individual subcom ponents and  

links. In G H M I’s CO IS in tegrating  environm ent, ano ther unsolved issue is: should  

versioning be supported  by the H T E  or the  COISs? In e ither way, G H M I needs to  

identify versioning properties and include them  in the bridge law tem plate .

Collaboration. Supporting  cooperative work on a  shared hypertex t network am ong 

m ultiple users is ano th e r im portan t feature of to d ay ’s hypertex t system s [81, 63, 38,
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86]. C urren tly  GHM I does not include collaboration supporting . We need to  ex tend  

GH M I to  include notions of m anaging asynchronous access on a single com ponent 

or an en tire  hypertex t network. T he collaboration supporting  m echanism s typically  

include ow nership identity, locking, transaction  m anagem ent, concurrency control 

and  event notification.

Multimedia. There are existing hypertext m odels and  system s su p p o rtin g  

m ultim ed ia  [50, 35, 14]. Exam ples of m ultim edia com ponents include a  CAD 

p ictu re , a  ras te r  image, a  sho rt video clip, a  short audio  tape , a sho rt an im ated  

sequence, etc. C urren tly  GHM I only considers tex t com ponents. The com ponent 

fram ew ork in GHM I can be extended to  support m ultim edia. G H M I’s s tru c tu red  

com posites allow a  separation  of com ponent contents from th e ir  hypertex t represen

ta tio n s . For exam ple, a  d a ta  file storing  a  raster im age can be represented as an 

atom ic  which contains th e  reference to  it. The collections of run-tim e m ultim edia  

p resen tations can also be m odeled as s truc tu red  com posites in GHM I. For exam ple, 

when th e  user w ants to  watch a  movie while reading a  tex t caption and listening 

to  an audio  tape , the collected presentation of these th ree  types of m edia can be 

m odeled as a  s truc tu red  com posite. We need to  extend the com ponent p roperties 

to  su p p o rt tim e synchronization and m edia-related a ttr ib u te  specifications. We also 

need to  su p p o rt anchors in m ultim edia  com ponents.

7.5 Summary

In th is  chap ter, we discuss guidelines for using GHM I, com pare GHM I w ith  o ther 

system s and m odels, identify bo th  G H M I’s m ajor contribu tions and lim ita tions, and 

briefly ou tline  fu tu re  research th a t  can em anate  from GHM I.

To in teg rate  a  COIS w ith  a  GHM I hypertext system , the  COIS builders (or 

developers) need to  follow these guidelines. (1) S tudy  the  GHM I Model: T he first



183

step  tow ard building an in tegration  system  is to  s tudy  the  G IIM I hypertex t concepts, 

including com ponents, links, anchors, navigation features and especially th e  bridge 

law tem pla te . (2) Identify Po ten tial GHM I C onstructs: This step  is to  identify  

CO IS objects, relationships, m eta-inform ation and  operations (or com m ands), which 

could be m apped to  GH M I constructs (i.e., com ponent classes and typed  links). (3) 

Softw are Engineering: T h is step  is to  w rite the m apping rules (i.e., bridge laws) and 

the  COIS handler code.

GHM I and its p ro to type  share ideas and comm on constructs w ith o ther system s 

developed by hypertex t researchers, especially in the  field of providing h ypertex t 

functionality  to  th ird -p a rty  applications and D exter-based modeling. We com pared 

GHM I (and  the  current GHM I pro totype) w ith open hypertex t system s (including 

S u n ’s Link Service [75], M icrocosm [23, 24, 27], SP3 [58, 63, 81], C him era [5] and  

M ulticard  [78]), the  D exter-based models and th e  W W W .

We identified G H M I’s m ajo r contributions and  lim itations. G H M I’s con tri

bu tions include four aspects: GHM I vs. B ieber et a l.’s work, GHM I as a  general 

hypertex t m odel, GHM I as a  D exter-based m odel and the  GHM I pro to type. G H M I’s 

lim ita tions include th ree  aspects: relying on object identities, heavy softw are

engineering for bridge laws and  COIS handlers and  slow speed for dynam ic m apping.

G HM I is a  robust m odel for supporting  C O IS /h y p ertex t in tegration . E xtensions 

in several d irections can be m ade to  enhance th e  curren t version of GHM I and  its 

p ro to type  resulting  from th is  dissertation. These issues include im proving im plem en

ta tio n , connecting GH M I to  W W W , hypertext searching and  querying, versioning, 

co llaboration  and m ultim edia.

Conclusion Remarks

In th is  thesis, we presented a  general hypertex t model GHM I, which is a  D exter- 

based hypertex t model supporting  integration of hypertex t and  com putation-orien ted
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inform ation system s (COISs). GHM I enhances COISs by add ing  hypertex t function

alities th rough dynam ic m apping mechanisms. In teg rating  w ith GHM I only im poses 

m inim al changes on COISs. GHM I extends and specifies the  original D exter model 

w ith add itional concepts which are fundam ental to  our goal of dynam ically  add ing  

hypertex t functionalities to  COISs. We also proved th e  feasibility and u tility  o f the  

GH M I concepts by im plem enting it as a prototype. In our fu ture research we shall 

enhance GHM I by following several directions.



A PPEN D IX  A

SECOND MODELING DOMAIN: TEXPROS

T his chap ter dem onstrates how to  apply GHM I to model a  CO IS through an exam ple 

system  called TE X PR O S [99], which is an intelligent docum ent m anagem ent system  

developed by researchers in our in stitu te .

A .l TEXPROS’s Data M odel

T E X P R O S  is a  personal docum ent processing system com bining filing and retrieval 

system s. I t supports  storing, ex tracting , classifying, categorizing, retrieving and 

brow sing inform ation from a  variety  of docum ents. D ocum ents are  grouped in to  

classes.  Each class is associated w ith a  sem antic docum ent type  to  describe the 

com m on properties for the  class of docum ents. A d a ta  s tru c tu re  called a f r a m e  

tem p la te  represents the  docum ent class type. A f r a m e  tem pla te  can be in stan tia ted  

by filling its  a ttr ib u te s  w ith values ex tracted  from the  original docum ent. T he in stan 

tia te d  object is a  f r a m e  in s ta n ce , representing a synopsis of a  single docum ent, 

ra th e r  th an  its  original contents. W indow  2 in Figure A .2 shows an in stan tia ted  

fram e instance for the  frame tem p la te  of type “A ssistantship .” T he tem p la te ’s left- 

hand colum n contains its a ttr ib u te s  and the  right-hand colum n contains the  fram e 

in stance’s values.

A fo ld e r , identified by its  title , is a  logical repository of docum ents com prising 

a  set of fram e instances. Folders represent the  user’s logical file s tructu res. They 

are  connected v ia  the  “D epends O n” relationships. A folder depending  on ano ther 

folder is called a sub fo lder  or child  folder while the depended-on folder is called a 

p a re n t  folder. Subfolders are categorized v ia some user-declared criteria . A folder 

could depend on m ultiple paren t folders. Figure A .l shows a  simplified logic file

185
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CIS
Dept.

Ph.D.
Student

M.S.
Student

Faculty

Alex
Brown John

W ilson

Carol
Thomas

Mike
Smith

Mary
Poth

Paul
Johnson

Figure A .l A D epartm ent C hairperson’s Logical File S tru c tu re

s tru c tu re —the  hypothetical folder organization of a  departm en t chairperson. Arrows 

signal the  rela tionship  “Depends O n.” A set of operations can be applied  on folders 

to  m anipu la te  the  file struc tu re . O perations include insert,, move, m erge , prune ,  

query  and delete. Form al definitions and sem antic  descriptions of opera tions can be 

found in [98].

A .2 Mapping TEXPROS to GHMI

In th is subsection, we identify po ten tia l bridge laws which m ap T E X P R O S  to  GHM I 

com ponents and  links.

• Object BLs

T E X PR O S objects include fram e tem plates, fram e instances, original docum ents 

and folders. W e can w rite BLs to  m ap fram e tem plates to  s tru c tu re d  atom ics, 

fram e instances to  s truc tu red  atom ics, original docum ents to  p lain  atom ics 

and folders to  Sets (containing folders and fram e instances).
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F ig u r e  A .2 An Exam ple H yperdocum ent for TE X PR O S

•  S t r u c t u r e  B L s

S truc tu ra l relationships help d irectly  access a  com ponent’s em bedding com posite  

We can m ap T E X P R O S ’s “D epends O n” as a  s tru c tu re  link from a  child folder 

to  a  paren t folder. O ther s truc tu ra l relationships include fram e instances to  

folders. Accessing a  folder from its residing fram e instances is ano ther exam ple 

of s tru c tu ra l relationship.

•  O p e r a t io n  B L s  All T E X PR O S operations can be m apped as GHM I opera tion  

links, including i n s e r t , m o v e , merge, prune, query  and  delete. Specific queries 

on folders, such as “F ind  all Ph.D . studen ts who have financial su p p o rt” could 

be m apped to  opera tional links departing  from  folder “Ph.D . S tu d en t” and 

ending w ith a  list of com puted folder titles.

•  R e fe re n c e  B L s  Im plic it relationships am ong T E X PR O S objects can be 

m odeled by explicit GHM I reference links, which provide a  d irect access to



188

these relationships. Consider the  following examples:

(1) Given a  fram e instance, find all folders whose title s  ap p ear in th is fram e 

instance as a  value.

(2) Given a  fram e instance, find all o ther fram e instances of the  sam e fram e 

tem plate .

(3) Given a  fram e instance, find its  fram e tem plate .

(4) Given a  fram e instance, find its  original docum ent.

(5) Given a fram e tem pla te , find all of its fram e instances.

Suppose, as shown in F igure A .2, th a t  a  fram e instance in the  “Ph .D . S tu d en t” 

folder contains a  reference to  “Alex Brown.” “Alex Brow n” is also a  folder, 

b u t is not connected to  the  “Ph.D . S tuden t” folder by a  “Depends O n” 

relationship . T E X P R O S ’s original model included no way of cap tu ring  or 

representing such an “im plic it” relationship am ong folders. Once m apped to  

reference links, GHM I allows direct access to  folder “Alex Brow n” from folder 

“Ph.D . S tuden t.”

•  Meta-information BLs M eta-inform ation for T E X PR O S objects includes 

file s tru c tu re  size (num ber of folders), num ber of fram e instances in a  folder, 

num ber of subfolders in a  folder, ob ject tim estam ps, etc.

A.3 Bridge Law Examples

T his section presents some bridge law exam ples to  illu s tra te  the  dom ain m apping  

from T E X PR O S to  GHM I hypertex t.

1. B L j 0ider: Mapping F o lders  to S e t  components , as shown in Table A .l.
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Table A .l Bridge Law BLFolder

C om pClass ‘S e t1
O w ningSystem T ype ‘T E X P R O S '
C om pN am e ‘Folder'
P resen ta tionS pec ‘Tree1
C O ISO bj [F, ‘F o ld e r1, F]
C om pSet { [ N 1, ‘F o ld e r1, ATI], [A2, ‘ F r a m e  I n s ta n c e 1 ,T]}*
LinkSet ‘N O N E'
C ontentSpec ‘N O N E'
M appingR ule object.(F, ‘F o ld e r1), 

o b je c t (N l ,  ‘F o ld e r1), 
object(N 2, ‘F r a m e ln s ta n c e ‘), 
r e la t io n (N l ,  F, ‘D e p e n d sO n ') , 
propert.y(N2, ‘T y p e ‘,T ) ,  
re la t ion (N 2 , F, ‘R e s id e s ln ‘).

T he following in stan tia tion  of B L f 0ider m aps folder ‘Ph .D . S tu d en t' to  a  Set. in 

F igure A .2 w ith a  content including all of its th ree  subfolders:

A P P L Y J 3 L j C O M P ( B L Foider, F  =  ‘P h .D .  S tuden t.1)

T he resu lting  com ponent will have CO ISO bj as

[ C I S  D e p t .1, ‘C I S  D ep t .1, ‘F o ld e r1}

2. B L Fi: Mapping  Fram e Instances to S truc tu red  Atom ic components, as shown 

in Table A .2.

T his bridge law is executed to  m ap fram e instances when th e  user selects a  

fram e instance icon to  explore its contents. For exam ple, when the  user selects 

the  icon labeled as “A ssistan tsh ip” in W indow  1 of F igure  A .2, the  hypertex t 

engine executes B L Fi to  m ap the  individual fram e instances one by one. P rio r 

to  th is  m apping, every such fram e instance has been deno ted  as a  CO ISO bj in
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Table A .2 Bridge Law BLF i

Com pClass ‘S tructu redA tom ic1
O w ningSystem Type ‘T E X P R O S 1
C om pN am e ‘F ram elnstance1
CO ISO bj [ F ,1F r a m e ln s ta n c e ', T]
Com pSet ‘N O N E 1
LinkSet ‘N O N E 1
ContentSpec C
M appingRule object(F, 'F r a m e ln s ta n c e ' ) , 

p ro p er ty (F , 1C o n te n t ', C ), 
property (F , ‘T y p e ‘,T ) .

th e  CompSet. of folder “Ph.D . S tuden t” previously m apped  by B L Foider (see 

Table A .l) . Therefore, the  in stan tia tio n  of B L Fi will be expressed as:

A P P L Y - B L j C O M P { B L Fi,

C O I S O b j  =  [F, ‘ F r a m e  In s ta n c e 1, ' A s s is ta n ts  h ip ‘]) 

w here COISID F  is ex tracted  from C o m p S e t  of folder “Ph .D . S tu d en t.”

3. B L nepends0n: Mapping relationship “D ependsO n” to a S t r u c tu r e  link, as 

shown in Table A .3.

T his BL allows a child folder to  access its  paren t folder following th e  direction 

of “D epends O n.” The “FR O M ” and  “T O ” endpoints of th is  link are  specified 

using two variable names F I  and  F 2, which represent COIS objects defined in 

th e  M app ingR u le .  The M app in g R u le  of th is  BL consists of th ree  predicates. 

o b j e c t ( F l , ‘Folder ')  and o b je c t (F 2 ,‘Folder')  indicate F I  and F 2 are two 

existing folders in T E X PR O S database. r e la t io n (F l ,  F 2 , ‘D ependsO n ')  

ind icates folder F I  “depends on” folder F 2. W hen the  conten t of F I  is 

m apped to  a  com ponent and  is on display, the  hypertex t engine executes 

th is  BL to  m ap all “D ependsO n” links departing  from F I .  T he following 

in stan tia tio n  of BLnependsOn m aps a  link “Depends O n” m arked by icon “CIS
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Table A.3 Bridge Law BL D ependsO n

Com pClass ‘L ink1
O w ningSystem Type ‘T E X P R O S '
Com pN am e ‘D ependsO n1
LinkType ‘S truc tu reL ink1
Specifieri

Com pSpec [F I , 'F o ld er1, F I ]
AnchorSpec ‘N O N E 1
D irection ‘F R O M 1

S pecifier
Com pSpec [F2, ‘F o ld e r1, F2]
AnchorSpec ‘N O N E 1
D irection ‘T O 1

M appingR ule o b jec t(F \ ,  ‘F o ld e r ‘), 
object(F2, ‘Folder  ), 
r e la t io n ( F \ , F2, ‘D e p e n d sO n 1).

Dept,.” in W indow  1 of Figure A .2:

A P P L Y  JB L J L IN K (B L DependsOn, F I  = 1 Ph.D .Student1)

4. B L Ref ToD0i(ier-' Given a frame instance, f ind  all folders whose titles appear in 

this fram e instance as a value, as shown in Table A.4.

The “FR O M ” endpo in t’s CompSpec is specified by F I  and  the  “T O ” 

endpo in t’s CompSpec is specified by F 2 . T he “FR O M ” endpoin t has anchors 

of type “D ynam ic” ex tracted  from the  content of F I .

Bridge law B L RejroFoider is au tom atically  executed to  generate  all “RefTo- 

Folder” links departing  from a  fram e instance when its is m apped to  an atom ic 

com ponent. All corresponding anchors are highlighted in some m anner to  single 

the existence of these reference links. In F igure A.2, when th e  user reaches 

W indow 2, all folder titles  occurring in the  content of the fram e instances of 

type “A ssistan tsh ip” are  highlighted as anchors m arking links “R efToFolder.”
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Table A .4 Bridge Law BL R e  f T  oFolder

C om pClass ‘L ink1
O w ningSystem Type ‘T E X P R O S 1
C om pN am e ‘RefToFolder1
LinkType ‘R eferenceLink1
Specifieri

Com pSpec
AnchorSpec
D irection

[F I, ‘F r a m e ln s ta n c e ‘, _] 
[A, ‘D y n a m ic ‘, V ] 
‘FR O M 1

Specifier2
Com pSpec
AnchorSpec
D irection

[F 2 ,1 F o ld e r1, _]
‘N O N E1
‘T O 1

M appingR ule object(F  1 ,1F r a m e ln s ta n c e ‘), 
object(F2, ‘F o ld e r ‘), 
object(A, ‘V a lu e '), 
re la tion(A , F I ,  ‘In C o n te n t ' ) ,  
object(F2,  ‘F o ld e r ‘), 
pro p e r ty (F 2 , ‘ F o ld e rT i t le ‘, V).

Let F i l D  represent the  fram e instance in W indow  2 of F igure A .2. T he 

following in stan tia tio n  of BLj^jroFoider generates all links m arked by anchors 

representing folder titles  in W indow 2 (e.g., “Alex Brow n” ):

A P P L Y  J 3 L J j I N K ( B L RefToFolder, F I  = F i lD )



A PPEN D IX  B

SAMPLE SOURCE CODE FOR DATABASE HANDLER

B .l Prolog BL-Engine Code
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\ s m a l l
/ *  T h is  i s  th e  P r o lo g  BL_Engine program  * /  

/ *  ( o r i g i n a l  t t . p l )
/ *  L a st m o d if ie d :  4 /1 8 /9 6  * /  
/***** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /  
/ *  Loop u n t i l  f l a g  i s  s e t  * /
/*  BLEngine S t a r t s  h e r e  * /
/*  I t  c a l l s  B L .p l * /
/ *  I f  n o t  ru n , ch eck  f l a g t e x t . p l  * /
: - i n i t i a l i z a t i o n ( s t a r t u p ) .

s t a r t u p : -
l o a d _ f i l e s ( [ f a c t s ]  ) ,  
r e p e a t ,
s e e ( ’d i r t y . p i ’ ) , / *  d i r t y  f l a g  from  VB * /

r e a d (X ) ,
s e e n ,
c h e c k l( X ) ,

s e e ( ’ f l a g t e x t . p l ’ ) ,  / *  f l a g  from  VB * /
r e a d (X ) ,
s e e n ,
c h e c k (X ) ,
f a i l .

/ *  I f  d a ta  i s  rea d y  from  VB, e x e c tu e  BL * /  
c h e c k l( X ) : -  X = ‘Y‘ , 
s e e ( ’d i r t y . p i ’ ) , 
f i n d ( ‘Nf )
->  se e n ;  
t a s k l .

/ *  I f  d a ta  i s  rea d y  from  VB, e x e c tu e  BL * /  

c h e c k (X ): -  X = ‘ Y ‘ , 
s e e ( ’ f l a g t e x t . p i ’ ) ,  
f i n d ( ‘N‘ )
->  se e n ;  
t a s k .

/ *  Old d a ta , w a it  f o r  new * /  
f a i l e d : -  p r in t ( '0 1 d  d a t a ‘ ) , n l ,  
s e e n .

/ *  Load and s e t  f l a g  * /  

t a s k l : -  s e e n ,
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l o a d _ f i l e s ( [ f a c t s ] ) ,  
t e l l ( ’ d i r t y . p i ’ ) ,  
w r i t e ( 'N .  ' ) ,  
t o l d .

/ *  S e t  f l a g  * /
t a s k : -  p r i n t ( ‘ I g o t  i t ' ) ,  n l ,  
s e e n ,
e x e c u t e _ b l , 
t e l l ( ’ f l a g t e x t . p l ' ) ,  
w r i t e ( ‘N. ' ) ,  
t o l d .

/*  E x ecu te  b l  in  b l . p l  a u to m a t ic a l ly  upon lo a d in g  * /
e x e c u t e _ b l : -
l o a d _ f i l e s ( [ f a c t s ] ) ,
l o a d _ f i l e s ( ’b l . p i ’ ) .

/ * * /
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B.2 Visual Basic BL-Engine Code
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\ s m a l l
’ / *  T h is  i s  th e  VB_BL_Engine s u b r o u t in e s  in  VB’ s DBHand.bas * /
’ / *  I t  c o o p e r a te s  w ith  th e  P rolog_B L _E ngine t o  * /
' / *  g e n e r a te  and e x e c u te  b r id g e  la w s . * /
’ / *  L a st m o d if ie d :  4 /1 8 /9 6  * /

O p tion  E x p l i c i t
’ / *  C onst f o r  t a b le  f i e l d  ty p e s  * /
C onst FIELD_B00LEAN = 1 
C onst FIELD.BYTE = 2 
C onst FIELD.INTEGER = 3 
C onst FIELD.CURRENCY = 5 
C onst FIELD.TEXT = 10 
C onst FIELD.MEMO = 1 2

G lo b a l gHandDB As D atabase

Sub BLEngine.BLComp (M sg$, AppDB As D atab ase)
’ /*  C rea te  a  Comp BL in  f i l e  b l . p l ;  * /
’ / *  C le a r  and s e t  ‘Y. 1 in  f l a g t e x t . p l  ; * /
’ / *  W ait and c o l l e c t  r e s u l t  in  C om p S et.p l, L in k S e t .p l  and C o n te n t .p l  * /  
’ / *  from  P r o lo g  when 'N . ' i s  s e t  in  f l a g t e x t . p l ;  * /

Dim P r e d ic a t e s ,  CompSet$ , l i n k s e t $ ,  C o n te n ts , C o n te n t1$
Dim BLCOISIDS, BLCOISTypeS, BLCOISLabelS
Dim COISQbjS, BLCOISQbjS, COISIDS, COISTypeS, CO ISLabelS, AppNameS, 

TmpTypeS
Dim BLNameS, F ileN am eS, M appingRuleS 
Dim L i s t l S ,  L is t 2 $ ,  L is t3 $
Dim DBNameS, TableNameS, RecordK eyS, FielNam eS  
Dim n l ,  SpacesS
Dim p i'/,, FNuml'/,, Fnum2'/,, ObjCount/,

n l  = C hr(13 )
S p acesS  = " "

’ / *  Get in p u t from  Msg * /

BLNameS = M sg.G etT agV alue(M sgS, "blName")
BLCOISIDS = M sg.G etTagV alue(M sgS, " b lc o is id " )
BLCOISTypeS = M sg.G etTagV alue(M sgS, " b lc o is ty p e " )
BLCOISLabelS = M sg.G etTagV alue(M sgS, " b lc o is la b e l" )
I f  BLCOISLabelS = "" Then 

BLCOISLabelS =
End I f
COISIDS = M sg.G etT agV alue(M sgS, " c o is id " )
V *  Trim sp a c e s  around " \\"  * /  
pi*/, = I n S t r ( 1 ,  COISIDS, " \ \  ")
W hile p i  <> 0
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COISID$ = M id(COISID$, 1 , p i  + 1) & Mid(COISID$, p i  + 3) 
pi*/. = I n S t r ( l ,  COISID$, " \ \  ")

Wend
COISTypeS = M sg_G etTagV alue(H sg$, " c o is ty p e " )
COISLabelS = M sg_G etTagValue(M sg$, " c o is la b e l" )
I f  COISLabelS = "" Then 

COISLabelS =
End I f
CompSetS = M sg_G etTagValue(M sg$, "compSet") 
l in k s e t S  = M sg_G etTagV alue(H sg$, "L inkSet")
C o n ten ts  = M sg_GetTagValue(M sg$, "C ontentSpec")
M appingRuleS = M sg_GetTagValue(M sg$, "MappingRule")

’ /*  COISObj = " ['C O ISID ', ‘ CO ISType', ‘C O IS L ab el']"
’ /*  C o n str u c t COISObj * /
’ s : -  a p p ly _ b l ( ‘B L _ T a b le l‘ , [ [ ‘ S m all S c h o o l‘ , ' A ppartm ent‘ ] , ‘T a b le ' ,_ ]  , 

[Com pSet, [ ] , [ ] ] ) .
’ C a ll  DB_SeparateCOISID(COISIDS, DBNameS, TableNameS, R ecordK eyS, 

F ieldN am eS, TmpTypeS)
C a ll  BLEngine_BuildCOISObj(COISObjS, COISIDS, COISTypeS, CO ISLabelS, 

T rue)
C a ll  BLEngine_BuildCOISObj(BLCOISObjS, BLCOISIDS, BLCOISTypeS, 

BLCOISLabelS, F a ls e )
’ /*  Open f i l e  * /

FNumiy, = F r e e F i le
FileN am eS = " c :\w a n \g h m i\P r o 3 8 6 w \b le n g in e \b l.p l"
Open F ileN am eS For Output As FNuml

’ /*  C rea te  f i l e  h ea d er  * /

’ / *  Id ea : bridge_law_com p(BLNam e, COISObj, [CompSet, L in k S e t ,  
C o n te n tS p e c ]) * /

’ / *  Make " : - i n i t i a l i z a t i o n ( a p p l y _ b l ( ‘b l_ d a ta b s e ‘ , [ ‘ S m all S c h o o l‘ , 
‘D a ta b a s e ' , ‘ S m all S c h o o l ' ] , [CompSet, [ ] , [ ] ] ) ) .  "

L i s t lS  = " []"
L is t2 $  = " []"
L is t3 $  = " []"
I f  CompSetS <> "NONE" Then 

L i s t l S  = "CompSet"
End I f
I f  l in k s e t S  <> "NONE" Then 

L is t2 $  = "LinkSet"
End I f
I f  C o n ten ts  <> "NONE" Then 

L is t3 $  = "Content"
End I f
P r e d ic a t e s  = " :- i n i t i a l i z a t i o n ( a p p l y _ b l ( "  & BLName & " ,"  & COISObjS &

I t  M 
9
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P r e d ic a t e s  = P r e d ic a te s  & "[" & L i s t lS  & & L is t2 $  & & L is t 3 $  &
" ] ) ) .  "

P r in t  #FNuml, P r e d ic a t e s , n l

’ / *  Hake: ’a p p ly _ b l ( 'b l_ d a t a a s e ' , [ D ,'D a ta b a s e ' , _ ] , [C om p S et.L in k S et, 
C o n te n tS p e c ]) :

> / *  apply_bl(B L N am e, COISObj, [CompSet, L in k S e t , C o n te n t ] ) : -"
P r e d ic a t e s  = "apply_bl(B L N am e," & BLCOISObjS & ", [CompSet, L in k S e t ,  

C o n te n t] ) : - "
P r in t  #FNuml, P r e d ic a t e , n l

' / *  Make: " b a g o f( [ [D IT ], ‘T a b le ' , T ] , com p set( [ [D IT ], ‘T a b le ' , T ] ) , CompSet) ,
II

I f  CompSetS <> "NONE" Then
V *  H andle o n ly  s i n g l e  CompSet o n ly  * /
pi*/. = I n S t r (1 , CompSetS, "*")
I f  pi*/, <> 0 Then

’ / *  E lim in a te  a t  end * /

CompSetS = M id(CompSet$, 1 , Len(CompSetS) -  1)
End I f
P r e d ic a t e s  = " b a g o f(" & CompSetS & ", com pset("  & CompSetS & " ) ,
C om pSet), "
P r in t  #FNuml, S p a c e s , P r e d ic a t e ,  n l  

End I f
I f  l in k s e t S  <> "NONE" Then

V *  H andle o n ly  s in g l e  CompSet o n ly  * /

pi*/, = I n S t r ( l ,  l i n k s e t S ,  "*")
I f  pi*/, <> 0 Then

’ / *  E lim in a te  a t  end * /

l in k s e t S  = M id ( l in k s e t $ , 1 , L e n ( l in k s e tS )  -  1)
End I f
P r e d ic a t e s  = " b a g o f(" & l in k s e t S  & ", l i n k s e t C  & l in k s e t S  & " ) ,
L in k S e t ) , "
P r in t  #FNuml, S p a c e s , P r e d ic a t e ,  n l  

End I f
C o n te n t1$ = C o n ten ts  
I f  C o n te n ts  <> "NONE" Then 

’ / *  H andle o n ly  s in g l e  C on ten t o n ly  * /  

pi*/, = I n S t r ( l ,  C o n te n ts , "*")
I f  pi*/, <> 0 Then

’ / *  E lim in a te  a t  end * /

C o n te n ts  = M id (C on ten t$ , 1 , L en (C on ten tS ) -  1)
End I f
’ / *  For r e c o r d s ,  add BLCOISID t o  C ontent "C" * * * /

C o n te n t1 = BLCOISIDS
C o n te n tlS  = "[" & C o n ten tlS  & ","  & C o n ten ts  & "]"
P r e d ic a t e s  = " b a g o f(" & C o n ten ts  & ", c o n te n tC  & C o n te n tlS  & " ) ,
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C o n t e n t ) , "
P r in t  #FNuml, S p a c e s , P r e d ic a t e ,  n l  

End I f

’ /*  Hake c o n tr o l  p r e d ic a t e s  * /

P r e d ic a te $  = S p acesS  & " f c r e a t e ( ' c o m p s e t .p i ' , 0 ) ,  " & n l  
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " t e l l ( ’ c o m p s e t .p i ’ ) , " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " w r ite (C o m p S e t) ,n l, " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " t o ld ,  " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " f c r e a t e ( ’ l i n k s e t . p i ’ , 0 ) ,  " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " t e l l ( ’ l i n k s e t . p i ’ ) , " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " w r i t e ( L in k S e t ) ,n l ,  " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " to ld ,  " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " f c r e a t e ( ’ c o n t e n t .p i ’ , 0 ) ,"  & n l  
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " t e l l ( ’ c o n t e n t .p i ’ ) , " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " w r i t e ( C o n t e n t ) ,n l ,  " & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & " to ld .  " & n l
P r in t  #FNuml, P r e d ic a t e s

’ / #  Make: c o m p se t(C o m p S e t)M a p p in g R u le  
P r e d ic a t e s  = "com pset("  & CompSetS & " ) : -"  & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & M appingRuleS & " " & n l
P r in t  #FNuml, P r e d ic a t e s

P r e d ic a t e s  = " l in k s e t ( "  & l in k s e t S  & " ): -"  & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & M appingRuleS & " " & n l
P r in t  #FNuml, P r e d ic a t e s

P r e d ic a t e s  = " c o n te n t("  & C o n ten tlS  & " ) : -"  & n l
P r e d ic a t e s  = P r e d ic a t e s  & SpacesS  & M appingRuleS & " " k  n l
P r in t  #FNuml, P r e d ic a t e s  
C lo se  #FNuml

’ /*  Invoke BLEngine * . /

’ / *  R eturn when d a ta  rea d y  * /
C a ll  B L E ngine_SendProlog

’ /*  C o n stru ct CompSet, L in k S e t , C ontent from  P r o lo g  f i l e s  * /

C a ll  B L E ngine.G etP rologD ata(C om pSetS , l i n k s e t S ,  C o n ten ts)

’ /*  Count O b je c ts  * /

pi'/, = I n S t r ( l ,  CompSetS, "<")
Ob j  Count*/, = 0 
W hile pi*/, <> 0 

Ob j  Count'/, = Ob j  Count'/, + 1 
pi'/, = I n S t r ( p i  + 1 , CompSetS, "<")

Wend
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’ /*  U pdate Msg * /
AppNameS = M sg_G etTagValue(M sg$, "AppName")
C a ll  M sg_SetT agV alue(M sg$, "COISID", AppNameS)
’C a ll  M sg_SetT agV alue(M sg$, "COISTYPE", "D atabase")
C a ll  M sg_SetT agV alue(M sg$, "CompSet", CompSet$)
C a ll  M sg_SetT agV alue(M sg$, "L inkSet" , l i n k s e t $ )
C a ll  M sg_SetT agV alue(M sg$, "C ontent" , C o n ten ts )
C a ll  M sg_SetTagV alue(M sgS, " o b jin d ex " , "1")
C a ll  M sg_SetTagV alue(M sgS, " t o t a lo b j s " ,  T rim (Str(O bjC ount'/,)) )

End Sub

Sub BLEngine_BLLink (MsgS, AppDB As D atab ase)
’ / *  C rea te  a L ink BL in  f i l e  b l . p l ;  * /
’ / *  C lea r  and s e t  'Y . ‘ in  f l a g t e x t . p l  ; * /
’ / *  W ait and c o l l e c t  r e s u l t  in  C om p S et.p l, L in k S e t .p l  and C o n te n t .p l  * /
’ / *  from  P r o lo g  when ‘N. ' i s  s e t  in  f l a g t e x t . p l ;  * /
’ / *
’ / *  BLCOISObj: ‘From’ s p e c i f i e r ’ s  CompSpec 
’ / *  BLCOISObj2: ‘T of s p e c i f i e r ’ s CompSpec
’ / *  N ote: H ere, C om pSet.p l c o n ta in s  fT 0‘ B L s p e c i f i e r ’ s  CompSpec * /
’ / *  A nother sub c o n v e r t  CompSet t o  t a b le  Q u ery R esu lts  * /

Dim P r e d ic a t e s ,  CompSetS, l in k s e t S ,  C o n te n ts , C o n ten tlS  
Dim BLCOISIDS, BLCOISTypeS, BLCOISLabelS 
Dim BLC0ISID2S, BLC0ISType2$, BLC0ISLabel2$
Dim COISObjS, BLCOISObjS, BLCOISObj2 $ , COISIDS, COISTypeS, CO ISLabelS, 

AppNameS, TmpTypeS
Dim BLNameS, F ileN am eS , MappingRuleS 
Dim L i s t l S ,  L i s t 2 $ ,  L is t3 $
Dim DBNameS, TableNam eS, RecordKeyS, FielNam eS
Dim n l ,  SpacesS
Dim pi*/,, FNuml*/,, Fnum2*/,, p2'/,

n l  = Chr(13 )
S p acesS  = " "

’ /*  Get in p u t from  Msg * /
BLNameS = M sg_G etTagValue(M sgS, "blName")
BLCOISIDS = M sg_G etTagValue(M sgS, " b lc o is id " )
BLCOISTypeS = M sg_GetTagValue(M sg$, " b lc o is ty p e " )
BLCOISLabelS = M sg_GetTagValue(M sgS, " b lc o is la b e l" )
’ /*  New: F ind  ‘T o‘ s p e c i f i e r ’ s obj * /

BLC0ISID2S = M sg_GetTagValue(M sgS, " b lc o is id 2 " )
BLC0ISType2$ = M sg_GetTagValue(M sgS, " b lc o is ty p e 2 " )
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BLC0ISLabel2$ = M sg_GetTagValue(M sgS, " b lc o is la b e l2 " )

I f  BLCOISLabel$ = "" Then 
BLCOISLabelS =

End I f
I f  BLC0ISLabel2$ = "" Then 

BLC0ISLabel2$ =
End I f

COISIDS = M sg_GetTagValue(M sg$, " c o is id " )
' / *  Trim sp a c e s  around " \\"  * /  

p i ’/, = I n S t r ( i , COISIDS, " \ \  ")
W hile p i  <> 0

COISIDS = Mid(COISID$, 1 , p i  + 1) & Mid(COISID$, p i  + 3) 
p i ’/. = I n S t r ( 1 ,  COISIDS, " \ \  ")

Wend
COISTypeS = M sg_GetTagValue(M sgS, " c o is ty p e " )
COISLabelS = M sg_GetTagValue(M sg$, " c o is la b e l" )
I f  COISLabelS = "" Then 

COISLabelS = "_"
End I f
CompSetS = M sg_GetTagValue(M sgS, "compSet") 
l in k s e t S  = M sg_GetTagValue(M sgS, "L inkSet")
C o n ten ts  = M sg_GetTagValue(M sgS, "C ontentSpec")
M appingRuleS = M sg_GetTagValue(M sg$, "M appingRule")

V *  COISObj = " ['C O IS ID ', 'C O ISType', ‘C O IS L a b el']"
' / *  C o n stru c t COISObj: a c t u a l  p aram eters * /

’ s : -  a p p ly _ b l ( ‘B L _ T a b le l‘ , [ [ ‘ S m all S c h o o l ' , ‘ A ppartm ent‘ ] , ‘T a b le ‘ , _ ] ,  
[Com pSet, [ ] , [ ] ] ) .

'C a l l  DB_SeparateCOISID(COISIDS, DBNameS, TableNam eS, RecordKeyS, 
F ieldN am eS , TmpTypeS)

C a ll  BLEngineJBuildCOISObj(COISObjS, COISIDS, COISTypeS, COISLabelS, 
T rue)

C a ll  BLEngine.BuildCOISObj(BLCOISObj$ , BLCOISIDS, BLCOISTypeS, 
BLCOISLabelS, F a ls e )

C a ll  BLEngine.BuildCOISObj(BLCOISObj2 $ , BLC0ISID2S, BLC0ISType2$, 
B L C 0ISL abel2$, F a ls e )

’ /*  New: Mimic CompSet o f  BLEngine_BLComp * /

’ / *  U sin g  b o th  ‘From* and ‘T o‘ s p e c i f i e r s  
CompSetS = BLCOISObj & & BLCOISObj2$

V *  Open f i l e  * /
FNuml1/, = F r e e F ile
FileN am eS = " c :\w a n \g h m i\P r o 3 8 6 w \b le n g in e \b l.p l"
Open FileNam eS For Output As FNuml
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’ / *  C rea te  f i l e  h ead er  * /
’ / *  Id ea : bridge_law_com p(BLNam e, COISObj, [CompSet, L in k S e t ,  

C o n te n tS p e c ]) * /
’ / *  Hake " : - i n i t i a l i z a t i o n ( a p p l y _ b l ( ' b l _ d a t a b s e ‘ , [ ‘ Sm all S c h o o l ' ,  

'D a ta b a s e ' , ‘ S m all S c h o o l ' ] , [CompSet, [ ] , [ ] ] ) ) .  "
L i s t l $  =
L is t2 $  = " []"
L is t3 $  = " []"
I f  CompSetS <> "NONE" Then 

L i s t l S  = "CompSet"
End I f
I f  l in k s e t S  <> "NONE" Then 

L is t2 $  = "LinkSet"
End I f
I f  C o n ten ts  <> "NONE" Then 

L is t3 $  = "Content"
End I f
P r e d ic a t e s  = " :- i n i t i a l i z a t i o n ( a p p l y _ b l ( "  & BLName & & COISObjS &

II II 
»

P r e d ic a t e s  = P r e d ic a te s  & "[" & L i s t l S  & & L is t2 $  & & L is t 3 $  &
" ] ) ) .  "

P r in t  #FNuml, P r e d ic a t e s ,  n l

’ / *  Make: ’a p p ly _ b l( ' b l_ d a t a a s e ‘ , [D, ‘D a ta b a se ‘ , _ ] , [CompSet, L in k S e t , 
C o n te n tS p e c ]) :

' / *  U sin g  BLCOISObj: 'From' s p e c i f i e r
’ /*  apply_bl(B L N am e, BLCOISObj, [CompSet, L in k S e t, C o n te n t ] ) : -"
P r e d ic a t e s  = "apply_bl(BLN am e," & BLCOISObjS & ", [CompSet, L in k S e t ,

C o n te n t]) :
P r in t  #FNuml, P r e d ic a t e ,  n l

V *  Make: " b a g o f( [ [D I T ] , ' T a b le ' ,T ] , co m p set( [ [D |T ] , 'T a b le ' ,T ] ) .C om p S et),
II

’ / *  New: "bagof(BLCOISObj2 , compset(BLCOISObj + BLCOISObj2 ) , C om pSet), " 
I f  CompSetS <> "NONE" Then 

’ / *  H andle o n ly  s i n g l e  CompSet o n ly  * /  
pi*/, = I n S t r ( 1 ,  CompSetS, "*")
I f  p i ’/, <> 0 Then

' / *  E lim in a te  a t  end * /

CompSetS = M id(CompSet$, 1 , Len(CompSetS) -  1)
End I f
P r e d ic a te s  = " b a g o f(" & BLC0IS0bj2$ & ", com pset("  & CompSetS & " ) ,
C om pSet), "
P r in t  #FNuml, S p a c e s , P r e d ic a te ,  n l  

End I f
I f  l in k s e t S  <> "NONE" Then
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’ / *  H andle o n ly  s i n g l e  CompSet o n ly  * /  
pi*/, = I n S t r ( l ,  l i n k s e t S ,  "*")
I f  pi'/, <> 0 Then

’ /*  E lim in a te  a t  end * /
l in k s e t $  = M id ( l in k s e t $ , 1 , L e n ( l in k s e tS )  -  1)

End I f
P r e d ic a t e s  = " b a g o f(" ft l in k s e t S  ft ", l in k s e t ( "  ft l in k s e t S  ft " ) ,  
L in k S e t ) , "
P r in t  #FNuml, S p a c e s , P r e d ic a t e ,  n l  

End I f
C o n te n tlS  = C o n ten ts  
I f  C o n ten ts  <> "NONE" Then 

’ / *  H andle o n ly  s i n g l e  C on ten t o n ly  * /  

pi'/, = I n S t r ( l ,  C o n te n ts , "*")
I f  pi'/, <> 0 Then

’ /*  E lim in a te  a t  end * /

C o n ten ts  = M id (C o n ten t$ , 1 , L en(C ontentS) -  1)
End I f
’ / *  For r e c o r d s , add BLCOISID t o  C ontent "C" * * * /
C o n te n t1 = BLCOISIDS
C o n te n tlS  = "[" ft C o n te n tlS  & ft C o n ten ts  ft "]"
P r e d ic a t e s  = " b a g o f(" ft C o n ten ts  ft ", c o n te n tC  ft C o n te n tlS  ft " ) ,  
C o n te n t ) , "
P r in t  #FNuml, S p a c e s , P r e d ic a t e ,  n l  

End I f

’ /*  Make c o n tr o l  p r e d ic a t e s  * /
P r e d ic a t e s  = S p acesS  ft " f c r e a t e d c o m p s e t .p i ’ , 0 ) ,  " ft n l  
P r e d ic a te s  = P r e d ic a t e s  ft SpacesS  & " t e l l ( ’ c o m p s e t .p i* ) ,  " k  n l
P r e d ic a te s  = P r e d ic a t e s  k  SpacesS  & "w rite(C om pSet) , n l ,  " k  n l
P r e d ic a te s  = P r e d ic a t e s  ft SpacesS  ft " to ld ,  " ft n l
P r e d ic a te s  = P r e d ic a t e s  ft SpacesS  ft " f c r e a t e ( ' l i n k s e t . p i ’ , 0 ) ,  "
P r e d ic a te s  = P r e d ic a t e s  ft SpacesS  ft " t e l l ( ’ l i n k s e t . p i ’ ) , " ft n l
P r e d ic a t e s  = P r e d ic a t e s  ft SpacesS  ft " w r it e ( L in k S e t ) ,n l ,  " ft n l
P r e d ic a t e s  = P r e d ic a t e s  ft SpacesS  ft " to ld ,  " ft n l
P r e d ic a t e s  = P r e d ic a t e s  ft SpacesS  ft " f c r e a t e ( ’ c o n t e n t .p i ’ ,0 ) ,"  ft
P r e d ic a t e s  = P r e d ic a t e s  ft SpacesS  ft " t e l l ( ’ c o n t e n t .p i ’ ) ,  " ft n l
P r e d ic a t e s  = P r e d ic a t e s  ft SpacesS  ft " w r i t e ( C o n t e n t ) ,n l ,  " ft n l
P r e d ic a t e s  = P r e d ic a t e s  ft SpacesS  ft " to ld . " ft n l
P r in t  #FNuml, P r e d ic a t e s

’ /*  Make: com p set(C om p S et): -  MappingRule 
P r e d ic a te s  = "com pset("  ft CompSetS ft " ) : -"  ft n l  
P r e d ic a te s  = P r e d ic a t e s  ft SpacesS  ft M appingRuleS ft " " ft n l  
P r in t  #FNuml, P r e d ic a t e s

ft n l

n l

P r e d ic a te s  = " l in k s e t C  ft l in k s e t S  ft " ) : -"  ft n l
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P r e d ic a te $  = P r e d ic a te s  & S p acesS  & MappingRuleS & " " & n l  
P r in t  #FNuml, P r e d ic a te s

P r e d ic a t e s  = " c o n te n tC  & C o n te n tlS  & & n l
P r e d ic a t e s  = P r e d ic a te s  St S p acesS  & MappingRuleS & " " & n l  
P r in t  #FNuml, P r e d ic a te s  
C lo se  #FNuml

’ / *  Invoke BLEngine * . /
’ / *  R eturn  when d a ta  read y  * /
C a ll  B L E ngine_SendProlog

’ / *  C o n stru c t CompSet, L in k S e t , C ontent from  P r o lo g  f i l e s  * /  

C a ll  B L E ngine.G etP rologD ata(C om pSetS , l in k s e t S ,  C o n te n ts )

’ / *  I f  o n ly  one o b je c t  in  CompSet, d i r e c t l y  show i t  * /
’ / *  O th erw ise  b u i ld  SY SQ ueryR esults from  CompSet * /  

pi'/. = I n S t r ( l ,  CompSet, "<")
I f  pl*/t <> 0 Then 

p2'/, = I n S t r ( p l  + 1 , CompSet, "<")
I f  p2‘/, <> 0 Then

’ / *  C o n str u c t t a b le  SYSQ ueryResult from  CompSet * /

V *  U pdate and sen d  back Msg in s id e  i t  * /
C a ll  B L E ngine_B uild Q ueryR esu lt(M sgS , AppDB, CompSetS)

E ls e
V *  B u ild  CorapBL r e s u l t  f o r  s i n g l e  o b je c t  * /
’ / *  T h is  i s  u s e f u l  f o r  s t r u c t u r e  l i n k s  * /
C a ll  BLEngine_BuildCompBL(Msg$, AppDB, CompSet)

End I f

End I f

’ / *  U pdate Msg * /
’ AppNameS = M sg_GetTagValue(M sgS, "AppName")
’C a ll  M sg_SetTagV alue(M sgS, "COISID", AppNameS)
’ C a ll  M sg_SetTagV alue(M sgS, "CompSet", CompSetS)
’ C a ll  M sg_SetTagV alue(M sgS, " L in k S et" , l in k s e t S )
’ C a ll  M sg_SetTagV alue(M sgS, "C ontent" , C o n ten ts)

End Sub

Sub BLEngine_B uildC 0IS0bj (COISObjS, COISIDS, COISTypeS, CO ISLabelS, 
AddCJuotes*/,)
’ / *  B u ild  COISObj u s in g  n e s te d  " [" , "]" * /

’ / *  For BLCOISObj, n o t ad d in g  ‘ * /

Dim pi*/,, p2’/,, Counter*/,, i */,



206

Dim TempID$, DBNameS, TableNam e$, RecordKeyS, F ieldN am e$

’ /*  B u ild  ID * /
TempIDS = ""

C a ll  DB_SeparateCOISID(COISIDS, DBNameS, TableNam e$, R ecordK ey$, 
F ieldN am e$, "")

I f  DBName$ <> "" Then 
I f  AddQuotes0/, = True Then

TempID$ = TempID$ ft ft DBName ft
E ls e

TempID$ = TempID$ ft DBName 
End I f

End I f
I f  TableNameS <> "" Then 

I f  AddQuotes0/, = True Then
TempID$ = TempID$ ft " , ‘ " ft TableName ft

E ls e
TempID$ = TempID$ ft TableName 

End I f
End I f
I f  RecordKey$ <> "" Then 

I f  AddQuotes0/, = True Then
TempID$ = TempID$ ft ", ‘ " ft RecordKey$ ft "‘ "

E ls e
TempID$ = TempID$ ft RecordKey$

End I f
End I f
I f  F ieldN am e$ <> "" Then 

I f  AddQuotes0/, = True Then
TempID$ = TempID$ ft V "  ft FieldN am e ft

E ls e
TempID$ = TempID$ ft FieldNam e 

End I f
End I f
TempID$ = " [" ft TempID$ ft "] "

’ / *  B u ild  COISObj * /
I f  AddQuotes0/, = True Then 

COISObjS = "[" ft TempID$ ft ft COISTypeS ft " V  ft COISLabelS ft
ll*j II

E ls e
COISObjS = "[" ft TempIDS ft ft COISTypeS ft ft COISLabelS ft "
] "

End I f
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End Sub

Sub BLEngine_BuildCompBL (M sg$, AppDB As D a ta b a se , CompSet$)
’ /*  New: B u ild  LinkBL r e s u l t  w ith  s i n g l e  Obj in  CompSet * /
’ / *  a s  i f  we w ere a p p ly in g  a  CompBL * /
’ / *  B u ild  t a b le  SYSQ ueryResult from  CompSet$ * /
’ / *  Form at: CompSet = <Sm all S c h o o lW M a ste r S tu d e n t,T a b le ,_ 8 9 0 5 8 7 4 > ,< . . . >  
V *  C a lle d  by BLEngine_BLLink() f o r  r e f e r e n c e  l i n k s  * /
’ / *  I f  o n ly  one o b je c t  in  CompSet, d i r e c t l y  show t a b le  o r  d a ta b a se  

Dim C 0ISID $, COISTypeS 
Dim pi*/,, p2‘/ , , p37,

’ / *  F in d  ta b len a m es or  db names * /  

pi*/. = I n S t r ( 1 ,  CompSetS, "<") 
p2'/, = In S tr  ( p i ,  CompSetS, " ," )  
p37, = In S tr (p 2  + 1 , CompSetS, " ," )
I f  pi'/, <> 0 And p2'/, <> 0 And p3 <> 0 Then 

COISIDS = M id(CompSet$, p i  + 1 , p2 -  p i  -  1)
COISTypeS = M id(CompSetS, p2 + 1 , p3 -  p2 -  1)

End I f

’ / *  U pdate Msg * /
C a ll  M sg_SetTagV alue(M sgS, "COISID", COISIDS)
C a ll  M sg_SetTagV alue(M sgS, "COISType", COISTypeS)

S e le c t  Case LCase(COISTypeS)
Case " ta b le"

C a ll  DBHand_BLTable(MsgS, AppDB)
C ase "record"

C a ll  DBHand_BLRecord(Msg$, AppDB)
Case " f ie ld "

C a ll  DBHand_BLField(M sg$, AppDB)
Case "database"

C a ll  DBHand_BLDatabase(MsgS, AppDB)
End S e le c t

End Sub

Sub B L E ngine_B uild Q ueryR esu lt (MsgS, AppDB As D a ta b a se , CompSetS)
’ /*  B u ild  t a b le  SYSQ ueryResult from  CompSetS * /
’ / *  Form at: CompSet = <Sm all S ch o o lW M a sterS tu d en t, T a b le ,_ 8 9 0 5 8 7 4 > ,< .. .>  
’ / *  SYSQ ueryR esult f i e l d s :  <SYSID, TableName>
’ / *  C a lle d  by BLEngine_BLLink() f o r  r e f e r e n c e  l i n k s  * /

’ / *  I f  o n ly  one o b je c t  in  CompSet, d i r e c t l y  show t a b l e  o r  d a ta b a se  
Dim T hisT ableN am eS, SQL$, COISIDS 
Dim DS As D ynaset 
Dim KeyValue'/,
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Dim NewTableName$, AppName$
Dim N ew F ie ld l As New F ie ld  
Dim N ew F ield2 As New F ie ld  
’ Dim N ew F ield3  As New F ie ld  
Dim NewTable As New T a b le d e f  
Dim pi*/., p2'/,

’ / *  P erp are  q u e r y r e s u lt  t a b le  * /

NewTableName$ = "SYSQueryResult"

’ /*  D e le te  SYSQ ueryResult * /
’ On E rror  Resume Next
AppDB. T a b le D e fs . D e le te  NewTableName$
’ On E rror GoTo 0
’ /*  C rea te  a  new t a b le  * /
N ew T able. Name = NewTableName$

’ ’ / *  Add a  Key f i e l d  * /
N ew F ield l.N am e = "SYSID"
N e w F ie ld l.T y p e  = FIELD_TEXT ’V a ria n t in t e g e r
N e w F ie ld l .S iz e  = 50
N ew T able. F i e l d s . Append N ew F ie ld l
’ /*  Add a n o th er  f i e l d  * /
N ew Field2.N am e = "TableName"
N e w F ie ld 2 . Type = FIELD_TEXT ’t e x t
N e w F ie ld 2 .S iz e  = 50 
N ew T a b le .F ie ld s.A p p en d  N ew Field2  
’ / *  Add t a b le  t o  d a ta b a se  * /
AppDB. T a b le D e fs . Append NewTable 
’ / *  Open SYSQ ueryResult * /
SqL$ = "SELECT * FROM SYSQueryResult"
S e t  DS = AppDB.CreateDynaset(SQ L$)
KeyValue'/, = 1

’ / *  F in d  a l l  ta b len a m es * /  
pi'/, = I n S t r ( l ,  CompSet$, "<") 
p2'/, = I n S t r ( p l ,  CompSet$, " ," )
W hile pi'/, <> 0 And p2'/, <> 0 

C0ISID$ = M id(Com pSet$, p i  + 1 , p2 -  p i  -  1)
’ / *  Get T a b le  Name * /
C a ll  D B_SeparateC 0ISID (C 0ISID $, "", T hisT ableN am e$, "")
’ / *  Add t a b l e  name * /
DS.AddNew
’ /*  Add K e y f ie ld  f i r s t  * /

DS. F ie l d s  (0 )  = T r im (S tr  (KeyValue'/.))
’ / *  Add a  row * /
D S .F ie ld s (1 )  = ThisTableNam e$
D S.U pdate
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KeyValue'/, = KeyValue'/, + 1
’ /*  F in d  n e x t  t a b le  name * /
pi'/. = In S tr (p 2  + 1 , CompSet$, "<")
I f  p i  > 0 Then p2'/, = I n S t r ( p l ,  CompSet$,

Wend

’ /*  U pdate P r o lo g  DB 
C a ll  D B H a n d _ In it ia liz e

’ /*  U pdate Msg * /

AppName$ = M sg_G etTagValue(M sg$, "AppName")
C a ll  M sg_SetT agV alue(M sg$, "COISID", AppName$ & " \\"  & NewTableName$) 
C a ll  M sg_SetT agV alue(M sg$, "COISType", " ta b le " )

’ /*  C a ll  DBHand_BLTable()  * /
C a ll  DBHand.BLTable(M sg$, AppDB)

On E rror Resume Next 
D S .C lo se

End Sub

Sub BLEngine_FactsDB ()
’ / *  g e n e r a te  DB f a c t s  * /

Dim HandDB As D atabase  
Dim AppDB As D atabase
Dim SQL$, F ileN am e$, TableNam e$, R ecordK ey$, Atom$
Dim DBName$, DBPath$, RowContent$, C o n ten t$ , KeyValue$
Dim DS As D yn aset ’ / f o r  HandDB
Dim DS1 As D yn aset ’ / f o r  appDB
Dim DS2 As D yn aset ’ / f o r  t a b l e s
Dim n l
Dim T ablelD '/,, i'/., FNum'/,

n l  = C hr(1 0 )
FNum'/, = F r e e F ile

’ /*  Open f i l e  * /

FileN am e$ = " c : \w a n \g h m i\P r o 3 8 6 w \b le n g in e \fa c ts .p l"
Open F ileN am e$ For Output As FNum'/,

’ / *  F in d  DBs * /
S e t  HandDB = O p en D atab ase(" c:\w a n \g h m i\co is \rd b m s\d b h a n d .m d b " , F a l s e ,  

F a ls e )
SqL$ = "SELECT * FROM DBApps WHERE SystemName = ’ S m all S c h o o l’ "
S e t DS = H andDB.CreateDynaset(SQ L$)
I f  DS. EOF Then
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D S .C lo se  
E x it  Sub 

End I f

’ /*  t o  sa v e  s p a c e , work fo r  Sm all S ch o o l o n ly  * /

I f  Not DS. EOF Then 
DBName = "Sm all School"
DBPathS = DS!D B F ullP ath
S e t  AppDB = O penD atabase(D BPath$, F a l s e ,  F a ls e )
’ / *  C rea te  a  P r o lo g  F a ct * /
Atom$ = " o b j e c t ( ' n ft DBNameS ft , 'D a t a b a s e ' ) . " ft n l  
P r in t  #FNum, Atom$

V * F in d  t a b le s  * /
For TablelD*/, = 0 To A ppD B .T ableD efs.C ount -  1 

V * Skip  sy ste m  t a b l e s  * /
I f  LCase (L e f t  (AppDB. T a b leD efs  (TablelD '/,) .Name, 4 ) )  <> "msys"

Then
’ / *  F in d  t a b le  name * /
TableName$ = AppDB. T a b leD efs  (T ab le ID'/,) .Name

V * Add a  P r o lo g  f a c t  * /
V * o b j e c t ( D ,T , 'T a b le ' ) .
Atom$ = " o b j e c t ( ' n & DBName$ ft h^ ' h & TableName$ ft " ' ,
' T a b l e ' ) . " & n l  
P r in t  #FNum, Atom$

’ / *  F in d  r e c o r d s  * /
SQL$ = "SELECT * FROM " & TableName$
S e t  DS1 = AppDB.CreateDynaset(SQ L$)
W hile Not DS1.E0F

V * C reate  f a c t s  on r e c o r d s  * /

RecordKey$ = DB_FindKeyField(AppDB, TableName$)
KeyValue$ = T r im (S tr (D S l(R eco rd K ey $ )))

V *  Add an atom  * /

’ /*  p r o p e r ty (D ,T ,'K e y F ie ld ' ,K ) .
Atom$ = " p r o p e r t y ( 'n & DBName$ & * • ' , f " & TableName$ &

, 'K e y F ie ld ' , '"  & RecordKeyS & " ' " & " ) .  " & n l  
P r in t  #FNum, Atom$

’ /*  Add an atom  * /
’ / *  o b j e c t ( D ,T ,R ,'R e c o r d ' ) .
Atom$ = " o b je c t  ( '"  & DBName$ & " ‘ , '"  & TableNameS &

& KeyValue$ ft " ' , 'R e c o r d ') .  " ft n l  
P r in t  #FNum, Atom$
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’ / *  F in d  r e co rd  c o n te n t s  * /
’ / *  M ajorly  c o p ie d  from  o ld  DBHand_BLRecord * /
C on ten t$  = ""
I f  Not DS1.E0F Then 

’ / *  F in d  f i e l d  names * /
RowContentS = ""
For i*/, = 0 To D S 1 .F ie ld s .C o u n t -  1

RowContentS = RowContentS & MSG_COL_SEP &
D S1. F ie l d s  (i*/.) .Name 
N ext i'/,
RowContentS = M id(R ow C ontent, Len(MSG_COL_SEP) + 1)
& MSG_COL_SEP & MSG_ROW_SEP 
C o n ten ts  = C ontent & RowContentS  

End I f

’ /*  B u ild  r e c o r d  c o n te n t  * /
I f  Not DS1.E0F Then 

RowContentS = ""
For i = 0 To D S 1 .F ie ld s .C o u n t -  1

RowContentS = RowContentS & MSG_COL_SEP &
D S 1 .F ie ld s  (i*/,)
N ext i*/,
RowContentS = M id(R ow C ontent, Len(MSG_COL_SEP) + 1)
& MSG_COL_SEP & MSG_ROW_SEP 
C o n ten ts  = C ontent & RowContentS 

End I f

’ /*  Add an atom * /
’ / *  p r o p e r ty (D ,T ,R ,'C o n te n t ‘ ,C ) .
’ / *  Form at: C ontent = f i e ld iQ Q f ie ld 2 0 0 . . . 0 0 # # v a lu e l0 0 v a  

l u e 2 0 0 . . .  * /

‘ / *  T h is  can  be d i r e c t l y  u sed  by DBHand_BLRecord * /
AtomS = " p r o p e r ty /"  & DBNameS & "r " & TableNameS &

"‘ / "  & KeyValueS & "‘ / C o n t e n t ' , ' "  & C o n ten ts  & " ' ) .  " & n l  
P r in t  #FNum, Atom$

’ / *  Add an atom * /
’ /*  r e la t io n ( D ,T ,S /H a s S c h e m a ') .
I f  LCase(TableNam eS) = " scm sy sta b le s"  Then 

Atom$ = " r e l a t i o n / " & DBNameS & " ‘ t ‘ n &

(D SiITableN am e) & " ' / "  & (D S1!SchemaName) & " ' /H a s S c h e m a ') .  " & n l  
P r in t  #FNum, AtomS 

End I f

’ / *  Add an atom * /
' / *  o b j e c t ( D ,S /S c h e m a ') .
’ / *  r e l a t i o n a l  ,S 2 /E R R e la t io n ‘ ) .
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I f  LCase(TableNam eS) = " scm syserschem ata"  Then 
Atom$ = " o b j e c t / "  & DBNameS & &
(D S I! SchemaName) & " ' /S c h e m a ' ) .  " & n l  
P r in t  #FNum, Atom$

’ /*  Add ER r e l a t i o n O  * /
I f  (D S i!SchemaType) = " R ela tion "  Then

AtomS = " r e l a t i o n / "  & (D S i! SchemaNamel) &
& (D S I!SchemaName2) & " ' , 'E R R e la t io n ') .  " & n l  

P r in t  #FNum, Atom$
End I f

End I f

V *  Get n e x t  r e c o r d  * /

D SI.M oveNext
Wend
On E rror Resume N ext 
D S I.C lo se  

End I f  
’ / *  Get n e x t  t a b le  
N ext TablelD*/.
On E rror Resume N ext 
AppDB. C lo se  
'DS.M oveNext 

End I f  
C lo se  #FNum

On E rro r  Resume Next 
D S .C lo se  
HandDB. C lo se  
AppDB. C lo se  

End Sub

Sub B L E ngine_G etP rologD ata (Com pSet$, l i n k s e t $ ,  C on ten t$ )  
’ / *  C o n str u c t  BL e x e c u t io n  r e s u l t  from  P r o lo g  f i l e s  * /

V * f i l e s :  c o m p s e t .p l ,  l i n k s e t . p l ,  c o n t e n t .p l  * /
Dim FNum*/,
Dim F ileN am e$

CompSet = "" 
l i n k s e t  = ""
C on ten t = ""

’ / *  Open f i l e  * /
On E rror  Resume Next
F ileN am e$ = " c : \w a n \g h m i\p r o 3 8 6 w \b le n g in e \c o m p se t .p l"  
FNum*/, = F r e e F ile
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Open FileN am eS For In p u t As #FNum 
L in e  Input #FNum, CompSetS 
C lo se  #FNum
’ /*  P o l i s h  o u tp u t from  P r o lo g  t o  HTE form at 
C a ll  BLEngine_PolishC om pSet(C om pSet$)

V *  Open f i l e  * /
FileN am e$ = " c : \u a n \g h m i\p r o 3 8 6 w \b le n g in e \ l in k s e t .p l"
FNum'/, = F r e e F i le
Open F ileN am e$ For In p u t As #FNum 
L in e  Input #FNum, l in k s e t $
’ / *  P o l i s h  o u tp u t from  P r o lo g  t o  HTE form at 
C a ll  B L E n g in e _ P o lish L in k S e t( lin k se t$ )

V *  Open f i l e  * /
FileN am e$ = " c : \w a n \g h m i\p r o 3 8 6 w \b le n g in e \C o n te n t .p l"
FNum'/, = F r e e F i le
Open FileN am e$ For Input As #FNum 
L in e  In p u t #FNum, C ontent$
V *  P o l i s h  o u tp u t from  P r o lo g  t o  HTE form at  
C a ll  B L E n g in e_ P o lish C o n ten t(C o n ten t$ )

End Sub

Sub B L E ngine_PolishC om pSet (P ro logO u tP u t$)
V *  P o l i s h  P r o lo g  o u tp u t CompSet t o  HTE form at * /
’ / * [ [ [A p p a r tm en t].T a b le ,[A p p a r tm en t]] , [ [C o u r s e N o te s ] .T a b le ,[C o u r s e N o te s ] ] ]  
* /

Dim pi*/., p2'/,, p3‘/.
Dim S$

S$ = P rologO utP utS

' / *  E lim in a te  o u te r  " [" , "]" * /
S$ = H id (S , 2 , L en (S $) -  2)

’ / *  R ep la ce  " [ ] " ,  t o  " \\"  * /
P2V. = I n S t r ( l ,  S $ , " [[" )
W hile p2 <> 0 

M id(S, p 2 , 2) = " [" 
p3 = I n S tr (p 2 , S , " ," )
p i  = I n S tr (p 2 , S , " ]" )
H id (S , p i ,  1) = " "
W hile (p3 <> 0 And p3 < p i )

S = M id(S, 1 , p3 -  1) k  " \\"  & M id(S , p3 + 1)
p3 = I n S tr (p 3 , S , " ," )

Wend
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p2’/. = In S tr  ( 1 ,  S $ , " [[" )
Wend
V *  R ep la ce  " [ ] 11 t o  "<>" * /  
p2'/, = I n S t r (1 , S $ , "[")
W hile p2 <> 0 

M id(S , p 2 , 2 ) = "<" 
p2*/. = In S tr  (p2 + 1 , S $ , " [" )

Wend
p27, = I n S t r (1 , S $ , "]")
W hile p2‘/, <> 0 

M id(S , p 2 , 2 ) = ">"
P27. = I n S t r ( i ,  S$, "]")

Wend

' / *  Remove sp a c e s  * /  
p27, = In S tr  (1 , S $ , " ")
W hile p2’/, <> 0 

I f  (p2 = 1) Then 
S = M id(S , 2)

E ls e
}  II II II II II < 1 1  II < 1 1  II > 1 1  l l >  II ^  j

I f  H id (S , p2 - 1 , 1 ) =  Or MidCS, p2 + 1 , 1)
S = M id (S , 1 , p2 -  1) & M id(S , p2 + 1)

E ls e
I f  H id (S , p2 - 1 , 1 )  = •'<" Or H id e s , p2 + 1 , 

S = H id e s , 1 , p2 -  1) & H id e s , p2 + 1)
E ls e

I f  H id e s , p2 -  1 , 1) = ">" Or H id e s , p2 + 1 , 1)
S = Hides, 1 , p2 -  1) & Hides, p2 + 1)

End I f
End I f  

End I f  
End I f

p2'/, = In S tr  ep2 + 1 , S $ , " ")
Wend

P rologO u tP u t$  = S

End Sub

Sub B L E n gin e_P o lish C on ten t eC ontent$)
V *  P o l i s h  c o n te n t  o u tp u t from  P r o lo g  * /
1/ *  Remove " []"  * /

C on ten t$  = H id eC on ten t$ , 2 , L en (C on ten t) -  1)

Then 

1) = "<" Then 

">" Then
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End Sub

Sub B L E n gin e_P o lish L in k S et ( l in k s e t $ )
’ /*  P o l i s h  l i n k  s e t  * /

C a ll  B L E n g in e_ P o lish C o m p S et(lin k se t$ )
End Sub

Sub B L E ngine_SendProlog 0  
’ /*  Communicate w ith  BL en g in e  * /

Dim FileN am e$
Dim FNuml*/,, Fnum2*/,
Dim F i le S iz e l ' / i ,  F ile S iz e 2 '/ ,

’ / *  I n i t i a l i z e  f o r  c o n s is t e n c y  * /
’C a ll  D B H a n d _ In itia liz e

’ / *  D e le t e  f i l e s  * /
On E rror Resume Next
F ileN am e$ = " c :\w a n \g h m i\P r o 3 8 6 w \b le n g in e \c o m p se t .p l"  
K i l l  FileN am eS
F ileN am e$ = " c : \w a n \g h m i\P r o 3 8 6 w \b le n g in e \l in k s e t .p l"  
K i l l  FileN am eS
F ileN am e$ = " c : \w a n \g h m i\P r o 3 8 6 w \b le n g in e \c o n te n t .p l"  
K i l l  F ileN am e$

’ / *  R ew r ite  f i l e  * /

F ileN am e$ = " c : \w a n \g h m i\P r o 3 8 6 w \b le n g in e \f la g te x t .p l"  
FNuml = F r e e F i le
’ Open F ileN am e$ For Random A ccess  Read W rite As #Fnum2 
Open F ileN am e$ For Output As #FNuml 
P r in t  #FNuml, "Y. "
C lo se  #FNuml
F i l e S i z e l  = F ileL en (F ileN a m e$ )

V *  W ait u n t i l  d a ta  read y  from  P r o lo g  * /
F i l e S iz e 2  = F ileL en (F ileN a m e$ )
W hile F i l e S iz e 2  <= F i l e S i z e l  

F i le S iz e 2  = F ileL en (F ileN a m e$ )
D oEvents

Wend

End Sub
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