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ABSTRACT

INTEGRATING HYPERTEXT WITH INFORMATION SYSTEMS
THROUGH DYNAMIC MAPPING

by
Jiangling Wan

This dissertation presents a general hypertext model (GHMI) supporting
integration of hypertext and information systems through dynamic mapping. Infor-
mation systems integrated based on this model benefit from hypertext function-
alities (such as linking, backtracking, history, guided tours, annotations, etc.)
while preserving their own computation capabilities. Although systems supporting
integration of hypertext and interface-oriented information systems do exist in
hypertext literature, there is no existing model or system effectively supporting
integration of hypertext and computation-oriented information systems. GHMI
makes its major contributions by both extending and specifying the well-known
Dexter Hypertext Reference Model. GHMI extends the Dexter model to overcome
its limitations. GHMTI also maps its capabilities to the extended Dexter model
with appropriate specifications to meet the requirements of our dynamic maf)ping
environment. The extended Dexter functions apply bridge laws in the hypertext
knowledge base to map information system objects and relationships to hypertext

constructs at run-time. We have implemented GHMI as a prototype to prove its

feasibility.
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CHAPTER 1

INTRODUCTION

This chapter presents an overview of this dissertation, including its motivation,

approach, contributions and chapter outlines.

1.1 Motivation

The overall goal of this research is to add hypertext functionality to information
systems and therefore make these systems more friendly, powerful and eflective
for users. Incorporating direct, context-sensitive access to pieces of inforniation
and their interrelationships within information systems improves system effec-
tiveness. We have developed a general hypertext! data model GHMI (i.c., a General
Hypertext data Model supporting Integration) [94, 93], which supports integration of
hypertext with computation-oriented information systems (called COIS throughout
this thesis). COISs dynamically generate their outputs [6, 10, 80, 44], in contrast to
most hypertext systems which display predeclared contents. Therefore, in COISs,
users are unable to create an information network manually.

In general, there are two distinct approaches for integrating hypertext with
information systems: either including hypertext functionality as part of the initial
premises of the information system design, or adding hypertext functionality to
existing information systems through some dynamic mapping mechanism. We
adopt the second approach, i.e., integrating hypertext and information systems
dynamically. Given a GHMI hypertext system, information systems’ developers (or

builders) integrate their systems by defining bridge laws. Bridge laws are schemata

'We do not distinguish the terms hypertert and hypermedia. We always use hypertext
with the belief that our discussion applies to multimedia environments with proper
extensions.



which specify the domain mapping from an information system to the hypertext
system. This ensures that the information system remains hyperiezi-uncware and
the imposed changes are minimal—two of our major contributions. We build GHMI
upon the concept of generalized hypertext 11, 12], developed to improve the concept
of basic hypertext employed by many existing systems. Generalized hypertext.
introduces dynamic mapping, which allows the hypertext system to infer links at
run time based on structural specifications of the information system application.
The majority of today’s hypertext systems are still designed for standalone,
isolated applications [54]. They are usually non-integrated specialized systems
[68, 67, 70]. To take advantage of hypertext functionalities (navigation, annotation,
and structural representation) users have to give up the familiar applications they
use everyday and rebuild their information framework to fit into these specialized
systems. By contrast, in an integrated system, readily-available hypertext function-
alities can be added to information systems with slight cooperative adjustment [57].
Recent efforts towards open hypertext systems [5G, 58, 75, 78, 91] have alleviated
some of the limitations of specialized systems, especially for display-oriented infor-
mation systems which primarily facilitate accessing and managing large document-
oriented information [10]. However, none of these efforts support COISs which
calculate or otherwise generate their outputs dynamically as effectively as our
approach does. Examples of COISs include document management systems, expert,
systems, decision support systems and database management systems [8, 10]. We
have developed GHMI to support integration of a variety of COISs with hypertext.
Systems implemented according to GHMI function within a dynamic mapping
environment. Furthermore, as described in {8, 6], bridge laws enable integration
with minimal change to the COIS—often the hypertext system just has to intercept.

internal communications with the original COIS interface.



1.2 Approach

Although hypertext has been evolving rapidly, no widely-accepted hypertext data
model facilitates our goal for COIS integration. Our efforts in this direction demon-
strate the power of domain mapping. In [96], we presented a logic modeling approach,
which mapped the domain of document management to the domain of hypertext.
We further extended this work with composite objects and higher-level constructs
(95, 97]. In addition to domain mapping, hypertext systems based on our model
will also provide users with a rich set of navigation facilities. For example, we
incorporate lask-based backtracking [13] to facilitate navigation within multi-window
environments.

Nevertheless as we develop our own hypertext data model, we take advantage of
others’ research. We chose the widely-recognized Dexter Hypertext Reference Model
[47] as the basis of GHMI. The Dexter model (see §2.3) establishes a robust modeling
foundation through a layered system architecture. Dexter makes significant contri-
butions to providing a common, principled interchange standard for diverse hypertext
systems. Its separating hypertext into three layers makes modeling conceptually
clearer and more understandable. Hypertext researchers addressed the usefulness
and robustness of Dexter in a panel at the Hypertext'89 conference and in rescarch
using Dexter as a paradigm of system interchange and hypertext modeling [38,
41, 39, 37, 40, 66, 50, 62, 35]. Building a hypertext model as a Dexter-based
hypertext model would enable us to share and exchange common interests and
ideas with other researchers. However, Dexter is a general abstract model grown
from a variety of existing systems. For our modeling goal of integrating COISs,
we found some obstacles in modeling GHMI using Dexter. Dexter has problems
regarding composite components, anchors and link specifiers. We needed to extend
Dexter to overcome these problems. We demonstrate the compatibility of GHMI and

Dexter by modeling GHMT's capabilities using the extended Dexter with appropriate



specifications, including component classes, typed links, composite structures, typed
anchors, navigation structures and the storage layer functions. The extended Dexter
storage layer functions (i.e., the accessor function, the component resolver function
and the anchor resolver function) apply bridge laws in the hypertext knowledge base
to map COISs to hypertext at run-time.

In this thesis, we summarize our research to date in developing GHMI.
We illustrate by mapping relational database management systems (RDBMS) to
hypertext. This integration enables the RDBMS user to take advantage of hypertext
functionalities (e.g., navigation, annotation, analysis support, etc., as shown in §5.2)
while preserving standard RDBMS computational facilities (e.g., query processing).

We also implemented GHMI in a prototype to prove its concepts and functionality.

1.3 Contributions
GHMI aims at enhancing COISs by adding hypertext functionalities through
dynamic mapping facilities. Integrating with GHMI only imposes minimal changes
on COISs. We view GHMI’s major contributions from the following four aspects:
(1) GHMI vs. Bieber et al.’s work [12, 9]: Taking its motivation from Bieber et al.’s
original concept of bridge laws, GHMI extends and formalizes bridge laws within
a comprehensive hypertext data model. GHMI models composites which are not
found in Bieber et al.’s work. Furthermore, GHMI formalizes the dynamic mapping
concept into a hypertext data model. Also, GHMI extended and implemented the
general COIS/hypertext integration architecture originally proposed by Dr. Bieber
but not yet implemented, as a running prototype; (2) GHMI as a hypertext data
model: As a general hypertext data model for supporting hypertext and COIS
integration, GHMI uniquely provides a comprehensive set of hypertext function-
alities regarding hypertext objects (composites, behavioral link typing, and dynamic

anchors), domain mapping mechanisms (bridge laws) and a variety of navigation



features (guided-tours, task-based backtracking, history, bookmarks, overviews);
(3) GHMI as a Dexter-based model: GHMI uniquely combines specific extensions
and specifications on Dexter to meet the requirements of our dynamic domain
mapping environment. This demonstrates both GHMI’s and Dexter’s robustness
and generality. Extensions are introduced on Dexter’s composites, link specifiers
and anchors. To map all GHMI capabilities to Dexter, GHMI specifies Dexter’s
components, links, anchors, the resolver function and the accessor function; (1)
The GHMI prototype: The GHMI prototype is the first hypertext system which
implements the general architecture of supporting dynamic integration of hypertext.

and multiple COISs. It proves the feasibility of the architecture and the GHMI

model.

1.4 An Outline
This thesis is organized as follows. Each chapter contains a summary section at
its end. Chapter 2 discusses related work of other researchers regarding open
hypertext systems, combining hypertext and database technologies, the Dexter
Hypertext Reference Model and Dexter-based models. We motivate GHMI by
identifying the limitations of these approaches. We also review other efforts on
adding hypertext functionality to DBMS—our sample domain. These cfforts aim
at providing traditional DBMSs with a hypertext-based design and navigation
environment. Chapter 3 presents GHMI's basic concepts and functionality, including
an implementation system architecture and basic elements regarding components,
links, anchors, navigation structures and the bridge law definition mechanism.
Chapter 4 models GHMI using Dexter and builds GHMI as a Dexter-based model
to ensure greater integrity in the hypertext community. After first introducing
the formalized Dexter model, we present extensions to Dexter to cover GHMI and

also specifications needed to map GHMI capabilities. Chapter 5 illustrates how



the GHMI hypertext could improve RDBMS and how to apply the bridge law
mechanism to map RDBMS to GHMI's hypertext model. Chapter 6 discusses
a detailed GHMI implementation prototype architecture and reports the current.
GHMI implementation status. Chapter 7 concludes this thesis by discussing GHMI
integration guidelines, comparing GHMI with other hypertext models and systems,
outlining potential research directions based on extensions to GHMI including
connecting GHMI to WWW, and identifying GHMI contributions and limitations.
To demonstrate the generality of GHMI, Appendix A gives bridge law examples
for mapping another COIS domain (a document document management system
called TEXPROS) which is quite different from RDBMSs. Appendix B gives sample

database handler source code for generating and executing bridge laws.



CHAPTER 2

MOTIVATION AND RELATED WORK

The effectiveness of information systems can be improved greatly by introducing
hypertext features (or functionalities) including information structuring (i.e., infor-
mation pieces are organized as a network of nodes, links and anchors in a hypertext),
navigation (i.e., mechanisms for direct access to information over a hypertext
network, including link traversal, guided-tours, network overviews, bookmarks,
backtracking. etc.) and annotation (i.e., comments on nodes, links and anchors to
record important information).

The majority of current generation hypertext systems require that applications
be imported into the underlying hypertext systems. In these systems, applications
need to model their data in terms of hypertext concepts (i.e., nodes, links and
anchors) and import these data manually into the management of the hypertext
systems. Therefore, such hypertext systems are closed systems which are hardly
extensible to access or link objects external to them [75]. Authoring a hypertext-
based application relies on the editing facilities provided by the hypertext system.
And there is no way to connect existing objects without converting and importing
them, and no way to support linking between existing applications. With closed
hypertext systems, users may be attracted by helpful hypertext functionalities, but.
would have to give up (or reimplement) their current system and often much of
the functionality they provide. Aiming at overcoming these limitations faced by
closed hypertext systems, a variety of approaches towards developing open hypertext
systems have appeared in the hypertext literature and open hypertext system has
become a promising research direction in the hypertext field [23, 40, 75, 76, 78].

Although to date there is no widely-accepted definition for open hypertext systems,



we believe it is essential for an open hypertext system to have a robust model
supporting a broad range of hypertext features and to integrate existing applications
and utilize data created with these applications [81, 23, 91].

We aim at developing a robust hypertext data model to support integrating
hypertext with COISs. The benefits of a formal hypertext model have been addressed
already in [1, 46, 60]. An abstract formal model provides a mechanism to understand
and express the common structures of different hypertext systems, i.e., to construct a
globally acceptable terminology from which both hypertext researchers and users can
benefit [1]. A formal model also helps to separate hypertext structure from content
and gives a consistent interpretation for implementation purposes [102]. Although
there is no widely-accepted data model in hypertext area, there are some well-known
models which are frequently cited by hypertext researchers [2, 39, 37, 40, 63, 62,
50, 35, 66). The Dexter model is widely referenced and accepted as a common,
principled interchange standard for diverse hypertext systems. Hypertext researchers
addressed the usefulness of Dexter in a panel at Hypertext'89 conference and later
as part of research efforts under the paradigm of system interchange and hypertext
modeling (38, 41, 39, 37, 40, 66, 50, 62, 35]. Dexter’s separating hypertext into three
architectural layers makes modeling conceptually clearer and more understandable.
Having such a model as our base enables us to share and compare our work with other
researchers based on a common framework. To integrate hypertext with COISs, we
need to go beyond, extending and specifying the Dexter concepts to make GHMI a
comprehensive data model supporting system integration.

In this chapter, we motivate our objective of developing GHMI through a
general review of related work from other researchers. We discuss related work
regarding open hypertext systems and Dexter-related modeling approaches. We
propose GHMTI’s objective as a solution to the existing limitations of these systems

and models. As we use RDBMS as an example domain for illustrating GHMI domain



mapping power, we also include a review on other related work concerning hypertext.

and DBMS.

2.1 Open Hypertext Systems
Several open hypertext approaches are reported in recent years, including Sun’s Link

Service [75], Microcosm [23, 24, 27], SP3 (81, 63], Chimera [5] and Multicard [78].

2.1.1 Sun’s Link Service
Sun’s Link Service [75] is a commercial product shipped with Sun’s programming-
in-the-large software development environment, the Network Software Environment
(NSE). Integration with the Link Service is a standard part of each Sun workstation
application. The Link Service provides an extremely loose coupling of applications
and stretches openness to its limits based on a communication protocol. Appli-
cations integrate with the Link Service through a link library which implements
the protocol. It allows users to make and maintain explicit and persistent inter-
application relationships. The Link Service manages links and anchors while the
applications are responsible for supporting operations on linked data.

The Link Service only provides link services at a primitive programming level.
Its built-in hypertext functionality is very primitive. It provides only for a distributed
linking mechanism and a way for representing and storing the source and destination
of a link. The application is responsible to define the link-related operations on linked
objects. The Link Service’s hypertext concept is simply plain node, link and anchors.

There is no typing or composite and the links are static and binary.

2.1.2 Microcosm
Microcosm [23, 24, 27] is an open hypertext system developed at the University of
Southampton aiming at integrating third party applications. Its system architecture

manages the communication between a chain of independent filters and various node
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content viewers. The viewers are partially or fully Microcosm-aware applications and
responsible for displaying documents or other media data. Viewers should be able
to communicate with Microcosm by generating messages on user actions. Messages
are passed through the filter chain and handled by proper filters. Any filter can
consume, pass or generate messages to the message chain. Three special filters
(i.e., the Linkbase filter, the Linker and the Computed Linker) accomplish the basic
linking services. At the end of the filter chain, the link dispatcher presents the user
any actions contained in the resulting messages. Microcosm integrates hypertext-
unaware viewers by using a shared clipboard.

As opposed to GHMI, which aims to support computation-oriented appli-
cations, Microcosm is primarily open to viewers which are display-oriented appli-
cations (IOSs in GHMTI's terminology). Microcosm’s system architecture does not
support integrating computation-oriented applications which dynamically generate
data at run-time (i.e., COISs). The Microscosm applications have to be changed to
embed some macro to handle communication with the link service. A Microcosm’s
linear filter chain is too restrictive and inefficient. Filters have to be ordered carefully
to ensure they receive all messages they expect to handle. All messages are routed
through all filters regardless of their relatedness to individual filters. This heavily
reduces the system performance when the message traffic is heavy and the filters are
still busy on delivering unrelated messages. Such a chain structure is also problematic
when two filters need to exchange messages before any actual action-invoking message
is produced for the link dispatcher. A more advanced filter management structure has
been proposed by the Microcosm authors to overcome these limitations [52] toward
supporting distribution. In the advanced Microcosm, filters are grouped into smaller
chains. Filters are asked to register message types regarding actions in a table.
However, the small chains still face the limitations mentioned above. Microcosm

supports no composites and its links are static, untyped and binary.
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2.1.3 SP3

Since 1991, researchers in The Hypermedia Research Laboratory at Texas A&M
University have been developing a series of hypermedia prototypes SP0-3 [58, 63, 81]
along with a series of hyperbases (i.e., hypertext database management systems with
database management facilities such as query processing, access control, concurrency
control, etc.) HBO0-3 to support data storage facilities. The latest SP3 defines a
flexible model which extends the concepts of Dexter and supports the distribution of
hypermedia across wide-area networks. SP3 employs a process-based system archi-
tecture. Links and anchors are modeled as independent processes which implement
the characteristic hypermedia behaviors such as link traversal. This approach enables
a wide range of flexible run-time semantics (i.e., run-time behavior of links and
anchors could be defined as process properties and methods). Users can integrate
with services handled by link and anchor processes. SP3 and HB3 attempt to support.
a hypermedia-in-the-large environment (i.e., open hypertext systems) which can not
be modeled by Dexter. In SP3, applications are responsible to manage persistent
selections and maintain anchor and link markers at run-time.

SP3 has no systematic support for computation-oriented applications which
handle dynamically generated data. It is the application’s responsibility to extend
its functionality to support dynamic data. SP3 also requires applications to store
their data in the hyperbase in order to benefit from special hypertext features such
as versioning. SP3 models links and anchors as first-class processes. This allows
the behaviors of links and anchors to be flexibly extendible at the price of managing
them in an inconsistent manner. SP3 has no way to define anchors on links, as links
are not first class components (i.e., independent objects with their own propertics

and operations).
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2.1.4 Chimera

Chimera [5] is an open hypertext system developed at University of California at
Irvine, which supports integrating hypertext with heterogeneous software devel-
opment environments. It models hypertext using a set of concepts including objects,
viewers, views, anchors, links, attribute-value pairs and hyperwebs. A distinctive
feature of Chimera is that it defines links and anchors on views of objects combined
with viewers (not on objects themselves). This allows viewers to implement special
anchor and link behaviors. Anchors are defined and managed by viewers. A link is
defined as a set of anchors which allows n-ary links.

The Chimera system architecture follows a client-server approach to mect
the needs of multiple user environments. The architecture consists of a Chimera
server, a process invoker, Chimera clients and external systems. The Chimera
server implements the services based on Chimera hypertext concepts and manages
the connections of Chimera clients. The process invoker is responsible to invoke
Chimera clients. A Chimera client includes one or more viewers. The Chimera
client is responsible for definition of objects, views and anchors. Tt also manages
the communication with the Chimera server on link traversal. One advantage of
client-server approach is to allow the client to be written in different languages.
The communication message details between Chimera client and Chimera server are
hidden from Chimera client by Chimera API and from the Chimera client by a
message ADT. The Chimera’s modeling links on views enables objects to be viewed
from different perspectives and provides a flexible way to include new viewer-specific
anchors. GHMI shares some of these ideas and differs in many others.

Chimera was developed specifically for the needs of tools in the software devel-
opment environments. Its application domain is restricted on viewers which are
display-oriented applications. There is no way in Chimera to support the domain of

computation-oriented applications like GHMI does. Chimera hides message details
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from applications by using higher-level APT and ADT. This allows the Chimera
developer to change the message formats freely without affecting the rest of the
system. But the tradeoff of this approach is that we have to modify participating
applications to use Chimera’s message ADT. Chimera associates anchors with views.
Such views consists of object views and the viewer which displays the object views. A
chimera view could contain interface objects such as buttons and windows, depending
on how the viewer defines its views. This is flexible in handling multiple views of
a single object. Tt allows the viewers to freely implement viewer-specific features at.
the price of managing links and anchors inconsistently which makes it difficult to
cxtend standard features in the Chimera server. Chimera’s viewers are also heavily

burdened by having to define anchors and map anchors to objects.

2.1.5 Multicard

Multicard is an open hypermedia system developed within the Esprit project
Multiworks [78]. Multicard provides a hypermedia system with a set of hypermedia
objects, an authoring/navigation tool, a scripting language and a multimedia compo-
sition editor. It allows integration of a single hypermedia system with a various
editors and applications which run as separate processes. Applications communicate
with Multicard using a message passing protocol M2000. M2000 compliant editors
automatically benefit from the Multicard hypermedia functionalities including
linking facilities and composite structures.

The Multicard architecture consists four distinct layers: a set of hypermedia
basic objects, a persistent storage platform, an authoring/navigation tool, an M2000
protocol and a series of compliant editors. The Multicard hypermedia objects include
nodes, groups, anchors, links, hyper-graphs, etc. Different editors manage node
contents. Groups represent composites of nodes. A Multicard link is viewed as a

communication channel between endpoints and acts as a handle or port to the desti-
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nation object. Scripts can be attached to Multicard’s hypermedia objects (nodes,
groups and anchors) to define their dynamic behavior. Scripting provides a powerful
means to extend the system functionality. Even M2000 is extensible using the
scripting language.

Multicard’s editors are display-oriented applications and they have to Dbe
modified to be M2000 compliant to participate the integration. Multicard’s links

and anchors are untyped and links are binary only.

2.1.6 Conclusion

As a summary, we see these models/systems have three limitations. (1) They
were designed primarily for integration with interface-oriented systems [7] (referred
to as 10S, e.g., editors and document-display systems), which support interface-
level functionality. None of them supports integration with COISs effectively.
Computation-oriented systems (e.g., database systems, expert systems, decision
support systems) generate data dynamically (e.g., query or command processing
results) at run-time and COISs are primarily used for analytic functionality, rather
than navigation among displayable information networks [10]. The dynamic nature
of COISs requires the hypertext system to provide an efficient way to establish
dynamic links among dynamic data which can not be determined statically like
those managed by interface-oriented systems. While Microcosin and Multicard
perhaps could be extended to serve a COIS, neither provides a systematic support to
do so. (2) Current open hypertext systems are primarily link services, which support
user-declared links between independent applications. Within these systems the
applications are “hypertext-aware.” The applications have to maintain information
regarding hypertext links and anchors. Such an approach imposes changes on the
applications to facilitate the process of link traversal. (3) They do not directly

provide us a robust model supporting COIS integration at a system level.
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To date, there is no existing hypertext model to our knowledge supporting
dynamically linked COISs. Various modeling approaches have been reported in
hypertext literature, examples include approaches based on logic [33], graphs [74,
88|, sets [73], Petri nets [84, 32, 85], object-orientation [61] and statecharts [102].
Although there is no widely-accepted data model in hypertext area, there are some
well-known models which are frequently cited by many hypertext researchers. Never-
theless as we develop our own hypertext data model, we hope to benefit from the
existing work from other hypertext researchers. We choose the frequently-cited
Dexter Hypertext Reference Model [46, 47] as the basis of GHMI. The next section

discusses the Dexter model and other Dexter-based models and issues.

2.2 Hypertext and Databases
During our discussion in this thesis, we take relational database management systems
(RDBMS) as an example domain to illustrate GHMI's goal of domain mapping
and enhancing COISs with hypertext functionalities. RDBMSs are basically charac-
terized on the basis of information management style. Navigation in a RDBMS is
based on predefined queries. RDBMSs have powerful query processing abilities. The
query results are dynamically generated and are not available beforehand. Hypertext
is the science of relationships and is characterized by interactive access to information
and relationships. Recently, hypertext researchers have been combining hypertext
with database facilities. These efforts regarding RDBMS fall into the following four
directions: managing hypertext data, information retrieval, hypertext application

design and enhancing RDBMS with hypertext functionality.

Managing Hypertezt Data.  Schnase et al. [82], Hyperform [100] and Hyperbase [79]
employ database facilities (e.g., query processing, access control, concurrency control,

event notification) to manage data and implement their underlying hypertext data
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models. This approach uses database facilities to store and retrieve node, link and
anchor data. It pays no attention to adding hypertext functionality to databasc

applications themselves, which is GHMI's focus.

Information Retrieval. = Many systems and models address hypertext querying as
an extension to database information retrieval facilities [29, 29, 42, 28, 64, 21, 30, 65,
53, 4]. They focus on how to search for information over hypertext networks, rather
than on how to map databases information spaces to hypertext networks. As future
work, GHMI could incorporate information retrieval technologies to explore useful
implicit relationships (e.g., through computing object similarities) and make them

direct accessible through link traversals.

Hypertext Application Design.  Some models and systems combine RDBMS and
hypertext concepts in application design and include hypertext functionality as part
of the applications. RMM [55] proposes a seven step relationship management
methodology for the design and development of hypermedia applications. IHara ct
al. [49] presents two types of relationship abstractions (augmentation and global-
ization) as a facility to improve hypertext application design. Such a “design from
scratch” approach, which is common to these two models, results in a hypertext
system whose structure is the same as the underlying database’s schema, but which
is not reusable for other applications and is not able to add hypertext functionality

to existing applications.

Fnhancing Databases with Hypertext Functionality. This is GHMTI’s direction.
There is some related work in this direction. (1) In [48], Hara et al. adopt a two-step
approach to improve hypertext application design and mapping. At step one, the
designers use the RDBMS model to design the application objects and relationships.

Then at step two, they employ an SQL-like specification language to translate these
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objects and relationships to hypertext. The second step is similar to GHMI’s bridge
law mapping mechanism. This approach enables generating nodes and links dynam-
ically. Once written, the same mapping rules can be reused for different applications.
This reduces redundancies and inconsistencies resulting from individual application
design. However, [48]’s focus is also primarily on application design. Its hypertext
model is very primitive. Links are primarily for built-in semantic relationships.
Hypertext only helps accessing these explicit relationships. It is also not clear
how to implement domain translations between database and hypertext. (2) The
ESPRIT Project HIFI [16] aims at providing external databases with a hypertext-
based navigation interface. The hypertext interface model HDM+ is an extension
of HDM [36]. The core approach of HIFT is to define a set of application mappings
between HDM+ and database primitives, including the mapping between HDM+ and
ER diagrams. The HIFI approach defines a hypertext interface according to the user
needs rather than the structure of the underlying databases. Both HIFT and GHHMI
adopt a very similar approach toward mapping RDBMS dynamically. They differ in
three aspects. (a) HIFI primarily focuses on capturing explicit database elements in
terms of HDM+ constructs (e.g., ER relationships, semantic relationships between
entities, etc). It focuses on mapping explicit and predefined object groups (e.g.,
entities) and relationships (e.g., entity relationships in ER. diagrams) which are the
static aspects of an application. Once the database is designed using HDM+ terms,
all relationships become explicit. GHMI focuses on mapping implicit schematic
relationships and the generic underlying database structures (e.g., databases, tables,
records). (b) GHMI more faithfully preserves the original RDBMS structures which
the users are familiar with while HIFT forces the user to adopt a hypertext-specific
structure. The GHMI hypertext structure is defined according to the underlying
database structures rather than individual application users’ needs. (c¢) The HIFI

hypertext interfaces are specialized for individual applications. For example, the
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interface of a medical application [51] is not reusable for a financial bank application
[17]. The GHMTI architecture could provide a general interface for all applications

based on modeling generic RDBMS structures.

2.3 The Dexter Hypertext Reference Model
In this section, we outline the basic Dexter framework and identify its problems.

Then we review some other Dexter-related models and issues.

2.3.1 An Overview of the Dexter Model

The Dexter Hypertext Reference Model [46, 47] (called Dexter throughout this thesis)
is a hypertext model developed as a result of two workshops of hypertext researchers
and based upon several well-known existing hypertext systems such as NoteCards
[45], Neptune [25], KMS [3], Intermedia [101, 77] and Augment [26]. In Dexter,
a hypertext is divided into three separate layers, namely the run-time layer, the
storage layer and the within-component layer as shown in Figure 2.1. A hypertext,
is considered as a network of information. The run-time layer concerns the dynamic
behavior of a hypertext, regarding how to present it to the user and how the user
interacts with such a presentation under some interface environment. The storage
layer consists of a network of components, which are information containers and inter-
connected by relational links. The within-component layer deals with the internal
contents or structure of individual components. Dexter focuses on the storage
layer. The reason for not modeling the within-component layer is that the range
of component contents (e.g., text, graphics, animation, images, etc.) is too broad
to be captured by a single generic model. A similar argument applies to the run-
time layer, due to the vast diversity of user interface tools for accessing a hypertext.
Nevertheless, Dexter does provide inter-layer interfaces to allow the storage layer

to communicate with the other two layers. Anchors are employed as the interface
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Figure 2.1 The Three-Layer Dexter Model

between the storage layer and the within-component layer to establish references

among portions of individual components. The interface between the storage layer

allows the user interface presentation of a hypertext to be encoded at the storage
layer.

A component can be either an atom, a link or a composite component. The
atomic component is the primitive unit in Dexter. Link components represent
relationships between components. A composite component is constructed from
other components. The notion of composite components provides a hierarchical
component structuring mechanism in Dexter and corresponds roughly to “nodes”
in other hypertext systems. A Dexter component is modeled as a two-part compo-
sition: base component and component information (COMP_INFQO). The base
component is recursively defined as an atom, a link, or a sequence of other base
components. The component information includes a set of attributes, a presentation
specification (interpretable only in the run-time layer) and a sequence of anchors
pointing to a portion of this component’s contents. Every component is identified
by its unique ID (UID) which is unique throughout a hypertext. The content of a
link component consists of a sequence of endpoint specifications. A link endpoint is
specified by an entity called specifier which is a combination of a component speci-
fication (COMPONENT_SPEC), an anchor id, a direction and a presentation

specification. Span-to-span links are supported by anchors. The direction of a link
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endpoint could be “FROM,” “TO,” “BIDIRECT” and “NONE.” A link must have
an endpoint with direction “TO” which excludes dangling links (i.e., links missing
endpoints). An anchor is a composition of an anchor id (ANCHOR_ID, identifying
an anchor within a component) and an anchor value (ANCHOR_V ALUE, location
information within a component interpretable by the within-component layer). The
Dexter storage layer also includes two fundamental functions: a resolver function
and an accessor function. The resolver function is responsible for resolving the
component specification in a link specifier to an explicit UID. This enables a link
to point to a computed component with its specification in the link specifier. The
accessor function is responsible for accessing a component given its UID.

Figure 2.2 shows an example of Dexter component, link and anchor represen-
tation. Compl, Comp2 and Linkl denote component UIDs. Compl is an atomic
component which defines an anchor as a portion of its content. Comp2 is a composite
component consisting of some direct text and two atoms. Comp2 also defines an
anchor in its text content. A third component Linkl represeuts the relationship
between the two text portions which are defined as anchors in Compl and Comp?2.
Link1 has two endpoints represented as two specifiers. The “FROM” endpoint is
anchor 1 in Compl and the “TO” endpoint is anchor 1 in Comp2. Link1 has anchor
IDs instead of anchors in its specifier. The anchor value and the presentation speci-

fication (PresentationSpec) are denoted as black boxes indicating that their exact.
specifications are out of the scope of the Dexter storage layer model.

Dexter also includes a simple model for the run-time layer. In the run-time
layer, the basic concept is the instantiation of a storage layer component. An instan-
tiation is a mapping of a component from its storage data format to its presen-
tation format. An entity called session keeps track of the dynamic mapping from

components to their instantiations. A session is a run-time access environment of a
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Figure 2.2 The Dexter Component Representation

hypertext. All operations within an opened session are recorded chronologically in

an entity history.

2.3.2 Problems in Dexter

Dexter makes significant contributions to providing a common, principled inter-
change standard for diverse hypertext systems. Separating hypertext into three
layers makes modeling conceptually clearer and more understandable. However,
as a general model grown from a variety of existing systems, Dexter is sometimes
too general to fit all systems. As a reference model, Dexter aims to model only
the common features of different systems instead of the systems themselves in full.
Therefore, Dexter is, by nature, general and incomplete. For our model focusing on
integrating COISs, we find the following are problems regarding modeling GHMI in
Dexter. By the term problems here we mean those Dexter aspects or concerns, for
which we need either exiensions or specifications such that they fit GHMI and our

proposed hypertext system functionalities.

1. Componenlts. Dexter has problems on the notion of composite components

in three aspects. (1) Component Information: Dexter does not distinguish
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components managed by hypertext systems and those managed by third-party
applications. We can specify the component attributes to explicitly model the
ownership information as well as bridge laws used to map individual COIS
objects. (2) Base components: A Dexter composite component contains “bare-
bone” base components which are not independent components themselves.
The definition of component is recursive on base component rather than on
component itself. This implies that base components in a composite component.
are nol components themselves. As UIDs are associated with components only,
base components have no UIDs. They can not be accessed by the accessor
function. They can not be external independent components (i.e., they do
not exist outside a composite component’s content). On the other hand, base
components have no component information. There is no way to associate
attributes to base components. Base components have no anchors or presen-
tation specifications of their own either. When we construct a composite
component taking other components as base components, all other components
lose their own properties (regarding attributes, anchors and presentation speci-
fication). It is also difficult to create links among base components since they
are not independent components and have no UIDs. Therefore, such a notion
of a composite is too restrictive. In our domain of supporting multiple COISs,
we might have a composite component made up of components from different.
COISs (with distinct ownership properties and other COIS attributes). We
also try to model the internal linking structures of composite components to
facilitate navigation (e.g., create guided-tours based on the internal links of
a composite). We can not effectively model these GHMI composites using
Dexter. We need to extend Dexter’s composite components to allow external
components. (3) Atomic Components: Dexter does not model the content

of atomic components. In our dynamic mapping environment, however, it is
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possible and necessary to model internal structures of atomic components to
represent structured objects such as a database records. Modeling structured
atomics enables defining links and anchors based on object structures (e.g.,

anchors on record fields or values).

. Links. Dexter links have three problems. (1) Dangling links: Dexter’s intol-
erance of these constructs has been widely criticized [39, 40, 63, 62]. In
the environment of dynamic COIS mapping, a link endpoint could specify
a computed component mapped from a COIS object (defined as a mapping
rule). If the COIS object is deleted inside the COIS (which is transparent to
the hypertext system), the execution of the mapping rule will result an empty
component. This causes the link to be “dangling.” If the anchor marking a
link is deleted inside the COIS, the link will become dangling too. Since this
situation seems often to occur, it can not be ignored by simply excluding it
from a hypertext model. We need to allow these links and at the same time
develop some mechanisms to handle them properly. (2) Unary links: Dexter
links must at least two specifiers. However, unary links (i.e., links with only
one specifier) could be useful for modeling COIS commands directly available
as menu items with a specifier directed as “TO."” Access to bookmarks can also
be modeled as a unary link with only one “TO” specifier. (3) Typed Links:
Dexter links do not explicitly support a semantic or behavioral type. It has
been widely recognized that typed links reduce disorientation for users and
design overhead for designers [20, 67, 73, 87]. Dexter implies that link typing
is possible by attaching a “type” attribute to a component. We need to specily
Dexter’s component attributes to support link types explicitly. We classify links
based on their behaviors. For example, links representing ad hoc relationships
should be distinguished from those for cross-referencing, those representing the

underlying hierarchical structures of COIS objects, and those resulted from



24

COIS-defined computation (e.g., a link with an endpoint as a query result in
the domain of relational databases). We need an explicit method to identify

object types based on the roles they play in the integrated hypertext system.

. Anchors. Dexter's problems on anchors include two aspects: (1) External
anchors: Dexter defines anchors in the content of comnponents. It is not
clear how to define anchors in base components. On the other hand, link
specifiers contain an ANCHOR_ID which therefore must be consistent with
the definition in the component embedding the anchor. A link specifier’s
COMPONENT_SPEC needs to be resolved to UIDs and therefore may lead
to different UIDs in different computations. Using the actual ANCHOR_ID
in a specifier requires an unbearable consistency burden on hypertext systems,
requiring all possible components whose UIDs could be mapped from a given
COMPONENT_SPEC to have the same anchors, or at least use the same
ANCHORZD for that link. In our environment of dynamic mapping,
COMPONENT_SPEC is frequently used in link specifiers to allow generating
link endpoints dynamically. Storing ANCHOR_ID in link specifiers which
resolve to dynamic components would impose a heavy consistency burden.
It is difficult to map the specifier’'s ANCHOR_ID to the corresponding
ANCHOR_ZD in a dynamically computed component. (2) Typed Anchors:
In Dexter, it is not clear how to define keyword anchors [41] and dynamic
anchors. We need to extend Dexter to allow the above external anchors and
classify them into three types: plain anchors, keyword anchors and dynamic
anchors. Plain anchors are defined statically with explicit location information
as their values. Keyword anchors represent a group of anchors with the same
text value. Dynamic anchors are dynamically computed anchors. In our case
of supporting COIS integration, dynamic anchors are computed at run-time

along with COIS components and links. We need a mechanism to model these
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anchors in the storage layer. Dynamic anchors are resolved to plain anchors
or keyword anchors at run-time according to their bridge laws. We need to
extend Dexter to include new resolver functions to resolve anchors from bridge

laws.

4. Domain Mapping. Dexter was developed from closed hypertext systems.
It does not model facilities for dynamic integration of hypertext and infor-
mation systems. We employ a mechanism called bridge laws to specify domain
mappings. Under our dynamic mapping environment, all components mapped
from COIS objects or relationships are non-persistent wviriual components.
The hypertext system does not keep any copy of their contents. Every time
they are required by the user, the system maps them by executing bridge laws.
These components could be computed components if they are dynamically
generated from COIS-dependent operations (e.g., database queries). Since
bridge laws are invoked at run-time to generate components and links, we need
to specify the semantics of Dexter’s resolver and accessor functions to apply

bridge laws.

2.3.3 Dexter-based Models and Systems
Over the past several years, models and systems have been developed following
Dexter. Some of them applied Dexter to build their systems and made necessary
extensions or specifications according to their specific needs; Others addressed
Dexter-related issues regarding their experience on developing hypertext system and
data models.

DHM (or DeVise hypermedia) [38, 41, 39, 37, 40] is a Dexter-based hypermedia
prototype developed at Aarhus University in Denmark. DHM extends Dexter in

link directionality, dangling links, external anchors, keyword anchors, external
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components, virtual components and computed components. [37] further extends
DHM composites to include a class hierarchy and four aspects of composites contents.

Leggett and Schnase criticize Dexter’s abilities on hypermedia interchange and
hypermedia-in-the-large (i.e., open hypermedia systems) design [63]. They address
four issues from their experience on translating Intermedia and KXMS using Dexter
as an exchange standard [62]. They discuss issues regarding Dexter’s problems on
dangling links, versioning, external components, deletion semantics for composites,
composite’s internal linking and navigational link semantics. In addition, Leggett.
et al. propose seven fundamental assumptions for hypermedia-in-the-large system
design. Based on these assumptions they claim that Dexter does not support
hypermedia-in-the-large and it is not profitable to further extend the Dexter model.

RHYTHM [66] is a hypertext system developed the University of Bologna
in Ttaly. The authors believe that modeling RHYTHM using Dexter proved the
usefulness, soundness and robustness of Dexter, although they made an extension on
external anchors. They introduce a primitive link typing to classify links into two
classes: navigation and inclusion links, but only allow binary links.

The Amsterdam Hypermedia Model (AHM) [50] is a general framework
focusing on extending hypertext to hypermedia. AHM was developed as a Dexter-
based model with extensions on notions of time, high-level presentation attributes
and link context, and external components. Although AHM extends Dexter from a
multimedia point of view, which is not the current focus of GHMI, we share common
points on modeling composite contents using referencing rather than embedding
other components.

Garzotto et al. [35] made extensions on Dexter’s storage layer by introducing
the concept of collections and on Dexter’s run-time layer by related notions of
collection-navigation and collection-synchronization. The internal structure of a

collection includes two aspects: a sel of members and a structure of lopologically
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arranged members. Index and guided-tours are two basic collection-based navigation
structures. Garzotto et al. addresses the Dexter problems on internal composite
structures (only as set) and the notion of navigation structures (guided-tour and

index). We can go beyond these extensions on composite structures.

2.3.4 Conclusion
Although all of the above approaches address some of the Dexter problems we
identified in 2.3.2, no hypertext literature to our knowledge addresses all of the above
Dexter problems satisfactorily for our needs of supporting COIS integration. None
of them addresses our concern of dynamic domain mapping and the run-time laycr
structures supporting task-based backtracking. The other issues they addressed,
such as the multimedia and collaboration related issues, are attractive but not our
current focus. We will consider them in our future work on further extending GHMI.
GHMI develops its concepts and functionalities according to the requirements
of supporting integration of hypertext and COISs. We map GHMT's capabilities to
Dexter with appropriate extensions and specifications to overcome the above Dexter
problems. The task of modeling GHMI in terms of Dexter includes two aspects:
extensions on composite components, external anchors, dynamic anchors, unary
links and dangling links; specifications on component attributes, atomic components,
composite components, anchors, link specifiers, the resolver function and the accessor

function.

2.4 Summary
This chapter motivates GHMI through a state of the art review of hypertext research
on open hypertext systems, combining hypertext with database technology, the

Dexter Hypertext Reference Model and Dexter-related issues.
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Open Hypertext Systems. Aiming at overcoming the problems faced by closed
systems, a variety of open hypertext systems have been reported in recent years,
including Sun’s Link Service [75], Microcosm [23, 24, 27], SP3 [81, 63], Chimera
[5] and Multicard [78] From our perspective of supporting COIS integration, we
find that these systems and their models have three limitations. (1) They were
designed primarily for integration with interface-oriented systems [7}; and therefore,
(2) current open hypertext systems are primarily link services, which support. user-
declared links between independent applications. Within these systems the appli-
cations are “hypertext-aware;” and therefore, (3) they do not directly provide a
robust model to model a comprehensive set of hypertext functionalities for the

hypertext system we intend to develop.

Hypertext and Databases. Hypertext is the science of relationships and is charac-
terized on the basis of the interactive access to information and relationships.
RDBMSs have powerful query processing abilities. The query results are dynam-
ically generated and are not available beforehand. Recently, hypertext researchers
have been combining hypertext with database facilities. These efforts regarding
RDBMS fall into the following four directions: managing hypertext data, infor-
mation retrieval, hypertext application design and enhancing RDBMS with hypertext
functionality. Most other hypertext research focus on the first three. GHMI focuses

on enhancing existing RDBMS with hypertext functionality.

Why Dexter. We aim to develop a hypertext system with a robust data model to
support integrating hypertext with COISs. The Dexter model is widely referenced
and accepted as a common, principled interchange standard for diverse hypertext
systems. Hypertext researchers addressed the usefulness of Dexter in a panel at
Hypertext’89 conference and later in research concerning the paradigm of system

interchange and hypertext modeling [2, 39, 37, 40, 63, 62, 50, 35, 66]. Dexter’s
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separating hypertext into three architectural layers makes modeling conceptually
clearer and more understandable. Having such a model as our base enables us to
share and compare our work with other researchers based on a common framcework.
However, to meet the requirements of dynamic COIS integration, we need go beyond
and extend the Dexter concepts to develop a comprehensive data model supporting

system integration facilities.

Dexter and Its Problems.  The Dexter Hypertext Reference Model [46, 47] divides
a hypertext into three separate layers. The run-time layer concerns the dynamic
behavior of a hypertext. The storage layer consists of a network of components
which are information containers and interconnected by relational links. The
within-component layer deals with the internal contents or structure of individual
components. The focus of Dexter is on the storage layer. Dexter employs anchors as
the interface between the storage layer and the within-component layer. The interface
between the storage layer and the run-time layer is a mechanism called presentation
spect fication. For our modeling focused on integrating COISs, we found that Dexter
has the following limitations. (1) Components: no model for component structures;
subcomponents in a composite component have no component information; no
component ownership information; (2) Links: no dangling links; no link typing;
no unary links; (3) Anchors: no external anchors; no keyword anchors or dynamic
anchors; (4) Domain mapping: not modeled; We need to both extend and specify
all of these limitations in our goal of supporting COIS integration with a powerful

hypertext data model.

Dezxter-based Systems and Issues.  Over the past several years, models and systems
have been developed following Dexter, including DHM [38, 41, 39, 37, 40] Leggett
and Schnase [63], RHYTHM [66], AHM [50] and Garzotto et al. [35]. They made

extensions on Dexter concepts and/or specified Dexter to map their models and
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systems. However, no hypertext literature to our knowledge addresses all of the
above Dexter limitations satisfactorily for our needs of supporting hypertext/COIS

integration.

Goal of GHMI.  We adopt two steps to develop GHMI as a Dexter-based model:
First, we develop GHMI concepts and functionalities according to the requirements of
supporting integration of hypertext and COISs. Then, we map GHMTI’s capabilities
to Dexter with appropriate extensions and specifications to overcome the above
Dexter limitations. Therefore, the task of modeling GHMI in terms of Dexter
includes two aspects: extensions on composite components, external anchors,
dynamic anchors, unary links and dangling links; and speci fications on component
attributes, atomic components, composite components, anchors, link specifiers, the

resolver function and the accessor function.



CHAPTER 3

GHMI: BASIC CONCEPTS

Figure 3.1 shows the layout of our proposed hypertext data model GHMI (a General
Hypertext data Model supporting Integration). After a brief discussion on the
system architecture, this chapter focuses on the GHMI concepts including an object
class hierarchy, components, links, anchors, dynamic mapping and the bridge law

template.

3.1 A System Architecture
The purpose of this section is to demonstrate how the COIS mapping approach works
from an implementation viewpoint. This will support understand our discussions
regarding domain mapping in GHMI. Figure 3.1 presents a general system archi-
tecture supporting implementation of GHMI. This architecture consists of three
basic layers: the computation-oriented information systems (COISs), a hypertext
engine (HTE [8]) and the interface-oriented systems (IOSs). An information system
typically comprises two functional components: an 10S front end and a COIS back
end. By assuming that information systems are designed following a modular fashion
such that their IOSs can be replaced by other I0Ss, we can augment an information
system with hypertext functionality by incorporating a hypertext engine between
the TOS and the COIS. This means the HTE intercepts any messages the COIS
would send to its interface and generates all appropriate responses. Each COIS or
IOS is connected to the HTE by its own handler. A COIS handler is an extended
portion of the COIS and is responsible for translating the messages coming out of
the COIS into the COIS-HTE communication format which the HTE can handle

and vice versa. Another job of the COIS handlers is to “buffer” the HTE from the
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Figure 3.1 A GHMI System Architecture

COIS: if the HTE expects the COIS to perform a function it can not, the COIS
handler must implement this function to ensure seamless integration. Similarly, the
IOS handlers handle IOS-HTE communications and buffering. Our purpose is to
design a system architecture which is general enough to apply to a variety of COISs
and IOSs, which means that every COIS can be arbitrarily combined with an TOS
that handles its media types. Currently our major contribution focuses on the COIS-
HTE side. The HTE-IOS mapping would be another interesting research area. We
are developing GHMI as a general hypertext data model supporting integration of a
variety of COISs.

The HTE has a knowledge base made up of COIS-dependent mapping rules,
i.e., bridge laws, which map individual COISs to hypertext. Each COIS has its
own set of bridge laws. These rules are registered by the COIS builders during the
progress of system set-up. To integrate a COIS with a hypertext system based on
our model, the COIS builders need to write the bridge laws stored in the HTE’s

knowledge base and write the code for their individual COIS handler.



33

Besides a knowledge base, the HTE maintains three databases: a Linkbasc,
a Session DB and a Configuration DB. The Linkbase stores persistent hypertext
data, which are not mapped from COISs (e.g., manually created static links,
annotations and bookmarks.). The Session DB stores dynamic data with respect
to a navigation session (e.g., history information within a session) for constructing
dynamic navigation structures such as history list and backtracking. The Configu-
ration DB maintains configuration information for COISs and 10Ss.

The HTE relies on individual COIS handlers as preprocessors to facilitate
COIS-HTE cooperation and is responsible for accomplishing the hypertext function-
alities defined in GHMI. It should manage dynamic information exchange and
identify mapped hypertext objects from COIS specifications. The HTE uses
predefined bridge laws to map COIS objects to hypertext objects. When the
HTE catches some user action which happens on the 10S, say, a link anchor being
selected, the HTE consults its knowledge base seeking appropriate semantics of the
action and identifies destination COIS objects needed or which COIS execution
procedure to invoke. Communication with the COIS is then activated through the
COIS handler, which executes its routines accordingly (e.g., executing the bridge
laws, and/or consulting the underlying COIS database), often returning a report to
display in response to the user action.

GHMI aims at providing a robust data model for representing the function-
alities of the HTE toward integrating COISs with hypertext. The following sections
present the basic elements of the GHMI model. In Chapter 6, we present a GHMI

prototype for implementing the GHMI system architecture.

3.2 Object Classes
GHMI models objects as links and components. We employ an object-oriented

approach to illustrate the GHMI object class hierarchy, as shown in Figure 3.2.
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Figure 3.2 GHMI Object Class Hierarchy

COISObj

Symbol /A means a generalization relationship between two object classes (the
upper-position class is the generalization of the lower-position class in the figure).
Generalization indicates property inheritance between classes. That is, if class A is
the generalization of B, then we can construct B based on A. B will inherit all the
properties A has and will also have its own additional properties. These properties
include attributes and methods (or operations) applicable to the individual classes.

GHMI classifies links into six categories (see §3.4 for details). Components
fall into three subclasses: Plain Atomic, Structured Atomic, and Composite. GHMI
distinguishes composites based on their internal structures: Set, List, Tree and

Graph (see §3.5).
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GHMT's object class classification is based on the properties and operations
available on the objects of individual classes. As shown in Figure 3.2, all objects
have seven common properties: OwningSystemType, OwningSystemName,
OwningAppName, CompName, Attributes, Bridge LawSpec and PresentalionSpec.
The OwningSystemType of a component could be either “Hypertext” or a COIS
handler name. COISs belonging to the same system type share a single COIS handler.
OwningSystemName is a COIS name. QwningAppName is an application name
within a COIS. GHMI allows an object to have a name property CompName to
emphasize its semantic origins. An object name plays a role as a semantic type.
Altributes is a sequence of attribute-value pairs representing additional COIS-
dependent object attributes. BridgeLawSpec is a bridge law ID (BLID) identifying
a bridge law which maps the content of the component. The presentation specifi-
cation PresentationSpec is a specification about how a component is presented to
the user at run-time. It enables encoding a component’s presentation style {(c.g.,
positions in an overview graph and window size.) prior to run-time.

GHMI explicitly distinguishes hypertext components (e.g., annotations) from
those mapped from a COIS using the ownership properties (i.e., OwningSystemType,
OuwningSystemName, Owning AppName). For example, in the domain of RDBMS,
a component’s OwningSystemType could be “Database.” Tts OwningSystemName
could be a general RDBMS name such as “MS-Access” or “Foxpro,” etc. Its
OwningAppName could be a specific application database name such “Small
School,” “GHMI Linkbase,” ete. It is helpful to have such ownership information
as our intention is to support multiple COISs and applications simultancously and
allow linking among them.

An object name CompName plays a role as a semantic type. For example,
for those components mapped from database tables, we can name them as “Table”

to depict their semantics in the originated COIS. Similarly, a link representing an
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advisor-student relationship and starting from the advisor’s record could have a name
“Advisor.” For hypertext components, such as annotations, we can name them as
“Annotation.”

A bridge law is a COIS-dependent mapping rule for mapping COIS objects and
relationships to hypertext constructs (i.e., components, links and anchors). Bridge
laws are stored in the HTE Knowledge Base. For those components owned by
“Hypertext,” the BridgeLawSpec is NONE.

A GHMI link is a set of specifiers. Each link specifier contains a component
specification (CompSpec), an anchor specification (AnchorSpec), a direction and
a presentation specification (PresentationSpec). We shall discuss details on link
specifiers in §3.4. GHMI anchors are defined in link specifiers as AnchorSpec. An
AnchorSpec used in a link specifier combining with the CompSpec in the same
specifier (which identifies the embedding component) provides complete information
to identify an anchor in a component externally.

All GHMI components have a common property COISObj (see §3.5.3 for
details) which is a COIS-dependent expression indicating their COIS origins (i.c., the
original COIS objects they are mapped from). For components not mapped from any
COISs, the COISObj is NONE. The content of a composite component, consists
of a set of components (CompSet) and a set of links (LinkSet). Each component
in CompSet is either identified by a component ID or a COISObj expression which
resolves to components dynamically by applying corresponding bridge laws. The
content (ContentSpec) of a structured atomic component is modeled as a sequence
of attribute-value pairs. This captures the internal structure of an atomic component.
For example, a database record could be modeled as a structured atomic with a
content as a sequence of field-value pairs. The content of a plain atomic is undefined
in GHMI and could be some direct data content or reference to external data content.

The following sections discuss GHMI anchors, links and components in detail.
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3.3 Anchors
A GHMTI anchor is a portion in the content of a component which marks the endpoint
of a link departing from the component. GHMI defines anchors in link specifiers as

AnchorSpec:
AnchorSpec = (Anchor1D, AnchorType, AnchorValue)

which introduces the concept of anchor typing.

The AnchorID is a COIS-dependent value which uniquely identifies an anchor
location within a component’s content. For example, a database record value could
be identified by a combination of its key value and field name. On the other hand, a
text anchor in a text file can be identified by a combination of its length and offset.
in the file.

GHMI anchors are typed into three categories: plain anchors, keyword anchors
and dynamic anchors. The AnchorValue is the anchor content (i.e., the text for
a text anchor). The AnchorID and AnchorValue of different anchor types have

different semantics.

e Plain Anchors
A plain anchor is an anchor whose AnchorID contains explicit location
information interpretable to COISs. Plain anchors are created manually and

statically.

o Keyword Anchors
A keyword anchor is an anchor whose value is a string representing the keyword
(or keyphrase). The keyword indicates that its every occurrence inside the
contents of the embedding component is an anchor with the same value. The
ID of a keyword anchor is statically defined as “NONE” and is resolved to
actual anchor IDs (i.e., locations) by the system at run-time. Keyword anchors

are defined manually.
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e Dynamic Anchors
A dynamic anchor is an anchor whose value is defined in a bridge law and
resolved to an explicit anchor dynamically at run-time. The ID and value of
a dynamic anchor is resolved by executing a link bridge law which maps the
link embedding this anchor in its “FROM” specifier. A RDBMS example of
a dynamic anchor is a string in a record (probably generated from a query
result) which happens to be a table’s name. Such an anchor can be defined in
MRDC with semantics like “A is an anchor if it is a Value of a record and also
the name of a table in a database.” Embedding such an AnchorSpec in a link
specifier of a bridge law defines the entire class of such anchors. We shall see

examples of dynamic anchors in §5.

3.4 Links
Besides common object properties, a GHMI link has property LinkType representing
six link categories. A link consists of a sequence of link Specifiers which specify
the link endpoints. A hypertext under GHMI helps a COIS establish direct access
to explicit and implicit relationships among underlying COIS objects. This section

discusses link types and link specifiers.

3.4.1 Typed Links

Typed links provide an easier and clearer mechanism for both the readers and authors
to understand a hypertext information network. Link typing enhances the power of
two navigational tactics: filtering and zooming. Filtering occurs when the user is
presented by the system with a subset of links which can be followed. With untyped
links, however, the user could be overwhelmed by the cognitive overhead of dealing
with the whole set of links outgoing from components. Filtering on link types restrict

his or her navigation to link types of interest while disabling others. Links in GHMI
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have a property LinkType, representing six categories of links based on different.

roles they are playing in a hypertext system.

LinkType = “StructureLink” | “Re ferenceLink”
| “AnnotationLink” | “AssociationLink”

| “NavigationLink" | “OperationLink”

Structure links represent the underlying structural inter-object relationships
within a COIS domain. In a well-organized information system, among the various
types of inter-object relationships, there might be distinguishable relationships which
dominate the overall information organization and can be represented as structure
links. For example, in a RDBMS, a database consists of tables, a table consists of
records and a record consists of individual values. Such “consists of” (or its reverse
direction) relationships can be mapped as structure links which allow direct access
from a parent object to a child object or vice versa. Structure links are dynamic
links defined by bridge laws.

Reference links depict cross-reference relationships among components, which
can be generated automatically by the system according to predefined bridge laws.
In the domain of RDBMS, the ER diagram itself represents a cross-referencing
relationship among entities. Although these relationships are lost when we map
the ER diagrams into flat database tables, GHMI could restore them as refercnce
links. Other examples include defining a reference link from a record to another
record which has the same key value. The system should be able to compute such
links automatically based on their bridge laws. Therefore, reference links are also
dynamic links defined by bridge laws.

Annotation links connect objects to their annotations. An annotation is a
commentary document attached to an object. We separate an object from its

annotation by placing the annotation in a separate atomic component and connecting
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it to the object through an annotation link. Unlike structure links and reference links,
annotation links are pure hypertext features which have no corresponding mappings
in the underlying COIS. They are static links created manually.

Association links are user-declared ad hoc links representing semantic
relationships among objects. Users can add such links to or delete them from a
hypertext network at will. Association links are non-automatable (otherwise they
would be reference links). Instead, they are defined manually based on a semantic
conceptualization in the user’s mind which is not interpretable by the system. The
user can define any links among objects and give them semantic labels. ITn GHMI,
an association link could be an inter-COIS link which relates an object in a COIS to
an object in another COIS. Association links are also static links created manually.

Navigation links are system-generated links for navigation purposes. Such links
are used to construct navigation structures (e.g., guided-tours, see §3.6). Navigation
links do not reflect inter-object relationships. They are dynamic links and generated
automatically by the system according to the user’s navigation requests. Navigation
links are transparent to users. Users might have no knowledge about the existence
of these links.

Operation links model operational commands and queries over a hypertext.
network. They are dynamic links defined by bridge laws. An operation conducted
on an object can be modeled as an operation link from the object pointing to the
operation results (which might be generated as destination components). Operations
invoked from an interface menu item can be modeled as an operation link with no
departing component. The computation of the destination components might be
completed by the cooperation of the HTE and the COIS. In the case of RDBMS,
operations such as database queries can be modeled as operation links. The user
can access these links directly. For example, we can define a query as an operation

link. Another type of operation link in RDBMS is user-declared queries. The user
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can define frequently-used specific queries as ready-to-follow operation links using a
COIS-supported query language. When following such a link, instead of executing
it. directly, the hypertext engine sends the operation to the COIS for solutions. The
destination of such a link would be the query results resolved dynamically by the

COIS’s query processing system every time this link is followed.

3.4.2 Link Specifiers
The “content” of a GHMI link is a sequence of link Speci fiers. A Specifier defines

a link endpoint through four fields:
Speci fier = CompSpec, AnchorSpec, Direction, PresentationSpec

CompSpec is a component specification identifying a component as a link endpoint.
The GHMI concept of CompSpec reflects dynamic mapping between COIS objects
and GHMI components. The GHMI CompSpec is either a hypertext object specifi-
cation HTObj (if not mapped from COIS) or a COIS object specification COISObj,

plus an optional sequence of ownership properties:

CompSpec = HTODbj
| (COISObyj,
[OwningSystemType,OwningSystemName,OwningAppName])

A CompSpec uniquely identifies an object in a GHMI hypertext system. An
HTObj could be an explicit global component ID (GID) or a hypertext query
expression which resolves to a component ID by some hypertext query processing
function. (The discussion on hypertext queries is out of the scope of this thesis.) A
COISObj is an expression (see §3.5.3) which resolves to a component mapped from
COIS object contents at run-time through bridge law execution. If the CompSpec
of a link does not resolve to an explicit component, the link endpoint becomes a

dangling component and the link becomes a dangling link. This could happen when
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the corresponding COIS object is deleted without notifying the hypertext system.
The system should be able to provide users with information regarding this situation.
If there are no ownership properties in a specifier’s CompSpec, the specifier inherits
the link’s ownership properties. §3.5.3 discusses more details about CompSpec in
GHML.

AnchorSpec specifies an anchor in the a link specifier to mark a link endpoint.
A link specifier representing an entire component has “NONE” as its AnchorSpec.
Direction defines the directional nature of the link endpoint as one of “FROM” (a
departure), “TO” (a destination), “BIDIRECT” (both departure and destination),
and “NONE.” Such a notion of link specifiers is powerful for modeling multi-headed
n-ary links (i.e., a link with more than two endpoints). Unidirectional binary links
are modeled as two endpoints with one directed as “FROM” and the other directed
as “TO.” Bidirectional links (e.g., an association link “Co-workers”) have both
endpoints directed as “BIDIRECT.” An operation link which is not departing from
any components (e.g., “Open Database” command in RDBMS) could be modeled
as a unary link with a single endpoint (e.g., the destination database of an “Open
Database” command) directed as “TO.”

Note that the PresentationSpec in a link endpoint is a link property different
from the PresentationSpec property of the endpoint component itself. For example,
to distinguish an expert-user presentation and a novice-user presentation of a
component, we can encode the accesses to the component as two links with distinct.
PresentalionSpec (e.g., one defines the endpoint as “editable” and the other defines
it as “read-only”) regardless of the component’s own property PresentalionSpec. In
GHMI, embedding PresentationSpec in components is optional. PresentalionSpec

can also be used to define the view style of a component (see §3.5.2).
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3.5 Components
GHMI classifies components into three subclasses: plain atomic components,

structured atomic components and composite components.

3.5.1 Atomic Components

An atomic component in GHMI can not embed other components in its content.
An atomic component could be structured or unstructured. A plain atomic is
an unstructured atomic which has a content without any internal structure. In a
multimedia environment, typical examples of plain atomics include a page of text, a
picture, a raster of image, a short audio tape, a short animated sequence, etc. The
content of a plain atomic component is primitive and unspecified in GHMI. Currently
we only consider text atomics in GHMI and believe that the model can be extended
to include other kinds of data resources.

The content of a structured atomic comprises a sequence of atiribute-value
pairs interpretable to COISs. Examples include a database record, a hypertext
link browser (consisting of a list of link references), etc. We model components
with only attributes (e.g., a database table schema which is a sequence of field
names) as NON F-value structured atomics by specifying NONFE in their values.
For structured atomics, we can define certain structure-based operations, such as
linking to or from a dynamic anchor defined on an attribute or value. Complicated
component content structures, such as “table of content” or a database table, can

be represented as composite components with internal structures (see below).

3.5.2 Composite Components

The concept of composite greatly improves the organization of a hypertext network.
Composites provide a more powerful way to construct a hypertext network over the
pure low-level node-link model and assist both users and authors at various levels.

During navigation, for instance, with composites the user can zoom into a particular



44

subcomponent for details or zoom out it to navigate along the overview structure
of a composite. On the other hand, some COIS (such as DBMSs) have their own
data models, i.e., objects of these COISs are well-structured. It is essential for
a hypertext system to capture these COIS structures and map them faithfully to
compatible hypertext structures.

A composite component (or simply composite) is constructed from other
components. Individual components embedded in a composite could be any type of
components themselves, including composites, plain atomics and structured atomics.

GHMI explicitly classifies composites based on the representation of their
internal structures as Set, List, Tree and Graph. A Set consists of a set of
components and no explicit links exist among these components. A List is composed
of an ordered set of components connected linearly. A Tree is constructed from a set
of components connected as a tree-like structure and has a distinguished component
as its root. A Graph has components as “nodes” and links as its “edges”.

One purpose of modeling composite structures is to build multiple views from
a composite based on its internal structure. In GHMI, besides position information,
the PresentationSpec can be used to define multiple views of a component. Usually,
PresentationSpec is the same as the CompClass. For composite components,
however, we can view them in another style coded in PresentationSpec. For
example, in RDBMS, a database can be mapped to a Set component which consists
of a set of tables (identified by their names). A table, in turn, consists of a set of
records (identified by their keys). A regular Set view of a database object would be
a set of table names. We can overwrite such a view by defining PresentalionSper
as “Tree.” A Tree view of a database object expands all of its tables and records.
That means we would see a three-level tree: The root in level 1 is the database name
itself. Level 2 contains all table names. Level 3 contains all record keys. Clicking

on record keys will bring up record contents. We can also view a Set as a default
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guided-tour (DGT, see the next section) by specifying PresentationSpec as “DGT.”
Component view styles can be also coded in link specifier’s PresentationSpec. When
a component with its own PresentationSpec is defined as a link endpoint, the link

specifier’s PresentationSpec overwrites the component’s PresentationSpec.

3.5.3 Virtual and Computed Components

From the component creation point of view, a GHMI component is either a
hypertext component or COIS component. Therefore, the component specification
(CompSpec) in GHMI is either a hypertext object (HTObj) or a COIS object
(COTS0bj) along with ownership properties.

HTObj specifies either an explicit hypertext component by an explicit ID or
a computed hypertext component by a hypertext query. A hypertext query is a
COIS-independent. query expression, which usually requires structural information
[44]. Examples of such queries are “Find all components with annotations,” “Find
all components with only one departure link,” “Find all unary links,” etc. The
hypertext engine is responsible to resolve such kind of structural queries into UIDs.
This is an advanced hypertext functionality which most current hypertext systems
do not support. We shall not discuss the details of hypertext queries in this thesis.
We consider CompSpec as COISObj (along with ownership properties) only.

GHMI employs the concept of dynamic mapping. One of our major concerns
is to map COIS objects to GHMI components and therefore the COIS can take
advantage of hypertext functionality without changes on its underlying organi-
zation. On the other hand, the hypertext system also wants to support the compu-
tation abilities (such as query processing) of COISs fully. A COIS component is a
component mapped from a COIS object dynamically through predefined bridge laws.
The mapped component is not persistently stored in the HTE Linkbase. Every time

it is required by the user, the HTE dynamically generates its content. Therefore,
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every COIS component is a virtual and computed component. We map COIS objects
to GHMI components only on-demand at run-time according to their specifications
in COISObj and corresponding bridge laws. A COIS object (COTISObj) can be

internally represented as an explicit COIS object expression:
COISObj = (COISID,COISType, COISLabel)

Once an explicit expression of COISObj is defined, the HTE is ready to apply a bridge
law (according to the COISID and the COISType) to map its content. To accomplish
such a mapping, the HTE packs up a message requesting the to-be-mapped object
information from the COIS by specifying its COISID and mapping rules. After a
COIS object is mapped to a component, the HTE executes bridge laws to generate
all link anchors departing from this component.

For dynamic links whose endpoints contain implicit information (e.g., defined in
a bridge law), the HTE needs to apply a link bridge law to resolve implicit information
to explicit COISObj expression. For example, in RDBMS, the specification for the
endpoint of “all tables having the same key field with the current table” could be
(X, “Table”,Y’) in a link bridge law, where X and Y are MRDC variables. The
HTE needs to resolve them to an explicit COISID and COISLabel based on the
MappingRule in the bridge law in order to make the target tables directly accessible
by users. The corresponding table contents are not generated until these tables’
COISIDs are selected by the user.

Only the contents of hypertext components (e.g., annotation and association
links) are persistent in the HTE Linkbase. The contents of COIS components arc
dynamically computed whenever they are selected. The entire hypertext network is
generated dynamically from underlying COIS databases. Such an approach effec-
tively separates the HTE from COISs and reduces the data consistency problem
caused by HTE-transparent COIS operations (e.g., “Edit Table” and “Delete Table”

in RDBMS which could be happening outside and beyond the control of the HITE).
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3.6 Navigation Structures
In the previous sections, we presented GHMTI’s basic elements. We model navigation
structures in terms of GHMI composite components in this section.

The associative nature of a hypertext network structure enables hypertext users
to manage and access data stored in a hypertext database with great flexibility. It is
this flexibility, however, that frequently causes user cognitive overhead and disorien-
tation during navigation courses over the hypertext network. This classic hypertext
navigation problem-—user disorientation—has been identified and discussed exten-
sively in hypertext literature [3, 18, 44, 72, 90]. Arbitrary linking even has been
compared to the abuse of GOTOs in non-structured programming [22]. Efforts
have been made to alleviate the disorientation associated with hypertext’s non-
restrictive linking and direct user-access features. Navigation via graphical maps
and overviews [31, 59, 71, 72, 90] has been proved a useful tool in many hypertext.
systems such as Intermedia [77, 101], gIBIS [20, 19], NoteCards [45], PlaneText
[18] and Neptune [25]. Query-based filtered browsers [45, 25|, history list [72],
bookmarks and Intermedia’s Web View [90] are also helpful mechanisms towards
disorientation reduction. Navigation via guided tours [89, 68, 42, 34], combined with
other techniques, reduces both disorientation and user cognitive overhead.

Benefiting from the experience of other hypertext researchers, GHMI provides a
comprehensive level of navigation structures including bookmarks, network overviews
and guided-tours. We include these structures effectively modeled in terms of
composite components. One major contribution of GHMI on navigation modeling
is the introduction of the four guided-tour categories (query-based guided-tours,
default guided-tours, user-defined guided-tours and navigation-based guided-tours)
which are not found in any other hypertext literature. This section focuses on the

representation of navigation structures regarding bookmarks, network overviews
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and guided-tours. We model some other navigation structures (e.g., sessions) and

facilities (e.g., backtracking) which rely on the run-time user interaction in §3.8.

3.6.1 Bookmarks

Some components in a hypertext network may be of special importance to the user. It
is helpful to provide a direct access to these components from any navigation position.
These components are called bookmarks. Navigation links are maintained by the
system to allow direct access to bookmarks. Bookmarks are special components
in the hypertext network which are directly accessible from all other components.
GHMI models bookmarks as a Set composite with an inder link pointing to it.
This index link is a unary link of type “NavigationLink” with only an endpoint
directed as “TQO” indicating this is a component accessible from all components
(usually through a menu bar item). Users are allowed to manipulate (add or delete
a bookmark) the bookmark Set. The content of this Sel is a set of component
specifications (CompSet). As a result of dynamic mapping, the content of a COIS-
mapped bookmark is actually generated when the user selects it (on its icon or

label).

3.6.2 Network Overviews

Users often get lost when exploring hypertext networks. A network overview [71, 90]
(or simply called an overview) is a vision of a substructure of a hypertext network.
Overviews help alleviate the network disorientation [18, 72] by giving the user a
sense of context. GHMI models overviews on composite components. A component
overview is constructed as a virtual component based on the component’s internal
structures, which could be a Set, List, Tree, or a Graphs, depending on the complexity

of the original COIS object.
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3.6.3 Guided-Tours

From a control point of view, navigation over a hypertext network can be user-
controlled and system-controlled. In a user-controlled navigation, all paths arc
determined by the user through navigation commands provided by the system.
In system-controlled navigation, the navigation paths are prepared by the system
following some user input commands. By default, the user is not allowed to use
navigation commands to choose his own paths once getting on a system-controlled
navigation path (though the user may be able to overwrite this). One typical example
of system-controlled navigation is a guided-tour [34, 42, 68, 89] (GT) which is a
navigation structure built from a sequence of components as a linear path. When
navigating on a GT, the user must follow the GT to access information. No branch
links are available unless an explicit request is applicable to overwrite the prepared
paths. The user can get on or off a GT from any other navigation pattern. At
any stop of a GT, the user is allowed to invoke other links by pausing the tour and
returning back later.

GHMI models a GT as a List composite consisting of a sequence of components
and a set of links. Each link is a “NavigationLink” named “NextGtStop.” A link
endpoint is called a GtStop which can be any type of component (e.g., a link, a
component, or another guided-tour). The user can only follow link “NextGtStop”
linearly to access GtStops in the order they are connected in the GT. In a GT, two
links are distinguished to represent the starting and ending GtStops. The starting
link has only one endpoint directed as “TO” while the ending link has only one
endpoint directed as “FROM.” All other links in a GT have two endpoints directed
as “TO"” and “FROM?” respectively. Figure 3.3 shows the concept of List representing
a GT. This GT contains four GtStops: components C1, C2, C3 and C4, as shown
in Figure 3.3(b). Internally this GT is represented as four links L1, L2, L3 and

L4, as shown in Figure 3.3(a), which embed the component UlIDs in their endpoint
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L1 L2 L3 L4
CompSpec=Cl CompSpec =Cl1 CompSpec=C2 CompSpec =C3
Dircction = TO Direction = FROM Dircction = FROM Dircction = FROM

CompSpec =C2 CompSpec =C3 CompSpee=C4
Dircction = TO Direction = TO Direction = TO

(a)

(b)

Figure 3.3 A Guided-tour Example

specifiers. In the figure we only show the Direction and CompSpec of each link and
the UIDs of each GtStop. The content of a link endpoint is dynamically computed
one by one when the GT is followed by the user. For example, a GT resulted from a
RDBMS query “Find all Ph.D. students’ names who take CIS 610" would be a sct
of records as a GT consisting of student names.

GHMI classifies guided-tours into four categories: default guided-tours (DGTs),
query-based guided-tours (QGTs), user-defined guided-tours (UGTs) and navigation-
based guided-tours (NGTs).

e Default Guided-tours (DGTSs)
DGTs are derived from the structural information of a composite. They are
created automatically by the system and directly available to the user. A
DGT of a composite is a List over links of type NavigationLink automatically
derived from structure links of the composite . One way to obtain a DGT from
a composite is to expand the breadth-first search tree on the original structure
links level by level and order the resulted components in a linear manner. A
DGT GtStop could also be another DGT if the corresponding component. is a

composite.
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e Query-based Guided-tours (QGTSs)
QGTs are created by the system representing query results. The components
resulting from a query are organized as GtStops. A GtStop in a QGT could be
another guided-tour. If a GLSiop is a composite, it could be targeted as a DGT
of the composite instead of presenting the entire composite and expecting the

user to browse it.

e User-defined Guided-tours (UGTS)
The user is able to define a UGT on a set of components in the same way as
defining ad hoc association links. In this case, the resulted links would be ad hoc
navigation links which group participating components into a List composite
as a UGT. Once defined, a UGT can be invoked arbitrary times until deleted
by the user. The user can manipulate a UGT (e.g., annotating, deleting or

adding new components, etc.) as a normal composite.

¢ Navigation-based Guided-tours (NGTs)
The user can define an NGT based on his or her individual navigation history
stored in the History Log (see §3.8). The user can select events from the
History Log to construct an NGT. Once constructed, an NGT (actually its
specifications) exists in the HTE Linkbase until the user deletes it explicitly.

As with UGTs, the user can also manipulate NGTs at run-time.

The navigation structures (bookmarks, network overviews and a variety
of guided-tour types) presented in this section help reduce user disorientation
and provide the user a flexible, comprehensive and well-structured mechanism to

customize individual navigation environment over a hypertext network.
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3.7 A Bridge Law Template

In this section, we discuss bridge law definitions. GHMI employs bridge laws to
map COIS objects and relationships to hypertext constructs. A single bridge law
will map entire classes of COIS objects satisfying the bridge law’s condition. All
components which represent COIS objects are generated dynamically through bridge
law mappings in response to user requests (e.g., traversing a link to bring up the
destination component). When the user selects an object, bridge laws determine
what COIS objects, operations, or relationships will be mapped from the COIS.
As an early step towards demonstrating the power of domain mapping, we explored
logical modeling on the representations of both TEXPROS and hypertext in [96, 97].
In our work aiming at developing a general hypertext data model, we have further
refined bridge laws using logic modeling approach. This section presents a bridge
law template as a standard format for defining bridge laws. We also discuss a simple
mapping rule definition convention (MRDC) for defining expressions used in COIS-
dependent component property specifications.

Bridge laws are stored in the HTE Knowledge Base and identified by their
bridge law IDs (BLIDs). Each COIS has its own set of bridge laws written by its
builders during the course of system set-up. The HTE dynamically invokes these
bridge laws using argument settings as input to generate components. Defining a
bridge law requires specifying the properties of the component to be mapped by
this bridge law in terms of COIS-dependent mapping rules. This section presents a
general template for writing bridge laws and a mapping-rule definition convention
(MRDC). We shall also briefly illustrate how to use this bridge law template and
MRDC expressions (see §3.7.3) to define and execute bridge laws through RDBMS
examples.

We consider two types of bridge laws: component bridge laws and link bridge

laws. A component bridge law maps a COIS object to a component. A link bridge
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Table 3.1 A Component Bridge Law Template
CompClass
OwningSystemType
CompName
PresentationSpec
COISObj

CompSet,

LinkSet
ContentSpec
MappingRule

law maps a COIS relationship to a link. A COIS object is mapped to a component
when it is selected by the user (usually as an link endpoint selected by a link traversal
command). When a COIS object is mapped to a component through a component
bridge law, the HTE executes link bridge laws to map all link anchors departing
from the mapped component. These links are marked by anchors embedded in the
component content. The mapping of link endpoints is delayed until the links are

actually traversed.

3.7.1 Component Bridge Laws

Table 3.1 shows a component bridge law template which is a two-column table.
The left column contains a list of component property names. To write a bridge
law is to define the properties in the corresponding right-column items. A right-
column item of a bridge law template could be either a constant (e.g., “Hypertext,”
“Table,” etc.) or MRDC (see below) variables whose semantics are defined in the
right column of the MappingRule. A MappingRule is a set of MRDC predicates

representing COIS-dependent information.

3.7.2 Link Bridge Laws
A link bridge law defines a COIS relationship which will be mapped to a GHMI link.

The HTE executes a link bridge law when the component embedding the anchor
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Table 3.2 A Link Bridge Law Template

CompClass
OwningSystemType
CompName
PresentationSpec
LinkType
{Specifier; }*
MappingRule

marking this link is brought to display. The link’s endpoints are not mapped until
this link is actually traversed. Table 3.2 illustrates a link bridge law template. A link
bridge law template is similar to the component bridge law template, except that a
link has a LinkType and a list of Specifiers instead of component properties (i.e.,

COISObj, CompSet and LinkSet). A specifier is a composition of
{CompSpec, Anchor Spec, Direction, PresentationSpec}.

A link bridge law defines link properties in terms of MRDC expressions.

The GHMI bridge law templates are greatly influenced by the bridge law
notions of Bieber et al.’s work [12, 9], which has no composites and maps nodes,
links and anchors separately, which have not been implemented. (Bieber’s current
prototype uses bridge laws developed specifically with this implementation in mind.
While they are general enough for any COIS, they do not come from a principled
model.) Bieber’s bridge laws correspond to GHMI bridge laws’ MappingRule part.
GHMI bridge laws map COIS objects to more complex hypertext constructs. The
GHMI MappingRule is more formalized and simpler (only three predicates, sec
§3.7.3). By modeling bridge laws in a table format combined with a simple set of
predicates, GHMI makes bridge laws more understandable.

GHMI extends and formalizes the previous bridge law formats to support.

composites and mappings from COIS to a GHMI hypertext network. Our previous
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work on bridge laws [96, 97, 94, 93] was based on modeling the domain of a document.
management, system. In this thesis we focus on the domain of RDBMS which is quite
different from the document management domain. Our goal of modeling distinct
domains has led us to generalize bridge law templates and prove our idea of using
GHMI as a general model for all COISs. We present the GHHMI version of TEXPROS

bridge laws in Appendix A.

3.7.3 MRDC: A Mapping Rule Definition Convention

The major part of a bridge law template is the MappingRule. Tn order to provide a
formal template to define bridge laws, we need to formalize expressions representing
COIS-dependent information. Benefiting from our previous efforts on modeling
bridge laws using logic, we model MRDC as a subset of Prolog which consists of
a set of constant symbols, variable symbols, a small set of predicates and functions.

The basic MRDC elements include the following.
1. Primitive Symbols

e Propositional Connectives: — (negation), Vv (disjunction),
A (conjunction), — (implication), = (equivalence), = (equality), # (non-
equality), V (universal quantifier) and 3 (existential quantifier).
e Set Connectives: U, N, C, C, D, D.
e Variable Symbols
— Simple Variables are upper-case-leading strings (e.g., X, YV, Z1).
When used separately, symbol ‘.’ represents “arbitrary” or “don’t
care” values. MRDC has two types of variables: simple variables and

list variables.
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— List Variables are variables denoted as a list of other variables, i.e.,
X =[X1, X2, ..., Xy], where X is a list variable and every X;(1 <i <

n) is either a simple variable or a another list variable.

e Constant Symbols are strings quoted in quotation marks (e.g., “MS-

Access”, ‘Record’, etc.) which represent instantiated variable values.

e Function Symbols are upper-case strings, including symbol ‘.’ (e.g.,

APPLY _BL.COMP, GET_PROPERTY, etc.).

e Predicate Symbols are lower-case-leading strings (e.g., object, relation,

ete).

2. Predicates

There are three predicates in MRDC:

e object(X,ClassName)
Predicate object(X,ClassName) identifies an object X belonging to a
class named ClasssName. X is a variable. ClassName is a constant
string. For example, in a database bridge law, object(X, ‘Table') indicates
that X is a database object belonging to a class named “Table.”

e property(X,PropertyName,Y)
Predicate property(X, PropertyName,Y’) indicates that object X has
property named ProperiyName and the value of this property is Y.
X is a variable. PropertyName is a constant string. Y could be a
variable, a constant string, or a function which returns a value. For
example, property(F, ‘keyField‘,'SSN') indicates that F' has a property
“KeyField” as “SSN.”

e relation(X,Y,RelationName)
Predicate relation(X,Y, RelationName) indicates that object X' and

object Y have a relationship named RelationName. X and Y could be
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variables. RelationName is a constant string. For example,
relation(X,Y, ‘Likes') indicates that X and Y have a relationship “Likes”

(i.e., X “Likes” Y').

3. A Special Function

OPERATION(Z,X,Y) is a special function which is available in MRDC
expressions. Function OPERATION(Z, X,Y) identifies a COIS-supported
operation on object Z. The operation’s name is X and it takes ¥ as an
argument list. X is a constant symbol representing an operation name (c.g.,
“Query” in a database). Y is a plain string expression interpretable to the COIS
when combined with the operation name (e.g., in a database, ¥ could an SQL
statement). Variables inside Y have prefix “$$”. For example, in a database,
OPERATION(‘Small School, ‘Query‘, ‘Select Name from Employce where
Salary > 40,000°) denotes a query on database “Small School” with no
variables. Expression OPERATION(‘Small School’, ‘Query, ‘Select Name
from $$X where Salary > 40,000‘) contains a variable X (stands for a table
name) which needs to be instantiated when this query is passed to the COIS
handler. The return value of OPERATION() is the operation results resolved
by the underlying COIS.

3.7.4 Executing a Bridge Law

Although we define bridge laws in format of tables, this by no means implies that
bridge laws are only simple “look-up” tables. A bridge law is applied in the HTE (i.c.,
preparing correct arguments) and actually executed in a COIS handler. Internally,
prior to executing a bridge law, the COIS handler needs to translate it to a set of
Prolog predicates. Therefore, the entire table of a bridge law definition implics a set.
of predicates. An execution of a bridge law would take given variable values (e.g.,

COISID, COISType, etc.) to instantiate all other free variables in the predicates.
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In other words, variables are “inferred” from the predicates defined by a bridge law.
This procedure is similar to running a query under Prolog. A COIS handler usually
has a bridge law engine to handle bridge law execution.

The HTE employs three bridge law functions to apply bridge laws:
APPLY _BL.COMP(), APPLY_BL.LINK() and APPLY_BL_ANCHOR(),
which apply a bridge law to generate components, link endpoints and dynamic

anchors, respectively.

e APPLY_BL.COMP(BLID, ArgumentSpec)
This function is responsible for instantiating a component BL to a component.
APPLY _BL_COMP(BLID, ArgumentSpec) instantiates component bridge
laws in the HTE Knowledge Base to construct virtual components.
APPLY _BL_.COMP() takes two parameters: a component bridge law 1D
specified by BLID and a list of parameter specifications in ArgumentSpec.

For example,
APPLY _BL_.COM P(BLrgyer, [D,T) = ['SmallSchool', ‘Doctoral Student'])

applies bridge law B Ly g1 to generate a component from the content of table

“DoctoralStudent” in database “Small School.”

o APPLY _BL_LINK(BLID, ArgumentSpec)
This function is responsible for mapping a link endpoint from a link bridge
law. It takes a link bridge law and a list of arguments to map a link endpoint

specified in a link specifier with “TO” direction. For example,
APPLY _BL_LINK(BLgamekey: |D, T| = [‘SmallSchool',  DoctoralStudent'})

applies link bridge law BLgamercey to generate components from tables having

the same key as table “DoctoralStudent” in database “Small School.”
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e APPLY_BL_ANCHOR(BLID, ArgumentSpec)
This function is responsible for mapping dynamic anchors defined in the
“FROM” specifiers of a link bridge law. Like APPLY_BL_LINK(), this
function also takes a link bridge law and a list of arguments. But instead of
generating the link endpoints in “TO” specifiers like APPLY _BL_LINK()
does, instead it generates dynamic anchors defined in “FROM?” link specifiers
by applying the MappingRule in the bridge law. After mapping, a dynamic
anchor is temporarily stored in the HTE Linkbase and is ready to follow as if

it were a plain anchor. For example,
APPLY _BL_ANCHOR(BLRgefro7able

[D, T, K] = [‘SmallSchool‘, ‘ Doctoral Student', ‘123456 789])

applies link bridge law BL gefrorabie t0 generate components from tables whose
names appear as a value in record “123456789” in table “DoctoralStudent” of

database “Small School.”

3.7.5 Bridge Law Examples
Table 3.3 shows a component bridge law example BLpgue and Table 3.4 shows a
link bridge law example BLpgerorabte-

BLrpguer maps tables to set components from records, as shown in Table
3.3. The resulting component contains a set of record components mapped from
database records by the above BLRgecorqa- A table is identified by its table name and
the database name in which it resides (i.e., [D,T]). The content of the resulting
composite is a set of record components. {[D,T, K], ‘Record‘, K]}* means 0 or more
records. object([D, T, K], Record‘) indicates that K is a record residing in table T
of database D. The CompSet does not include ownership properties as the corre-
sponding COIS objects (i.e., records) inherit these properties from their embedding

table.
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Table 3.3 Bridge Law BLT ablel

CompClass ‘Set*

OwningSystemType | ‘Database’

CompName ‘Table‘

COISObj [[D,T), Table!, T|
CompSet {lID,T, K], Record’, K]}*
LinkSet ‘NONE!

ContentSpec ‘NONE!

MappingRule object([D, T, K], ‘Record).

The following instantiation of B Lpae maps a the content of table “Doctoral-
Student:”
APPLY _BL.COM P(BLryaet,

(D, T] = [‘SmallSchool’, ‘ Doctoral Student])

BLResrorasie maps an implicit relationship between a record and a table whose
name appears in the record as a value, as shown in Table 3.4. The CompSpec in this
link bridge law’s specifiers does not include ownership properties as the corresponding
endpoint COIS objects (i.e., the record and tables) inherit these properties from this
link.

BLgesroranie defines a dynamic anchor in the departing record. The anchor’s
value V happens to be a table’s name in the same DB. Based on such an implicit
relationship, this BL constructs a reference link from the record to the table marked
by its table name (highlighted as anchors) in the record’s content. BLgeirorabee 18
frequently used in the GHMI prototype to present a query result and other reference
link destination mappings to the user (see §6). We consider a query result as a
dynamic table. The user can navigate on its records via a query-based guided-tour
(QGT). We can apply BLpesrorane to the records contained in all dynamic tables
(i.e., those resulted from operation links and reference links) as well as static tables

(i.e., regular tables in a DB).
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Table 3.4 Bridge Law BLRefToT able

CompClass ‘Link*

OwningSystemType | ‘Database’

CompName ‘RefToTable

LinkType ‘ReferencelLink’

Specifier;

CompSpec [[D, T, K], ‘Record‘, |
AnchorSpec ([D,T, K, F), ‘Dynamic‘, V]
Direction ‘FROM‘*

Specifiery

CompSpec [[D, V], ‘Table, ]
AnchorSpec ‘NONE*
Direction ‘TO*

MappingRule object([D, T, K], ‘Record’),
object([D, T, K, F), ‘Value'),
object(|D, V], ‘Table‘),
property([D, T, K, FJ], ‘Content‘, V).

We illustrate more bridge laws in §5 and §A. §5 discusses how to use MRDC
and other GHMI constructs to map RDBMS to hypertext. §A gives bridge law

examples on another domain—TEXPROS, a document management system.

3.8 Session Structures
In modern hypertext systems, it is crucial to provide users with a friendly,
flexible and reliable navigation environment over a hypertext network. Such an
environment heavily relies on what run-time structures the underlying hypertext
model provides. A well-organized navigation environment should be able to efficiently
reduce user disorientation as much as possible. Over a session of interactive
activities, the user can invoke many run-time navigation patterns such as forward
browsing, backtracking and backjumping. We introduced the concept of task-based
backtracking in multi-window environments in [13]. This section focuses on the

run-time structures for the HTE Session DB, including event structures and system
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traversal logs. The HTE Session DB stores history information regarding a user
navigation session based on these structures. More details can be found in [13],
where we illustrated how these structures support navigation facilities and presented

a preliminary algorithm for implementing task-based backtracking based on these

structures.

3.8.1 The Event Structure
We define an event as any user action which affects the system status. These
actions usually cause some change on the user interface such as creating a new
window or closing an existing one. We classify events into forward, backwards and
switching events. Link traversal is a forward event. Backtracking (executing a
backtrack command) is a backwards event. Selecting, opening and closing comprise
the switching events as each deactivates the current window and activates a different
one. (Closing a window activates the window beneath it, if any.) To support different
kinds of backtracking and other navigation facilities (e.g., creating history-based
guided-tours), the system keeps a complete set of user event information, which we
record in the following event structure.

We represent each event by a tuple (I, A). The event identifier I provides a
unique reference to the event. A contains the set of attributes which characterizes

the event. Event attributes include the following:

Fvent-type. An event can be one of five types:

e traversal - traverse a link to a new (or already displayed) window;

e open - create a new window (or activate an already displayed window)
explicitly by executing an “open window,” “open new document,” or
“open new component” command,;

e selecl - activate an existing window directly by selecting it, not through

any link traversal;
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e close - close an existing window directly by executing a “close window™
or “close component” command; and

e backirack — backtrack or backjump along a link, or more generally, along

a previous event by executing a “backtrack” command.

Departure-component This field contains the UID of the “departure” component

from which an event originates.

Destination-component This field identifies the UID of the “destination” component.

that the event activates.
Subtask-log-id This field indicates the Subtask Log (see §3.8.2) referencing this event.

Log-indez This field contains an integer indicating the event’s chronological position
in the Chronological Log (see §3.8.2). This attribute applies only to traversal

events.

The system stores events in a system session structure called System Traversal

Logs, which we describe next.

3.8.2 System Traversal Logs
To track user actions and enable multiple types of backtracking, GHMI maintains a

System Traversal Log structure consisting of three types of traversal logs:

e History Log
The History Log records the complete event structure for every user event,
including its event identifier and all attributes. In addition to backtracking,
users could employ the History Log to create guided tours. Experimenters could

use it to trace and analyze user actions.

e Chronological Log

Unlike the History Log, the Chronological Log only registers forward (traversal)
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events. Each entry contains an event identifier corresponding to an event in

the History Log.

e Subtask Logs
Similarly, Subtask Logs only contain forward events. Each Subtask Log contains
all uninterrupted forward traversals. The system starts a new Sublask Log
whenever a forward event happens after a backwards or switching event. Each

entry contains an event identifier corresponding to an event in the History Log.

3.9 Summary

In this chapter, we presented GHMTI’s system architecture and basic concepts. The
GHMI system architecture consists of three basic layers: the computation-oriented
information systems (COISs), a hypertext engine (HTE) and the interface-oriented
systems (IOSs), each running as independent processes. COISs and 10Ss are
connected to the HTE by their handlers. Currently our major contribution focuses
on the COIS-HTE side. To integrate a COIS to a hypertext system based on
our model, the COIS builders have to write the bridge laws stored in the HTE’s
Knowledge Base and write the handler code for their individual COISs. The HTE
uses predefined bridge laws to map COIS to hypertext. GHMI aims at providing a
robust data model for representing the functionalities of the HTE toward integrating
COISs with hypertext.

GHMI presents a hierarchical object class representation. Basic GHMI
concepts include dynamic anchors, behavioral link typing, composite structures,
structured atomic components, virtual components, dynamic mapping and computed
components. GHMI also includes several navigation structures (bookmarks, network
overviews and guided-tours). GHMI enables dynamic mapping of COIS objects and
relationships through a bridge law mechanism. Each bridge law is defined using a

template and a simple Prolog-like mapping rule definition convention MRDC. All
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of these provide a powerful and comprehensive data representation framework for
our platform of supporting COIS-hypertext integration. GHMI’s basic concepts
include the following: (1) Object class hierarchy: GHMI models objects as links
and components. Components are classified into atom components and composite
components. GHMI distinguishes plain atomic and structured atomic components
and models four subclasses of composites based on their internal structures; (2)
Anchors: GHMI models external anchors, anchor typing and the concept of dynamic
anchors. Dynamic anchors are generated through bridge law mapping; (3) Links:
GHMT links are classified into six categories based on the roles they play in the
hypertext system; (4) Navigation structures: GHMI models navigation structures as
structured composites. These structures include bookmarks, network overviews and
four categories of guided-tours; (5) Virtual and computed components: In GHMI,
all components mapped from COIS bridge laws are computed components and also
virtual components. They are not stored in the HTE Linkbase. Every time they
are required by users, the HTE applies bridge laws to dynamically generate them;
(6) The bridge law template: GHMI classifies bridge laws as component bridge laws
and link bridge laws. GHMI provides a bridge law template and a Prolog-like simple
language MRDC for defining bridge laws; (7) Session structures: GHMI models a
set of session structures (i.e., the event structure and the system traversal logs) to
support dynamic navigation facilities.

Both the builders of the hypertext system and the COISs benefit from the
GHMT's concept of bridge laws. Bridge laws act as the bridges between the hypertext
system and a range of heterogeneous COISs, providing the COIS builders with a
comprehensive mechanism to integrate their COISs with the hypertext system. The
GHMTI bridge law templates are largely influenced by the bridge law notions of Bieber
et al.’s work {12, 9], which has no composites. GHMI extends and formalizes the

previous bridge law formats to support composites and mappings from COISs.
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GHMI aims to utilize the Dexter Hypertext Reference Model [46, 47] to build
its model. We shall discuss how we apply Dexter to model GHMI with proper

extensions and specifications in the next chapter.



CHAPTER 4

GHMI: A DEXTER-BASED HYPERTEXT MODEL

The Dexter Hypertext Reference Model [46, 47] is a widely recognized hypertext
model serving as an interchange standard for hypertext systems. Hypertext
researchers addressed the usefulness and robustness of Dexter in a panel at the
Hypertext'89 conference and later in research concerning the paradigm of system
interchange and hypertext modeling, including DHM (38, 41, 39, 37, 40], RHYTHM
[66], AHM [50], interchange between Intermedia and KMS [62], and Garzotto ct
al.’s model [35]. In this chapter, we aim at modeling GHMI in the terms of Dexter
to make GHMI a Dexter-based model. We first present a general review of the
formalized Dexter model. Then we illustrate why Dexter is not strong enough to
model GHMI, and our necessary extensions. Finally, we present how we modcl

GHMTI using the extended Dexter model by tailoring it with GHMI speci fications.

4.1 The Dexter Model

In Dexter, a hypertext is divided into three separate layers, namely the run-time
layer, the storage layer and the within-component layer. Dexter focuses on the
storage layer. In this section, we present basic elements of the Dexter storage layer
model. In the next two sections, we will extend and specify Dexter to model GHMI.

The Dexter storage layer consists of a network of components which are infor-
mation containers and interconnected by relational links. A component contains a
base component (i.e., the content of the component) along with associated component
information, including a set of attributes, a presentation specification (interpretable
in the run-time layer) and a set of anchors pointing to portions of this component’s

contents. A base component is recursively defined as an atomic, a link or a sequence
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of other base components. The notion of composite components provides a hierar-
chical component structuring mechanism. The atomic component is the primitive
unit in Dexter. Links are components representing relationships among components.
Defining links as components enables links to be defined among links.

Dexter is formulated in Z [83], which is a formal specification language based
on typed set theory. We shall only roughly follow the Z notations used in Dexter and
shall describe complex concepts in words so that understanding of our description
does not rely on a knowledge of Z.

A Dexter hypertext system consists of a set of components. Every component
is identified uniquely by its internal UID. An accessor function is responsible for
accessing a component given its UID. UIDs provide a direct component addressing
mechanism. In some cases, though, we need to address a component through some
statement (e.g., a database SQL statement), so that the UIDs are unknown. In these
cases, the UID mechanism is insufficient and Dexter provides an indirect addressing
mechanism which resolves a specification to a UID and then the accessor function
is able to access the resulting component. Therefore, Dexter includes a resolver
function which is responsible for resolving a component specification into a UID.

The UID is primitive in Dexter, i.e., it is left unspecified.

[UID]

Component, specification and presentation specification are also primitive in
Dexter from the set COMPONENT_SPEC and the set PRESENT_SPEC (in

Z, upper-case strings in a pair of brackets represent given sets, which are primitive):

[COMPONENT_SPEC,PRESENT_SPEC]
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Anchors specify link endpoints and are defined in components. An anchor has
an ANCHOR_D and an ANCHOR.VALUE from two given sets. The anchor
value represents anchor location information within a component, and is inter-
pretable by the within-component layer. A component maintains an anchor lookup
table with each entry as a pair of ANCHOR_ID and ANCHOR.VALUE. We call
such an anchors internal anchors as they are defined explicitly in a lookup table in

components. An anchor id uniquely identifies an anchor in a component.

[ANCHOR.ID,ANCHOR.V ALUE]

ANCHOR == ANCHOR_ID x ANCHOR.VALUFE

The above anchor definition can be read as “an anchor is defined as an
ANCHOR_ID and ANCHOR.VALUEFE pair.” A link consists of a sequence of
speci fiers. Each link specifier contains a component specification, an anchor speci-

fication, a presentation specification and a direction.

DIRECTION := FROM | TO | BIDIRECT | NONE

— SPECIFIER
componentSpec : COMPONENT_SPEC
anchorSpec : ANCHOR_ID
presentSpec : PRESENT_SPEC
direction : DIRECTION

Z employs the notion of a “half-box” (open to the right) to define an

object (upper-case leading strings) schema. The above half-box defines an object
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SPECIFIER which has four attributes (or fields, denoted as lower-case leading
strings), each being defined by corresponding given set names (i.e., upper-case strings
to the right of > which have been defined prior to this definition).

The COMPONENT_SPEC in a link specifier enables a link endpoint to be
defined implicitly and computed dynamically. This is a powerful mechanism for
constructing computed components.

Dexter requires a link to have at least two specifiers and at least one specifier

with direction “TQO:”

— LINK
specifiers : seq SPECIFIER

#specifiers > 2
ds : ran specifiers e s.direction = TO

Here, seq stands for “a sequence of.” The lower part of the above half-box
contains constraints specifications on object attributes. ‘#’ stands for “number of”,
ran stands for “in range of” and ‘e’ stands for “such that.”

A Dexter component is modeled as a two-part composition: a compBase and
a compInfo. A compBase represents a base component which is recursively defined
as an atom, a link component, or a sequence of other base components. An atom is

modeled by the primitive type ATOM,

[ATO M|

We use the recursive type BASE_.COMPONENT to represent base components

recursively:
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BASE.COMPONENT  ::= atom({(ATOM))
| link((LINK))
| composite((seq BASE_.COMPONENT))

Components can have arbitrary associated information as attribute-value pairs

from two given sets:

[ATTRIBUTE,VALUE]

The complInfo includes a set of attributes, a presentation specification and a

sequence of anchors:

— COMP_INFO
attributes: ATTRIBUTE — VALUE
anchors: seq ANCHOR

presentSepc: PRESENT_SPEC

#anchors = #(first(| ran anchors |))

Symbol ‘' indicates a function mapping an attribute (in set ATTRIBUTE)

to its domain value (in set VALUE).
The schema COMPONENT represents a base component and associated

information:

-- COMPONENT
compBase : BASE_.COMPONENT
complinfo : COMP_INFO

A link component is a component with a link as its base component:
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- LinkComp --————mmmmm
COMPONENT

compBase € ran link

Finally, a hypertext system can be modeled by the schema
PROTO_HY PERTEXT which has three parts: (1) a finite set of components; (2)
a resolver function which returns the UID for a given component specification; (3)

an accessor function which given a UID returns a component;:

— PROTO_HYPERTEXT
components : F COMPONENT

resolver : COMPONENT_SPEC — UID
accessor : UID — COMPONENT

F' stands for “a finite set.”

A Dexter HYPERTEXT can be constructed as an instance of the schema
PROTO_HY PERTEXT by satisfying four constraints: (1) The accessor function
must generate a value for every component (i.e., every component must have a UID);
(2) The resolver function must produce all possible valid UIDs (i.e., all component
specifications must resolve to existing UIDs); (3) A component can not contain itself
either directly or indirectly in its base component; (4) The anchor id of a component,

must be the same as the anchor ids in link specifiers resolving to this component.

4.2 Extensions to Dexter
Dexter emerged from modeling existing hypertext systems. As hypertext field
evolves, Dexter becomes insufficient to fit all systems especially those have emerged

after Dexter. We found many obstacles in modeling GHMI using Dexter. Dexter
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has problems with its model for composite components, anchors and links. In
this section, we discuss the problems we encountered and our solutions to them as

extensions to Dexter.

4.2.1 Components

Dexter has problems on the definition for composite components. A Dexter
composite component contains “bare-bone” base components which are not.
independent components. The definition for component is recursive on base
component rather than on component. This implies that base components in a
composite component are not components. Since UIDs are only associated with
components, base components have no UIDs. Base components can not be accessed
by the accessor function. Furthermore, base components have no COMP_INFO.
There is no way to associate attributes to base components. Base components have
no anchors or presentation specifications of their own either. When we construct
a composite component taking other components as base components, all other
components lose their own properties (regarding attributes, anchors and presen-
tation specification). It is also difficult to create links among base components since
they are not independent components and have no UIDs. Therefore, such a notion
of composite is too restrictive.

For example, in our domain of supporting multiple COISs, we might have a
composite component made up of components from different COISs (with distinct
ownership properties and other COIS attributes). We also try to model the internal
linking structures of composite components to facilitate navigation (e.g., create
guided-tours based on the internal links of a composite). We can not effectively
model these GHMI composites in terms of Dexter. We need to extend the Dexter

base component definition. The following is our solution:
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BASE_.COMPONENT := atom((ATOM))
| link((LINK))
| composite({seq COMPONENT))

With this improved base component definition, a component can be made up
of other independent components having UIDs and properties. This supports the
concept of external components (or “reference vs. contain™), i.e.,, a component’s
containing other independent components can be treated as “referencing” other
components instead of embedding “bare-bone” base components. (Dexter’s not
allowing external components has been widely criticized [38, 41, 39, 37, 40, 63, 50].)
This solves the problem of constructing composite components from independent

components and enables modeling internal structures of composite components.

4.2.2 Anchors

Dexter defines anchors in the content of components. Link specifiers contain an
ANCHOR_D which must be consistent with the definition in the component
embedding the anchor. Since the COMPONENT_SPEC in a link specifier needs
to be resolved to UlIDs, it may lead to different UIDs in different computations. Using
an actual ANCHOR_ID in a specifier requires an unbearable consistency burden
on hypertext systems: all possible components whose UIDs could be mapped from
a given COMPONENT_SPEC need to have the same anchors, or at least need to
use the same ANCHQOR._ID for that link. In our environment of dynamic mapping,
COMPONENT_SPEC is frequently used in link specifiers to allow generating link
endpoints dynamically. Storing ANCHOR_ID in link specifiers which resolve to
dynamic components would impose a heavy consistency burden. It is difficult to map
the specifier’'s ANCHOR_ID to the corresponding ANCHOR_ID in a dynamically

computed component.
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As suggested by Maioli et al. [66], we modify Dexter anchor notions to replace
the ANCHOR._ID in a link specifier with an anchor specification ANCHORSPEC
which, along with COMPONENT _SPEC, resolves to anchors in the link endpoint:

— SPECIFIER
componentSpec : COMPONENT_SPEC
anchorSpec : ANCHOR_SPEC
presentSpec : PRESENT_SPEC
direction : DIRECTION

As we mentioned before, Dexter only supports internal anchors which are
defined in components. Here we define external anchors in link specifiers (rather
than in components) using an ANCHOR_SPEC. To resolve ANCHOR_SPEC
to anchors, we introduce two new resolver functions: an Alresolver function
and an AVresolver function. Given UID (resolved by the resolver function
from COMPONENT_SPEC), the Alresolver resolves ANCHOR_SPEC to
ANCHOR_D and the AVresolver resolves ANCHOR_SPEC to
ANCHOR.\VALUE.

resolver : COMPONENT_SPEC — UID
Alresolver : UID x ANCHOR_SPEC — ANCHOR_D

AVresolver : UID x ANCHORSPEC — ANCHOR.VALUE

The Alresolver function maps ANCHOR.SPEC to ANCHOR_ID, to
retain the original Dexter model of internal anchors. In the original Dexter model,

links store ANCHOR_IDs and COMP_INFQOs store a sequence of anchors (i.e.,
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a lookup table of pairs of ANCHOR_ID and ANCHOR.VALUEFE). Given an
ANCHOR_D, we can easily determine the ANCHOR_V ALUE, which is what we
need to actually determine the exact location of the link end-point. The AVresolver
function maps ANCHOR_SPEC to ANCHOR.VALUF to introduce the concept
of erternal anchors, i.e., situations in which the component does not know which
of its parts have been selected as link endpoints and therefore there is no way to
define anchors in the component’s COM P_INFO. Therefore, we extend the Dexter
hypertext system schema PROTO_HYPERTEXT by adding the two anchor

resolver functions:

-- PROTO_HYPERTEXT
components : F COMPONENT

resolver : COMPONENT_SPEC - UID

Alresolver : ANCHORSPEC — ANCHOR_ID
AVresolver : ANCHOR_SPEC — ANCHOR.VALUE
accessor : UID — COMPONENT

With the extended Dexter, computing a link endpoint involves resolving both
components and anchors at run-time. This is exactly what we need to support

dynamic mapping.

4.2.3 Links
Dexter requires links to have at least two identifiers. This excludes unary links.
Dexter also excludes dangling links by requiring all links to have at least one
specifier with direction “TO” and COMPONENT_SPEC to be resolved to
existing components. Dexter’'s restriction on these constructs has been widely
criticized [39, 40, 63, 62].

In our approach of supporting COIS and hypertext integration, we also

find these restrictions are too narrow. Unary links are useful for modeling COIS
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commands directly available as menu items. Access to bookmarks can also be
modeled as a unary link with only one “TQ” specifier. On the other hand, Dexter
allows neither “explicit” dangling links (i.e., all links must have at least a “TQO”
specifier) nor “potential” dangling links (i.e., all COMPONENT_SPECs must
resolve to existing components). Such exclusion of dangling links is too restrictive
in many cases [39, 40, 63, 62]. In the environment of dynamic COIS mapping, a
link endpoint could specify a computed component mapped from a COIS object
(defined as a mapping rule). If the COIS object is deleted inside the COIS (which is
transparent to the hypertext system), the execution of the mapping rule will result
in an empty component. This causes the link pointing to the component to become
“dangling.” If the anchor marking a link is deleted inside the COIS, the link becomes
dangling too. Therefore, we extend Dexter’s link definition as follows by reducing
the minimal specifier number to 1 and removing the restrictive condition on “TQ”

specifiers:

-— LINK
specifiers : seq SPECIFIER

#speci fiers > 1

4.3 Specifications to Dexter
Dexter is a high level abstract reference model. It aims at capturing the common
features of different hypertext systems but does not specify any systems in full. To
create a model for the GHMI hypertext system using the above extended Dexter
model, we need to map GHMI’s capabilities to Dexter. Once mapped to Dexter,

GHMI becomes a Dexter-based model which proves both GHMTI's and Dexter’s
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robustness and generality. This section illustrates our specifications of all GHMI

features that fall in Dexter and therefore build GHMI as a Dexter-based model.

4.3.1 Component Information

In GHMI, we specify the ATTRIBUTFE in Dexter COMP_INFO to explicitly
model object properties as well as other COIS-dependent attributes.

We specify link types and component classes as follows:

LINKTYPE :=
“StructureLink” | “ReferenceLink”
| “AnnotationLink” | “AssociationLink”

| “NavigationLink” | “OperationLink”

COMPOSITE := “Set” | “List” | “Tree” | “Graph”

COMPCLASS := “PlainAtomic” | “StructuredAtomic” | COMPOSITE

GHMI objects have specific properties. We can specify Dexter's ATTRIBUTE
to represent. them. GHMI object common properties include link type, component
classes and other COIS-dependent attributes as follows:

[VALUE]

[OST,OSN,OAN,CN,BLS]
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- ATTRIBUTE —
owningSystemType : OST
owningSystemName: OSN
owningAppName: OAN

compName : CN

bridgeLawSpec : BLS

linkType : LINKTYPE

compClass : COMPCLASS

attributes : ATTRIBUTES — VALUE

A GHMI link has no compClass attribute and a GHMI component has no

linkType attribute.

4.3.2 UlDs

GHMI distinguishes hypertext components from COIS components according to
their origins. Hypertext components are components not mapped from COIS
objects. They are identified by their UIDs as system-generated integer values,
called Global IDs (GIDs). Examples of hypertext components include annotation
components which contain commentary information of other components, annotation
links which connect components to their annotations, association links which arc
created manually, etc. These objects are persistent objects in the HTE Linkbasec.
COIS components are mapped from COIS objects by applying bridge laws. They
are not persistent in the HTE Linkbase and therefore can not be identified by simple
integer IDs. Instead, a COIS object is identified uniquely by a COISOBJ plus
ownership properties. Therefore, GHMI specifies the Dexter UID as either a GID or

a COISOBJ plus ownership properties:

[GID,COISID,COISTYPE,COISLABEL)|
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COISOBJ ==COISID x COISTYPE x COISLABEL

UID = GID
| (COISOBJ,
OwningSystemType, OwningSystemName, OwningAppName)

COISID is an object ID within a COIS application. COISLABEL defines
a display label for an object. COISTYPE is an object class name in a COIS.
Bridge laws are defined on entire classes of objects. COISTYPE determines which
bridge law should be applied to generate an object given COISID and OwningSys-
temType. OwningSystemType identifies a COIS handler which works for a group
of COISs with a common data model (e.g., a single DB handler for all RDBMSs).
OwningSystemName identifies individual COISs (e.g., MS-Access, Oracle, Sybase,
etc.). OwningAppName identifies individual applications within a COIS. The
ownership information is optional as some COIS might encode these information as

a part of COISIDs.

4.3.3 Components and the Accessor Function
GHMI'’s components are compatible to Dexter’s components. Besides the above
component classes specified as a Dexter ATTRIBUTE, we can also specify Dexter's
atoms and base components to model GHMI atomics and composites.

GHMI explicitly models atomic components as either unstructured atomics
(i.e., plain atomics) or structured atomics. contentSpec defines the content of atomic
components. The contentSpec of a structured atomic component is a sequence
of COIS-dependent atiribute-value pairs. The contentSpec of a plain atomic is
primitive. It is COIS-interpretable (could be some data content or reference to

external data content). We obtain this by specifying Dexter’s atoms:
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[PLAIN_ATOMIC]

[COIS_ATTRIBUTE,COIS.V ALUE]

STRUCTURED_CONTENT == COIS_ATTRIBUTE x COIS.VALUE

— STRUCTURED_ATOMIC
contentSpec : seq STRUCTURED_CONTENT

ATOM ::= PLAIN_ATOMIC | STRUCTURED_ATOMIC

A GHMI component could be an atom (i.e., plain atomic or structured atomic),
a link (the same as a Dexter link), or a composite component. The content of a GITMI
composite component contains a set of non-link components (CompSet) and a sct.

of link components (LinkSet). Recall that Dexter defines a link component as:

— LinkComp —
COMPONENT

compBase € ran link

We define a GHMI non-link component similarly:

— NonLinkComp
COMPONENT

compBase & ran link
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We therefore specify Dexter’s base_component to represent, GHMI components:

LinkSet ::= ({seq LinkComp))

CompSet ::= ((seq NonLinkComp))

BASE.COMPONENT  ::= atom({ ATOM))
| link((LINK))
| composite({CompSet, LinkSet)),

Here we define a base component as a either an ATOM, a LINK, or
a composite consisting of a LinkSet and a CompSet, which are sequences of
components (link components and non-link components respectively). Therefore, in
fact, a GHMI base component is still a sequence of components. This is consistent
with the extended Dexter base component definition. The only difference is we
explicitly distinguish link components from non-link components, and this does not
violate the definition consistency.

All GHMI components mapped from COIS objects are computed components.
The accessor function is responsible for mapping a GHMI UID (i.e., COISOBJ plus
ownership properties) to actual COIS object contents by applying a bridge law. The
accessor function takes a UID and maps it to the associated component. In GHMI, we
need to specify the functionality of the Dexter accessor function to include applying
bridge laws to obtain the content of a component. In GHMI, hypertext components
are static and their UIDs are explicit. Given a UID for a hypertext component,
the accessor function can directly obtain the component (i.e., its content) from the
HTE Linkbase without applying any bridge law. On the contrary, COIS components
are mapped at run time. The UIDs for COIS components are symbols representing

a COISOBJ plus ownership information (see the above §4.3.2). Given such UlDs,
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the content of COIS components is not directly available from the HTE Linkbase.
Instead, the accessor function needs to apply a component bridge law to generate
the component. Therefore, the accessor function is equivalent to GHMI’s function
APPLY _BL_.COMP(BLID, ArgumentSpec) which takes a component bridge law
(identified by the BLID) and includes a given UID in its ArgumentSpec to map a

component:

accessor == APPLY_BL_COMP(BLID, ArgumentSpec)

Therefore, a GHMI component bridge law defines a mapping from a UID to a
component. This is exactly what the Dexter accessor function does. A component
bridge law specifies OwningSystemType for identifying COIS handlers. Other
ownership properties should be also available at the time of applying a bridge law
to identify COISs and applications within individual COISs. Given a COISOBJ and
ownership properties, the HTE searches the HTE Knowledge Base for a bridge law
matching the COISTYPE and OwningSystemType, and passes these as parameters
to the accessor function. The accessor function generates a message containing the
UID and the bridge law’s MappingRule and sends it to the corresponding COIS
handler (identified by OwningSystemType). After receiving the responses from the
COIS handler, the accessor function generates the content of the component based
on the COIS handler’s responses and other given information. At this time, the

component, is ready to be instantiated by the run-time layer for display.

4.3.4 Anchors and Anchor Resolver Functions

Dexter models an anchor as an ANCHOR_ID and ANCHOR.VALUE.
ANCHOR_ D provides a way to reference an internal anchor through a lookup table
in a component. In GHMI, however, all anchors are external anchors. Components
have no lookup tables for anchors. Therefore, GHMI's anchor ID is quite different

from Dexter’s concept of ANCHOR_ID. A GHMI anchor ID identifies an anchor by
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its location information. A GHMI value is the actual anchor text. Therefore, a GITMI
anchor ID (i.e., anchor locations) along with a GHMI anchor value (i.c., an anchor
text) maps to Dexter's ANCHOR.VALUE. GHMTI’s anchor types can also be
included in Dexter's ANCHOR.VALUE. We specify Dexter's ANCHOR.V ALUFE

to model these typed anchors:

[GHMI_ANCHOR_ID,GHMI_ANCHOR_V ALUE]

ANCHORIY PE := “Plain” | “Keyword” | “Dynamic”

ANCHOR\VALUE == GHMI_ANCHORID x ANCHORTYPE x
GHMI_ANCHOR.VALUE

In GHMI, unlike plain anchors and keyword anchors which are created
statically, dynamic anchors are resolved from ANCHORSPEC through link
bridge laws. A link bridge law defines a Dexter link and anchor specifications. The
GHMI ANCHOR_SPEC is defined as an MRDC (i.e., the Mapping Rule definition
Convention which are Prolog-like logical expressions, see §3.7.3.) anchor value
expression MRDC_ANCHORXV ALUE (i.e., an ANCHOR_V ALUE expression

containing unresolved MRDC variables), along with a link bridge law:

(COMP_BRIDGE_LAW,LINK_BRIDGE_LAW]

[MRDC_ANCHOR_.V ALUE]

ANCHOR_SPEC == MRDC_ANCHOR.VALUEXLINK_BRIDGE_LAW
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GHMI does not need the Alresolver function as it does not use any Dexter
ANCHOR_ID. GHMI relies on the AVresolver to resolve an ANCHOR_SPEC
to an ANCHOR.VALUE. A link bridge law’s MappingRule gives the mapping
information for a dynamic anchor. The AVresolver function is responsible resolve an
ANCHOR_SPEC to explicit ANCHOR.V ALUE. In GHMI, ANCHOR_SPECs
are used in “FROM?” specifiers of link bridge laws. After a component is mapped and
displayed on screen, the AVresolver is invoked to map all dynamic anchors in that
component. This is done by partially applying a link bridge law which resolves only
ANCHOR_SPEC from its MappingRule. After resolving to an explicit anchor, a
dynamic anchor is temporarily stored in the HTE Linkbase as if it were a static anchor
and is readily accessible. Selecting a dynamic anchor would actually invoke the
execution of a link bridge law to map the “TO” specifier’s COMPONENT _SPEC
(see below §4.3.5) to a component. Therefore, the AVresolver function is equivalent
to GHMTI's function APPLY _BL._ANCHOR(BLID, ArgumentSpec) which takes
a link bridge law (identified by the BLID) and includes a given source COISOBJ
in its ArgumentSpec to map a dynamic anchor. Here, the BLID along with the

ArguementSpec is equivalent to the above ANCHOR_SPEC:

AVresolver == APPLY _BL_ANCHOR(BLID, ArgumentSpec)

4.3.5 Links and the Resolver Function

GHMI classifies links behaviorally into six types: structure, reference, annotation,
association, navigation, and operation links. As illustrated previously, this link
typing feature can be represented as an attribute LINKTY PE (in the above
ATTRIBUTE):

LINKTYPE :=
“StructureLink” | “ReferenceLink”
| “AnnotationLink” | “AssociationLink”
| “NavigationLink” | “OperationLink”
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GHMTI links could be static or dynamic. Static links are not mapped by bridge
laws (e.g., annotation links, association links). Dynamic links are mapped by bridge
laws (e.g., structure links, reference links and operation links). In a link bridge law,
each link specifier contains an ANCHOR_SPEC instead of an ANCHOR_ID. The
end point of a dynamic link is defined as a COMPONENT_SPEC and resolved
dynamically by the resolver function.

The resolver function is responsible for resolving a COMPONENT_SPEC in
a link bridge law to a UID. (Then the accessor function takes the UID and generates
the content of the component as described above). The COMPONENT_SPEC
in GHMTI only considers COIS components. (Hypertext queries or search is out of
scope of this thesis.) The Dexter version of GHMI COMPONENT_SPEC is an
MRDC UID (i.e., a UID expression with MRDC variables) along with a link bridge

law:

[MRDC_UID)]

COMPONENT_SPEC == MRDC.UID x LINK_BRIDGE_LAW

When following a link, the “FROM” specifier’'s COMPONENT_SPEC
has been already resolved to an explicit UID (not an MRDC_UID) prior to
displaying the source component (which enables this “FollowLink” command). The
resolver function executes a bridge law to instantiate COMPONENT_SPEC in
“TO” specifiers to UIDs. Therefore, we specify the Dexter resolver function as
GHMT’s special function APPLY _BL_LINK(BLID, ArgumentSpec) which takes
a link bridge law (identified by the BLID) and includes a given source COISOBJ
in its ArgumentSpec to map a link endpoint. Here the BLID along with the
ArgumentSpec is equivalent to the above COMPONENT_SPEC:
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resolver == APPLY _BL_LINK(BLID, ArgumentSpec)

A GHMI link bridge law defines a mapping from a COMPONENT_SPEC to
an explicit UID in a dynamic link. When such a dynamic link is selected by the user
and the UID of the current component (i.e., the link’s source) is given, the HTE finds
a link bridge law by matching COISTYPE in the UID against those COISTYPEs
in all link bridge laws’ “FROM” specifiers. After finding a match, the HTE invokes
the resolver function to compute the COMPONENT_SPEC in the “TO” specifier
of the same link bridge law. The resolver function takes all given parameters along
with the content of the link bridge law and sends a request to a corresponding COIS
handler for resolution. Then it collects the results from the COIS handler to map
the COMPONENT_SPEC to one or more UIDs.

The HTE then asks the TOS to display the results (as some interface mapping
of the resulted UIDs). When the user selects one of these UIDs, the HTE calls the
accessor function to map its content by applying a component bridge law. At this
time, the HTE finds and asks the IOS to mark up all link anchors associated with
this component. The HTE calls the AVresolver to compute dynamic anchors (as
discussed in §4.3.4). The command “FollowLink” is now ready to execute again.
Although all links are marked on screen, the content of link endpoints are not

computed until the user actually selects to “follow” that link.

4.4 Summary
In this chapter, we have modeled GHMI in terms of Dexter and make GHMI a Dexter-
based model with extensions and specifications. We first presented a general review of

the formalized Dexter model. Then we illustrated why Dexter is not strong enough to
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model GHMI and necessary extensions. Finally, we presented how we model GITMI
in terms of the extended Dexter and tailoring it with GHMI specifications.

Dexter emerged from modeling existing hypertext systems. As the hypertext
field evolves, Dexter grows more and more insufficient to fit all systems, especially
those have emerged after the formalization of Dexter. We found many obstacles
in modeling GHMI using Dexter. Dexter has problems on its model for composite
components, anchors and links. We discussed the problems we encountered and our
solutions to them as extensions to Dexter: We extend the Dexter base component.
to be recursively defined on components (instead of on base components) to allow
base components to be independent components having UIDs and properties. This
enables composite components to be constructed from external components; We
introduce the concept of ANCHOR_SPEC and replace the ANCHOR_ID in link
specifiers by ANCHOR_SPEC. This enables dynamic anchors; We also introduce
two new resolver functions: an Alresolver which resolves ANCHOR_SPEC to
ANCHORID and an AVresolver which resolves ANCHOR_SPEC to
ANCHOR.VALUE. This enables dynamic anchors to be resolved to explicit
ANCHORIDs and ANCHORVALUESs at run-time; We also extend Dexter
links to allow dangling links and unary links.

Dexter is a high-level abstract reference model. It aims at capturing the
common features of different hypertext systems but does not specify any systems
in full. To create a GHMI hypertext system using the extended Dexter model,
we need to map GHMDI’s capabilities to Dexter. Once mapped to Dexter, GITMI
becomes a Dexter-based model which proves both GHMI’s and Dexter’s robustness
and generality. We illustrated our specifications of all GHMI features that fall in

Dexter and build GHMI as a Dexter-based model:

o We specify Dexter's ATTRIBUTE as GHMI object common properties, link

types, component classes and other COIS-dependent attributes;
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We specify Dexter’s UID as either a GID (i.e., Global ID for a hypertext
object not mapped from COISs) or a COISOB/J (i.e, {ID,Type, Label)) plus

ownership properties;
We specify Dexter's ATOM to obtain GHMI’s atomics;

We specify Dexter’s base components as a CompSet and a LinkSet which are

non-link components and link components, respectively;
We specify Dexter’s anchor values as GHMI's typed anchors;

We specify Dexter’s accessor function as GHMI’s function

APPLY _BL_COMP() in order to utilize GHMI component bridge laws;

We specify the extended Dexter's AVresolver as GHMTI's function

APPLY _BL_ANCHORY() in order to utilize GHMI anchor definitions in link

bridge laws;

We specify Dexter’s resolver function as GHMI’s function APPLY _BL_LINK ()

in order to utilize GHMI link bridge laws.



CHAPTER 5

MAPPING RELATIONAL DATABASES TO HYPERTEXT

The purpose of mapping RDBMS to hypertext is to provide a hypertext-based front-
end to external heterogeneous databases managed by RDBMSs. RDBMSs usually do
not support a hypertext-based navigation style for accessing information. Instead,
they are based on predefined queries. This implies that the resulting applications are
difficult to use or to navigate through. As a further limitation, different databases can
not be accessed unless specific ad hoc programs are developed. We aim at combining
hypertext and RDBMS technologies. In GHMI systems, the hypertext interface
has its own data model and visual structure defined in the popular hypertext style,
rather than the structures of its external heterogeneous databases. In this section, we
present a framework for mapping RDBMS to hypertext, based on GHMI’s constructs
and MRDC. Applying hypertext functionality enhances the effectiveness of RDBMS
for users. After identifying how GHMI could help RDBMS, we illustrate domain

mapping between RDBMS and hypertext through bridge law examples.

5.1 Identifying RDBMS Objects
The hypertext representation under GHMI helps a RDBMS user establish direct.
access to explicit or implicit relationships among its underlying DBMS objects. We
view a relational database as a composition of five types of objects (see Figure 5.1):
(1) Value: a individual value in a table; (2) Record: a set of field-value pairs in a
table (i.e., a tuple); (3) Field: a field name along with a sequence of values under
under that field name; (4) Table: a set of records (or fields); (5) Database: a set of

tables.

90



91

Database

Table

Value

Record

Field

Figure 5.1 Database Objects

We can map the above objects using GHMI constructs. We map individual
values to anchors, records to structured atomics, fields to structured atomics (with
the same attribute for all values), tables to a Set of records or fields and databases
to a Set of tables.

Figure 5.1 shows the inter-object hierarchical relationships. GHMI represents
these structural relationships as structure links. We give bridge laws for mapping the
RDBMS objects and structure links in §5.5. Besides these structural relationships,
GHMI also helps directly access other implicit relationships as discussed in the next

section.

5.2 Applying Hypertext Functionality
After mapping database objects to hypertext components, we can apply hypertext

functionalities on database objects, including browsing or navigating among inter-
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object relationships, annotating (e.g., adding comments, bookmarks, etc), generating
overviews, providing guided-tours, and supporting analysis (i.e., through connecting
related inputs, computations and outputs). Links can be defined as a powerful means

for directly accessing explicit and implicit inter-object relationships.

Object linking. GHMI enable the user to create and access inter-object links repre-
senting semantic relationships. Such links could be intra-database or inter-databasc

links.

Direct access to structural relationships.  GHMI helps the user directly access the
structural inter-object relationships within a database shown in Figure 5.1. Once
database objects are mapped to hypertext components, the user is able to access

database objects by following the structure links in the details of various levels.

Directl access to schema-based relationships.  The relational database model conecep-
tually represents inter-object relationships as Entity-Relationship (ER) diagrams.
When we actually implement an ER diagram within a relational database system, all
information has to be mapped to independent schemata. The original ER information
structure becomes implicit. In GHMI, we can map schemata to structured atomics
(with only fields) and ER diagrams to Graphs (in which entities are components and
the ER relationships are links). GHMI gives users direct access to these objects and
their related implicit relationships through mapping them to reference links defined

by bridge laws.

Direct access to RDBMS operations.  GHMI facilitates direct access to RDBMS
operations by modeling them as operation links on database objects. When users
select them, GHMI does not reimplement RDBMS commands, rather it gives users

direct manipulation access to them. Operation links directly access dynamic objects
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generated by user commands and queries. All database queries can be mapped to
operation links either on particular database objects, or as menu items with no
departure components and accessible from all locations (i.e., unary links). We can
also define frequently-used specific queries as reference links. Once defined as an

operation link, a specific query is directly executable and reusable.

Direct access to meta-information. Database objects could have two types of
meta-information: annotation and system-controlled information. GHMI allows
the user to manipulate annotations on objects through annolalion links. Uscrs
can access system-controlled meta-information through operation links. Such infor-
mation includes object size, field type, object description, timestamps (e.g., creation
time, update time, etc.), and other object statistics-——information often not directly

accessible from objects.

Navigation assistance. ~ GHMI provides RDBMS users with a variety of navigation
facilities including backtracking, history list, bookmarks, network overviews and
guided-tours. Most of these features are supported by navigation links. Navigation
links can be defined either statically or dynamically. With a composite component,
such as a table or a database, the user can simply follow the default guided-tour
automatically generated by the system to explore the component’s content. On the
other hand, for instance, the user can select manually a small group of records in
tables “Faculty” and “Student” representing a group of people involved in a project.
The selected records can be connected in a guided-tour through navigation links.
A guided-tour can consist of a sequence of automated queries (called a query-based
guided-tour in GHMI). When such a guided-tour is followed at run-time, the queries
are dynamically resolved to explicit database objects (or GHMI components mapped

from them). History-based guided-tours enable the user to access session histories

directly.
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Analysis guidance. Hypertext can help the user control the process of a well-
defined analysis procedure on databases [6]. Hypertext could guide the analyst
by automatically retrieving the data needed and connecting with the appropriate
analysis routines. All steps of the procedure could be annotated by the procedure
builder or the analysis. Readers could select any item within the final report and get
information on how it was calculated. For example, suppose that an analyst often
compares the contents of two related databases DB1 and DB2 and has declared a
standard procedure to assist in this process. (1) The analyst selects certain values
in a database report (this report could be a table, a record, or a text file). (2)
The system determines to which objects they correspond in DB1. (3) The system
determines to which objects they correspond in DB2. (4) The system guides the
analyst through a series of statistical analyses comparing the values from the two
databases. (5) The analyst constructs a final report, in which numeric elements are
highlighted as anchors. Users can select them and see the process used to calculate
them. This analysis procedure can be implemented as a GHMI guided-tour. Every

stop on this trail is annotatable.

5.3 The Schema DB
In this section we discuss an implementation data structure supporting schema-
based relationship mapping. To take advantage of the GHMI style database (DB)
schema mapping, every DB needs to a schema representation stored in a associated
database called schema DB (or in the same DB with distinguished table names).
Here by “primary” DB, we mean the database itself consisting of tables instantiated
from its original ER diagram. By “schema DB” we mean the special DB managed
by the DB handler which maintains the original ER diagram information to relate
the primary DB tables to each other. Therefore, every schema DB has a primary

DB associated to it. We name a schema DB using its primary DB’s name plus
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SYSTables
TableName SchemaName

SYSSchemata
SchemaName | SchemaType SchemaNamel| Keyl| SchemaName2| Key2

(a) System Tables

Entity Schemata Relation Schemata
Key Fieldl} -----: Keyl | Key2
Key Fieldi| ------

(b) Schema Tables

Figure 5.2 A Schema DB Representation

word “schema” for consistent identification and easy association. Figure 5.2 shows a
general representation of a schema DB.

A schema DB consists of two sets of tables: the system tables (i.e., meta
tables) and schema tables. (1) There are two system tables: SYSERSchemata and
SYSTables. SYSERSchemata records all schemata in the schema DB derived from
the ER diagram. SchemaName identifies each schema. SchemaType could be
Entity or Relation representing the entities and relationships in an ER diagram
respectively. To simplify discussion, we only consider binary entry relationships
(other complex relationships can be decomposed into binary relationships). The

other fields in SY SERSchemata are for the Relation schema only, identifying the
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two participant entity schema names and key field names. SY STables records all
tables in the primary DB and their corresponding schemata in the schema DB.
(2) The schema tables of a schema DB are the actual schemata (both entities and
relations) mapped from an ER diagram. A schema could have multiple instances in
the primary DB (recorded in SY STables).

Figure 5.3 shows a simple schema DB representation for a small DB called
“SmallSchool.” (a) is an ER diagram. Normally we convert it to the schemata in
(b), which are instantiated to plain tables. Therefore the original ER. relationships
among tables are no longer directly accessible. (c) shows a corresponding schema
DB which restores all ER information among tables. We can easily write a query
to find the original ER relationships. In addition, based on this schema DB, we can
direct access other implicit schematic relationships through bridge laws. Examples
include “Find all other tables with the same schema as the current table,” “Find all

other tables having the same key field as the current table,” etc.

5.4 RDBMS Bridge Law Design Guidelines
The objective of designing RDBMS bridge laws is to enable direct access to RDBMS
objects, relationships and meta-information through dynamically mapping them to
GHMI constructs. To complete our domain modeling on RDBMS and demonstrate
the power of domain mapping, we define a set of bridge laws to map RDBMS. To
define bridge laws, we need to find out potential explicit or implicit relationships or
objects which can be mapped by a bridge law. The following gives some guidelines

for defining RDBMS bridge laws.

e Object BLs. We need BLs for the five database objects as described above
(i.e., values, fields, records, tables and databases), as well as schemata and ER
diagrams in the associated schema DB. Object BLs map objects’ contents.

~ Map records to structured atomics
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Schemata

Course
I CNuml

Teaches

(a) An ER Diagram (b) Schema Mapping of ER Diagram
...................................................................... '
SYSSchemata '
SchemaName | SchemaType | SchemaNamel | Keyl |SchemaName2 | Key2 :
Course Entity E
Faculty Entity :
Student Entity ,
Takes Relation Student SSN | Course CNum :
Teaches Relation Faculty SSN Course CNum E
]
]
|
SYSTables Entity Schemata Relation Schemata .
TableName chemaName E
DoctoralStudent Student Course Takes '
MasterStudent Student I CNumI ...... I ,
GraduateCourse Course :
VisitingScholar Faculty Faculty Teaches E
UndergraduateStudeny. Student [ssn] ... | ssN | cNum :
DayClass Takes '
EveningClass Takes Student :
TeachingPlan! Teaches [ ssn] .. | E
TeachingPlan2 Teaches :
]
........... E
)

(c) A Schema DB

Figure 5.3 A Schema DB Example: SmallSchool-Schema
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- Map fields to structured atomics

- Map tables to sets of records

— Map tables to sets of fields

- Map databases to sets of tables

- Map schemata to structured atomics

- Map ER diagrams to graphs

Structure BLs. We need bridge laws to map objects upwards to their
embedding composites. Structure BLs would include: mapping records to

tables, records to a DB, fields to tables, fields to a DB and tables to DB.

Operation BLs. We need BLs for SQL queries and ODBC operations. From
the implementation point of view, these operations should include all operations
supported by ODBC. Frequently used specific queries can also be mapped to

operations links.

Schema-based BLs. We store schemata as tables. Therefore, all BLs on
regular tables should apply to schema DB too. Besides these schema table
BLs, we need BLs to map implicit inter-object relationships implied by the
schemata in the schema DB of a primary DB. We can map these relationships

to reference links.

Meta-information BLs. Certain users such as developers should be able
to access object statistics, such as field type, field size, record size, table size
(number of records in a table), DB size (number of tables in a DB), refer-
ential constraints, etc. Accessible meta-information also includes dynamic
information supported by ODBC (e.g., such as “updatable™). Bridge laws

help access these by defining reference links.



99

5.5 RDBMS Bridge Laws
In the following subsections, we present bridge laws for mapping RDBMS objccts,

structural relationships, operations, schematic relationships and meta-information.

5.5.1 Object Bridge Laws
1. BLRecora: Mapping Records to Structured Atomic components, as shown
in Table 5.1. The GHMI HTE instantiates the bridge law for each required
record mapping. We specify the component class (CompClass) as ‘Struc-
turedAtomic.* The CompName ‘Record’ indicates this bridge law applics
to record objects. The hypertext identifier (COISID) is a composition of
[D, T, K], where symbols D, T and K are defined in the MappingRule part
of the bridge law. In MappingRule, predicate object([D, T, K], Record')
indicates D, T, K is a record object which is internally identified by its key K,
embedding table T and embedding database D. The content C of record K is
represented by predicate property([D, T, K|, ‘Content‘,C). From this example,
we can see that hypertext system uniquely represents the COISID of a record
by a combination of the embedding table’s COISID and the record’s key
value. The DB handler would find out from this mapping rule that D stands
for a database object, T is a table and K is the record’s key value. We represent,
the component set (CompSet) and the link set (LinkSet) as “NONE” because
this mapped component is ‘atomic’ with no other components or links in its

content.

2. BLpiea: Mapping Fields to Structured Atomic components, as shown in Table
5.2. This bridge law is similar to BL gecorqa- The only difference is that a field is
identified by its field name instead of a key value of a record and the COISType

is ‘Field’ instead of ‘Record.f



Table 5.1 Bridge Law BLRecord

CompClass ‘Structured Atomic’
OwningSystemType | ‘Database'
CompName ‘Record'

COISObj [[D,T, K], Record', K|
CompSet ‘NONE*

LinkSet ‘NONE*

ContentSpec C

MappingRule

object([D, T, K], ‘Record),

property([D, T, K], ‘Content*, C).

Table 5.2 Bridge Law BLField

CompClass ‘Structured Atomic'
OwningSystemType | ‘Database’

CompName ‘Field*

COISObj [[D,T, K], Field‘, K]
CompSet ‘NONE*

LinkSet ‘NONE*

ContentSpec C

MappingRule object([D, T, K}, ‘Field"),

property([D, T, K], ‘Content‘, C).

100
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Table 5.3 Bridge Law BLT ablel

CompClass ‘Set*

OwningSystemType | ‘Database’

CompName ‘Table*

COISObj ([D, T, Table',T]
CompSet {l[D,T, K], ‘Record', K|}*
LinkSet ‘NONE!

ContentSpec ‘NONE*

MappingRule object([D, T, K], ‘Record*).

3. BLygper: Mapping Tables to Set components from records, as shown in Table
5.3. The resulting component contains a set of record components mapped
from database records by the above BLpg.corq- A table is identified by its table
name and the database in which it resides (i.e., [D,T]). The content of the
resulting composite is a set of record components. {[D, T, K], ‘Record‘, K|}*
means 0 or more K. object([D, T, K], Record’) indicates that K is a record

residing in table T" of database D.

The following instantiation of B Ly, maps the content of table “Doctoral-

Student:”
APPLY _BL_.COM P(B Lygpier,

[D, T] = [‘SmallSchool*, ‘ Doctoral Student‘))

4. BLpayes: Mapping Tables to Set components from fields, as shown in Table
5.4. The resulting component contains a set of field components mapped from
database fields by the above BLg;eq. This bridge law is similar to BLryape)
except it provides another perspective of viewing a table and an alternative
way to navigate a composite’s content. Here K represents a field object and 0

or more K’s are mapped to the content of a table.
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Table 5.4 Bridge Law BLT able2

CompClass ‘Set

OwningSystemType | ‘Database’

CompName ‘Table

COISObj [[D,T], Table’,T]
CompSet {[ID, T, K], Field', K] }*
LinkSet ‘NONE*

ContentSpec ‘NONE*

MappingRule object([D, T, K], ‘Field").

Table 5.5 Bridge Law BLDatabase

CompClass ‘Set’
OwningSystemType | ‘Database’
CompName ‘Database’
PresentationSpec ‘Tree'

COISObj [[D], ‘ Database’, D]
CompSet {lID,T], Table‘, T)}*
LinkSet ‘NONE*

ContentSpec ‘NONE*

MappingRule object([D,T), ‘Table*).

5. BLpaapase: Mapping Databases to Set components, as shown in Table 5.5.

The resulting component is labeled by its name and contains a set of table
components mapped from database tables by the above BLpgye or BLyapen-
With this bridge law, we view a database as a composite Set consisting of table

components. A database object is identified by its name.

6. BLgchema: Mapping Table Schemata to Structured Atomic componenls, as

shown in Table 5.6.

7. BLERpiagram: Mapping an ER diagrams o Hybridgraphs, as shown in Table
5.7.



Table 5.6 Bridge Law BLSchema

CompClass ‘Structured Atomic'
OwningSystemType | ‘Database’
CompName ‘Schema’

COISObj [[D,T], Schema‘, T]
CompSet ‘NONE*

LinkSet ‘NONE*
ContentSpec C

MappingRule

object([D, T], ‘Schema'),
property([D, T}, ‘Content‘,C').

Table 5.7 Bridge Law BLERDiagram

CompClass ‘Graph’

OwningSystemType | ‘Database’

CompName ‘ERDiagram’

PresentationSpec ‘Graph*

COISObj [[D, ‘ERDiagram'], ERDiagram”,

CompSet {[[D, S], ‘Schema, ] }*

LinkSet {llID, 1], ‘Schema', ], -, ‘From/,
[[[D, 52}, ‘Schema‘, ], -, ‘To‘|}*

ContentSpec ‘NONE*

MappingRule object(D, ‘Database’),

object(|D, S1], ‘Schema'),
object([D, S2), ‘Schema'),
object([D, S), ‘Schema'),
relation(S1, S2,‘ERRelation').
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An instantiation of this BL in the above example schema DB would be:

APPLY _BL_COM P(BLgRrpiagram, D = ‘SmallSchool')

The variables would be instantiated as:

D = ‘Small School‘,

S = {‘Student’, ‘Course’, ‘Faculty‘}

{[S1, S2]} = {[* Student‘, ‘Course'], [ Faculty‘, ‘Course‘| }

A graphical view of an ER diagram component would be similar to Figure

5.2(a).

5.5.2 Structure Link Bridge Laws

Structure links help direct access RDBMS objects through their structural relationships.
We do not need a structure link to access records in a table because the records
are contained as the table’s content and can be accessed by applying BLygpel -
However, we need to access in the reverse direction: from records to tables, from
tables to databases, etc. We give five structure link bridge laws, mapping access
from records to their containing table, fields to their containing table, tables to
their containing database, records to their containing database and fields to their

containing database.

1. BLRecordroTabte: Accessing a table from ils records, as shown in Table 5.8.

The following instantiation of BL gecoraroratie Maps a record with key “123456789”

to its containing table “MasterStudent.”
APPLY-BL—LINK(BLRecordToTablea
[D, T, F1] = [‘SmallSchool‘,‘Master Student’, ‘123456789°])

2. BLriadrorase: Accessing a table from its fields, as shown in Table 5.9.



Table 5.8 Bridge Law BLRecordT oT able

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘RecordToTable
LinkType ‘StructureLink*
Specifier;

CompSpec ([D,T, F1],Record, ]

AnchorSpec ‘NONE*

Direction ‘FROM*
Specifier,

CompSpec [[D,T], Table‘, ]

AnchorSpec ‘NONE*

Direction ‘TO¢

MappingRule

object([D, T, F1], ‘Record').

Table 5.9 Bridge Law BLFieldToT able

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘FieldToTable’
LinkType ‘StructureLink
Specifier;

CompSpec ([D,T, F1}, Field‘, ]

AnchorSpec ‘NONE*

Direction ‘FROM"
Specifiery

CompSpec ([D,T), Table, ]

AnchorSpec ‘NONE*

Direction ‘TO

MappingRule

object([D, T, F1], ‘Field').
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Table 5.10 Bridge Law BLT ableToDatabase

CompClass ‘Link*
OwningSystemType | ‘Database
CompName ‘TableToDatabase’
LinkType ‘StructureLink’
Specifier;

CompSpec ([D, F1], ‘Table', ]

AnchorSpec ‘NONE*

Direction ‘FROM*
Specifiery

CompSpec ([D], ‘Database, ]

AnchorSpec ‘NONE*

Direction “TO*
MappingRule object([D, F1], “Table’).

3. BLy abieToDatabase: Accessing a database from its tables, as shown in Table 5.10.

4. BLRecordTonatabase: Accessing a database from its records, as shown in Table

9.11.

5. BLpieiaTonatabase: Accessing a database from its fields, as shown in Table 5.12.

5.5.3 Operation Link Bridge Laws

We can map a generic query to an operation link.

® BLQuery: Mapping a query to an Operation Link, as shown in Table 5.13.

BLgyery in Table 5.13 maps a query represented by SQL string @ to a
component. The following instantiation of BLgy., maps an operation link

generating all student names from table “DoctoralStudent.”
APPLY _BL_LINK(BLguyery,

[F1,Q] = [‘SmallSchool*,'SELECT Name FROM DoctoralStudent‘))



Table 5.11 Bridge Law BLRecordToDatabase

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘RecordToDatabase
LinkType ‘StructureLink’
Specifier,

CompSpec [[D, T, F1],‘Record", ]

AnchorSpec ‘NONE*

Direction ‘FROM*
Specifiery

CompSpec [[D], ‘Database‘, ]

AnchorSpec ‘NONE"

Direction ‘TO*

MappingRule

object([D, T, Fi], ‘Record').

Table 5.12 Bridge Law BLFieldToDatabase

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘FieldToDatabase'
LinkType ‘StructureLink’
Specifier,

CompSpec [[D,T, F1],‘Field‘, ]

AnchorSpec ‘NONE*

Direction ‘FROM*
Specifiery

CompSpec [[D], ¢ Database', ]

AnchorSpec ‘NONE"

Direction “TO*

MappingRule

object([D,T, F1],*Field).
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CompClass ‘Link
OwningSystemType | ‘Database’
CompName ‘Query*
LinkType ‘OperationLink
Specifier;
CompSpec [F1, ‘Database’, |
AnchorSpec ‘NONE'
Direction ‘FROM*

Specifiery
CompSpec [[F1, F2],‘Table‘, ]
AnchorSpec ‘NONE'
Direction “TO*

MappingRule object(F1, ‘Database’),
property(F'1, ‘Operation’, ‘Query'),
object([F'1, F2],  DynamicTable),
property(F2,‘Content', OPERATION(F1, ‘Query‘,Q)).

The result is a dynamic table holding the student names. The table does not
exist in the DB prior to the execution of this bridge law. This is why we include an
object predicate object([F'1, F'2], DynamicTable') instead of object([F1, F2], ‘Table)
(which represents a DB fact that F'2 is an existing table) in the above MappingRule.
All dynamic tables have a property “Content” whose value is some MRDC function
specification and is evaluated upon execution of the bridge law. (We will see similar
results as dynamic tables when we discuss reference links bridge laws later in this
section.) The query expression @) in BLgyery could be arbitrarily complicated as
long as it is a valid SQL statement. When the RDBMS sends back the query result
(along with the COISIDs) and marks the COISType as “Table,” the HTE applies
BLrape to map it to a Set component as if it is a regular table. These dynamically
generated records are organized into a guided-tour (i.e., a query-based guided-tour)

facilitating user navigation.
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Besides the generic query, we can also map frequently accessed specific queries
to operations links as variants of the above BLgyery. Consider the following specific
queries on our sample DB “Small School:”

(1) Given a course, find all dayclass students taking that course.
(2) Find all professors (names) teaching undergraduate courses.
(3) Find all professors a student takes courses with.

(4) Find all courses a student taking.

(5) Find all courses taken by undergraduates.

These queries could be frequently used for access cross-table information. BLs enable
such queries to be defined as “ready-to-execute” commands modeled as operation
links. We take (1) as an example. Table 5.14 shows bridge law BLcourseQuery Which
maps the above query (1).

BLcoursequery is actually an instantiation of BLguery. The following instan-

tiation of B Lcgursequery Maps all students taking course “CIS610”:

APPLY BL_LINK (BLGoursequeryy, N = ‘CIS610°)

The above instantiation is equivalent to the following instantiation of BLgyery:

APPLY _BL_LINK(BLguery,
[F1,N,Q] = [‘Small School’,
‘CIS610°,
‘SELECT Name FROM
DoctoralStudent, MasterStudent,
Undergraduatestudent, DayClass WHERE
DayClass.CNum = $$ N AND
(DayClass.SSN = DoctoralStudent.SSN
OR DayClass.SSN = MasterStudent.SSN
DayClass.SSN = UndergraduateStudent.SSN)])



Table 5.14 Bridge Law BLCourseQuery

CompClass ‘Link*

OwningSystemType | ‘Database’

CompName ‘CourseQuery*

LinkType ‘OperationLink*

Specifier,
CompSpec [(SmallSchool‘], ‘ Database‘, ]
AnchorSpec ‘NONE*
Direction ‘FROM‘

Specifier;
CompSpec [[‘SmallSchool‘, F2)], ‘Table’, .]
AnchorSpec ‘NONE!
Direction “TO*

MappingRule object(‘SmallSchool, ‘Database'),

property(‘SmallSchool', ‘Operation’, ‘Query‘),
object(['SmallSchool‘, F2], DynamicTable'),
property(F2, ‘Content,

OPERATION (*SmallSchool‘, ‘Query',
‘SELECT Name FROM

DoctoralStudent, MasterStudent,
UndergraduateStudent, DayClass WHERE
DayClass.CNum = $$ N AND

(DayClass.SSN = DoctoralStudent.SSN

OR DayClass.SSN = MasterStudent.SSN
DayClass.SSN = UndergraduateStudent.SSN))).

110



111

5.5.4 Schema-Based Bridge Laws

Bridge laws help directly access schema-related implicit relationships. Consider the
following examples:

(1) Given a table, find all tables which have the same schema.

(2) Given a table, find all tables having the same key field.

(3) Given a table, find all tables which have an ER relationship with it.

(4) Given a record, find all tables whose names appear in this record.

(5) Given a non-key field, find all other tables which have it as a key field (i.e., the
non-key field in a table is a foreign key field in other tables).

(6) Given a record and a non-key value, find all other records which have this value
as their key value (i.e., this value is a foreign key value).

7) Given a schema, find all tables under this schema.

8) Given an application database, find its ER diagram.

)

9) Given a record, find all records which have an ER relationship with it.

i.e., ER relatioship through transitivity).

(
(
(
(10) Given a table, find all tables which have an indirect ER relationship with it
(
(11) Find all tables which include a given table’s fields.

(

12) Find all tables which include all of a given table’s fields except X.
We give bridge laws for (1) to (7).

1. BLsameSchema: Given a table, find all tables which have the same schema, as

shown in Table 5.15.

An instantiation of this BL in the above example schema DB would be:

APPLY BL_LINK(BLgameschemas

[D, F1] = [‘Small School', ‘MasterStudent])



Table 5.15 Bridge Law BLSameSchema

CompClass ‘Link‘
OwningSystemType | ‘Database’
CompName ‘SameSchema
LinkType ‘ReferenceLink’
Specifier;
CompSpec [[D, F1], ‘Table’, ]
AnchorSpec ‘NONE*
Direction ‘FROM‘
Specifiery
CompSpec [[D, F2],‘Table', ]
AnchorSpec ‘NONE*
Direction ‘TO*
MappingRule object([D, F1], ‘Table‘),
object([D, F2], ‘Table'),
object([D, S], ‘Schema'),
relation([D, F1], S, ‘HasSchema'),
relation([D, F2], S, ‘HasSchema').

Variables would be instantiated as:

S = ‘Student’

F2 = {‘DoctoralStudent’, ‘MasterStudent‘, ‘UndergraduateStudent‘}
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The resulted tables would be three tables “MasterStudent,” “DoctoralStudent”

and “UndergraduateStudent.” Whenever a bridge law execution results in

multiple tables, the DB handler organizes them into a dynamic table with

each table name highlighted as dynamic anchors. Each dynamic anchor in a

dynamic table marks a reference link RefToTable (see below BLpgesroratie)-

The user can select on any of these anchors to access the underlying table's

content.

. BLgamerey: Given a table, find all tables having the same key field, as shown

in Table 5.16.
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Table 5.16 Bridge Law BLSameKey

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘SameKey*
LinkType ‘ReferenceLink’
Specifier,
CompSpec [[D, F1],‘Table‘, ]
AnchorSpec ‘NONE*
Direction ‘FROM*
Specifiery
CompSpec [[D, F2)],‘Table', ]
AnchorSpec ‘NONE*
Direction “TO¢
MappingRule object(|D, F'1], ‘Table'),
object([D, F2|, ‘Table'),
property(|D, F1], KeyField‘, K),
property([D, F2|, KeyField, K).

An instantiation of BLggmekey in DB SmallSchool would be:

APPLY BL_LINK (BLggmercey,

[D, F1] = [‘SmallSchool’, ‘VisitingScholar'])

Variables are instantiated as:
K = ‘SSN*,
F2 = {'DoctoralStudent’, ‘MasterStudent, ‘UndergraduateStudent‘}

. BLgRRetation: Given a table, find all tables which have an ER relationship with

it, as shown in Table 5.17.

An instantiation of BLggReation in the above SmallSchool — Schema would

be:
APPLY .BL_LINK(BLggpetation,

[D, F1] = [‘SmallSchool*, ‘GraduateCourse))
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Table 5.17 Bridge Law BLERRelation

CompClass ‘Link
OwningSystemType | ‘Database’
CompName ‘ERRelation’
LinkType ‘ReferenceLink’
Specifier;
CompSpec ([D, F1], ‘Table', ]
AnchorSpec ‘NONE*
Direction ‘FROM*
Specifiery
CompSpec ([D, F2,Table', ]
AnchorSpec ‘NONE*
Direction “TO"
MappingRule object([D, F1], ‘Table),
object([D, F2], ‘Table*),
relation([D, F1}, S1,‘HasSchema'),
relation([D, F2], S2,‘HasSchema‘),
relation(S1, 52, ‘ERRelation').

Variables are instantiated as:
S1 = {‘Student’, ‘Faculty‘}, S2 = ‘Course’
F2 = {‘DoctoralStudent, ‘MasterStudent‘, ‘VisitingScholar‘, ‘Undergraduat-

eStudent‘}

The query result contains table names which are organized in records of a
dynamic table. The user can access these tables by selecting on their names
which are highlighted as anchors in the dynamic table indicating reference link

“RefToTable,” mapped by BLgesrorane (see below).
. BLRefroTabte: Given a record, find all tables whose names appear in this record,
as shown in Table 5.18.

This BL defines a dynamic anchor in the departing record. The anchor’s value

V happens to be a table’s name in the same DB. As represented by predicate
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Table 5.18 Bridge Law BLRe fToT able

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘RefToTable'
LinkType ‘ReferenceLink’
Specifier;
CompSpec ([D, T, K], ‘Record', ]
AnchorSpec ([D, T, K, F), Dynamic', V]
Direction ‘FROM"*
Specifiery
CompSpec ([D, V], ‘Table', ]
AnchorSpec ‘NONE*
Direction “TO*
MappingRule object(|D, T, K], Record'),
object(|[D, V], Table*),
property([D, T, K, F), ‘Value‘, V).

property([D, T, K, F), ‘Value‘, V'), this value V is identified by a key value K
and a field name F in record [D, T, K]. Based on such an implicit relationship,
this BL constructs a reference link from the record to the table marked by
its table name in the record content. BLgesrorape is frequently used in the
GHMI prototype to present a query result and other reference link destination
mappings to the user. We consider a query result as a dynamic table. The
user can navigate on its records via a query-based guided-tour (QGT). We can
apply BLRgesrorase to the records contained in all dynamic tables (i.e., those
resulted from operation links and reference links) as well as static tables (i.e.,

regular tables in a DB).

. BLporeignkeyrieta: Given a non-key field, find all other tables which have it as a
key field (i.e., the non-key field in a table is a foreign key field in other tables),

as shown in Table 5.19.
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Table 5.19 Bridge Law BLForeignKeyField

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘ForeignKeyF'ield
LinkType ‘Referencelink’
Specifier;
CompSpec ([D,T1, F1), ‘Field, ]
AnchorSpec ‘NONE*
Direction ‘FROM*

Specifiery
CompSpec [[D, T2, ‘Table, ]
AnchorSpec ‘NONE*
Direction “TO*

MappingRule object([D,T1, F1],‘Field"),
object([D,T?2], Table"),
property([D,T1], ‘KeyField, K1),
property([D,T2], KeyField, F1),
K1 # F1.

BLporeignkeyField T€veals an implicit relationship “foreign key” in a database:

a table’s (T'1) non-key field (F'1) happens to be another table’s (T'2) key field.

. BLporeigniceyvaue: Given a record and a non-key value, find all other records
which have this value as their key value (i.e., this value is a foreign key value),

as shown in Table 5.20.

BLporeignkeyvaiue reveals an implicit relationship regarding foreign key values:
a non-key value V, identified by key value V1 and field name F'1 in record
[D,T1,V1] (with key field K1), happens to be the key value of another record
[D,T2,V] (with key field K2). The non-key nature of V is indicated by K1 #
F1 where K1 is the record’s key field name and F'1 is the value’s field name.
Direct selecting the anchor defined in the departure record will dynamically

lead to a sequence of destination records.



Table 5.20 Bridge Law BLForeignKeyValue

CompClass ‘Link'

OwningSystemType | ‘Database’

CompName ‘ForeignKeyValue*

LinkType ‘ReferenceLink’

Specifier;
CompSpec [[D,T1,V1], Record', ]
AnchorSpec ([D,T1,V1, F1], Dynamic‘, V]
Direction ‘FROM*

Specifiery
CompSpec [[D,T2,V], Record‘, ]
AnchorSpec ‘NONE'
Direction “TO*

MappingRule object([D,T1,V1],‘Record‘),

object(|D, T2, V], ‘Record‘),
object([D,T1, F1],‘Field'),
property([D,T1], ‘KeyField‘, K1),
property([D,T2], KeyField', K2),
property([D,T1, F1], ‘Value', V),
property(|D, T2, K2], ‘Value, V),
K1+ Fl.
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Table 5.21 Bridge Law BLSchemaT oT able

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘SchemaToTable
LinkType ‘ReferencelLink’
Specifier;
CompSpec [[D, F1]], ‘Schema', ]
AnchorSpec ‘NONE*
Direction ‘FROM"
Specifiery
CompSpec [[D, F2], ‘Table’, ]
AnchorSpec ‘NONE*
Direction ‘TO*
MappingRule object([D, F1],‘Schema‘),
object([D, F2], ‘Table),
relation([D, F'2], F1, ‘HasSchema').

7. BLschematorasie: Given a schema, find all tables under this schema, as shown

in Table 5.21.

An instantiation of this BL in the above example schema DB would be:

APPLY—BL-LINK(BLSchema’T’o’T’able,

[D, F1] = ['Small School', F1 = ‘Student))

The variables would be instantiated as:

F2 = {‘DoctoralStudent’, ‘MasterStudent‘,'UndergraduateStudent'}

8. BLparorRpiagram: Given an application database, find its ER diagram, as

shown in Table 5.22.

An instantiation of this BL in the above example schema DB would be:

APPLY BL_LINK(BLpgroniagram, D = ‘Small School")
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Table 5.22 Bridge Law BLDBToFERDiagram

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘DBToERDiagram’
LinkType ‘ReferenceLink*
Specifier;
CompSpec [D, ‘Database’,
AnchorSpec ‘NONE*
Direction ‘FROM*
Specifiery
CompSpec [[D,‘ERDiagram‘],'ERDiagram:, ]
AnchorSpec ‘NONE*
Direction “TO*
MappingRule object(D, ‘Database').

The execution of BLparerrniagram Will invoke the execution of BLggrpiagram

to map the destination ER diagram to a Graph.

5.5.5 Meta-information BLs

We can define bridge laws to directly access meta-information on DB objects. Such
information could relate to object statistics, such as field type, field size, record
size, table size (number of records in a table), DB size (number of tables in a DB),
etc. This also could include dynamic information supported by ODBC (e.g., such as
“updatable”). Bridge laws help access these information through mapping them to
reference links. The Database handler dynamically obtains these data and puts them
in a dynamic table. The following are meta-information bridge laws for DB objects:
database, table, records and fields. These BLs define reference links from the objects
to their metainformation. The Database handler is responsible for generating each
type of meta-information when executing these bridge laws. Each of the following
bridge laws returns all meta-information of an object. (To obtain specific mete-

information, we can define other specific bridge laws.)
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Table 5.23 Bridge Law BLMetaRecord

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘MetaRecord*
LinkType ‘ReferenceLink’
Specifier,
CompSpec ([D, T, F1},‘Record’, ]
AnchorSpec ‘NONE*
Direction ‘FROM"*
Specifiery
CompSpec [[D, F2],‘Table', ]
AnchorSpec ‘NONE*
Direction ‘“TO
MappingRule object(|[D, T, F1),‘Record"),
object([D, F2], ‘DynamicT able‘),
property([D, T, F1], ‘Operation‘, ‘Metaln formation'),
property([D, F2], ‘Content',
OPERATION([D,T, F1],‘MetalInformation',‘Record')).

. BLptetarecora: Mapping Record meta-information, as shown in Table 5.23.
Record meta-information examples include the record key field name, key
value, number of values, time stamps (creating, updating, accessing times),

attributes, non-key field name, etc.

. BLptetariea: Mapping Field meta-information, as shown in Table 5.24. Field

meta-information examples include field type, field size, etc.

. BLptetarane: Mapping Table meta-information, as shown in Table 5.25. Table
meta-information examples include number of records, number of fields, key

field name, referential constraints, timestamps, etc.

. BLptetanatabase: Mapping Database meta-information, as shown in Table 5.26.
Database meta-information examples include number of tables, time stamps,

database handler name, access control, etc.
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Table 5.24 Bridge Law BLMetaField

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘MetaField’
LinkType ‘ReferenceLink’
Specifier;
CompSpec [[D,T, F1),‘Field", ]
AnchorSpec ‘NONE*
Direction ‘FROM*
Specifiery
CompSpec [[D, F2, ‘Table‘, ]
AnchorSpec ‘NONE'
Direction “TO!
MappingRule object(|D, T, F1}, ‘Field’),
object([D, F2], DynamicTable'),
property([D, T, F1], ‘Operation‘,‘Metaln formation'),
property([D, F2], ‘Content’,
OPERATION([D,T, F1],‘Metaln formation',‘Field')).
Table 5.25 Bridge Law BLMetaT able
CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘MetaTable’
LinkType ‘ReferenceLink’
Specifier;
CompSpec [[D, F1], ‘Table', ]
AnchorSpec ‘NONE*
Direction ‘FROM*
Specifier,
CompSpec [[D, F2], ‘Table', ]
AnchorSpec ‘NONE*
Direction “TO!

MappingRule

object([D, F1], ‘Table),

object([D, F2|, DynamicTable'),

property([D, F1], ‘Operation‘, ‘Metaln formation‘),
property([D, F2],‘Content’,

OPERATION(|D, F1),*Metalnformalion', Table')).
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Table 5.26 Bridge Law BLMetaDatabase

CompClass ‘Link*
OwningSystemType | ‘Database’
CompName ‘MetaDatabase
LinkType ‘ReferenceLink*
Specifier;
CompSpec [[F1], ‘Database’, ]
AnchorSpec ‘NONE!
Direction ‘FROM*
Specifier,
CompSpec [[F1, F2],‘Table, ]
AnchorSpec ‘NONE*
Direction ‘TO
MappingRule object(F'1,‘Database’),
object([F'1, F2|,  DynamicTable'),
property(F1, ‘Operation’, ‘MetalInformation'),
property([F1, F2], ‘Content’,
OPERATION(F1,‘Metalnformalion',‘Database')).

In this section, we presented bridge law examples for RDBMS. We do not mean
to enumerate all possible BLs a RDBMS user might have. The user can add new

BLs at any time.

5.6 Summary
In this chapter we demonstrated how GHMI can be used to provide an independent
application (i.e., a COIS) with supplemental hypertext functionality. We presented
the mapping from relational databases to hypertext, based on the GHMI model. We
use RDBMS as our application domain. Applying hypertext functionality enhances
the effectiveness of RDBMS for users. The hypertext representation under GHMI
helps a RDBMS user establish direct access to explicit or implicit relationships among
underlying RDBMS objects. Such help includes direct access to structural inter-
object relationships, direct access to ER relationships, direct access to RDBMS

operations, direct access to metainformation (e.g., annotation and system infor-
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mation such as object size, field type, object description and timestamps.) on objects
selected by users, navigation assistance, and analysis guidance.

We discuss a data structure (i.e., the Schema DB) which implements schematic
bridge law (BL) mapping. To complete our domain modeling on RDBMS and demon-
strate the power of domain mapping, we defined a set of bridge laws to map a

RDBMS, including the following categories:

e Object BLs. We need BLs to map the five database objects (i.e., values,
fields, records, tables and databases) as well as the schemata and ER diagrams
in the corresponding schema DB. Object BLs map objects’ contents.

- Map records to structured atomics

- Map fields to structured atomics

- Map tables to sets of records

- Map tables to sets of fields

- Map database to sets of tables

-~ Map schemata to structured atomics

- Map ER diagrams to graphs

e Structure BLs. We need bridge laws to map objects upwards to their
embedding composites. Structure BLs would include: mapping record to

table, record to DB, field to table, field to DB and table to DB.

e Operation BLs. We need BLs for SQL queries and ODBC operations. From
the implementation point of view, these operations should include all operations
supported by ODBC. Frequently used specific queries can also be mapped to

operations links.

e Schema-based BLs. We store schemata as tables. Therefore, all BLs on
regular tables should apply to schema DB too. Besides these schema table BLs,

we BLs to map implicit inter-object relationships implied by the schemata in
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the schema DB of a primary DB. We can map these relationships to reference

hinks.

¢ Meta-information BLs. Certain users such as developers should be able
to access object statistics, such as field type, field size, record size, table size
(number of records in a table), DB size (number of tables in a DB), refer-
ential constraints, etc. Accessible meta-information also includes dynamic
information supported by ODBC (e.g., such as “updatable”). Bridge laws

help access these by defining reference links.



CHAPTER 6

IMPLEMENTATION: THE GHMI PROTOTYPE

In this chapter, we present an implementation prototype to prove the correctness
and robustness of the GHMI model. We discuss the instantiated implementation

architecture and its individual components.

6.1 The Implementation Architecture
Figure 6.1 shows GHMI'’s prototype implementation architecture as an instantiated
implementation architecture of Figure 3.1 in Chapter 3. The prototype architecture
comprises a hypertext engine (HTE), three COISs (MS Access, TEXPROS and MS-
DOS) and an IOS (i.e., Interface-Oriented System). Every COIS or IOS connects
to the HTE through its own handler. Handlers translate the HTE’s messages to a
format the COIS or IOS understands, and vice versa. COIS handlers translate bridge
laws to access COIS’ operations, objects and data. To integrate a COIS, the only
change this architecture requires of the COIS is that its communications path be
routed through the handlers [10]. COIS developers or builders very familiar with the
COIS must write the COIS handler, as well as bridge laws for each class of objects
and relationships accessible to users. RDBMS is so well-understood that we were
able to do this ourselves for MS Access. The complexity of the bridge laws and COIS
handlers depends on the COIS’ complexity. The following subsections describe each

functional component in the architecture.

6.1.1 The Hypertext Engine
The HTE consists of four databases (DBs) and six managers. The Knowledge Base

stores bridge laws for mapping individual COISs to hypertext. The Linkbase contains
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Figure 6.1 The GHMI Implementation Architecture

persistent COIS-independent data including links, anchors, annotation components,
guided-tours and bookmarks. The Session DB contains navigation-related dynamic
structures including the Traversal Logs (i.c., History Log, the Chronological Log and
the Task Logs [13]. The Configuration DB contains COIS/IOS configuration data
including handler identities and available COIS/IOS commands. The DB Manager
manages manipulation of the four HTE DBs. The Inference Manager validates and
invokes bridge laws. The Configuration Manager is responsible for COIS/IOS config-
uration and invoking the COIS handlers at run time if they are not active. The
COIS Manager handles communication with COIS handlers. It encodes and decodes
messages according to the communication protocol. Similarly, the IOS Manager
handles communication with IOS handlers. The central part of the HTE is the HT
(i.e, HyperText) Manager which manages the implementation of all GHMI hypertext

functionalities.
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The Knowledge Base maintains three bridge law tables: SYSBLComponents,
SYSBLLinks and SYSBLSpecifiers. SYSBLComponents contains component bridge
laws. SYSBLLinks and SYSBLSpecifiers together contain link bridge laws.
SYSBLLinks contains link header information (e.g., including OwningSystemType,
LinkType, etc). SYSBLSpecifiers contains definition and mapping rules for individual
specifiers of each link in SYSBLLinks.

The Linkbase contains persistent data. Corresponding tables include SYSLinks,
SYSSpecifiers, SYSAnchors, SYSComponents, SYSBookmarks and SYSGTs. In
GHMTI's dynamic mapping environment, all components mapped from CQOISs are
virtual components. The HTE does not store their contents persistently in the
Linkbase. The only persistent components are annotations, which are not mapped
from COISs. The HTE stores other components in the Linkbase only when they arc
registered in persistent navigation structures by the user at run-time (e.g., guided-
tours and bookmarks). When a component is brought to display, the HTE stores it
in the traversal logs. Similarly to components, not all links are persistent. Only
association links and annotation links which are hypertext-owned are persistent
links. Other links become persistent only when they are embedded in the content of
persistent components (e.g., guided-tours). The Linkbase has two tables for links:
SYSLinks and SYSSpecifiers. All persistent links are stored in table SYSLinks. Each
link entry has an ID and contains general header information in GHMI (e.g., owning
system, class name, BLID, etc). The link specifiers are stored in a separate table
SYSSpecifiers with each entry storing link directionality, filtering, component 1D,
and SYSLinks entry ID. Separating link specifiers from links ensures the implemen-
tation of n-ary links. An n-ary link can have n entries in SYSSpecifiers. Anchors arc
stored in SYSAnchors. Plain and keyword anchors are persistent in nature. Dynamic

anchors are not persistent.
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The Session DB contains session-based dynamic structures (i.e., traversal logs)
consisting of three tables: SYSHistoryLog, SYSChronologicLog and SYSTaskLogs.
SYSHistoryLog keeps a complete record of the user navigation history represented
as event structures (see [13]). SYSChronologicLog contains a subset of entries
in SYSHistoryLog which consists of components not generated from backtracking.
SYSTaskLogs groups navigation history in a task-based manner to support task-
based backtracking in multi-window environments [13].

The Configuration DB maintains three tables: SYSCOISs, SYSCommands
and SYSIOSs. SYSCOISs contains registered COIS handler’s information including
name, path, registration time, status, etc. The SYSCommands contains COIS
commands including command name, owning system name, parameter number
and parameter types. The HTE implements these commands as operation links.
SYSIOSs contains information similar to the SYSCOISs for all participating 10S
handlers.

The DB Manager manages manipulations on the HTE DBs. It consists of
subroutines supporting operations on database objects (databases, tables, records),
including open, close, insert, edit, find, list-all, query, etc. These routines are written
in Visual Basic and ODBC. Therefore, although we implement these databases on MS
Access, the subroutines are essentially portable to any other RDBMS supporting
ODBC, such as Oracle, Paradox, FoxPro, dBaselll and dBaselV. The current
prototype only supports MS Access. It is easy to extend it to support others
provided their proper ODBC drivers are available.

The Inference Manager validates and invokes bridge laws. There are two
modules in the Inference Manager: a BL-parser and a BL-invoker. The BL-parser
parses a bridge law to ensure its syntax correctness. When mapping an object, the
BL-invoker finds the proper BL according to the object’s COISType and OwningSys-
temType from SYSBLComponents and sends it to the HT Manager. The HT
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Manager then sends the BL to the COIS Manager as a message for the corresponding
COIS handler. The BL-invoker is also responsible for collecting BL executing results
and mapping them to GHMI components by invoking other BLs (if necessary).

The Configuration Manager manages the static and dynamic system config-
uration. The static configuration includes the registration of COIS/IOS handlers,
COISs/108Ss, COIS commands, bridge laws, etc., during the process of system setup.
The dynamic configuration includes dynamic manipulation of the configuration infor-
mation, message address validation, and inactive application (COIS/IOS handlers)
invoking.

The COIS Manager is responsible for communicating with the COIS handlers.
It has two modules: an API module and a DDE module. The API (Application
Programmer Interface) routines perform standard message manipulation (e.g., set a
tag, get a tag value, etc.). The DDE (Dynamic Data Exchange) routines conduct the
actual inter-process communication for sending messages to and receiving messages
from specific destinations through Windows95’s DDE protocol.

The I0S Manager performs similarly as the COIS Manager except that it
manages communication with IOS handlers instead of COIS handlers.

The HT Manager is the control center of the HTE. It implements of all
GHMTI hypertext functionalities (e.g., link traversal, linking, anchoring, annotating,
navigating on guided-tours, backtracking, history,etc.) by managing and cooperating

with other HTE managers.

6.1.2 The COISs

In this prototype, we consider three diverse COISs: a database system (MS Access),
a document management system TEXPROS and a file system (MS-DOS). Our focus
is on MS Access. We map objects and relationships defined by bridge laws in §5.5

and [92]. TEXPROS is still under development. We only map its objects (i.c.,
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folders, frame templates and frame instances) and file structures to components
according to bridge laws [92]. Although file systems are hardly COISs, we include
them to demonstrate our system functionalities on supporting text documents and
annotations. We model files as plain atomic components. Annotations could be

modeled as atomic components with text contents.

6.1.3 The IOS

We only have one IOS in this prototype as our focus is on the COIS-HTE side. The
current IOS consists of five viewers: a Text Viewer, a DB Viewer, a Browser, a Graph
Viewer and a Main Viewer. Each viewer has its own menu items for viewer-specific
commands. Some standard commands are common to all viewers, including History,
Backtracking, Overview, Bookmark, GuidedTour, etc. An IOS usually has one Main
Viewer and multiple other viewers simultaneously.

The Text Viewer is responsible for displaying unstructured text data. It should
be able to: (1) display text content; (2) tell the starting position and length of
the text selected by the user; (3) highlight a certain portion of the text based
on starting position and length sent by the IOS handler. The menu items of the
Text Viewer include AddAnchor, DeleteAnchor, StartLink, EndLink, DeleteLink,
ShowLink, ShowBookmark, ShowGuidedTour, etc.

The DB Viewer should be able to display data in the format of a table (i.e.,
a spreadsheet or its simulation). It should at least: (1) display a table in a two-
dimension table with a row header and a column header; (2) identify user selection on
an table item (corresponding to a DB record value) by a row header (corresponding
to a DB record key) and a column header (corresponding to a DB field name).
This requires every row or column to have a unique header and matches the case
of a DB record. The menu items for the DB Viewer are the same as the menu for

the Text Viewer but their internal processing could be different. For example, the
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identification of a user selection is different in the Text Viewer (by a string starting
position and length) and the DB Viewer (by a row header and a column header).
Thus the event reports for the HTE would have different contents.

The Browser displays overview information in a tree-like structure, including:
(1) Overviews of components in a tree-like structure; (2) A list of all available links
on a selected object, including destinations, starting anchors, ending anchors and
link types. The user should be able to select (double click on an item) or delete
(click one and select a Delete menu item) an item in the list. Selecting an item
triggers a link traversal; (3) The history list of a user navigation session: The user
can select an item (double click) to trigger a backjump to a previous component;
(4) A list of bookmarks. User commands on bookmarks include AddCurrent, Delete
and GoTo. Double click on a selected item is equivalent to a GoTo command; (5) A
list of guided-tours for user to navigate and manipulate.

The Graph Viewer displays graphical data in the GHMI system (e.g., images,
graphical overviews of composites, etc.) which can not be displayed in the Browser.
The graph viewer should be able to: (1) display images as atomic components; (1)
display a composite as links and components in its LinkSet and CompSet; (2) enable
selection on a component to see its content; (3) enable adding or deleting components
and links; (4) enable position adjusting on components; (5) enable saving changes on
component’s screen positions. A typical graphical example in the current prototype
is an ER diagram in a RDBMS which is mapped to a Graph component. Such a
composite is displayed in the Graph Viewer as list boxes (representing entities or
schemata) connected by directed lines (representing relationships). The user is able
to add/delete entities (i.e., schemata) or relationships, change and save presentation
positions of entities. Selecting an entity (i.e., schema) will enable the user to see all

tables under this schema (mapped as a reference link).
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Every time the system is activated, the user reaches the Main Viewer. When
the user selects a current COIS, the system will display the overview of the COIS
on the Browser. The Main viewer is responsible for: (1) displaying configuration
commands and dialogues for COIS and IOS handlers; (2) inputing and editing of
bridge laws; (3) setting up a current COIS by switching among registered COISs;
(4) guiding the user to input the proper parameters required by a COIS command;
(5) displaying dialogues for link creation; (6) displaying all other information not
displayed in the other three viewers (e.g., error or warning messages). The menu
commands in the Main Viewer correspond to the above functionalities.

Figure 6.2 and Figure 6.3 are example screen dumps of the GHMI prototype
showing the IOS viewers.

Figure 6.2 shows an example screen dump of the IOS. The screen shows four
viewers, each being a separate window. The Main Viewer on the back is a root
window covering all the other windows. The active window at this moment is
the Text Viewer window on top of the others. It has an anchor highlighted on
string “LISTBOX.FRM.” The text window identifies its anchors by offsets and
text lengths. The Main Viewer menu items are always for the current active
window (in this case, the Text Viewer window). Directly under the text window
is the Browser window which is able to show tree-like structures for component
overviews. The current content of the Browser is the overview of a composite
component mapped from a database object “Small School.” Under the Browser is
the DB Viewer window, which contains a spreadsheet and is displaying a database
record. The DB Viewer displays records as a two-column spreadsheet corresponding
to field name and value pairs. The current record on the DB Viewer has an
anchor on text value “Redwood.” The bottom part of the Main viewer contains
buttons for navigation facilities, including jumping to a landmark which shuts

down all child windows(button “Home”), backtracking (button “Back™), forwarding
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on backtracking (button “Forward”), displaying component overviews (button
“Overview”) and editing bookmarks (button “Bookmark”).

Figure 6.3 shows another similar screen dump. This screen contains the Graph
Viewer, the Main Viewer and the Browser. The graph viewer is displaying a graphic
representation of the ER diagram in Figure 6.4. The small scrollable list boxes

represent, entities (i.e., table schemata) and the lines represent relationships.

6.1.4 The COIS Handlers
The COIS Handlers are essential components of the GHMI prototype. They actually
execute bridge laws to generate responses to HTE requests. A COIS handler usually
has four modules addressing four aspects of its responsibilities. (1) Executing bridge
laws: This includes two submodules: a general bridge law engine (BL-Engine) and a
COIS invoker. The BL-Engine translates bridge laws to executable codes (e.g., Prolog
queries). The COIS invoker actually invokes COIS routines combining with the
output of the BL-Engine to produce results of the bridge law execution. (2) Buffering
COISs: The COIS buffering module of a COIS handler implements functions that
the original COIS does not provide but are required by a bridge law execution (e.g.,
retrieving implicit relationships and object statistics); (3) Communicating with the
HTE: The communication module is responsible for communicating with the HTE
following the GHMI protocol and formats. (4) Managing the configuration of COISs:
A COIS handler managing multiple COISs should maintain a configuration database
and invoke inactive COISs when a bridge execution needs COISs’ participation. All
of the five modules written for a COIS handler can be made as APIs and reusable for
other COIS handlers, except the the COIS buffering module. We have made these
APIs in the current prototype.

This prototype has three COIS handers: a database (DB) handler, a TEXPROS
handler and a file system handler. The TEXPROS handler handles TEXPROS bridge
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law mappings and communications. The file system handler directly accesses files
in MS-DOS on response to a bridge laws execution. A COIS handler working for
multiple COISs (e.g., the DB Handler works for all RDBMSs) maintains a configu-
ration DB for its COISs’ information.

This prototype focuses on the DB handler which employs a BL-Engine written
in Prolog to execute bridge laws. After receiving a bridge law along with parameters
from the HTE, the DB handler analyzes it and decides what actions it should take.
This might be one of these three cases: (1) For a bridge law which requires purely
object mappings (e.g., an object bridge law), the DB handler translates the bridge
law into an executable Prolog predicate along with instantiated variables from the
HTE parameters. Then the DB handler passes the predicate to the BL-Engine and
invokes the BL-Engine to execute it. The BL-Engine executes this predicate based
on predefined DB facts and a set of inference rules (managed by the COIS buffering
module) and sends back the results to the DB handler. The DB handler collects the
results and sends them to the HTE. (2) For a bridge law relating a COIS operation
(e.g., an operation link bridge law), the DB handler’s COIS buffing module either
directly executes, or asks the COIS to execute this operation to generate proper
responses. (3) For a bridge law which involving both of bridge law execution (by
the BL-Engine) and COIS operations (e.g., a reference link bridge law with function
MRDC OPERATON() in its MappingRule), the DB handler combines the results
generated from the BL-Engine and the COIS buffing module and creates proper

responses for the HTE.

6.1.5 The IOS Handler
This prototype only has one IOS which is written in Visual Basic. The IOS handler
dispatches messages to the proper viewer based on specifications coded in the

messages: command dialogues are for the Main Viewer; text messages are for the
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Text Viewer; database tables, records and fields are for the DB Viewer; overviews

and link browsers are for the Browser; graphical data are for the Graph Viewer.

6.2 Inter-process Communication
This section discusses the inter-process communication protocol and a communi-

cation scenario for dynamic mapping.

6.2.1 The Communication Protocol

In this prototype, the HTE, the COIS handlers and the IOS handler run as
independent processes. They communicate with each other through message passing
at run-time via a common message bus. Figure 6.5 shows the communication archi-
tecture. When a process (i.e., the HTE or a COIS/IOS handler) wants to send a
message to another process, it prepares a message with specific destination’s identity
and puts the message onto the message bus. Whenever the message bus has a
message, each process checks whether it is the receiver. If not, it just ignores the
message. Otherwise, it handles the message and generates appropriate responses on
the message bus for the sender.

We employ a communication protocol GHMICP (i.e., GHMI Communication
Protocol) for interprocess communications. In GHMICP, a message consists of a
sequence of tag-value pairs. Message lengths and contents vary according to message
types. We classify messages into four categories based on their directions: TOS-
HTE messages (from IOS handler to HTE), HTE-IOS messages (from HTE to
IOS handlers), HTE-COIS messages (from HTE to COIS handler) and COIS-HTE
messages (from COIS handler to HTE). (We do not consider COIS-COIS or IOS-10S
communications in this prototype.) Table 6.1 shows GHMICP messages. Column
“Tag” shows the message tags a message contains and column “Sample Value” gives

an example value. Column “Msg Type” indicates the message types to which this
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corresponding tag-value pair applies. “IH" stands for IOS-HTE messages. “HI”
stands for HTE-IOS messages. “HC” stands for HTE-COIS messages. “CH” stands
for COIS-HTE messages. “All” indicates the tag applies to all message types.

A message consists of the following types of tags. (1) address: “Sender”
and “Receiver” apply to all messages; (2) COIS identity: “SystemType” and
“SystemName” identify a COIS by its type and name. “AppName” identifies the
application name within a COIS. For example, In Table 6.1, “SmallSchool” is an
application in “MS Access”. COISs of the same type share a single COIS handler. For
example, as shown in Figure 6.1, all the application DBs share a single DB handler;
(3) event report: The IOS handler manages user events. Whenever a user selects an
object on screen, the handler sends an event report message to the HTE. Tag “Event”
indicates the event name and tag “Button” indicates the corresponding button (or
menu item, depending on the IOS implementation) name. If the user does not select
any button, the message will contain no “Button” tag; (4) object identity: Object.

entity information “COISID,” “COISType” and “COISLabel” correspond to GHMTI’s



Table 6.1 GHMICP Messages

Tag Sample Value Msg Type
Sender "DB Handler” All
Receiver "HTE”

SystemType ?Database” All

SystemName "MS Access”

AppName ”Small School”

Viewer "DBViewer”

Event "SelectButton” IH

Button "ShowLink”

Command ”Show” HC, HI

COISID "SYSLinks” All

COISType "Table”

COISLabel "Student” CH

TotalObjs VA CH, HI

ObjIndex "1

AnchorDataType | "DB” HI, TH

AnchorCOISID "SmallSchool#+#GraduateCourse
H#H#SSNH#H£123456789”

AnchorStart 720"

AnchorLength "g”

AnchorText "Hello”

Content record content All

140
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explicit COIS object expression (i.e., (COISID,COISType, COIS Label) identifics
a COIS object). “COISID” and “COISType” apply to all messages to ensure object.
identity. “COISLabel” applies to COIS-HTE messages only. The HTE is responsible
for defining proper display message settings (based on object’s PresentationSpec)
when an object is sent to the IOS for display; (5) message grouping: Message
grouping enables a process to pass a group of messages in response to a single
request (e.g., a database query may result in a set of records). “TotalObjs” indicates
the total number of messages in this group while “ObjIndex” indicates the index of
the current message within the message group. Message grouping tags are available
to all messages. The message receiver (e.g., the HTE or handlers) is responsible
for keeping track of message groups. Usually, a the message sender becomes a
message receiver after sending out a message requesting responses. It will wait until
all responding messages of a single group have been received; (6) anchor identity:
The anchor related tags identify anchors. “AnchorDataType” indicates the anchor’s
data type, which could be a DB anchor or a text anchor. “AnchorStart,” “Anchor-
Length” and “AnchorText” apply to text anchors. Text anchors can be embedded
in all COIS objects (e.g., text files, database tables or records). (We intend to
extend GHMI for multi-media anchors). “AnchorCOISID” defines a DB anchor.
For example, “SmallSchool#+#DoctoralStudent#+#123456789##Name” defines an
anchor as a value in table “DoctoralStudent” of database “SmallSchool” with key
value “123456789” and field name “Name;” (7) command: “Command” indicates
an HTE command to a COIS or an 10S; (8) content: “Content” specifies command
parameters or actual data associated with other tags in a message. It could be a file
name, plain text, record content, SQL statement, command parameters, etc. For
example, a database “Query” event can be accompanied by an “Content” as a SQL

statement.
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6.2.2 Dynamic Mapping: A Communication Scenario

Figure 6.6 shows a dynamic mapping and interprocess communication scenario in
the GHMI prototype.

The user selects an object or an anchor on screen (at 1). The IOS handler makes an
event report message to the HTE (at 3,4,5). The HTE finds out (from SYSAnchors)
which object this selection stands for (at 3) and finds out all links available on this
object marked by the selected anchor (at 4, 5). Static links (i.e., association links and
annotation links) can be found in the Linkbase (at 4). Dynamic links (i.e., operation
links, reference links and structure links) can be found in the Knowledge Base based
on the object’s COISType (at 5). The HTE then sends a “ShowLink” command to
the TOS handler to display all available links on the Browser (at 6,7). The user can
then select one of these links to follow (at 8). After receiving a user selection on the
Browser, the IOS handler makes another message to report the link selection event
(at 9). The HTE then finds a link BL which maps this link from the Knowledge
Base (at 10, assuming that the selected link is a dynamic link). The HTE sends
this BL to the COIS handler asking to map the link (at 11, 12). The COIS handler
either directly obtains the requested endpoint from the COIS database or invokes the
proper COIS routines to compute the link endpoint (at 13). The COIS handler makes
the resulting object expressions (in terms of (COISID,COISType, COIS Label))
as messages and sends them to the HTE (at 14). The HTE finds BLs for mapping
the resulted COIS objects (at 15) and asks the COIS handler again to execute an
object BL to generate object contents (at 16, 17). The COIS handler generates the
requested object content and sends it to the HTE (at 18, 19). The HTE then maps
the COIS objects to hypertext components (at 20), stores them in the Session DB
(at 21), and sends them to the IOS handler for display (at 22,23 24). The HTE’s
next task is to find all links departing from the current component. These links could

be static or dynamic. For static links found in the Linkbase, the HTE needs to find
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all the anchors (at 24). For dynamic links with dynamic anchors, the HTE finds link
bridge laws applying to the current component and sends them to COIS handler to
compute the anchors (at 25, 26, 27 28, 29). The HTE collects all the results and
asks the TIOS to mark up the link anchors on screen (at 30, 31). After the mark up
(at 32), the system is ready for another round of dynamic mapping triggered by a

user selection on screen.

6.3 Implementing GHMI Functionalities

This section discusses how this prototype implements GHMTI’s functionalities.

6.3.1 Components

Components mapped by bridge laws are not persistent in the Linkbase. The HTE
stores their specifications (i.e., parameters and identifiers which are enough for
regenerating component contents) in the SYSHistoryLog within a session. The
PresentationSpec can be used to specify the view style of a component. For example,
the user can view a Set component as either a Set view or a Tree view. A Set view
expands a Set by one level (i.e., without further expanding its subsets). Using a
Tree view, however, the user can see a global overview of a Set in a single view with
each subset expanded upon clicking. The following paragraphs discuss components

mapped from the three COISs in the prototype.

e RDBMS Components. For the RDBMS domain, we need bridge laws to
map:
- Values to anchors.
- Records to structured atomics
- Fields to structured atomics
- Tables to sets (of records)

~ Tables to sets (of fields)
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- Database to sets (of tables)

- Schemata to structured atomics

- ER diagrams to graphs

A database or a table is displayed either as a Set view or a Tree view. GHMI
bridge laws rely on object identifiers. The basic assumptions for identifying
database objects are: (1) every DB has a unique name (and path) throughout
the scope of a DB handler; (2) every table has a unique name within a DB;
(3) every field has a unique name in a table; (4) every record has a unique key

value within a table.

TEXPROS Components. TEXPROS objects (see Appendix A} include
folders, frame templates, frame instances and original documents. GHMI
models folders as Set components, frame templates and frame instances
as structured atomic components, and original documents as plain atomic
components. An overview of a TEXPROS folder could be a Set view or a Tree
view which is mapped at run-time. The frame templates and frame instances
are stored in the TEXPROS DB which are also accessible as an application
of the DB handler. Original documents are under management of MS-DOS
and are therefore accessible through the file system handler too. We include

TEXPROS bridge laws in Appendix A.

File System Components. For the domain of file systems, we only model
one type of objects: files (advanced mapping would distinguish directories from
files). File bridge laws map files to plain atomics and file system overviews to
Tree components. A file system is not a real COIS example since it has few
computation features. We model plain files because they are basic structure
of hypertext annotations in GHMIL By partially modeling file system, we can

prove our concept of mapping annotations and plain atomic components which
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are not available in the RDBMS domain. Other advanced features provided by

file managers are out of the scope of this prototype.

e Hypertext Components. Hypertext components are annotation components
which have internal file names and therefore are treated as file objects under
management of the file system. All such components are persistent objects in

the Linkbase.

6.3.2 Anchors

The user should be able to define anchors on: any text of a file, the file itself, a
record value, a record, a field, a table and an entire DB. Text anchors are identified
by <start, length> and record value anchors are identified by their field name and
key value. Static anchors include plain anchors and keyword anchors. Users can
define these static anchors manually at run-time. Static anchors are persistent in
the Linkbase while dynamic anchors are not. Dynamic anchors are defined by bridge

laws in content of dynamic links’ specifiers and computed at run-time.

6.3.3 Typed Links

GHMI supports COISs with the following six link types. Our discussion focuses on
supporting RDBMSs.

- Structure links: All structure links are mapped from COISs. They are not
persistent in Linkbase. In the case of DB links, all DB objects should able to
reference upwards to their embedding objects through structure links. We map the
following structure links (accessing objects in the reverse direction has been modeled
as accessing the contents of composites by object bridge laws):

record — table, record — DB, field — table, field — table, table — DB.

- Association links: Association links are hypertext-owned persistent links stored

in the Linkbase. They could be inter-COIS or intra-COIS links. The user is able
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to define ad hoc links along with anchors across all application objects at run-time.
Clicking on anchors should lead link traversal to the anchor position of destination
component. These links do not need bridge laws.

— Reference links: These links are not persistent. Implicit schematic relationships
we lost when mapping ER diagrams to tables could be restored through bridge law
mapping as reference links. We consider examples such as direct ER. relationships in
the ER diagram, tables with the same schema, tables containing the same key field,
etc.

- Annotation links: These are persistent links owned by hypertext. We do not need
bridge laws for this kind of links. They are static and are created by the system
when the user add annotations to components.

- Operation links: Operation links model hypertext operations and COIS operations.
They should model all RDBMS and ODBC operations.

- Navigation links: These could be virtual links when dynamically generated on user
requests. They also could be persistent links when the user explicitly requests (c.g,
when being included in a UGT). These links do not need bridge laws. When the user
defines a navigation structure (e.g., a guided-tour), the HTE adds navigation links
for accessing this structure automatically. The HTE could generate both navigation
structure and navigation links (e.g., for default guided-tours) automatically. The
components in a GT could be dynamic. They are generated at run-time through

bridge laws when the users actually traverse them on a GT.

6.3.4 Navigation

GHMI supports six navigation features: browsing, backtracking, history, guided-
tours, bookmarks and overviews. Simple link traversal implements browsing. The
Session DB structures support backtracking and history. Guided-tours, bookmarks

and overviews are modeled and implemented as as composite components.
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6.3.4.1 Guided-tours This subsection discusses guided-tours (GTs) and their
construction algorithms. GHMI models four types of guided-tours as List components
which consist of a set of components and a set of links. Each link contains a set
of specifiers representing endpoints in the component set. Each component in
a GT is either static or dynamic. Static components have their contents in the
Linkbase. A table SYSGTs stores all static GTs (see below). GTs can be nested
with arbitrary depths. A stop in a GT implies a DGT (i.e., Default Guided-Tour) if
it is a composite. The DGT of a GT is itself. All component contents of dynamic
GTs are dynamically computed every time the component is displayed on screen.
Such computation is based on the component specification used to generate the

component originally.

DGTs are dynamic and are generated automatically for composites on their
structure links when the user explicitly asks to traverse this composite through DGT.
DGTs are not stored in SYSGTs. The user invokes a DGT by selecting a composite
and a DGT button on screen. The system then computes the DGT by applying
bridge laws. NGTs (i.e., Navigation-based Guided-Tours) are static and manually
specified by the user from the history list. The user only needs to select an item
from the history and click an corresponding “add to NGT” menu item. Then an
NGT is generated and added into table SYSGTs. Every NGT could have a user-
defined semantic name for future reference. QGTs (i.e., Query-based Guided-Tours)
are dynamic. Whenever the user makes a query resulting a set of objects, the system
generates a QGT to hold them into a single composite component. This component,
is dynamic and is not stored in the Linkbase unless the user explicitly saves it as
a UGT (i.e., User-defined Guided-Tour). UGTs are static. The user can add any

current objects including all of the above guided-tours into a customized collection,

i.e., a UGT.



149

The following gives algorithms for creating GTs and navigating on GTs. We
assume that these standard functions have been defined: Sei_GetNextComp(A)
returns and removes a component from a set of components in A. List_FindLast(L)
returns the component pointed by the last link in a List L. Set_AddLink(X, L) adds
link L to a link set X. Set_AddComp(X, C) adds component C to a component set
X.

1. Create DGTs

e DGT_On_Set() creates a DGT on a Set component.

List DGT_On_Set(Component aComp)
begin
/* Declare variables */
Component C1;
List GT;
Link aLink;
/* Get component */
GT.LinkSet = NONE;
C1 = Set_GetNextComp(aComp.CompSet);
/* Add component and link to GT */
if C1 <> NONE then
begin
/* Add GT’s first component */
aLiink.Type = "NavigationLink”;
aLink.Content =
{{CompSpec = C1, Direction ="to")};
Set_AddLink(GT.LinkSet, aLink);
Set_AddComp(GT.CompSet, C1);
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C1 = Set_GetNextComp(aComp.CompSet);
/¥ Add GT’s other components */
while C1 <> NONE do
begin
aLink.Type = "NavigationLink”;
aLink.Content =
{{CompSpec = List_FindLast(GT), Direction =" from”),
(CompSpec = C1, Direction = "to”)};
Set.AddLink(GT.LinkSet, aLink);
Set_AddComp(GT.CompSet, C1);
C1 = Set_GetNextComp(aComp.CompSet);
end
end
GT.OwningSystemType = "Hypertext”;
GT.OwningSystemName = "GHMI Prototype”;
GT.CompName = "DGT";
return(GT);

end

e DGT_On List() creates a DGT on a List component by copying the

original component with changes on its properties.

List DGT_On_List(List Comp)

begin
List GT;
GT = Comp;

for all aLink in GT.LinkSet do

alink.Type = "NavigationLink”;
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/* Change properties */
GT.OwningSystemType = "Hypertext”;
GT.OwningSystemName = "GHMI Prototype”;
GT.CompName = "DGT”;

return(GT);

end

DGT_On_Tree() creates a DGT on a Tree component by constructing
a DGT on its breadth-first search sequence. Assume that function
Graph_BreadthFirstSearch() returns a List composite with an ordered

set of components as its content.

List DGT_On_Set(Tree Comp)
begin
List GT, C1;
C1 = Graph_BreadthFirstSearch(Comp);
GT = DGT_On_List(C1);
return(GT);

end

DGT.On_RootedDAG() creates a DGT on a RootedDAG component by

constructing a DGT on its breadth-first search sequence

List DGT_On_Set(RootedDAG Comp)

begin
List GT, CI;
/* ordered output of breadth-first-search */
C1 = Graph_BreadthFirstSearch(Comp);
GT = DGT_On_List(C1);
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return(GT);

end

2. Create NGTs
NGT() takes a GT (initially as NONE) and a user selected component (from

the History Log) and adds the component into the GT.

List NGT(List GT, Component aComp)
begin
Link aLink;
If aComp <> NONE then
begin
aLink.Type = "NavigationLink”;
aLink.Content =
{{CompSpec = List_FindLast(GT), Direction =" from”),
(CompSpec = aComp, Direction = "10")};
Set_AddLink(GT.LinkSet, aLink);
Set_AddComp(GT.CompSet, aComp);
end
GT.OwningSystemType = "Hypertext”;
GT.OwningSystemName = "GHMI Prototype”;
GT.CompName = "NGT";
return(GT);

end

3. Create UGTs
UGT () takes a GT (initially as NONE) along with a user selected component

and adds the component into the GT.
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List UGT(List GT, Component aComp)
begin
Link aLink;
If aComp <> NONE then
begin
aLink. Type = "NavigationLink”;
aLink.Content =
{(CompSpec = FindLast(GT), Direction =" from”),
(CompSpec = aComp, Direction = "to”)};
Set_AddLink(GT.LinkSet, aLink);
Set_AddComp(GT.CompSet, aComp);
end
GT.OwningSystemType = "Hypertext”;
GT.OwningSystemName = "GHMI Prototype”;
GT.CompName = "UGT”;
return(GT);

end

. Create QGTs

QGT() constructs a GT (initially as NONE) from a set of components (from
any query result). It calls UGT() to add component one by one and then
changes GT name to QGT.

List QGT(ComponentSet aCompSet)
begin

List GT;

Component aComp;

GT = NONE;
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While aCompSet is not empty do
begin
aComp = Set_GetNextComp(aCompSet);
GT = UGT(GT, aComp);
end
GT.CompName = "QGT”;
return(GT);

end

. Navigating on a GT

NavigateOnGT() navigates on a GT through following the links in its
LinkSet. We assume: HT _ApplyBLByObj() applies bridge laws (according
to the COISType of the object) to generate the destination component.
HT_ShowComponent(Comp) sends a component content to a proper 10S
viewer for display; List_FindFirst(L) is a standard List operation which
returns the first component in List L; List_FindNext(L,C) is a standard List
operation which returns the component next to C in List L. If C is NONE, it

returns the first component.

Navigate_On_GT(List GT)

begin
Component aComp, NewComp;
If GT = NONE then return
/* Find and show first component */
aComp = List_FindFirst(GT);
HT_ApplyBLByObj(aComp);
HT_ShowComponent(aComp);

/* Find and show next component */
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aComp = List FindNext(GT, aComp);
while aComp <> NONE do
begin
HT_ApplyBLByObj(aComp);
HT_ShowComponent(aComp);
aComp = List_FindNext(GT, aComp);
end

end

6.3.4.2 Bookmarks Bookmarks are persistent in Linkbase. nGHMI models
bookmarks as a special Set object. The user clicks on “bookmark”™ button for
accessing a bookmark overview on the Browser, on which the user can perform
operations including adding current, deleting a selected item and jumping to a
selected item. All bookmarks are stored in a table SYSBookmarks in the Linkbase.

Its entries are copied from the SYSHistoryLog in the Session DB.

6.3.4.3 Overviews Overviews are virtual and computed components modeled as
Trees or Graphs. The HTE can derive object overviews from their structure links by
applying bridge laws. We implement overviews for composite components as trees
(on the Browser) and graphs (on the Graph Viewer) derived from their CompSet

and LinkSet.

6.3.4.4 Backtracking and History The Session DB stores GHMI's run-time
layer structures include SYSHistoryLog, SYSChronologicLog and SYSTaskLogs.
SYSHistoryLog contains complete information regarding generated components
and their instantiations in terms of event structures. SYSChronologicLog and

SYSTaskLogs have the same structure as the history log.
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6.4 Current Implementation Status
To completely implement the prototype proposed in this chapter is far more than a
year’s work for one person. Nevertheless, we were able to implement those essential
parts that we believe are enough to serve as a proof of concept for GHMI. In this
section, we summarize our current implementation status in terms of the GHMI

prototype architecture and GHMI functionality.

The implementation architecture.  The current prototype includes all components
of the implementation architecture in Figure 6.1: three COIS handlers, an I0S (with
five viewers), an IOS handler, six HTE managers, four HTE DBs, the DB handler’s
Configuration DB, an example application DB (“Small School”), and a TEXPROS
DB. Although we explicitly define one application DB with ER schemata to prove
our RDBMS mapping, all of the DBs in Figure 6.1 (i.e., the Knowledge Base, the
Linkbase, the Session DB, the HTE Configuration DB, the DB handler’s Configu-
ration DB and the TEXPROQOS DB) are also treated as normal application DBs under
the management of the DB handler. All functionalities GHMI adds to the appli-
cation DB apply to all of these DBs too. The HTE Inference Manager is partially
implemented as a BL-invoker (the missing part is the BL-parser). The HTE Config-
uration Manager is completed on the COIS side and is incomplete on the TOS side
as we only have one I0S. The communication protocol GHMICP and its APT (i.c.,
standard functions) are fully implemented. The IOS is fully implemented with all
viewers and is able to communicate with the HTE through DDE. The DB handler
is also completed (including a Prolog BL-Engine). The TEXPROS handler and
the File System handler work for object mapping and generating overview trees and
communicating with the HTE. The prototype also supports configuration of multiple
COISs. The HTE is able to activate COISs if they are not running when a message

exchange is needed.
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The HTE, the IOS, the DB handler, the TEXPROS handler and the file system
handler run as independent processes and communicate to each other through DDE.
The prototype starts from the IOS. The 1OS is responsible for activating the HTE.
Upon receiving a user event, the IOS contacts the HTE for processing. The HTE

then activates proper COIS handlers to generate responses.

Components. The current prototype supports mapping of these GHMI components:
plain atomics (text files), structured atomics (DB records, DB fields), Set (database,
tables, query results), List (guided-tours), Trees (tree-overviews) and Graph (ER

diagrams). We wrote bridge laws to map these components from COIS objects.

Links.  The current prototype supports creation and traversal of five GHMI link
types (except annotation links): association, structure, reference, operation and
navigation. Association links can be manually created as intra-COIS or inter-COIS
links. We map structure, reference and operation links using bridge laws. Reference
links can be mapped automatically in dynamically generated documents (e.g., query

resulted tables).

Anchors.  We implemented two of the three GHMI anchor types: plain anchors
and dynamic anchors. Plain anchors are created manually and can be embedded in
association links. Dynamic anchors are generated from link bridge laws. The anchors
in a dynamically generated table are dynamic anchors. Whenever a dynamic table
is resulted from an operation link or a reference link, the HTE instructs the IOS to

mark it up with dynamic anchors for further access.

Navigation.  The current prototype includes these navigation features: browsing

(i.e., link traversal), history (accessible from all viewers), backtracking (chronological
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only), overview (for Sets, Trees, and Graphs), bookmarks (accessible from all viewers)

and guided-tours (default guided-tours and query-based guided-tours only).

Bridge Laws.  We wrote bridge laws for three COISs: RDBMS, File System and
TEXPROS.

(1) RDBMS: We implemented the most of RDBMS bridge laws defined in §5.5:

- Object BLs: BLgecord; BL7atter, BLpatabases BLschemas BLERDiagram

— Structure link BLs: BLRgecordToTatle; BLTableTonatabase

- Operation link BLs: BLgyery

- Reference link BLs: BLsameschemas BLsamekeys BLRefTorattes BLERRetation,
BL pB7orRDiagram, BLschemaToTables BLMetaTable; BLMetanatabase

(2) TEXPROS: We implemented BLjy4er and BLg; in §A. This enables us to
explore the TEXPROS folders and frame instances from a hierarchical overview
(viewed as a tree).

(3) File system: We have one bridge law BLp;, for mapping text files to plain

atomic components.

6.5 Summary
In this chapter, we presented the GHMI prototype implementation details. The
prototype architecture comprises a hypertext engine (HTE), three COISs (MS
Access, TEXPROS and MS-DOS) and an I0S. Every COIS or TOS connects to
the HTE through its own handler. Handlers translate the HTE’s messages to a
format the COIS or IOS understands, and vice versa. COIS handlers translate
bridge laws (in the HTE’s MRDC format) to access COIS’ operations, objects and
data. To integrate a COIS, the only change this architecture requires of the COIS
is that its communications path be routed through the handler [10]. Developers

and builders very familiar with the COIS must write the COIS handler, as well as
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bridge laws for each class of objects or relationships accessible to users. RDBMS
is so well-understood that we were able to do this ourselves for MS Access. The
complexity of the bridge laws depends on the COIS’ complexity.

The HTE consists of six managers and four databases (managed under MS
Access). The managers are: the COIS Manager, the IOS Manager, the HT Manager,
the Inference Manager, the Configuration Manager and the DB Manager. The
databases are: the Knowledge Base, the Linkbase, the Session DB and the Configu-
ration DB.

In this prototype, we consider three diverse COISs: a database system (MS
Access), a document management system TEXPROS and a file system (MS-DOS).
Our focus is on MS Access. We map objects and relationships defined by bridge laws
in §56.5. TEXPROS is still under development. We only map its objects (i.e., folders,
frame templates and frame instances, see §A) and file structures to components
according to the bridge laws in §A. Although file systems are hardly COISs, we
include them to demonstrate how GHMI supports text documents and annotations.
We model text files as plain atomic components.

We only have one I0S in this prototype, as our focus is on the COIS-HTE side.
The current TIOS consists of five viewers: a Text Viewer, a DB Viewer, a Browser, a
Graph Viewer and a Main Viewer. Each viewer has its own menu items for viewer-
specific commands. Some standard commands are common to all viewers, including
History, Backtracking, Overview, Bookmark, GuidedTour, etc.

The HTE and the handlers run as independent processes. They communicate
with each other at run time through message passing. We employ a communi-
cation protocol GHMICP (i.e., GHMI Communication Protocol) for interprocess
communications. In GHMICP, a message consists of a sequence of tag-value pairs.
Message lengths and contents vary according to message types (i.e., message sender

and receiver types).
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Although this prototype is not completely implemented, the current imple-
mentation does include all essential parts to serve as a proof of the GHMIT concepts
proposed in this dissertation. We summarized our current implementation status
in terms of GHMI prototype architecture and GHMI functionality. These include
all components of the implementation architecture in Figure 6.1. In terms of
GHMI functionality, the current prototype supports: (1) components: plain atomic
components (text files), structured atomic components (from DB records, DB fields),
Set components (database, tables, query results), List components (guided-tours),
Tree components (tree overviews) and Graph components (graphical overviews);
(2) Links: five GHMI link types (except annotation links): association, structure,
reference, operation and navigation links; (3) anchors: plain anchors and dynamic
anchors; (4) navigation: browsing (i.e., link traversal), history (accessible from all
viewers), backtracking (chronological only), overviews (for Sets, Trees and Graphs),
bookmarks (accessible from all viewers) and guided-tours (default guided-tours and
query-based guided-tours); (5) bridge laws: bridge laws for mapping the above
functionalities. These include most of bridge laws we defined in §5.5 and §A.

As part of our future work, we plan to continue implementing this prototype

to make it a complete GHMI hypertext system.



CHAPTER 7

SUMMARY AND FUTURE WORK

In this chapter, we discuss guidelines for using GHMI, compare GHMI with other
systems and models, identify both GHMI's major contributions and limitations, and

briefly outline future research that could emanate from GHMI.

7.1 Guidelines: Using GHMI
In §5.4, we discussed the guidelines for integrating RDBMS with hypertext. This
section discusses general COIS integration guidelines. To integrate a COIS with
a GHMI hypertext system, the COIS builders (or developers) need to follow the

following steps.

1. Study the GHMI Model
To add the full GHMI functionalities to a COIS, it is essential for the COIS
builders to have a good understanding of the GHMI model. The first step
toward building an integration system is to study the GHMI hypertext
concepts, including components, links, anchors, navigation features and

especially the bridge law template.

2. Identify Potential GHMI Constructs
The next step is to identify COIS objects, relationships, meta-information and
operations (or commands), which could be mapped to GHMI constructs (i.e.,

component classes and typed links).

o Identify COIS Objects: We need to identify all COIS objects which
might be mapped to GHMI components and therefore made directly

accessible to users.

161
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e Identify Useful Relationships: We need to identify both explicit
and implicit relationships. Mapping these relationships to GHMT links
makes them directly accessible to users. GHMI enables mapping COIS
relationships to appropriate link types based on their behaviors (e.g.,
mapping a hierarchical relationship to a structure link; mapping an
implicit relationship to a reference link). Mapping implicit relationships

to reference links makes them “explicit” and directly accessible.

o Identify Meta-information: Certain users such as developers should
be able to access meta-information associated with an object, such as the
object type, time stamps, referential constraints, etc. GHMI could help

users access these information by mapping them to reference links.

e Identify Useful Operations: COISs usually provide powerful object
manipulation operations (e.g., open, delete, modify, query, compute).
GHMI enables direct access to these operations by mapping them to

operation links.

3. Software Engineering
After identifying the potential GHMI constructs, the next step is to write the

mapping rules (i.e., bridge laws) and the COIS handler code.

e Write Bridge Laws. We need to write all bridge laws to map the
above identified potential GHMI constructs using the GHMI bridge law
template. Component bridge laws map GHMI component and link bridge
laws map GHMI links and dynamic anchors. It would be necessary to
understand some simple syntax of Prolog as bridge laws’ MappingRule
part employs a Prolog-like syntax. The complexity of bridge laws depends

on the complexity of the COIS.
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e Write the COIS Handler. Writing the COIS handler code is the most
difficult and tedious work in this integration procedure. The COIS handler
actually executes bridge laws to generate responses to HTE requests. The
responsibilities of a COIS handler include: (1) executing bridge laws;
(2) managing the configuration of COISs; (3) calling COIS routines to
generate responses for HTE requests; (4) communicating with the HTE.
Bridge law execution is accomplished by a bridge law engine (probably
written in some Prolog-like language because heavy inference functionality
is involved in executing a bridge law’s MappingRule). Skillful experience
of some programming language(s) might be essential for this step too.
Understanding the GHMI communication protocol is also important for

building the communication module.

7.2 Comparison with Other Systems and Models
GHMI and its prototype share ideas and common constructs with other systems
developed by hypertext researchers, especially in the field of providing hypertext

functionality to third-party applications and Dexter-based modeling.

7.2.1 Open Hypertext Systems
We compare GHMI with other open hypertext systems including Sun’s Link Service
[75], Microcosm [23, 24, 27], SP3 [58, 63, 81], Chimera [5] and Multicard [78]. We
compare GHMI with these systems and models with respect to three aspects: the
application domain, the system architecture and the hypertext model.

Figure 7.1 shows the architecture and application domain comparison and Table

7.2 shows the hypertext data model comparison with open systems and models.

Sun’s Link Service.  GHMI shares with the Sun’s Link Service [75] separating links

from application data but provides more complex hypertext features. (1) Appli-
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Aspects Links Anchors .
Composites
Models Typed | n-ary | Dynamic| Typed|Dynamic
GHMI Yes Yes Yes Yes Yes Yes
Microcosm| No No No Yes No No
Sun’s
Link Service No No No No No No
SP3 No Yes No No No Yes
Chimera No Yes No No No Yes
Multicard No No No No No No

Figure 7.2 Model Comparison with Open Hypertext Systems

cation domain: The domain of the Link Service could be any application running
on a Sun workstation while GHMI is designed specifically for computation-oriented
applications. However, the Link Service only provides link services at a very primitive
level. Tt only maintains link sources and destinations. GHMI provides applications
with a much richer set of hypertext features. (2) Architecture: The Link Service
was provided as a standard feature on Sun workstations. Therefore it is open to
applications at the programming level and its built-in hypertext functionality is very
primitive. The application is responsible to define the link-related operations on
linked objects. (3) Hypertext model: The Link Service’s hypertext model is simply
plain node, link and anchors. There is no typing or composites. Links are static and
only binary links. (4) Link Traversal: Link Service’s applications are link-aware (i.c.,
applications have to manage link information) while GHMI's applications are not.
In GHMI, applications are link-unaware and the hypertext engine is responsible for

invoking applications.
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Microcosm.  GHMI and Microcosm (23, 24, 27] have many common points. They
both separate links and anchors from application objects and both adopt a message-
based API to establish hypertext-application communication with a similar message
format (i.e., a tag-value pair format). They also share anchor concepts: Microcosm'’s
specific anchors and local anchors are compatible with GHMT’s plain anchors and
keyword anchors respectively. However, GHMI differs from Microcosm in many
ways. (1) Application domain: As opposed to GHMI, which aims at supporting
computation-oriented applications, Microcosm is primarily open to viewers which
are display-oriented applications (i.e., IOSs in GHMI's terminology). Microcosm’s
system architecture does not support integrating computation-oriented applications
(i.e., COISs) which dynamically generate data at run-time. (2) Architecture:
Microcosm applications have to be changed to embed some macros to handle
communication with the link service, while GHMI’s architecture requires separate
handlers to handle communication and thus the applications remain unchanged.
Microcosm’s linear “filter” message passing chain is too restrictive and inefficient.
“Filters” (program modules) have to be ordered carefully to ensure they receive all
messages they expect to handle. GHMI adopts a message bus and allows modules
to communicate with each other by routing through the hypertext engine. (3)
Hypertext Model: Microcosm'’s links are static, untyped and binary. GHMI allows
n-ary links and a broader range of behavioral link types. GHMI also supports
dynamic links which are mapped from COIS domains at run-time through bridge
laws. Microcosm’s anchors are static while GHMI allows dynamic anchors to be
inferred through bridge laws. Furthermore, Microcosm does not have a model for
composites. (4) Link traversal: Microcosm’s viewers are responsible for communi-
cating with Microcosm. Integrating with independent viewers is still an ongoing
issue. The authors proposed a mechanism to integrate hypertext-unaware viewers

[24] which supports anchors through content search instead of identifying them
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using some underlying COIS objects IDs. In GHMI, however, COIS handlers
located between the COIS and the hypertext engine handle the communication
details. The COIS itself is hypertext-unaware. The hypertext model is hidden from
the COISs. Such an approach enables effectively integrating existing applications

with minimum changes. Changes are imposed on the handlers only.

SP3.  GHMI and SP3 [58, 63, 81] both address issues regarding the Dexter model
but GHMI follows a quite different approach. (1) Application domain: In SP3,
there is no systematic support for computation-oriented applications which handle
dynamically generated data. The application has the responsibility to extend its
functionality to support dynamic data. (2) Architecture: The application needs to
communicate with other hypertext components using IPC (inter-process commu-
nication). GHMI takes this burden off applications and puts it on their handlers,
enabling applications to remain unchanged (except to communicate with their
handlers). SP3 requires applications to store application data in order to benefit.
from special hypertext features such as versioning. Instead of storing application
data, GHMI dynamically maps applications to hypertext. Versioning is not available
in GHMI yet. (3) Hypertext model: Both GHMI and SP3 support n-ary links. In
contrast to SP3’s modeling links and anchors to be first-class processes, GITMI
models links and anchors as objects managed by the hypertext engine. This allows
links and anchors to be handled in a consistent manner. On the other hand, SP3
has no way to define anchors on links, as links are processes instead of first class
components. GHMI models links as components. All operations on components
also apply to links. (4) Link traversal: SP3’s applications have to maintain link-
related data which implies more changes would be made when integrating existing
applications. GHMTI’s applications (COISs) are hypertext-unaware. They have no

knowledge of links or anchors. Application objects are mapped to hypertext objects
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dynamically through bridge laws. (5) Other features: SP3 supports versioning,

distribution and collaboration which are not in current stage of GHMI development.

Chimera. (1) Application domain: Chimera [5] was developed specifically for
the needs of tools in software development environments. Its application domain
is restricted to viewers which are display-oriented applications. There is no way in
Chimera to support the domain of computation-oriented applications like GHMI
does. (2) Architecture: GHMI uses a message-based API to support inter-process
communication. The message format is simply ASCII tags. In contrast, Chimera
hides message details by a using higher-level API and ADT (i.e., Abstract Data
Type). This allows the Chimera developers to change message formats freely
without affecting the rest of the system. But the tradeoff of this approach is that
applications have to be changed to use the message ADT. (3) Hypertext model:
Chimera associates anchors with views including an object view and the viewer
displaying the object view. The Chimera concept of views is independent of where
it is stored. A Chimera view could contain interface objects such as buttons and
windows, depending on how the viewer defines its views. This is flexible in handling
multiple views of a single object. There is no analogous concept of such anchors in
GHMI. The way to multiply view an object in GHMI is to define a link pointing to a
component with proper presentation specifications. Chimera’s approach allows the
viewers to freely implement viewer-specific features at the price of managing links
and anchors inconsistently, which makes it difficult to extend standard features in
the Chimera server. (4) Link traversal: GHMI's applications are hypertext-unaware
and do not participate in link traversal. Chimera’s viewers, however, are heavily

burdened to define anchors and map anchors to objects.

Multicard. (1) Application domain: In contrast to GHMI, Multicard [78] is

primarily open to editors which are display-oriented applications. The authors of
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Multicard mentioned that Multicard can provides integration with large range of
applications from basic text editors to sophisticated systems such as expert systems
and object-oriented database systems. But it is still an ongoing issue and it is not,
clear how to support these dynamic systems at the system level. In [4], the authors
connect Multicard to an object-oriented database system O2 to support querying
hyperdocuments. They only use database systems to implement their hypertext
facilities, rather than take database systems as an application domain and add
hypertext functionality to them. (2) Architecture: Multicard’s editors have to be
modified to be use M2000 to participate in integration. GHMI does this by separating
the applications from their handlers. An application is hypertext unaware and thus
minimal changes are imposed for cooperating with its own handler. The domain
mapping between application objects and hypertext objects happens at run-time by
applying appropriate bridge laws. (3) Hypertext model: Multicard includes a simple
version of composites which is a node hierarchy consisting of nested nodes, similar
to GHMTI's Tree composites. Multicard’s links and anchors are untyped and links
are binary only. Multicard’s script-attached links are similar to GHMI’s concept of
operation links. GHMI’s concept of bridge laws is similar to the Multicard script
language in the sense of defining dynamic behavior of operation links. The behavior
of a GHMI operation link is specified in bridge laws. The difference is that GHMI
provides bridge laws for the purpose of mapping applications, while Multicard aims

at providing a tool to extend its system functionality.

7.2.2 The Dexter-based Models

The Dexter model [47] is widely referenced and accepted as a common, principled
interchange standard for diverse hypertext systems. Its separating hypertext into
three layers makes modeling conceptually clearer and more understandable. Having

such a model as our base enables us to share and compare our work with other
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researchers based on a common framework. Over the past several years, models and
systems have been developed following the Dexter approach. Figure 7.3 shows the
comparison of GHMI with other Dexter-based models.

DHM (or DeVise hypermedia) [38, 41, 39, 37, 40] is a Dexter-based hypermedia
prototype developed at Aarhus University in Denmark. DHM extends Dexter in link
directionality, dangling links, anchor typing, structures and component contents.
Besides Dexter’s four constant link directions (i.e., “From”, “To", “Binary”, “None”),
DHM employs a broader concept including three orthogonal notions of link direc-
tionality: semantic directions, creation directions and traversal directions. In
contrast to Dexter, DHM allows dangling links which have no “To” directions.
DHM’s anchors are typed to include whole-component anchor, marked anchors and
unmarked anchors. By storing the references instead the contents of components,
DHM supports linking to objects created by external applications. GHMI have
many similarities with DHM. GHMTI’s external components and keyword anchors are
similar to DHM’s. GHMI also models component’s internal structures and shares the
concern of distinguishing hypertext-managed components from application-managed
components with DHM. In [37], Grenbaek further extends DHM composites to a class
hierarchy and four aspects of composite contents. The class hierarchies of GHMI and
DHM are similar but follow different perspectives. DHM focuses on modeling the
entire storage layer and run-time layer objects while GHMI separates the navigation
structures from the underlying classes with the belief that the navigation structures
can be modeled with the underlying component structures. DHM provides an archi-
tecture for cooperative work support [39] which is not the current focus of GHMI.
DHM'’s structure dimension of modeling composite’s contents is similar to GHMTI’s
composite subclasses. DHM’s virtual computed composites are similar to GHMT’s

computed components. However, GHMI's component content computation could



171

S[OPOJA Paseq-I191xa(] 1PYi() yim uosuredwo)) g°2 aan3ig

uonEzmOoNULS
-uomp3fjo)) - {+6. T8 12 ONOZRD}
vorBUE-UOTI0) - suoTRIado pus asonas . 3mppy,
s0ddns speumMmyy - STPUT 'SIN01-RIPING - UL SUoRR(e] -
SO UoTZRIOAqLS wip P Prerd
susodio] - Esssen s kg 526y ayodwoy - {56, T819 URWRST)
wpawaddy oy uoyemp vonrzmoxuAs PIRSISR U030 dwod o togrRoxuls - <] Jopuy WHY
1=1dy Surpusiyg - ‘[PUVRIP SOTWOYY - PUB HOZRI[0)) - 1X37803 YUT] - susuodwoo RUSNG - ‘@ dwoD> Jo sty v -
syun vogedm pur
utwpe-sis posnput sadf1 yuit om] - (6, (813 OTW)
apms *UOISIIA-UINU *JOYING '1003 0}*Wwog ‘uoisnput SUOTSSIA WHLARY
Sumatny, - xa{dwoa “s1apuRy - snnquue ipRdeg - ATROTSAND YuT] - P s - SINPUR R -
adm] u3m3p washs Suppy . 357mpS B 138
~dug--srpoussadAy; - E | agm-yr-ur-mpowsdiy 55300, 5% PIRPON - mwamtasoduo) - | 5355300.d se pIPPO - edsS
0D - {|1xn1addi-sso0z 3xz100) - 20j suondunsse uaazg - sadfy yum uadgy - siusuodico puR - sadhy soyoue uadp -
SWX {i6.43007ni 3 TRy
) wpauL] KYsuRn siowpq I - | Susuodwoo pusng - U1 SoNSS],
Fuepa wpoundAg - s Bugdueg - Fumorsp -
Quauodico
swayss (@spe | (vosnpt &g Apmsiy pandiuioo pus [muTA - sotpuR poskay - | (46,26, 15 THUAD)
Tpoutsadhy 3amssdoo) - 1 pUR BOISS3S) vonmod sopuim s3) | souamja Aq Atpresn) ssmolq | svonou ¢ Aifeuogoang - | susuodios eusng - (poopmuun "oy WHA
u3s3p pawew-p3lqQ - fprny ssv) - rwondp - | - | 'sdoraigm ‘smor papmng- sy Sugdue - fpreay sy - wdiy -
EET AR Bu1ddauws o - SIOUOUE LI -
suashs sasodwoy Susmoxq Sunddew ok - | Susvodoo e - saopuR R - (96.%m)
voneLoj JRrsukp 50| [es Ry wasks - Jo sm3ta aydnmy - a8 * o1ty *smInRA0 Gy~ | sampnnsssoduo) - {(ommukp ‘posday umd) DNHED
il uoresapu - SUNPNLS UIAT - ruondp- | 9Fm[wowy ireusdiy - [S4muD(00q's0) RPmY - [s3d4s pasea-ouRyaq XIS - Apresy ss)- sadhi sany -
t “uonoang - 1410 pre
s33103ds Jo ouanbas sz Surppaqurg - (uRatps P ZSTTEH)
FPow pRpUTS - Sy Am-N - pamdwo]) - oo ut pappequry - 1x3(
23uwpnn yxnssdfy - (3jdus) voTSag - Koyepuzyy - suauodwod s2 YT - Fysoduseo ‘Srwory - smed @OEA ‘> -
sameag wonBaoadg 20 uonEgIARN SYUI'] sistodwo)) SI3pOIN
oo [T AL ooy ok siogoay s5]
ST . o] 28ei015 A, SUOISUSIXT




172

involve dynamic mapping rule execution in applications while DHM’s computation
takes place within the hypertext domain.

Leggett and Schnase criticizes Dexter’s abilities on hypermedia interchange and
hypermedia-in-the-large (i.e., open hypermedia systems) design [63]. They address
four issues from their experience on translating Intermedia and KMS using Dexter
as an exchange standard [62], including underlying model confliction, multidesti-
national links, link directionality and methods of defining hypermedia boundaries.
Although they consider Dexter a robust model for hypermedia systems as an inter-
change standard, they discuss issues regarding Dexter’s problems on: not allowing
dangling components, no notion of versioning, no external components, no notion
of deletion semantics for composites, no notion of composite’s internal linking and
restrictive navigational link semantics. GHMI addresses all of these issues except
versioning. In addition, Leggett et al. proposes seven fundamental assumptions for
hypermedia-in-the-large system design. Based on these assumptions they claim that
Dexter does not support hypermedia-in-the-large and it is not profitable to further
extend the Dexter model. GHMI addresses similar issues on broader link services
(by providing a larger range of hypertext functionalities) and heterogeneous appli-
cation support. However, GHMI differs from Leggett et al.’s work in three major
ways. (1) different focuses: Leggett et al. focuses on issues for general hypermedia-
in-the-large system design while GHMI focuses on supporting dynamic mapping
of computation-oriented applications; (2) different perspectives of viewing Dexter:
GHMI follows only the spirit of Dexter on layered modeling and consistent represen-
tation of hypertext elements as storage layer components. Taking Dexter as a base
did not prevent us from extending and specifying Dexter to fit our needs. It is unnec-
essary to recommend the termination of Dexter; (3) different models for link and
anchor behaviors: Leggett et al.’s SP3 employs a process-based design by modeling

links and anchors as processes and allowing open types. Such an approach allows
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broader and extensible application integration at the price of heavy performance
(especially in distributed systems), inconsistent link/anchor behaviors and heavy
application burden (the applications have to define link and anchor behaviors). In
contrast, in GHMI, the applications are hypertext-unaware.

RHYTHM [66] is a hypertext system developed at the University of Bologna
in Italy. The authors believe that modeling RHYTHM using Dexter proved the
usefulness, soundness and robustness of Dexter, although they made a few extensions.
RHYTHM components are files, documents and versions which can be mapped
to Dexter components. Files are entities storing actual data. A version is an
entity showing data to users through a list of references. Versions are collected in
large entities called documents which establish relations between them. RHYTHM
allows only binary links and divides links into two disjoint classes: navigation links
and inclusion links. Versions are composites made exclusively of links and can
include previous versions through inclusion links. Navigation links include all binary
links other than inclusion links. RHYTHM extends the Dexter anchor concept to
support external anchors. GHMI has similarities with RHYTHM concerning the
concepts of external anchors, computed anchors, anchor resolver and link typing,
but differs from RHYTHM in three aspects: (1) RHYTHM does not explicitly
model keyword anchors. Furthermore, RHYTHM'’s concept of computed anchors is
similar to GHMTI's dynamic anchors. But RHYTHM does not include a mechanism
to define computed anchors. GHMI defines dynamic anchors using bridge laws. (2)
RHYTHM’s restriction on binary links is too narrow for modeling complex links in
large hypertext application environments; (3) RHYTHM includes a primitive notion
of link typing with a distinction of navigation links and inclusion links while GHMI
models a broader range of behavioral link types. RHYTHM'’s inclusion links are a

subset of GHMI'’s structure links.
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The Amsterdam Hypermedia Model (AHM) [50] is a general {ramework
focusing on extending hypertext to hypermedia. AHM was developed as a combi-
nation of the Dexter model and the CMIF multimedia model {14] with extensions on
Dexter by introducing the notions of time, high-level presentation attributes and link
context. AHM extends Dexter’s presentation specification on atomic components
to include channel and duration information. Channels define global attributes
in documents, including media-type independent specifications (e.g., background,
foreground and highlight colors) and media-type dependent specifications (e.g., font
and size for texts; scaling factor for graphs; volume for voices; etc.). An AHM
composite does not contain any direct data. Instead, a composite references its data
via an atomic component. A composite’s content contains a collection of atomic or
other composites. The presentation specification of composites contains a collection
of synchronization arcs which are structures defining relative ordering information.
AHM introduces the notion of link contert which is a component containing a
group of composites or atomics affected by a linking operation at run-time. Link
context allows a “follow link” operation to affect only part of a document structure.
Nevertheless AHM extends Dexter from a multimedia point of view which is not the
current focus of GHMI, both models share common points on external components.

Garzotto et al. [35] made extensions on Dexter’s storage layer by introducing
the concept of collections and on Dexter’s run-time layer using related notions of
collection-navigation and collection-synchronization. A collection is a composite
consisting of member nodes (or components). The internal structure of a collection
includes two aspects: a set of members and a structure of topologically arranged
members. These structures are similar to GHMI's Set and Graph composites.
Operations on a collection include definition of the member set, definition of its
internal structure and definition of the association node which represents the

collection. Indices and guided-tours are two basic collection-based navigation
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structures. GHMI shares the notion of guided-tours, especially the nested guided-
tours [34] and defines a richer set of guided-tour categories. Another difference is
that Garzotto et al. models navigation as an extension to the Dexter run-time layer
with the consideration of active media while GHMI models guided-tours and other

navigation structures using the storage layer constructs.

7.2.3 GHMI and WWW

Although both provide hypertext features, the World-Wide-Web (WWW) and
GHMI are quite different in their design purpose and system architecture. The
WWW provides a world-wide access and browsing environment in a hypertext
manner. GHMI aims at providing integrating COISs with hypertext and providing
COISs with hypertext functionalities dynamically. We view their differences from
the following aspects. (1) Data Model: Unlike GHMI, the WWW’s hypertext
data model is simple. It consists of plain nodes and binary links. It has neither
structures nor composites. The WWW does not support bidirectional links as it
employs HTML which embeds links only in departure documents. Links are also
unlabeled and untyped (neither semantically nor behaviorally). This could cause
navigation disorientation by overwhelming users with a vast of structure-less infor-
mation. GHMI's model improves this situation by including composite structures,
n-ary links, bidirectional links, and behavioral link typing. (2) Navigation: GHMI
shares WWW with the functionalities on link traversal (i.e., browsing), querying
(COIS supported), history, backtracking and bookmarks. When navigating around
the WWW, however, users can be easily disoriented and lost due to its insuf-
ficient navigation structures and tools. Another tradeoff of most WWW viewers
is their single-window environment which worsens disorientation; GHMI provides a
richer set of navigation facilities, including guided-tours, overviews and task-based

backtracking, which are not available in the WWW. (3) Document Markup: WWW
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forces its authors to use a markup language HTML to reproduce their documents in
order to be accessible through WWW viewers. This reduces the WWW'’s openness
and flexibility severely. All links and anchors are static and have to be encoded
in an HTML format in application documents’ content. There is no easy way
to link existing documents dynamically or even add a link at run-time manually.
All documents have to be rewritten to embed static links and anchors which are
read-only at run-time. To implement these linking features, users have to write
specific programs using some script language (e.g., CGI scripts), which is complex
and overwhelming to average authors. GHMI integrates COIS applications through
dynamic mapping and supports dynamic links in a much easier way. It separates
links from the original documents and therefore does not impose any markup on
original applications. This enables dynamic links and anchors to be generated at
run-time. (4) Distribution: The major distinctive feature of the WWW lies in
its world-wide distribution and ability of interoperating among a large range of
heterogeneous hardware and software environments. This is not available in current
GHMILI. It would be an interesting future research to enhance GHMI by making the

WWW an 10S, combining the WWW?’s distribution with GHMI functionalities.

7.3 GHMI Contributions and Limitations
In this thesis, we presented a general hypertext model GHMI, which is a Dexter-
based hypertext model supporting integration of hypertext and computation-oriented
information systems (COISs). This section summarizes GHMI’s major contributions

as well as its limitations.

7.3.1 GHMI Contributions
GHMI aims at enhancing COISs by adding hypertext functionalities through

dynamic linking facilities. Integrating with GHMI only imposes minimal changes
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on COISs. We view GHMI's major contributions from the following four points of
views: (1) GHMI vs. Bieber et al.’s work [12, 9]: Taking its motivation from Bieber
et al.’s original concept of bridge laws, GHMI extends and formalizes bridge laws
within a comprehensive hypertext data model. GHMI models composites which
are not found in Bieber et al.’s work. Furthermore, GHMI formalizes the dynamic
mapping concepts into a hypertext data model (through its MRDC processing).
Also, GHMI extended and implemented the general system architecture in Figure
3.1, originally proposed by Dr. Bieber but not yet implemented, as a running
prototype; (2) GHMI as a hypertext data model: As a general hypertext data model
for supporting hypertext and COIS integration, GHMI uniquely provides a compre-
hensive set of hypertext functionalities regarding hypertext objects (composites,
behavioral link typing, and dynamic anchors), domain mapping mechanisms (bridge
laws) and a variety of navigation features (guided-tours, task-based backtracking,
history, bookmarks, overviews); (3) GHMI as a Dexter-based model: GHMI uniquely
combines specific extensions and specifications on Dexter to meet the requirements
of our dynamic domain mapping environment. This demonstrates both GHMT's
and Dexter's robustness and generality. Extensions are introduced on Dexter’s
composites, link specifiers and anchors. To map all GHMI capabilities in terms of
Dexter, GHMI specifies Dexter’s components, links, anchors, the resolver function
and the accessor function; (4) The GHMI Prototype: The GHMI prototype is the
first hypertext system which implements the general architecture of supporting
dynamic integration of hypertext and multiple COISs. It proved the feasibility of

the architecture and the GHMI model.

7.3.2 Potential Limitations
The GHMI approach has limitations in three aspects: (1) Object Identities: GHMI

relies on resolvable [47] COIS object identifiers to map explicit COIS objects to
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hypertext objects. This approach benefits from the fact that object identities arc
widely adopted in systems with the increasingly-popular object-oriented designs. (2)
Software Engineering: The COIS builders have to write bridge laws and the COIS
handlers. They need to learn the bridge law template syntax. The complexity of
bridge laws and COIS handlers depends on the complexity of COISs. In complicated
COISs, writing bridge laws and COIS handlers could be difficult and tedious. The
burden of writing COIS handers could be greatly reduced by providing (by the GHMI
developers) a set of built-in APIs for those modules common to all COIS handlers.
Actually this is possible for all the COIS handler modules except the COIS buffering
module and the COIS invoker (see §6.1.4). (3) Speed: The speed of dynamic mapping
could be slow. Bridge law mapping involves HTE-COIS communication and COIS
program execution, which could be time-consuming. Speed depends on how much
inference the bridge laws do and how much COIS execution is needed to generate
outputs. In certain environments (such as real-time applications) when speed is the
highest concern, GHMI’s approach might not be satisfactory, although software and

hardware optimization could help some.

7.4 Future Research
GHMI is a robust model for supporting COIS-hypertext integration. Extensions
in several directions can be made to enhance the current version of GHMI and its
prototype resulting from this dissertation. This section outlines the future work we

plan to pursue after this dissertation.

Implementation Issues. (1) Unimplemented Features: We plan to continue
implementing those features defined in the GHMI model but not included in the
GHMTI prototype. This includes: system configuration, bridge law configuration,

annotations, navigation based guided-tours, user-defined guided-tours, task-basecd
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backtracking, bridge law parser, etc. (2) Dynamically updating objects: The current
GHMI prototype does not consider how to dynamically update objects which are
currently displayed on screen. In the current GHMI prototype, neither the Linkbase
nor the Session DB stores these objects’ interface-related data (e.g., at which window
and what position the objects are displayed). The current GHMI assumes that data
processing is triggered by user events in the I0Ss. However, in some information
systems, internal triggers will cause events to occur (e.g., an office automation system
might include a week trigger for display all meetings for the week every Monday
at 8am). In other systems, some items on the screen need to be updated automat-
ically (e.g., a financial system interface with stock prices fluctuating over time).
GHMI needs to provide a mechanism to facilitate these situations. (3) Destructive
operations: Current GHMI prototype maps operation results as dynamic tables. Tt
does not consider the situation of a destructive operation which generates no explicit
results but might delete COIS objects without notifying the HTE. This could make
the data in the Linkbase out of date (e.g., links to a deleted COIS object). Updating
data as a result of outside changes is still an open issue in the area of open hypertext,
systems [23, 24, 27, 81, 63, 5, 78]. GHMI assumes the COIS handler is responsible for
notifying the HTE about such operations. If any dangling component occurs (e.g.,
link traversal, backtracking or accessing annotations to a deleted COIS object), the
HTE gives the user a warning message and deletes the corresponding link resolving
to the dangling component. The potential dangling objects due to such destructive
operations can not be found until the user follows a link pointing to them. The COIS
could notify the HTE on such an action. This prototype does not require COISs to
report destructive operations. An effective solution is not available in current GHMI

and is open for future exploration.
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Distribution and WWW.  In recent years, delivering electronic information via
computer networks has been gaining significant growth. There are numerous
hypertext systems operating in a distributed environment [3, 75, 100, 52, 15]. The
most well-known and widely used distributed hypertext system is WWW, which
provides a robust navigation environment among a large range of heterogeneous infor-
mation resources. A WWW document with hypertext links is constructed based on
a markup language HTML which is a simple version of SGML. We could combine
GHMTI's functionalities with WWW?’s distribution feature by extending the GHMI
model and making it WWW-compatible. Our first plan toward this goal is to develop
a WWW handler which connects GHMI to WWW and make it directly accessible
from the Internet. We can build basing on the current prototype by replacing (or
adding, if we want both) the current IOS handler with a WWW handler written
as a CGI script and the current IOS with a WWW browser (e.g., Netscape). Such
replacement will not affect any code in the HTE and the COIS/COIS handlers
(except to add some HTE configuration information). The WWW handler would
intercept messages previously sent to the current IOS handler. It would convert
object contents to HTML documents with embedded links by combining object
content messages with anchor markup messages from the HTE. The five current 10S
viewers could be re-implemented in WWW browsers (e.g., Netscape) by means of
WWW scripting languages (e.g., Pearl, JAVA scripts). Menu items, buttons, trees

and graphs can be easily implemented using these languages.

Hypertext Searching and Querying. GHMI allows a component specification to be
either a COIS query or a hypertext query. A COIS query is dynamically resolved by
the COIS and the results are mapped to hypertext components. The mechanisims
supporting hypertext query processing are left out of the current GHMI. Issues

regarding searching and querying on hypertext structures have been addressed
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by hypertext researchers [29, 42, 28, 64, 21, 30, 65, 53, 4]. In GHMTI's dynamic
mapping environment, structural querying (or search) on a hypertext network
becomes complicated as the hypertext network is not directly available prior to
dynamic content mapping. The hypertext engine would have to execute bridge
laws to map all components to build the hypertext network (or mapped a subset of
components, depending on particular queries) prior to resolving a hypertext query.
An alternative way which avoids heavy bridge law execution is that the hypertext
engine employs some gquery mapping mechanism to translate a hypertext query to a
COIS query and relies on the COIS to resolve the query. Such an approach works
on the assumption that the COIS has some query processing ability and the query
translation is less complicated than the generation of the entire hypertext network
through bridge law execution combined with structural search of the hypertext

objects (e.g., annotations, association links).

Versioning. Versioning is an important feature of hypertext systems and has
been included in some systems [69, 43, 81, 63]. Versioning enables users to access
and manipulate a history of information changes to their hypertext network. The
current GHMI does not support versioning. We can extend GHMI's component.
properties to include versioning information. Each component could have its own
version history, probably modeled as a linear List or a more complicated version
Tree. Versioning with composites could be modeled at two levels: versioning on
a composite itself as a whole, and versioning on its individual subcomponents and
links. In GHMTI’s COIS integrating environment, another unsolved issue is: should
versioning be supported by the HTE or the COISs? In either way, GHMI needs to

identify versioning properties and include them in the bridge law template.

Collaboration.  Supporting cooperative work on a shared hypertext network among

multiple users is another important feature of today’s hypertext systems [81, 63, 38,
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86]. Currently GHMI does not include collaboration supporting. We need to extend
GHMTI to include notions of managing asynchronous access on a single component.
or an entire hypertext network. The collaboration supporting mechanisms typically

include ownership identity, locking, transaction management, concurrency control

and event notification.

Multimed:ia. There are existing hypertext models and systems supporting
multimedia [50, 35, 14]. Examples of multimedia components include a CAD
picture, a raster image, a short video clip, a short audio tape, a short animated
sequence, etc. Currently GHMI only considers text components. The component
framework in GHMI can be extended to support multimedia. GHMI’s structured
composites allow a separation of component contents from their hypertext represen-
tations. For example, a data file storing a raster image can be represented as an
atomic which contains the reference to it. The collections of run-time multimedia
presentations can also be modeled as structured composites in GHMI. For example,
when the user wants to watch a movie while reading a text caption and listening
to an audio tape, the collected presentation of these three types of media can be
modeled as a structured composite. We need to extend the component properties
to support time synchronization and media-related attribute specifications. We also

need to support anchors in multimedia components.

7.5 Summary
In this chapter, we discuss guidelines for using GHMI, compare GHMI with other
systems and models, identify both GHMI's major contributions and limitations, and
briefly outline future research that can emanate from GHML
To integrate a COIS with a GHMI hypertext system, the COIS builders (or
developers) need to follow these guidelines. (1) Study the GHMI Model: The first
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step toward building an integration system is to study the GHMI hypertext concepts,
including components, links, anchors, navigation features and especially the bridge
law template. (2) Identify Potential GHMI Constructs: This step is to identify
COIS objects, relationships, meta-information and operations (or commands), which
could be mapped to GHMI constructs (i.e., component classes and typed links). (3)
Software Engineering: This step is to write the mapping rules (i.e., bridge laws) and
the COIS handler code.

GHMI and its prototype share ideas and common constructs with other systems
developed by hypertext researchers, especially in the field of providing hypertext
functionality to third-party applications and Dexter-based modeling. We compared
GHMI (and the current GHMI prototype) with open hypertext systems (including
Sun’s Link Service [75], Microcosm [23, 24, 27], SP3 (58, 63, 81}, Chimera [5] and
Multicard [78]), the Dexter-based models and the WWW.

We identified GHMI's major contributions and limitations. GHMI's contri-
butions include four aspects: GHMI vs. Bieber et al.’s work, GHMI as a general
hypertext model, GHMI as a Dexter-based model and the GHMI prototype. GHMI'’s
limitations include three aspects: relying on object identities, heavy software
engineering for bridge laws and COIS handlers and slow speed for dynamic mapping.

GHMI is a robust model for supporting COIS/hypertext integration. Extensions
in several directions can be made to enhance the current version of GHMI and its
prototype resulting from this dissertation. These issues include improving implemen-
tation, connecting GHMI to WWW, hypertext searching and querying, versioning,

collaboration and multimedia.

Conclusion Remarks
In this thesis, we presented a general hypertext model GHMI, which is a Dexter-

based hypertext model supporting integration of hypertext and computation-oriented
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information systems (COISs). GHMI enhances COISs by adding hypertext function-
alities through dynamic mapping mechanisms. Integrating with GHMI only imposes
minimal changes on COISs. GHMI extends and specifies the original Dexter model
with additional concepts which are fundamental to our goal of dynamically adding
hypertext functionalities to COISs. We also proved the feasibility and utility of the
GHMI concepts by implementing it as a prototype. In our future research we shall

enhance GHMI by following several directions.



APPENDIX A

SECOND MODELING DOMAIN: TEXPROS

This chapter demonstrates how to apply GHMI to model a COIS through an example
system called TEXPROS [99], which is an intelligent document management system

developed by researchers in our institute.

A.1 TEXPROS’s Data Model

TEXPROS is a personal document processing system combining filing and retrieval
systems. It supports storing, extracting, classifying, categorizing, retrieving and
browsing information from a variety of documents. Documents are grouped into
classes. Each class is associated with a semantic document type to describe the
common properties for the class of documents. A data structure called a frame
template represents the document class type. A frame template can be instantiated
by filling its attributes with values extracted from the original document. The instan-
tiated object is a frame instance, representing a synopsis of a single document,
rather than its original contents. Window 2 in Figure A.2 shows an instantiated
frame instance for the frame template of type “Assistantship.” The template’s left-
hand column contains its attributes and the right-hand column contains the frame
instance’s values.

A folder, identified by its title, is a logical repository of documents comprising
a set of frame instances. Folders represent the user’s logical file structures. They
are connected via the “Depends On” relationships. A folder depending on another
folder is called a subfolder or child folder while the depended-on folder is called a
parent folder. Subfolders are categorized via some user-declared criteria. A folder

could depend on multiple parent folders. Figure A.1 shows a simplified logic file
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Ph.D.
Student

John
Wilson

Paul
Poth Johnson

Carol
Thomas

Figure A.1 A Department Chairperson’s Logical File Structure

structure-—the hypothetical folder organization of a department chairperson. Arrows
signal the relationship “Depends On.” A set of operations can be applied on folders
to manipulate the file structure. Operations include insert, move, merge, prune,
query and delete. Formal definitions and semantic descriptions of operations can be

found in [98].

A.2 Mapping TEXPROS to GHMI
In this subsection, we identify potential bridge laws which map TEXPROS to GHMI

components and links.

¢ Object BLs
TEXPROS objects include frame templates, frame instances, original documents
and folders. We can write BLs to map frame templates to structured atomics,
frame instances to structured atomics, original documents to plain atomics

and folders to Sets (containing folders and frame instances).
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Figure A.2 An Example Hyperdocument for TEXPROS

e Structure BLs
Structural relationships help directly access a component’s embedding composite.
We can map TEXPROS’s “Depends On” as a structure link from a child folder
to a parent folder. Other structural relationships include frame instances to
folders. Accessing a folder from its residing frame instances is another example

of structural relationship.

e Operation BLs All TEXPROS operations can be mapped as GHMI operation
links, including insert, move, merge, prune, query and delete. Specific queries
on folders, such as “Find all Ph.D. students who have financial support” could
be mapped to operational links departing from folder “Ph.D. Student” and

ending with a list of computed folder titles.

e Reference BLs Implicit relationships among TEXPROS objects can be

modeled by explicit GHMI reference links, which provide a direct access to
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these relationships. Consider the following examples:

(1) Given a frame instance, find all folders whose titles appear in this frame
instance as a value.

(2) Given a frame instance, find all other frame instances of the same frame
template.

(3) Given a frame instance, find its frame template.

(4) Given a frame instance, find its original document.

(5) Given a frame template, find all of its frame instances.

Suppose, as shown in Figure A.2, that a frame instance in the “Ph.D. Student”
folder contains a reference to “Alex Brown.” “Alex Brown” is also a folder,
but is not connected to the “Ph.D. Student” folder by a “Depends On”
relationship. TEXPROS’s original model included no way of capturing or
representing such an “implicit” relationship among folders. Once mapped to
reference links, GHMI allows direct access to folder “Alex Brown” from folder

“Ph.D. Student.”

e Meta-information BLs Meta-information for TEXPROS objects includes
file structure size (number of folders), number of frame instances in a folder,

number of subfolders in a folder, object timestamps, etc.

A.3 Bridge Law Examples
This section presents some bridge law examples to illustrate the domain mapping

from TEXPROS to GHMI hypertext.

1. BLjoiger: Mapping Folders to Set components, as shown in Table A.1.
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Table A.1 Bridge Law BLFolder

CompClass ‘Set

OwningSystemType | ‘TEXPROS’

CompName ‘Folder*

PresentationSpec ‘Tree*

COISObj [F,‘Folder‘, F)

CompSet {[N1, ‘Folder‘, N1],[N2,‘Framelnstance‘, T|}*

LinkSet ‘NONE‘

ContentSpec ‘NONE*

MappingRule object(F, ‘Folder),
object(N1, ‘Folder*),
object(N2, ‘Framelnstance'),
relation(N1, F, ‘DependsOn'),
property(N2, ‘Type',T),
relation(N2, F,‘ResidesIn').

The following instantiation of BLtq4er maps folder ‘Ph.D. Student’ to a Set in

Figure A.2 with a content including all of its three subfolders:

APPLY _BL_COMP(BLpoger, F = ‘Ph.D. Student")

The resulting component will have COISObj as

[‘CIS Dept..,'CIS Dept.‘, Folder|

. BLp;: Mapping Frame Instances to Structured Atomic components, as shown

in Table A.2.

This bridge law is executed to map frame instances when the user selects a
frame instance icon to explore its contents. For example, when the user selects
the icon labeled as “Assistantship” in Window 1 of Figure A.2, the hypertext
engine executes BLp; to map the individual frame instances one by one. Prior

to this mapping, every such frame instance has been denoted as a COISObj in
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Table A.2 Bridge Law BLF%

CompClass ‘Structured Atomic*

OwningSystemType | ‘TEXPROS*

CompName ‘Framelnstance'

COISOb;j [F, ‘Framelnstance,T]

CompSet ‘NONE*

LinkSet ‘NONE*

ContentSpec C

MappingRule object(F, ‘Framelnstance'),
property(F, ‘Content‘,C),
property(F, ‘Type',T).

the CompSet of folder “Ph.D. Student” previously mapped by BLpggyer (see

Table A.1). Therefore, the instantiation of BLr; will be expressed as:
APPLY _BL_.COMP(BLg;,

COIS0bj = [F, ‘Framelnstance', ‘ Assistantship‘])

where COISID F' is extracted from CompSet of folder “Ph.D. Student.”

. BLpependson: Mapping relationship “DependsOn” to a Struclture link, as
shown in Table A.3.

This BL allows a child folder to access its parent folder following the direction
of “Depends On.” The “FROM” and “TO” endpoints of this link are specified
using two variable names F'1 and F'2, which represent COIS objects defined in
the MappingRule. The MappingRule of this BL consists of three predicates.
object(F'1, Folder‘) and object(F2,‘Folder') indicate F'1 and F2 are two
existing folders in TEXPROS database. relation(F1, F2,‘DependsOn')
indicates folder F'1 “depends on” folder F2. When the content of F1 is
mapped to a component and is on display, the hypertext engine executcs
this BL to map all “DependsOn” links departing from F'1. The following

instantiation of BL pependson Maps a link “Depends On” marked by icon “CIS
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Table A.3 Bridge Law BLDependsOn

CompClass ‘Link’
OwningSystemType | ‘TEXPROS*
CompName ‘DependsOn’
LinkType ‘StructureLink’
Specifier;
CompSpec [F1, ‘Folder, F1]
AnchorSpec ‘NONE*
Direction ‘FROM*
Specifier,
CompSpec [F2, Folder, F2]
AnchorSpec ‘NONE*
Direction ‘TO*
MappingRule object(F1,‘Folder*),
object(F'2,‘Folder'),
relation(F'1, F2, ‘DependsOn').

Dept.” in Window 1 of Figure A.2:

APPLY _BL_LIN K(BLpependson, F'1 = ‘Ph.D.Student")

. BLRpesroroider: Given a frame instance, find all folders whose titles appear in
this frame instance as a value, as shown in Table A.4.

The “FROM” endpoint’s CompSpec is specified by F1 and the “TO”
endpoint’s CompSpec is specified by F2. The “FROM” endpoint has anchors

of type “Dynamic” extracted from the content of F'1.

Bridge law BLpefroroider is automatically executed to generate all “RefTo-
Folder” links departing from a frame instance when its is mapped to an atomic
component. All corresponding anchors are highlighted in some manner to single
the existence of these reference links. In Figure A.2, when the user reaches
Window 2, all folder titles occurring in the content of the frame instances of

type “Assistantship” are highlighted as anchors marking links “RefToFolder.”
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Table A.4 Bridge Law BLRefToFolder

CompClass ‘Link*
OwningSystemType | ‘TEXPROS*
CompName ‘RefToFolder*
LinkType ‘ReferenceLink’
Specifier;
CompSpec [F1,Framelnstance’, ]
AnchorSpec [A, ‘Dynamic, V]
Direction ‘FROM’
Specifier,
CompSpec [F2,‘Folder, ]
AnchorSpec ‘NONE*
Direction ‘TO
MappingRule object(F1, ‘Framelnstance’),
object(F2, Folder'),
object(A, ‘Value'),
relation(A, F'1, ‘InContent'),
object(F2,‘Folder),
property(F2, FolderTitle', V).

Let FiID represent the frame instance in Window 2 of Figure A.2. The
following instantiation of BLpefroroer generates all links marked by anchors

representing folder titles in Window 2 (e.g., “Alex Brown"):

APPLY BL_LINK(BLgesroroider, F1 = Fil D)
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\small

/* This is the Prolog BL_Engine program */
/* (original tt.pl)

/* Last modified: 4/18/96 */

7 ksotskok stk s sk sk sk sk ok sl s ok ook kol ok /
/* Loop until flag is set */

/* BLEngine Starts here */

/* It calls BL.pl */

/* If not run, check flagtext.pl */
:~initialization(startup).

startup:-

load_files([facts]),

repeat,

see(’dirty.pl’), /* dirty flag from VB */
read(X),

seen,

check1(X),

see(’flagtext.pl’), /* flag from VB */
read(X),

seen,

check(X),

fail.

/* If data is ready from VB, exectue BL */
check1(X):- X = ‘Y¢,

see(’dirty.pl’),

find(‘N°)

-> seen;

taskl.

/* If data is ready from VB, exectue BL */
check(X):- X = ‘Y*,

see(’flagtext.pl’),

find(‘N¢)

-> seen;

task.

/% 01d data, wait for new */
failed:- print(‘0ld data‘),nl,
seen.

/* Load and set flag */
taskl:- seen,
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load_files([facts]),
tell(’dirty.pl’),
write(‘N. ‘),

told.

/* Set flag */

task:- print (‘I got it‘), nl,
seen,

execute_bl,
tell(’flagtext.pl’),
write(‘N. ¢),

told.

/* Execute bl in bl.pl automatically upon loading */
execute_bl:-

load_files([facts]),

load_files(’bl.pl’).

/* */
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B.2 Visual Basic BL-Engine Code



\small

;/*
,/*
)/*
)/*

This is the VB_BL_Engine subroutines in VB’s DBHand.bas */
It cooperates with the Prolog_BL_Engine to %/

generate and execute bridge laws. %/

Last modified: 4/18/96 */

Option Explicit

’/*

Const for table field types */

Const FIELD_BOOLEAN = 1
Const FIELD_BYTE = 2
Const FIELD_INTEGER = 3
Const FIELD_CURRENCY = 5
Const FIELD_TEXT = 10

Const FIELD_MEMO

12

Global gHandDB As Database

Sub
}/*
)/*
!/*
J/*

BLEngine_BLComp (Msg$, AppDB As Database)

Create a Comp BL in file bl.pl; */

Clear and set ‘Y. ¢ in flagtext.pl ; */

Wait and collect result in CompSet.pl, LinkSet.pl and Content.pl */
from Prolog when ‘N. ¢ is set in flagtext.pl; */

Dim Predicate$, CompSet$, linkset$, Content$, Contenti$

Dim BLCOISID$, BLCOISType$, BLCOISLabel$

Dim C0ISObj$, BLCOISObj$, COISID$, COISType$, COISLabel$, AppName$,

TmpType$

Dim BLName$, FileName$, MappingRule$

Dim Listi1$, List2$, List3$

Dim DBName$, TableName$, RecordKey$, FielName$
Dim nl, Spaces$

Dim p1Y%, FNumiy, Fnum2, ObjCount’

nl = Chr(13)
Spaces$ = " "

’/* Get input from Msg */

BLName$ = Msg_GetTagValue (Msg$, "blName")
BLCOISID$ = Msg_GetTagValue(Msg$, "blcoisid")
BLCOISType$ = Msg_GetTagValue(Msg$, "blcoistype")
BLCOISLabel$ = Msg_GetTagValue(Msg$, "blcoislabel")
If BLCOISLabel$ = "" Then

BLCOISLabel$ = "_"

End If

COISID$ = Msg_GetTagValue(Msg$, "coisid")
’/* Trim spaces around "\\" */

pi% = InStr(1, COISID$, "\\ ")

While p1 <> 0
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COISID$ = Mid(COISID$, 1, p1 + 1) & Mid(COISID$, p1 + 3)
pl/ = InStr(1, COISID$, "\\ ")
Wend
CO0ISType$ = Msg_GetTagValue(Msg$, "coistype")
C0ISLabel$ = Msg_GetTagValue(Msg$, "coislabel")

If CO0ISLabel$ = "" Then
CO0ISLabel$ = "_"
End If
CompSet$ = Msg_GetTagValue(Msg$, "compSet")

linkset$ = Msg_GetTagValue(Msg$, "LinkSet")
Content$ = Msg_GetTagValue(Msg$, "ContentSpec")
MappingRule$ = Msg_GetTagValue(Msg$, "MappingRule")

’/* C0ISObj = "[‘COISID‘, ‘COISType‘, ‘COISLabel‘]"

’/* Construct COISObj */

’s:- apply_bl(‘BL_Tablei‘, [[‘Small Schoolf, ‘Appartment‘], ‘Table‘,_],
[CompSet, [1,[11).

’Call DB_SeparateCOISID(COISID$, DBName$, TableName$, RecordKey$,
FieldName$, TmpType$)

Call BLEngine_BuildCOISObj(C0ISObj$, COISID$, COISType$, COISLabel$,
True)

Call BLEngine_BuildCOISObj(BLCOISObj$, BLCOISID$, BLCOISType$,
BLCOISLabel$, False)

’/* Open file */

FNumi’), = FreeFile

FileName$ = "c:\wan\ghmi\Pro386w\blengine\bl.pl"

Open FileName$ For Output As FNumi

’/* Create file header */

?/* Idea: bridge_law_comp(BLName, COISObj, [CompSet, LinkSet,
ContentSpec]) */

’/* Make ":-initialization(apply_bl(‘bl_databse‘,[‘Small School‘,
‘Database‘, ‘Small School‘], {[CompSet,[],[11)). "

LlSt1$ =N [] [
List2$ = "[1"
List3% = “[1"

If CompSet$ <> "NONE" Then
List1$ = "CompSet"
End If
If linkset$ <> "NONE" Then
List2$ = "LinkSet"
End If
If Content$ <> "NONE" Then
List3$ = "Content"
End If
Predicate$ = ":-initialization(apply_bl(" & BLName & "," & COISObj$ &

" on
)
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Predicate$ = Predicate$ & "[" & List1$ & "," & List2$ & "," & List3$ &

u]))' "
Print #FNumi, Predicate$, nl

?/* Make: ’apply_bl(‘bl_dataase‘, [D, ‘Database‘,_1,[CompSet,LinkSet,
ContentSpec]):-"

’/+ apply_bl(BLName, COISObj, [CompSet, LinkSet, Content]):-"

Predicate$ = "apply_bl(BLName," & BLCOISObj$ & ", [CompSet, LinkSet,
Content]):-"

Print #FNumil, Predicate, nl

’/* Make: "bagof([[DI|T], ‘Table‘,T],compset([[DIT],‘Table‘,T]),CompSet),

If CompSet$ <> "NONE" Then
’/* Handle only single CompSet only */
pl% = InStr(1, CompSet$, "*")
If pi% <> 0 Then
’/* Eliminate "*" at end */
CompSet$ = Mid(CompSet$, 1, Len(CompSet$) - 1)

End If
Predicate$ = "bagof(" & CompSet$ & ", compset(" & CompSet$ & "),
CompSet), "
Print #FNuml, Spaces, Predicate, nl
End If

If linkset$ <> "NONE" Then
’/+ Handle only single CompSet only */
pl% = InStr(1, linkset$, "*")
If p1% <> O Then

’/* Eliminate "*" at end */

linkset$ = Mid(linkset$, 1, Len(linkset$) - 1)
End If
Predicate$ = "bagof(" & linkset$ & ", linkset(" & linkset$ & "),
LinkSet), "
Print #FNuml, Spaces, Predicate, nl

End If

Content1$ = Content$

If Content$ <> "NONE" Then
'/* Handle only single Content only */
pl% = InStr(1l, Content$, "*")
If p1% <> 0 Then

’/* Eliminate "*" at end */

Content$ = Mid(Content$, 1, Len(Content$) - 1)
End If
'/* For records, add BLCOISID to Content "C" **x/
Content1 = BLCOISID$
Content1$ = "[" & Contenti$ & "," & Content$ & "I"
Predicate$ = "bagof(" & Content$ & ", content(" & Contentl$ & "),
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Content), "
Print #FNuml, Spaces, Predicate, nl
End If

’/* Make control predicates */

Predicate$ = Spaces$ & "fcreate(’compset.pl’,0), " & nl

Predicate$ = Predicate$ & Spaces$ & "tell(’compset.pl’), " & nl
Predicate$ = Predicate$ & Spaces$ & "write(CompSet),nl, " & nl
Predicate$ = Predicate$ & Spaces$ & "told, " & nl

Predicate$ = Predicate$ & Spaces$ & "fcreate(’linkset.pl’,0), " & nl
Predicate$ = Predicate$ & Spaces$ & "tell(’linkset.pl’), " & nl
Predicate$ = Predicate$ & Spaces$ & "write(LinkSet),nl, " & nl
Predicate$ = Predicate$ & Spaces$ & "told, " & nl

Predicate$ = Predicate$ & Spaces$ & "fcreate(’content.pl’,0)," & nl
Predicate$ = Predicate$ & Spaces$ & "tell(’content.pl’), " & nl
Predicate$ = Predicate$ & Spaces$ & "write(Content),nl, " & nl
Predicate$ = Predicate$ & Spaces$ & "told. " & nl

Print #FNuml, Predicate$

?/% Make: compset(CompSet):- MappingRule

Predicate$ = "compset(" & CompSet$ & "):-" & nl

Predicate$ = Predicate$ & Spaces$ & MappingRule$ & " " & nl
Print #FNuml, Predicate$

Predicate$ = "linkset(" & linkset$ & "):-" & nl
Predicate$ = Predicate$ & Spaces$ & MappingRule$ & " " & nl
Print #FNumi, Predicate$

Predicate$ = "content(" & Contenti$ & "):-* & nl
Predicate$ = Predicate$ & Spaces$ & MappingRule$ & " " & nl
Print #FNumi, Predicate$

Close #FNumil

’/* Invoke BLEngine *./
’/* Return when data ready */
Call BLEngine_SendProlog

?/* Construct CompSet, LinkSet, Content from Prolog files */
Call BLEngine_GetPrologData(CompSet$, linkset$, Content$)

?/* Count Objects */
pl/% = InStr(1, CompSet$, "<")
ObjCount? = 0
While p1% <> 0

ObjCounty = 0bjCounty + 1

pl% = InStr(pl + 1, CompSet$, "<")
Wend
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’/* Update Msg */

AppName$ = Msg_GetTagValue(Msg$, "AppName")

Call Msg_SetTagValue(Msg$, "COISID", AppName$)

’Call Msg_SetTagValue(Msg$, "COISTYPE", "Database")

Call Msg_SetTagValue(Msg$, "CompSet", CompSet$)

Call Msg_SetTagValue(Msg$, "LinkSet", linkset$)

Call Msg_SetTagValue(Msg$, "Content", Content$)

Call Msg_SetTagValue(Msg$, "objindex", "1")

Call Msg_SetTagValue(Msg$, "totalobjs", Trim(Str(ObjCount%)))

End Sub

Sub BLEngine BLLink (Msg$, AppDB As Database)

’/* Create a Link BL in file bl.pl; %/

'/* Clear and set ‘Y. ¢ in flagtext.pl ; */

’/* Wait and collect result in CompSet.pl, LinkSet.pl and Content.pl */
?/* from Prolog when ‘N. ¢ is set in flagtext.pl; */

J/*

?/* BLCOISObj: ‘From‘ specifier’s CompSpec

’/* BLCOISObj2: ‘To‘ specifier’s CompSpec

’/* Note: Here, CompSet.pl contains ‘TO‘ BLspecifier’s CompSpec */

?/* Another sub convert CompSet to table QueryResults */

Dim Predicate$, CompSet$, linkset$, Content$, Contenti$

Dim BLCOISID$, BLCOISType$, BLCOISLabel$

Dim BLCOISID2$, BLCOISType2$, BLCOISLabel2$

Dim COISObj$, BLCOISObj$, BLCOISObj2$, COISID$, COISType$, COISLabel$,
AppName$, TmpType$

Dim BLName$, FileName$, MappingRule$

Dim List1$, List2$, List3$

Dim DBName$, TableName$, RecordKey$, FielName$

Dim nl, Spaces$

Dim p1%, FNumiY, Fnum2j, p2Y%

nl = Chr(13)
Spaces$ = "

’/* Get input from Msg */

BLName$ = Msg_GetTagValue(Msg$, "blName")

BLCOISID$ = Msg_GetTagValue(Msg$, "blcoisid")
BLCOISType$ = Msg_GetTagValue(Msg$, "blcoistype")
BLCOISLabel$ = Msg_GetTagValue(Msg$, "blcoislabel")
?/% New: Find ‘To‘ specifier’s obj */

BLCOISID2$ = Msg_GetTagValue(Msg$, "blcoisid2")
BLCOISType2$ = Msg_GetTagValue(Msg$, "blcoistype2")
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BLCOISLabel2$ = Msg_GetTagValue (Msg$, "blcoislabel2")

If BLCOISLabel$ = "" Then
BLCOISLabel$ = "_"

End If

If BLCOISLabel2$ = "" Then
BLCOISLabel2$ = “_*

End If

COISID$ = Msg_GetTagValue(Msg$, "coisid")
’/* Trim spaces around "\\" */
pl% = InStr(1, COISID$, "\\ ")
While p1 <> 0
C0ISIDP$ = Mid(COISID$, 1, pl + 1) & Mid(COISID$, pl + 3)
pl% = InStr(1, COISID$, "\\ ")
Wend
COISType$ = Msg_GetTagValue(Msg$, "coistype")
C0ISLabel$ = Msg_GetTagValue(Msg$, “"coislabel)
If COISLabel$ = "" Then
CO0ISLabel$ = "_"
End If
CompSet$ = Msg_GetTagValue (Msg$, "compSet")
linkset$ = Msg_GetTagValue(Msg$, "LinkSet")
Content$ = Msg_GetTagValue (Msg$, "ContentSpec")
MappingRule$ = Msg_GetTagValue(Msg$, "MappingRule")

’/* COISObj = "[‘COISID‘, ‘COISType‘, ‘COISLabel‘}"

’/* Construct COISObj: actual parameters #*/

’s:- apply_bl(‘BL_Tablel‘, [[‘Small School‘, ‘Appartment‘], ‘Table‘,_],
[CompSet, [1,[11).

’Call DB_SeparateCOISID(COISID$, DBName$, TableName$, RecordKey$,
FieldName$, TmpType$)

Call BLEngine_BuildC0ISObj(C0ISCbj$, COISID$, COISType$, COISLabel$,
True)

Call BLEngine_BuildCO0ISObj (BLCOISObj$, BLCOISID$, BLCOISType$,
BLCOISLabel$, False)

Call BLEngine BuildC0ISObj (BLCOISObj2$, BLCOISID2$, BLCOISType2$,
BLCOISLabel2$, False)

?/% New: Mimic CompSet of BLEngine_BLComp */
’/% Using both ‘From‘ and ‘To‘ specifiers
CompSet$ = BLCOISObj & "," & BLCOISObj2%

’/% Open file */

FNuml} = FreeFile

FileName$ = "c:\wan\ghmi\Pro386w\blengine\bl.pl"
Open FileName$ For Qutput As FNumi
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’/* Create file header */

'/* Idea: bridge_law_comp(BLName, COISObj, [CompSet, LinkSet,
ContentSpec]) */

’/* Make ":-initialization(apply_bl(‘bl_databse‘,[‘Small School‘,
‘Database‘, ‘Small School‘], [CompSet,[],[11)). "

List1$ = "[]1"
List2$ = "[]1"
List3$ = "[1"

If CompSet$ <> "NONE" Then
Listi$ = "CompSet"

End If

If linkset$ <> "NONE" Then
List2$ = "LinkSet"

End If

If Content$ <> "NONE" Then
List3$ = "Content"

End If

Predicate$

":-initialization(apply_bl(" & BLName & "," & COISObj$ &

Predicate$ = Predicate$ & "[" & List1$ & "," & List2$ & "," & List3$ &

u])). 1]
Print #FNumi, Predicate$, nl

’/* Make: ’apply_bl(‘bl_dataase‘,[D, ‘Database‘,_],[CompSet,LinkSet,
ContentSpec]):-"

’/* Using BLCOISObj: ‘From‘ specifier

’/+ apply_bl(BLName, BLCOISObj, [CompSet, LinkSet, Content]):-"

Predicate$ = "apply_bl(BLName," & BLCOISObj$ & ", [CompSet, LinkSet,
Content]) :-"

Print #FNuml, Predicate, nl

’/* Make: "bagof([[DIT], ‘Table‘,Tl,compset([[D|T], ‘Table’,T]),CompSet),

?/* New: “bagof (BLCOISObj2,compset (BLCOISObj + BLCOISObj2),CompSet), "
If CompSet$ <> "NONE" Then
’/* Handle only single CompSet only */
pl% = InStr(1, CompSet$, "*")
If p1% <> 0 Then
’/#* Eliminate "*" at end */
CompSet$ = Mid(CompSet$, 1, Len(CompSet$) - 1)

End If
Predicate$ = "bagof(" & BLCOISObj2% & ", compset(" & CompSet$ & "),
CompSet), "
Print #FNuml, Spaces, Predicate, nl
End If

If linkset$ <> "NONE" Then
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’/» Handle only single CompSet only */
p1% = InStr(i, linkset$, "=")
If p1% <> O Then

’/+ Eliminate "*" at end */

linkset$ = Mid(linkset$, 1, Len(linkset$) - 1)
End If
Predicate$ = "bagof(" & linkset$ & ", linkset(" & linkset$ & "),
LinkSet), "
Print #FNuml, Spaces, Predicate, nl

End If

Content1$ = Content$

If Content$ <> "NONE" Then
’/* Handle only single Content omnly */
pl% = InStr(1, Content$, "*")
If pi1% <> O Then

’/* Eliminate "*" at end %/

Content$ = Mid(Content$, 1, Len(Content$) - 1)
End If
?/* For records, add BLCOISID to Content "C" ***/
Content1 = BLCOISID$
Content1$ = "[" & Content1$ & "," & Content$ & "]"
Predicate$ = "bagof(" & Content$ & ", content(" & Contentl$ & "),
Content), "
Print #FNumi, Spaces, Predicate, nl

End If

’/* Make control predicates */

Predicate$ = Spaces$ & “"fcreate(’compset.pl’,0), " & nl

Predicate$ = Predicate$ & Spaces$ & "tell(’compset.pl’), " & nl
Predicate$ = Predicate$ & Spaces$ & "write(CompSet),nl, " & nl
Predicate$ = Predicate$ & Spaces$ & "told, " & nl

Predicate$ = Predicate$ & Spaces$ & "fcreate(’linkset.pl’,0), " & nl
Predicate$ = Predicate$ & Spaces$ & "tell(’linkset.pl’), " & nl
Predicate$ = Predicate$ & Spaces$ & "write(LinkSet),nl, " & nl
Predicate$ = Predicate$ & Spaces$ & “"told, " & nl

Predicate$ = Predicate$ & Spaces$ & "fcreate(’content.pl’,0)," & nl
Predicate$ = Predicate$ & Spaces$ & "tell(’content.pl’), " & nl
Predicate$ = Predicate$ & Spaces$ & "write(Content),nl, " & nl
Predicate$ = Predicate$ & Spaces$ & "told. " & nl

Print #FNuml, Predicate$

?/* Make: compset(CompSet):- MappingRule

Predicate$ = "compset(" & CompSet$ & "):-" & nl

Predicate$ = Predicate$ & Spaces$ & MappingRule$ & " " & nl
Print #FNumi, Predicate$

Predicate$ = "linkset(" & linkset$ & "):-" & nl
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Predicate$ = Predicate$ & Spaces$ & MappingRule$ & " " & nl
Print #FNuml, Predicate$

Predicate$ = "content(" & Contenti$ & "):-" & nl
Predicate$ = Predicate$ & Spaces$ & MappingRule$ & " " & nl
Print #FNuml, Predicate$

Close #FNumi

’/* Invoke BLEngine *./
’/* Return when data ready */
Call BLEngine_SendProlog

’/* Construct CompSet, LinkSet, Content from Prolog files */
Call BLEngine_GetPrologData(CompSet$, linkset$, Content$)

’/+ If only one object in CompSet, directly show it */
’/* Otherwise build SYSQueryResults from CompSet */
pl% = InStr(1, CompSet, "<")
If p1% <> 0 Then
p2% = InStr(pl + 1, CompSet, "<")
If p2% <> 0 Then
?/* Construct table SYSQueryResult from CompSet */
’/* Update and send back Msg inside it */
Call BLEngine_BuildQueryResult (Msg$, AppDB, CompSet$)
Else
’/* Build CompBL result for single object */
’/* This is useful for structure links */
Call BLEngine_BuildCompBL(Msg$, AppDB, CompSet)
End If

End If

’/* Update Msg */

’AppName$ = Msg_GetTagValue (Msg$, "AppName")
’Call Msg_SetTagValue(Msg$, "COISID", AppName$)
’Call Msg_SetTagValue(Msg$, "CompSet", CompSet$)
’Call Msg_SetTagValue(Msg$, "LinkSet", linkset$)
’Call Msg_SetTagValue(Msg$, "Content", Content$)

End Sub

Sub BLEngine_BuildCOISObj (COISObj$, COISID$, COISType$, COISLabel$,
AddQuotes?,)
’/* Build C0ISObj using nested "[", "]" */
’/* For BLCOISObj, not adding ¢ */
Dim p1%, p2%, Counter?, i%
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Dim TempID$, DBName$, TableName$, RecordKey$, FieldName$

?/% Build ID #*/
TempID$ = "

Call DB_SeparateCOISID(COISID$, DBName$, TableName$, RecordKey$,
FieldName$, "")

If DBName$ <> "" Then
If AddQuotesy, = True Then
TempID$ = TempID$ & "‘" & DBName & "
Else
TempID$ = TempID$ & DBName
End If
End If
If TableName$ <> "" Then
If AddQuotes’ = True Then

TempID$ = TempID$ & ",‘" & TableName & "*"
Else

TempID$ = TempID$ & TableName
End If

End If

If RecordKey$ <> "" Then
If AddQuotes’, = True Then

TempID$ = TempID$ & ", ‘" & RecordKey$ & " ‘"
Else

TempID$ = TempID$ & RecordKey$
End If

End If

If FieldName$ <> "" Then
If AddQuotesy¥ = True Then

TempID$ = TempID$ & ",‘" & FieldName & "*"
Else

TempID$ = TempID$ & FieldName
End If

End If

TenpID$ = "[" & TempID$ & "1"

’/* Build COISObj */
If AddQuotes’, = True Then

C0ISObj$ = "[" & TempID$ & ",‘" & COISType$ & "‘," & COISLabel$ &
u] n

Else
C0ISObj$ = "[" & TempID$ & ", " & COISType$ & "‘," & COISLabel$ & "
] "

End If



End

Sub
’ /%
"
1 /%
[ %
) /%
1/*

Sub

BLEngine_BuildCompBL (Msg$, AppDB As Database, CompSet$)
New: Build LinkBL result with single Obj in CompSet */
as if we were applying a CompBL */

Build table SYSQueryResult from CompSet$ */

Format: CompSet = <Small School\\MasterStudent,Table,_8905874>,<...

Called by BLEngine BLLink() for reference links */

If only one object in CompSet, directly show table or database
Dim COISID$, COISType$

Dim pi1%, p2%, p3i%

’/* Find tablenames or db names */

pl% = InStr(i, CompSet$, "<")
p2% = InStr(pl, CQmpSet$, u’n)
pSZ = InStr(pQ + 1, Compset$’ H,u)

If pi1% <> 0 And p2% <> 0 And p3 <> 0 Then

COISID$ = Mid(CompSet$, p1 + 1, p2 - p1 - 1)
COISType$ = Mid(CompSet$, p2 + 1, p3 - p2 - 1)

End If

/% Update Msg */
Call Msg_SetTagValue(Msg$, "COISID", COISID$)
Call Msg_SetTagValue(Msg$, "COISType", COISType$)

Select Case LCase(COISType$)
Case "table"

Call DBHand_BLTable (Msg$, AppDB)

Case "record"

Call DBHand_BLRecord(Msg$, AppDB)

Case "field"

Call DBHand_BLField(Msg$, AppDB)

Case "database"

Call DBHand_BLDatabase(Msg$, AppDB)

End

Sub
)/*
)/*
J/*
)/*
)/*

End Select
Sub

BLEngine_BuildQueryResult (Msg$, AppDB As Database, CompSet$)
Build table SYSQueryResult from CompSet$ */

Format: CompSet = <Small School\\MasterStudent,Table,_8905874>,<...

SYSQueryResult fields: <SYSID, TableName>

Called by BLEngine BLLink() for reference links */

If only one object in CompSet, directly show table or database
Dim ThisTableName$, SQL$, COISIDS

Dim DS As Dynaset

Dim KeyValue’

207



Dim NewTableName$, AppName$
Dim NewFieldl As New Field
Dim NewField2 As New Field
’Dim NewField3 As New Field
Dim NewTable As New Tabledef
Dim p1%, p2%

’/* Perpare queryresult table */
NewTableName$ = "SYSQueryResult"

’/* Delete SYSQueryResult */
’0On Error Resume Next
AppDB.TableDefs.Delete NewTableName$
’0n Error GoTo O
’/* Create a new table */
NewTable.Name = NewTableName$

? ’/* Add a Key field */

NewFieldl.Name = "SYSID"
NewFieldl.Type = FIELD_TEXT 'Variant integer
NewField1l.Size = 50

NewTable.Fields.Append NewFieldi
?/* Add another field */

NewField2.Name = "TableName"
NewField2.Type = FIELD_TEXT ‘text
NewField2.Size = 50

NewTable.Fields.Append NewField2

?/* Add table to database */
AppDB.TableDefs.Append NewTable

’/* (Open SYSQueryResult */

SQL$ = "SELECT * FROM SYSQueryResult"
Set DS = AppDB.CreateDynaset (SQL$)
KeyValue? = 1

’/* Find all tablenames */
pl% = InStr(i, CompSet$, "<")
p2% = InStr(pt, CompSet$, ",")
While pi1% <> O And p2% <> 0
COISID$ = Mid(CompSet$, p1 + 1, p2 - p1 - 1)
’/% Get Table Name */
Call DB_SeparateCO0ISID(COISID$, "", ThisTableName$, "", "", "")
’/* Add table name */
DS.AddNew
'/* Add Keyfield first */
DS.Fields(0) = Trim(Str(KeyValue%))
'/* Add a row */
DS.Fields(1) = ThisTableName$
DS.Update
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KeyValue’, = KeyValue, + 1

’/*
pl%

Find next table name #*/
= InStr(p2 + 1, CompSet$, "<")

If p1 > 0 Then p2) = InStr(pil, CompSet$, ",")

End

Sub
)/*

Wend

’/* Update Prolog DB
Call DBHand_Initialize

’/* Update Msg */

AppName$ = Msg_GetTagValue (Msg$, "AppName")

Call Msg_SetTagValue(Msg$, "COISID", AppName$ & "\\" & NewTableName$)
Call Msg_SetTagValue(Msg$, "COISType", "table")

’/* Call DBHand_BLTable() */
Call DBHand_BLTable(Msg$, AppDB)

On Error Resume Next
DS.Close

Sub

BLEngine_FactsDB ()

generate DB facts */

Dim HandDB As Database

Dim AppDB As Database

Dim SQL$, FileName$, TableName$, RecordKey$, Atom$
Dim DBName$, DBPath$, RowContent$, Content$, KeyValue$
Dim DS As Dynaset °’/for HandDB

Dim DS1 As Dynaset ’/for appDB

Dim DS2 As Dynaset °’/for tables

Dim nl

Dim TableID%, i%, FNumy,

nl = Chr(10)
FNumy, = FreeFile

’/* Open file */
FileName$ = "c:\wan\ghmi\Pro386w\blengine\facts.pl"
Open FileName$ For Output As FNum}

’/* Find DBs */
Set HandDB = OpenDatabase("c:\wan\ghmi\cois\rdbms\dbhand.mdb", False,

False)

SQL$ = "SELECT * FROM DBApps WHERE SystemName = ’Small School’"
Set DS = HandDB.CreateDynaset (SQL$)
If DS.EQF Then
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DS.Close
Exit Sub
End If

’/* to save space, work for Small School only */
If Not DS.EQOF Then

DBName = "Small School"

DBPath$ = DS!DBFullPath

Set AppDB = OpenDatabase(DBPath$, False, False)

’/* Create a Prolog Fact */

Atom$ = "object(‘" & DBName$ & "‘,‘Database‘). " & nl

Print #FNum, Atom$

’/* Find tables #*/
For TablelID, = 0 To AppDB.TableDefs.Count - 1
'/* Skip system tables %/
If LCase(Left (AppDB.TableDefs(TablelID¥,).Name, 4)) <> "msys"
Then
’/* Find table name */
TableName$ = AppDB.TableDefs(TableID’) .Name

’/* Add a Prolog fact */

’/* object(D,T, ‘Table‘).

Atom$ = "object(‘" & DBName$ & "‘,‘" & TableName$ & "¢,
‘Table‘). " & nl

Print #FNum, Atom$

/% Find records */

SQL$ = "SELECT * FROM " & TableName$

Set DS1 = AppDB.CreateDynaset (SQL$)

While Not DS1.EQF
’/* Create facts on records */
RecordKey$ = DB_FindKeyField(AppDB, TableName$)
KeyValue$ = Trim(Str(DS1(RecordKey$)))

’/* Add an atom */

’/* property(D,T, ‘KeyField‘,K).

Atom$ = "property(‘" & DBName$ & "‘,‘" & TableName$ &
", ‘KeyField‘, ‘" & RecordKey$ & "“" & "). " & nl

Print #FNum, Atom$

’/% Add an atom */

’/* object(D,T,R, ‘Record).

Atom$ = "object(‘" & DBName$ & "‘,‘" & TableName$ &
ne,fn g KeyValue$ & "¢, ‘Record‘). " & nl

Print #FNum, Atom$



’/* Find record contents */
?/* Majorly copied from old DBHand_BLRecord */
Content$ = ""
If Not DS1.EQF Then
’/% Find field names */
RowContent$ = "
For i% = 0 To DS1.Fields.Count - 1
RowContent$ = RowContent$ & MSG_COL_SEP &
DS1.Fields(i%) .Name
Next i%
RowContent$ = Mid(RowContent, Len(MSG_COL_SEP) + 1)
& MSG_COL_SEP & MSG_ROW_SEP
Content$ = Content & RowContent$
End If

?/* Build record content */
If Not DS1.EOF Then
RowContent$ = ""
For i% = 0 To DS1.Fields.Count - 1
RowContent$ = RowContent$ & MSG_COL_SEP &
DS1.Fields (i)
Next i¥%
RowContent$ = Mid(RowContent, Len(MSG_COL_SEP) + 1)
& MSG_COL_SEP & MSG_ROW_SEP
Content$ = Content & RowContent$
End If

’/* Add an atom */

’/* property(D,T,R, ‘Content‘,C).

’/* Format: Content = field10@field2@Q...@@##valuel@@va
lue2Q@... */

'/* This can be directly used by DBHand_BLRecord */
Atom$ = "property(‘" & DBName$ & "‘,‘" & TableName$ &
e, & KeyValue$ & "¢, ‘Content‘,‘" & Content$ & "‘). " & nl

Print #FNum, Atom$

'/* Add an atom */

'/* relation(D,T,S, ‘HasSchema‘).

If LCase(TableName$) = "scmsystables" Then
Atom$ = "relation(‘" & DBName$ & "‘,‘" &

(DS1!TableName) & "¢,‘" & (DS1!SchemalName) & "‘, ‘HasSchema‘).

Print #FNum, Atom$
End If

’/* Add an atom */
'/* object(D,S, ‘Schema‘).
’/* relation(S1,S82, ‘ERRelation‘).

" & nl
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If LCase(TableName$) = "scmsyserschemata" Then
Atom$ = “"object(‘" & DBName$ & "‘,‘" &
(DS1tSchemaName) & "¢, ‘Schema‘). " & nl
Print #FNum, Atom$

'/« Add ER relation() */
If (DS1!SchemaType) = "Relation" Then
Atom$ = "relation(‘" & (DS1!SchemaNamel) &

ne v g (DS1!SchemaName2) & "¢, ‘ERRelation‘). " & nl
Print #FNum, Atom$

End If
End If

’/* Get next record */

DS1.MoveNext
Wend
On Error Resume Next
DS1.Close

End If
’/* Get next table
Next TableIDY
On Error Resume Next
AppDB.Close
’DS.MoveNext

End If

Close #FNum

On Error Resume Next
DS.Close
HandDB.Close
AppDB.Close

End Sub

Sub BLEngine_GetPrologData (CompSet$, linkset$, Content$)
?/* Construct BL execution result from Prolog files */
’/» files: compset.pl, linkset.pl, content.pl */

Dim FNum

Dim FileName$

CompSet = ""
linkset
Content

'/* Open file */

On Error Resume Next

FileName$ = "c:\wan\ghmi\pro386w\blengine\compset.pl"
FNum), = FreeFile
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Open FileName$ For Input As #FNum

Line Input #FNum, CompSet$

Close #FNum

'/* Polish output from Prolog to HTE format
Call BLEngine_PolishCompSet (CompSet$)

’/* Open file */

FileName$ = "c:\wan\ghmi\pro386w\blengine\linkset.pl"
FNum), = FreeFile

Open FileName$ For Input As #FNum

Line Input #FNum, linkset$

’/* Polish output from Prolog to HTE format

Call BLEngine_PolishLinkSet(linkset$)

’/% Open file */

FileName$ = "c:\wan\ghmi\pro386w\blengine\Content.pl"
FNum), = FreeFile

Open FileName$ For Input As #FNum

Line Input #FNum, Content$

’/* Polish output from Prolog to HTE format

Call BLEngine_PolishContent(Content$)

End Sub

Sub BLEngine_PolishCompSet (PrologOutPut$)
?/* Polish Prolog output CompSet to HTE format */
*/*[[[Appartment] ,Table, [Appartment]], [[CourseNotes] ,Table, [CourseNotes]]]

Dim p1%, p2%, p3%
Dim S$

S$ = PrologOutPut$

’/* Eliminate outer "[", "]" %/
S$ = Mid(S, 2, Len(S$) - 2)

:/* Replace n [] n , to u\\u */
p2% = InStr(1, s$, "[[)
While p2 <> 0

Mid(S, p2, 2) = " ["
p3 = InStr(p2, S, ",")
pt = InStr(p2, S, "I")
Mid(S, p1, 1) = "

While (p3 <> 0 And p3 < pl)

S = Mid(S, 1, p3 - 1) & "\\" & Mid(s, p3 + 1)
p3 = InStr(p3, 8, ",")

Wend
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p2% = InStr(1, S$, "[[™)
Wend
?/* Replace "[I" to "<>" %/
p2% = InStr(1, S$, "[")
While p2 <> 0O

Mid(s, p2, 2) = "<"

p2% = InStr(p2 + 1, S$, "[")
Wend
p2% = InStr(1, S$, "1")
While p2% <> 0

Mid(s’ p2’ 2) = nyu

p2% = InStr(1, S$%, "1
Wend

’/* Remove spaces */
p2% = InStr(1, S$, " ")
While p2% <> 0
If (p2 = 1) Then
S = Mid(s, 2)
Else
)/* if v ’u u’ 1w n <u, "o onoyu ony w */
If Mid(S, p2 ~ t, 1) = "," Or Mid(S, p2 + 1, 1) = "," Then
S = Mid(s, 1, p2 - 1) & Mid(S, p2 + 1)
Else
If Mid(s, p2 - 1, 1) = "<" Or Mid(S, p2 + 1, 1) = "<" Then
S = Mid(S, 1, p2 - 1) & Mid(s, p2 + 1)
Else
If Mid(s, p2 - 1, 1) = ">" Or Mid(S, p2 + 1, 1) = ">" Then
S = Mid(s, 1, p2 - 1) & Mid(s, p2 + 1)
End If
End If
End If
End If

p2% = InStr(p2 + 1, S$, " ")
Wend

PrologQOutPut$ = S

End Sub

Sub BLEngine_PolishContent (Content$)
’/* Polish content output from Prolog */
’/* Remove "[1" */
Content$ = Mid(Content$, 2, Len(Content) - 1)



End

Sub
,/*

End

Sub
)/*

Sub

BLEngine_PolishLinkSet (linkset$)
Polish link set */

Call BLEngine_PolishCompSet(linkset$)
Sub

BLEngine_SendProlog ()
Communicate with BL engine */
Dim FileName$

Dim FNuml%, Fnum2j

Dim FileSizel%, FileSize2%

’/» Initialize for consistency */
’Call DBHand_Initialize

'/* Delete files */

On Error Resume Next

FileName$ = "c:\wan\ghmi\Pro386w\blengine\compset.pl"
Kill FileName$

FileName$ = "c:\wan\ghmi\Pro386w\blengine\linkset.pl"
Kill FileName$

FileName$ = "c:\wan\ghmi\Pro386w\blengine\content.pl"
Kill FileName$

’/* Rewrite file »/

FileName$ = "c:\wan\ghmi\Pro386w\blengine\flagtext.pl"
FNuml = FreeFile

’Open FileName$ For Random Access Read Write As #Fnum2
Open FileName$ For Qutput As #FNumil

Print #FNumi, "Y. "

Close #FNumi

FileSizel = FileLen(FileName$)

’/* Wait until data ready from Prolog */
FileSize2 = FileLen(FileName$)
While FileSize2 <= FileSizel

FileSize2 = FileLen(FileName$)
DoEvents

Wend

End Sub
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