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ABSTRACT

IDENTIFYING AND EXPLOITING CONCURRENCY IN 
OBJECT-BASED REAL-TIME SYSTEMS

by
Guohui Yu

The use of object-based mechanisms, i.e., abstract data types (ADTs), for 

constructing software systems can help to  decrease development costs, increase 

understandability and increase maintainability. However, execution efficiency may 

be sacrificed due to the large number of procedure calls, and due to contention for 

shared ADTs in concurrent systems. Such inefficiencies are a concern in real-time 

applications th a t have stringent timing requirements. To address these issues, the 

potentially inefficient procedure calls are turned into a source of concurrency via 

asynchronous procedure calls (ARPCs), and contention for shared ADTS is reduced 

via ADT cloning. A framework for concurrency analysis in object-based systems is 

developed, and compiler techniques for identifying potential concurrency via ARPCs 

and cloning are introduced. Exploitation of the parallelizing compiler techniques 

is illustrated in the context of an incremental schedule construction algorithm  th a t 

enhances concurrency incrementally so tha t feasible real-time schedules can be 

constructed. Experimental results show large speedup gains with these techniques. 

Additionally, experiments show tha t the concurrency enhancement techniques are 

often useful in constructing feasible schedules for hard real-time systems.
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CHAPTER 1

INTRODUCTION

The complexity and cost of software development and maintenance increase very 

quickly with the size of the software system. This makes it difficult for software 

developers to keep pace with the increasing demand for new systems. One way 

to  address this crisis is to reuse the results of previous development efforts [50, 

64, 79]. A bstract data  types (ADTs), which are supported by languages such as 

Ada, C + + , Clu and Modula-2, provide a mechanism for abstraction, encapsulation, 

modularity, and layering. Therefore, ADTs are often used to develop reusable 

software components.

1.1 The Problem and Motivations

The use of object-based mechanisms like abstract data  types (ADTs) can help to 

decrease development costs, increase understandability, and increase maintainability. 

However, it may also increase execution overhead, due to frequent procedure calls. 

Furtherm ore, an ADT is often used to manage more than  one object and can become 

a bottleneck in concurrent systems. Such inefficiencies are a concern in real-tim e 

applications tha t have stringent tim ing requirements. In [69, 78, 77, 68], the use 

of parallelism via asynchronous remote procedure calls (ARPCs) and replication 

(cloning) of ADTs is presented as a means to address these potential inefficiencies. 

In this work, a framework for concurrency analysis in object-based systems is 

developed, and compiler techniques for identifying potential concurrency via ARPCs 

and cloning are introduced. Additionally, the usefulness of these techniques is 

illustrated in the context of an incremental schedule construction algorithm th a t

1



enhances concurrency incrementally so th a t feasible schedules for hard real-tim e 

systems can be constructed.

There are four concerns th a t m otivate this thesis:

•  ADTs are often used for constructing reusable software components [58, 62, 

64, 24],

•  The inefficient execution of programs with ADTs is a concern for time-critical 

applications [22, 30, 77, 62, 59, 63, 60, 61, 63].

•  The potential for concurrency in ADT-based systems is quite high via 

asynchronous remote procedure call and ADT cloning [65, 67, 68, 69, 70, 72].

• Autom atic incremental parallelization via ARPCs and ADT cloning for hard 

real-time scheduling has not been thoroughly investigated prior to the inception 

of this research.

1.2 Overview of the Off-line Scheduling Approach

Timeliness is a m ajor concern for hard real-tim e systems. Programs may not be 

necessarily efficient as long as all the deadlines are met. When concurrency is applied 

to help in real-tim e scheduling, full parallelization may not be necessary since more 

resources (processors) are needed to  achieve it. The motivation is: if one processor 

can do the job, why use two?

This thesis presents a new approach for constructing schedules off-line for real­

time applications composed of abstract da ta  type (ADT) modules. This approach 

constructs an initial schedule based on sequential execution. The initial schedule 

is evaluated for feasibility, and possible improvement (if it is not feasible). If the 

schedule needs to  be improved and can be improved, the critical path and a list of 

critical methods are identified. Candidates are evaluated by analyzing the overhead 

each may cause, and the am ount of potential concurrency if parallelization is applied.



3

Application

Designer
Fully Parallelized

MCG,ICG

Infeasible Schedule

GDGs,MDGs,IMDGs,CFGs

CRs

method list

chosen method

Infeasible Schedule

Dependence and Flow Analyses

Cloning Analysis

Initial Assignment & Scheduling

Critical Method Identification

Critical Method Parallelization

Call Relation Analysis

Concurrency and Communication 
Estimation

Feasible Schedule
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The best candidate (possibly a combination of several candidates) is chosen to 

improve the schedule. The execution times of critical methods are reduced by 

exploiting and enhancing concurrency within the methods. The chance of finding 

a feasible schedule is significantly increased by concurrency enhancement. The 

overview of the off-line scheduling approach (shown in Figure 1.1) consists of the 

following steps:

1. The Application designer designs and implements an application using ADT 

modules.

2. Call Relation Analysis constructs the method call graph (MCG) and instance 

call graph (ICG) to describe the call relations among methods and ADT 

instances.

3. Initial assignment and scheduling generate an initial schedule based on 

sequential execution. The initial schedule is evaluated for feasibility. If 

the initial schedule is feasible, the process term inates.

4. Dependence and flow analyses construct a control flow graph (CFG), a general 

dependence graph (GDG), a method dependence graph (MDG), and an inter­

method dependence graph (IMDG) for each method. These dependence graphs 

describe various types of precedence relations among statem ents.

5. Cloning analysis determines the clone requirement (CR) of each method and 

instance needed to resolve all possible code contention.

6. Critical methods identification finds the critical path (the path tha t takes 

longest to execute) and the critical methods (the methods called by the 

statem ents on the critical path). These critical methods are analyzed for 

potential concurrency achieved and the overhead produced if parallelized.



7. Concurrency and communication estimation determines the communication 

cost a method can produce if it is parallelized. The method th a t has large ratio  

of concurrency to  the overhead is determined. The amount of concurrency of a 

method is measured by the execution tim e reduced if the m ethod is parallelized. 

The am ount of overhead is measured by the number of processors needed and 

communication time needed.

8. Critical method parallelization parallelizes a critical m ethod and updates the 

schedule. The parallelization of a critical method includes:

•  cloning the critical method to resolve contention;

•  using ARPCs to allow caller and callee to run concurrently;

• reordering statem ents to enable ARPCs and cloning.

The new schedule is evaluated. If it still infeasible, the infeasible schedule is 

sent back to  the Identifying Critical Methods stage to be parallelized further.

This thesis presents solutions to  each step of this scheduling approach.

1.3 Previous and Related Work

Parallelizing compiler techniques can be traced back to the 1960’s with parallelization 

of FORTRAN programs [8]. The techniques were applied to all most every procedural 

programming language [26, 3, 2]. Those techniques were mostly for loops [33, 5, 42, 

1, 38] and data  structures [73, 10], and focused on fine grain of concurrency. Modern 

systems have become complex and large, and exploiting fine grain concurrency 

requires too much effort (time and space). Likewise, the properties of object orien­

tation such as abstraction, encapsulation, polymorphism, inheritance, layering, and 

modularity are especially useful for developing large scale systems. Work in [81], 

techniques for autom atical detection of intra- and inter-object parallelism for C + +
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programs. Unfortunately, parallelization of object-based systems has not been inves­

tigated thoroughly. This thesis presents techniques for identifying and exploiting 

concurrency for systems constructed with arbitrary  data  types -  ADTs. Concurrency 

is gained a t larger granularity: m ethod level and instance level, and is used to  meet 

’’thread-level” objectives and constraints.

Autom atic parallelization of programs depends on the dependence analysis of 

programs. Much has been published about control and data dependence analysis 

[8, 55, 32, 31,19, 17, 4, 27]. Work in [8, 55, 32, 31] discuss various ways of dependence 

analysis techniques for parallelizing FORTRAN and assembly language programs. 

Work in [19, 17, 4, 13, 27] introduces the program dependence graph (PDG) and 

the continuation of PDGs to represent data  and control dependence relations in a 

program. Those dependence relations determine the necessary sequencing between 

methods and can be used to expose potential concurrency. For example, if two calls 

have neither da ta  nor control dependence, they are able to run in parallel.

Work in [56, 10, 9] uses interprocedural dependence analysis to determine 

whether or not the procedure calls prevent parallel code from being generated within 

a loop. Procedure calls th a t can be executed concurrently are detected.

Cloning has been applied previously, but in different contexts and for different 

objectives than those discussed here. Previous work on cloning is mainly concen­

trated  on compiler optim ization and fault tolerance. Keith Cooper [15] uses cloning 

techniques for compiler optimization. Clones of procedures are used to inherit an 

environment tha t allows for better code optimization. Procedure or task cloning for 

fault tolerance is discussed in [44, 11, 14]. They use clones of procedures or tasks to 

obtain high availability.

Cloning of ADTs for concurrency is first addressed in [69, 68, 78]. In [69], the 

asynchronous remote procedure call model and cloning are introduced, and a parallel 

virtual machine to support ARPCs and cloning is defined. In [68], the contention
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for an ADT is revealed by partitioning the statem ents of an ADT module into units, 

where a unit which is a sequence of statem ents tha t m ust be executed in order, due 

to da ta  dependence. The approxim ate upper bound on the number of clones of an 

ADT instance th a t can be used concurrently is determined by a polynomial-time 

algorithm. The lim itations of the work in [68] are: Clonability analysis is applied on 

ADT instance level only; Ignore the potential concurrency which may exists among 

statem ents across conditionals or loops; statem ent reordering for concurrency is not 

considered. This work is different from [68] in the following aspects:

•  PDGs are extended to  represent code dependence relations a t three levels 

(statem ent level, method level, and instance level).

•  The dependence and cloning analysis techniques can be applied a t all three 

levels.

•  Statem ent reordering for concurrency is discussed.

•  Method cloning analysis and ways for handling conditionals allow more 

accurate upper bound on the number of clones of each ADT instance th a t 

can be used concurrently is determined.

•  Also, the techniques are used for off-line schedule construction in hard real­

time systems [76, 77], and are also used to help the U.S. Navy’s reengineering 

efforts for mission critical systems [72, 71].

Most of the previous off-line scheduling techniques are searching algorithms 

for seeking feasible solutions by trying all possible perm utations of processes, tasks, 

segments of programs [37, 49, 47, 74], or by using heuristics to guide their searching 

[30, 44, 61, 48]. The tim ing behavior of scheduling objects is unchanged during 

scheduling, thus all effort is devoted to optimizing the search path for finding feasible 

schedules. Work in [23, 29, 21, 22] applies compiler techniques to improve the
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performance of real-tim e programs so th a t feasible schedules can be found. In [23], a 

compiler classifies application code on the basis of its predictability and monotonicity, 

and creates partitions which have a higher degree of adaptability. Work in [29, 21, 22] 

applies code transform ation and code motion to help tune real-tim e programs so 

th a t worst-case execution times are consistent with the real-time requirements. The 

performance of programs is improved by code transform ation and code motion.

The rest of this thesis is organized as follows: Chapter 2 defines the  object-based 

programming, the concurrent execution, and real-tim e scheduling models assumed in 

this research. C hapter 3 reviews the traditional dependence analysis techniques and 

introduces extensions for code dependence analysis. Chapter 4 introduces the cloning 

analysis techniques. Chapter 5 presents the incremental parallelization approach 

for constructing off-line schedules in hard real-time systems. The upper bounds 

obtained by cloning analysis are used as metrics to guide the incremental paral­

lelization process. This off-line scheduling is done in conjunction with concurrency 

enhancement to  improve the time behavior of tasks missing deadlines [77, 76]. The 

experimental results are presented in C hapter 6. Finally, the conclusions and open 

problems are given in Chapter 7.



C H A PT E R  2

PROGRAMMING, EXECUTION, AND SCHEDULING MODELS

This chapter introduces the programming and execution paradigms assumed in this 

thesis. The generic abstract data  type program m ing model is discussed first. This 

is followed by the introduction of the ARPCs and ADT cloning concurrency model. 

Finally, the real-tim e scheduling model is introduced,

2.1 Programming Model

It is assumed th a t software systems are composed of layered ADTs. A typical ADT 

module exports a type th a t can be used to  declare variables, and operations to 

manipulate variables of the exported type. Although many work has been done on 

aliasing analysis [7, 16, 12, 34, 43], it is still impossible to determine which variables 

may be referenced by a pointer. In this program m ing model, aliasing is avoided by 

restricting the operations on pointers and by using swap param eter passing mode. 

As explained in [25], component efficiency increases when the values of composite 

data structures are swapped instead of copying them. Consequently, the param eter 

passing mechanism assumed here is call-by-swap, which exchanges (at least concep­

tually) the values of the formal param eters with the values of the actual param eters 

at the time of a call and upon return from a call. Consequently, the same argument 

can not appear more than once in the same call statem ent. Although this approach 

was originally advocated for developing efficient reusable components [25], it has 

the added benefit of simplifying parallelism extraction; variable synchronization is 

straightforward. Call-by-swap also has the desirable property th a t it does not make 

pointers available to users (as is done with call-by-reference). Thus, problems such 

as aliasing tha t arise when pointer types are provided do not occur.

9
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Tailorable modules can be developed in languages perm itting definition of 

generic modules (modules param eterized by types, by operations, or by other 

modules). To use a generic module, it is instantiated by fixing its param eters. 

Instantiation creates a module instance.

Another language feature is the autom atic initialization of variables, as 

supported in C + +  and RESOLVE [25]. W ith this technique, each type has 

an initialization operation th a t not only allocates storage, but also creates an 

initial value. Additionally, Extraction of parallelism is simplified when ADTs are 

used [50, 69]. Thus, the cloning techniques in this work are intended to apply to 

ADTs. Furtherm ore, programs can not have global variables. To make the programs 

analysible, no aliased variables or goto statem ents are allowed, unbounded loops 

and unbounded recursion are forbidden (to enable timing analysis), all memory 

allocations are done before runtime, the types of variables are determined statically, 

and instantiation of classes must be done statically. Those restrictions are acceptable 

for real-tim e systems since nondeterm inistic behavior cannot guarantee timeliness 

of real-tim e applications [51]. Thus, the scoping rules are straightforward. Another 

feature is th a t modules can not be instantiated dynamically. Thus, the number of 

ADT instances used in a program is known at link-time.

ADT programming languages provide mechanisms for abstraction, encapsu­

lation, modularity, and layering. However, these mechanisms do not guarantee 

tha t the programs autom atically have the above properties. Some design rules 

and principles must be followed. Work in [28] presents forty-one principles for 

constructing ADT components in Ada. We assume th a t components are mostly 

constructed according to these guidelines, but our analysis does not require strict 

adherence to  all of them. The most im portant principles are summarized below: 1

Although those principles are discussed for Ada, they are general rules for developing 
ADT reusable components.
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•  Export a type so tha t abstract sta te  is m aintained in variables of th a t type, 

not in package instances.

•  For each exported type, export initialization and finalization operations.

•  If any exported operation has a precondition, export operations sufficient for 

a client to  test th a t precondition.

•  Do not export any exceptions, and design exported operations so tha t they do 

not raise any exceptions.

•  Exported all types as limited private types.

•  For each exported type, export a data  movement operation (swap).

•  Export and im port (through generic formal param eters) all operations as 

procedures.

e Export a procedure th a t initializes all items declared internal to the package 

body th a t need initialization, e.g., variables, other package instances, etc.

•  Export a procedure th a t finalizes all items declared internal to the package 

body th a t need finalization, e.g., variables, other package instances, etc.

•  Param eterize the component by each ADT tha t it manipulates but does not 

export.

•  For each type param eter to a generic package, im port the type as limited private 

and im port the type’s standard operations: Initialize, Finalize, and Swap.

•  In a client, use only the following constructs/statem ents: block, case, exit, 

fo r  loop, i f ,  loop, procedure call, renames, return, while loop.

•  In any procedure call, do not use any variable as an actual param eter more 

than once.
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•  In any procedure call, do not supply as an actual param eter a variable th a t is 

globally known to the called procedure.

•  Call an operation only if its precondition is satisfied.

•  When implementing an operation in a com ponent’s package body, do not call 

any of the com ponent’s exported operations.

•  In the package body of a component, do not declare local variables of the 

com ponent’s exported types a t the package level, or in any of the com ponent’s 

exported or local operations.

•  Add additional capabilities to a component by layering, when layering is 

possible.

•  Directly implement an additional capability only if (a) layering is not possible 

or (b) the layered im plem entation has been shown to exact an unacceptable 

performance penalty for a particular application.

Figure 2.1 shows an example of an ADT module in Ada. It is a package taken 

from a virtual machine simulation application. I t is a generic module which takes 

memory size and memory element type as param eters when an instance of the module 

is created. Thus, it can be used to create any size of memory for storing any type of 

variable. It exports a type called M em oryType  and five operations as the interface 

of the module. The implem entation of the type and the operations are hidden from 

users. Users can declare a variable using the exported type M emoryType  and call 

the operations provided to m anipulate the variable. Among the five operations, three 

of them are standard operations: initialization, finalization, and swap.

Figure 2.2 shows a portion of a factory simulation in RESOLVE. Figure 2.2 (a) 

shows a module Queue which is declared as a generic ADT module. The Queue takes 

a param eter T  which is a type used to define the elements of the queue. The three
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generic
MemorySize : in positive; 
ty p e  itemType is lim ited  private ; 
p ro ced u re  initItem(itom : o u t itemType); 
p ro ced u re  finltem(item : in  itemType);
p ro ced u re  swapltem(iteml : in o u t itemType; item2 : in o u t itemType); 
package MemoryManager is

ty p e  MemoryType is lim ited  p riva te ;
su b ty p e  indexType is Integer RANGE 1..MemorySize;
p ro ced u re  initialization(memory: in o u t MemoryType;

item : in  o u t itemType); 
p ro ced u re  finalization(memory: in  o u t MemoryType); 
p ro ced u re  swap(memory: in o u t MemoryType, 

addrl : in o u t indexType, 
addr2 : in o u t indexType); 

p ro ced u re  fetch(memory : in  o u t MemoryType; 
address : in o u t indexType; 
item : in  o u t itemType); 

p ro ced u re  store(memory: in  o u t MemoryType; 
address : in  o u t indexType; 
item : in  o u t itemType); 

lim ited  p riv a te
type MemoryType is ARRAY(indexType) o f  itemType; 

en d  MemoryManager;

F ig u re  2 . 1  An ADT module in Ada.

standard operations (in i t l t e m , f in l te m ,  and swapltem )  are provided as param eters. 

When different types are provided, different queues can be instantiated from this 

ADT module. The ADT module Queue provides a type QueueType which can be 

used to declare queue variables such as InQueue and OutQueue in ADT module 

Machine (shown in Figure 2.2 (b)). Two methods insert and remove  are provided 

by the Queue which is used to m anipulate variables of QueueTtjpe. In Figure 2.2 (c), 

process Task  is defined. An ADT instance M  is created from module Machine, and 

is used to declare two machines M l  and M2. Figure 2.2 (c) shows only one statem ent 

of the Task  which is a call to  method per f  orm.next{) provided by the ADT instance 

M . Figure 2.2 (d) shows the main process which instantiates two processes, Taskl 

and Task2. Figure 2.3 shows a few call relations (edges) among three instances in 

the application.
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m o d u le  Q u c u o ( ty p e  T );
p ro v id e d  ty p e  Quern*Typo; 
fu c i li ty  ■ ■ •
p r o c e d u r e  in s c r t(v a r  Q :Q u cu eT y p e ;v ar x :T ); 

b e g in
• • • acc ess  Q a n d  x  f o r  5 t i m e  u n i t s  

e n d ;
p r o c e d u r e  rom ovc(var Q :Q ueuoT ypc; v a r  x:T ); 

b e g in
• • • a cc ess  Q a n d  x  f o r  5 l im e  u n i l s  

e n d ;
e n d  Q ueue;

(ft)

p r o c e s s  Task; m a in  p ro c e s s  factory ;
fa c i l i ty  M is M achine; p r o c e s s  T ask l is Task
v a r  M l, M2 : M .M nchincTypc; w i th  p e r io d = 3 0 , d e a d l in e = I 2 ,r e l e a s e - t im e = 0 ;
b e g in  p r o c e s s  Task2 Is Task

M .perfo rm -nex t(M  1); w i th  p e r io d = C 0 , d e a d l in e = 2 1 , r e l e a s e - t im e —0;
e n d ;

e n d ;  (d)
( 0

F ig u re  2.2 Factory Simulation in RESOLVE

2.2 C o n c u rre n c y  M o d e l

The execution platform used in this paper is a distributed memory MIMD system 

which is described in [69, 62]. Each processing element (PE) consists of a CPU, a 

communication co-processor and local memory. PEs are connected by either buses 

an d /o r high-speed, bidirectional point-to-point links. We assume tha t there is a 

physical route of buses and links between any pair of PEs.

Communication is handled by the communication co-processor in either a 

synchronous or in an asynchronous manner. Device resources are either physical 

devices or logical devices. Physical devices are hardware devices managed by software 

packages such as disks, sensors, and monitors. Logical devices are ADT module 

instances.

As shown in Figure 2.4, execution graphs are used to describe the executions 

of processes. In an execution graph, solid lines show executions of process segments, 

and dashed directed lines indicate calls and returns. The solid boxes indicate PEs, 

and the dashed ovals enclose operations of instances. E S T  stands for earliest s ta rt 

time, F T  for finish time, and D  for deadline of a process.

m o d u le  M achine;
p ro v id e d  ty p e  M achincType; 
f a c i l i ty  p a r t is P a r t ( — •); 
f a c i l i ty  p ro d u c t is P roduct(*  • •); 
f a c i l i ty  Q is Q u o u o (p a rt.P a rtT y p c ); 
v a r  inQ ucuo, outQ uouo : Q .Q ucuoTypc; 
v a r  p a r t : p a r t .P a r tT y p o ; 
v a r  p ro d  : p ro d u c t.P ro d u c tT y p o ; 
p r o c e d u r e  p e rfo rm -n o x t(v ar M :M achincT ype); 

b e g in
•••  i n s t r u c t io n s  f o r  2 t im e  u n i t s  
Q .rem ovo(inQ ueue ,part);
•••  a c c e s s  M , p a r t ,  a n d  p ro d  f o r  3 t i m e  u n i t s  
Q. in se rt (o u tQ ueuc, prod);
• • • i n s t r u c t i o n s  f o r  2 tim e  u n i t s  

e n d ;
e n d ;

(b)
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Queue
QUEUE TYPE

insert

remove

□ □
InQueue OutQueue

Machine MACHINE TYPE

Taskl
M.perform-next(M1)

Ml

F ig u re  2.3 Instance relations created in factory application

PEk
/

procedure m l 
% ^

process PSi
IPC

- 0 &
IPC return 

—Q

F ig u re  2 .4  Internal Procedure Calls
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PEk .........................................
procedure ml 

I instance i ?

.■•process PSj ' EPC y EPC return'-. 
I o .1 A a -■■- -c

(a)

F ig u re  2.5 External Procedure Calls

An inter-instance call is an internal procedure call (IPC) if the calling operation 

is provided by an instance created within the activity class (as in Figure 2.4). For 

example, call M .perform jnex t(M l)  in activity class Task  is an IPC since method 

perform jnext()  is provided by M  which is instantiated within the activity class. 

An inter-instance call is an external procedure call (EPC) if the calling operation is 

provided by an instance created outside the activity class (as shown in Figure 2.5). 

Based on the physical location, IPCs and EPCs are implemented with local procedure 

calls (LPCsJ and remote procedure calls (RPCs). An LPC occurs when the caller 

and the callee are on the same PE. An RPC occurs when the caller and callee are 

on two different PEs (as shown in Figure 2.5 (b)). An IPC is implemented by using 

an LPC which is simply a local context switch. An EPC is implemented by an LPC 

if the called operation is on the same PE (as shown in Figure 2.5 (a)), or by an 

RPC  if the called operation is on a different PE  (as in Figure 2.5 (b)). Processes 

are distributed among the PEs. A process and all of its ADT module instances are 

initially assigned to  the same PE (as shown in Figure 2.6 for Taskl in the factory 

simulation).

The ADT methods and instances constituting a software system are distributed 

over the processors of the parallel com puter and interact via remote procedure

procedure ml
i instance i 9  5 i

D )

ii

PEfc...................... J..............
/ i EPC .•process PSj i
i 0 ------------ 0

HP C return'-1,
S----- - 0  I

(b)



calls. Concurrency can be gained among processes if they are running on different 

PEs. RPCs can be synchronous remote procedure calls (SRPCs) or asynchronous 

remote procedure calls (ARPCs)  [40, 35, 65, 6 6 , 67, 70, 69]. W ith SRPC model, 

the caller is blocked to wait for the call to  return. Concurrency is achieved among 

multiple processes by distributing them  onto multiple PEs. W ith ARPC model, 

concurrency is gained by allowing a caller to  continue execution until it requires a 

param eter passed by-reference to  a rem ote operation th a t has not yet returned. When 

such a param eter is returned, the waiting caller is invoked to continue execution. 

Therefore, concurrency is achieved from not only statem ents in different PEs, but 

also statem ents (method calls) in the same PE. Initially, a process starts executing 

at one processor. The statem ents of the program are processed one by one; if a 

statem ent following an ARPC does not access any param eters passed to  the ARPC, 

the statem ent is processed; otherwise it is blocked. Figure 2.7 shows four blocks 

bi, b2, b3, and b4. Blocks bi and b3 are remote procedure calls which call the ADT 

operations on other processors. If remote procedure calls are handled synchronously, 

the execution of b2 and 6 4  are blocked until the return of 6 1  and b3, respectively (as 

shown in Figure 2.7 (a)). If remote procedure calls are handled asynchronously, and 

if the param eters used by 6 1  and b3 are used by b4 only, b2 can continue execution 

after 6 1  is sent out since b2 does not access the arguments used by b\. Then b3 can be 

sent to another processor since b3 does not access the arguments used by b\ either. 

But b4 is blocked until the return of both b\ and b3 because it needs to access the 

data which might be modified by bi and b3. Therefore, through ARPCs, 6 1  and b2 

run concurrently and bi and b3 run concurrently as shown in Figure 2.7 (b).

To control the complexity of scheduling, a hybrid scheduling model is used. 

Full preem ption indicates th a t the execution of a  process can be interrupted by other 

processes (with higher priorities) a t any time. Nonpreemption describes a scheduling 

approach wherein a process must run to  completion once it starts. Full preemption
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PEi  ------------- ----- — ...
rcmove(inQueue, part) lnscrt(outQueue, prod)

/ '  ^  ADT instance Q  © $   ® )

)  ADT Instance M Q ~ . q  $ ----1— 0  f t  .2-©  \
\ \  I  Q.remove(lnQutut,part); Q.InstrKoulQutut.prod);

t r ^
* part *,

Process Tusk 1 *  , h FT=17© prod ©
M.perfomi-naKM I) n - n

Est=0 U=1^ ‘

F ig u re  2.6 Assignment of Taskl and ADT instances in the factory simulation

gives the scheduler more flexibility to find a feasible schedule, but it increases the 

steps of scheduling because more cases are considered, and also may cause too much 

overhead (context switch) a t run time. On the other hand, nonpreemption simplifies 

the scheduling job, but reduces the flexibility (chances to find a feasible schedule). 

To balance the flexibility and the complexity, we use a semi-preemption model [62] 

th a t restricts preemption to  points called preemption points. When statem ents are 

used as scheduling units, there is maximal flexibility for scheduler and maximal 

overhead. Statem ents are grouped into segments called basic block (or simply called 

block) [20]. A basic block is a group of statem ents th a t have to  be executed together 

w ithout preemption. In this model, a basic block is a nonpreem ptable scheduling 

and execution unit. Preem ption points are the beginning and ending of basic blocks. 

Semi-preemption is a balance between the flexibility and the complexity of traditional 

scheduling approaches. More details about this execution model can be found in [62].

The ADT methods and instances constituting a software system are distributed 

over the processors of the parallel com puter and interact via remote procedure calls. 

Concurrency is gained by allowing a caller to  continue execution until it requires a 

param eter passed by-reference to a remote operation th a t has not yet returned. When 

such a param eter is returned, the halting caller is invoked to continue execution. This
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bl bl^ ------------O f ------------®
/  \  /  "  ^

V b 2  b4 '  b2 '  b4
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\  /  \  /

'  /  '  /  
b3 * b3 '

© 0 ©  0

(a) (b)

F ig u re  2 .7  (a) SRPC. (b) ARPC.

model of concurrency execution is called asynchronous remote procedure call (ARPC)  

[40, 35, 65, 6 6 , 67, 70, 69]. Intuitively, a sequential program starts  a t one processor. 

The statem ents of the program are processed one by one, if a statem ent following 

an ARPC does not access any param eters passed by reference to the ARPC, the 

statem ent is processed, otherwise blocked. Figure 2.7 shows four statem ents 6 j, b2, 

6 3 , and b4. Statem ents b\ and 6 3  are remote procedure calls which call the ADT 

operations on other processors. If remote procedure calls are handled synchronously, 

the execution of b2 and 6 4  are blocked until the return of 6 1  and 6 3 , respectively (as 

shown in Figure 2.7 (a)). If remote procedure calls are handled asynchronously, and 

if the param eters used by 6 1  and 6 3  are used by 6 4  only, b2 can continue execution 

after b\ is sent out since b2 does not access the arguments used by 6 1 . Then 6 3  can be 

sent to another processor since 6 3  does not access the argum ents used by bx either. 

But i>4  is blocked until the return of both bi and b3  because it needs to access the 

data  which might be modified by b\ and 6 3 . Therefore, through ARPCs, bi and b2 

run concurrently and b\ and 6 3  run concurrently as shown in Figure 2.7 (b).

W ith the ARPC model, there are three factors th a t may block the execution:

1 . the current statem ent is control dependent on the previous statem ent which is 

an ARPC. The control dependence describing the forced sequence of execution 

will block the execution of the current statement;
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2 . the current statem ent is data dependent on the previous statem ent which is an 

ARPC. The da ta  dependence describing the exclusive access to the common 

d ata  will block the execution of the current statem ent; and

3. the current statem ent is code dependent on the previous statem ent which is an 

ARPC, i.e., the two statem ents call the same operation.

The code dependence describing the exclusive access to the code of an ADT instance 

will block the execution of the current statem ent. Control dependence can be 

resolved by techniques such as concurrency execution of the multiple branches of 

if-statements and switch-statements, and concurrency execution for loop-statem ents 

[33, 5, 42, 6 , 1, 38, 41]. D ata dependence can be removed by d a ta  replication, 

variable renaming, and node splitting [41]. Code dependence can be resolved by 

code (executable) replication. In the programs built with ADT modules, some ADT 

instances may export operations th a t are heavily utilized and th a t become serial­

ization points (bottle-neck) during parallel execution. Replication of codes can be 

applied a t method level or instance level. The replicas (clones) of ADT methods 

or instances is distributed among the processors, allowing simultaneous use of the 

clones’ code. As the example shown in Figure 2.8 (a), a call c\ calls a method /  and 

is being served. Before cj returns, another call c2  arrives, it m ust wait until ci finish 

execution. If a clone of /  is made and is placed in another processor, then c\ and c2  

can run concurrently as shown in Figure 2.8 (b).

While cloning increases concurrency, it may increase CPU and network 

contention, and may also increase synchronization costs. These overheads vary 

for different kinds of ADTs. For cloning methods exported by stateless ADTs, 

there is no need to m aintain consistency of da ta  since no static d a ta  defined in 

stateless ADTs. For cloning methods exported by ADTs with states, additional 

effort on m aintaining da ta  consistency is needed. Therefore, the balance between 

the increased concurrency and the synchronization overhead is an im portant issue.



F ig u re  2.8 (a) Two calls are serviced sequentially by / .  (b) Two calls are serviced 
concurrently by clones of f .

In this work, only methods exported by stateless ADTs are considered for cloning, 

cloning of ADTs with states is addressed as future work in Chapter 7. Note th a t 

cloning of methods allows granularity of concurrency a t the method level, not a t 

statem ent level. Therefore, communication costs are typically much smaller than 

the execution time of methods, especially since only pointers to da ta  structures need 

to  be passed in most remote procedure calls [65, 54, 69].

2.3 S ch ed u lin g  M o d e l

The job of scheduling is to decide the start times of scheduling objects so th a t 

their tim ing constraints are satisfied. As mentioned earlier, the general scheduling 

problem on multiprocessors is NP-hard. Optimal solutions [75, 49, 37] are not 

practical for large applications. Therefore, a heuristic approach is used to construct a 

schedule [76, 63]. The goal of scheduling is to resolve contention for shared resources. 

Generally, there are two kinds of shared resources: hardware resources (CPUs, I /O  

devices, and communication media) and software resources (ADT module instances). 

One way to resolve contention for shared resources is by replication of resources, as a 

multiprocessor system is used to resolve contention for the single CPU in an unipro­

cessor system. In the extreme, if the number of resources allows every client to get a
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resource a t any time, there is no contention and there is minimal need for scheduling. 

However, the quantity of hardware resources is typically fixed in computing systems. 

Therefore, scheduling of hardware resources is necessary. Similarly, replication of 

software resources is also a way to  resolve contention. In programs built by layering 

ADT module instances, an instance is often used to manage several data  objects, 

and there will be contention for getting access to the instance if multiple data objects 

need to be accessed concurrently by m ultiple clients. Cloning an ADT instance allows 

each clone to  manage only one d a ta  object, or a subset of the data  objects.

Typically, systems constructed with ADTs have many layers and tend to  have 

many m ethod calls. Those m ethod calls may be the source of concurrency via 

ARPCs and cloning. To improve a  schedule by parallelizing programs, there are two 

approaches: top-down and bottom -up. The top-down approach parallelizes programs 

quickly since the execution times of m ethods a t higher layers are longer than a t lower 

levels. Therefore, parallelizing m ethods a t higher layers produces more concurrency, 

but consumes more resources. W ith a bottom -up approach, methods a t lower layers 

(with little  resource requirements) are parallelized. However, a change made a t a 

lower layer can affect all the m ethods and tasks from th a t layer up to the very top 

level. Thus, much effort is needed to update the schedule with a small change a t 

bottom  level. Thus, in this work, a top-down approach is used.

In the following subsections, several ways to enhance concurrency are presented. 

The example in Figure 2.2 is used to show how each kind of concurrency enhancement 

works in conjunction with the scheduling approach. Figure 2.2 (a) shows a module 

class Queue which is declared as a generic ADT module. The Queue takes a 

param eter T  which is a type used to  define the elements of the queue. When 

different types are provided, different queues can be instantiated from this ADT 

module. The ADT module Queue provides a  type QueueType which can be used to 

declare queue variables such as InQueue  and OutQueue in ADT module Machine
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(shown in Figure 2.2 (b)). Two methods (insert  and remove) are provided by the 

Queue, which is used to m anipulate variables of QueueType.

2.3.1 E n h a n c in g  C o n c u rre n c y  v ia  A R P C s

One way to introduce concurrency is to use ARPCs instead of SRPCs. W ith SRPCs, 

the caller is blocked after making a remote procedure call. Most of the scheduling 

approaches switch the calling processor to another process, but the calling process 

is blocked until the call returns. To reduce the execution time of the calling process, 

ARPCs can be used to  let the caller continue execution if no memory conflict is 

caused. In Figure 2.9 (a), all calls are SRPCs and no concurrency exists. If instance 

/  is allocated on another PE, and param eters used by statem ent 62 are not used 

until statem ent 65 , and the param eters used by statem ent 64 are not used until 

statem ent 6 6 , with the use of ARPCs, statem ents 63 and 65 can run concurrently
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with statem ents 62 and 64, respectively, and concurrency is achieved (as shown in 

Figure 2.9 (b)).

ARPCs make the calling m ethod and called m ethod run concurrently if they do 

not access the  same memory location a t the same time. By looking a t the dependence 

relations among method calls, the opportunities for applying ARPCs can be identified 

[78]. In our scheduling approach, ARPCs are also used to  reduce the execution times 

of processes missing deadlines.

2.3.2 Enhancing Concurrency via ADT Cloning

Cloning of resources can reduce contention for resources. If the number of clones 

of software resources in every processor is sufficient, then no contention exists. The 

question is, ’’How many clones of a resource is enough?” A nother im portant question 

is ’’How many clones are needed to enhance concurrency to enable a schedule to  meet 

deadlines?” . To determine the lower bound on the number of clones needed, program 

dependence relations are analyzed. In [78], techniques are presented for determ ining 

the lower bound on the number of clones of each ADT module instance needed to 

resolve all possible contention of the ADT module instances. The technique employs 

dependence analysis techniques a t the statem ent, method, and instance levels of 

granularities. The program dependence graph (PDG), which was previously used 

to describe da ta  and control dependence relations among statem ents, is extended to 

include instance dependence relations in object-based systems. Several theorems are 

proved with respect to the instance dependence properties of the new PDG graph 

in [78]. In Figure 2.9 (c), ADT instance /  is cloned and is placed on a different PE. 

Now two clones of instance /  can serve two calls a t the same time.

2.3.3 Enhancing Concurrency via ARPCs and ADT Cloning

If two calls do not access the same memory location a t any time, bu t they call the 

same m ethod or different methods provided by the same ADT module instance, the



25

two cannot run concurrently since they have contention to access same ADT module 

instance. Cloning can be used to  resolve the contention, and the  SRPC can be 

converted into an ARPC. In the example in Figure 2.9 (d), ARPCs are combined 

with instance cloning so tha t maximum concurrency is achieved.

For the application in Figure 2.2, there exists no feasible schedule (no m atte r 

how process and module instances are assigned and scheduled) if concurrency 

enhancement is not applied. Assume an initial schedule is constructed as shown in 

Figure 2.6. Since all instances are in the same PE, all calls are local procedure calls. 

Therefore, only one thread of execution exists, i.e., the schedule of PEi contains only 

one statem ent. Given such a schedule, our approach is to  try to improve the schedule 

by enhancing concurrency. By examining the execution graph of the process T ask l,  

we see tha t Queue is shared by two calls. Only one call is granted access to the 

Queue a t any time; the other call is pu t into waiting. We also see that the two 

calls Q.remove(inQueue, part) and Q .insert (outQueue, prod) do not have common 

param eters, and do not call the same method, but they call the methods provided 

by the same ADT module instance Q. The two calls cannot run concurrently due to 

the contention for the instance Q. Cloning of Q can resolve the contention and turn 

the SRPC to an ARPC. In Figure 2.10, ADT instance Queue is cloned and placed 

on a different PE, and the two calls (Queue.insert() and Queue.remove()) made 

by instance M  can run concurrently. The one thread of execution in Figure 2.6 is 

broken into 4 statem ents. Blocks 62 and 63 run concurrently. The execution tim e of 

T ask l  is reduced from 17 to 13. Therefore, concurrency is enhanced and an almost 

feasible schedule is found by using cloning and ARPCs, as shown in Figure 2.10.

2.3.4 Load Distribution to Allow ARPCs and ADT Cloning

A good schedule has high utilization of resources. If one process is unable to continue 

execution, the resource is given to another process. As we mentioned before, if the
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s i f.opl(x);

s2  g.opl(x);

s3 f.opl(y);

(a) (b)

F ig u re  2.12 (a) A program segment, (b) The PDG of the program.

utilization of a PE  reaches 100 percent, no ARPCs and cloning can be applied. To 

enable ARPCs and cloning, load distribution is necessary. In the example shown in 

Figure 2.2, note th a t the deadline of process T a sk l  is 12 time units, bu t its finishing 

time is 13 tim e units. The schedule in Figure 2.10 needs to be further improved . 

Although an ARPC opportunity exists (the first part of 64 will not access variables 

OutQueue and prod which are the param eters used by t he call insert()  ), PEi is 

scheduled to  execute method call insert{OutQueue,prod). If the ADT instance Q 

on PEi  is placed on P E k as shown in Figure 2.11, block 64 can be an ARPC and can 

run concurrently with block 65. Thus, the finishing time of the task is reduced to 1 2  

time units, and process T ask l  can meet its deadline due to the load distribution.

2 .3 .5  S ta te m e n t  R e o rd e r in g  to  E x p o se  C o n c u rre n c y

Although the upper bound of clones of an instance tells the maximum number of 

clones th a t can run concurrently, the statem ent order might prevent part of the 

concurrency. Let us see a simple example in Figure 2.12 (a). From its extended 

PDG [78] in Figure 2.12 (b), we can see th a t the maximum number of clones of 

instance /  is 2, and the maximum number of clones of instance g is 1. However, 

the statem ent order sj, s2, S3  prevents statem ents S] and s 3  from being executed 

in parallel, since statem ent s2  would be blocked due to the busy param eter x until 

statem ent S] completes. The schedule is shown in Figure 2.13.



28

PEI

est = 0

FT= 14

F ig u re  2 .13  Statement 52 blocks the execution of Statem ent  53.

PEI ..........................................................

clone of f  s3
/  *  -  6  ------------;

........................................ .
'■ ‘ “ T ........................................... ^ s2

? i ■■ rr ^ 8 ------------- °■ s T 2
E?C ; .......... j.............. -1ft =  12

S - 0
b

tI
busl I— I— II

PE2 i -Q
1 '(
..p.

1 --  1

n ®

i — i ----------
ii

-------0 )
6

\  clone of f

F ig u re  2 .14 Statement s i  and statement s3 run concurrently by reordering 
statement s 2 and statement  s3.



If we reorder the statem ents as (si, S3 , S2 ) or (S3 , s i, S2 ), statem ents si and S3  

can be executed concurrently (allow two clones of instance f to be used in parallel). 

For the schedule shown in Figure 2.13, if we swap the two statem ents s 2  and s3 and 

place a clone of instance /  on P E 2,  the execution tim e of this program segment can 

be reduced from 14 time units to 12 tim e units, as shown in Figure 2.14.



C H A P T E R  3

DEPENDENCE ANALYSIS

In order to identify and exploit concurrency, the dependence relations among 

statem ents, methods, and ADT instances must be analyzed. In this chapter, a brief 

review of program dependence graphs (PDGs) [19] is given in Section 3.1. This is 

followed by new algorithm s for constructing the dependence graphs in Section 3.2. 

The extension of PDGs to describe code dependence relations is presented in 

Section 3.3. Some of the code dependence relations may falsely describe code 

contention due to the effect of precedence relations, thus, algorithms for identifying 

and removing such false or ineffective code dependence relations are presented in 

Section 3.4. Additionally, im portant properties of the extended PDGs are discussed 

and proved.

3.1 Traditional Program Dependence Analysis

In this section, the program dependence graph (PDG), which represents both 

control and data dependence relations among statem ents of a program is reviewed.

A virtual machine simulation program is used to illustrate the dependence 

graph concepts. In the virtual machine simulation, a generic memory management 

package (shown in Figure 3.1 (a)) is defined, and is used (in Figure 3.1 (b)) to 

instantiate two instances: D ataM em  for representing da ta  memory and In s trM em  

for representing instruction memory. An ADT package Processor  (shown in 

Figure 3.1 (b)) is defined to  manage each processing element. For illustration, 

only the specifications of packages are shown, and only three processors are used. 

The main procedure VM JSimu  (shown in Figure 3.1 (c)) is defined to coordinate 

(initialize and schedule) the processors.

30
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g e n e r ic
M cmorySizo : in  poBitivo; 
ty p e  item T ypc is l im i t e d  p r iv a te ;  
p r o c e d u r e  in itI te m (ito m  : o u t  item T ypc); 
p r o c e d u r e  fin ltem (item  : in  item T ype);
p r o c e d u r e  sw a p lte m (itc m l : in  o u t  item T ype; item 2 : in  o u t  item T y p e); 
p a c k a g e  M om oryM anager U 

t y p e  M em oryT ype »  l im i te d  p r iv a te ;
■ u b ty p e  indexT ype l» In teger R A N G E l..M em orySize; 
p r o c e d u r e  in itia liza tio n (m em o ry : in  o u t  M em oryT ype;

item  : in  o u t  item T y p e); 
p r o c e d u r e  fina liza tion (m em ory : in  o u t  M em oryT ype); 
p r o c e d u r e  Bwap(m em ory: in  o u t  M em oryType, 

a d d r l  : in  o u t  indcxT ypo, 
add r2  : in  o u t  in dexT ype); 

p r o c e d u r e  fe tch (m em ory  : in  o u t  M em oryType; 
address : in  o u t  indexT ype; 
item  : in  o u t  item T ype); 

p r o c e d u r e  s to re(m em ory : in  o u t  M em oryType; 
add ress : in  o u t  indexT ype; 
item  : in  o u t  item T y p e); 

l im i te d  p r iv a te  
ty p e  M em oryT ype is A R R A Y (in d e x T y p e )  o f  item T ype; 

e n d  M em oryM anager;
u>

W ith  M e m o r y M a n a g e r ;
p a c k a g e  JnstrM em  is  n e w  M em oryM anagcr(M om orySize= > 50 , 

i tem T y p e  = >  S tr in g ( l . . lO  = >  " ", 
in i t i te m  = >  S t r in g . i n i t ,  
f in ltom  — >  S t r in g .f i n ,
Bw A pItem  =  >  S tr in g .s w a p ) ) ;

W i th  M em oryM anager;
p a c k a g e  D atam em  is  n e w  M em oryM anager(M em oryS ize= > 50 , 

i tem T y p e  = >  I n te g e r  
in i t i te m  =  >  I n t e g e r . i n i t ,  
f in ltem  =  >  I n te g e r . f in ,  
sw ap lte rn  = >  In te g e r .s w a p ) ) ;  

w i th  T e x tJ o ,  in teg e rJo ; 
u s e  T cx t-io , in teg e rJo ; 
w i th  D ataM em , InstrM om ; 
p a c k a g e  P rocesso r is 

t y p e  P E .T y p e  Is l im i te d  p r iv a te ;  
t y p e  P E S ta tc - ty p e  is (ID L E , BUSY, W A IT ); 
p r o c e d u r e  in itia liz a tio n  (P E  : in  o u t  P E -ty p e ); 
p r o c e d u r e  fin a liza tion  (P E  : in  o u t  P E .ty p e ) ; 
p r o c e d u r e  d o ln e tru c tio n  ( PE  : in  o u t  P E -ty p e ); 
p r o c e d u r e  g e tS ta te (P E :in  o u t  P E - ty p c ;s ta te :o u t P E S tn te -ty p e ); 
p r o c e d u r e  d um pD ataM em ory  ( P E  : in  o u t  P E -ty p e ,

51
52
53
54
55
56
57 
SB 
S9 
S10

o u tfile  : o u t  F ile -ty p e  ); S l l
p r iv a te S12

t y p e  P E -ty p e  is S13
r e c o r d S14

S ta te  : P E S ta te - ty p o ; S15
D a ta m  : D ataM em .M em oryT ype;
In s tm  : In s trM em .M em oryT ype; S16
pc : I n te g e r ; S17
in s trR e g  : S t r in g (  1.. 10); SIS
AC : I n te g e r ; S19

e n d  r e c o r d ; S20
e n d  P rocessor;

(b) S21

w ith  T E X T J O , file -su p p o rt, in tegerJo ; 
u se  T E X T J O , file -su p p o rt, in tegerJo ; 
w ith  P rocessor; 
p r o c e d u r e  V M ^ im u  is 

P E A  : A R R A Y (l. .N » m P E )  o f  p rocessor.P E _T ypc; 
C u rS ta te  : in te g e r ;  -  C u rre n t s ta te  of P E  
C u rS ta te l  : in t e g e r ;  -  C u rran t s ta te  of PE  
C u rS ta te2  : in t e g e r ;  -  C u rre n t s ta te  of P E  
P E C o u n t : I n te g e r ;  -  T em porary  V ariable 
n, p o s l : in te g e r ;  -  T em porary  V ariable 
o u tF ile  : S t r in g ;  
b e g in

P E C o u n t :=  0;
processor, in i t ia l iz a t io n  P E  A [l]); 
p ro cesso r.in itia liza tion (P E A (2 ]); 
p rocessor, in i t ia l iz a t io n  P E  A(3)); 
w h ite  (P E C o u n t <  3) lo o p  

P E C o u n t :=  1;
processor. G e tS ta to ( P E  A[1 J, C u rS ta te l) ;  
i f  (C u rS ta te l  = =  Idle) th e n  

p ro cc8so r.dum pD ataM em ory (P E A [l), ou tF ile ); 
P E C o u n t =  P E C o u n t +  1; 

e lse
p ro cesso r .d o Jn s tru c tio n (P E A (l J); 

processor. G c tS t a te( P E  A [2],C urS tate2); 
i f  (C u rS ta te2  = =  Id le) t h e n  

processo r.dum pD ataM cm ory (P E A [2 ), ou tF ile ); 
P E C o u n t =  P E C o u n t +  1; 

e lse
p ro cc8 so r.d o Jn s tru c tio n (P E A [2 l); 

processor. G e tS t a te( P E  A[3), C u rS ta te ); 
i f  (C u rS ta te  = =  Id le) t h e n  

p roccs8or.dum pD ataM cm ory(P E A (3), o u tF ile); 
P E C o u n t =  P E C o u n t +  1; 

e lse
processor, do J  n s tru c t ion( P E  A[3)); 

e n d  lo o p ; 
e n d  V M JJim u;

(C)

F ig u re  3.1 The virtual machine simulation program in Ada.
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F ig u re  3.2 The DDG of procedure VM -Sim u.

If two statem ents 5,- and Sj use the same stores of data, and 5, executes before 

Sj, Sj is said to  be direct data-dependent on Si. This is denoted as Si —>d Sj. 

D ata dependence describes contention for shared data. For example, in procedure 

V M S im u  (in Figure 3.1 (c)), statem ent 51 writes zero to variable PE C ount  and 

statem ent 55 uses variable PECount.  Thus, 55 must execute after 51, in order to 

get an initialized value for PECount.  Therefore, 55 is direct data-dependent on 51. 

The data dependence graph (DDG) of a program is defined as (V, E)  where V is a set 

of nodes called statem ent nodes (each statem ent node represents a statem ent in the 

program), and E  is a set of edges where each edge represents a direct data-dependence 

relation between nodes. For example, the DDG of the procedure VM_Simu is shown 

in Figure 3.2.

A statem ent 5; is direct control-dependent on another statem ent Sj if the 

execution result of 5* determines whether Sj is executed or not. In an if-statement, 

for example, all the statem ents in both branches of the statem ent must wait for the
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F ig u re  3.3  The CDG of the procedure V M  JSimu.

evaluation of the condition to decide which branch has to be executed. Therefore, all 

the statem ents (in both branches) are control dependent on the condition evaluation 

statem ent. The control dependence graph (CDG) is defined as G(V, R ,E ) ,  where V 

is a set of statem ent nodes (each node represents a  statem ent in the program), R  is a 

set of nodes called region nodes (each node is used to group a set of statem ent nodes 

which have the same control dependence relations), and E  is a set of edges where 

each edge represents a direct control-dependence relation between nodes (including 

region nodes). A region node is defined as a virtual node which has zero execution 

time. A region node is used to group all the nodes th a t have the same control 

dependence relation on the same node, by forcing all those nodes to depend on the 

region node. The root of the CDG is a special region node which indicates tha t all 

the statem ents of a program are control dependent on the activation of the program. 

For example, 55  of V M S im u  is a while-Ioop statem ent. The execution result of 55 

determines whether the body of the loop is executed or not. Therefore, two region 

nodes (rht and r 5f )  are placed under node 55 to represent true and false results, 

respectively. All the statem ent nodes in the loop body are control dependence on
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region node r5t. Another purpose of using region nodes is th a t sibling region nodes 

are alternative execution paths of which only one is chosen during run-time. The 

sibling region nodes are called mutually exclusive regions nodes. For example, for 

each if-statement, two region nodes are created, one for all the statem ents in the 

true branch, another for all the statem ents in the false branch. These two region 

nodes are m utually exculsive, only statem ents under one of the two region nodes 

alive whenever the subprogram tha t contains the if-statement is called. The CDG of 

the procedure VMJSimu is shown in Figure 3.3.

The construction of PDGs in [19] relies on control flow graphs (CFGs), which 

capture required flow-of-control. The CFG of procedure V M -Sim u  is shown in 

Figure 3.4. For conditional statem ent, multiple possible paths are created. For 

example, statem ent 58 is an if-statem ent, two alternative paths are created to 

represent the two possible execution flow depending on the result of 58. For loop 

statem ent, beside the flow through the body of the loop, two additional flow paths are 

possible: skipping the loop body and going back to the loop control statem ent. For 

example, the result of the while-loop statem ent 55 determines whether to flow into 

the loop body or skip the loop body. After the execution of the last statem ent 520 or 

521 of the loop body, control flows back to 55. In [19], a control dependence graph 

(CDG) which encodes control dependence only is constructed from a CFG. Then, the 

data dependence analysis is performed on the CDG. Finally, the PDG is constructed 

by adding data  dependence edges to the CDG. By adding da ta  dependence edges 

(dashed arrows) to the CDG, a PDG is constructed which describes both control 

and data dependence relations among the statem ents in a method. The PDG of 

procedure VM_Simu() is shown in Figure 3.5.



F ig u re  3.4  The CFG of procedure V M S im u .
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VM_Simu
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/  h denotes control dependence

F ig u re  3.5 The PDG of the procedure V M S im u .

3.2  C o n s tru c t io n  o f  P ro g ra m  D e p e n d e n c e  G ra p h s

In this section, new algorithm s for building DDGs, CDGs, PDGs, and SPGs are 

presented. In [19], more general programming (goto, recursive, etc.) model is 

considered. The algorithms presented in this thesis handles object-based structured 

programs. Therefore, they are more efficient in time and space. The overview of 

the construction process is shown in Figure 3.6. First, a statement table (StaTab) is 

constructed for each subprogram. The statem ent table of a subprogram is used to 

build the CFG, DDG, and CDG for a subprogram. The program dependence graph of 

a subprogram  is created by combining the DDG and CDG of a subprogram. Finally, 

the d a ta  and control dependence relations are replaced by precedence relations.
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Programs 

y ADTs

Parser
StaTab

Build CFGs Build CDGs Build DDGs
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DDGs
Build PDGs

y PDGs
Build SPGs

F ig u re  3.6 Overview of Dependence Graph Construction.



3.2.1 Statement Tables

There are many ways to  construct program dependence graphs [19, 17, 4, 27]. For 

the programm ing language model used in this thesis, the author has devised a 

technique for constructing PDGs. F irst, statem ent tables are constructed. Each 

source statem ent has an entry in the statem ent table. Each entry consists of the 

following attributes:

1. Statement Type indicates the type of the statem ent (e.g. method call, if-then- 

else, while loop).

2. Dependence Nesting Level keeps track of the number of region nodes on the 

path from the root to  the statem ent.

3. Statement Address is the line num ber in the source code.

4. Used A D T  Instances is the set of ADT instances directly used by the 

statem ent.

5. Used A D T  methods is the set of ADT methods directly used by the statem ent.

6 . Read Variables is the set of variables read (only) by the statem ent.

7. Modified Variables is the set of variables modified by the statem ent.

8 . Child points to a statem ent table containing all dependents in another 

dependence level. If a  statem ent has more than one group of statem ents 

depending on it, a Child field is created for each of the groups. This occurs 

when the statem ent is an if-statement, case, or loop, where there exist multiple 

execution paths. For all statem ents which do not create multiple branches, the 

child field is a null pointer.

For procedure V M S i m u ,  the statem ent table is shown in Figure 3.7. In the 

statem ent table, two child fields are created for each while or i f  statem ent.
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Statement
Label

Statement
Type

Dep.
NctLev

Stat
Addr

Used ADT 
Instances

Used ADT 
Methods

Read
Variables

Modified
Variables

Child
(hue)

Child
(false)

SI assign 1 1 null null null PECount null null

S2 call 1 2 processor initialization null PEA[1] null null

S3 call 1 3 processor initialization null PEA12] null null

S4 coll 1 4 processor initialization null PEA[3] null null

S5 while 1 S null null PECount null J null

Statement
Label

Statement
Type

Dep.
NetLev

Stat
Addr

Used ADT 
Instances

Used ADT 
Methods

Read
Variables

Modified
Variables

Child
(true)

Child
(false)

S6 assign 2 6 null null null PECount null null
S7 call 2 7 processor GctStale PEA[1] CurStatel null null
S8 if 2 8 null null CurStatel null •
S12 call 2 13 processor GetStnte PEA[2] CurStatc2 null null
S13 if 2 14 null null CurStatc2 null •; ;
S17 coll 2 19 processor GetStatc PEA[3] CurStnte3 Ihull hull
S18 if 2 20 null null CurState3 null !; ; J

.............................................................  ............. ................................... : ' !

Statement Statement Dep. Stat Used ADT Used ADT Read Modified Child Child
Label Type NetLev Addr Instances Methods Variables Variables (true) (false)

S9 call 3 9 processor dumpDatnMcmory PEA[1] outFile null null
• •! * S10 assign 3 10 null null PECount PECount null null

! f > Statement Statement Dep. Stat Used ADT Used ADT Read Modified Child Child
Label Type NetLev Addr Instances Methods Variables Variables (true) (false)

S ll call 3 12 processor do_lnstruction PEA(1] PEA[1] null null

Statement
Label

Statement
Type

Dep.

NctLev
Stat
Addr

Used ADT 
Instances

Used ADT 
Methods

Read
Variables

Modified
Variables

Child
(hue)

Child
(false)

S14 coll 3 15 processor dumpDataMcmory PEA[2] outFile null null

SIS assign 3 16 null null PECount PECount null null

Statement
Label

Statement
Type

Dep.
NetLev

Stat
Addr

Used ADT 
Instances

Used ADT 
Methods

Read
Variables

Modified
Variables

Child
(true)

Child
(false)

S16 call 3 17 processor do_Instruction PEA[2] PEA[2) null null

Statement
Label

Statement
Type

Dep.
NetLev

Stat
Addr

Used ADT 
Instances

Used ADT 
Methods

Read
Variables

Modified
Variables

Child
(true)

Child
(false)

S19 coll 3 21 processor dumpDatnMemory PEAI3] outFile null null

S20 assign 3 22 null null PECount PECount null null

Statement
Label

Statement
Type

Dep.
NetLev

Stat
Addr

Used ADT 
Instances

Used ADT 
Methods

Read
Variables

Modified
Variables

Child
(true)

Child
(false)

S21 coll 3 24 processor do_Instruction PEA[3] PEA[3] null null

F ig u re  3.7  The Statem ent Table of Procedure VM-Simu.
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B uildCD G (StaTab : StaTbb.TYPE, entry : NODE.TYPE) 
v a r Q: QUEUE of node;

x, y, z: NODE-TYPE; 
begin

ENQUEUE(entry, Q): 
w hile n o t EMPTY(Q) do 

begin 
x := FRONT(Q);
DEQUEUE(Q);
for each none NULL ChildStaT^b C of x in the StaTab do 
/* ChildStaTab is either x.LeftC or x.RightC * j 

begin
if (x.Type = “if”) th e n  

begin
y := getRegionNode; /*  get a new region node */ 
insert(x,y,CDG); /* insert an edge from x to y in the CDG */ 

end  
else 

y:=x;
for each entry N in C do 

begin
z := getNode(N); /* get a new node with the label, N.label */ 
insert(y,z,CDG);
ENQUEUE(z.Q); 

en d  for 
end  for 

end  w hile 
en d  B uildC D G

F ig u re  3.8  Algorithm for building a CDG of a method.

3 .2 .2  B u ild in g  C o n tro l D e p e n d e n c e  G ra p h s

A CDG of a m ethod can be directly constructed from the statem ent table of the 

method, since the statem ent table describes the control dependence relations among 

statem ents. A special region node called entry is added to  the CDG to group all the 

statem ents in the top level of the statem ent table together. Also, for a statem ent 

which has two or more branches (like an if or a loop statem ent), a region node is 

added to the CDG for each branch, i.e, a region node is created for each statem ent 

table. Thus the s ta rt of a branch is indicated by the region node, and the region 

node becomes control dependent upon the statem ent th a t branches. All statem ents 

in each branch are control dependent upon the region node.

The algorithm  for building a CDG from a statem ent table is shown in Figure 

3.8. The three loops contribute the complexity of the algorithm  which is 0 ( S 3) (S
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is the number of statem ents in a method). The CDG of the procedure VM.Simu 

(shown in Figure 3.3) is constructed by supplying the algorithm with the statem ent 

table of Figure 3.7.

3.2.3 Building Data Dependence Graphs

D ata dependence analysis is necessary for any form of autom atic parallelism 

detection. D ata dependence relations are used to determine if two operations, 

statements, or iterations of a loop can be executed in parallel. D ata  dependence 

graphs describe the da ta  dependence relationship among statem ents. The DDG of 

a method can be constructed simply from the control flow graph of the method 

by examining the da ta  dependence relation along the control flow of the method. 

The algorithm  for building the DDG of a m ethod is presented in Figure 3.9 and 

Figure 3.10. The DDG of the procedure VM-Sim,u, obtained by applying the 

algorithms, is shown in Figure 3.2. Searching for the successor of a statem ent 

(successiveStatament)  travels the statem ent table - a binary tree. In the worst 

case, it takes O(S)  (if the tree is linear). Therefore, the complexity of the algorithm 

for building a DDG of a method is 0 ( S 2).

3.2.4 Building Program Dependence Graphs

A program dependence graph of a method can be built from the control 

dependence graph and the control flow graph of the method. This can be done by 

examining the data  dependence relations on the control flow edges, and adding any 

identified d a ta  dependence relations into the control dependence graph. Then, a 

graph which describes both control and da ta  dependence relations is constructed. 

The algorithm for building the PDG of a m ethod from its DDG and CDG is shown 

in Figure 3.11. The algorithm calls BuildCDG  for building the CDG of a method 

as the base of the PDG. Inside the only loop of the algorithm, it calls SearchDD  

(0 ( S 2) to add da ta  dependence into the PDG. Therefore, the complexity of the
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S earch D D (tt : StatcmentType)
PS : stack(StatementType) 
beg in

if  (tt.rightc yf null) o r  (tt.leftc /  null) th e n  
Push tt.rightc & tt.leftc into stack PS; 

else 
beg in

st =  successiveStatement(tt); 
i f  (st /  null) th e n  stack.push(st, PS); 

en d
w hile  n o t stack.empty(PS) do 

beg in
st =  stack.pop(PS); 
i f  (st 5̂  null) th e n  

beg in
if (st.Parameters fl tt.Paraineters = 0) th e n  

begin
DDG(tt,st) = true;
Remove (st.Parameters fl tt.Parameters) from tt; 
if  no more parameters in tt  remain to be checked th e n  

w hile n o t stack.empty(PS) do st = stack.pop(PS); 
else 

begin
st = successiveStatemcnt(tt); 
if (st ^  null) th e n  stack.push(st, PS); 
else flag =  true; 

end
end

else
if (st.rightc ^  null) o r  (tt.leftc ^  null) th en  

Push st.rightc & st.leftc into stack PS; 
else 

begin
st = successiveStatement(tt); 
if (st /  null) th e n  stack.push(st, PS); 

end
e n d

if  (flag = true) th e n
w hile no t stack.empty(PS) do st = stack.pop(PS); 

e n d  w hile 
end  S earchD D

F ig u re  3.9 Algorithm for searching for data dependence.
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successiveS ta tem en t(s t : StatementType) returns StatementType; 
beg in

if  (st.rightc ŷ  null) o r  (st.leftc /  null) th e n  
beg in

if  (st.leftc /  null) th e n  
return (st.leftc); 

if  (st.rightc yt null) th en  
return (st.rightc);

en d
else

if  (st.sibling yt null) th e n  
return (st.sibling); 

else 
begin

w hile (st.parent yt null and st.parcnt.sibling = null) do 
st := st.parent; 

if (st.parent ŷ  null and st.parent.sibling yt null) th e n  
return (st.parent.sibling); 

else
return null;

end
e n d  su ccessiveS ta tem en t

F ig u re  3 .10  Algorithm for searching for the successive statem ent.

B uildPD G (StaT ab, m) 
beg in

BuildCDG(StaTab, m); 
copy CDG to PDG; 
for each node n in method m do 

a =  searchDD(n); 
add n - t j  a into PDG(m); 
i f  n  is not the ancestor of s in CDG th e n

if  parent(s) is a region node which is the ancestor of n in CDG th e n  
remove the edge from parent(s) to s in PDG; 
add an edge from n to s in PDG; 

e n d  if 
e n d  for; 

en d  B u ild P D G

F ig u re  3.11 Algorithm for building a PD G  of a method.
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T ransform T oSPG (PD G )
begin

SPG =  copyPDG(PDG); 
fo r each node n in SPG do

fo r each node a (s /  n) in SPG do 
if n —>c a and n — a th e n  

begin
remove n ->c a and n - > 4  s; 
add n -4 s; 

end;
else if n  ->c a th en  

begin
remove n — a; 
add n - t s ;  

end;
else if n a th e n  

begin
remove n - > 4  a; 
add n -> a; 

end; 
e n d  for; 

end  for; 
end  T ransfo rm T oS P G

F ig u re  3 .12 Algorithm for transforming a PDG into a SPG.

algorithm  for building a PDG of a method is 0 ( S 3). Figure 3.5 shows the PDG for 

procedure VM-Simu.

3.2 .5  B u ild in g  S ta te m e n t  P re c e d e n c e  G ra p h s

Since both control and data  dependence relations force one statem ent to wait for 

the completion of another, precedence is used to refer to  either control dependence 

or da ta  dependence relations. A precedence relation th a t requires the execution of 

statem ent to precede the execution of statem ent Sj is denoted as s* —> Sj. The 

PDG is transformed into a statement precedence graph (SPG)  in which a solid arrow 

is used to describe a precedence relation. Thus, in an SPG, control dependence and 

data  dependence are not distinguished. The SPG of the procedure VMJ5imu()  is 

shown in Figure 3.13. The algorithm  for transform ing a  PDG of a method into a 

SPG of a method is presented in Figure 3.12 (0 (S 2).



F ig u re  3.13 The SPG of the procedure V M S i m u .
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3.3 Code Dependence Graphs

A PDG of a program describes control and data  dependence relations am ong the 

statem ents in the program. Thus, the PDG indicates th a t any two statem ents can 

run concurrently if they have neither data  nor control dependence relations. Note 

the above conclusion may not hold if the two statem ents call the same method. One 

call must wait for the other to complete since only one copy of code of the method 

is available. For example, statem ents s2, S3 , and s 4  in Figure 3.13 call the same 

method (Processor.initialization);  they cannot run concurrently even though they 

have neither direct nor transitive precedence relations (see the SPG of 3.13), since 

the code of a method cannot be used concurrently (though it may be reentrant) since 

only one PE contains a copy of the code. If multiple method calls try to execute 

the same method, only one of them  is granted access a t any instant; the others must 

wait since a CPU only executes one instruction a t a time

To model this kind of contention, the author has coined the term  code 

dependence relation, which is defined as follow. If two calls 5, and Sj require 

the same method m  exported by an ADT instance / ,  5* and S j  are said to  have a 

code dependence relation. Code dependence is symmetric, and is therefore denoted 

as Si  4 ?  S j .  Code dependence describes access contention among multiple clients 

for a method. Dependence S, S j  indicates th a t either statem ent S j  waits for the 

completion of statem ent or else 5 t- waits for S j .  It is im portant to describe method 

contention since ADT instances are often stateless. D ata and data  consistency are 

maintained by clients. Therefore, replication of methods exported by stateless ADT 

instances needs no consistency and synchronization control, and is potentially a 

large source of concurrency.

By adding code dependence relations into an SPG, a new graph describing 

precedence relations (control an d /o r data) and code dependence is obtained. This 

new graph is called the general dependence graph (GDG). There are three kinds
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S earchM D (tt : StatementType)
PS : stack(StatementType) 
beg in

if  (tt.rightc yt null) o r  (tt.leftc ŷ  null) th e n  
Push tt.rightc &: tt.leftc into stack PS; 

else 
beg in

st = successivcStatement(tt); 
if (st /  null) th en  stack.push(st, PS); 

end
w hile  n o t stack.einpty(PS) do 

beg in
st = stack.pop(PS); 
if (st yt null) th en  

begin
if  (st.usedMethods n  tt.usedMethods = 0) th en  

begin
GDG(tt,st) =  M;
Remove (st.usedMethods D tt.usedMethods) from tt; 
if  no more used method in tt remain to be checked th e n  

w hile  n o t stack.empty(PS) do st = stack.pop(PS); 
else 

beg in
st = successiveStatemcnt(tt); 
if (st ŷ  null) th e n  stack.push(st, PS); 
else flag = true; 

end
end

else
if (st.rightc ŷ  null) o r  (tt.leftc yt null) th en  

Push st.rightc & st.leftc into stack PS; 
else 

begin
st = successiveStatement(tt); 
if (st yt null) th e n  stack.push(st, PS); 

end
end

if  (flag = true) th e n
while n o t stack.empty(PS) do  st = stack.pop(PS); 

en d  w hile 
end  S earchM D

F ig u re  3 .14  Algorithm for searching for method dependence).

B uildG D G (StaTab, m) 
begin

PDG =  BuildPDG(StaTab, m); 
SPG =  TrasnformToSPG(PDG); 
copy PDG to GDG; 
fo r each node n in method m  do 

s = searchMD(n); 
add n -+m s into GDG(m); 

e n d  for; 
en d  B uildG D G

F ig u re  3.15 Algorithm for building a GDG of a method.
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of edges and three kinds of nodes in the GDG of a method. Directed solid 

edges represent precedence relations, and undirected dashed edges represent code 

dependence relations. The labels on undirected dashed edges are method names 

(which are used by source and destination nodes). Nodes within solid circles 

represent local statem ents (i.e., they are not method calls). Nodes within dashed 

circles are call nodes, which represent call statem ents. Nodes within solid ovals 

are region nodes. For the procedure V M S i m u ,  the G D G ( V M S i m u )  is shown 

in Figure 3.16. The directed solid edge ( s i ,s 5) represents a precedence relation 

between statem ents si and s5. The undirected dashed edge (s2, s 3 ) represents a code 

dependence relation between statem ents s2 and s3. Node 51 (within a solid circle) 

represents a local statem ent. Node 52 (within a dashed circle) represents a call 

statem ent. Node rbt (within a  solid oval) represents a  region node.

The algorithm for building a GDG of a method is presented in Figure 3.15. It 

calls the function for constructing the PD G  and uses the PDG as the base of the 

GDG. Inside the only loop of the algorithm, it calls SearchMD  ( 0 ( 5 2) to  add code 

dependence into the GDG. Therefore, the complexity of the algorithm  for building 

a GDG of a method is 0 ( S 3).

A subgraph of a m ethod’s GDG consisting of nodes th a t call the same method 

is called a method dependence subgraph (MDG)  of the method. For example, in 

Figure 3.16, nodes s i ,  s2, and s3 of procedure V M S i m u  call method m l, therefore, 

these three nodes and the edges between them form M D G { m l ,  V M S i m u )  as 

shown in Figure 3.17 (a). In other words, they constitute the set of statem ents 

in procedure V M S i m u  th a t used method m l. Nodes s7, s i2, and s 1 7  call 

method m2, thus, they form MDG (m2, V M S i m u )  as shown in Figure 3.17 (b). 

MDG(m3, V M S i m u )  contains statem ents sn , s i6, and s2i and is shown in 

Figure 3.17 (c). MDG(m4, V M S i m u )  contains statem ents S9 , s i4, and S1 9  and 

is shown in Figure 3.17 (d).
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F ig u re  3.16 The GDG of procedure VM-Simu.
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I. S2 ............ \S 3 .} ............ ■■■■-:{ 54 }

(a)

(. S7 k;;;;................ \S12>..............

(b)

 -(si6.>............. ;;;̂ S2l.)

(c)

(S 9 /^-------------Ksi4l-----------^S19.)

(d)

F ig u re  3.17 (a) M D G (m l, V M Sim u). (b) MDG(m2, VMJSimu). (c) MDG (m3, 
VM_Simu). (d) MDG(m4, VM_Simu).

Since code dependence is described with an undirected edge, all the nodes in 

the MDG form a  complete graph. The num ber of MDGs in a m ethod’s GDG is equal 

to the number of methods used by the method. For example, V M S i m u  has four 

used methods, thus it has four MDGs.

Since the execution model used in this work (see Section 2.2) processes the 

statem ents of a method unit in sequence (i.e., each processing element is assumed 

to be a van Neumann processor), statem ents have relative order. Thus, all code 

dependence relations are changed from undirected edges to directed edges by incor­

porating the relative positions of statem ents. For example, the simplified MDGs of 

procedure V M S i m u  are shown in Figure 3.18.

3.4 In e ffec tiv e  C o d e  D e p e n d e n c e

GDGs may contain some m ethod dependence relations tha t do not reflect contention 

tha t can actually occur due to other precedence relations. For example, if two nodes
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( S2 .............* S3 } ..............■■■■:* S4.)

(a)

(,S7........  K si2>................ ;;;Xsi6 .)

(b)

(silk:”...............Ksi6/.................;;p'.S2i.)

(c)

( S9 £ ;-------------- *(S14/------------- ^S19.)

(d)

F ig u re  3 .18 (a) M D G (m l, VM_Simu). (b) MDG(m2, VM_Simu). (c) MDG 
(m3, VM_Simu). (d) MDG(m4, VM_Simu) after incorporating relative statem ent 
positions.

have both precedence and code dependence relations, the precedence relation forces 

the two statem ents to  run sequentially, thus the code dependence is ineffective, i.e., 

it falsely indicates contention for the code of the method. Such code dependence 

relations are called ineffective code dependence relations. This section presents 

techniques to identify and remove these from GDGs.

(a) (b)

F ig u re  3.19 A precedence relation makes a code dependence ineffective.



(a)

i. S9 )--------------- K.S14.)--------------- Ksi9.}

(b)

F ig u re  3 .20  (a) MDG(m4, VMSimu)  before applying Theorem 1 . (b) MDG(m4,  
VMSimu)  after applying Theorem 1 .

The following theorems show how a precedence relation affects code dependence 

relations. Assume two statem ents s* and Sj have a precedence relation and th a t they 

both call the same method m. Since the precedence relation forces the two statem ents 

to  run sequentially, the code dependence falsely indicates contention, and it can be 

removed. This fact is formally stated as:

T h e o re m  1 If  —► Sj A s, Sj, then Si Q  Sj is ineffective.

Proof: when two statem ents s, and Sj have both precedence and code dependence 

relations (as shown in Figure 3.19), the code dependence does not indicate true 

contention, since the precedence relation forces the two statem ents to run sequen­

tially. Therefore, the code dependence between Si and Sj is ineffective. It can be 

removed (as shown in Figure 3.19 (b)). □

Another example is shown in Figure 3.20 (a), where the precedence relation 

s9 —> s l4  makes s9 —»m s l4  ineffective, and the precedence relation s l4  —> s l9  

makes s l4  -4m s l9  ineffective. The transitive precedence relation between s9 and 

s l9  also makes s9 —>m s l9  ineffective.

Assume th a t there is a precedence relation -4 Sj, and th a t node s* has code 

dependence relations with statem ents s* and Sj in M D G (m ,n )  (i.e., Sj Q  Sk and 

Sk A  Sj). Furtherm ore, assume th a t there is no precedence relation between Sk and
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F ig u re  3.21 Removing an ineffective code dependence between sk and Sj.

Si, nor between sk and Sj. Then there are only three sequential execution orders of 

Si, Sj, and sk which preserve the semantics of the program. The three possible orders 

are (sk, Si, Sj), (s^ sk, Sj), and (s,-, Sj, sk). Since Si and Sj can not run concurrently 

(due to the precedence relation between them), a t most two of the three statem ents 

can run concurrently. Therefore, two clones of m  are sufficient to resolve contention. 

The following three theorems describe how the precedence relations affect the code 

dependence relations in each of the three cases.

T h e o re m  2 If Si —► Sj A sk ^4 s* A sk ^ 4  Sj, then sk ^4 Sj is ineffective.

Proof: Statem ent Sj does not contend with statem ent sk for method m  since 

statem ent Sj m ust wait for the completion of statem ent s,- (because of the precedence 

relation s, —> sj). Therefore, sk -4 Sj does not describe actual code contention 

between statem ents sk and Sj. Thus, sk -4 Sj is ineffective, and can be removed as 

shown in Figure 3.21 (b). □

T h e o re m  3 If s, —> Sj A s ; sk A sk ^4  Sj, then sk ^4  Sj is ineffective.

Proof: Statem ent Sj does not contend for method m with statem ent sk since 

statem ent Sj m ust wait for the completion of statem ent s,- due to the precedence



F ig u re  3 .22  Removing ineffective code dependence between sk and Sj.

F ig u re  3.23 Removing ineffective code dependence between s* and sk.

relation s, —»■ Sj. Therefore, sk -4 Sj does not describe actual code contention 

between statem ents sk and Sj. Thus, sk Sj is ineffective, and can be removed as

shown in Figure 3.22 (b). □

T h e o re m  4 //s*  —» Sj A s* sk A Sj sk, then sk is ineffective.

Proof: Statem ent Sj is blocked until the completion of statem ent s* due to  the 

precedence relation Sj —>• Sj. Statem ent sk is not processed until after statem ent 

Sj is processed in a Von Meuman processor. Therefore, s* sk does not describe 

actual code contention between statem ents s,- and sk. Thus, s* sk is ineffective, 

and can be removed as shown in Figure 3.23 (b). □
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RemovelneffectiveMD ( MDG(/.m, g.op) ) 
begin

for each Sj —> Sj in MDG(/.m, g.op) 
if s, sj  th e n

Remove Sj ^ 5  Sj /* by Theorem 1 */
for each node s* such that s* Sj and s*. s  ̂ in MDG(/.m, g.op) 

case k < i < j  or i < k < j  :
Remove s* Sj /* by Theorem 2 and 3 */ 

case i < j  < k :
Remove s* Sj /* by Theorem 4 */ 

end  for 
end  if 

end  for 
end

F ig u re  3.24 The algorithm  for removing ineffective code dependences.

The four theorems above discuss the effects of precedence relations on code 

dependence in an MDG of a method. Based on those theorems, the algorithm  

of Figure 3.24 removes all ineffective code dependences. The algorithm scans for 

precedence relations in a MDG, it removes code dependence relation between nodes 

th a t have a precedence relation (applying Theorem 1). Then, the algorithm checks 

every other node to see if the node has code dependence relations with both of the 

two nodes th a t have the precedence relation, and if so, then applies one of theorems 

2, 3, or 4. The time complexity of the algorithm is 0 ( E  ■ S) =  0 ( S 3), where E  is the 

number of edges in the MDG which is a t most the number of nodes in the MDG.

For the virtual machine simulation, G D G (V M .S im u )  after removing ineffective 

code dependence relations is shown in Figure 3.25.
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Note:
m l : Processor.initialization 
m 2: Processor.getState 
m3 : Processor.dolnstruction 
m 4 : Processor .dumpDataMemory

,S15

S 19) (S20

Figure 3.25 G D G (V M J3im u ) after removing ineffective code dependence relations.



C H A P T E R  4

CLONING ANALYSIS

In this chapter, a set of analysis techniques are presented for determ ining the clone 

requirement of each method to resolve all possible code contention. First, the 

method call graph is introduced. In Section 4.3, it is shown how the direct clone 

requirement of each method is determined by using the GDG of the method. To 

calculate cloning requirements for transitively used methods, Section 4.4 discusses 

inter-method dependence and cloning analyses. Techniques for handling loops are 

discussed in Section 4.5. Optim ization techniques for exploitation of concurrency are 

discussed in Section 4.6. Techniques to aggregate clone requirements of methods to 

determine clone requirements of ADT instances are discussed in Section 4.7.

4.1 Overview of Dependence and Cloning Analysis Approach

In order to exploit concurrency automatically, the dependence relations among 

statem ents, among methods, and am ong instances are analyzed. Techniques are 

developed to determine the upper bound on the number of clones of methods and 

instances th a t may be used concurrently, -  the clone requirement (CR)  of the 

method. Intuitively, CR is the minimum number of clones needed to resolve all the 

possible contention.

Figure 4.1 shows the overview of the dependence and cloning analysis approach. 

The parser builds the symbol table (SymTab) and the statement table (StaTab) for 

each method. These two tables are used to construct CFG, CDG, and DDG for each 

method. The PDG of each method is constructed by combining the CFG, CDG, 

and DDG of the method. Since both da ta  and control dependence relations force 

a sequential execution of statements, precedence relations are used to describe the

57
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sequencing of the statem ents. A SPG of a method is constructed from the PDG of the 

method to describe the precedence relations among statem ents in the method. By 

adding code dependence relations into the SPG of a method, a GDG of the method is 

constructed. W ith the GDG of a method, a MDG is constructed for each of its used 

methods. If a method used by more than one client method, the dependence relations 

among the client methods need to  be analyzed. The dependence relations am ong 

methods are described by a method call graph. An inter-method code dependence 

graph (IMDG) of a m ethod is constructed to  for describing the dependence relations 

for a shared method. For each method, the number of clones of its directly used 

methods needed to resolve all contention is called direct clone requirement (OCR).  

DCR of each method is determined by finding the maximum possible contention in 

the GDG of a method. The maximum possible contention is determined by finding 

the node th a t has the maximum out going code dependence edges in the MDG 

of the method. To calculate the to tal number of clone requirements (CR) of beth 

directly and transitively used methods, by following the reverse topological order of 

the method call graph, the DCRs and CRs a t lower level of MCG are propagated to 

CRs a t higher level of the MCG.

4.2 Method Call Graph

For cloning analysis, it is not only necessary to model statement-level relationships, 

but also method- and instance-level relationships. If a method m  exported by 

an ADT instance /  is called by method n exported by an ADT instance g 

(9 7̂  / ) j  method m  is said to be directly used by m ethod n. For example, in 

procedure VM-Simu,  statem ents s2, s3, and s4 call method Processor.initiali­

zation. Therefore, Processor.ini tial ization  is directly used by VMJSimu.  If n is 

directly used by method p exported by an ADT instance h (h /  g ^  / ) ,  then m  

is said to be transitively (or indirectly) used by p (recall th a t n calls m).  All the
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Programs
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Build IMDGs

IMDGs

Compute CRs
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F ig u re  4.1  The flowchart of dependence and cloning analysis.
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buildMCG(app)
begin

for each method m of the a p p  do
crente a node N  ( m )  for m in the MCG if it does not exist; 
for each slatomont a in m do

if s  calls method p { p  ^ m) then
create a node N ( p )  for p in the MCG if it doos not exist; 
odd an edgo m -> p in the MCG if it does not exist; 

end if; 
end; 

end for; 
end;

F ig u re  4 .2  Algorithm for constructing a MCG.

methods transitively used by m  are also transitively used by p. For example, method 

InstrMem.in it ia l i ze  is directly used by method Processor.initialization,  therefore, 

m ethod InstrMem.in it ia l i ze  is transitively used by procedure VMJSimu.

The direct use relation among methods is described with a directed graph called 

method call graph (MCG). In an MCG, nodes represent methods, and edges represent 

the direct use relation between methods. Since all methods are declared before being 

used, the MCG of a  method is an acyclic graph. If a  m ethod is used by only one 

m ethod, the former is called a private method of the la tter. If a method is used by 

more than one method, it is called a shared method of the latter. The leaves of the 

MCG (have no used method) are called primitive methods. The internal nodes of the 

MCG (have a t least one used method) are called synthesized methods. The algorithm 

for constructing a  MCG of an application is presented in Figure 4.2. It scans the 

statem ent table of each method and constructs the call graph. The complexity of 

the algorithm  is 0 ( M  ■ S)  (M  is the number of methods in an application, and S  is 

the maximum number of statem ents in a method).

The MCG of the virtual machine simulation is shown in Figure 4.3. Method 

InstrMem.init ial ize  is directly used by method Processor.initialization.  Method 

InstrMem.init ial ize  is a private method of m ethod Processor.initialization.  

Method D ataM em.fe tch  is used by both Processor.dolnstruction  and Process-
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VM_Simu

Processor.-
initialization

Processor.-
.dolnstruction

Processor.-
getState

Processor.-
dumpDataMemory

InstrMem.­
initialize

InstrMem.-
'^store  .

InstrMem.- 
^fetch ^

DataMem.- 
initialize _

DataMem.- 
 fetch --

DataMem.- 
-^store ^

F ig u re  4 .3  The m ethod call graph of the virtual machine simulation.

or.dumpDataMemory, so it is a shared m ethod. M ethod InstrMem.in it ia l i ze  is 

transitively used by procedure VMJSimu.

A method which does not call any other m ethods is called a primitive method. 

A method which calls other m ethods is called a synthesized method. When a call 

statem ent s of a m ethod m  calls a m ethod n, if method n is not a prim itive method, 

it further calls other methods; each of the called methods continues making calls to  

other methods, until a primitive m ethod is called; the prim itive m ethod stops the 

calling sequence and sta rts  a returning sequence by following the reverse order of 

the calling sequence. For example, statem ent s2 in VMJSimu  calls method Proce­

ssor.initialization,  and statem ents in Processor.ini tial ization  further call method 

InstrMem.init ial ize,  method I n s t r  Mem.  store, and method Data Mem.init ialize.  

Since the la tte r three methods are all prim itive methods, calling sequences are 

stopped and return  sequences begin with them. Such a calling sequence is denoted 

as: < Si, si+1 , • • • , s j  >.  The first call on a calling sequence c is called the f ron t  of 

the calling sequence denoted as front(c),  and the rest of calls are called tail of the 

calling sequence denoted as tail(c). One statem ent, may originate more than one 

calling sequence, due to  the fact th a t a m ethod can call more than  one method. The 

set of all calling sequences starting  a t statem ent s is called the calling sequence set
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(CSS) of s, and is denoted as CSS(s) .  The call statem ent s is a statem ent which is 

the starting  call of all the calling sequences in the CSS(s) .  The method tha t s calls 

is called All the methods called by the calls on the calling sequences in CSS(s)  are 

called used methods of statem ent s (denoted UM(s)) .  Obviously, the method called 

by the front call of a calling sequence is directly used method by s; and the methods 

called by the tail calls of the calling sequence are transitively used m ethods by s. For 

example, starting  a t statem ent s2 in VM -Sim u,  there are three calling sequences, 

therefore,

C S (s 2 ) =  { < Processor.ini t ial ization.InstrMem.init ialize >,

< Processor. ini tial ization.InstrMem.store  >,

<  Processor.ini t ialization.DataMem.initial ize  >  }

The set of all directly used m ethods by a method m  is called the directly used 

method set (DUMS)  of m  defined as:

D U M S ( m ) =  | J  methodcalledby f ront (i)
VsG S(m ),V ieC 5S(s)

where S(m.) denotes the statem ent set of m ethod m.

DU M S  can be directly constructed from the statem ent table of m. For 

example, methods initialization, do Instruction,  getState,  and dumpDataM emory  

exported by ADT instance Processor  are directly called by the statem ents in 

procedure V M S i m u  as shown in Figure 4.3. Therefore,

D U M S { V M S i m u )  =  {Processor.initialization,  Processor.dolnstruction,

Processor.getStateProcessor.  dumpDataM emory  }

The union of all transitively used methods by a method m  is called the transi­

tively used method set  of method m  defined as:

T U M S { m ) =  [J  m,ethodscalledbytail(i)
V s E S ( m ) y i £ C S S ( s )
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For example, the transitively used methods are init ial ize, store, fetch  exported 

by ADT instances In s t rM em  and DataMem,  respectively. Therefore,

TU M S ( V  M S i m u )  =  {InstrMem.init ial ize,  InstrMem.store

Inst rM em .  fetch,  DataMem.init ialize  

DataMem.  f  etch, DataMem.store  }

The union of all (both direct and transitive) used methods of the statem ents 

in a m ethod m  is called the the used method set of method m  denoted as U MS(m).

U M S (m )  =  (J  UM(s)  =  D U M S ( m ) U TU M S{m )
Vs£S(m)

where S(m)  denotes the statem ent set of method m. For example, the procedure 

V M S i m u  in Figure 3.1 has 12 method calls. Four methods (init ialization, 

getState, dolnstruction,  and dumpDataM emory)  exported by instance Processor  

are called. Method initial ization  further calls methods initialize  and store exported 

by instance Inst rM em ,  and m ethod initialize exported by instance DataMem.  

Therefore,

U M S {V M -S im u )  — {Processor.initialization, Processor.getState

Processor.dolnstruction,  Processor.dumpDataM emory  

InstrMem.init ial ize,  InstrMem.store  

InstrMem.. fetch, DataMem.init ial ize  

DataMem. fetch,  DataMem.store }

Note tha t D U M S (m )  C U M S ( m ) and T U M S ( m ) C UMS(m).  Also, it is 

not always true th a t D U M S {m )  f )T U M S(m )  =  <j> since a  method may be used both 

directly and transitively.
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VM_Simu

Processor.-
.dolnstruction

Processor.-
getState

Processor.-
dumpDataMemory

InstrMem.-
initialize

InstrMem.- 
\ f e tc h  ^

DataMem.-
initialize

DataMem.- 
-— fetch ^

DataMem.- 
^ sto re  ^

InstrMem.- 
^ store -

Processor .initialization

F ig u re  4.4  Three clones of method Processor.ini tial ization  are made.

4 .3  D ire c t  C lo n e  R e q u ire m e n ts

Code dependence between two statem ents indicates possible contention for the 

method they call. By cloning the method, the contention is resolved, and the two 

calls can be served concurrently by the two clones. For example, in Figure 3.18 (a), 

statem ents s2, s3, and s4 have no precedence relations among them, but the code 

dependence relations prevent them  from executing concurrently. Clones of method 

Processor.initialization  can resolve the contention among s2, s3, and s4 as shown in 

Figure 4.4. However, an infinite number of clones of method Processor.initialization 

cannot be utilized effectively. An upper bound on the number of clones tha t can be 

used concurrently exists. This section shows how to compute this upper bound.

Assume a method m  exported by an ADT instance /  is directly used by a 

method n  exported by another ADT instance g (g /  / ) .  To resolve all possible 

contention for method m  among the calls in method n, the minimum number of 

clones of m  needed is called the direct clone requirement (DCR)  of method m  by 

method n. This is denoted as D C R (/.m , g.n).

Recall th a t the code dependence edges in the MDG of a m ethod describe the 

contention for a used method. The node with the largest out degree (OD) in the 

method indicates the maximum contention. To resolve all possible contention for
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the method, the number of clones must equal the largest out degree. Therefore, the 

DCR of a used method can be determined by finding the largest out degree of code 

dependence edges among the nodes of the MDG of the used method. This is stated 

formally as:

Let OD(s,g .n)  denote the out degree of statem ent s in M D G (f .m ,  g.n), then

O D ( M D G ( f . m ,  g.n)) =  M A X seMDG(f.m,g.n)(OD{s,  g.n))

For example, in MDG(Proc.init ,  VMJSimu)  (as shown in Figure 3.18 (a)), 

O D(s2,V MJSim u) =  2, O D(s3 ,V M JSim u)  =  1, and O D (s 4 ,V M J l im u )  =  1. 

Therefore, OD(MDG{Proc .in it ,  VMJSimu)) =  2.

The direct clone requirement is computed as:

D C R (f .m ,  g.n) =  OD(MDG(f .m.,  g.n) +  1

For example, the direct clone requirement of method Processor.ini tial ization  

can be computed as:

DCR(Processor. init ializat ion,  VM -Simu)  —

OD(MDG(Proc .in it ,  V M  JSimu)) +  1 = 3 .

The DCRs of other used methods are given as in Table 4.3. The DCRs for all 

used methods can be depicted as weights in the MCG (see Figure 4.5). Finding the 

largest out degree of nodes in a MDG can be done by scanning each node in 0 ( 5 )  (5  

is number of nodes in the MDG). Therefore, this approach is very fast for calculating 

the DCR of a used method.

4.4 Transitive Clone Requirements

As discussed in Section 4.2, the use relation of m ethods is transitive. For example, 

method InstrMem.init ial ize  is directly used by m ethod Processor.initialization,  

and m ethod Processor.initialization  is directly used by procedure VMJSimu  as 

shown in Figure 4.3. Thus, method InstrMem.init ial ize  is transitively used by
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T a b le  4.1 The DCRs of m ethods in the virtual machine simulation.

Synthesized Methods Directly Used Methods DCRs
Processor.dum pDataM em ory DataM em.fetch 1

Processor.dolnstruction D ataM em .store 1

DataM em.fetch 1

InstrM em.fetch 1

Processor.initialization DataM em .initialize 1

InstrM em .store 1

InstrM em .initialize 1

VM_Simu Processor.initialization 3
Processor.dolnstruction 3
Processor.getState 3
Processor.dum pDataM em ory 1

VMJSimu

Processor.-
dumpDataMemory

Processor.- Processor.-
dolnstruction

Processor.- 
getState

DataMem.-
v^fetch

DataMem.- 
- s t o r e ^

InstrMem.­
initialize

InstrMem.- 
•s— store -

InstrMem.- 
^ fe tc h  -

DataMem.­
initialize

F ig u re  4 .5  The method call graph with DCRs of the virtual machine simulation.
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procedure VMJSimu.  Generally, if a method m  exported by an ADT instance /  is 

directly used by a m ethod n exported by an ADT instance g, and a m ethod n is 

directly used by a method p exported by an ADT instance h (h ^  g ^  / ) ,  then p is 

transitively used by m. The num ber of clones of m ethod m  required to resolve all the 

contention in method p  is called the transitive clone requirement (TCR)  (denoted as 

T C R ( f .m ,  h.p)). Note th a t a m ethod can be both directly and transitively used by 

another method. The number of clones needed to  resolve both direct and transitive 

contention is called clone requirement (CR). The following discussion shows how 

to com pute the number of clones required for ( 1 ) private methods and (2 ) shared 

methods.

4.4.1 Clone Requirements of Private Methods

Assume a statem ent s in a m ethod m  calls a method p\. Assume p\ is not a prim itive 

method and it further calls m ethod P2 - P2 calls p3, and so forth, until a prim itive 

method Pk is called. A calling sequence p x ®P2 »- ■ ••Pk is formed by this call sequence. 

The calling sequence stops growing and begins a returning sequence a t m ethod pk- 

If all the m ethods on a calling sequence p\ •  P2 9 ■■■• Pk are private methods, the 

calculation of TCRs of the transitively used methods p* is the product of DCRs on 

the calling sequence. The number of clones of p, needed by m, due to transitive 

requirements is:

TCR(p i ,m )  =  D C R (p \ ,m )  x DCR(p j+ i ,P j )
i e [ l ,i—l ]

Since all used methods are private, there are no shared methods, i.e., a method 

is transitively used by only one method, therefore,

CR(pi, m) =  TCR(pi , m )

For example, since m ethod InstrMem.init ial ize  is a private child of m ethod 

Processor.ini tial ization  which is a private child of procedure VMJSimu,  therefore,
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CR(InstrMem.in it ia l i ze,  V M S i m u )  =  TCR{Ins trM em.in i t ia l i ze , VM-Sim u)

=  DCR(Processor. ini t ializat ion,  V M S i m u )  

x D C  R (In s t rM  em.initialize, Processor.initialization)

=  3 x 1  =  3.

All other m ethods except DataMem.fe tch  are private methods. Similarly, the 

clone requirements of those methods can be easily calculated as follows.

CR(InstrMem.in it ia l i ze,  Processor.initialization)  =

DCR(Ins trMem.in it ia l i ze ,  Processor.initialization)  =  1 .

CR{InstrMem.s tore ,  Processor.initialization)  =

D CR(Ins trM em.s tore ,  Processor.initialization)  =  1 .

CR(DataMem.init ial ize ,  Processor.initialization)  =

DCR(DataMem.init ia l i ze,  Processor.initialization)  =  1.

CR(InstrMem.. ini tialize,  VMsimu)  =

DCR(Processor.ini t ializat ion, VMsimu)  

x DCR(InstrMem.in it ia l i ze ,  Processor.initialization)

=  3 x 1  =  3.

CRs for other used methods can be calculated similarly. The CRs are shown 

as edge weights in the MCG corresponding in Figure 4.6.
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CR(P.i,V)=3 CR(I.i,V)=3
CR(P.d,V)=3 CR(I.s,V)=3
CR(P.g,V)=3 CR(D.i,V)=3
CR(P.dp,V)=l CR(I.f,V)=3 

CR(D.f,V)=3 
CR(D.s,V)=3

VM Simu (V)

CR(I.iJP.i)=l
CR(I.s,P.i)=l
CR(D.i,P.i)=l

Processor.­
initialization (P.i)

Processor.- 
getState (P.g)

Processor.- X  r R t n f P r t t - t  dolnstruction (P.d) )C R (D .f,P .d)-l 
CR(D.s,P.d)=l

Processor.­
dumpDataMemory (P.dp)

InstrMem.-\ /  InstrMem.- \  (  InstrMem.- \  f  DataMem.- \ /  DataMem.- DataMem 
initialize (I.i) / ^  store (I.s) J  \  fetch (I.f) J  \  initialize ( D . i ) y \  fetch (D.f) ) \  store (D.s)

CR(D.f,P.dp)=l

F ig u re  4 .6  The m ethod call graph with CRs of the virtual machine simulation.

4 .4 .2  C lo n e  R e q u ire m e n ts  o f  S h a re d  M e th o d s

W hen one or more shared methods appear in the calling sequence started  at 

a statem ent of a method, the calculation of TCRs is not simply the product 

of DCRs. For example, method D ataM em .fe tch (D .f )  is shared by method 

Processor.doInstruction(P.d)  and m ethod Processor.dumpDataMem,ory(P.dp) 

as shown in Figure 4.6. The clone requirements of a method m  by a calling sequence 

< ci, C2 , • • •, cn >  is defined as:

C R ( m , < ci, c2, • ■ •, cn , m >)  =  DCR(m ,  cn) ■ D C R (cn, c„_i) • • • D CR(m ,  c i )

Note th a t V M -Sim u(V)  needs three clones of P.d which needs one clone of D .f .  

Thus, the calling sequence < V •  P.d •  D . f  >  has the clone requirement of:

C R (D .f ,  < V  • P.d •  D . f  > ) =  3 x 1 =  3

Also V needs one clone of P.dp which needs one clone of D .f .  Thus, the calling 

sequence < V •  P.dp •  D . f  >  has the clone requirement of:

C R (D .f ,  <  V •  P.dp •  D . f  > ) =  1 x 1  =  1
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hm

sm

O *- direct or transitive use relation 
— direct use relation

F ig u re  4.7 Method call graph shows sharing relations.

It may appear that:

C R (D .f ,  V M S i m u )  =  C R (D .f ,  < V  * P .d*  D . f  >)

+ C R ( D . f ,  < 1/ •  P.dp • £ > . / > )  =  3 +  1 =  4.

However, this is wrong since the statem ents calling Processor.dumpDataMe­

mory  and the statem ents calling Processor.dolnstruction  belong to two different 

branches of an if statem ent, they cannot both be executed. Therefore, only three 

clones of Processor.dolnstruction could be used concurrently.

If a method n is shared by method p  and method q, and both p and q are used 

by m ethod m, then:

n E TUM S(p)f \TUMS(q)Vn E T U M S (p )n D U M S (q )V n  E DUM S(p)DTUM S(q)

The possible precedence relations among the statem ents in m  may make some of 

the dependence relations ineffective, therefore, the relation between calls to methods 

p and q must be analyzed when C R (n , m)  is calculated. Generally, as shown in 

Figure 4.7, if a method sm  is used (directly or indirectly) among set of methods 

SM L,  and each method in S M L  is directly used by a method hm (sm. may be 

directly used by hm), i.e.,
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Sll ,S16, ,S21

,S14,

,S19.

,su SI 6, £ 2 1

SI 4,

JS19

Figure 4.8 (a) IM D G {{P .d ,  P.dp}, V). (b) IMDG({ P.d, P.dp }, V) (ineffective 
dependences removed).

(3s m  6  M, h m  6  M, S M L  C M)(Vm E S M L )  

(D Use(sm, m) V TUse(sm,  m)) A DUse(m, hm)

where M  is set of methods in an application, D U se(m l ,m 2 )  denotes the direct 

use relation between m l and m 2 , T U s e (m l ,m 2 )  denotes the transitive use relation 

between m l and m 2 .

Then, the dependence relations among statem ents in all m ethods in S M L  must 

be analyzed since the possible precedence relations among the statem ents may make 

some of the dependence relations ineffective.

Generally, assume there is a m ethod n  which is shared by k (k >  1 ) 

methods m i, m 2, • • •, m*, and methods m* ( 1  <  i <  k) are directly used by 

another m ethod m  (note th a t n can also be directly used by m ethod m, and 

n may be directly or indirectly used by mi(i =  1 , •••,&)).  To determine the 

CR of n by m,  the dependence relations among all statem ents in m  which 

call method m,- ( 1  < * <  k) m ust be analyzed since method n is used either
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BuildIMDG(hm, SML, sm)
/* S M  is a method shared among methods in the list SM L; 
each method in SM L is directly used by a method HM.  */  

begin
m = get a method from SML;
IM D G  =  MDG(sm,m); 
w hile SM L is not empty do 

m =  get a method from SML; 
oldlMDG = IMDG;
IM D G  =  IMD G  U MDG(sm,  m); 
for each node n g MDG{sm,m)  do 

fo r each node p £ oldlMDG  do 
if  n —> p th e n

add n -* p into IMDG-, 
else if n o t MutualExclusiveRegion(n,p,G DG(m))  th e n  

if label(n) < labnl(p) th en  
add n - t oin p into IMDG-, 

else
add p -+am n into IMDG;  

end  if; 
en d  if; 

en d  for; 
en d  for; 

en d  w hile;
RemovelneJ fect iveM  £>(/M DG); 

end

F ig u re  4.9  Algorithm for building an IMDG.

directly or transitively by method m,i ( 1  <  i <  k). Code dependence graphs 

MDG(m.i ,m),  MDG(m,2 ,m) ,  - - ■, M D G (m k,m )  are combined together into single 

code graph called the inter-method dependence graph (IMDG). The algorithm  for 

combining MDGs into an IMDG is presented in Figure 4.9. The algorithm  combines 

the MDGs together into IMDG first, precedence relations among nodes in different 

MDGs are added into the IMDG. Code dependence relations among nodes in different 

MDGs are checked whether they belong to m utually exclusive region nodes before 

being put into the IMDG. The function Mutual Exclus iveRegion(n,p,GDG(m))  

checks whether nodes n and p belong to  two m utually exclusive regions nodes. It 

is in the most inner loop and takes 0 ( 5 )  in the worst case (5  is the number of 

statem ents in a m ethod). The inner for loop takes 0 ( 5 2). The outer loop takes 

0 ( 5 3). The while loop takes 0 ( M  - 5 3) (where M  is number of methods in an 

application). The procedure call R e m o v e ln e f f e c t i v e M D (I M D G )  takes 0 ( 5 3)
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(discussed in Section 3.4). Therefore, the complexity of the algorithm  is 0 ( M  ■ S3). 

For the example of the virtual machine simulation, method D ataM em.fe tch  is 

shared by m ethod Processor.dolnstruction  and method Processor.dumpDataMe­

mory  (as shown in Figure 4.3). To analyze the dependence relation between 

statem ents calling method Processor.dolnstruction  and statem ents calling method 

Processor.dumpDataMemory , MDG {processor.dolnstruction, VM -Simu)  (shown 

in Figure 3.17 (c)) and MDG{processor.dumpDataMemory,VMJSimu)  (shown in 

Figure 3.17 (d)) are combined into one graph (as shown in Figure 4.8 (a)).

All the nodes in the I M D G  are related with an indirected code dependence on 

method n. Thus, undirected dashed edges are added between the  nodes in MDGs. 

Similar to  the approach for calculating DCRs, algorithm R e m o ve ln e f  fec t iveFD  

(presented in Figure 3.24) is used to  remove all the ineffective code dependence 

relations from IMDGs. The simplified graph is denoted as:

I M D G ( n { m i , m 2, • • •, m*}, m ).

For the example of the virtual machine simulation, I  M D G  (DataMem. fetch{Pro-  

cessor.dolnstruction, Processor.dumpDataMemory) , V M S i m u )  (after removing 

all ineffective code dependence relations) is shown in Figure 4.8 (b).

D eterm ining the O D (I M D G )  (the maximum out degree) is similar to 

finding the O D (M D G ) ,  except tha t nodes in the I M D G  may have different clone 

requirements of the shared method, while nodes in an M D G  have the same clone 

requirements. Since nodes in an I M D G  may call different methods, they may have 

different CRs for the shared method. Assume nodes si, s2, • • •, s*, are code dependent 

on node s. Let W OD(s ,  m) denote the weighted out degree of node s, where the 

weight of each si(i =  1,2, • • •, k) is its CR for n:
k

W OD (s)  =  Y , C R ( n ,  Si)
i —1

In I M D G ( n { m \ , m 2 , - ■ ■ ,mk),  m), the largest weighted outgoing degree, which is 

called the weighted out degree of the graph, is denoted as:
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C a lc u la te d ^  (M C G  w ith  D C R s ): M CG w ith  C R s 
b e g in

R T O  — se t o f nodes in th e  M CG in reverse topological order;
S H  =  (/j ;
w h ile  R T O  /  <t> d o

to  =  nex t node from  R TO \  
f o r  each p 6  U M S (m )  d o  

f o r  each q 6 D U M S ( m ) d o  
i f  (p £  U M S(q))  t h e n  

S H  = S H  + </; 
e n d  if; 

e n d  fo r;  
i f  5 / /  t £ 0  t h e n  

C R (p , to ) =  O D ( I M D G ( S H ,  to ))  +  1 
e ls e

C R (p , m ) =  D CR(p, m)  
e n d  f o r

e n d  w h i le  
e n d

F ig u re  4 .10  Algorithm for calculating clone requirements.

W O D ( I M D G ( n { m i , m 2 , ■ ■ ■, m*,}, m)),  and is used to calculate the clone requirement 

of method n by method m:

W O D ( I M D G ( n { m i ,  m 2, • • •, m k}, m)) — M A X s^s WOD{s)

Then, CR(n, m)  can be evaluated as:

CR(n, m) =  W O D {I M D G (n {m \ ,m . 2 , • • •, m k}, m) +  1

For the example of the virtual machine simulation, let us calculate the 

clone requirement of method D ataM em .fe tch(D .f )  by m ethod VMJ5imu(V).  

Since C R (D .f ,  P.d) — 1 and C R (D .f ,P .dp )  =  1 , all the statem ents in the 

I M D G ( D . f  {P.d, P.dp}, V) have weight 1. The maximum weighted out degree 

is a t node 511. Therefore,

CR (D .f ,  V) =  W O D ( s u ) +  1

=  C R (D .f ,  P.d) +  CR (D .f ,  P.dp) +  1 

= 1 + 1 + 1 = 3
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Figure 4.10 presents the algorithm for calculating CRs for shared methods. 

The calculation of CRs is done in reverse topological order of the nodes in the MCG 

so th a t by the tim e the CR of a method is evaluated, all its descendants’ CRs are 

calculated. For each m ethod, the algorithm checks the number of parent methods. If 

the method is a private m ethod, DCR is used to  calculate CR. Otherwise, IMDG is 

built and the weighted out degree of the IMDG is computed to calculate CR for the 

shared method. Let M  be the number of methods in an application, and S  be the 

maximum number of statem ents in a method. Topological sorting takes O(MlogM),  

building IMDG takes 0 { M  • S 3), function call OD for finding the weighted out going 

degree of an IMDG takes O(S).  The inner for loop takes O(M)  in worst case. The 

outer for loop takes O(M )  in worst case. The while loop takes O(M )  in worst case. 

Therefore, the worst case complexity of the algorithm is 0 ( M 3  • S 4).

4.5 Cloning Within Loops

The cloning analysis techniques discussed above handle assignment statem ents, 

procedure call statem ents, and conditional statem ents. For loop statem ents, the 

dependence analysis is complicated, since loop statem ents contain cyclic dependence 

relations. Backward da ta  dependence relations are caused by the d a ta  dependence 

relations between iterations of loops. To handle loops, we need to consider not only 

the dependence relations within one iteration, but also the dependence relations 

across iterations. One simple way to reveal the precedence relations between 

iterations is to unroll the loop (if the number of iterations is not too large). By 

unrolling, loop statem ents are transformed into conditional statements, therefore, the 

techniques presented in the previous sections can used to  perform the dependence 

and cloning analyses. If the number of iterations is very large, or if loops are 

unbounded, partial unrolling can be applied, which unrolls only a certain number of 

iterations (depending on the amount of concurrency needed). Clone analysis id then
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VM_Simu

ml ml■4 S3 S4,'
ml

r5f

m2 m2
.S17,S12 m2

S18SI 3

r8f X  rl3t rl8 f

m3 m3S10 .Sll S16. ,S21
m3

Note:
m l : Processor.initialization 
m2: Processor .getState 
m3: Processor.dolnstruction 
m 4 : Processor.dumpDataMemory

S15i (S14

S20) (S19

F ig u re  4 .11 The GDG of VMJSimu  after optimization.

applied ignoring backward dependences. Each tim e a loop is unrolled, additional 

cloning opportunities may be revealed by considering only forward dependences.

4.6 S ta te m e n t R e o rd e r in g  fo r E x p lo ita t io n  o f  C o n c u rre n c y

If a node (a statem ent node or a region node) in a GDG has more than one child, the 

children of the  node can run in parallel. If one of the children is a local statem ent, it 

prevents the following calls from being sent out for concurrent execution. To achieve 

the maximum concurrency, the children must be reordered so th a t local statem ents 

will not block before all the ARPCs are made.

For instance, the GDG of V M -S im u  (shown in Figure 3.25) indicates th a t 

statem ents s i ,  s2, s3, and s4 can run in parallel since there is no precedence relation 

am ong them  (assuming there are three clones of Processor.ini tial ization  available).
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R eorder(m )
/ ' m i  8 a  m e th o d  * /  
begin

fo r each node N th a t  has m ore th a n  one child in S P G (m )  do 
L et c i , C2 , • ■ ■, Ck be  th e  childern o f  N ; 
localPtr  =  1; callPtr  =  fc; 
w hile localPtr < callPtr  do

w hile ciocaip t r is a call s ta te m e n t do 
localPtr = localPtr  +  1; 

en d  while;
w hile ccan p tT is a  local s ta te m e n t do 

callPtr  =  callPtr + 1; 
end  while;
if  localPtr  <  callP tr  th en  

sw ap ciocaip tT an d  cca;i/>fr ; 
localPtr = localPtr  +  1; 
callPtr  =  callPtr  +  1; 

en d  if; 
end  while; 

end  for; 
end

F ig u re  4 .12  Algorithm for statem ent reordering.

Actually, concurrent execution cannot be achieved since statem ent s i  is the first 

statem ent among the four statem ents and it is a local statem ent; the ARPCs of 

s2, s3, and s4 will not be distributed until the finish execution of statem ent s i. 

To achieve the maximum concurrency, the execution of statem ent s i  can be delayed 

until after distributing all the ARPCs. By placing the local statem ents after ARPCs, 

local statem ents can be executed while the ARPCs are being processed by other 

processors. Therefore, maximum concurrency is achieved. In procedure V M  JSimu, 

for example, s i  blocks ARPCs s2, s3, and s4. s 6  blocks ARPC s7. slO, s l5 , and s20 

blocks ARPCs s9, sl4 , and sl9 , respectively. The algorithm for reordering an GDG 

to allow maximum concurrency is presented in Figure 4.12. It finds all the nodes 

th a t are possible ARPCs by checking the number of children of each node in the 

SPG. Then, sort the children in the order th a t call the call statem ents come before 

all the local statements. The complexity of the algorithm  is 0 ( S 3). The GDG after 

optim ization is shown in Figure 4.11.
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4.7 Cloning on the ADT Instance Level

The techniques we discussed in the previous sections apply cloning on the method 

level to achieve concurrency via ARPCs. The product of cloning analysis is a 

number -  the minimum number of clones of each m ethod needed to resolve all 

possible contention. Cloning on m ethod level leads to more precise upper bounds. 

However, it sacrifices the high complexity due to the fact th a t there are very large 

number of methods in an application. Since methods are defined in ADT modules, 

ADT instances are usually used as distribution and cloning units to reduce the 

complexity. The result of cloning analysis on method level can be easily aggregated 

to ADT instance level to determ ine the clone requirements of ADT instances. As 

shown in Figure 4.13, the results of statem ent level dependence analysis leads to the 

dependence analysis on method level, and the products of method level analysis are 

aggregated onto the ADT instance level.

An instance call graph (ICG) is built for showing the use relations among the 

ADT instances in the application. The nodes in the ICG represent ADT instance 

or global procedure. The directed edges in the ICG represent use relations. If the 

statem ents in the methods exported by an ADT instance I  call the methods exported 

by another ADT instance J, instance J  is said to be a used instance of I  and the 

use relation is represented with a directed edge from node I  to node J  in the ICG. 

For example, the virtual machine simulation has three ADT instances (Processor , 

DataMem.,  and Inst rM em )  and one global procedure ( V M S i m u ) \  its use relations 

are shown in the ICG of Figure 4.14.

Figure 4.17 shows the algorithm  for determining CRs a t instance level. The 

aggregation of CRs from method level to instance level is done by first calculating 

CR of each ADT instance separately. For each ADT instance, the maximum CR 

among the CRs of the used m ethods of the instance is used as the initial CR value 

of the instance, and all the nodes in the MDG of the method th a t has the maximum
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Statement Level Analysis

Statement Level Metrics

Method Level Analysis

Method Level Metrics

Instance Level Analysis

Instance Level Metrics

Activity/Thread/Path Analysis

F ig u re  4 .13  The aggregation to  larger grains of programs.
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VM Simu

Processor

DataMem InstrMem

F ig u re  4 .14  The instance call graph of virtual machine simulation.

VM Simu

Processor

InstrMemDataMem

CR (Processor, VM_Simu) = 3 
CR(DataMem, VM Simu) = 3 
CR (InstrMem, VM_Simu) = 3

CR(DataMem, Processor) = 1 
CR(InstrMem, Processor) = 1

F ig u re  4.15 The ICG of virtual machine simulation with CRs.



CR are marked as checked. For each statem ent in the MDGs of other methods of the 

instance, if the statem ent has neither a precedence relation with the checked calls, 

nor they belong to mutual exclusive regions, the CR of the instance is incremented 

by one, and the call is marked as checked. This is because the node in other MDGs 

calls a different method, but the same instance, if the statem ent has no precedence 

relation with any of the checked nodes, then it can execute concurrently. For example, 

to  determ ine CR(Processor ,V  M S i m u ) ,  find the largest CR among the CRs of 

m ethods exported by instance Processor.  Recall th a t C{{{Processor.initializa­

tion, V M S i m u )  — 3, CR(Processor.doInstruction,  V M  S i m u ) =  3, CR(Process-  

or.getState, V M S i m u )  =  1, and CR(Processor.dumpDataMemory,  V M S i m u )  =  

3, Therefore, initially, C R {P r o c e s s o r ,V M S im u )  — 3, and the checkedSet — 

{s2 , s3 ,s4}. Since the other call statem ents s7, s9, s l l ,  s l 2 , s l4 , s l 6 , sl7, s l9 , s 2 1  

in V M S i m u  all have precedence relations with the statem ents in the checkedSet, 

therefore, C R {P r o c e s s o r ,V M S im u )  — 3. Similarly, other clone requirements can 

be determined as shown the Figure 4.15. After cloning, the ICG which describes 

the call relations among ADT instances and clones of ADT instances is shown 

in Figure 4.16. Three clones of Processor  manage three PEs, respectively. Each 

clone of Processor  has its own clones of MemoryManger  to manage its data and 

instruction memories. The complexity of the algorithm  is 0 ( 1  S 2) (I is the largest 

number of methods in an ADT module).
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F ig u re  4 .16  The ICG of virtual machine simulation with clones of instance.

d e te rm in e ln s ta n c e C R s ( in s tan ce  I I ,  12) 
begin

L et th e  A D T  m odule o f  th e  in stan c e  12 be A;
L et th e  A D T  m odule o f  th e  in stan c e  II  be B;
L et M i , M 2 , • • • , A/* be  th e  m e th o d s  o f  A;
L et m l ,  m 2, • • •, ml* be th e  used m e th o d s  exp o rted  by B;
C R ( I l , 1 2 )  =  0;
fo r each m eth o d  M  £ M i,  M 2 , • • •, M^  do 

checkedSet  =  null; 
fo r each call s ta te m e n t s in M  do

n e w C R ( I 1 ,12) = M A X ( C R ( m l ,  M ) ,  C R{m2, M ),  ■■■, C R (m I ,, M )) ; 
L et m m  deno te  th e  m e th o d  th a t  h as th e  m axim um  CR; 
checkedSet  =  all th e  s ta te m e n ts  th a t  call m eth o d  m m ; 
if s (? checkedSet  A Vs' £  checkedS et{s' / t  s A s  -/> s ')  th e n  

n e w C R ( I l , l 2 )  = n e w C R (1 1 ,12) + 1; 
en d  if;
en te r  s in to  checkedSet-, 

en d  for;
i f  n e w C R ( I l ,  12) > C R ( 1 1 ,12) th e n  

C R { I \ , I 2 )  = n e w C R ( I l , I 2 )  
e n d  if; 

end  for; 
end

F ig u re  4 .17 The algorithm for determ ining CRs a t the instance level.



C H A PT E R  5

INCREMENTAL PARALLELIZATION

In hard real-time systems, the most im portant goal is to guarantee, either by schedule 

construction or by analysis, th a t all tim ing constraints are satisfied. Scheduling 

problems are NP-hard in multiprocessor systems [57]. On-line scheduling approaches 

are not typically sufficient to  guarantee timeliness, due to  the limited am ount of time 

for scheduling and the overhead of optimal scheduling. However, on-line scheduling 

techniques [36, 39, 45, 80, 46] are necessary in applications tha t have unpredictable 

environments. For a fully predictable or almost fully predictable environment, off­

line scheduling techniques are used to guarantee timeliness. Contention for shared 

resources (processors, devices, and communications) is avoided by constructing 

schedules before runtim e for each shared resource. If there exist a few unpredictable 

factors, several schedules are constructed. At run-time, one of the schedules is chosen. 

Off-line scheduling is being used successfully in many application areas, including 

factory autom ation, telecommunication, aerospace, and robotics [58, 18, 63].

Traditional off-line scheduling approaches try  all possible perm utations of the 

scheduling objects (processes, tasks, segments of processes, etc.) to seek a feasible 

solution. The tim ing behavior of scheduling objects is unchanged during scheduling, 

thus all effort is devoted to  optimizing the search path for finding feasible schedules 

[44, 74, 61, 59, 60, 30, 37, 49]. This chapter presents a new approach for constructing 

off-line schedules for applications composed of abstract da ta  type (ADT) modules. 

This approach constructs an initial schedule based on sequential execution. The 

initial schedule is evaluated to see if all the tim ing constraints are satisfied and if it 

can be improved. If the schedule needs to  be improved and can be improved, the 

critical path and a list of critical methods are identified. Candidates are evaluated by

83
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analyzing effects on the entire schedule, the utilization and availability of demanded 

resources, and the amount of concurrency th a t can be produced if parallelization is 

applied. The best candidate is chosen to improve the assignment and schedule. 

The execution time of scheduling objects is reduced by enhancing concurrency. 

The chance of finding a feasible schedule is significantly increased by concurrency 

enhancement, since processing resources can be employed to decrease execution times 

of processes missing deadlines.

The assumptions of the scheduling techniques are:

•  only CPU of each PE  is scheduled;

•  infinite number of PEs are available;

•  cloning is applied only to  stateless ADTs;

• the parallelization techniques are applied a t single task with deadline only;

® a fast communication network is available.

As shown in Figure 1.1, there are three major steps of the scheduling approach: 

initial schedule construction; identifying critical methods; and parallelizing a critical 

method. The last two steps are repeated until the schedule is made feasible or there 

is no more chance for exploiting concurrency. The top level schedule algorithm is 

presented in Figure 5.1. Constructing statem ent table is discussed in Section 3.2.1. 

Statem ent table is tree describing the control flow, thus, a CFG can be constructed 

directly with the statem ent table (as discussed in Section 3.2.1). Construction of 

MCG and ICG is done by the parser using the statem ent table (as discussed in 

Section 4.2). Initial schedule construction is discussed in Section 5.1. Dependence 

analysis is presented in C hapter 3. Cloning analysis is presented in C hapter 4. 

Agreggating clone requirements from method level to  instance level is discussed in 

Section 4.7. Identifying critical paths and critical methods is discussed in Section 5.2.
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Estim ating concurrency and communication cost is presented in Section 5.3. Paral­

lelizing a critical method is discussed in Section 5.5.

Increm enta lS cheduling(T aslc);
begin

StaTab  =  C onst ru c tS ta te m e n tT ab lc (T asfc );
C onst ruc tC F G  (StaTab)-,

/*  co n s tru c t a  C FG  for each m e th o d  * /
C o n s tru c tC a llG ra p h (S ta 7 ’a6);

/*  co n s tru c t M C G , IC G  for T a s k  * /
Sch  = C o n struc tIn itia lS chedu le(T asfc , MCG)-, 
n um P E U sed  =  1; 
if T a s k  m isses dead line  th e n  

D ependenceA nalysis(T  ask);
/*  co n stru c t a  C D G , D D G , P D G , S P G , G D G , M D G , and  IM DG for each m ethod  * / 

C loningA nalysis(7’osfc, MCG)-,
/*  ca lcu la te  D C R  an d  C R  for each m eth o d  * j  

A greggateToInstanceLevel(TasA :, IC G , D C R s ,C R s) \
/*  ca lcu la te  D C R  an d  C R  for each A D T  in stan c e* /

Vropo =  so rtln T o p o O d r(M C G );
w hile Tasfc m isses d ead lin e  in  Sch  an d  ex ists unparallelixed  CM  do 

A =  getN extN ode(V 'ropo);
C M L i s t  = Id en tify C ritica lM eth o d (A );

/*  estim atin g  concu rrency  an d  com m unication  overhead 
M a x  =  0;
C  Mmax  — null} 
fo r C M  6 C M L i s t  do

/*  m ode can  be  SE Q , S R P C , A R P C , o r  A R P C & C L O N IN G  * /
C C (C M )  =  e s tim a tin g C o m m u n ica tio n C o st(C M , n u m  Buses,  mode)-, 
fo r each call s  to  C M  in A do

O E T (s )  =  e s tim a tin g O v e rla p p in g T im e (s ,7 ’asA;, mode)-, 
if  M a x  < O E T ( s ) /C C ( s )  th e n  

CMmax  =  C M ;
M a x  = O E T (s ) /C C (s ) ;  

end  if; 
en d  for; 

en d  for;
S ch  =  P ara lle liz in g C ritica lM eth o d (7 ’asA :,C M ma i,m o d e ) ;  

en d  while; 
en d  if; 

end;

F ig u re  5.1 An incremental scheduling algorithm.

This chapter is organized as follows: Section 5.1 presents the approach for initial 

schedule construction. Section 5.2 introduces the way for identifying critical path 

and methods. Section 5.5 discusses the parallelization of critical methods. Finally, 

the virtual machine simulation is used to  illustrate the schedule approach.
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5.1 In it ia l  S ch ed u le  C o n s tru c t io n

The initial schedule is constructed based on sequential execution. If the initial 

schedule can not meet the time requirements, concurrency will be enhanced via 

ARPCs and ADT instance cloning. The algorithm  for constructing an initial schedule 

is presented in Figure 5.2. It computes execution times of prim itive methods first. 

Then a method call graph is constructed. Following the reverse topological order of 

the method call graph, it constructs the initial schedule layer by layer.

ConatractlnitialSch (Task, MCG)  
begin

SchLength = 0;
VRcvTopo =  sortInRevTopoOdr( MCG)\
for /  £  ̂R r v ' I ' a p n  do

if /  is primitive method th e n  
begin

Compute execution time of a primitive method; 
end;

else if  /  is synthesized method th e n  
beg in

CFG(l )  = evaluateExecutionTime(CFG(/));
/* EST and LST of each statement in I  is determined, 
and stored in CFG of I */

Sch(I)  = constructLocaISch(CFG(/), SchLength.)-, 
end;

end  if; 
end  for; 

end;

F ig u re  5.2 Algorithm for constructing an initial schedule.

To determ ine if execution times are met, we compute tasks execution times. To 

evaluate the execution time of a task, the execution times of the m ethods it calls must 

be known. Recall th a t the call relations among methods are described in an MCG. In 

an MCG, leaves represent primitive methods. Internal nodes represent synthesized 

methods (they call other methods). The execution times of primitive methods can be 

evaluated in instruction cycles since they contain only local instructions. By following 

the reverse topological order of the MCG, the execution times of synthesized methods 

can be calculated based on the execution times of methods a t lower levels. The
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algorithm  for evaluating the execution time of a method is presented in Figure 5.3. 

W ith the CFG of a m ethod as a param eter to the algorithm , it calculates the finish 

time of each statem ent in a topological order of the CFG. The parent-child relation 

in a CFG is a  dependence relation due to control flow. By following the topological 

order, the finish times of parent nodes are calculated before calculating the finish 

times of child nodes, i.e., a statem ent cannot s ta rt execution until all its parent 

statem ents are finished. If a node in a CFG has only one parent, the finishing time 

of the node is the finishing time of its parent plus its own execution time. If a node 

has more than one parent, its finish tim e is the finish tim e of the parent th a t takes 

longest to finish plus its own execution time. Finally, the execution time of the 

m ethod is the finish time of the leaf node (statem ent) th a t takes longest to finish.

To create a schedule of a m ethod based sequential execution, a CFG of the 

method is used since a CFG of a m ethod describes the control flow of sequential 

execution of the method. Figure 5.4 presents the algorithm  for constructing the 

initial local schedule based on sequential execution of a method.

Since the statem ent table of a method is a tree of sub-statem ent tables, the 

construction of a CFG of a method (constructCFG) can be done in O(S)  (5  is 

the number of statem ents in the m ethod). Constructing the local schedule of a 

m ethod (construct Local Sch) based on the  CFG of the m ethod can be done in 0 (5 ) .  

Evaluating the execution time (evaluateExecutionTime)  takes 0 ( 5 ) .  Therefore, 

The time complexity of the algorithm  Construct Initial Sch is 0 ( M  ■ 5 ), where M  is 

the number of method in an application, and 5  is the maximum num ber of statem ents 

in a method. Therefore, the complexity of the local schedule construction is 0 ( M 2 ■ 

5).

For example, Figure 5.5 shows the CFG of procedure VM -S im u .  The nodes 

with dotted circles are call statem ents. Each node is labeled with the execution time 

of the statem ent. This CFG is the base for constructing the initial schedule (the
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ev a lu a teE x ecu tio n T im e  (C F G ); 
begin

Let PO  =  the topological order of the nodes in CFG;
R b f t  =  0  a n d  R ° w ft  =  ° -
\* R° (entry node of method M)  starts at time (0,0)
This entry node is served as a base point, all other nodes’ 
finishing times are relative to this entry node. *\
For each node N'  g PO  do

if N'  has only one parent node N p, th e n
Ni/t = Nin + "L  
K /t = K n  + i*Lt
\* A parent-child relation describes a forced execution order.
It can be data precedence relation (as the edge in a SPG) 
or control flow relation (as the edge in a CFG),
Therefore, the finishing time of child node is equal to its 
parent node’s finishing time plus its execution time.*\ 

en d  if
if  N ‘ has more than one parent node N p (p = p l,p2 ,...,pn ), th e n

N b / t  =  M A X W f a . N f i ,  N f t t ) +  N 'h ' t

N l f l  = M A X { N l ) v N ^ } l ,...yN l n{ l ) + N'wct 
\* If a node has more than parent node, 
the earliest starting time of the child node is after 
all its parent nodes finished, i.e., it must wait 
for the parent node which takes longest to finish.
Therefore, The M A X  operation is used. *\ 

e n d  if 
e n d  for
\*  The execution time of the method is the earliest 
time at which all statements in the method finished.
It is equal to the finishing time of the leaf node that takes 
longest to finish among all leaf nodes. *\
Mbct = M A X ( L N ^ t , L N ^ t , . . . , LN lbf t )
\* The best case execution time of method M *\
M m t  =  MAX(LN 'w / l , L N l f i  L N lwf l )
\* The worst case execution time of method M  * \ 

en d

F ig u re  5.3  Algorithm for evaluating execution time of a method.

schedule is too large to  be encluded in this thesis) for V M S i m u .  The execution 

tim e of the schedule is 4483 time units. Assume the execution time of V M S i m u  is 

4000 time units. Thus, the initial schedule does not meet the deadline of V M S i m u .

5.2  Id e n tify in g  C r i t ic a l  M e th o d s  

Parallelizing methods randomly may not improve the performance quickly. Paral­

lelization should be applied to only the m ethods th a t are critical to the performance
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constructLocalSch(CFG(/), SchLength) 
begin

V t a p o O d r  = genTopo(CFG); 
for n  6 Vt0p0odr do

if  EST(n) = LST(n) th en
Let n start at EST[n)  + SchLength ; 
SchLength  = SchLength  + ET(n)-, 

else
Let n start at EST(n)  + SchLength; 

end  if; 
end  for; 

end;

F ig u re  5.4 Algorithm for constructing a local schedule for a method.

of programs. This section introduces the approach for identifying such critical paths, 

and critical methods.

A critical path  in a m ethod is the execution path  th a t takes the longest to finish 

(a method may have more than one critical path). All the methods called by the 

statem ents on the critical paths are called critical methods. Obviously, parallelizing 

the critical m ethods can reduce the execution time of the method via ARPCs and 

cloning. W hen one critical m ethod is parallelized, the execution times of all the 

calls to th a t method are ideally reduced. Note th a t the critical path is changed 

every tim e a critical m ethod is parallelized, i.e., previous critical methods may no 

longer be critical. Therefore, the critical paths and set of critical methods must be 

recomputed every time a critical m ethod is parallelized.

The algorithm  for identifying critical paths and critical methods is presented 

in Figure 5.6. The algorithm finds the earliest possible s ta rt tim e for each statem ent 

in a method by following the topological order of the statem ents of the method. The 

execution tim e of the m ethod is calculated by finding the node th a t starts latest. The 

latest possible s ta rt time of each statem ent in the method is calculated by following 

the reverse topological order of statem ents of the method. By comparing the earliest



F ig u re  5.5  The initial CFG of procedure V M S i m u .
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possible s ta rt tim e with the latest possible s ta rt tim e of each statem ent, the critical 

methods are determined.

For example, Figure 5.7 (a) shows a dependence graph with an execution time 

labeled on each node. ET  denotes execution time. EST denotes the earliest s ta rt 

time. LST denotes latest start time. To calculate the earliest s ta rt tim e of each 

node, a topological order is followed, i.e., s i ,  s2, s3, s4, s5. The earliest s ta rt time of 

s i  is zero since it is the first node. Since s i  takes 2 tim e units to finish, s2 and s3 

can start as early as 2. To calculate the earliest possible s ta rt time of s4, the later 

finish time of s2 and s3 is used. Since s2 starts a t 2 and finishes a t 4, and s3 starts 

a t 2 and finishes a t 5, therefore, the earliest s ta rt time of s4 is 5. s3 s ta rts  at 2 and 

takes 3 time units, so s5 can start as early as 5. The shortest possible execution 

tim e of the graph is 10 time units. The calculation of latest start times is done in 

a reverse topological order. One of the reverse topological order is: s5, s4, s3, s 2 , s i.  

The latest s ta rt tim e of s5 is 6  (ET — ET(s5)).  The latest start tim e of s4 is 5. To 

calculate the latest s ta rt time of s3, both s4 and s5 must be considered. The smaller 

latest start time of s4 and s5 is used to calculate the latest start time of s3 which is 2 

(LST(s4) — ET(s3)) .  The latest s ta rt time of s2 is calculated by LST(s4) — ET(s2)  

=  3. The smaller latest start time of s2 and s3 is used to calculate the latest start 

tim e of s i  which is 0 (LST(sZ) — ET(s l) ) .  The critical path is thus s i,  s3, s4. The 

critical methods are methods called by the statem ents on the critical path.

For the virtual machine simulation, the critical path of the initial schedule 

is: Si — Sm, s i 2  — S1 5 , s 1 7  -  s 2 o- The call statem ents on the critical path is:

>̂2 ) S3 , S4 , s7, Sg, S1 2 , S1 4 , S1 7 , S1 9 . The critical m ethod set is: initialization, GetState,  

dum.pDataMemory , and dolnstruction  exported by Processor.

The time complexity for topological sorting is O(SlogS)  (where S  is the number 

of statem ents in a m ethod). The time complexity for calculating the earliest start 

times is 0 ( S 2). The tim e complexity for calculating the execution time of a method is



92

Iden tifyC ritica lM ethod(D G )
/* DG is a  dag representation of a method,
DG can a CFG, PDG, GDG of a method */ 

begin
Let TopoOdr = the topological order of the nodes in DG; 
for each node N  of TopoOdr do 

E S T( N )  =  0;
the earliest start time of node N  

for each node M (M  ^  N)  do
if  M  —> N  and E ST (M )  + ET(M)  > ES T( N )  th e n  

EST( N)  = EST (M )  + ET[M)  ; 
en d  if; 

end  for; 
end  for;
ET = 0;
for each node N  of TopoOdr do 

if  ES T (N )  + ET{N)  > E T  th en  
E T  = EST{N)  + ET{N)\  

end  if; 
end  for;
Let RevTopoOdr = the reverse topological order of the nodes in DG; 
for each node N  of RevTopoOdr do 

LST(N)  = E T  -  ET(N)\
the latest start time of node N  

for each node M  (M N)  do
if N  -> M  and LST(M)  -  ET(M)  < LST(N)  th e n  

LST(N)  =  LST(M)  -  ET(M)  ; 
en d  if; 

en d  for; 
end  for;
Critical MethodSet =  null; 
for each node N  of TopoOdr do 

if  EST( N)  = LST(N)  th en  
put N  into CriticalMethodSet; 

en d  if; 
end  for; 

end;

F ig u re  5.6 Algorithm for identifying critical paths and methods.

O(S).  The time complexity for calculating the latest s ta rt times is 0 ( S 2). The time 

complexity for finding the critical path  and critical method set is 0 (5 ) .  Therefore, 

the time complexity of the algorithm is 0 (5 2).

5.3 E s t im a t in g  C o m m u n ic a tio n  O v e rh e a d

When parallelization is applied to a method, concurrency is achieved, but commu­

nication overhead may be produced too. The communication overhead, varies in 

different execution paradigms, is explained below.
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F ig u re  5 .7  (a) dependence graph with ETs. (b) Dependence graph with ESTs. (c) 
Dependence graph with LSTs.

•  In uniprocessor execution, concurrency does not cause any communication cost.

•  In the SRPC paradigm, communication overhead produced is the time delay 

for transm itting  remote procedure calls and returns.

•  In the ARPC paradigm, the communication overhead produced is not only the 

the tim e delay for transm itting  remote procedure calls and returns, but also 

the tim e delay due to the contention due to multiple remote procedure calls 

and returns.

•  In the ARPC and ADT cloning paradigm, the communication overhead 

produced is the the time delay for transm itting  remote procedure calls and 

returns, but also the time delay due to the contention caused by the multiple 

remote procedure calls and returns. Compared with A RPC paradigm, this
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paradigm produces more overhead due to  the fact tha t ADT cloning resolves 

code contention but requires more ARPCs.

The factors th a t cause the communication overhead are:

•  the size of the param eter list of a call to  a method m  (denoted as P(m))\

•  the time for packing and unpacking a communication packet for a call to or a 

return from a m ethod to (denoted as if(rn ));

•  the number of calls to  a method to (denoted as N(m)),  and

• the number of remote procedure calls in method to th a t can execute concur­

rently (denoted as S(m ));

The communication overhead produced by parallelizing a method to is estim ated as:

C(m) =  j r  2({aP(mi) +  H i m )  +  C (toj)) • N(rm) +  0  ■ S ( m ))
1 =  1

where:

1. n is the total number of used methods by method to.

2. TOj(i =  1 . . .  n) is a method called by method to.

3. a  is a factor th a t scales the param eter size and packet handling delay (a  =  0.5 

for this experiment).

4. 0  is a factor th a t scales the number of concurrent ARPCs. (0 =  0.5 for this 

experiment).

In the following subsections, the communication overhead produced by each 

of the execution paradigms are discussed, and formulas are presented for estim ating 

the communication overhead in each of the paradigms.
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5.3.1 Communication in SRPC Paradigm

Assume there is only one connection between any pair of processors, and each method 

is assigned onto a different processor. Remote procedure calls execute sequentially 

(i.e., S(m)  =  0). Since there is no method call in primitive methods, therefore, 

the communication overhead is zero (i.e., C(m) =  0). For synthesized method, the 

formula for estim ating the communication cost caused by the execution of a method 

m  via SRPCs is:

C(m) =  Y i  2 ((aP (m j) +  H(nii)) +  C'(mj)) • N ( m {))
i=l

The formula calculates the to tal communication cost of all the calls to other 

methods. The calculation is followed in the reversed topological order of the method 

call graph so tha t the communication cost of each of its used methods is calculated 

first. For example, in the virtual machine simulation, methods exported by ADT 

instances In s t rM e m  and D ataM em  are primitive methods, therefore, the commu­

nication cost of methods exported by instances In s t rM em  and DataM em  is zero. 

Method getState  exported by ADT instance Processor  is also a primitive method, 

thus, it communication cost is zero. Method Initialization  exported by ADT 

instance Processor  is a synthesized method, The communication cost of Proce­

ssor.Initial ization  in SRPC paradigm is:

C(init ial ization)  =  2(2 +  2)/2  +  2((3 +  2)/2)25 =  129 t ime units.

Method dolnstruction  is a synthesized method exported by instance Processor , its 

communication cost in SRPC paradigm  is:

C(dolnstruction) =  2(3 +  2)/2  =  5 t ime units.

M ethod dumDataMemory  is a synthesized method exported by instance Processor,  

its communication cost in SRPC paradigm is:

C(dolnstruction)  =  2((3 +  2)/2)50 =  125 t ime units.



96

Procedure V M S i m u  is a top level procedure, its communication cost in SRPC 

paradigm is:

C ( V M S i m u )  =  4480 time units.

5.3.2 Communication in ARPC Paradigm

Assume there is only one connection between any pair of processors, and each method 

is assigned onto a different processor. Since there is no m ethod call in primitive 

methods, therefore, the communication overhead is zero (i.e., C(m)  =  0). For 

synthesized method, the communication cost caused by the execution of a method 

m  with ARPCs is evaluated using the following formula:

C(m) =  2({aP(mi)  +  i / ( m t) +  d m ) )  • N f a )  +  /3B(GDG(m)))
t=i

where B ( G D G ( m )) is the average number of sibling calls in the GDG of method m.

The sibling calls in the GDG have no dependence relations among them, thus, 

they can be executed a t the same tim e via ARPCs, they will com pete for communi­

cation (a queue exists), thus, the number of sibling calls is used to  estim ate commu­

nication contention. The calculation is performed in reverse topological order of the 

method call graph, so th a t the communication cost of each of its used methods is 

calculated first.

For example, in the virtual machine simulation, methods exported by ADT 

instances I n s t rM e m  and D ataM em  are primitive methods, therefore, the commu­

nication cost of methods exported by instances In s t rM em  and D ataM em  is zero. 

Method getState  exported by ADT instance Processor  is also a primitive method, 

thus, it communication cost is zero. M ethod Init ial izat ion  exported by ADT 

instance Processor  is a synthesized method, The communication cost of Proce­

ssor.Initial ization  in ARPC paradigm is:

C(init ial ization) =  2(2 +  2)/2  +  2((3 +  2)/2)25 =  129 t ime units.
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Method dolnstruction  is a synthesized method exported by instance Processor,  its 

communication cost in ARPC paradigm is:

C(dolnstruction)  =  2(3 +  2)/2  =  5 t ime units.

Method dumDataMemory  is a synthesized method exported by instance Processor , 

its communication cost in ARPC paradigm is:

C(dolnstruction)  =  2((3 +  2)/2)50 =  125 time units.

Note th a t for the above three method, the communication cost in ARPC paradigm  

is the same as in SRPC paradigm. This is because all calls have data  dependence 

relations, the number of sibling calls is zero. Procedure V M S i m u  is a top level 

procedure, its communication cost in ARPC paradigm  is:

C ( V M S i m u )  =  2047.5 t ime units.

5.3.3 Communication in ARPC and ADT Cloning Paradigm

Assume there is only one connection between any pair of processors, and each 

method is assigned onto a  different processor. Since there is no method call in 

primitive methods, therefore, the communication overhead is zero (i.e., C ( m ) =  0). 

For synthesized method, the communication cost caused by the execution of a method 

via ARPCs and ADT cloning is evaluated using the following formula:

C(m) =  ^ 2 ( (a P (mi) +  H(rm) +  C (m ,)) • N ( mi) +  j3B(SPG(m)))
»= 1

B ( S P G ( m )) is the average number of sibling calls in the SPG of method m.

W ith full cloning (i.e., each method is cloned up to the upper bound), all 

the possible contention for method is resolved, then the SPG, which describes only 

precedence relations, is used to evaluate contention for communication. The calcu­

lation is also followed in the reverse topological order of the method call graph so 

th a t the communication cost of each of its used methods is calculated first.
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For example, in the virtual machine simulation, methods exported by ADT 

instances InstrMem,  and D a ta M e m  are primitive methods, therefore, the commu­

nication cost of methods exported by instances In s t rM e m  and DataM em  is zero. 

Method getState  exported by ADT instance Processor  is also a primitive method, 

thus, it communication cost is zero. Method Initialization  exported by ADT 

instance Processor  is a synthesized method, The communication cost of Proce­

ssor. Initialization  in ARPC and ADT cloning paradigm is:

C(init ial ization)  =  2(2 +  2)/2  +  2((3 +  2)/2)25 =  129 t ime units.

Method dolnstruction  is a synthesized method exported by instance Processor,  its 

communication cost in ARPC and ADT cloning paradigm is:

C(dolnstruction)  =  2(3 +  2)/2  =  5 t ime units.

Method dumDataMemory  is a synthesized method exported by instance Processor,  

its communication cost in A RPC and ADT cloning paradigm is:

C(dolnstruction)  =  2((3 +  2)/2)50 =  125 t ime units.

Note th a t for the above three method, the communication cost in ARPC and ADT 

cloning paradigm  is the same as in SRPC paradigm. This is because all calls have 

data dependence relations, the number of sibling calls is zero. Procedure V M S i m u  

is a top level procedure, its communication cost in ARPC paradigm is:

C ( V M S i m u )  =  2753.5 time units.

Note th a t communication cost of procedure V M S i m u  in ARPC and ADT cloning 

is larger than  in ARPC. This is because the ADT cloning produces more contention 

for communication.
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5.3.4 Varying the Interconnection Topology

The above evaluation formulas assume th a t there is only one connection between any 

pair of processors. If two connections are available between any pair of processors, 

The worst case communication cost can be estimated as:

C2(m) =  (1 — * C(m)

Note th a t an additional connection between two processors typically cannot cut 

the communication costs in half. If there are n  connections between any pair of 

processors, the worst case communication cost is calculated as:

Cn(m) =  (^ )n_1 *C (m )

For example, with 2-network, the communication cost C ( V M  JSimu)  can be reduced 

to C2(K M JSimu) =  ( | )  * C ( V M S i m u )  =  2065.1. W ith 5-network, the communi­

cation cost C ( V M S i m u )  can be reduced to  C $ (V M S im u )  — ( | )4*C(VM-Si7nu) =  

871.2.

The algorithm  for estim ating communication overhead is presented in Figure 5.8. 

It calculates the communication cost for 1-network according to the different 

execution models, then scales it down with the actual network topology used. 

Calculating the param eters for the formulas takes 0 (5 ) .  The complexity of the 

algorithm is 0 ( 5 2).

5.4 Estimating Concurrency

Each critical m ethod is evaluated for the am ount of potential concurrency. The 

amount of concurrency is measured by finding the overlapping execution time 

if it is parallelized. As shown in Figure 5.9, the algorithm  finds the prede­

cessor and successor for a call statem ent according to different execution modes. 

Then, it calculates the overlapping tim e by summing up all the execution times
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EstimatingCommunicationOverhead(CM, n u m B u s e s , m o d e ); 
b e g in

/* let P(m ) denote the size of parameter list of method tn */
/*  let H (m) denote the time for handling a packet of method m*/
/* let N ( m )  denote the number of calls to method m from method C M  */
/*  let B ( G D G ( C M ) )  denote the average number of sibling calls in the GDG of C M  */
/*  let b \s P G { C M ) )  denote the average number of sibling calls in the SPG of C M  */
C C ( C M )  =  0;
if  C M  is not primitive method th en  

case mode =  SEQ :
C C ( C M )  =  0; 

case mode =  SRPC :
C C ( C M )  = 0;
fo r each called method m by C M  d o

C C [ C M )  = C C ( C M )  + 2(0.5 • P(m ) + H(m) )  + C C ( M )  ■ N(m))  
e n d  for; 

c ase  mode =  ARPC :
C C { C M )  = 0;
fo r  each called method m by C M  d o

C C ( C M )  = C C ( C M )  + 2(0.5 • P (m)  +  H{m))  + C C ( M )  • A^(m)) + 0.5B {GDG {CM) )  
e n d  for; 

c ase  mode =  ARPC&CLONING :
C C ( C M )  = 0;
fo r  each called method m  by C M  do

C C ( C M )  =  C C ( C M )  + 2(0.5 • P(m ) + H(m))  + C C ( M )  ■ N{m))  + 0 . b B( S PG (C M) )  
e n d  fo r; 

e n d  case;
C C ( C M )  =  ( 2 ) n u m B u . « - i  * CC( CM) ;  

e n d  if;
return C C{ C M ) \  

e n d ;

F ig u re  5 .8  Algorithm for estim ating communication overhead.

of the statem ents th a t can continue execution following an ARPC. Functions 

f  indPredecessor  and f indSuccessor  take O(S) (S is the number of statem ent in a 

method). The loop for evaluating the overlapping execution time takes 0 ( S ) too. 

Therefore, the complexity of this algorithm is O(S).

5.5 P a ra lle liz in g  C r it ic a l  M e th o d s

Figure 5.10 presents the algorithm  for parallelizing a critical method. F irst, it 

determines the number of new PE  needed. For sequential and SRPC execution 

models, no new P E  is needed. For ARPC model, a new PE is needed. Then, the 

algorithm  assigns all the calls to the critical method to  the new PE. For ARPC and
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estimatingOverlappingTime(s, Task,  mode) ; 
b e g in

c a se  mode = SEQ or SRPC : 
r e tu r n  0; 

c ase  mode = ARPC :
pre  =  findPredecessor(s, GDG( Task) ) \  
sue = findSuccessor(s, GDG{Task) ) \  

c a se  mode = ARPC&CLONING : 
pre =  findPredecessor(s, S PG( Ta sk) ) ;  
sue  = findSuccessor(s, S  PG(Task)) ' ,  

e n d  case;
/*  calculate overlapping time */ 
overlap =  0;
Imp = 0;
fo r  each node n between s and sue d o  

t m p  =  t m p  + ET(n);  
e n d  for;
if  t m p  > E T( s )  +  CC(s)  th e n  

overlap =  tmp; 
e lse

overlap — E T ( s ) +  CC(s); 
e n d  if;
r e tu r n  overlap', 

e n d ;

F ig u re  5.9 Algorithm for estim ating overlapping time.

ADT cloning, the upper bound number of new PEs are needed since the m ethod is 

fully cloned up to the upper bound. Calls to the critical method is assigned to  one 

of the new PEs in a round-ribbon since any of the new PEs contains a clone of the 

critical method. After a call to the critical method is reassigned, the old schedule is 

updated (both E S T  and L S T  are modified). The two nested loops contribute the 

complexity of this algorithm which is 0 ( S 2).

The overlapping times of critical methods are calculated (shown in Table 5.1). 

By examining the overlapping execution times of all the calls to the critical methods, 

the critical method with the largest overlapping execution tim e is chosen. Method 

init ial ization  has the largest overlapping execution tim e if it is parallelized. Paral­

lelization via ARPCs gains less concurrency but needs fewer resources.

Figure 5.11 shows the CFG of V M S i m u  after reallocating method init ial ization  

to another processor. The execution tim e is reduced to  a value between 4087 and
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P araH eliz ingC ritica lM ethod (T as k , C M ,  mode)  
begin

/* number of new PEs needed */ 
c a se  mode =  SEQ or SRPC : 

num N ew P E  = 0; 
case  mode =  ARPC : 

num N ew P E  = 1; 
case  mode = ARPC&CLONING : 

num N ew P E  = Cfl(CM ); 
e n d  case; 

fo r  each call s to C M  in T a s k  d o  
case  mode = SEQ or SRPC : 

r e tu r n  0; 
c ase  mode = ARPC :

sue  =  findSuccessor(s, G D G ( C  M));
schedule s at time E S T ( s )  in PE P E ( n u m P E U s e d  + n umNe wPE) - ,  

case mode = ARPC&CLONING : 
sue =  findSuccessor(s, SPG(CM))- ,  
l as t UsedPE  =  ( n u m P E U s e d  + 1) % ( n u m Ne w PE );  
schedule s at time E S T ( s )  in PE PE( las tUsedPE);  

end  case;
remove s -► s + 1 from CF G(Tas k) ;  
add pre  -> s into CFG( Tas k) ;  
add s -> sue  into CFG( Task) ;  
fo r each node n between s and sue  do

/*  modify the earliest execution time of statement n  */
E S T ( n )  = E S T ( n )  -  E S T ( C M )  +  CC( CM) ;

/*  modify the latest execution time of statement n */
L S T ( n )  =  L S T ( n )  -  L S T ( C M )  + CC( CM) ;  

en d  for;
fo r each successor node n following sue do 

E S T ( n )  = E S T ( n )  -  OET;
L S T ( n )  =  L S T ( n )  -  OE T;  

en d  for; 
en d  for;

/* n u m P E U s e d  is a global variable */ 
n u m P E U s e d  — n u m P E U s e d  +  n u m N e w P E ;  

end;

F ig u re  5.10 Algorithm for parallelizing a critical m ethod.

4452 time units. At least 396 tim e units are gained via ARPCs. If this still does 

not meet the deadline, ARPCs combined with method cloning are used. Figure 5.12 

shows the CFG after making two clones of the method init ial ization  and placing 

them to another two processors. The execution time can be reduced to 3877 time 

units.

If ADT instances are used as cloning and distribution units, Table 5.2 shows 

the precedence and the overlapping times of critical call statem ents. Figure 5.13 

shows the CFG of V M  JSimu after reallocating ADT instance Processor  to another
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Figure 5.11 The CFG of procedure V M S im u  after reallocating initialization.



104

PE2 PE3

307 : s4307: s3

200■ s9 ) j  y ] ( s i i) /

l ( s l 2

sl8

1 (s20

Figure 5.12 The CFG of procedure V M S irm i  after cloning initialization.
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T ab le  5.1 The critical methods of the schedule for procedure V M S i m u .

C a l l e d  M e t h o d N o d e s via A R P C via A  R P C & C l o n t n g

p r e d e c e s s o r s u c c e s s o r o v e r l a p  E T p r e d e c e s s o r s u c c e s s o r o v e r l a p  E T

in itia liz a tio n 52 S3 1 S7 307

S3 S2 S4 0 S12 307

S4 S3 S17 40 307 S17 307

G otS ta to S7 S5 SB 1 S5 S8 1

S12 S7 S13 1 S5 SI 3 1

S17 S12 S18 1 S5 S18 1

dum pD ataM om ory S9 SB S14 3 SB S14 3

514 S13 S19 3 S13 S19 3

S19 51B 1 S18 1

d o in s tru c tio n S l l SB SlG 2 SB 17

SL6 513 S21 2 S13 17

S21 SIB 1 S18 17

processor. The execution time is increased to 8024.5 time units! The negative 

speedup is caused by the communication overhead. Since some methods of the 

ADT instance Processor  have very small execution times (m ethod GetState  takes 

1 tim e unit), much more time is spent on communication than  on execution of 

the methods. This is the disadvantage compared with method level cloning and 

distribution. ARPCs combined with ADT instance cloning gain the same speedup 

compared with the method level cloning. Figure 5.14 shows the CFG after making 

two clones of the instance Processor  and placing them to another two processors. 

The execution tim e can be reduced to 3877 tim e units.

5.6 C o m p le x ity  A n a ly s is

The incremental scheduling algorithm (shown in Figure 5.1) calls ConstructState-  

mentTable (a parser) to  create statem ent tables. Scanning and parsing a  program
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Figure 5.13 The CFG of procedure V M S im u  after reallocating Processor.



F ig u re  5 .14  The CFG of procedure V M S i m u  after cloning Processor.
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Table 5.2 The critical instance of the schedule for procedure V M S i m u .

C a l l e d  Instance Nodes v»a A R P C via A R P C & C l o t l i n g

p r e d e c e s s o r successor overlap B T p r e d e c e s s o r s u c c e s s o r o v e r l a p  E T

Processor S2 S3 I S7 307

S3 S2 S4 0 S12 307

S4 S3 S7 2 S17 307

S7 S5 S8 I S5 S8 I

S12 S9.S1I S13 1 S5 S13 1

S17 S14.S16 S18 1 S5 S18 I

S9 S8 S12 1 SB S14 3

S14 S13 S17 1 S13 S I9 3

S19 S18 1 S18 1

S I I S8 S16 2 S8 17

S16 S I3 S21 2 S13 17

S21 S18 1 S18 17

one time are polynomial complexity which is 0 ( M  ■ S ) (M  is the number of methods 

in an application, and S  is the maximum number of statem ents in a method).

As discussed in Section 4.2, constructing a m ethod call graph for an application 

takes 0 ( M  ■ S).

As discussed in C hapter 3 and C hapter 4, the dependence and cloning analysis 

have also polynomial complexity.

The initial schedule construction takes 0 ( M  • S).

Dependence analysis takes 0 ( M  • S 3) to create all the dependence graphs (as 

discussed in C hapter 3.

Cloning analysis takes 0 ( M 3 ■ S 4) to calculate CRs on m ethod level.

Agreggating CRs from method level to ADT instance level takes 0 ( 1  ■ S) I  is 

the maximum num ber of methods in an ADT module.

Topological sorting takes O(MlogM).

Identifying critical methods takes 0 ( 5 2).



Estim ating communication overhead takes 0 ( S 2).

E stim ating overlapping tim e of a call statem ent takes 0 (5 ) .

Critical M ethod Parallelization takes 0 (M  • S) to  update the  schedule. 

Therefore, the complexity of the incremental scheduling algorithm  is 0 ( M



C H A PT E R  6

EXPERIMENTAL RESULTS

To show how the concurrency enhancement techniques improve the execution 

performance of programs constructed with ADT instances, we look a t both real 

application programs and a large number of random  programs. A program for a 

virtual machine simulation is used to show the utility  of the concurrency extraction 

techniques. Experiments are conducted to com pare the speedup of parallelized 

programs against sequential programs. To get more test cases, a program generator 

was developed. In order to  set meaningful param eters for the program generator, a 

survey of ADT-based programs from the public domain was conducted. Two hundred 

eighty-eight different programs were generated and assessed on six distributed config­

urations.

This chapter is organized as follows. The experim ental approach is introduced 

first. This is followed by presenting the experimental results for the virtual machine 

simulation program. Section 6.3 describes the techniques used to  generate realistic 

programs. In Section 6.4, the experimental results for the programs generated by 

the program generator are presented.

6.1 Experimental Approach

An overview of our experimental approach is shown in Figure 6.1. In the experiments, 

four execution modes are evaluated and compared. The four execution modes are:

1. sequential execution with one processor;

2. synchronous remote procedure calls (SRPCs) with multiple processors

3. asynchronous remote procedure calls (ARPCs) with m ultiple processors

110
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4. ARPCs with cloning 

The param eters of the experiment are:

•  number of ADT instances,

•  percentage of primitive ADT instances,

•  maximum method size,

•  minimum method size,

•  percentage of call statem ents, and

•  the ratio of number of precedence relations to the number of statem ents.

The experimental approach (shown in Figure 6.1) is as follows:

•  (1). A m ethod call graph (MCG) is constructed to describe the use relations 

among methods.

•  (2). The information hiding (IH) metric is computed as the scaled average 

height of the MCG. It measures the layering of the methods. The larger the 

IH m etric is, the more layering the system has. The formula for IH is:

rj j  H
N P  x N N

W here H  is the height of the MCG.

N P  is the number of paths from root to leaves in the MCG.

N N  is the number of nodes in the MCG.

•  (3). A CFG is constructed for each method to describe the control flow of the 

method.

•  (4). A sequential schedule of each method is constructed based on the CFG 

of the method. Since only one processor is used, the flow of control of each 

method forms a sequential schedule.
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Execution Time with 
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Results Analysis and Comparison

F ig u re  6.1 Overview of the experimental approach.
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•  (5). The sequential execution time of a method is calculated using the 

algorithm presented in Figure 5.3.

•  (6). CDGs, DDGs, and GDGs are constructed for each method. An MDG is 

also constructed for each used method. The D CR of each method is determined. 

An IMDG is constructed to calculate CR for each shared method. The to tal 

clone requirements (CRs) of each used ADT instance are determined by propa­

gating the DCRs bottom -up in the MCG.

•  (7). (9). (11). The contention for the communication is considered for each of 

the execution paradigms (see Section 5.3).

•  (8). Although the execution of a method via SRPCs crosses multiple processors, 

it is sequential execution since the caller is blocked on each method call until 

the call returns. The CFG of the method is used to  evaluate the execution time 

of a method via SRPCs since the CFG represents the sequential flow of control 

among the statem ents of methods. Using algorithm calculateET (shown in 

Figure 5.3) with the CFG as the param eter, the execution time of a method 

via SRPCs (without considering communication cost) is calculated first. The 

communication cost is subsequently added to the execution time of the method.

•  (10) The execution time of a method with the ARPC paradigm can be 

evaluated using the GDG of the method. Using algorithm calculateET 

(shown in Figure 5.3) with the GDG as the param eter, the execution time of a 

method with ARPCs (w ithout considering communication cost) is calculated 

first. The communication cost is added to this execution time.

•  (12) Since each method is cloned up to the upper bound, all code contention is 

resolved, therefore, all the code dependence relations in the GDG of the method 

are removed; only da ta  and control dependence relations must be obeyed. Thus,
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using algorithm  calculateET (shown in Figure 5.3) with SPG as the param eter, 

the execution time of a method with ARPCs and cloning paradigm is calculated 

first, and the communication cost is added to the execution time.

•  (13). Speedup is measured as the ratio of sequential execution time to the 

execution time with each of SRPC paradigm, ARPC paradigm, and ARPC 

and cloning paradigm.

6.2 Virtual Machine Simulation

In this section, the virtual machine simulation program is used to dem onstrate 

the concurrency extraction techniques. As shown in the MCG of the virtual 

machine simulation application (in Figure 4.3), there are seven primitive methods 

(DataMem.init ia l i ze , DataMem.store,  DataMem.fetch,  InstrMem.init ial ize,  

Inst rMem.store,  InstrMem.fetch ,  and Processor.getState),  three synthesized 

methods (Processor.ini tial ization, Processor.dolnstruction,  and Processor.du- 

mpDataMemory),  and one top level main procedure V M S ir n u .

Assuming only one connection between any pair of processors, for each method 

in the virtual machine simulation, the communication costs (CCs) are estimated 

using the approach presented in Section 5.3 (examples are also presented in the 

section), and the execution times (ETs) are calculated using the algorithm presented 

in Figure 5.3. The ETs and CCs of methods in the virtual machine simulation 

are summarized in Table 6.2. The speedup is determined by calculating the ratio 

of the sequential execution time to the execution times via SRPCs, ARPCs, and 

ARPCs&Cloning, respectively. This is summarized in Table 6.2 for a 1-network. 

From the above results, we can see th a t the execution tim e via SRPCs is the slowest 

because it is a sequential execution, and the communication overhead makes it 

slower than  sequential execution on one processor. Execution via ARPCs is faster 

than execution via SRPCs because of the concurrency gained, but it is slower than
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Table 6.1 The execution times of methods in the virtual machine simulation with
a 1-network.

A D T

Instances Methods

SEQ

E T

SHPC ARPC ARPC&Cloning

CC E T CC E T CC E T

InstrMem Initialize 50 0 50 0 50 0 50

fetch 1 0 1 0 1 0 1

Store 1 0 1 0 1 0 1

DataMem Initialize 50 0 50 0 50 0 50

fetch 1 0 1 0 1 0 1

Store 1 0 1 0 1 0 1

Processor Initialization 307 129 436 129 430 129 430

dolnstruction 17 5 22 5 22 5 22

getState 1 0 1 0 1 0 1

dumpDataMemory 200 125 325 125 325 125 325

VM-Simu 4483 2047.5 8042.5 2047.5 8024.5 2753.5 4812.5

T a b le  6.2 The speedup of VMJSimu  with a 1-network.

Task Speedup
Seq/SRPCs Seq/ARPCs Seq/A RPCs&Cloning

VMJSimu 0.557 0.558 0.932

sequential execution on one processor due to the contention for communication (this 

will improve as the interconnection topology grows). Execution via ARPCs and 

cloning gains more concurrency than execution via only ARPCs because of resolving 

contention for shared methods, bu t ARPCs and cloning together cause more network 

contention. One conclusion is th a t when network is not fast enough, ARPCs and 

cloning may not speedup the execution because of the communication overhead they 

cause. The execution times of procedure V M -S im u  via four different execution 

modes with four different networks are compared in Figure 6.2. When the number 

of links is greater than one, ARPCs and cloning cuts execution time significantly.
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ET( xK time units) | | sequential 
□  SRPCs 
■  ARPCs

ARPCs&Cloning

1 link 2 links 5 links 10 links number of links

F ig u re  6 .2  Execution times of V M  S i m u  in four different execution modes with 
four different networks.

When the number of connections among processors increases, the contention 

for communication decreases. Assume there are two connections between any pair of 

processors. The execution times via different execution modes are shown in Table 6.3. 

The speedups are presented in Table 6.4. Compared with one connection network, 

two connection network reduces the communication times, therefore, the speedup 

via different execution modes are increased. Note th a t with two connection network, 

the execution time of procedure V M -S im u  via ARPCs and ADT cloning is shorter 

than sequential execution time. The execution times of procedure V M -S im u  with 

SRPC paradigm  and with ARPC paradigm  are also reduced, but they are stilllonger 

than sequential execution time.

Assume there are five connections between any pair of processors. The 

execution times via different execution modes are shown in Table 6.5. The speedups 

is presented in Table 6.6. Note th a t with five connection network, the execution 

tim e of procedure V M S i m u  via A RPCs and ADT cloning is half of the sequential 

execution time, i.e., procedure V M -S im u  via ARPCs and ADT cloning twice faster 

than the sequential execution. The execution times of procedure VM -S im u  with
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T ab le  6.3  The execution times of m ethods in the virtual machine simulation with 
a 2-network.

Module Method SEQ SRPG ARPC A RPC& Cloning

Instances Method E T CC E T CC E T CC E T

InstrMem Initialize 50 0 50 0 50 0 50

fetch 1 0 1 0 1 0 1

Store 1 0 1 0 1 0 1

DataMem Initialize 50 0 50 0 50 0 50

fetch 1 0 1 0 1 0 1

Store 1 0 1 0 1 0 1

Processor Initialization 307 96.8 403.8 96.8 397.8 96.8 397.8

dolnstruction 17 3.8 20.8 3.8 20.8 3.8 20.8

getState 1 0 1 0 1 0 1

dumpDataMemory 200 93.8 293.8 93.8 293.8 93.8 293.8

VM-Simu 4483 1258 6882.8 1258 6863.8 1375 3310.6

T a b le  6.4  The speedup of V M S i m u  with a 2-network.

Task Speedup
Seq/SRPCs Seq/ARPCs Seq/ARPCs&Cloning

VMJSimu 0.651 0.653 1.354
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Table 6.5 The execution times of methods in the virtual machine simulation with
a 5-network.

Module Method SEQ SRPC ARPC ARPC&Cloning

Instances Method E T CC E T CC E T CC E T

InstrMem Initialize 50 0 50 0 50 0 50

fetch 1 0 1 0 1 0 1

Store 1 0 1 0 1 0 1

DataMem Initialize 50 0 50 0 50 0 50

fetch 1 0 1 0 1 0 1

Store 1 0 1 0 1 0 1

Processor Initialization 307 40.8 347.8 40.8 341.8 40.8 341.8

dolnstruction 17 1.6 18.6 1.6 18.6 1.6 18.6

getState 1 0 1 0 1 0 1

dumpDataMemory 200 39.6 239.6 39.6 239.6 39.6 239.6

VM-Simu 4483 241.3 5154.5 241.3 5136.5 313.9 2029.3

T ab le  6.6  The speedup of V M S i m u  with a 5-network.

Task Speedup
Seq/SRPCs Seq/ARPCs Seq/ARPCs&Cloning

VM_Simu 0.87 0.873 2.209

SRPC paradigm and ARPC paradigm are also reduced significantly, but they are 

still greater than  sequential execution time.

Assume there are ten connections between any pair of processors. The 

execution times via different execution modes are shown in Table 6.7. The speedups 

is presented in Table 6.8. Note th a t with ten connection network, the execution 

tim e of procedure V M -Simu  via ARPCs and ADT cloning is alm ost one third 

of the sequential execution time, i.e., procedure V M S i m u  via ARPCs and ADT 

cloning three times faster than the sequential execution. This result is consistent 

with fact th a t three clones of the ADT instance Processor  are made to resolve all
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Table 6.7 The execution times of methods in the virtual machine simulation with
a 10-network.

Module Method SEQ SRPC ARPC A RPC&Cloning

Instances Method E T CC E T CC E T CC E T

InstrMem Initialize 50 0 50 0 50 0 50

fetch 1 0 1 0 1 0 1

Store 1 0 1 0 1 0 1

DataMem Initialize 50 0 50 0 50 0 50

fetch 1 0 1 0 1 0 1

Store 1 0 1 0 1 0 1

Processor Initialization 307 9.7 316.7 9.7 310.7 9.7 310.7

dolnstruction 17 0.4 17.4 0.4 17.4 0.4 17.4

getState I 0 1 0 1 0 1

dumpDataMemory 200 9.4 209.4 9.4 209.4 9.4 209.4

VMJSimu 4483 36.8 4637.1 36.8 4619.1 45.5 1639.6

T ab le  6.8 The speedup of V M S i m u  with a 10-network.

Task Speedup
Seq/SRPCs Seq/ARPCs Seq/A RPCs&Cloning

VM_Simu 0.967 0.971 2.734

the contention, therefore, ideally, the application should be three times faster. The 

execution times of procedure V M S i m u  with SRPC paradigm and ARPC paradigm 

are also reduced significantly, now they are alm ost the same as sequential execution 

time.

6.3 R a n d o m  P ro g ra m s

In this section, an approach for generating random programs is introduced. A 

program generator is developed to generate random  object-based programs. The 

param eters of the program generator are set according to the result of a real appli­
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cation survey. The program generator is introduced first. This is followed by the 

real application survey and param eter setting for the program generator.

6.3.1 Program Generator

A program generator was developed to  test the concurrency extraction techniques. 

Since all the dependence and cloning analysis techniques are based on the inter­

mediate representation (i.e., CFG, CDG, DDG, SPG, and GDG), it is unnecessary 

to generate code, instead, the generator generates the interm ediate representation 

directly. The param eters of the generator (as shown in the Table 6.9) vary the 

programs generated in three levels of abstraction: task level, ADT instance level, 

and method level.

•  Number of tasks is used to describe the number of top  level processes. Processes 

are independent of each other. Typically, timing constraints (such as deadline, 

period, etc.) are defined a t this level.

•  Number of A D T  instances is used to describe the size of the program generated.

•  Percentage of primitive A D T  instances is used to affect the layer of the program 

generated. The more prim itive ADTs a  program has, the fa tte r the instance 

call graph of the program.

• Number of methods is used to  describe the size of an average ADT instance.

•  Number of parameters of call statements is used to  describe the size of the call 

and return packages.

•  Maximum number of statements is used to describe the maximum number of 

statem ents which a method can have.

• Minimum number of statements is used to describe the minimum number of 

statem ents which a method can have.
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T a b le  6.9 The param eters of the program generator.

Task level Number of tasks
Number of ADT instances
Percentage of primitive ADT instances

Instance level Number of methods
Number of param eters of call statem ents

M ethod level Maximum num ber of statem ents
Minimum number of statem ents
Percentage of call statem ents
Ratio of number of data dependence edges 
to the number of nodes in the GDG

• Percentage of call statements is used to  describe the am ount of call statem ents 

in a method.

•  Ratio of number of data dependence edges to the number of nodes in the GDG 

is used to  describe the am ount of da ta  dependence edges in the GDG of a 

method.

The program generator generates a CFG for each method with the number of 

nodes in the range given as parameters. A certain percentage (given as param eters) 

of the statem ents of a method are generated as call statem ents. A CDG and a 

DDG of a m ethod are generated based on the CFG of the method. To avoid cycles 

in the DDG, data  dependence edges are generated so tha t the source node has a 

smaller label than the destination node. The same policy is used for generating 

call statem ents to  avoid cycles in the ICG. By combining the CDG and DDG of 

a method, the SPG of the m ethod is constructed. Adding the code dependence 

relations, the GDG of the method is built. W ith the CFGs and the GDGs of each 

method, the analysis techniques are applied. The information hiding and the speedup 

of a program are then calculated.
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F ig u re  6 .3  The flowchart of Ada dependence analysis tool set.

6 .3 .2  A p p lic a tio n  S u rv e y  a n d  P a ra m e te r s  fo r th e  P ro g ra m  G e n e ra to r

In order to get reasonable and meaningful param eters for the program generator, 

object-based applications from the public domain were studied (as shown in 

Table 6.10). The applications cover a wide range of areas such as simulation, 

performance monitoring, graph algorithms, sorting algorithms, and job scheduling 

algorithms. A tool set developed for dependence analysis of Ada programs [72], was 

used for collecting da ta  from the Ada applications. The flowchart of the tool set is 

shown in Figure 6.3. The data collected for those applications is summarized in the 

Table 6.11.

Based on the survey results, the param eters of the generator are set to generate 

a large number of programs th a t are like real applications (as shown in Table 6.12).
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Table 6.10 Ada Applications Collected From Public Domain.

System Name Abbreviation Description
System Status SYS Collects cpu performance 

d a ta  from each DEC station 
and intercepts ISIS group 
view changes to determine 
which functions are executing 
on which DEC station.

Elevator Simulation ELR Simulates the operation of 
an elevator

Heating Control Simulation Heater Simulates the autom atic 
heater control system.

Spanning Forest SPF Implements the algorithm 
for finding a spanning 
forest for any input graph.

Job Scheduling FMS A job scheduling algorithm.

Table 6.11 D ata Collected From the Ada Applications.

Parameters Applications

S Y S E L R FM S //e a te r SP F Total Average

N um ber of packages 41 21 22 8 21 113 23

P ercen tage of p rim itive  packages 39 61 45 75 23 233 47

M axim um  size of p rocedure 50 44 31 20 45 190 38

P ercen tage  of local s ta tem e n ts 52 71 87 81 40 330 66

(N um ber of DD edgos)/(num bor of nodes) 1.17 0.41 0.34 0.02 1.36 3.90 0.78
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T ab le  6.12 The param eters of the generator.

Param eters Parameter values
low mid high

Number of ADT instances 25 50 100
Percentage of primitive ADT instances 25% 75%
Maximum method size 25 65
Minimum method size 20 60
Percentage of local statem ents 75% 90%
(Number of DD edges)/(num ber of nodes) 0.75 1.25

6.4 R e s u lts  fro m  R a n d o m ly  G e n e ra te d  P ro g ra m s

W ith seven network topologies (1, 2, 5, 10, 20, 50, oo) and three runs each, 864 

programs were generated and tested. Since the generator has six param eters, the 

864 test results were grouped into six categories. Each category varies one of the six 

param eters. In this section, one from each category is discussed since cases in the 

same category have common features.

•  Category 1: Each case in this category has parameters:

-  Number of ADT instances =  50.

-  Percentage of prim itive ADT instances =  75%.

-  Maximum method size — 25.

-  Minimum method size =  20.

-  Percentage of local statem ents =  90%.

-  (Number of DD edges)/(num ber of nodes) =  0.75.

W ith the above param eters, the generator was run three times. Since 

the programs are randomly generated, each run produces a different result 

(different programs and speedup). Figure 6.4 shows the speedups with ARPCs
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F ig u re  6.4  The experimental results when information hiding varies.

and cloning for the three cases. The figure shows th a t when IH increases, the 

speedup increases too.

Also, when the number of links between processors increases to  20 (or greater), 

the best speedup is achieved. Note th a t the figure shows the opposite results 

when the number of links is less than  three. This is because the program with 

higher IH m etric has more contention for the network than the program with 

lower IH m etric when the number of communication links is few.

•  Category 2: Each case in this category has parameters:

-  Number of ADT instances =  variable € (25, 50, 100).

-  Percentage of primitive ADT instances =  75%.

-  Maximum method size =  25.

-  Minimum method size =  20.

-  Percentage of local statem ents =  90%.

-  (Number of DD edges)/(num ber of nodes) =  1.25.
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F ig u re  6.5 The experimental results when the number of ADT instances varies.

Figure 6.5 shows tha t when the size of programs increases, the speedup 

decreases. This is because the ICG becomes fa tte r (the IH metric decreases) 

when the num ber of ADT instance increases with all other param eters fixed. 

Note th a t the execution time with ARPC paradigm is better than  the execution 

time with ARPC and ADT cloning paradigm when small (less than ten) 

network topology is used, and the execution time with ARPC paradigm  and 

execution tim e with ARPC and ADT cloning paradigm are same when ten 

network topology is used. This shows th a t ARPC and ADT cloning paradigm 

may not lead to  better programs due to the communication overhead.

® Category 3: One of the case in this category has parameters:

-  Number of ADT instances =  50.

-  Percentage of primitive ADT instances =  variable E (25%, 75%).

-  Maximum method size =  25.
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F ig u re  6.6 The experimental results when the percentage of primitive ADT 
instances varies.

-  Minimum method size =  20.

-  Percentage of local statem ents =  90%.

-  (Number of DD edges)/(num ber of nodes) =  1.25.

Figure 6.6 shows tha t when the number of leaves of the ICG increases, the 

speedup decreases. This is because the ICG becomes fa tter (the IH metric 

decreases) when the number of leaves of the ICG increases with all other 

param eters fixed.

•  Category 4: One of the case in this category has parameters:

-  Number of ADT instances =  25.

-  Percentage of primitive ADT instances =  75%.

-  Maximum method size =  variable € (25,65).
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F ig u re  6 .7  The experimental results when the number of statem ents in a method 
varies.

-  Minimum method size =  variable E (20,60).

-  Percentage of local statem ents =  90%.

-  (Number of DD edges)/(num ber of nodes) =  1.25.

Figure 6.7 shows tha t The speedup increases when the size of method increases. 

This is because when the number of statem ents in a method increases w ith all 

other param eters fixed, the number of calls increases, thus, the chance for 

ARPC and cloning also increases.

•  Category 5: One of the case in this category has parameters:

-  Number of ADT instances =  25.

-  Percentage of primitive ADT instances =  75%.

-  Maximum method size =  25.
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F ig u re  6.8 The experimental results when the percentage of local statem ents in a 
method varies.

-  Minimum method size =  20.

-  Percentage of local statem ents =  variable 6 (75%, 90%).

-  (Number of DD edges)/(num ber of nodes) =  0.75.

Figure 6.8 shows the speedup decreases when the percentage of local statem ents 

in a m ethod increases, because the number of calls in a method decreases.

•  Category 6: One of the case in this category has parameters:

-  Number of ADT instances =  50.

-  Percentage of prim itive ADT instances =  75%.

-  Maximum method size =  25.

-  Minimum method size =  20.

-  Percentage of local statem ents =  75%.
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F ig u re  6.9 The experimental results when the data dependence ratio  of a method 
varies.

-  (Number of DD edges)/(num ber of nodes) =  variable 6 (0.75, 1.25).

Figure 6.9 shows th a t the speedup decreases when the ratio  of the number 

of data  dependence in a method increases. This is because the number of 

calls th a t can be executed concurrently decreases when the the number of data 

dependence among statem ents increases with all other param eters fixed.

Figures 6.5 through 6.9 show th a t when the number of links between each pair 

of PEs is small (less than three), the speedup of execution with ARPCs is better 

than with ARPCs and cloning. This is because the clones of ADT instances add 

more contention to the network, and the communication contention delays remote 

procedure calls. From the above experimental results, we can get the following 

observations:
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1. For object-based systems, the more layering the system has (the higher the IH 

metric), the more concurrency can be extracted.

2. The speedup decreases when the number of ADT instance increases, while all 

other param eters remain constant.

3. The speedup decreases when the percentage of the primitive ADT instance 

increases, but all other characteristics remain the same.

4. The speedup increases when the granularity of methods increases.

5. The speedup decreases when the percentage of local statem ents in a method 

increases.

6. The speedup decreases when the data  dependence ratio  of a method increases.

7. When the number of links between PEs is small, execution through ARPCs is 

better than through ARPCs combined with cloning.

8. ARPCs and ADT cloning can jield speedup of more than  20.

6.5 Experimental Assessment of Scheduling Techniques

To assess the incremental scheduling techniques, the scheduling techniques are 

evaluated for how often can a  feasible schedule is found with incremental application 

of ARPCs and cloning. As shown in Figure 6.10, the deadline of a task is set to  be a 

certain percentage (from 95 to  15) of its sequential execution time, then the analysis 

techniques are used to identify the critical paths and critical methods. The commu­

nication cost of each critical method is estim ated. The critical method th a t has the 

largest ratio  of execution overlap to communication overhead is chosen for paral- 

lelization. If the schedule is still infeasible, another iteration of identifying critical 

methods and parallelizing critical methods is performed until no more chances can
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T ab le  6.13 The results of the experiment.

Sequential E T  (S E T ) Deadline (D) O f

S E T

n um ber of 

ite ra tio n s

numfcer of  

PE  uaed

FS PFS

M in Max Avg M in Max Avg Min Max Avg Min M ax Avg

742 1744958 224736 704 1657710 214545 95 1 24 5 2 25 6 33 94

742 1744958 224736 667 1570462 203254 90 2 36 7 3 37 8 31 89

742 1744958 224736 630 1483214 191962 85 3 51 10 4 52 11 31 89

742 1744958 224736 593 1395966 180670 80 4 66 12 5 67 13 27 77

742 1744958 224736 556 1308718 169378 75 5 61 13 6 62 14 27 77

742 1744958 224736 519 1221470 158086 70 6 96 17 7 97 18 27 77

742 1744958 224736 462 1134222 138393 65 7 101 20 8 102 21 27 77

742 1744958 224736 445 1016974 127747 60 8 116 22 9 117 23 26 74

742 1744958 224736 408 959726 117102 55 9 131 26 10 132 27 22 63

742 1744958 224736 370 872478 106456 50 10 146 29 11 147 30 17 49

742 1744958 224736 333 785230 88355 45 11 161 33 12 162 34 13 37

742 1744958 224736 296 697982 78538 40 12 170 36 13 177 37 9 26

742 1744958 224736 259 610735 68721 35 13 191 40 14 102 41 5 14

742 1744958 224736 222 523487 58903 30 14 206 44 15 207 45 4 I t

742 1744958 224736 185 728811 59731 25 15 221 48 16 222 48 3 9

742 1744958 224736 148 191723 28302 20 16 236 52 17 237 53 2 6

742 1744958 224736 111 143792 21226 15 17 251 56 18 252 57 0 0

be found for speedup through concurrency exploitation. If a feasible schedule is 

found, the deadline of the task is reduced by another 5 percent. In this experiment, 

a 2-network is used for communication. Parallelization is applied a t task level only 

in this experiment. Thirty-five random  programs are examined.

Param eters in Table 6.12 are used to generate programs. Like the experiment 

for speedup, each time, one of the param eters is varied. The result of the experiments 

are shown in Table 6.13 (where D  denotes deadline, E T  denotes execution time, 

S E T  denotes sequential execution time, F S  denotes feasible schedules found, and 

P F S  denotes percentage of feasible schedules found). In this experiment, when the 

deadline of a task is set to be 95 percentage of its sequential execution time, 33 of 35



programs generated end with a feasible schedule. When the percentage is reduced 

to 85, the techniques fails to  find feasible schedule for only four cases. The success 

rate is 89 percent. W hen the percentage is reduced to  65, 27 schedules are made 

feasible with an average of 21 PEs used. When the ratio of deadline to  sequential 

execution increases, the chance for finding feasible schedules increases (as shown in 

Figure 6.11), the number of PEs required decreases (as shown in Figure 6.12), and the 

number of iterations performed decrease(as shown in Figure 6.13). One observation 

from the experimental results is th a t the deadlines of tasks should be set in the range 

of 65 to 95 percent of sequential execution execution time in order to get around 80 

percent of feasible schedules with around 100 iterations.
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Generating Programs
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Identifying Critical Methods

Parallelizing Critical Methods

Estimating Communication Cost

Figure 6.10 The flowchart of the experimental assessment.
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F ig u re  6.11 The relation between the ratio of deadline to  sequential execution time 
and the percentage of finding feasible schedules.
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F ig u re  6 .12 The relation between the ratio of deadline to  sequential execution time 
and the number of PEs required.
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F ig u re  6.13 The relation between the ratio of deadline to sequential execution time 
and the number of iterations performed.



C H A P T E R  7

CONCLUSION

Use of ADT modules can increase reusability of software components, but potential 

inefficiencies may occur a t execution tim e due to  the large number of procedure calls, 

and due to  contention for shared ADTs in concurrent systems. Thus an ADT often 

becomes a bottleneck when those objects are m anipulated simultaneously. On the 

other hand, the  experimental results show th a t the potential for concurrency in ADT- 

based systems is quite high via the asynchronous remote procedure call (ARPC) and 

replication (cloning) of ADTs. Therefore, concurrent execution via ARPCs and ADT 

cloning can greatly improve the performance of programs.

This thesis presents a set of techniques for autom atically identifying and 

exploiting concurrency in object-based systems at three levels of granularities: 

statem ent level, method level, and instance level. The program dependence graph, 

which was previously for describing data  and control dependence, is extended to 

include code dependence relations. Code dependence is used to describe contention 

for ADTs. The general dependence graphs describe data, control, and code 

dependence relations. Properties of the general dependence graphs are formalized as 

theorems. Polynomial algorithm s for constructing all the graphical representations 

are provided. W ith the general dependence graphs, cloning analysis techniques 

are developed to  determine the upper bounds on the number of clones of ADT 

methods or instances th a t can run concurrently. The upper bounds are used to 

guide the incremental parallelization process for constructing off-line schedules in 

hard real-tim e systems. Real-time scheduling [76, 77] can be done in conjunction 

with concurrency enhancement to improve the timing behavior of processes missing 

deadlines, greatly increasing the chances for constructing a feasible schedule.

137
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The concurrency extraction techniques presented in this work are valuable 

during the  reengineering process. The dependence and concurrency analysis 

techniques are used to help the U.S. Navy’s reengineering efforts for mission critical 

systems, such as the U.S. Navy’s AEGIS system [52, 53]. Reverse engineering 

involves not only capturing the interm ediate representation to  correctly and easily 

understand the current system, bu t also analyzing the current system to identify 

potential concurrency. During the computer-based systems reengineering process, it 

is necessary to  identify potential concurrency during reverse engineering so th a t the 

performance of the current system can be improved to meet the new requirements. 

The concurrency information is in the form of metrics th a t are used to guide the 

reengineering processes of software transform ation and system configuration, which 

seek to produce a system with a high degree of concurrency. The metrics are also 

used to assess the concurrency in a reengineered system. The concurrency extraction 

techniques used for the reengineering process can be found in [72, 71].

Experim ental results show th a t the concurrency extraction techniques can 

greatly improve the performance of programs constructed with ADTs. One general 

conclusion is th a t the more layers a system has, the more potential concurrency exists 

in the system.

The assum ptions of the techniques presented in these thesis are:

•  To enable efficient analysis, aliasing is not available to users.

•  Cloning is applied only to stateless ADTs.

•  The parallelization techniques are applied to single task with a deadline.

•  As the experimental results show, a  fast communication network is expected 

in order to handle the extra overhead and contention caused by concurrent 

execution of multiple clones of ADTs.

Future research include:
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•  Cloning of ADTs with state  needs additional effort on m aintaining state  

consistency(i.e., a protocol is needed).

•  Since the scheduling algorithm works on critical methods a t each incremental 

cycle, full cloning analysis is not necessary. A “lazy” cloning analysis (do 

clonability analysis on critical m ethods only) is needed to  reduce the time 

complexity.

• A general scheduling algorithm is needed for handling multiple tasks with 

addtional tim ing constraints (release time, period, precedence relation among 

tasks).

•  Currently, the parallelization techniques are applied a t task level only, an 

extension to other levels (instance level and method level) needs to be done to 

exploit more concurrency.

•  Heuristics for selecting which critical method to parallelize are needed.

•  Currently, when parallelizing a m ethod with ADT cloning, a critical method is 

fully parallelized up to the upper bound of number of clones. An improvement 

can be done by adding one clone of an ADT at one iteration of parallelization. 

This can slow down the speed of parallelization and save resources (PEs) to 

find a feasible schedule tha t needs the least amount of resources.



GLOSSARY

A D T  A bstract data  type

A R P C  Asynchronous remote procedure call

C C  Communication cost

C D G  Control dependence graph

C F G  Control flow graph

C R  Clone requirement

C C S  Calling sequence set

D  Deadline

D C R  Direct clone requirement 

D D G  D ata dependence graph 

D U M S  Directly used method set 

E T  Execution time 

E S T  earliest s ta rt time 

E P C  External procedure call 

F T  finish time

G D G  General dependence graph 

IC G  Instance call graph 

IH  Information hiding



IM D G  Inter-m ethod code dependence graph

IP C  Internal procedure call

L P C  Local procedure call

L ST  Latest start tim e

M D G  Method dependence graph

M C G  Method call graph

O D  Out degree

P D G  Program  dependence graph 

P E  Processing element 

R P C  Remote procedure call 

S P G  Statem ent precedence graph 

S R P C  Synchronous remote procedure call 

T C R  Transitive clone requirement 

T U M S  Transitively used m ethod set 

U M  Used method 

U M S  Used method set 

W O D  Weighted out degree

fro n t A function th a t returns the first item on the list 

a  A factor tha t scales the param eter size and packet handling delay 

/? A factor tha t scales number of concurrent ARPCs
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