
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 10-31-1996

A controlled release technique using microporous membranes A controlled release technique using microporous membranes

Stephanie Farrell
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Chemical Engineering Commons

Recommended Citation Recommended Citation
Farrell, Stephanie, "A controlled release technique using microporous membranes" (1996). Dissertations.
1002.
https://digitalcommons.njit.edu/dissertations/1002

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1002?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A CONTROLLED RELEASE TECHNIQUE USING MICROPOROUS
MEMBRANES

by
Stephanie Farrell

A novel controlled release device based on aqueous-organic

partitioning is described. The device comprises a reservoir, bounded by a

microporous or porous membrane in the form of a hollow fiber or flat film.

The reservoir liquid phase and the pore liquid phase are immiscible. The

agent partitions between the phases at the aqueous-organic interface of the

reservoir and the pore mouth, and then diffuses through the membrane pore

liquid into a surrounding aqueous solution. The partition coefficient

significantly influences the rate of release of the agent by reducing the

driving force for diffusion across the fluid-filled membrane pore. The

performance of the system is evaluated using model agents benzoic acid,

caffeine, nicotine and phenylalanine-glycine. Two aqueous-organic

configurations were investigated: an agent in an organic reservoir solution

with water-filled pores, and an agent in an aqueous reservoir with organic-

filled pores. Specifically, the model systems included benzoic acid in three

reservoir solvents (octanol, decanol, and mineral oil) partitioning into water-

filled pores, an aqueous reservoir of nicotine partitioning into either mineral

oil- or octanol-filled pores, and caffeine or phenylalanine-glycine partitioning

into octanol-filled pores. The peptide phenylalanine-glycine was used to

investigate pH-based controlled release from this type of device. Studies

using benzoic acid demonstrate the effectiveness of a thin, nonporous coating

on the release rate. When a fast-dissolving dispersion of the agent is present

in the reservoir, the period of zero order release is extended; when the

dispersion dissolves slowly, the release rate is decreased and the period of

zero order release is extended. Simultaneous release of two agents (benzoic

acid and nicotine, nicotine and caffeine) from a single reservoir and from two

separate reservoirs was achieved. Models are presented for many of these

systems. Solutions have been developed to describe the observed release, and

dimensional analysis was used to identify important parameters which

govern the release rate of the agent from the device. Finally, a new

technique is presented for achieving controlled release of liposomes from a

membrane-type diffusion based controlled release system.

A CONTROLLED RELEASE TECHNIQUE USING MICROPOROUS
MEMBRANES

by
Stephanie Farrell

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Chemical Engineering,
Chemistry and Environmental Science

October, 1996

Copyright © 1996 by Stephanie Farrell
ALL RIGHTS RESERVED

Dr. Basil Baltzis C
Professor .g-Uhemic

aeumeanup
Engineering, NJIT

I Date

APPROVAL PAGE
A CONTROLLED RELEASE TECHNIQUE USING

MICROPOROUS MEMBRANES

Stephanie Farrell

Dr. Kamalesh Sirkar, Dissertation Advisor 	 Date
Professor of Chemical Engineering and Sponsored Chair, Membrane
Separations and Biotechnology, NJIT

1

Dr. David Kafkewitz, Ccimrmittelq--ember 	 Date
Professor of Microbiology, Rutgers University

Dr. David Kristol, Committee Member 	 Date
Professor of Chemistry, NJIT

DC. Norman Lonk, Com.meitree Memb9x."'-
Assistant Profeskr-dfehemical Engfneeri4 NJIT

mate

BIBLIOGRAPHICAL SKETCH

Author: 	 Stephanie Farrell

Degree: 	 Doctor of Philosophy

Undergraduate and Graduate Education:

• Doctor of Philosophy in Chemical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1996

• Master of Science in Chemical Engineering,
Stevens Institute of Technology, Hoboken, NJ, 1992

• Bachelor of Science in Chemical Engineering,
University of Pennsylvania, Philadelphia, PA, 1986

Patent

K. K. Sirkar, S. Farrell, and R. Basu, "Novel Controlled Release Device and
Method Based on Aqueous-organic Partitioning in Porous Membranes",
United States Patent 08/205,996, applied for, February, 1994.

Presentations

S. Farrell and K. K. Sirkar, "Controlled Release Using Aqueous-Organic
Partitioning and Dissolution as Rate Limiting Mechanisms," NAMS Annual
Meeting, Ottawa, Canada, May, 1996.

S. Farrell and K. K. Sirkar, "Controlled Release Using Aqueous-organic
Partitioning: Simultaneous Release of Two Agents and Agents Suspended in
the Reservoir," A.I.Ch.E. Annual Meeting, Miami, FL, November, 1995.

S. Farrell and K. K. Sirkar, "A Novel Technique for Controlled Release,"
Controlled Release Society 22nd International Symposium on Controlled
Release of Bioactive Materials, Seattle, WA, August, 1995.

S. Farrell and K. K. Sirkar, "A Novel Controlled Release Technique,"
A.I.Ch.E. Annual Meeting, San Francisco, CA, November, 1994.

iv

Dedicated to my parents
who have supported my every endeavor.

ACKNOWLEDGEMENT

I am grateful to my advisor, Professor Kamalesh K. Sirkar for the

continual challenge he provided. He has an unlimited capacity to generate

novel ideas and an ability to lead his students to think creatively.

Pablo Delgado was a tremendous help to me, and despite his hectic

schedule he always found time to work in the lab. Soumendu Bhattacharya

from Rutgers University generously shared his time to help with the

preparation of liposomes. I am indebted to Uttam Shanbhag, who is always

willing to put down what he is doing to lend a hand to others. Clint

Brockway from HSMRC has generously shared his time and resources to help

make research go smoothly. Soemantri Widagdo taught me the most

valuable lesson in problem solving: walk before you run.

I am lucky to have been surrounded by a very charismatic and

cooperative group of colleagues and friends. Helen Androutsopoulou and Ann

Marie Flynn helped make the days at N.J.I.T. something to look forward to.

Harry Papadopoulos and his wife Maria Goulimari more than once provided

a couch to sleep on when I had missed the last train home. The members of

the Membrane Separations and Biotechnology research group have created a

very supportive and enjoyable working and learning environment. Judy

Kapp has made all our lives easier .

Jim Sheil has been a loyal and devoted friend for half a lifetime. His

good sense of humor and unique perspectives give an extra spin to life. My

vi

faithful companion Muti sat by my side on many cold nights while I worked

at the computer, and frequently she even helped me type.

My husband Peter Cole has given me unconditional understanding and

encouragement. He has patiently and unselfishly accepted so little of my

time — I can only hope that it will be a pleasant adjustment for him when he

sees more of me.

vii

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1 .1 Background 	 1

1 .2 Controlled Release Using Aqueous-Organic Partitioning 	 3

1 .3 Liposome Release Studies 	 12

2 MATHEMATICAL MODEL 	 16

2 .1 Introduction 	 16

2 .1.1 The Problem 	 16

2 .1.2 Overview of the Solution Procedure 	 17

2 .1.3 Simplifying Assumptions 	 18

2 .2 Agent Dissolved in the Reservoir: Problem Formulation 	 19

2 .2.1 Dimensional Equations 	 19

2 .2.2 Dimensionless Equations 	 21

2 .3 Agent Dissolved in the Reservoir: Solutions 	 24

2 .3.1 Flat Membrane (Cartesian Coordinates) 	 24

2 .3.2 Hollow Fiber (Cylindrical Coordinates) 	 26

2 .3.3 Coated Hollow Fiber 	 27

2 .4 Dispersed Reservoir Phase: Problem Formulation 	 31

	

2 .5 Solution (Dispersed Phase in Reservoir) 36

2 .5.1 Flat Membrane (Cartesian Coordinates) 	 36

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

2 .5.2 Hollow Fiber (Cylindrical Coordinates) 	 37

3 EXPERIMENTAL PROCEDURES 	 39

3 .1 Solvents and Solutes 	 39

3 .2 Membranes 	 39

3 .3 Liposome Preparation 	 42

	

3 .4 Analysis 43

3 .4.1 Benzoic Acid, Caffeine, Nicotine and Phe-Gly 	 43

3 .4.2 Liposome 	 47

	

3 .5 Determination of Distribution Coefficient 50

	

3 .6 Diffusion Coefficient Measurement 51

3 .6.1 Benzoic Acid, Caffeine, and Nicotine 	 51

3 .6.2 Liposome 	 52

3 .7 Measurement of Solids Density in Solvent 	 53

	

3 .8 Membrane Preparation 53

3 .9 Introduction of Agent into Reservoir 	 55

3 .10 In Vitro Release Studies 	 58

4 RESULTS AND DISCUSSION 	 61

4 .1 Experimental Results 	 61

4 .1.1 Distribution Coefficients 	 61

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4 .1.2 Diffusion Coefficients 	 62

4 .1.3 Solid Density 	 68

4 .1.4 Solution in Reservoir: In Vitro Experiments 	 68

4 .1.5 Suspension in Reservoir: In Vitro Experiments 	 79

4 .1.6 Coated Membrane Experiments 	 85

4 .1.7 Simultaneous Release of Two Agents 	 89

4 ,1.8 Pure Liquid Agent in the Reservoir 	 94

4 .1.9 Peptides: In Vitro Experiments 	 95

4 .1.10 Liposomes: In Vitro Experiments 	 97

	

4 .2 Dimensional Analysis 98

4 .2.1 Uncoated Membrane, Solution in Reservoir 	 98

4 .2.2 Uncoated Membrane, Suspension in Reservoir 	 107

4 .2.3 The Coated Membrane 	 110

5 CONCLUSIONS AND RECOMMENDATIONS 	 112

5 .1 Conclusions 	 112

5 .2 Recommendations 	 114

NOTATION 	 116

APPENDIX 1 	 118

APPENDIX 2 	 164

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

APPENDIX 3 	 188

REFERENCES 	 190

xi

LIST OF TABLES

Table 	 Page

1 Membrane Dimensions 	 40

2 Membrane Materials 	 41

3 Distribution Coefficients for Agents in Aqueous-Organic Systems 	 61

4 Distribution Coefficients for Phe-Gly Between Water and
Octanol at Various pH Values 	 62

5 Calculated'-c.) and Experimentally Measured Binary Diffusion
Coefficients of Agents in Organic Solvents 	 63

6 Diffusion Coefficients of Agents in Water 	 67

7 Densities of Pure Powder Form Crystalline Agents 	 68

8 Nomenclature Equivalents for the "Flat Membrane, Solution in
Reservoir" Problem 	 facing 118

9 Nomenclature Equivalents for the "Hollow Fiber: Solution in
Reservoir" Problem 	 facing 130

10 Nomenclature Equivalents for the "Coated Fiber: Solution in
Reservoir" Problem 	 facing 144

11. Nomenclature Equivelents for the "Flat Membrane: Dispersed
Phase in Reservoir" Problem 	 facing 164

12 Nomenclature Equivalents for the "Hollow Fiber: Dispersed
Phase in Reservoir" Problem 	 facing 175

7di

LIST OF FIGURES

Figure	 Page

1 The physical situation in a membrane controlled release device using
aqueous-organic partitioning 	 4

2 The effect of partitioning on the driving force for diffusion across the
liquid-filled membrane pores 	 6

3 The reservoir and membrane regions of the controlled release device.... 19

4 The coated hollow fiber 	 28

5 The controlled release device with dispersed solids in the reservoir 	 32

6 Calibration for benzoic acid on Hypersil ODS C-18 column 	 44

7 Calibration for caffeine on Spherisorb column. 	 44

8 Calibration for nicotine on Spherisorb column 	 45

9 Calibration for benzoic acid on Spherisorb column 	 45

10 Calibration for Phe-Gly on Nucleosil 100-5 C18 column 	 46

11 Calibration for toluene on Hypersil ODS C-18 column 	 47

12 Absorbance spectrum of SUVETs 	 48

13 NBD fluorescence spectrum 	 49

14 Calibration for SUVET using absorbance spectrophotometry. 	 49

15 Calibration for SUVET using fluorescence spectrophotometry. 	 50

16 The Two-Reservoir Diffusion Cell System 	 52

17 The single reservoir controlled release cell for flat membrane studies 	 56

18 The two reservoir controlled release cell used for flat membrane
studies 	 57

LIST OF FIGURES
(Continued)

Figure 	 Page

19 An in vitro release experiment using hollow fibers 	 59

20 An in vitro release experiment using a flat membrane 	 60

21 Diffusion coefficient of nicotine in mineral oil 	 64

22 Diffusion coefficient of nicotine in octanol 	 64

23 Diffusion coefficient of caffeine in octanol 	 65

24 Diffusion of benzoic acid in mineral oil 	 65

25 Diffusion coefficient of SUVET in water 	 67

26 The release profile of benzoic acid from a nylon porous hollow
fiber with water-filled pores... 	 facing 69

27 The release profile of benzoic acid from a nylon hollow fiber with water-

	

filled pores. 70

28 The release profile of benzoic acid from a flat membrane device using a
Celgard® 2400 flat membrane with water-filled pores. 	 71

29 Controlled release of benzoic acid using a water-swollen Cuprophan 150

	

PM regenerated cellulose membrane.. 72

30 The release profile of nicotine from nylon hollow fibers with mineral oil-

	

filled pores. 74

31 The release profile from a flat membrane device using a Celgard® 2400
flat membrane with mineral oil-filled pores. 	 75

32 The release profile for nicotine from a flat membrane device using a
Celgard® 2400 flat membrane with mineral oil-filled pores 	 76

33 Extended release of benzoic acid using a suspension. 	 80

34 Extended release of benzoic acid using a suspension. 	 81

xiv

LIST OF FIGURES
(Continued)

Figure 	 Page

35 The effect of rate limiting dissolution on the release profile. 	 82

36 Extended release of caffeine using a suspension. 	 84

37 Extended release of caffeine using a suspension. 	 84

38 The effect of a nonporous external membrane coating on the release

	

profile. 86

39 The release profile of benzoic acid from a silicone coated hollow fiber. 	 87

40 The effect of a wax coating on the release profile of benzoic acid from
nylon porous hollow fibers. 	 88

41 Simultaneous release of nicotine and caffeine from separate reservoirs. 90

42 Release profiles for benzoic acid and nicotine from separate reservoirs. 91

43 Simultaneous release of nicotine and benzoic acid from nylon
porous hollow fibers. 	 facing 92

44 Simultaneous release of nicotine and caffeine from a single reservoir. . 93

45 Controlled release of an agent initially a pure liquid contained in the

	

reservoir. 94

46 pH dependence of release profile for the peptide Phe-Gly 	 96

47 DPPC release profile 	 98

48 The effect of membrane resistance on the release profiles, for
m1,2 = 1 	 100

49 The effect of membrane resistance on the release profile, for
m 1 ,2=100 	 100

50 The effect of partitioning on the release profile, for Ag=0 1 	 101

xv

LIST OF FIGURES
(Continued)

Figure	 Page

51 The effect of -cmtrw on the release profile. w = 1, m1,2 = 100. 	 102

52 The effect of membrane resistance on the release profile for the hollow
fiber configuration, m 1 , 2=100 	 103

53 The effect of partitioning on the release profile from a hollow fiber device,
w = 0 1 	 104

54 Concentration profiles within the hollow fiber device, m1,2 = 100 and
w = 1 	 105

55 Concentration profiles within the hollow fiber device, m1,2 = 100 and
w = 0 1 	 106

56 Concentration profiles in the hollow fiber device for m1,2 = 100 and
xif = 1 0 	 108

57 The effect of dissolution rate control on the release profile from a flat
membrane device; t ritm = 1 	 109

58 The effect of on the release profile; -c dfrcr = 100 	 110

59 The effect of the coating thickness on the release profile 	 111

CHAPTER 1

INTRODUCTION

1.1 Background

Controlled release has gained increasing attention recently in medical,

pharmaceutical, cosmetic, consumer product, and agricultural industries.

Controlled release systems are designed to deliver an agent at a specific rate

for a definite period of time. Some controlled release systems are designed to

release an agent in response to environmental conditions, while others are

built to deliver an agent at a constant rate over a period of time (zero order

release).

Traditional methods of drug delivery include ingestion and injection.

Controlled release technology has modified injectables and ingestibles to

provide a supply of the drug over long periods of time: instead of taking an

ordinary tablet four times per day, one might take a controlled release tablet

once per day. Transdermal patches and medical implants have also been

introduced as alternatives to traditional methods of drug delivery. A

transdermal patch provides delivery of an agent through the skin for a period

on the order of days; a medical implant delivers an agent for months or years.

Pesticides, fertilizers, and other agricultural agents are traditionally applied

by spraying or broadcasting. Controlled release tape or strip dispensers, and

1

2

erodible matrix systems provide attractive alternatives to these traditional

methods.

With traditional methods of application or delivery of an agent, there

is a transient increase and decrease in agent concentration levels: after

administration of the agent there is a rapid rise in concentration of the agent,

which sometimes reaches a toxic level before decreasing eventually to an

ineffective level. Because a controlled release system is able to extend the

duration of the agent's activity while maintaining an effective concentration

of the agent, these periods of toxicity and ineffectiveness are avoided. Since

less total agent is used, the system is more economical. There is reduced

exposure to toxic compounds. For delivery of pharmaceutical agents and

drugs, controlled release ensures improved patient compliance and

sometimes localized delivery of the agent to the desired site.

Three basic types of controlled release mechanisms are reviewed by

Langer [1]. These mechanisms are diffusion, chemical reaction, and solvent

activation. Most controlled release systems used today employ one or more of

these basic mechanisms for rate control, and there is a wide range of

formulation of systems which use these mechanisms. This work involves

diffusion-based controlled release, and a brief description of previously

developed diffusion-based systems will provide the background necessary for

a full description of the novel device presented and studied in this work.

There are two basic types of diffusion-based controlled release systems:

the membrane system and the matrix system. The membrane system

3

consists of a reservoir initially containing the agent, surrounded by a rate

controlling polymer (i.e. membrane) or film. Over a period of time the agent

diffuses out through the membrane into the surroundings. Glade Plug Ins

are a familiar example of a membrane type device. When the device is

plugged in, the fragrance-containing reservoir warms; this increases the

permeability of the fragrance through the membrane and controlled release

of the fragrance is provided for a period of about 45 days. In a diffusion-

based matrix system, an agent is initially dissolved or dispersed uniformly in

a polymer matrix, and over a period of time the drug diffuses out of the

matrix and into the surroundings, leaving the matrix intact. Flea collars

commonly used to keep pets pest free for several months are a familiar

example of a diffusion-based matrix type controlled release device.

1.2 Controlled Release Using Aqueous -Organic Partitioning

The release rate of an agent from a diffusion-limited reservoir-type polymeric

controlled release device is governed mainly by the agent's rate of diffusion

across the polymeric surface which surrounds the reservoir. The diffusion

rate is typically influenced by the agent concentration in the reservoir, the

agent solubility and diffusivity in the membrane, and the membrane

thickness.

The novel device described here employs a rate-controlling mechanism

based on the partitioning of the agent between an aqueous and an organic

4

phase. The device comprises an agent-containing reservoir bounded by a

microporous /porous membrane, either a hollow fiber or a flat film. The pores

of the microporous /porous membrane are filled with a liquid immiscible and

sparingly soluble in the reservoir phase fluid. The agent partitions between

an aqueous phase and an organic phase at the interface of the reservoir and

the membrane pore mouth. The microporous /porous membrane may be

uncoated, or coated with a layer of thin, nonporous material. The physical

using aqueous-organic partitioning

situation is shown in Figure 1 for the case of an agent in an organic reservoir

solution, partitioning into water-filled pores. The device is physically similar

to the membrane-bound reservoir device patented by Zaffaroni [2], but it

5

exploits aqueous-organic partitioning as a mechanism which drastically

reduces the driving force for diffusion. As a result, longer term release can be

achieved using a saturated and concentrated solution of the agent in the

reservoir phase; release can be extended and additional rate control provided

by using an agent in excess of its solubility concentration in the reservoir.

The reservoir phase may even contain the pure liquid agent as long as it is

immiscible with the pore liquid. Figure 2 shows the effect of partitioning at

the aqueous-organic interface between the reservoir and the pore on the

driving force for diffusion across the membrane.

The system described by Zaffaroni [2] lists a variety of reservoir and

pore phases without suggesting specific combinations involving aqueous-

organic partitioning. Further, the rate of diffusion through the membrane

pores is suggested to be governed mainly by the diffusivity of the agent in the

pore liquid, and the membrane tortuosity and porosity. In order to keep the

driving force for diffusion across the membrane to a minimum, Zaffaroni's

device requires an extremely low concentration of agent in the reservoir.

This is in direct contrast to the device described here, in which the agent's

reservoir concentration is ideally kept high, and the driving force for diffusion

across the membrane is reduced by partitioning.

Physically, all systems in which the agent exists in two or more phases

(i.e., a reservoir and a membrane) have partitioning of the agent between the

two phases. The existence of partitioning in membrane-based controlled

Figure 2. The effect of partitioning on the driving force for
diffusion across the liquid-filled membrane pores

release systems has been pointed out by several authors [2], [3], [4], [5], [6],

but aqueous-organic partitioning of the agent between the donor reservoir

6

7

solution and the pore fluid has not been experimentally or conceptually

exploited as a means for controlling the release rate across the membrane by

reducing the driving force for diffusion. In addition, the microporous /porous

membrane with liquid-filled pores is a fundamental and distinguishing

feature of the device used here, which affords flexibility in rate control that a

nonporous membrane does not.

Many higher molecular weight nonpolar agents have significant

solubility in common polymeric membrane materials a factor which is

undesirable when a slow release rate is desired. The same agent, however, is

likely to have a low solubility in water. By immobilizing water in the pores of

a membrane, a small concentration difference across the membrane exists,

and hence a slow release rate of such an agent is effected. If the agent were

present in aqueous solution in the reservoir, the total amount of the agent

present in solution would be limited by its low solubility in water. The

potential to have a much larger total amount of agent initially present in the

reservoir is provided by introducing the agent in an organic solution. The

agent partitions between the organic (reservoir) phase and the aqueous (pore)

phase at the interface between the reservoir and the pore mouth, with a high

concentration on the organic side and a low concentration on the aqueous

side. This system has the advantage of having a large amount of agent

present initially in the reservoir, while maintaining a relatively slow rate of

diffusion through the membrane. This is aqueous-organic partition-based

controlled release.

Conversely, the controlled release of an agent having a high solubility

in water may be achieved by containing an aqueous solution of the agent in

the reservoir, with partitioning at the interface of the reservoir and the

organic-filled pores.

So far the agent was considered to be in aqueous or organic solution in

the reservoir of the device. However, higher agent loading can be achieved if

the agent is present initially in suspension. Provided dissolution of the agent

is fast compared with its rate of diffusion across the membrane, a zero order

release rate, still controlled by aqueous-organic partitioning, will be achieved

for an extended time. If, however, the interfacial mass transfer between the

dispersed solids and the surrounding reservoir solution is slow relative to

diffusion across the membrane, both dissolution and partitioning will control

the release kinetics. In this case the device will be a hybrid

membrane/matrix diffusion limited controlled release system.

This type of controlled release device, usable as a patch or an implant,

has a number of advantages over conventional polymeric membrane devices.

Device formulation is easy since the agent is contained in a preformed

reservoir in aqueous or organic solution, eliminating the need for

incorporating the agent into a polymer matrix and shaping it. Agent stability

during the loading process is not a problem (this is a concern, for example,

with heat sensitive agents during spinning conditions used in the melt

spinning technique described by Dunn et al. [7]). Solvent handling problems

such as arise in the wet phase inversion process for fibers [8] are avoided

9

since minimal amounts of solvent are used. By careful selection of the

solvent/solute (agent)/membrane system, enormous flexibility in the rate of

release of agent can be achieved: microporous membranes designed to be

highly efficient mass transfer devices can be used instead as rate controlling

devices. A zero order release rate can be achieved for an extended period of

time; multiple agents may be released easily at different rates.

The objectives of this thesis are to demonstrate the feasibility and

potential for microporous /porous membranes as controlled release devices in

aqueous-organic partition-based systems, and provide a basic analysis as well

as information regarding the agent release rates. The work is extended to

include the hybrid matrix/membrane diffusion limited system described

above. Various solvent/agent systems were investigated, different

membranes were studied, and the significance of various factors in achieving

zero order release of the agent are evaluated.

The controlled release behavior for systems having partitioning of the

agent (1) between an organic reservoir solution and water-filled pores, and (2)

between an aqueous reservoir solution and organic-filled pores was

investigated using different agent/solvent systems.

The first systems studied used an agent in solution in an aqueous or

organic reservoir. The organic reservoir/water-filled pores systems employed

benzoic acid as an agent, and decanol or octanol as reservoir solvents. The

aqueous reservoir/organic-filled pores systems studied used aqueous nicotine

10

in the reservoir, partitioning into pores filled with mineral oil. In these

studies, benzoic acid was chosen as a model agent because of its high

solubility in organic solvents such as octanol and decanol, and its relatively

low solubility in water. Partitioning of benzoic acid between an aqueous

phase and an organic phase such as octanol or decanol greatly favors the

latter. Nicotine was chosen as a model agent for its high solubility in water:

it was therefore an ideal candidate for high loading in an aqueous reservoir.

The release of an agent originally present in suspension is investigated

for two rate-limiting types of release. Benzoic acid dissolves rather quickly

into decanol and into octanol, and thus its release is likely to be partition-

controlled. Benzoic acid dissolves very slowly into mineral oil; therefore its

release is slowed by the dissolution step.

Caffeine has a moderately low solubility in both water and organic

solvents like octanol. Despite its low solubility in water, dispersed caffeine

dissolves fairly quickly into water. It was used to study the effect of fast

agent dissolution into an aqueous reservoir.

Toluene has a low solubility in water, and is immiscible with water.

Toluene was used as a model agent to investigate controlled release of a pure

liquid agent in the reservoir, with rate control provided by limited solubility

of toluene in the water-filled pores of the membrane.

This type of device lends itself quite naturally to effecting controlled

release of two agents at different rates. This can be done using two agents in

the same reservoir, being released simultaneously through the same

11

membrane. Alternatively, the two agents can exist in two separate and

contiguous reservoirs bounded by separate membranes. The latter situation

provides additional flexibility in controlling the release rate of each agent.

For simultaneous release of two agents from a single reservoir, the

system of caffeine and nicotine in an aqueous reservoir diffusing through

octanol-filled membrane pores was studied. For independent simultaneous

release from two separate reservoirs, a system with one aqueous reservoir

and one organic reservoir was studied: in the first reservoir was aqueous

nicotine, which partitioned into octanol-filled pores; in the second reservoir

was benzoic acid in octanol, which partitioned into water-filled pores.

The aqueous-organic partition coefficient of peptides is highly pH

dependent. pH based controlled release of the dipeptide Phe-Gly was

investigated using this type of aqueous-organic partition based system. Phe-

Gly was present in an aqueous reservoir, and partitioned into octanol-filled

pores. The configuration of the device is similar to the supported liquid

membrane configuration used by Wong et al. [9] for peptide separation. This

system was studied for a range of pH, to determine the effect of pH on the

release profile.

Several types of microporous /porous hollow fibers and flat membranes

(both hydrophilic and hydrophobic) were used to illustrate experimentally the

influence of geometric parameters on the rate of release of solute through

water-filled pores. Release rates from systems using a flat microporous film

were also studied. Finally the release rates from silicone-coated hydrophobic

12

microporous hollow fibers, and the same fibers with an additional wax

coating were studied. The performances of coated and noncoated fibers were

compared to evaluate the effectiveness of the silicone and wax coatings in

reducing the rate of agent release.

A model was developed for the following types of systems studied:

dissolved agent in the reservoir (hollow fiber, coated hollow fiber, and flat

film), and dispersed agent in the reservoir (both hollow fiber and flat film).

Analytical solutions were obtained, and concentration profiles as a function of

distance and time in the reservoir and the membrane regions of the device, as

well as transient concentrations of the surrounding well stirred water bath

are provided. Since the model considers concentration gradients within the

device as well as the transient concentration of the surrounding bath, it

provides a more realistic simulation of the physical situation than some of

the simplified models used commonly to describe other diffusion-limited

systems where the surrounding bath is assumed to have zero concentration

always.

1.3 Liposome Release Studies

This thesis is primarily and overwhelmingly focused on aqueous-organic

partitioning based controlled release of model agents present in a solution in

a reservoir with or without an additional amount of agent being in

suspension. A totally different concept of controlled release of agents has also

been explored very briefly in this thesis. This involves liposomes in aqueous

13

solutions and their controlled release through microporous /porous

membranes.

Liposomes are hollow structures having dimensions between 0.005 gm

and 100 gm, made of a phospholipid shell, the structure of which is similar to

biological membranes. This structure in an aqueous medium is that of a lipid

bilayer in which the polar hydrophilic phosphate groups form the surfaces of

a sandwich and the nonpolar hydrophobic tail is on the interior of the

sandwich, protected from water. The structure is stabilized by wrapping

itself into a sphere-like form which is relatively stable. The sphere-like shell

encapsulates a liquid interior which can contain such substances as peptides

and proteins, hormones, enzymes, antibiotic and antifungal agents,

anticancer agents, DNA and whole virus [10, 11, 12]. Because of the

structural similarity between the lipid bilayer and cell membranes, liposomes

can penetrate cells effectively, and can act as drug carriers which effectively

deliver drugs to cells that a free drug would not penetrate. Liposomes also

have cosmetic, environmental, diagnostic, agrochemical, and other

nonmedical applications [13]. Small liposomes that have a single lipid bilayer

are called small unilamellar vesicles (SUVs). Large many-layered liposomes

are sometimes produced; they are known as MLVs, multilamellar vesicles.

A free drug injected into the blood stream typically achieves a

therapeutic concentration for a short duration, due to metabolism and

excretion. Drugs encapsulated by liposomes achieve a therapeutic level for a

14

longer duration, as the drug must first be released from the liposome before

metabolism or excretion. Conventional liposomes (CL) introduced by

intravenous injections encounter rapid uptake by phagocytic cells of the

immune system, predominantly in the liver and spleen [12]. Sterically

stabilized liposomes exhibit specific reactivity and stay much longer in the

blood. A drug encapsulated in a Stealth liposome (one capable of avoiding a

macrophage in the circulatory system) will remain in a therapeutic

concentration for a longer duration [12]. The drug or active agent inside the

liposome may be released from the liposome into the cell by one or more of

three mechanisms [11]: a) a liposome adsorbing onto the cell membrane may

release its cargo into the extracellular fluid -- this could allow the free drug to

pass through the cell membrane into the cell, b) if the liposome fuses with

the cell membrane and releases the drug directly into the cytoplasm and c) if

the liposome is ingested by endocytosis and is subjected to degradation by

organelles called lysosomes inside the cell, which releases the liposome cargo

into the cytoplasm.

If it is desired to maintain the desired therapeutic concentration of the

drug in the body for a still longer period of time, there must be some way to

control the delivery of the drug from the liposome to the cell. One way to do

this would be to control the release of liposomes to the body or circulation

system, which would, in turn, control the release of the drug from the

liposomes to the cell. A method for controlling the release rate of the

liposomes from the source (the reservoir of a controlled release device) is

15

presented in this thesis. The technique uses a device similar to the one

described above in Section 1.2, except that the reservoir and pore fluids in the

device comprise one continuous phase rather than an aqueous and an organic

phase. The reason for using one continuous phase is that the liposomes

assemble themselves to orient their bilayer according to the properties of the

surrounding solution. Since the orientation of the bilayer of a liposome in

aqueous (or polar) solution would be the reverse of its orientation in organic

(non-polar) solution, using aqueous-organic partitioning would jeopardize the

integrity of the lipid bilayer.

In this technique for controlled release of liposomes from an aqueous

medium, the reservoir contains the liposomes in an aqueous solution. The

reservoir is bound by a porous membrane, the pores of which are large

enough to accommodate the passage of the liposomes. The pores of the

membrane are filled with water, and the liposomes are delivered into

aqueous surroundings. No specific driving force is employed except that of

Brownian motion.

The objectives of this part of the thesis are to establish the potential

for and feasibility of controlled release of liposomes using a porous membrane

system, and to determine the basic release characteristics of the liposomes

from the system.

CHAPTER 2

MATHEMATICAL MODEL

2.1 Introduction

2.1.1 The Problem

The mathematical model which predicts the release profile of an agent from

the hollow fiber or flat membrane controlled release device described in detail

in Chapter 1 is presented here. The model describes the release of small

molecules such as nicotine, caffeine, and benzoic acid. Both hollow fiber and

flat membrane device geometries are considered. Initially the solute to be

released is present in solution or suspension in a reservoir. The reservoir is

bounded by a microporous membrane, with or without a thin nonporous

coating, the pores of which are filled with a pore liquid immiscible with the

reservoir phase. The coating, if present, would be on the side not adjacent to

the reservoir, i.e. on the outer surface of the membrane. The device is

submerged in a well stirred water bath. The solute diffuses through the

reservoir toward the membrane. At the interface between the reservoir and

the pore, the solute partitions between the reservoir and the pore liquid

phases. It continues to diffuse through the pore toward the external bath. At

the interface between the pore and the external bath, the solute partitions

again between phases (this may be one continuous phase if the pores are

filled with water). The well stirred bath concentration changes with time. In

16

17

Sections 2.2 and 2.3 a solution of the agent in the reservoir is considered. An

additional dispersed phase of the agent in the reservoir is considered in

Sections 2.4 and 2.5.

Problems similar to this one have appeared in the literature, mainly

with applications to heat transfer. Heat transfer problems typically have

boundary conditions different from those posed herein. In heat transfer there

is continuity of fluxes with no partitioning at the boundaries: the

temperatures of two different phases are equal at the interface unless there

is a contact resistance. In addition, problems addressing conduction in

composite cylinders have been solved subject to the following surface

conditions: insulation [14], constant temperature [15], exposure to an infinite

medium initially at zero temperature [16] .

Barrer [17] presents a formal theory for diffusion through membranes,

for microporous membranes as well as laminates, but this development

considers the case where the concentrations on both sides of the membrane

are constant.

2.1.2 Overview of the Solution Procedure

Models for the following physical situations have been developed: reservoir

containing agent in solution (noncoated flat membrane, noncoated

microporous hollow fiber, and coated hollow fiber), and reservoir containing

dispersed as well as dissolved agent (noncoated flat membrane and noncoated

microporous hollow fiber). Governing equations were solved analytically

18

together with their boundary and initial conditions in the Laplace domain.

These solutions were inverted numerically to obtain concentration profiles of

the agent within the device as functions of distance and time.

2.1.3 Simplifying Assumptions

In developing the models several simplifying assumptions were made. The

following assumptions apply to each model presented (assumptions

associated with particular models will be presented in the corresponding

section):

• The diffusion of the agent molecules is Fickian.

• There are no interfacial boundary layers.

• Diffusivities of the agent in the reservoir and the pore liquid phase are

independent of concentration.

• The aqueous-organic partition coefficient for the agent is independent of

concentration.

• The surrounding water bath is perfectly stirred.

• The aqueous and organic phases are completely immiscible.

• The organic solvent and water are completely insoluble in each other.

• Reservoir and bath solutions are ideal.

• Temperature is uniform.

2.2 Agent Dissolved in the Reservoir: Problem Formulation

2 .2.1 Dimensional Equations

Consider first the situation in which the agent initially exists in solution in

the reservoir at a concentration below its saturation concentration in the

carrier (solvent). Figure 3 represents the device in either flat or cylindrical

geometry, with the distance variable designated x. Region 1, (0 x a),

x = 0 	 x = a x = b

Reservoir Membrane Surrounding
(region 1)	 (region 2)	 fluid (region w)

Figure 3. The reservoir and membrane
regions of the controlled release device. The
agent partitions between an aqueous and an
organic phase at x = a, and is released to well-
stirred surroundings at x = b.

represents the reservoir where the agent is in solution in an aqueous or

19

organic carrier, or is in pure liquid form. Region 2 represents the membrane,

20

and extends from x = a to x = b . The surrounding water bath, x b, is

designated region w. The governing equation for the concentration of agent

in the reservoir (region 1) is

D V 2C aC1	(1)
oat

The governing equation for the agent in the membrane (region 2) is

D 2V 2C 2
dC

2 	(2)

Here D2 is the effective diffusivity of the agent in the membrane, and is

expressed as its free diffusivity in the pore liquid medium times the ratio of

membrane porosity and tortuosity:

D free E
D2 — 	 (3)

Diffusivity is assumed to be independent of concentration.

The boundary conditions are:

C 1 (0, t)< 	 (4)

Cja,t). m12C 2 (a,t) 	 (5)

D iVC i (a,t) = D 2VC 2 (a,t) 	 (6)

dC
v 	 2 (u, t) = —D2 0C2M 2,w VC 2 (b, t) 	 (7)
w dt

The first boundary condition reflects the condition that the concentration at x

= 0 (the center of the hollow fiber or the bottom of the reservoir) must be

finite. The second boundary condition represents equilibrium partitioning at

the interface between the reservoir and the pore liquid phases; m 1 ,2 is the

21

equilibrium partition coefficient, assumed to be independent of concentration

(m i j is defined as the ratio of equilibrium concentrations of agent in region i

to region j):

mij 	
(8)

The third boundary condition represents continuity of agent flux across the

interface between the reservoir and the pore. The last boundary condition is

a simple unsteady state material balance on the agent at the outer wall of

the membrane; m 2 ,w is the equilibrium partition coefficient between the pore

phase and the water bath (equal to 1 if both are water and the pore does not

impose any steric restrictions to solute partitioning etc.) and cx2 is the

membrane area at the outer wall.

The initial conditions indicate that all of the agent is initially present

in the reservoir, and none is present in the pore:

	

C i (x 5.. a, 0). C i° 	(9)

C 2 (ct x b, 0) = 0	 (10)

2.2.2 Dimensionless Equations

Nondimensionalizing the equations facilitates identification of important

design parameters. First, the following dimensionless variables are

introduced:

a 	 - 	
Un=to

C 	
= 1, 2, s)	 (11)

- a)

22

The dimensionless group En was introduced separately for each region to

emphasize the importance of the different characteristic lengths in each

region. Writing equations (1) and (2) in semidimensionless form (leaving t

dimensional), the characteristic times for diffusion through each region

become apparent:

dU1
(12)

— D1 at

—
a)2 aU2 V 2U2 - 	 (13)

	D 2 	at

The boundary conditions, in semidimensionless form, are

	U 1 (0, t) < 	 (14)

U 1 (=1, t) m1,2U2(4 °,t)	 (15)

\WA = 1, t) =
D

2 VU
2 (

2 = 0, t) 	 (16)

Vw
 dEl

2 (42 = 1, t) = - D2 a2m 2,u) vu2 (42 = t)
at 	 b — a

In order to make the equations fully dimensionless, the following

dimensionless times are defined:

D t 	 D 2 t
01 - 	 0 =1 	a 2 	 2 (b—a) 2

Note also that the appropriate diffusivity for each region is used in the

expression for O n. n and On are, of course, related to x and t respectively. In

order to solve the coupled differential equations, the independent variables

(17)

(18)

23

for each region must be the same. Let these general independent variables

be called and 0. and 0 are chosen to be normalized using b and D 1 ; this

choice of definition has no bearing on the ultimate solution of the problem.

=
x 0 =

D t
b

The intermediate step of defining n and 0„ was performed to demonstrate

how meaningful time constants are extracted from the governing equations.

In dimensionless form using and 0, the governing equations for regions 1

and 2 (equations (1) and (2)) are

V 2U -
dUi
90

V2U
D aU2
	(21)

2 — D2 (90

Nondimensionalizing the boundary conditions in equations (4) through (7)

yields:

U1(0,t)<

U li 	 ci,0)=m 1 ,2U 2 (b-,61)

(a
DiVU i — 0 .D 2 VU 2

)

9U2
, 0) = 	 U 2 (1 , 0)bm4,D,a2 ae

The dimensionless initial conditions are

a
() =1—, 1

1 	b	
(26)

(19)

(20)

(22)

(23)

(24)

(25)

U 1
(a

s
(a

s
)

t D 1 •
U 2 = A3 expky-T2 . s1+ A 4 exp (35)

24

ia
U2 - 	 5. 1, 0 = 0 	 (27)

Next the dimensionless governing equations for regions 1 and 2, and

the boundary conditions are transformed with respect to 0 into the Laplace

domain. The governing equations (20) and (21) become

V 2 U 1 =-1+sU 1	(28)

V 2 U 2 = -

D 1
sU 2 	(29)

D 2

Upon transformation of the boundary conditions, the following are obtained:

U1(0, s) <

- a 	 - a
D VU s - D VU91 	 - 	 - 2	 -

u

Vw.Di
	 SU2 (1, o) —vu 2(1, o)
bin 2,tvD2a2

2.3 Agent Dissolved in the Reservoir: Solutions

2.3.1 Flat Membrane (Cartesian Coordinates)

The solutions to the governing differential equations for regions 1 and 2 in

the Laplace domain (equations (28) and (29)), are

U 1 = 1- + A l exp[N;]+ A 2 exp[- 4.1:s] 	 (34)

D 2 [A 3
Di
n s exp
.L/ 2

(38)
a D

2

25

Where each A i is a constant of integration. Next the boundary conditions

(equations (22) through (25)) are written in terms of the solutions for regions

I and 2 in the Laplace domain

A i — A 2 NITs 0	 (36)

1 a -

—
s

+A i exp[—
b

[--

	- \	 (37)
a D 1 	a D

M
12
 A 3 exp —

b
—
D 2	 b

S A4 exp — — 	 s
D 2

D,(A,V; exp[ci-f; 	 _
	 ,--

— A2 NI-;
exp—

a
b -Vs])

a2D2 LAr,
a D

s exp
2

VwDiS
7 _	 A3 exp + A 4 exp[— D1 s

2

s
D2

(39)

Equations (36) through (39) are solved simultaneously using Mathematica ®

(Wolfram Research, 1991) to obtain expressions for A 1 , A2, A3, and A4 as

functions of s (see Appendix 1). These expressions are substituted into the

analytical solutions for regions 1 and 2 given in equations (34) and (35),

which are then inverted numerically by the IMSL (Visual Numerics,

Houston, TX) subroutine DINLAP which uses the method of de Hoog [18].

The program was run on a VAX VMS Version 5.5-2 operating system using a

DEC Fortran compiler Version 6.0-1 for OpenVMS VAX Systems. The

FORTRAN code is listed in Appendix 1.

(42)I D, s
D 2

U2 A 71 0

26

The results are concentration profiles of the agent in regions 1 and 2 as

functions of dimensionless distance and time. The concentration of the agent

in the well stirred water bath is related to the concentration of the agent at

the outer wall of the membrane (4 = 1) by

U 2 (1, e)
— 	 (40)

M2,w

2.3.2 Hollow Fiber (Cylindrical Coordinates)

The solutions to the governing differential equations for regions 1 and 2 in

the Laplace domain expressed by equations (28) and (29) in cylindrical

coordinates are:

—
U 1 =-

1
+A 51 0 (41/;)+A 6 K 0(j) 	 (41)

Where I 0 (x) and I(x) are modified Bessel functions of the 0th kind. Equation

(30) can be applied immediately to equation (41) to obtain A6 = 0. The

remaining boundary conditions, written in terms of the solutions given by

equations (41) and (42) are

1
((

a ilD 	 D	1
+ Ad ri

i -a
.Nrs = mi 0 Aii„ — —2 	(--- 	 a Fss 	0 „ b 	 j 	A.	 , u 7., D 2)s +A

8
K
° b D 2u

	 /

A6/1 (---b
,f;
	D

= ---1
A ,11 b D

Ls — A K a Ps
a \ \ D

1	 7	 2	 8 1 b D 2

	(a l D	 (D

1 ,

(43)

(44)

27

(45)

a21112) (A711 - A8	 1 (Dir-c-s —D S
Vw --2 i 2)(
D i

i 	 \Di (11
—
D1

A I
7 	° ,,,. + 4,1C°11—s

D2
s

D2)
s

\, 	 D2))

These expressions are solved simultaneously by Mathematica® to obtain

expressions for A5, A7, and A8. Upon substitution of the expressions for A5,

A7, and A8 into equations (41) and (42) numerical inversion yields

concentration profiles of the agent in regions 1 and 2 as functions of

dimensionless distance and time. The FORTRAN code is listed in Appendix

1. The concentration of the agent in the well stirred water bath is related to

the concentration of the agent at the outer wall of the membrane (4 = 1) by

equation (40).

2 .3.3 Coated Hollow Fiber

Modeling of controlled release using a microporous hollow fiber having a thin

nonporous coating on the outside surface is an extension of the problem

described in Section 2.3.2. The coated hollow fiber is shown in Figure 4.

In order to obtain time constants for each region, the governing equations are

first written in semidimensionless form, as was described in Section 2.2.2 for

the uncoated membrane:

2u _ a 2 au
D, at

v72 	 - a)2 au ,7-7
`--/ 2 — 	 D2 	 dt

(12)

(13)

28

(46)
b) 2 dU3r7 2T T

	V Lj 3 	 D 3 	at

Where the coordinate for region 3 (the coating region) has been defined as

x = 0 	 x = a 	 x=b x=c

4, 	 1 	 1 	 1

Reservoir Membrane Coating Surrounding
(region 1) 	 (region 2) (region 3) fluid (region w)

Figure 4. The coated hollow fiber

Next the equations are written in dimensionless form using dimensionless

and 0 as independent variables. The governing equations for the reservoir

(region 1) and the membrane (region 2) are the same as those for the

uncoated. hollow fiber; a third governing equation is introduced to describe

diffusion through the coating (region 3) which extends from x b to x = c.

VU" . --
dUi
de

(20)

29

(21)

(47)

D1 OU 2V2U
2 - D2 a0

1, 2U3 	 dU 3

3 D 3 (90

In equation (47) D3 is the diffusivity of the solute in the coating material.

The boundary conditions for the center as well as the reservoir-pore interface

at x = a 	 = —
b

) are the same as those for the uncoated hollow fiber. The

boundary conditions at x = b, which is now the interface between the pore

a
and the coating, are analogous to those at x= a 	 = —

b
) where partitioning

between phases occurs while continuity of fluxes exists.

U 1 (0, t) <

a
=1721,2u 2(-b, 0

(
(24)

(48)

D 2 V U 2 (1, 0)= D 2 VU 3 (1,0) 	 (49)

And finally, the boundary condition at the outer surface, x c 	 is

analogous to the boundary condition expressed by equation (25)

V,D 1 (9U 3 c 	 /c \

	 0 =—VU
bm3,D3a3 (30	

2 	 (50)

(a
U i t

(22)

(23)

u 2 (1, e) = m 2 ,3U 3 (1, o)

(26)

(27)

(51)

30

The dimensionless initial conditions for regions 1 and 2 are identical to those

for the uncoated fiber membrane; the initial condition for the coating reflects

that there is initially no agent present in region 3.

a \
=1

b °

(a	 ■
U2

b
545_1,0 = 0

CU 3 15_ —

b
,0 =0

When the governing equations expressed by equations (20), (21) and

(47) are written in the Laplace domain, the following expressions are

obtained:

V2U1 =-1+sU i

V 2 U 2
D

 SU2
D 2

— D —
V 2 U 3 = sU 3D3

Following the same procedure described in Section 2.3.2, the following

Laplace domain solutions are obtained for the reservoir, porous membrane

and coating (regions 1, 2, and 3, respectively):

—
U 1 =-

1
+A 9 / 0 (4-10+A 13K 0 (41.․) 	 (53)

D1
 s 	

(
+A l2	K a	1 s

D 2 	 ° 	 '6 11
13

D 2

(28)

(29)

(52)

U 2 (54)

31

3 = A /
Dl

 s13 0 	 n (55)i s
D aAl4 KO

The boundary condition at x = 0 can immediately be applied to the solution

for region 1 to obtain A10 = 0. The boundary conditions are now written in

terms of the solutions provided by the preceding equations to yield six

algebraic equations that can be solved simultaneously using Mathematica ® to

obtain expressions for A9 through A14 in terms of s. These expressions are

shown in Appendix 1. The solutions are then inverted numerically using the

IMSL subroutine DINLAP. The FORTRAN code is listed in Appendix 1.

Finally, the surrounding bath concentration can be determined as a function

of time using the relationship

LT 	
U3 (1, 0)

— 	 (56)
M3,w

2.4 Dispersed Reservoir Phase: Problem Formulation

The problem treated here is an extension of the uncoated membrane device

considered earlier, but now the reservoir is filled with dispersed as well as

dissolved agent. A schema of the device with undissolved agent in the

reservoir is shown in Figure 5. As described previously, the agent partitions

between the reservoir and the pore liquid phases at their interface, and

diffuses out through the membrane pore. However, in this case, as agent is

depleted by diffusion through the membrane, it is replaced by agent

dissolving into the reservoir solution. If dissolution is fast relative to

0

0

0

0

0

0

0

0

0

0

0

0

0

0

32

x=0 	 x=a 	 x= b

Reservoir Membrane
solution (region 2)

(region 1)
and dispersed

solids (region s)

Figure 5. The controlled release device with
dispersed solids in the reservoir

diffusion, the rate of release will be controlled primarily by aqueous-organic

partitioning; if however, dissolution is slow, additional rate control will be

provided. It should be noted that the solution in the reservoir would usually,

but not always, be saturated initially. (If the agent dissolves very slowly into

the reservoir solvent, it is possible that solids are added to the solvent and

the experiment is begun before the solids reach equilibrium with the

reservoir solvent.)

The physical situation that is assumed for the reservoir is similar to

that described by Varelas et al.[19]. The dispersed agent occupies a constant

pseudo-partition coefficient defined as m 1 = 1--
C s

, which is equivalent to a
ect

33

volume fraction 0, neglecting any change in volume fraction over time should

be of little consequence since the volume fraction is typically well under 10%.

The solid agent is assumed to occupy small spheres (it will become apparent

that their geometry is unimportant), which are assumed to be dispersed

evenly throughout the reservoir (the settling that may occur is neglected).

The volume of each sphere is so small that diffusional resistance within the

sphere may be neglected. The concentration of solid within each sphere

changes with time as the solid dissolves into the reservoir phase. The

concentration of the agent within the reservoir solution is a function of both

distance and time.

The region of suspended solids is designated region s; regions 1 and 2

refer to the reservoir solution and the pore liquid phase, respectively.

Equilibrium between the dispersed region and the reservoir exists at the

interface between the two regions, and the concentrations are related by the

normalized solubility. Assuming that mass transfer across the interface

between the dispersed and dissolved phases is first order, the governing

equation for the dispersed region is (in semidimensionless and dimensionless

form, respectively)

	ass 	k— 	 —U

	

dt 	 V, s
(57)

34

VD 10 dU
b 2 	de

s 	 s —U 1)

where k represents the product of the overall interfacial mass transfer

coefficient at the interface between the dispersed and dissolved reservoir

phases and the interfacial mass transfer area. In equation 57 the

dimensionless concentrations used were written in terms of the saturation

concentration in region 1, in order to facilitate identification of important

time constants. The concentrations U: and U.i are related to Us and U1 by

(58)

m1sUs

Ur'
(59)

U1 u
1 Err'

where,

sat
u sat = 1
'"'" 1 	

C O
1

(60)

The governing equation for the dissolved agent in the reservoir phase (in

semidimensionless and dimensionless form, respectively) is

dU 1 	s
(1— 0)	 = (1— 0)

a
V 2U1 — at (61)

	 v2	 dU7- _ 	
dO	 1 1— 0 do

And the governing equation for the pore liquid phase (in semidimensionless

(62)

and dimensionless form respectively) is

D 2 v 2u2

—
dU2

—a) 	 at (13)

dU2D1
2U 2 —. D2 do (21)

s + Pm 1,s

Now equation (62) for the reservoir solution (region 1) can be written in the

U, = (64)

C as

1-4) C

s + 13m 1,5

0

1- 0+
s + 13m 1A

v 2 U, =
4) C os

—1— 	
1— q)

U 1 	(65)

Next the initial conditions are written.

(a
U2 	5_ 1, 0 = 0

kb2
Defining s = 	 the Laplace transform of equation (58) provides an

V, D 10

expression for U s in terms of U / , s, and other known quantities:

35

(63)

(26)

(27)

Laplace domain. Upon substitution of equation (64) for U s into the Laplace

domain governing equation for the reservoir solution, the following

expression is obtained for region 1:

Setting the first term in square brackets equal to and the second term in

square brackets equal to 8, this equation is written very simply as

V 2 U 1 =y+3U 1 	(66)

D2VU2
ra
b , 0

vu,D1 st72 (1, e) = —vu2 (1, e)
M2 ,t4) D 2 a2

The boundary conditions are the same as those for the reservoir solution

problem described in Section 2.2.2:

U 1 (0, t) <

(
, a

0 = Tril,211 2 b, 0
i

/
a

D 1 VU1 , 0

VwDi dU
2 e)=-vu2(1,e)m 2,wD 2a2 dO

And, transformed into the Laplace domain, these boundary conditions

become:

U1(0; s) <

36

(22)

(23)

(24)

(25)

a
b '

s =m
a

s
b

`a — a
D iVU i 	=D 2 VU 2 	 ,

U

2.5 Solution (Dispersed Phase in Reservoir)

2 .5.1 Flat Membrane (Cartesian Coordinates)

The solutions to the Laplace domain differential equations in Cartesian

coordinates for regions 1 and 2, expressed by equations (66) and (21) are

LI 1 = A 15 eXP[18+ A 16 eXP[- 	7-
8 	

(67)

(68)
■•••

U 2= A 17 exp s + A18 exp

37

The boundary conditions are now written in terms of the solutions provided

by equations (17) and (64) to yield algebraic equations which can be solved

simultanously using Mathematica® to obtain expressions for A15 , A16 , A17 ,

and A18. These expressions are listed in Appendix 2. The FORTRAN code is

listed in Appendix 2. These expressions are then substituted into the

solutions for regions 1 and 2 in equations (17) and (64) which are inverted

numerically as described previously. The bath concentration can be

determined as a function of time using equation (40).

2 .5.2 Hollow Fiber (Cylindrical Coordinates)

The solutions to the Laplace domain governing equations in cylindrical

coordinates for regions 1 and 2 expressed by equations (62) and (21) are

1 	 YU i = 1

(

D i s A 22K	 1 sU 22 = A21 1- 0
2) 	 D 2

The boundary condition at = 0 can immediately be used to determine that

A20 must be zero. The remaining three boundary conditions are now written

in terms of the solutions to obtain three algebraic equations are solved

simultaneously for A19, A20, A21, and A22 using Mathematica® . These

expressions are shown in Appendix 2. The solutions are then inverted as

(69)

(70)

described previously using DINLAP, using the FORTRAN code listed in

Appendix 2. Equation (40) can be used to determine the surrounding bath

concentration as a function of time.

38

CHAPTER 3

EXPERIMENTAL .PROCEDURES

3.1 Solvents and Solutes

Benzoic acid (Fisher Scientific, Fair Lawn, NJ), nicotine (Aldrich,

Milwaukee, WI), caffeine (Sigma , St. Louis, MO), and toluene (Fisher

Scientific, Fair Lawn, NJ) were used as model agents; decanol, octanol

(Sigma, St. Louis, MO), and mineral oil (E. R. Squibb, Princeton, NJ) were

used as organic solvents; all chemicals were used as received.

Dipalmitoylphosphatidylcholine (DPPC) and the 7-nitrobenz-2-oxa-1,3-

diazol-4-y1 (NBD) headgroup-labeled dipalmitoylphosphatidylethanolamine

(NBD-PE) were the lipids used for liposome preparation; these were obtained

from Avanti Polar Lipids, Alabaster, AL.

The dipeptide Phenylalanine-Glycine (Phe-Gly) was used as received

from Sigma (St. Louis, MO).

3.2 Membranes

The membranes used in controlled release studies were hydrophilic

nylon fibers (ENKA America, Asheville, NC), silicone coated 240 pm I. D.

hydrophobic polypropylene fibers (AMT Inc., Minnetonka, MN), Celgard® X-

20 2401.1m I. D. microporous hollow fibers, Celgard® 2400 hydrophobic

39

40

41

42

where v is the tortuosity, Leff is the effective pore length, and 0 is the angle of

the pore relative to the surface.

3.3 Liposome Preparation

The procedure for liposome preparation is described by Moss and

Bhattacharya [24], and was implemented at the chemistry laboratories of

Rutgers University, New Brunswick, NJ. 1.4 ml of DPPC in chloroform was

mixed with 1.71 ml of the headgroup-labeled NBD-PE stock solution (1

mg/m.1) in chloroform in a flask. The molar ratio of DPPC to NBD-PE was

1:7. Chloroform was evaporated under nitrogen to make a film of lipid, which

was then dried for 2 hours under a high vacuum pump to remove traces of

chloroform. The film was resuspended in 8 ml of 10 mM HEPES buffer (pH

7.4, 10 mM NaC1) and vortexed repeatedly at 55 °C until a suspension was

formed. The suspension was then passed through an extruder (Lipex

Biomembranes, Vancouver, Canada) at 55 °C using nitrogen pressure (400

psi), ten times through a stack of 50 nm polycarbonate membranes

(Nuclepore, Cambridge, MA) to form small unilamellar vesicles via extrusion

technique (SUVETs). The SUVETs were found to have a diameter of 35 nm

[25]. Finally the SUVET solution was diluted with an additional 2 ml of

HEPES buffer so that the final concentrations of DPPC and NBD-PE were

1.4 mM and 0.2 mM respectively. This was used as a stock solution to make

dilutions of the SUVET solution in HEPES buffer at concentrations ranging

43

from 18711M DPPC and 26.7 RM NBD-PE to 560 RM DPPC and 80 I_EM NBD-

PE.

3.4 Analysis

3.4.1 Benzoic Acid, Caffeine, Nicotine and Phe-Gly

Aqueous phase benzoic acid concentration was analyzed by a Hewlett

Packard High Performance Liquid Chromatograph (HPLC) model 1090,

using a Hypersil ODS C-18 100mm x 3 mm reverse phase column

(Chrompack, Raritan, NJ). A 40% acetonitrile -60% water (v/v) carrier at a

flow rate of 0.4 ml/min and UV detector at 254 nm were used. The samples

were injected automatically into a 5 or 10 Ill sample loop. A calibration

plot for benzoic acid on Hypersil ODS is shown in Figure 6.

Aqueous phase nicotine and caffeine concentrations were analyzed in

the same HPLC with a Spherisorb 5 mm ODS 150mm x 4.6 mm column

(Phenomenex, Torrence, CA) at a detector wavelength of 260 nm. A mobile

phase of 20% 0.0055 M sodium heptane sulfonic acid in water and 80%

0.0055 M sodium heptane sulfonic acid in methanol was used at a flow rate of

0.7 ml/min. Benzoic acid and nicotine were separated using the same

method, but with a wavelength of 230 nm for benzoic acid and 260 nm for

nicotine. Calibration plots for caffeine, nicotine, and benzoic acid on

Spherisorb are shown in Figure 7, Figure 8, and Figure 9 respectively.

0.06

0.05

ii".5

•

0.04

g

•

0.03
8

▪ 0.02

aJ
0.01

1.0e+7 1.2e+72.0e+6
	

4.0e+6 	 6.0e+6 	 8.0e+6

Area count

Figure 6. Calibration for benzoic acid on Hypersil ODS C-18 column

0.0e+0	 5.0e+6 	 1.0e+7 	 1.5e+7 	 2.0e+7

Area count

Figure 7. Calibration for caffeine on Spherisorb column.

2.5e+7

0.8

0.7

0bA 6

• 0 . 5

• 0.4

::3 0.3
a)

• 0.2

U 0.1

0.0

44

45

46

Phe-Gly concentration was analyzed by HPLC, using a Nucleosil 100-5

C18 column (Phenomenex) at a detector wavelength of 220 nm. An isocratic

mobile phase of 75% potassium phosphate buffer (0.05M, pH adjusted to 2

with phosphoric acid) and 25% methanol was used at a flow rate of 0.5

ml/min. A calibration for Phe-Gly on the Nucleosil 100-5 C18 column is

shown in Figure 10.

V 	 LI

Area count

Figure 10. Calibration for Phe-Gly on Nucleosil 100-5 C18 column

Using to the method described by Shanbhag [26], toluene concentration

was analyzed by HPLC using a Hypersil ODS 100 mm x 3 mm reverse phase

column (Chrompack, Raritan, NJ) at a detector wavelength of 210 nm. A

47

mobile phase of 60% acetonitrile and 40% water was used at a flow rate of 0.5

ml/min. A calibration plot for toluene is shown in Figure 11.

0 	 5 	 10	 15 	 20 	 25 	 30

area count x 10 -6

Figure 11. Calibration for toluene on Hypersil ODS C-18 column

3.4.2 Liposome

Liposome concentration was analyzed by absorbance spectrophotometry for

higher concentrations (in the range of about 0.1 mM DPPC and 14.3 i.tM

NBD-PE to 0.56 mM DPPC and 80 mM NBD-PE) and by fluorescence

spectrophotometry for lower concentrations of liposome (up to about 3.5 fiM

DPPC and 0.5 p,M NBD -PE). Absorbance studies were performed at a

wavelength of 465 nm on a Hitachi double beam spectrophotometer Model U-

48

2000 (Danbury, CT), and fluorescence studies were performed at an excitation

wavelength of 469 nm and an emission wavelength of 540 nm on a Hitachi

fluorescence spectrophotometer (Model F-3010). This spectrophotometer

was available in the laboratories of HSMRC (NJIT, Newark, NJ). An

absorbance spectrum for the SUVET solution of 7:1 DPPC:NBD-PE is shown

Figure 12. Absorbance spectrum of SUVETs

in Figure 12 (for 0.187 mM DPPC), and its fluorescence spectrum is shown in

Figure 13 (for 0.56 ILLM DPPC). Calibration plots for absorbance and

fluorescence analysis of the SUVETs are shown in Figure 14 and Figure 15.

49

.4-

o
e

e
e
sr,

6 	 e
o 	 tri
.4. 	 Nt

Figure 13. NBD fluorescence spectrum

100

80
t..

..,;) 	 60as
$.

44
a)

408
P=.1
P-44 20
G4
Z

0

0.00 	 0.25 	 0.50
	

0.75
	

1.00

Absorbance

Figure 14. Calibration for SUVET using absorbance
spectrophotometry.

U.() 	 2.0 	 4.0 	 (:).0 	 t3.0 	 IU.0 12.0 14.0 lb.0 16.0 ZU.0

Data

Figure 15. Calibration for SUVET using fluorescence spectrophotometry.

3.5 Determination of Distribution Coefficient

Distribution coefficients were determined experimentally as follows. An

approximate volume of a benzoic acid solution of a known concentration in an

organic solvent (octanol, decanol, or mineral oil) was weighed and contacted

with a known volume of water and stirred for at least 24 hours. The organic

phase was removed, and the aqueous phase was centrifuged as necessary to

aid the removal of any remaining solvent. Aqueous samples were analyzed

by HPLC as described in the preceding section, and organic concentrations

were determined by material balance. For nicotine and caffeine, the

	+ T7 	

\V source	 V receiver)

the cell calibration constant, defined as
Ame r 1

, Cs and Cr are

51

procedure described above for benzoic acid was followed, except that the

solute was originally present in the aqueous phase at a known concentration.

3.6 Diffusion Coefficient Measurement

3.6.1 Benzoic Acid, Caffeine, and Nicotine

Diffusion coefficients were measured experimentally in the laboratory using

a Crown Glass Two-reservoir Diffusion Cell System (Crown Glass,

Somerville, NJ). The source solution containing the desired solute in

aqueous solution was placed in one 3.0 ml reservoir; a receiving solution of

pure water was placed in the other reservoir. A circular Celgard® 2400 film

of 0.9 cm diameter (exposed) divided the reservoirs. 10 µL Samples were

taken from the receiving side periodically and analyzed by HPLC by the

methods described above, except that manual injection was used. The Two-

reservoir Diffusion Cell System is shown in Figure 16. The slope of a plot of

1

	

—log 	 vs. time yields the diffusion coefficient [271. Here, (3 is

	

e 	
C;

 Cs(t)—Cr(t)

the respective source and receiver concentrations, m is the partition

coefficient of the solute between the solvent in the pore and water, and E,

and/ represent membrane porosity, tortuosity, and thickness respectively.

52

Stirring
Magnet Receptacle

LEFT HALF-CELL 	 RIGHT HALF-CELL

Figure 16. The Two-Reservoir Diffusion Cell System

3.6.2 Liposome

Liposome diffusion coefficients were determined experimentally by a similar

procedure: 3 ml of source liposome solution (5301.tIVIDPPC and 76 gIVI NBD-

PE in HEPES buffer) and 3 ml of HEPES buffer as receiver were used. The

liposome diffused through an 18 gm diameter pore size polycarbonate

membrane (Poretics, Livermore, CA), the pores of which were filled with

water, to the receiver side. Samples were taken from both the source and

receiver sides, analyzed by absorbance spectrophotometry as described above,

and immediately returned to the diffusion cell.

53

3.7 Measurement of Solids Density in Solvent

Modeling of experiments using a dispersion of a solid agent in the reservoir

requires knowledge of the density of the solid dispersed phase in the

surrounding solvent phase. This density is the ratio of the mass of the

dispersed solid to the volume occupied by that solid.

A known mass of the solid agent (benzoic acid or caffeine) was placed

in a measured volume of a saturated solution of the agent in the solvent in a

10 ml graduated cylinder. The total volume after addition of the solid agent

was recorded, and the displaced volume represents the volume occupied by

the solid.

The density was then simply calculated from the ratio of the mass of

the solid to the displaced volume.

3.8 Membrane Preparation

Fibers were cut into lengths of between 15 and 30 cm. One end of a fiber was

inserted into an appropriate size B-D® Precision Glider needle (Becton

Dickinson, Rutherford, NJ) and the union of the fiber and needle was then

affixed to a glass microscope slide using epoxy, and allowed to cure for at

least 24 hours. Celgard® 2400 films were cut to size (circles of about 3 cm

diameter, needed for the controlled release cell used) before wetting.

Hydrophobic flat membranes and hollow fibers were wetted according

to the procedures described in Bhave and Sirkar [28] and Bhave and Sirkar

[29] respectively. Hollow fiber membranes were wetted with water after

54

being connected to needles and fixed on a glass slide. Hydrophobic

membranes were initially wetted with 80% (v/v) ethanol in sterile deionized

water in a Pyrex vessel. The ethanol was periodically exchanged with sterile

deionized water over a period of at least 36 hours, until the solution was

virtually ethanol free. Hydrophilic fibers were wetted with water without

exchange by immersing them in a sterile deionized water bath for about 3

minutes while flowing water through the lumen. Prior to use, Cuprophan

membranes were soaked in isopropyl alcohol for 40 hours to remove isopropyl

myristate which is present in the pores and the bore of the membrane as

supplied; after this step the membranes were exposed to water.

The organic solvent was introduced into the pores of a hollow fiber by

injection using a syringe. Approximately 0.5 ml to 1 ml of solvent was

passed through the lumen (being collected at the exit and discarded) to

ensure that the organic had completely filled the pores. Water was injected

through the lumen of the fiber to displace the organic solvent remaining in

the lumen, and the fiber was blotted with a Kimwipe to reduce the amount of

organic solvent present on the surface. Flat membranes, cut to size, were

wetted with a few drops of organic solvent and blotted with a Kimwipe. Wax

coatings were applied to Nylon and silicone-coated hollow fibers in the

laboratory. The wetted fiber was immersed in melted wax. Both ends were

kept above the surface to prevent wax from entering the lumen. No attempt

was made to regulate the coating thickness.

55

Although water does not naturally wet the hydrophobic membranes,

after the exchange process described above, water would remain intact in the

pores throughout the experiment since the experiment was performed in a

water bath. Since an organic solvent naturally wets a hydrophobic or

hydrophilic membrane, the solvent would remain intact in the pores

throughout the experiment.

3.9 Introduction of Agent into Reservoir

An aqueous or organic solution of agent was prepared and introduced into the

bore of a hollow fiber by injection using a syringe. When introducing an

organic solution to the hollow fiber membrane bore, the length of the hollow

fiber was kept under a water bath. The excess organic solution pushed

through the lumen formed droplets on exit and rose to the surface of the

water bath, thus preventing the organic solvent from contacting the outside

of the hydrophobic membrane. After the agent was introduced into the fiber

lumen, a segment of length between 5 and 8 cm was cut from the end, and

the ends were sealed with melted wax. Several segments were used so that

the total fiber length was between 10 and 30 cm (the approximate total

length was chosen so that the amount of agent present would permit aqueous

samples to be analyzed directly).

Surface tension properties affecting pore filling are discussed by Kim

and Hariott [30] . Since pore sizes are small and the reservoir and pore

phases are chosen to form an immiscible aqueous-organic system, the

Figure 17. The single reservoir controlled release cell for flat membrane
studies

interfacial tensions of which are large, the breakthrough pressures are large.

The lumen was filled slowly, so the pressure drop was low. These factors

ensured that the reservoir (lumen) phase did not break through the pore

phase during the filling of the reservoir.

Two flat membrane cells were used in the studies: one with a reservoir

volume of about 0.22 ml; and the other with two reservoirs, each having a

volume of about 0.9 ml. The single reservoir controlled release cell is shown

in Figure 17, and the two reservoir controlled release cell is shown in Figure

18.

Figure 18. The two reservoir controlled release cell used for flat membrane
studies

For the flat membrane system, a 250 	 syringe was used to load the

reservoir with agent in solution; the wetted membrane was placed over the

reservoir, and the cell was then closed.

A similar procedure was followed for the agent in suspension. The

suspension of agent was well mixed and injected directly into the bore of the

hollow fiber, as described above. In flat membrane studies, first a measured

57

58

amount of pure agent in solid form was placed in the reservoir, and then

either pure solvent or a solution of the agent was introduced.

For the Phe-Gly studies, a measured amount of Phe-Gly was

introduced into the reservoir before introducing an aqueous buffer to form a

suspension. Studies were performed at various pH values: pKa, pI and pKb.

(3.13, 5.38 and 7.62 respectively). The buffer was prepared by adjusting the

pH of 0.067 M potassium phosphate with either phosphoric acid or sodium

hydroxide as necessary.

310 In Vitro Release Studies

After preparation of the hollow fiber or flat membrane system, the device was

submerged in water for in vitro release study. Hollow fibers were immersed

in 100 ml sterile deionized water contained in a covered cylindrical glass

vessel (Corning Glass, Corning, NY); the total fiber length was chosen to

provide sufficient agent to achieve measurable and reproducible aqueous

phase concentrations in the vessel during the experiment. The flat

membrane device was immersed in a volume of water chosen for analytical

convenience, between 150 - 750 cm3 . For Phe-Gly studies, the surrounding

aqueous phase was a buffered potassium phosphate solution adjusted to the

appropriate pH (the same pH as the reservoir solution), as described above.

200 samples were withdrawn periodically from the aqueous phase in the

glass vessel until agent concentration remained constant for three successive

59

Figure 19. An in vitro release experiment using hollow fibers

measurements. The sample volume was negligible compared with the total

aqueous volume, and agent concentration in the surrounding water was

extremely low relative to its saturation concentration ; therefore medium

changes were not necessary. The mass of agent released was calculated from

the aqueous concentration and bath volume, and plotted as a function of time

to establish release profiles. A sample calculation is shown in Appendix 3.

60

Figure 2►_ An in vitro release experiment using a flat membrane

An in vitro experiment using hollow fibers is shown in Figure 19, and

an in vitro experiment using a flat membrane system is shown in Figure 20.

Most experiments were performed in duplicate, and it was established that

they were reproducible

Liposome release studies were performed using a PCTE membrane.,

and a continuous aqueous phase in the reservoir, pores, and surrounding

bath. A 0.9 nil reservoir was tilled with 560 μm DPPC and 80 μM NBD-PE in

HEP ES buffer-NaCl. The reservoir was bounded by a PCTE membrane

wetted with HEPES buffer-NaCl. The surrounding water bath was 150 ml

HEPES buffer-NaCl. 2 ml samples were withdrawn for analysis, analyzed

immediately by fluorescence spectrophotometry, and replaced.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Experimental Results

4.1.1 Distribution Coefficients

Distribution coefficients were measured for various agents in aqueous -

organic systems used in these controlled release studies. Measured values of

distribution coefficients are presented in Table 3. In accordance with the

T-1 nry,	 f-.1 a +1, -rn n+ fivr+11 in MI a rvi-nv 9 +1-,	 nni 1 _rvr.rrn 71; n 	 -r+;+; rrn

62

agent in the organic phase to that in the aqueous phase at equilibrium.

Distribution coefficients of amino acids and peptides between water and an

organic solvent are known to be dependent on the pH of the aqueous phase.

The distribution coefficients for octanol - water systems were measured at

three values of pH: pKa , pKb, and the isoelectric point. The values were

measured using equal mass of aqueous and organic phase, and an initial Phe-

Gly concentration of about 1 mg/ml in the aqueous phase. These values of

distribution coefficient are presented in Table 4,

4 .1.2 Diffusion Coefficients

Binary diffusion coefficients for agents in organic solvents (octanol, decanol,

and mineral oil) were measured experimentally according to the procedure

described in Section 3.6. The following binary diffusion coefficients were

.A A

Time (s)

Figure 22. Diffusion coefficient of nicotine in octanol

0.12

0.10

L.
c-? 0.08

0.06

C-?
c.-) 	0.04

0.02

0.00

65

0 	 2000 4000 6000 8000 10000 12000 14000 16000

Time (s)

Figure 23. Diffusion coefficient of caffeine in octanol

0.12

0.10

R`

▪

 0.08

0.06

c7)
c.) 	 0.04
2'

• 0.02
•

Slope = 2.122 x 10-7 cm2/s

0.00

0e+0
	

1e+5
	

2e+5
	

3e+5
	

4e+5
	

5e+5

Time (s)

Figure 24. Diffusion of benzoic acid in mineral oil

66

The free diffusivity of 35 nm diameter DPPC in water was calculated

by the Stokes-Einstien equation, and found to be 1.2 x 10 -7 cm 2/s. The

diffusivity of liposome through a 10 inn pore size polycarbonate membrane

was measured experimentally by absorbance spectrophotometry, as

mentioned in Chapter 3, and found to be 2.4 x 10 -7 cm2/s. Since the SUVET is

a fairly spherical molecule, one would expect the measured diffusivity to be

closer to the theoretical value derived from the Stokes-Einstein relation. A

possible explanation for this discrepancy lies in the fact that the spectro-

photometric absorbance of NBD is not environmentally sensitive, that is, free

NBD absorbs just as well as NBD in the lipid bilayer. If small amounts of

NBD "leak" out from the lipid bilayer into the surrounding free solution, they

will diffuse faster through the membrane than the liposomes and will effect

an apparent receiver side concentration of SUVET which is higher than the

actual. The first four data points on the diffusion plot shown in Figure 25 lie

nicely on a straight line and yield an experimental diffusion coefficient of 2.4

x 10 -7 cm2/s. The data points taken after the first 72 hours deviate from this

line; the increase in the slope of the of the curve indicates that some NBD

began to leak out of the lipid bilayer after about 72 hours. Fluorescence of

NBD is environmentally sensitive (that is, NBD fluoresces only when

embedded in the lipid bilayer) and was used to confirm that NBD is slowly

lost from the lipid bilayer: fluorescence measurements of a sample were

relatively constant for about 72 hours, and then began slowly to decrease.

0.140

0.120

0.100

cjn 0.080
c:C;,

c-o) 0.060
C)`'

0.040

0.020

0.000

67

•
•

Slope = 2.4 x 10 -7 cm2/s

Oe+0
	

le+5 	 2e+5
	

3e+5

Time (s)

Figure 25. Diffusion coefficient of SUVET in water

Binary diffusion coefficients for nicotine in water and caffeine in water

were calculated using the Wilke-Chang correlation in conjunction with the

additive method of LeBas (in Reid et al., [31]). The diffusivity of benzoic acid

in water was taken from Reid et al. [31]. Diffusivities of agents in water are

summarized in Table 6.

Table 6. Diffusion Coefficients of Agents in Water

Agent Diffusivity (cm2/s) Method

Benzoic acid 1.21 x 10 -5 Experiment [31]

Caffeine 6.82 x 10-6 Wilke-Chang [31]

Nicotine 6.50 x 10 -6 Wilke-Chang [31]

68

4 .1.3 Solid Density

Solid density, or the volume occupied by a given mass of solid agent

suspended in a surrounding liquid, was measured for caffeine in water and

benzoic acid in decanol. These values are tabulated in Table 7. It should be

noted here that the solid was suspended in a saturated solution of agent in

solvent for these measurements so that none of the measured solids would

dissolve in the surrounding solution. The volume displaced by a given mass

of solids is assumed to be independent of the liquid in which the solids are

dispersed. Values for benzoic acid in octanol and in mineral oil are assumed

to be equal to that for benzoic acid in decanol.

Facing 69

Figure 26. The release profile of benzoic acid from a nylon porous
hollow fiber with water-filled pores. Benzoic acid was initially contained
in a decanol solution in the reservoir (100 mg/ml). Prediction is shown
as a solid curve.

69

achieve high loading in the device. If the partition coefficient of the agent

between the reservoir and the pore is high, the driving force for diffusion

across the pore is reduced. This has the effect of maintaining a high

reservoir concentration (relative to the pore and bath concentrations) for an

extended time. A system which effects a high reservoir concentration (and a

low bath concentration) for an extended time will exhibit a relatively

constant release rate for an extended time.

In this section results are presented for experiments using an agent in

solution. Both organic reservoir/aqueous pore and aqueous reservoir/organic

pore configurations are considered, and high and low partition coefficients

are also investigated.

The solubility of benzoic acid in decanol is 45 times its solubility in

water. Its partition coefficient between decanol and water is 68. Benzoic

acid, therefore, is a good candidate to be used for studies of release from a

device with an organic reservoir solution and water filled pores.

Figure 26 shows the release profile obtained using a Nylon porous

hollow fiber device with water in the pores of the membrane and a reservoir

containing benzoic acid in decanol solution. The rate of release is

approximately constant for about 30 minutes. The model simulations

describe the data quite well.

70

Figure 27 shows the release profile of benzoic acid from a Nylon porous

hollow fiber device with water in the membrane pores. In this study, benzoic

acid was initially contained in an octanol reservoir solution. The release rate

is approximately constant for about 45 minutes. Comparing the release

profiles shown in Figure 26 and Figure 27, the longer period of pseudo zero

order release in the latter is due to the larger partition coefficient of benzoic

acid between octanol and water.

Benzoic acid in octanol was also used as a reservoir solution in a flat

membrane system. Using a Celgard® 2400 flat film, the release profile shown

V 	 i1V 	 1VV 	 _LiJV 	 GVV

Time (min)

Figure 27. The release profile of benzoic acid from a nylon hollow fiber
with water-filled pores. Benzoic acid was initially contained in an
octanol solution in the reservoir (100 mg/ml). Prediction is shown as a
solid curve.

70

71

in Figure 28 was obtained. The release rate was approximately constant for

a period of 24 hours. When compared with the release profile of benzoic acid

V 	 VV 	 ZAJ 	 VV 	 VV	 1VV 	 14.J 	 .1. --SNJ

Time (h)

Figure 28. The release profile of benzoic acid from a flat membrane device
using a Celgard® 2400 flat membrane with water-filled pores. Benzoic acid
was initially contained in an octanol reservoir solution (100 mg/ml).
Predicted results are shown by the solid curve.

release is longer for the flat membrane due, essentially, to a larger reservoir

volume. The effects of reservoir and membrane resistance are examined in

Section 4.2.

Figure 29. Controlled release of benzoic acid using a water-swollen
Cuprophan 150 PM regenerated cellulose membrane. Reservoir initially
contained 100 mg/ml benzoic acid in octanol. Curves show predictions
for two values of tortuosity.

Figure 29 shows the release profile for benzoic acid from a flat

membrane device using a Cuprophan 150 PM regenerated cellulose

membrane. The solid curve er = 2.77) shows the release profile obtained

using the model.

Following is a possible explanation for the disagreement between the

experimental and predicted results: When in contact with water, the

Cuprophan membrane becomes a hydrogel. Colton et al. [23] have shown

that the membrane permeability for a similar Cuprophan membrane

decreases with increasing molecular weight and size. The membrane

73

tortuosity is extracted from experimental data for permeability as a function

of solute radius, extrapolated to a molecular radius of zero; this value of

tortuosity is 2.77. Hindrance due to increasing molecular radius results in a

decrease in the membrane permeability, which corresponds to an increase in

the "effective tortuosity". Prasad and Sirkar [21] find an "effective tortuosity"

for phenol in the Cuprophan 150 PM membrane to be 5.8. By the arguments

of Colton et al. [23] one would expect the Cuprophan membrane "effective

tortuosity" values for phenol and benzoic acid to be close, since the molecules

are similar in structure and molecular weight. The dotted line in Figure 29

shows the predicted profile using a value of 5.8 for the effective tortuosity,

and this curve shows somewhat better agreement with the experimental

data. An additional source for deviation would be differential swelling of the

membrane on the organic side, leading to reduced swelling of the membrane

and correspondingly, higher tortuosity.

Nicotine was used as a model agent to investigate the release of an

agent with high water solubility from an aqueous reservoir through

membrane pores filled with an organic solvent. Mineral oil was used as the

organic liquid filling the membrane pores.

Results of a study of release of nicotine from nylon porous hollow fibers

with mineral oil-filled pores are shown in Figure 30. In this system, the

aqueous-organic partition coefficient for nicotine between water and mineral

oil 1.2. This low value of the partition coefficient fails to provide the drastic

Figure 30. The release profile of nicotine from nylon hollow fibers with
mineral oil-filled pores. Nicotine was originally contained in an aqueous
reservoir (505 mg/ml). Predicted results are shown by the solid curve.

reduction in driving force across the membrane that was seen for the benzoic

acid-octanol-water and the benzoic acid-decanol-water systems. However,

the diffusivity of nicotine through mineral oil is small (4.2 x 10 -7 cm2/s), and

this increases the resistance provided by the membrane, thereby slowing the

release rate.

Nicotine release from a flat membrane device was also investigated.

Using a Celgard® flat membrane with mineral oil-filled pores, nicotine

release from two different cells was studied. The cells had different volumes

and different mass transfer surface area to volume ratios. Figure 31 shows

the release profile obtained using the 0.22 ml cell, and a constant release rate

0 	 20 	 40 	 60

Time (h)

Figure 31. The release profile from a flat membrane device using a
Celgard® 2400 flat membrane with mineral oil-filled pores. Nicotine
was contained initially in a 0.22 ml aqueous reservoir (505 mg/m1). The
predicted results are shown with the solid curve.

was obtained for a period of about 24 hours. Notice that the experimental

data are very clearly zero order for times up to about 27 hours, but the

predicted results do not reflect the constant release rate achieved

experimentally. The discrepancy between predicted and observed release

rates for nicotine is discussed at the end of this section.

The next nicotine release study was done using the same solvent /

solute / microporous membrane system, but with the 0.95 ml reservoir cell;

this release profile is shown in Figure 32. The data indicate a zero order

release for at least 50 hours, but again the model does not so clearly predict

this trend.

Time (h)

Figure 32. The release profile for nicotine from a flat membrane device
using a Celgard® 2400 flat membrane with mineral oil-filled pores.
Nicotine was contained initially in a 0.95 ml aqueous reservoir (505
mg/ml). The predicted results are shown with the solid curve. Dotted
line shows the predicted curve using a 20% reduction in D 1 and D2.

At this point it is appropriate to make a few points about the

experimental data and the predicted results. The data for many experiments

indicate a constant release rate for an extended time. The possibility exists

that the data could fit a first order concentration dependence, which would be

psuedo-zero order at short times. In order to determine whether the release

rate is zero order, some statistical analysis must be performed. The

procedure was to find the best zero order and first order fit for the data in a

given time range, and then to perform a paired Student's t-test between

77

dependent values predicted by the best fit and those obtained experimentally.

The t-test gives a measure of the probability (P) that one is incorrect in

stating that the two means are different. Consider Figure 28 for the benzoic

acid system and Figure 31 for the nicotine system. For Figure 28, the t-test

performed on data for times between 0 and 30 hours gives a P value of 0.998

for the zero order case and 0.854 for the first order fit. For Figure 31 the t-

test result for times up to 26 hours yielded P equal to 0.9993 for the zero

order fit and 0.6595 for the first order fit. The results for both of these

systems are more closely zero order than first order.

The second point worth mentioning here concerns the data generated

by the computer simulation. In Figure 30, there are no predicted values for

times less than about 21 minutes. This is due to a numerical overflow in the

calculation of A7 in Equation (42). Using double precision, an overflow occurs

when the value of any calculated real variable exceeds the range of about 2.2

x 10 -308 to 1.8 x 10308 (or the real or imaginary part of a complex number

exceeds that range). This overflow occurs somewhere in the calculation of the

coefficient of A7. For other solutions developed in Chapter 2, overflow is

encountered at small times typically in the calculation of one of the

coefficients of a Bessel or exponential function. In some cases, predicted data

can be generated for times small enough that a smooth curve can be drawn

from the initial condition; while in other cases there is an obvious gap. The

problem is usually worse when the partition coefficient is small.

78

And finally, the simulated data for nicotine generally shows a faster

rate of release than is observed experimentally. Possible explanations may

lie in the fact that the model was developed for dilute solutions, with

diffusivity and partition coefficient independent of concentration. However,

the experiments using nicotine as a model agent used up to 50% (505 mg/ml)

nicotine in the reservoir initially; at such high concentrations the diffusion

coefficient could be significantly reduced by interactions between molecules.

Reid et al. [31] discuss several models for variation of the diffusion coefficient

with concentration in concentrated binary solutions. A reduction in the

diffusion coefficient at higher concentrations would cause a reduction in

release rate from the device at earlier times (when the concentration of

nicotine is high, and the release rate is apparently constant). This could

result in better agreement between predicted and observed results.

If the diffusivity is dependent on composition, both D1 and D2 (for the

reservoir and the membrane) respectively, will vary with position in the

device and with time. Though the model does not consider the concentration

dependence of diffusivity, the effect of a reduction in the concentration-

independent diffusivities throughout the device (both reservoir and

membrane) was examined. The dotted line in Figure 32 shows the predicted

profile when both the reservoir and membrane diffusivities are reduced by

20%. Comparison of the two predicted release profiles shows simply the

effect of diffusivity on the release rate, and one can reason that composition

79

dependence of the diffusivity could affect the release profile as mentioned

above.

4 .1.5 Suspension in Reservoir: In Vitro Experiments

By having a solution of the agent in the reservoir of the membrane-based

controlled release device, the loading of the agent in the reservoir is limited

by its solubility in the reservoir solvent. If, however, the saturation

concentration of the agent in the reservoir solvent is exceeded, a suspension

of the agent will result. In this section results are presented for experiments

using a reservoir initially containing a suspension of the agent. These

experiments were performed using both hollow fibers and flat films, and for

both an organic reservoir and an aqueous reservoir. The agents studied were

benzoic acid (organic reservoir and water-filled pores) and caffeine (aqueous

reservoir and organic-filled pores).

Figure 33 shows a comparison between release profiles obtained by

using a suspension of benzoic acid in decanol, and a solution of benzoic acid

in decanol. While the release profile obtained by using the solution is

approximately zero order for a period of 30 minutes, this constant release is

extended to about 180 minutes using a suspension. In addition, more benzoic

acidis ultimately released from the suspension system, due to its higher

loading initially. The model predicts that dissolution of solid benzoic acid

into the reservoir will be fast relative to its diffusion out of the reservoir; in

other words, as benzoic acid diffuses out of the reservoir it is replaced

0 	 100 	 200 	 300 	 400 	 500 	 600

Time (min)

Figure 33. Extended release of benzoic acid using a suspension.
System used: nylon porous hollow fibers with water-filled pores; benzoic
acid in decanol suspension in the reservoir (170 mg/ml). Predicted
results are shown with the solid curves. k = 2 x 10 -7 .

immediately by solids dissolving into the solution. (The value of the

parameter k is found by running the simulation for different values of k

(corresponding to different

rate limiting regimes) and taking the k which provides a qualitatively good

fit.) The data show that the release rate from the device with the suspension

in the reservoir is slightly slower than the release rate from the device with

no suspension. This indicates that the dissolution is slightly rate limiting,

and that a larger volume fraction of solids was actually present than was

assumed in the model. This concept and the effects of dissolution rate and

volume fraction of solids will be explored more thoroughly in Section 4.2.

V 	 t.A.1 	 1VV	 10V

Time (h)

Figure 34. Extended release of benzoic acid using a suspension. System
used: benzoic acid in octanol suspension (40.7 mg/ml), Celgard ® flat
membrane with water-filled pores. Predicted results are shown with the
solid curves. k = 1 x 10 -4

A similar system was studied using the flat membrane device. In this

experiment, a suspension of benzoic acid in octanol was used for release

through water-filled pores of a Celgard ® 2400 membrane. Figure 34 shows

the results of this experiment, as well as the results of an experiment which

used a solution of benzoic acid in the reservoir. When the suspension of

benzoic acid is used in the reservoir, the period of constant release is

extended to about 40 hours. In this case the model describes the data well.

The rate of release (for the constant release portion of the curve) is the same

for the solution and suspension experiments, and from the data it can be

concluded that the dissolution of the solids into the reservoir solution is rapid

82

relative to the depletion of benzoic acid from the reservoir solution due to

diffusion.

Benzoic acid has a very limited solubility in mineral oil. In order to

30

25

20

a)
"' 15

to 10

5

0

0
	

20 	 40
	

60
	

80
Time (days)

Figure 35. The effect of rate limiting dissolution on the release profile.
Benzoic acid initially contained in a mineral oil suspension (106 mg/ml),
Celgard® flat membrane with water-filled pores. Predicted results are
shown by the solid curve. k = 6 x 10 -6 .

achieve a high loading in a system with a reservoir containing benzoic acid in

mineral oil, a suspension of benzoic acid must be used. Figure 35 shows the

release profile from such a system, with a suspension of benzoic acid in

mineral oil in the reservoir of a flat membrane system, using a Celgard° 2400

83

flat membrane with water-filled pores. The partition coefficient of benzoic

acid between mineral oil and water is 1.03, and no benefit is derived from

partitioning. In this system the rate of release of benzoic acid from the device

is severely dissolution limited. The release rate is constant for a period of

about 45 days. The model describes the data well, but does not predict the

constant release rate that is observed experimentally.

The next system that was investigated was a caffeine suspension in an

aqueous reservoir, diffusing through octanol-filled pores of a Celgard ® 2400

flat membrane. This system was investigated using both the 0.22 ml

reservoir cell and the 0.95 ml reservoir cell.

Figure 36 shows the release profile obtained by using an aqueous

caffeine suspension in the reservoir of the smaller (0.22 ml) cell. The release

profile is constant for a period of 24 hours. While the model describes the

data fairly well, it does not predict the constant release rate that the data

reveal for the first 24 hours.

Figure 37 shows the results of a similar experiment using the larger

(0.95 ml) cell. The data show a constant release rate for a period of 100

hours. Again, the model describes the data fairly well, but does not predict

the same constant release rate that is observed experimentally.

35

30

25

84

• •

• •

10

5

0

1
0 	 10 	 20 	 30 	 40

Time (h)

Figure 36. Extended release of caffeine using a suspension. System
was caffeine in an aqueous 0.22 ml reservoir (146 mg/m1), Celgard® 2400
membrane with octanol-filled pores. Predicted results are shown by the
solid curve. k = 5 x 10 -5 .

100

80

60

ral)

40

20

0

0
	

50
	

100
	

150
	

200

Time (h)

Figure 37. Extended release of caffeine using a suspension. System
studied was caffeine in an aqueous 0.95 ml reservoir, and a Celgard®

2400 flat membrane with octanol-filled pores. Predicted results are
shown by the solid curve. k = 1.2 x 10 -5 .

85

4 .1.6 Coated Membrane Experiments

A microporous membrane with a thin, nonporous coating on the outside

presents two advantages over the uncoated membrane. It affords additional

resistance to diffusion, which, in turn, means additional rate control. The

coating also represents a barrier to loss of the pore fluid by evaporation. This

is particularly important when a hydrophobic membrane with water-filled

pores is exposed to air, a system which is prone to loss of pore fluid by

evaporation.

In these experiments, microporous and porous hollow fibers with a

coating on the external surface of the membrane were used to investigate the

release of benzoic acid from a reservoir containing either a solution or a

suspension. The specific membranes used were (1) a microporous

polypropylene hollow fiber with a thin, nonporous silicone coating, (2) a

microporous polypropylene hollow fiber with a thin, nonporous silicone

coating plus an additional wax coating, and (3) a porous nylon hollow fiber

with a wax coating.

Figure 38 shows data from two experiments using coated fibers. In

one experiment benzoic acid, initially in a solution of octanol in the reservoir,

was released from a polypropylene microporous hollow fiber with a thin,

nonporous silicone coating. The second experiment was performed with the

same type of silicone-coated membrane, with an additional wax coating that

was applied in the laboratory. Both of these sets of data are compared with

86

the predicted results for a similar system with :microporous hollow fiber with

no coating at all. The simulation was not run for the coated membrane due

to lack of information on the experimental parameters involving the coating

layer. The data indicate that the silicone coating provides some additional

JL. 	 vvv

Time (min)

Figure 38. The effect of a nonporous external membrane coating on the
release profile. System used was benzoic acid in an octanol solution (100
mg/m1) and a silicone coated microporous membrane with water-filled
pores. The release profile using an additional wax coating is also shown.
The predicted curves are shown by the solid lines.

resistance to diffusion, when compared to the predicted release profile for the

same fiber without any coating. The release rate is constant for about 180

minutes. The wax coating provides an additional resistance, as indicated by

the lower release rate from the device. No model is provided for the system

with two coatings.

Another experiment was performed using the silicone coated hollow

fiber with a suspension of benzoic acid in decanol in the reservoir. This

87

0 	 50 	 100 	 150 	 200 	 250 	 300 	 350	 400

Time (min)

Figure 39. The release profile of benzoic acid from a silicone coated
hollow fiber. System used was benzoic acid in octanol suspension (161
mg/m1), silicone coated hollow fiber with water-filled pores.

system provides extra loading from the suspension (benzoic acid dissolves

quickly into decanol, relative to its rate of diffusion, so dissolution is not rate

controlling) and additional rate control from the coating. Figure 39 shows

the data obtained from such an experiment; the release rate appears

88

constant for the first 250 minutes. No model was developed for a system with

a coated microporous membrane and a suspension in the reservoir.

0 	 400 	 800 	 1200 	 1600

Time (min)

Figure 40. The effect of a wax coating on the release profile of benzoic
acid from nylon porous hollow fibers. Benzoic acid was initially
contained in a reservoir of 100 mg/ml octanol solution; pores of hollow
fiber were filled with water. Predicted results for a similar system
without an additional wax coating are shown by the solid curve.

Figure 40 shows the effect of a wax coating on the release profile of

benzoic acid from nylon porous hollow fibers with water-filled pores. The

agent was initially contained in an organic reservoir solution (100 mg/ml

benzoic acid in octanol). The data can be compared to the predicted results

for a similar system without a wax coating on the external surface of the

89

hollow fibers. The comparison of the data to this curve indicates that the

wax coating provides an additional barrier to release of the agent; the release

rate is significantly reduced using the system with the wax coating.

4 .1.7 Simultaneous Release of Two Agents

The configuration of this type of membrane based controlled release device

lends itself naturally to the simultaneous release of two agents. If two agents

are to be released from a single reservoir through the same membrane, the

reservoir solvent and pore liquid must be chosen to effect the desired release

rate for each agent. If, however, two reservoirs are provided within the same

device, and each reservoir is bound by a separate membrane, then each

solvent/agent/pore liquid system may be chosen independently. This type of

system with two separate reservoirs provides more flexibility in system

design than the type of system with one reservoir. In addition, concern exists

that interaction between two agents within a single reservoir may alter the

release rate of one or both of the agents. In this section results from

experiments using both types of configuration are presented. Simultaneous

release of benzoic acid and nicotine as well as simultaneous release of

nicotine and caffeine are studied. Both flat membranes and hollow fiber

devices are studied. The specific systems (each of which will be described in

detail) involve various combinations of reservoir and pore configurations (e.g.

aqueous reservoir/organic-filled pore, organic reservoir/water-filled pore, and

reservoir suspension and reservoir solution). Experimental data are

r igure	 01111U1LaileOUS reltU6e U1 nicuume uiu caiieiue 'rum Separate

reservoirs. Systems used: Nicotine in aqueous solution(265 mg/m1) with a
Celgard® 2400 flat membrane and mineral oil-filled pores; aqueous caffeine
suspension (94.4 mg/ml) with a Celgard® 2400 flat membrane with octanol-
filled pores. Predicted results are shown with solid curves. For caffeine
simulation k = 5 x 10 -5 .

compared with predicted release profiles based on the model for single

component release. This is justified for systems in which there is little

interaction between the two agents, either in the reservoir or in the

surrounding water bath.

Figure 41 shows the results of an experiment performed with caffeine

and nicotine released from separate reservoirs. Nicotine was present in an

aqueous solution in one reservoir, while caffeine was present initially in an

aqueous suspension in the adjacent reservoir. Both reservoirs were bounded

by a Celgard® film, but the pore fluids were different. The nicotine system

time (h)

Figure 42. Release profiles for benzoic acid and nicotine from separate
reservoirs. System used: Benzoic acid in octanol solution (100 mg/ml)
and Celgard® 2400 film with water-filled pores; Nicotine in aqueous
solution (265 mg/m1) with a Celgard® 2400 film with mineral oil-filled
pores. Predictions are shown by the solid curves.

used mineral oil-filled pores, while the caffeine system used octanol-filled

pores. The lower initial caffeine concentration and rate limiting dissolution

contribute to an overall slower rate of release of caffeine than nicotine. The

nicotine release rate appears constant for 50 hours, and the caffeine release

appears constant for 140 hours. Again, the model describes the data well,

but does not predict the constant release rate that both the nicotine and the

caffeine data reveal.

Figure 42 shows release profiles for nicotine and benzoic acid from

separate reservoirs. In this study the benzoic acid was initially contained in

an organic reservoir and its membrane had water-filled pores, while nicotine

1 A8441 4 "Xl.11 , • 	 111L,C111G11‘1.01 G.LCLO,G VA. 1114VU111G GLI141. JG11.C.J tJA1/4. 0.414L 11 V111

nylon porous hollow fibers. System used: Nicotine in aqueous solution
(505 mg/m1) and a porous nylon hollow fiber with mineral oil-filled
pores; Benzoic acid in octanol solution (100 mg/ml) and porous nylon
hollow fiber with water-filled pores. Predictions are shown by the
solid curves.

92

was present in an aqueous reservoir bounded by a membrane with mineral

oil in its pores. Specifically, the benzoic acid was present in an octanol

solution, and both membranes were Celgard 2400® films. The lower initial

benzoic acid concentration in conjunction with the high partition coefficient of

benzoic acid between octanol and water results in a slower release rate for

benzoic acid than for nicotine. The release rate for benzoic acid appeared

constant for approximately 60 hours, while a constant nicotine release was

maintained for about 100 hours. While the data for benzoic acid lie fairly

close to the predicted results, the data for nicotine lie above the predicted

results at intermediate times.

Figure 43 shows simultaneous release profiles of nicotine and benzoic

acid from porous nylon hollow fibers. Nicotine and benzoic acid were initially

contained in separate reservoirs in the lumen of separate nylon hollow fiber

segments. The nicotine was initially in solution in an aqueous reservoir and

partitioned into mineral oil-filled pores of the porous nylon hollow fiber. The

benzoic acid, initially contained in an octanol solution in the reservoir of the

nylon hollow fiber, partitioned into water-filled pores. In this study, the

release of benzoic acid was relatively constant for about 40 minutes, while

the nicotine was released comparatively quickly and showed a constant

release rate for less than 20 minutes.

CC

;

Time (h)

Figure 44. Simultaneous release of nicotine and caffeine from a single
reservoir. Systems used: Aqueous reservoir of nicotine (319 mg/ml) and
caffeine (99.4 mg/M1), Celgard ® 2400 membrane with octanol-filled
pores. Predicted results are shown by solid curves.

Figure 44 shows concentration profiles for nicotine and caffeine,

obtained from an experiment in which the two agents were contained

initially in the same aqueous reservoir. The nicotine was initially in

solution, while the caffeine was in suspension. Both nicotine and caffeine

release rates were constant for about 70 hours. A comparison of the

simulated data and the experimental data shows again a discrepancy

between the predicted and actual nicotine release rates.

93

94

4.1.8 Pure Liquid Agent in the Reservoir

Figure 45 shows the release profile of toluene from a flat membrane device.

In this experiment, toluene was contained in the reservoir as a pure solvent,

and was released by diffusion through water-filled pores of the Celgard ® 2400

flat membrane. The driving force for diffusion across the membrane was

limited by the solubility of toluene in water, rather than by aqueous-organic

partitioning. The experimental data indicate a constant release rate for a

period of 150 hours. No model is presented for a system with a pure liquid in

the reservoir.

95

4.1.9 Peptides: In Vitro Experiments

Results of controlled release studies for Phe-Gly in an aqueous-organic

partition-based controlled release device are presented here.

Partitioning of a peptide between an aqueous phase and an organic

phase can exhibit a strong dependence on the pH of the aqueous solution. At

low pH, the carboxyl group of the peptide in aqueous solution is protonated,

and partitioning favors the organic phase. At intermediate and high pH, the

carboxyl group is ionized, and the partitioning favors the aqueous phase.

This set of experiments was designed to investigate the potential for

exploiting pH and aqueous-organic partitioning in the controlled release of

peptides. The peptide Phe-Gly was chosen because it has an intermediate

hydrophobicity of about 1250 callmol [9], and was expected to exhibit a

measurable release from the device under a range of pH conditions. The

reservoir contained a buffered aqueous dispersion of the peptide; this was

bound by a flat Celgard ® polypropylene membrane with octanol-filled pores.

The surrounding aqueous phase was a buffer solution at the same pH as the

reservoir. (Note that the surrounding bath does not necessarily have to be at

the same pH as the reservoir, and this would of course affect the release

profile). Experiments were performed at three values of pH: pK a, pKb , and

rd.

Time (h)

Figure 46. pH dependence of release profile for the peptide Phe-Gly

The release profile of Phe-Gly as a function of pH is shown in Figure

46. Here the fraction of peptide released (M/M inf where Minf is the mass

released at infinite time) is plotted as a function of time. At a low pH (pKa)

partitioning of the peptide favors the octanol in the membrane pores, and the

release is relatively fast. Most of the agent has been released within 20

hours. At higher pH (pI), partitioning favors the aqueous reservoir, and the

release is slow. The agent continues to be released for about 45 hours. There

is little change when the pH is raised to the pKb of the peptide. The dramatic

difference in release rate between experiments performed at plCa and pI is

due to the strong dependence of the partition coefficient on the ionized or

unionized state of the carboxyl group. The partition coefficient does not

exhibit a strong dependence on the ionization of the amino group, and

97

therefore there is little difference between release profiles for experiments at

pI and pKb .

4 .1.10 Liposomes: In Vitro Experiments

It was mentioned in Section 4.1.2 that the fluorescence of NBD is

environmentally sensitive. In a controlled release study it is desired to

measure the amount of SUVET that is released from the reservoir within a

given time period. Since it is not possible to prevent the loss of small

amounts of NBD from the lipid bilayer, fluorescence studies were performed

in order to ensure that only NBD embedded in the lipid bilayer of the SUVET

is detected, and that free NBD cannot give a false indication of the presence

of SUVET.

The controlled release experiment was performed using a cell with a

0.9 ml volume, bounded by a polycarbonate 18 µm diameter pore size

membrane. Polycarbonate was chosen as the membrane material because it

is known that adsorption of the liposome onto its surface is negligible, and

polycarbonate membranes are used for extrusion of the liposomes. A 150 ml

surrounding aqueous buffer phase was used. Figure 46 shows the release

profile of the liposome from the device. The release profile is zero order for

the first 30 hours, during which almost all of the agent is released.

3

98

• •

•
•

•
• •

0 	 10 	 20 	 30 	 40
	

50 	 60 	 70
	

80

Time (h)

Figure 47. DPPC release profile

4.2 Dimensional Analysis

4 .2.1 Uncoated Membrane, Solution in Reservoir

In developing the model for this problem, writing the governing equations in

semidimensionless form facilitated the identification of time constants Tr and

-c, for the reservoir and pore liquid regions respectively. These time

constants are derived from equations (12) and (13) for the reservoir and pore

liquid regions respectively:

a 2
	 — a) 2

Zr = D1 D2
(72)

The ratio of these time constants gives an indication of which resistance

(reservoir or membrane) controls the release rate from the device. Since a

large time constant corresponds to a large resistance in a particular region, a

99

large value of w = tjtm (>>1) indicates that the reservoir resistance controls,

while a small value of u (<<1) indicates that membrane resistance controls.

From the first boundary condition at =a/13 (equation (23)), the partition

coefficient m 1 , 2 is isolated as an important parameter in the model. In this

section the effect of these dimensionless groups will be studied via numerical

simulations of the governing equations.

Figure 48 shows the effect of pore liquid resistance on the release

profile, when there is no effect from partitioning. Here the ordinate is M/M inf,

the ratio of agent released at time 0 to that released at infinite time

(equilibrium). When w is small, the pore liquid limits the rate of release from

the device, and a lower flux (slope of the release profile in Figure 48) results.

When w is large, the membrane does not provide significant mass transfer

resistance, and the solute is released quickly. Figure 49 shows the effect of

membrane resistance on the release profile when there is significant

partitioning between the reservoir and pore liquid phases (m1,2 = 100). The

effect of w shows the same trend as it did without the effect of partitioning,

but with lower fluxes due to the reduction of driving force for diffusion across

the membrane due to partitioning. For membrane control (w=0.1) with

significant partitioning (m 1 , 21, 2 = 100), the flux is maintained at a low and

constant value for an extended time.

100

1.0

0.8

I 0.6

0.4

0.2

0.0

w = 10

= 1

1

. -

Iv= 0. 1

0 	 10 	 20 30 	 40 	 50

0

Figure 48. The effect of membrane resistance on the release profiles,
for m 1 , 2 = 1

1 .0

0.8

0.6

0.4

0.2

0.0

0 	 100 	 200 	 300 	 400 	 500
	

600

0

Figure 49. The effect of membrane resistance on the release
profile, for m 1 , 2=100

101

A large value of m1,2 indicates that the local concentration of agent in

the reservoir is larger than its local concentration in the pore, at the interface

between the two phases. This reduces the driving force for diffusion through

the pore liquid phase, resulting in a lower flux. This effect is shown in Figure

50 for membrane-controlled release. When m1,2 =1 there is no effect from

partitioning; with increasing m1,2 the flux is reduced and the time for which

the agent appears to be released at a constant rate is extended.

Another important time constant which can be identified from the

model (Equation(17)) is the ratio
V'0 —a)

. This is a measure of the
D2 a2

e

Figure 50. The effect of partitioning on the release profile, for
4J=0.1

102

characteristic time for diffusion out of the device at the external surface of

the membrane, and will be designated t w .

Figure 51 shows the effect of the ratio of 't m/tv, on the release profile.

Since the volume of the well stirred water bath is much larger than the

volume of the device (at least 2 orders of magnitude in the experiments), the

0 	 200 	 400 	 600 	 800 	 1000

0

Figure 51. The effect of Tm/tw on the release profile. w = 1, m 1 , 2 = 100.

ratio of Tmtcw is, for practical purposes, always very small. in this simulation

the volume of the water bath was 5850 times the volume of the reservoir for

Trnh, = 3.68x 10 -6 , and 585 times the volume of the reservoir for t nifrcw 3.68 x

10 -5 . Despite this enormous difference, a one order of magnitude change in

103

the ratio of Tmhw has a minor but noticeable impact on the release profile

from the device.

For the flat membrane, it has been demonstrated that a large partition

coefficient and a small value of i (ratio of reservoir to membrane time

constants) effect a constant release rate which appears constant for a

relatively long period of time. Now these same parameters will be

investigated for the hollow fiber configuration.

Figure 52 shows the effect of membrane resistance on the release

profile using a hollow fiber system. Here, the partition coefficient m 1 ,2 is

taken to be 100. Release profiles are shown for Ni = 10, iv = 1, and = 0.1,

Figure 52. The effect of membrane resistance on the release profile for
the hollow fiber configuration, m1,2=100

104

representing increasing membrane resistance relative to reservoir resistance.

The trend is the same as that established for the flat membrane

configuration: A smaller value of i corresponding to a larger membrane

resistance effects a slower release rate from the device, and one which

appears relatively constant for a longer period of time.

Figure 53 shows the effect of partitioning at the interface of the

reservoir and the pore on the release profile from a hollow fiber device. The

curves were generated for it = 0.1. As expected, the trend is the same for the

hollow fiber as it was for the flat membrane: A high value of partition

coefficient m 1 , 2 effects a slower release rate as it reduces the driving force for

DUV 	 IUUU 	 17VU 	 GUM)

0

Figure 53. The effect of partitioning on the release profile from a
hollow fiber device, w = 0.1

105

diffusion across the membrane. The release rate appears relatively constant

for longer times with increasing partition coefficient.

It is interesting to look at the concentration profiles within the system.

Figure 54 shows dimensionless concentration profiles as a function of radial

position in the reservoir and the pore regions. The profiles were generated

using yr = 1.0, m 1 , 2 = 100, and 0 as a parameter. For the reservoir region, the

concentration decreases with time, and appears to have an extremely weak, if

any, dependence on radial position. Within the pore, however, the

concentration profile appears to be linear with respect to radial position, and

the slope of this profile decreases with time. The flux of the agent from the

device is proportional to the slope of the concentration profile in the pore at

106

= 1, and also appears to decrease with time. However, this flux decreases

fairly slowly with time — the flux decreases by a factor of three over 200 time

constants (from 0 = 200 to 0 = 400).

Figure 55 shows the concentration profiles inside the hollow fiber

device, for y = 0.1, m 1 , 2 = 100, and 0 as a parameter. In this case the time

constant for diffusion across the pore is 10 times that for diffusion through

the reservoir. While the reservoir concentration profile appears still to be a

function only of time, the concentration profile of agent in the membrane is a

function of both radial position and time. The slope of the profile at the outer

surface of the device (4 = 1), which is proportional to the flux, changes even

Figure 55. Concentration profiles within the hollow fiber device, m1,2 =
100 and mf = 0.1

107

more slowly with time. The flux at the outer surface decreases only by a

factor of 2 over a period of one thousand time constants. This accounts for

the relatively constant release rate from the device that is apparent from the

release profile shown in Figure 52 for kif = 0.1 and m 1 , 2 = 100.

In both Figure 54 and Figure 55 the concentration profiles in the

reservoir appear to change with time only (i.e., concentration is independent

of radial position), while pore concentration varies linearly (i.e. the slope of

concentration vs. distance is constant) with radial position and is also a

function of time. In cases such as these, a simpler model may have been

applied. However, the model is a general one which considers the possibility

of reservoir and pore concentrations and fluxes varying with both time and

position. Figure 56 shows concentration profiles in the device for a case in

which the reservoir concentration is a function of position.

4 .2.2 Uncoated Membrane, Suspension in Reservoir

When the solubility concentration of the agent in the reservoir solution is

exceeded, some of the agent will be present in a solid phase in the reservoir.

As the agent in the reservoir solution diffuses out, it is replenished by solid

phase agent dissolving into the reservoir solution. If this dissolution is fast

relative to diffusion of the agent out of the reservoir, the reservoir

concentration will be maintained at its saturation level until all of the solids

have dissolved. If, however, the dissolution of the agent into the reservoir

Figure 56. Concentration profiles in the hollow fiber device for m1,2 =
100 and = 1.0

solution is slow compared to diffusion, the rate at which the solid dissolves

may be the controlling factor in its release from the device. Intuition tells us

that the more solids originally present in the reservoir, the longer this slow

rate of release will be maintained. Next the effect of these parameters will be

examined quantitatively.

The time constant for dissolution, Td =k/V, is extracted from Equation

57 (the coefficient of the driving force for mass transfer between the dispersed

solid and liquid reservoir phases). When the ratio of Tr to td, is large,

diffusion through the reservoir is rate controlling; when this ratio is small,

dissolution is rate controlling. In Figure 57 the effect of this ratio on the

release profile is examined. As trhd decreases, dissolution becomes more rate

0 	 100 	 200 	 300 	 400

e
Figure 57. The effect of dissolution rate control on the release profile from a
flat membrane device; t rfrcm = 1

controlling. And the flux is lower and apparently constant for a longer period

of time.

Next the effect of the group C = (1 - (1))/Om i,, on the release profile is

examined. This group represents the ratio of the time constant for change in

dispersed solid concentration and the time constant for the change in

reservoir solution concentration, and can be extracted from equations (57)

and (61). This group is the ratio of the amount of agent present in the

reservoir solution to the amount present in the solid -- the smaller its value,

the greater the fraction of agent present in the solid region: As shown in

0 	 1000 	 2000 	 3000 	 4000

0

Figure 58. The effect of on the release profile; i d/Tr = 100

Figure 58, as C decreases, more rate control is derived from dissolution, and

the flux of agent from the device is lower and apparently constant for a longer

time.

4.2.3 The Coated Membrane

The model for the coated hollow fiber controlled release device was not used

to describe the experimental results because of a lack of information on the

values of certain physical parameters relating to the coating. It is useful to

examine the effect of the coating thickness on the release profile for at least a

hypothetical situation. The simulation was run for two cases: one in which

the coating thickness was zero — in this situation, the simulated results are

111

exactly the same as they would be for the uncoated fiber. The second case

was for a system with a thicker coating than the one used in the experiment,

but this was necessary to observe the effect of the coating thickness with all

other system parameters held constant. The release profiles are shown in

Figure 59. The dimensions of the fiber in this second case were a=0.012 cm,

b = 0.015 cm, and c = 0.017 cm. This coating thickness is ten times the

0 	 200 	 400 	 600

0

Figure 59. The effect of the coating thickness on the release profile

coating thickness of the silicone-coated hollow fibers.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The feasibility and potential for microporous /porous membranes as

controlled release devices in aqueous-organic partition-based systems was

established, and a basic analysis as well as information regarding the agent

release rates were presented. The work was extended to include a hybrid

dispersed-reservoir phase/membrane diffusion limited system. Various

solvent/agent systems were investigated, different membranes were studied,

and the significance of various factors in achieving zero order release of the

agent were evaluated. Following are the conclusions drawn from the results

of these studies.

• Aqueous-organic partitioning is an effective mechanism for controlling the

release rate of an agent from a membrane-bound reservoir system. A high

partition coefficient reduces the concentration driving force for diffusion

across the membrane thereby reducing the release rate of the agent. A

constant release rate can be achieved for an extended period if the

partition coefficient is high.

• When an agent is present in excess of its solubility concentration in the

reservoir, the duration of constant release rate is extended further, and

more agent is released.

112

113

• Slow dissolution of an agent in excess of its solubility concentration in the

reservoir can be an additional rate controlling mecahnism.

• A thin nonporous coating on the external surface of the membrane

provides an additional resistance to diffusion of the agent, and can slow

its release rate significantly.

• Simultaneous release of two agents from an aqueous-organic partition-

based system can be achieved. The release rates of the two agents may be

independent, or interaction between the two agents (either in the

reservoir or in the water bath after release) may impact the release rates.

• Controlled release of a pure liquid agent, an organic with low water

solubility, can be achieved using this type of device. This was

demonstrated using toluene as a model agent, and demonstrates the

potential to use a very high concentration of agent in the reservoir, while

achieving a controlled release rate by extreme aqueous-organic

partitioning which favors the organic reservoir phase.

• Controlled release of a peptide can be implemented using this type of

aqueous-organic partition based system, exploiting the pH dependence of

the partition coefficient of the peptide between water and an organic

phase to achieve different release rates.

• Controlled release of liposomes from an aqueous reservoir can be achieved

using a water-filled microporous membrane-bound reservoir device.

114

• The models developed for the aqueous-organic partition based systems

describe the data well unless the physical situation deviates significantly

from the ideal system of the model, e.g. when one or more regions contain

a very concentrated solution of the agent.

• Parametric studies of the model developed for the system with a solution

in the reservoir reveal that either a high aqueous-organic partition

coefficient or severe membrane resistance can effect a constant release

rate for an extended time.

• Parametric studies of the model developed for the system with a

suspension in the reservoir indicate that dissolution rate control and high

loading of undissolved agent in the reservoir can effect a constant release

rate for an extended time.

• The model for the coated hollow fiber shows that a thin coating on the

external surface of the membrane reduces the release rate of the agent.

5.2 Recommendations

Future work should include a thorough systematic experimental

investigation of the system, considering the important dimensionless groups

that were identified from the model. Reservoir resistance and membrane

resistance should be varied independently. A more thorough experimental

investigation of the effects of the aqueous-organic distribution coefficient

would be useful.

115

For the system of a suspension initially in the reservoir, the effect of

dissolution kinetics should be investigated more thoroughly. Values of the

mass transfer coefficient k should be measured experimentally. The effect of

the volume fraction of solids would also be interesting to investigate

experimentally.

In the simultaneous release studies, there is a possibility of interaction

between two agents having an effect on the release rate of one or both. This

was seen in systems with a weak acid and a weak base. An investigation of

these interactions should be conducted, beginning with a system that is

known to be non-interactive.

Liposomes have been used effectively in controlled delivery and

targeting. Using the method of controlled delivery of liposomes presented

here, a future investigation should consider controlled release of an agent

from a liposome in conjunction with controlled liposome delivery.

Consideration should be given to improving the mathematical model

which describes the system. Several assumptions were made in developing

the model, and these are obvious places to begin the improvements. The

most fundamental modification to be considered would be the concentration

dependence of the distribution coefficient. In the model for suspension

initially in the reservoir, consideration should be given to the decrease in

volume fraction of solids as a function of time.

NOTATION

a 	 distance from = 0 to inner surface of membrane, cm.

A. 	 constant of integration; i = 1 to 22.

A 	 membrane area.

b 	 distance from x = 0 to outer surface of membrane, cm.

c 	 distance from x = 0 to outer surface of coating, cm.

C. 	 concentration of agent in region n, mol/cm 3 ; C,°, initial concentration of
agent in region n; n = 1, 2, 3, s.

D free free diffusivity of the agent in the liquid medium of the region being
considered, cm2/s.

D n	 effective diffusivity of the agent in region n, cm 2/s.

k	 first order overall mass transfer coefficient between solid and reservoir
phases, cm3/s.

mil partition coefficient of agent between regions i and j (equation (8)). m
is the partition coefficient of agent between a source or receiver region
and the membrane.

s 	 Laplace variable.

t 	 time, s.

U. dimensionless concentration (equation (11)); n = 1, 2, 3, s.

V. volume of region n, cm 3 , Vsource is the volume of the source region;

Vreceiver is the volume of the receiver region.

x 	 cartesian or cylindrical coordinate.

116

117

Greek letters

an 	 outside surface area of region n, cm 2 •

dimensionless group used in model for dispersed phase in reservoir.

dimensionless group used in model for dispersed phase in reservoir.

6 	 dimensionless group used in model for dispersed phase in reservoir.

£ 	 membrane porosity.

volume fraction occupied by tsolids dispersed in the reservoir.

o 	 dimensionless time.

ti	 membrane tortuosity.

tin 	time constant for mass transfer in a given region n, used in
dimensional analysis; n= r (reservoir), m (membrane), c (coating), d
(dissolution).

dimensionless cartesian or cylindrical coordinate (equation (19));
and 42 for regions 1 and 2 (equation (11)), and 43 for the coating region.

yr 	 ratio of time constant for diffusion through reservoir to time constant
for diffusion through membrane, equal to 'tr/tm .

C dimensionless group used in model for dispersed phase in reservoir, equal
to (1-0)/0m1,s.

Subscripts

1 	 region 1, reservoir.

2 	 region 2, membrane pore liquid.

3 	 region 3, coating.

s 	 solid region

w 	 surrounding water region (bath).

Facing 118

Table 8. Nomenclature Equivalents for the "Flat
Membrane, Solution in Reservoir" Problem.

Text Mathematica® Fortran
a ,i1;

-i--)
argl C 16_argl

arg2 C16_arg2a 	 D 1

D 2 S

arg3 C16_arg3D1
D2 3

CI°. -- R8_G_INIT_CONC

a2 alpha R8 _area

a -- R8G_a
Al al --

A2 a2 --

A2 a3 C16 a3

A4 a4 C16 a4

b -- R8 G_13
D 1 dl R8 G dl

D2 d2 R8 G d2
m12 xm R8_G_xm
1112w xm2 R8_G_xm2

s s C16_S_
Vw vw R8_G_vw

APPENDIX 1

Flat Membrane, Solution in Reservoir

Presented below is the Mathematica® program used to determine

expressions for the coefficients A1, A2, A3, and A4 for the "flat membrane:

solution in reservoir" problem. It is followed by the Fortran code used to

invert the solution numerically from the Laplace domain into the time

domain. The reader is referred to Table 8 for nomenclature relationships

between variables in the text of Chapter 2 and Mathematica® programs and

Fortran code.

118

bcflat = Solve[{al Sqrt[s] == a2 Sqrt[s],

dl Sqrt[s] (al exp[argl] - a2 exp[-arg1]) ==
d2 arg3 (a3 exp[arg2] - a4 exp[-arg2]),

1.0/s + al exp[argl] + a2 exp[-argl]==
xm (a3 exp[arg2] + a4 exp[-arg2]),

-alpha xm2 d2 arg3 b (a3 exp[arg3] -
a4 exp[-arg3]) ==
vw dl s (a3 exp[arg3] + a4 exp[-arg3])),

{al, a2, 	 a3, 	 a4)];

Al =al /. bcflat;
A2 = a2 /. bcflat;
A3 = a3 /. bcflat;
A4 = a4 /. bcflat;

FortranForm[Al]
List(-1./(s*exp(-arg1) + s*exp(argl)) -

1.*s*xm*(-1.*dl*Sqrt(s)*exp(-argl) +
dl*Sqrt(s)*exp(arg1))*exp(arg2)*

(alpha*xm2*arg3*b*d2*exp(-arg3) -
1.*dl*s*vw*exp(-arg3))/

((s*exp(-argl) + s*exp(argl))*
(-1.*(s*xm*

(-1.*dl*Sqrt(s)*exp(-arg1) +
dl*Sqrt(s)*exp(arg1))*

exp(arg2) -
1.*arg3*d2*
(s*exp(-argl) + s*exp(argl))*
exp(arg2))*

(alpha*xm2*arg3*b*d2*exp(-arg3) -
1.*dl*s*vw*exp(-arg3)) +

(s*xm*
(-1.*d1*Sqrt(s)*exp(-arg1) +
d1*Sqrt(s)*exp(arg1))*

exp(-arg2) +
arg3*d2*
(s*exp(-argl) + s*exp(argl))*
exp(-arg2))*

(-1.*alpha*xm2*arg3*b*d2 * exp(arg 3)
1.*d1*s*vw*exp(arg3)))) +

- 	 1.*s*xm*(-1.*d1*Sqrt(s)*exp(-argl) +
dl*Sqrt(s)*exp(arg1)) * exp(-arg2) *

(-1.*alpha*xm2*arg3*b*d2*exp(arg3) -
1.*dl*s*vw*exp(arg3))/

((s*exp(-argl) + s*exp(argl))*
(-1.*(s*xm*

119

120

(-1.*d1*Sqrt(s)*exp(-arg1) +
d1*Sqrt(s)*exp(arg1))*

exp(arg2)
1.*arg3*d2*
(s*exp(-arg1) + s*exp(argl))*
exp(arg2))*

(alpha*xm2*arg3*b*d2*exp(-arg3) -
1.*dl*s*vw*exp(-arg3)) +

(s*xm*
(-1.*d1*Sqrt(s)*exp(-argl) +
d1*Sqrt(s)*exp(arg1))*

exp(-arg2) +
arg3*d2*
(s*exp(-argl) + s*exp(arg1))*
exp(-arg2))*

(-1.*alpha*xm2*arg3*b*d2*exp(arg3) -
1.*d1*s*vw*exp(arg3)))))

FortranForm[A2]
List(-1./(s*exp(-arg1) + s*exp(argl)) -

1 	 +
d1*Sqrt(s)*exp(arg1))*exp(arg2)*

(alpha*xm2*arg3*b*d2*exp(-arg3) -
1.*dl*s*vw*exp(-arg3))/

((s*exp(-arg1) + s*exp(argl))*
(-1.*(s*xm*

(-1.*d1*Sqrt(s)*exp(-argl) +
d1*Sqrt(s)*exp(arg1))*

exp(arg2) -
1
(s*exp(-arg1) + s*exp(argl))*
exp(arg2))*

(alpha*xm2*arg3*b*d2*exp(-arg3)
1.*d1*s*vw*exp(-arg3)) +

(s*xm*
(-1.*d1*Sqrt(s)*exp(-argl) +
d1*Sqrt(s)*exp(arg1))*

exp(-arg2) +
arg3*d2*
(s*exp(-arg1) + s*exp(argl))*
exp(-arg2))*

(-1.*alpha*xm2*arg3*b*d2*exp(arg3) -
1.*dl*s*vw*exp(arg3)))) +

- 	 1.*s*xm*(-1.*d1*Sqrt(s)*exp(-argl) +
d1*Sqrt(s)*exp(arg1))*exp(-arg2)*

(-1.*alpha*xm2*arg3*b*d2*exp(arg3) -
1

((s*exp(-arg1) + s*exp(argl)) *
(-1.*(s*xm*

(-1.*d1*Sqrt(s)*exp(-argl) +

121

d1*Sqrt(s)*exp(arg1))*
exp(arg2) -

1.*arg3*d2*
(s*exp(-arg1) + s*exp(arg1))*
exp(arg2))*

(alpha*xm2*arg3*b*d2*exp(-arg3) -
1.*d1*s*vw*exp(-arg3)) +

(s*xm*
(-1.*d1*Sqrt(s)*exp(-arg1) +
d1*Sqrt(s)*exp(arg1))*

exp(-arg2) +
arg3*d2*
(s*exp(-argl) + s*exp(argl))*
exp(-arg2))*

(-1.*alpha*xm2*arg3*b*d2*exp(arg3) -
1.*dl*s*vw*exp(arg3)))))

FortranForm[A3]
List(-1.*(-1.*d1*Sqrt(s)*exp(-argl) +

dl*Sqrt(s)*exp(arg1))*
(alpha*xm2*arg3*b*d2*exp(-arg3) -
1.*dl*s*vw*exp(-arg3))/

- 	 (-1.*(s*xm*
(-1.*d1*Sqrt(s)*exp(-argl) +
dl*Sqrt(s)*exp(arg1))*exp(arg2)\
- 1.*arg3*d2*
(s*exp(-arg1) + s*exp(arg1))*
exp(arg2))*

(alpha*xm2*arg3*b*d2*exp(-arg3) -
1.*dl*s*vw*exp(-arg3)) +

(s*xm*(-1.*d1*Sqrt(s)*exp(-arg1) +
d1*Sqrt(s)*exp(arg1))*exp(-arg2)

+ arg3*d2*
(s*exp(-arg1) + s*exp(arg1))*
exp(-arg2))*

(-1.*alpha*xm2*arg3*b*d2*exp(arg3) -
1.*dl*s*vw*exp(arg3))))

FortranForm[A4]
List(1.*(-1.*d1*Sqrt(s)*exp(-arg1) +

d1*Sqrt(s)*exp(arg1))*
(-1.*alpha*xm2*arg3*b*d2*exp(arg3) -
1.*d1*s*vw*exp(arg3))/

- 	 (-1.*(s*xm*
(-1.*d1*Sqrt(s)*exp(-arg1) +
d1*Sqrt(s)*exp(arg1))*exp(arg2)\
- 1.*arg3*d2*
(s*exp(-argl) + s*exp(arg1))*
exp(arg2))*

(alpha*xm2*arg3*b*d2*exp(-arg3) -

122

1.*d1*s*vw*exp(-arg3)) +
(s*xm*(-1.*d1*Scirt(s)*exp(-arg1) +

d1*Sgrt(s)*exp(arg1))*exp(-arg2)
+ arg3*d2*
(s*exp(-argl) + s*exp(argl))*
exp(-arg2))*

(-1.*alpha*xm2*arg3*b*d2*exp(arg3) -
1.*dl*s*vw*exp(arg3))))

123

C ***
c * Program model_flat provides release profiles for the flat membrane-
C * solution in reservoir problem.
C
C * Stephanie Farrell
C * October 28, 1995
C *
C * (C) Copyright 1995, 1996 Stephanie Farrell
C *
C * FILE: FLAT.FOR --> FLAT.EXE
C ***

program MODEL_FLAT

C Function declarations
C

real*8 REALTIME
real*8 REALCONC
external C16_FWALL
external SUB_WALL
external CALCULATION
external DINLAP
external REALTIME
external REALCONC

C Variable declarations
C 	

integer I_INDEX
integer I_KMAX
integer NOUT

real*8 R8_ALPHA
real*8 R8_RELERR

real*8 R8_T(1)
real*8 R8_FINV(1)

complex*8 C8_argl
complex*8 C8_arg2
complex*8 C8_arg3
complex*8 C8_al

C ***

C * Data input parameters

character TITLE*80
character VAR_NAME*30

integer I_NUM_TIMES

real*8 R8_TIME_INTERVAL
real*8 R8_INIT_CONC
real*8 R8_G_a
real*8 R8_G_b
real*8 R8_G_dl
real*8 R8_G_d2
real*8 R8_G_xm
real*8 R8_G_vw
real*8 R8_G_xm2
real*8 R8_G_r

124

character EOF*80

common /IN_PARMS/
& R8_G_a,
& R8_G_b,
& R8_G_dl,
& R8_G_d2,
& R8_G_xm,
& R8_G_vw,
& R8_G_xm2,
& R8_G_r

C ***
C * Read in data
C ***

read
read

*,
*,

TITLE
VAR_NAME, I_NUM_TIMES

read *, VAR_NAME, R8_TIME_INTERVAL
read *, VAR_NAME, R8_INIT_CONC

read *, VAR_NAME, R8_G_a
read *, VAR_NAME, R8_G_b
read *, VAR_NAME, R8_G_dl
read *, VAR_NAME, R8_G_d2
read *, VAR_NAME, R8_G_xm 	 •
read *, VAR_NAME, R8_G_vw
read *, VAR_NAME, R8_G_xm2
read
read

*,
*,

VAR_NAME,
EOF

R8_G_r

if (EOF .NE. 'EOF') then
print *,'Input file format is incorrect. Aborting.'
goto 1000

endif

print *, TITLE
print *, 'I_NUM_TIMES 	 ,', I_NUM_TIMES
print *, 'R8_TIME_INTERVAL „ R8_TIME_INTERVAL
print *, 'R8_INIT_CONC
print *, 'R8_G_a
print *, 'R8_G_b
print *, 'R8_G_dl
print *, 1 12.8_G_d2
print *, 'R8_G_xm
print *, 'R8_G_vw
print *, 'R8_G_xm2
print *, 'R8_G_r

„ R8_INIT_CONC
„ R8 G a
„ R8 G b

-

R8_G_dl
- R8_G_d2
- R8_G_xm
„ R8_G_vw
„ R8Gxm2
„ R8 G r

	C
C User-supplied C8_arguments for the IMSL subroutine DINLAP

	C
R8_ALPHA = 0
I_KMAX = 10000
R8_RELERR = 5.0E-5

C 	 Evaluate the solution for the wall section.

print *,'THETA,U,REAL TIME,REAL CONC.'
do I_INDEX = I_NUM_TIMES, 1, -1

125

R8_T(1) = R8_TIME_INTERVAL * DFLOAT(I_INDEX)
call DINLAP (C16_FWALL,

1 ,
R8_5,
R8_ALPHA,
R8_RELERR,
I_KMAX,

& 	 R8_FINV)

print '(E9.4, A, E9.4, A, F15.2, A, E15.4)',
R8_5(1), ',',
R8_FINV(1),
REALTIME(R8_T(1), R8_G_b, R8_G_dl),
REALCONC(R8_FINV(1), R8_INIT_CONC)

end do

1000 continue
end

c**
C User-supplied function to which the inverse Laplace transform
C will be computed
c**

complex*16 FUNCTION C16_FWALL(C16_9)

intrinsic CSQRT
intrinsic CEXP

complex*16 C16_argWall
complex*16 C16_Temp

complex*16 C16_S
complex*16 C16_a3
complex*16 C16_a4

real*8 R8_dl
real*8 R8_d2

call SUB_WALL(C16_S, R8_d1, R8_d2, C16_a3, C16_a4)

C16_Temp = C16_S * R8_dl / R8_d2

C16_argWall = CDSQRT(C16_Temp)

C16_FWALL = C16_a3 * CDEXP(C16_argWall) + C16_a4 *
CDEXP(-C16_argWall)

return
end

C ***

C * Subroutine SUB WALL evaluates a3 and a4 which are used in
C * FWALL.
C ***

subroutine SUB_WALL(C16_S,
R8_dl,
R8_d2,
C16_a3,
C16_a4)

complex*16 C16_S

126

complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_a4
complex*16 C16_a3

real*8 R8_a
real*8 R8_b
real*8 R8_dl
real*8 R8_d2
real*8 R8_xm
real*8 R8_vw
real*8 R8_xm2
real*8 R8_r
real*8 R8area
real*8 R8_vw_R8_xm2

C Call calculation to calculate everything necessary for
C evaluation of C16_a3 and C16 a4

call CALCULATION (C16_S,
C16_argl,
C16_arg2,
C16 arg3,
R8_al,
R8_d2,
R8_vw,
R8_vw_R8_xm2,
R8_a,
R8_b,
R8_xm,
Re_area)

	C
C Compute C16_a3

	C
C16_a3 = (-1. * (-1. * R8_dl * CDSQRT(C16_S) *

• CDEXP(-C16_argl) +
R8_dl * CDSQRT(C16_S) * CDEXP(C16_argl)) *

• (R8_area * C16_arg3 * R8 b * R8_d2 * CDEXP(-C16_arg3) -
& 1. * R8 dl * C16_S * R -8- vw_R8_xm2 * CDEXP(-C16_arg3)) /
& (-1. * (C16_S * R8_xm * (-I. * R8_dl * CDSQRT(C16_S) *
& CDEXP(-C16_argl) +

R8_dl * CDSQRT(C16_S) * CDEXP(C16_argl)) *
& CDEXP(C16_arg2) -
& 1. * C16_arg3 * R8_d2 * (C16_S * CDEXP(-C16_argl) +
& C16_S * CDEXP(C16_argl)) *

CDEXP(C16_arg2)) * (R8_area * C16_arg3 * R8_b * R8_d2 *
& CDEXP(-C16_arg3) -

1. * R8 dl * C16_S * R8_vw_R8_xm2 * CDEXP(-C16_arg3))
& + (C16_S * R8_xm * (-I. * R8_dl * CDSQRT(C16_S) *
& CDEXP(-C16_argl) +

R8_dl * CDSQRT(C16_S) * CDEXP(C16_argl)) *
& CDEXP(-C16_arg2) +

C16 arg3 * R8_d2 * (C16_S * CDEXP(-C16_argl) + C16_S *
& CDEXP(C16_argl)) *

CDEXP(-C16_arg2)) * (-1. * R8_area * C16_arg3 * R8_b * R8_d2
& * CDEXP(C16_arg3) -

1. * R8_dl * C16_S * R8_vw_R8_xm2 * CDEXP(C16_arg3))))

127

C
C Compute C16_a4

	

C
C16_a4 = (1. * (-1. * R8_dl * CDSQRT(C16_S) * CDEXP(-C16_argl) +

R8_dl * CDSQRT(C16_S) * CDEXP(C16_argl)) *
• (-1. * R8_area * C16_arg3 * R8_b * R8_d2 * CDEXP(C16_arg3) -

& 	 1. * R8_d1 * C16_S * R8_vw_R8_xm2 * CDEXP(C16_arg3)) /
& (-1. * (C16_S * R8_xm * (-1. * R8_dl * CDSQRT(C16_S) *

CDEXP(-C16_argl) +
R8_d1 * CDSQRT(C16_S) * CDEXP(C16_argl)) *

CDEXP(C16_arg2) -
& 1. * C16_arg3 * R8_d2 * (C16_S * CDEXP(-C16_argl) + C16_S
• * CDEXP(C16_argl)) *

CDEXP(C16_arg2)) * (R8_area * C16_arg3 * R8_b * R8_d2 *
CDEXP(-C16_arg3) -

& 	 1. * R8_d1 * C16_S * R8_vw_R8_xm2 * CDEXP(-C16_arg3)) +
(C16_S * R8_xm * (-1. * R8_dl * CDSQRT(C16_S) *

• CDEXP(-C16_argl) +
R8_dl * CDSQRT(C16_S) * CDEXP(C16_argl)) *

• CDEXP(-C16_arg2) +
C16_arg3 * R8_d2 * (C16_S * CDEXP(-C16_argl) + C16_S *

• CDEXP(C16_argl)) *
CDEXP(-C16_arg2)) * (-1. * R8_area * C16_arg3 * R8_b * R8_d2

• * CDEXP(C16_arg3) -
& 1. * R8_dl * C16_S * R8_vw_R8_xm2 * CDEXP(C16_arg3))))

end

c**
C Subroutine CALCULATION computes everything necessary for evaluation
C of C16_al, a3, and a4
c**

subroutine CALCULATION(C16_S,
C16_argl,
C16_arg2,
C16_arg3,
R8_dl,
R8_d2,
R8_vw,
R8_vw_R8_xm2,
R8_a,
R8_b,
R8_xm,
R8_area)

	C
C Constants

	C
real*8 R8_PI
parameter (R8_PI = 3.14159265359)

	C
C Commons

	C
real*8 R8_G_a
real*8 R8_G_b
real*8 R8_G_dl
real*8 R8_G_d2
real*8 R8_G_xm
real*8 R8_G_vw
real*8 R8_G_xm2

128

real*8 R8_G_r

common /IN_PARMS/
& R8_G_a,
& R8_G_b,
& R8_G_dl,
& R8_G_d2,
& R8_G_xm,
& R8_G_vw,
& R8_G_xm2,
& R8_G_r

	

C
C Variables

	

C
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_al
complex*16 C16_S
complex*16 C16_Temp

real*8 R8_a
real*8 R8_b
real*8 R8_dl
real*8 R8_d2
real*8 R8_xm
real*8 R8_vw
real*8 R8_xm2
real*8 R8_r
real*8 R8_area
real*8 R8_vw_R8xm2

C Computations

	

C
R8_a 	 = R8_G_a 	 ! Inside distance
R8_b 	 = R8_G_b 	 ! Outside distance
R8_d1 	 = R8_G_dl 	 ! Diffusivity in reservoir
R8_d2 	 = R8_G_d2 	 I Effective membrane diffusivity
R8_xm 	 = R8_G_xm 	 ! Partition coefficient at A
R8_vw 	 = R8_G_vw 	 ! External aqueous phase volume
R8_xm2 	 = R8_G_xm2
R8_r 	 = R8_G_r 	 ! Radius of membrane circle
R8_area 	 = R8_r**2 * R8_PI ! Outside area
R8_vw_R8_xm2 = R8_vw / R8_xm2 ! Ratio of R8_vw to R8_xm2

C C16_arguments of the Bessel functions that appear in the expressions
C for C16_al, a3 and a4.
C

C16_argl = R8_a * CDSQRT(C16_S) / R8_b

C16_Temp = C16_S * R8_dl / R8_d2
C16_arg2 = R8_a * CDSQRT(C16_Temp) / R8_b

C16_Temp = C16_S * R8_dl / R8_d2
C16_arg3 = CDSQRT(C16_Temp)

end

129

*,,,,,,***

C * Subroutine REALTIME converts to real time.
C ***

real*8 function REALTIME(R8_THETA, R8_b, R8_d1)

real*8 R8_THETA
real*8 R8_b
real*8 R8_d1

REALTIME = R8_THETA * (R8_b ** 2) / R8_d1

return
end

C ***

C * Subroutine REALCONC converts to real concentration.
C ***

real*8 function REALCONC(RB_U, R8_INIT_CONC)

real*8 R8_U
real*8 R8_INIT_CONC

REALCONC = R8_U * R8_INIT_CONC

return
end

c**

C* EOF
c**

Hollow Fiber: Solution in Reservoir

Presented below is the Mathematica® program used to determine expressions

for the coefficients A5, A7, and A8 for the "hollow fiber: solution in reservoir"

problem. It is followed by the Fortran code used to invert the solution

numerically from the Laplace domain into the time domain. The reader is

referred to Table 9 for nomenclature relationships between variables in the

text of Chapter 2 and Mathematica® programs and Fortran code.

130

Facing 130

Table 9. Nomenclature Equivalents for the
"Hollow Fiber: Solution in Reservoir" Problem.

Text Mathematica® FORTRAN

a/b √s arg1 C16_argl

a/b √(D1/D2)s
arg2 C16_arg2

√(D1/D2)s
Des

arg3 C16_arg3

√(D1/D2)
11 D 2

X R8_X

(Vw√s)/(α2bm2w)
Z C16 Z

a R8 Ga

A5 A1 C16_a1

A7 A3 C16 a3

A8 A4 C16_a4

b R8Gb

D1 R8 G dl

D2 R8 G d2

I0 I0 C16 IO

I1 I1 C16 I1

K0 KO C16 KO

K1 K1 C16 K1
m1,2

R8 G xm
m2,w R8_G_xm2

s s R8_G_s

Vw R8_G_vw

Bcmhf = Solve[f1.0/s + Al IOargl ==

xm (A3 IOarg2 + A4 KOarg2),
X Al Ilargl ==
A3 Ilarg2 - A4 Klarg2,
X Z (A3 IOarg3 + A4 KOarg3) ==
-(A3 Ilarg3 - A4 K1arg3)),{Al, A3, A4}];

al = Al /. Bcmhf;
a3 = A3 /. Bcmhf;
a4 = A4 /. Bcmhf;

FortranForm[al]
List(-1./(I0argl*s) +

1.*Ilargl*KOarg2*X*xm*(Ilarg3 +
IOarg3*X*Z)/
(IOargl*((IOargl*Klarg2*s +
Ilargl*KOarg2*s*X*xm)*
(Ilarg3 + IOarg3*X*Z) -
1.*(-1.*IOargl*1larg2*s +
IOarg2*Ilargl*s*X*xm) *
(-1.*Klarg3 + KOarg3*X*Z)))
1.*I0arg2*Ilarg1*X*xm*
(-1.*Klarg3 + KOarg3*X*Z)/
(IOargl*((IOargl*Klarg2*s +
Ilargl*KOarg2*s*X*xm)*
(Ilarg3 + IOarg3*X*Z) -
1.*(-1.*IOargl*I1arg2*s +
IOarg2*Ilargl*s*X*xm)*
(-1.*Klarg3 + KOarg3*X*Z))))

FortranForm[a3]
List(-1.*Ilargl*X*(-1.*Klarg3 + KOarg3*X*Z)/

((IOargl*Klarg2*s + Ilargl*KOarg2*s*X*xm)*
(Ilarg3 + IOarg3*X*Z)
1.*(-1.*I0argl*Ilarg2*s +
IOarg2*Ilargl*s*X*xm)*
(-1.*Klarg3 + KOarg3*X*Z)))

FortranForm[a4]
List(1.*Ilargl*X*(Ilarg3 + IOarg3*X*Z)/

((IOargl*Klarg2*s + Ilargl*KOarg2*s*X*xm)*
(Ilarg3 + IOarg3*X*Z) -
1.*(-1.*IOargl*Ilarg2*s +
IOarg2*Ilargl*s*X*xm)*
(-1.*Klarg3 + KOarg3*X*Z)))

131

132

C ***

C * Program model_mhf provides release profiles for the holllow fiber-
C * solution in reservoir problem.
C *
C * Stephanie Farrell
C * August 1995
C *
C * © Copyright 1995, 1996 Stephanie Farrell
C *
C * FILE: MHF.FOR 	 MHF.EXE
C ***

program MODEL_MHF

C ***

C * Function definitions
C ***

real*8 R8_REALTIME
real*8 R8_REALCONC
complex*16 C16_F_LUMEN
complex*16 C16_F_WALL

external R8_REALTIME
external R8_REALCONC
external C16_F_LUMEN
external C16_F_WALL
external LUMEN
external WALL
external CALCULATION
external DINLAP
external BESKO
external BESIO
external BESI1
external BESK1

C ***

C * Parameters relating to independent variables (radius and time)
C ***

real*8 R8_MIN_RADIUS
parameter (R8_MIN_RADIUS = 0.0)

real*8 R8_MAX_RADIUS
parameter (R8_MAX_RADIUS = 1.0)

C ***

C * Main program.
C ***

integer I_INDEX
integer I_KMAX
integer I_NOUT
integer I_LUMEN
integer I_WALL

real*8 R8_ALPHA
real*8 R8_EXP
real*8 R8_FLOAT
real*8 R8_RELERR

real*8 R8_T(1)
real*8 R8_FINV(1)

real*8 R8 BOUNDARY

133

real*8 R8_LUMEN_RADIUS_INCREMENT
real*8 R8_WALL_RADIUS_INCREMENT

real*8 R8_RADIUS
common R8_RADIUS

C ***

C * Data input parameters
C ***

character C_TITLE*80
character C_VAR_NAME*30
character C_USE_DISTANCE*1

integer I_NUM_TIMES
integer I_NUM_LUMEN_GRIDS
integer I_NUM_WALL_GRIDS

real*8 R8_TIME_INTERVAL
real*8 R8_INIT_CONC
real*8 R8_G_a
real*8 R8_G_b
real*8 R8_G_dl
real*8 R8_G_d2
real*8 R8_G_xm
real*8 R8_G_vw
real*8 R8_G_xm2

character C_EOF*80

common /IN_PARMS/
& R8_G_a,
& R8_G_b,
& R8_G_dl,
& R8_G_d2,
& R8_G_xm,
& R8_G_vw,
& R8_G_xm2

C ***
C * Read in data
C ***

read
read

*,
*,

C_TITLE
C_VAR_NAME, C_USE_DISTANCE

read *, C_VAR_NAME, I_NUM_TIMES
read *, C_VAR_NAME, I_NUM_LUMEN_GRIDS
read *, C_VAR_NAME, I_NUM_WALL_GRIDS
read *, C_VAR_NAME, R8_TIME_INTERVAL
read *, C_VAR_NAME, R8_INIT_CONC

read *, C_VAR_NAME, R8_G_a
read *, C_VAR_NAME, R8_G_b
read *, C_VAR_NAME, R8_G_d1
read *, C_VAR_NAME, R8_G_d2
read *, C_VAR_NAME, R8_G_xm
read *, C_VAR_NAME, R8_G_vw
read
read

*,
*,

C_VAR_NAME,
C_EOF

R8_G_xm2

if (C_EOF .NE. 'EOF') then
print *,'Input file format is incorrect. Aborting.'

134

Goto
endif

1000

print
print

*,
*,

C_TITLE
'C_USE_DISTANCE 	 ,' C_USE_DISTANCE

print *, 'I_NUM_TIMES 	 ,' I_NUM_TIMES
print *, 'I_NUM_LUMEN GRIDS,' I_NUM_LUMEN_GRIDS
print *, 'I_NUM_WALL_aRIDS ,' I_NUM_WALL_GRIDS
print *, 'R8_TIME_INTERVAL ,' R8_TIME_INTERVAL
print *, 'R8_INIT_CONC 	 ,' R8 INIT CONC_ 	 _
print *, 'R8_G_a 	 ,' R8_G_a
print *, 'R8_G_b 	 ,' R8_G_b
print *, 'R8_G_dl 	 ,' R8_G_dl
print *, 'R8_G_d2 	 ,' R8_G_d2
print *, 'R8_G_xm 	 ,' R8_G_xm
print *, 'R8_G_vw 	 ,' R8_G_vw
print *, 'R8_G_xm2 	 ,' R8_G_xm2

C ***

C * User-supplied arguments for the IMSL routine DINLAP
C ***

R8_ALPHA = 0
R8_RELERR = 5.0E-5
I_KMAX = 10000

C ***
C * 	 Evaluate the solution for the lumen section.
C ***

if (C_USE_DISTANCE .EQ. 'Y') then
do I_LUMEN = 1, I_NUM_LUMEN_GRIDS

R8_BOUNDARY = R8_G_a R8_G_b
R8_LUMEN_RADIUS_INCREMENT = (R8_BOUNDARY - R8_MIN_RADIUS) /

FLOAT(I_NUM_LUMEN_GRIDS - 1)
R8_RADIUS = R8_MIN_RADIUS + FLOAT(I_LUMEN - 1) *

R8_LUMEN_RADIUS_INCREMENT

print *, 'Inside the lumen: RADIUS = 	 R8_RADIUS
print *,'THETA,U,REAL TIME,REAL CONC.'

Do I_INDEX = I_NUM_TIMES, 1, -1
R8_7(1) = R8_TIME_INTERVAL * Float(I_INDEX)
call DINLAP (C16_F_LUMEN,

1 ,
R8_T,
R8_ALPHA,
R8_RELERR,
I_KMAX,
R8_FINV)

print '(E15.4, A, E15.4, A, F15.2, A, E15.4)',
R8_T(1),
R8_FINV(1),
R8_REALTIME(R8_T(1), R8_G_b, R8_G_dl),
R8_REALCONC(R8_FINV(1), R8_INIT_CONC)

end do

end do
end if

C ***

135

C * 	 Evaluate the solution for the wall section.
C ***

do I_WALL = 1, I_NUM_WALL_GRIDS
if (C_USE_DISTANCE .EQ. 'Y') then

R8_BOUNDARY = R8_G_a / R8_G_b
R8_WALL_RADIUS_INCREMENT = (R8_MAX_RADIUS R8_BOUNDARY) /

FLOAT(I_NUM_WALL_GRIDS - 1)
R8_RADIUS = R8_BOUNDARY + FLOAT(I_WALL - 1) *

R8_WALL_RADIUS_INCREMENT
else

R8_RADIUS = 1.0
end if

print *, 'Inside the wall: RADIUS = 	 R8_RADIUS
print *,'THETA,U,REAL TIME,REAL CONC.'

Do I_INDEX = I_NUM_TIMES, 1, -1
R8_T(1) = R8_TIME_INTERVAL * Float(I_INDEX)
call DINLAP (C16_F_WALL,

1 ,
R8_T,
R8_ALPHA,
R8_RELERR,
I_KMAX,
R8_FINV)

print '(E15.4, A, E15.4, A, F15.2, A, E15.4)',
R8_T(1),
R8_FINV(1), ',/,
R8_REALTIME(R8_T(1), R8_G_b, R8_G_d1),
R8_REALCONC(R8_FINV(1), R8_INIT_CONC)

end do

end do

1000 continue
end

C ***
C * User-supplied function to which the inverse Laplace transform
C * will be computed

complex*16 function C16_F_WALL(C16_s)
common R8_RADIUS

real*8 R8_RADIUS

real*8 R8_dl
real*8 R8 d2

complex*16 C16_IOargWall
complex*16 C16_KOargWall
complex*16 C16_argWall

complex*16 C16_s
complex*16 C16_a1
complex*16 C16_a3
complex*16 C16_a4

136

intrinsic CDSQRT

call WALL(C16_s, R8_dl, R8_d2, C16_a3, C16_a4)

C16_argWall = R8_RADIUS * CDSQRT(C16_s * R8_d1 / R8_d2)

call BESIO(C16_argWall, C16_IOargWall)
call BESKO(C16_argWall, C16_KOargWa11)

C16_F_WALL = (C16_a3 * C16_I0argWall + C16_a4 * C16_KOargWall)

return
end

C ***

C * User-supplied function to which the inverse Laplace transform
C * will be computed
C ***

complex*16 function C16_F_LUMEN(C16_s)
common R8_RADIUS
intrinsic CDSQRT

real*8 R8_RADIUS

complex*16 C16_s
complex*16 C16_al
complex*16 C16_argLumen
complex*16 C16_I0argLumen

call LUMEN(C16_s, C16_a1)

C16_argLumen = R8_RADIUS * CDSQRT(C16_s)
call BESIO(C16_argLumen, C16_I0argLumen)

C16_F_LUMEN = C16_al * C16_I0argLumen
return
end

C ***
C 	 BESIO computes Bessel(I,0)
C ***

subroutine BESIO (C16_X, C16_I0)

complex*16 C16_X
complex*16 C16_I0

C16_I0 = 1.0 + C16_X**2 / 4.0 + C16_X**4 / 64.0 +
& C16_X**6 / 2304.0 + C16_X**8 / 147456.0 +
& C16_X**10 / 14745600.0 + C16_X**12 / 2123366400.0 +
& C16_X**14 / 416179814400.0 +
& C16_X**16 / 106542032486400.0 +
& C16_X**18 / 34519618525593600.0 +
& C16_X**20 / 13807847410237440000.0

return
end

C ***
C * BESI1 computes Bessel(I,1')
C ***

subroutine BESI1 (C16_X, C16_I1)

complex*16 C16_X
complex*16 C16_I1

C16_I1 = C16 X/2.0 + C16 X**3/16.0 +
• C16_X**/384.0 + C16_X**7/18432.0 +
• C16_X**9/1474560.0 + C16_X**11/176947200.0 +
• C16_X**13/29727129600.0 +
• C16_X**15/6658877030400.0 +
• C16_X**17/1917756584755200.0 +
• C16_X**19/690392370511872000.0

return
end

C ***

C * BESKO computes Bessel(K,0)
C ***

subroutine BESKO (C16_X, C16_K0)

complex*16 C16_X
complex*16 C16_XL
complex*16 C16_K0

intrinsic CDLOG
intrinsic CDSQRT

C16_XL = LOG(1.0/2.0) + CDLOG(C16_X)

C16_K0 = -0.577215 - Log(1.0/2.0)
• C16_X**20*((7381.0/1260.0 - 2*0.577215)/27615694820474880000.0
• + (-C16_XL)/13807847410237440000.0) +
• C16 X**18*{(7129.0/1260.0 - 2*0.577215)/69039237051187200.0 +
• (-CI6_XL)/34519618525593600.0) +
• C16_X**16*((761.0/140.0 - 2*0.577215)/213084064972800.0 +
• (-C16_XL)/106542032486400.0) +
• C16 X**14*((363.0/70.0 - 2*0.577215)/832359628800.0 +

(-C16_XL)/416179814400.0) +
• C16 X**12*((49.0/10.0 - 2*0.577215)/4246732800.0 +
• (-C16_XL)/2123366400.0) +
• C16 X**10*((137.0/30.0 - 2*0.577215)/29491200.0 +
• (-CI6_XL)/14745600.0) +
• C16 X**8*((25.0/6.0 - 2*0.577215)/294912.0 +
• (-C16_XL)/147456.0) +

C16_X**6*((11.0/3.0 - 2*0.577215)/4608.0 + (-C16 XL)/2304.0) +
C16_X**4*((3.0 - 2*0.577215)/128.0 + (-C16_XL)/6 4 .0) +

• C16_X**2*((2.0 	 2*0.577215)/8.0 + (-C16_XL)/4.0) -
& CDLOG(C16_X)

return
end

C ***

C * BESK1 computes Bessel(K,1)
C ***

subroutine BESK1(C16_X, C16_K1)

complex*16 C16_X
complex*16 C16_XL
complex*16 C16_K1

137

138

intrinsic CDLOG
intrinsic CDSQRT

C16_XL = LOG(1.0/2.0) + CDLOG(C16_X)

C16 K1 = 1.0/C16_X + C16 X**17*((-6989.0/1260.0 + 2*0.577215)/
& 3835513169510400.0 + CI6 XL/1917756584755200.0) +
& C16_X**15*((-1487.0/280..5 + 2*0.577215)/13317754060800.0 +
& C16_XL/6658877030400.0) +
& C16_X**13*((-353.0/70.0 + 2*0.577215)/59454259200.0 +
& C16_XL/29727129600.0) +
& C16_X**11*((-71.0/15.0 + 2*0.577215)/353894400.0 +
& C16_XL/176947200.0) +
& C16_X**9*((-131.0/30.0 + 2*0.577215)/2949120.0 +
& C16_XL/1474560.0) +
& C16_X**7*((-47.0/12.0 + 2*0.577215)/36864.0 + C16_XL/18432.0) +
& C16_X**5*((-10.0/3.0 + 2*0.577215)/768.0 + C16_XL/384.0) +
& C16_X**3*((-5.0/2.0 + 2*0.577215)/32.0 + C16_XL/16.0) +
& C16_X*((-1.0 + 2*0.577215)/4.0 + C16_XL/2.0)

return
end

C ***

C * WALL evaluates a3 and a4 which are used in C16F_WALL
C ***

subroutine WALL (C16_s, R8_dl, R8_d2, C16_a3, C16_a4)

complex*16 C16_s
complex*16 C16_10argl
complex*16 C16_10arg2
complex*16 C16_10arg3
complex*16 C16_Ilargl
complex*16 C16_Ilarg2
complex*16 C16_Ilarg3
complex*16 C16_KOarg2
complex*16 C16_KOarg3
complex*16 C16_Klarg2
complex*16 C16_Klarg3
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_Z
complex*16 C16_a3
complex*16 C16_a4

real*8 R8_D1
real*8 R8_D2
real*8 R8_VW
real*8 R8_V1
real*8 R8_A
real*8 R8_B
real*8 R8_X
real*8 R8_XM
real*8 R8_XM2
real*8 R8 AREA

C **

C * Call CALCULATION to calculate everything necessary for
C * evaluation of a3 and a4.
C **

139

call CALCULATION (C16_s,
C16_10argl,
C16_10arg2,
C16_10arg3,
C16_Ilargl,
C16_Ilarg2,
C16_Ilarg3,
C16_KOarg2,
C16_KOarg3,
C16_Klarg2,
C16_Klarg3,
C16_argl,
C16_arg2,
C16_arg3,
R8_dl,
R8_d2,
R8_vw,
R8_v1,
R8_a,
R8_b,
R8_X,
C16_Z,
R8_xm,
R8_xm2,
R8_area)

C ***
C * Compute a3
C ***

C16_a3 = (-1.0 * C16_Ilargl * R8_X * (-1.0 * C16_Klarg3
& C16_KOarg3 * R8_X * C16_Z)/
& ((C16_IOargl * C16_Klarg2 * C16_s + C16_Ilargl * C16_KOarg2 *
& C16_s * R8_X * R8_Xm)*
& (C16_llarg3 + C16_10arg3 * R8_X * C16_Z) -
& 1.0 * (-1.0 * C16_10arg1 * C16_Ilarg2 * C16_s +
& C16_10arg2 * C16_llarg1 * C16_s * R8_X * R8_Xm) *
& (-1.0 * C16_Klarg3 + C16_KOarg3 * R8_X * C16_,Z)))

C ***

C * Compute a4
C ***

C16_a4 = (1.0 * C16_Ilargl * R8_X * (C16_Ilarg3 + C16_IOarg3 *
& R8_X * C16_Z)/
& ((C16_IOargl * C16_Klarg2 * C16_s 	 C16_Ilargl * C16_KOarg2 *
& C16_s * R8_X * R8_Xm) *
& (C16_Ilarg3 + C16_10arg3 * R8_X * C16_Z) -
& 1.0 * (-1.0 * C16_I0argl * C16_Ilarg2 * C16_s
& C16_10arg2 * C16_Ilargl * C16_s * R8_X * R8_Xm) *
& (-1.0 * C16_Klarg3 + C16_KOarg3 * R8_X * C16_Z)))

end

C ***

C * LUMEN evaluates al which is used in C16_F_LUMEN
C ***

subroutine LUMEN (C16_s, C16_al)

complex*16 C16_s
complex*16 C16_IOargl
complex*16 C16_10arg2

140

complex*16 C16_10arg3
complex*16 C16_Ilargl
complex*16 C16_Ilarg2
complex*16 C16_Ilarg3
complex*16 C16_KOarg2
complex*16 C16_KOarg3
complex*16 C16_Klarg2
complex*16 C16_Klarg3
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_Z
complex*16 C16_al

real*8 R8_D1
real*8 R8_D2
real*8 R8_VW
real*8 R8_V1
real*8 R8_A
real*8 R8_B
real*8 R8_X
real*8 R8_XM
real*8 R8_XM2
real*8 R8 AREA

C **

C * Call CALCULATION to calculate everything necessary for
C * evaluation of a3 and a4
C **

call CALCULATION (C16_s,
C16_IOargl,
C16_10arg2,
C16_10arg3,
C16_Ilargl,
C16_Ilarg2,
C16_Ilarg3,
C16_KOarg2,
C16_KOarg3,
C16_Klarg2,
C16_Klarg3,
C16_argl,
C16_arg2,
C16_arg3,
R8_dl,
R8_d2,
R8_vw,
R8_v1,
R8_a,
R8_b,
R8_X,
C16_Z,
R8_xm,
R8_xm2,
R8_area)

C ***

C * Compute al
C ***

C16_al = (-1.0 / (C16_IOargl * C16_s)
& 	 1.0 * C16_Ilargl * C16_KOarg2 * R8_X * R8_Xm * (C16_Ilarg3 +

141

• C16_10arg3 * R8_X * C16_Z) /
(C16_IOargl *((C16_IOargl * C16_Klarg2 * C16_s +

• C16_Ilargl * C16_KOarg2 * C16_s * R8_X * R8_Xm) *
• (C16_Ilarg3 + C16_10arg3 * R8_X * C16_Z) -
& 1.0 * (-1.0 * C16_10argl * C16_Ilarg2 * C16_s +
• C16_10arg2 * C16_Ilargl * C16_s * R8_X * R8_Xm) *
• (-1.0 * C16_Klarg3 + C16_KOarg3 * R8_X * C16_Z))) -
& 1.0 * C16_10arg2 * C16_Ilargl * R8_X * R8_Xm *
• (-1.0 * C16_Klarg3 + C16_KOarg3 * R8_X * C16_Z) /
• (C16_IOargl * ((C16_I0arg1 * C16_Klarg2 * C16_s +
• C16_Ilargl * C16_K0arg2 * C16_s * R8_X * R8_Xm) *
• (C16_Ilarg3 + C16_10arg3 * R8_X * C16_Z) -
& 1.0 * (-1.0 * C16_10argl * C16_Ilarg2 * C16_s +
• C16_10arg2 * C16_Ilargl * C16_s * R8_X * R8_Xm) *
• (-1.0 * C16_Klarg3 + C16_KOarg3 * R8_X * C16_Z))))

end

C ***

C * CALCULATION computes everything necessary for the
C * evaluation of al, a3, and a4.
C ***

subroutine CALCULATION (C16_s,
C16_10argl,
C16_10arg2,
C16_10arg3,
C16_Ilargl,
C16_Ilarg2,
C16_Ilarg3,
C16_KOarg2,
C16_KOarg3,
C16_Klarg2,
C16_Klarg3,
C16_argl,
C16_arg2,
C16_arg3,
R8_dl,
R8_d2,
R8_vw,
R8_v1,
R8_a,
R8_b,
R8_X,
C16_Z,
R8_xm,
R8_xm2,
R8_area)

C ***
C * Constants
C ***

real*8 R8_PI
parameter (R8_PI = 3.14159265359)

c**

C Commons
c**

real*8 R8_G_a
real*8 R8_G_b
real*8 R8_G_d1
real*8 R8G_d2

142

real*8 R8_G_xm
real*8 R8_G_vw
real*8 R8_G_xm2

common /IN_PARMS/
& R8_G_a,
& R8_G_b,
& R8_G_dl,
& R8_G_d2,
& R8_G_xm,
& R8_G_vw,
& R8_G_xm2

C ***
C * Variables
C ***

complex*16 C16_s
complex*16 C16_arg1
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_I0arg1
complex*16 C16_10arg2
complex*16 C16_I0arg3
complex*16 C16_Ilargl
complex*16 C16_llarg2
complex*16 C16_Ilarg3
complex*16 C16_KOarg2
complex*16 C16_KOarg3
complex*16 C16_Klarg2
complex*16 C16_Klarg3
complex*16 C16_Z
complex*16 C16_al
complex*16 C16_a3
complex*16 C16_a4

real*8 R8_a
real*8 R8_b
real*8 R8_dl
real*8 R8_d2
real*8 R8_xm
real*8 R8_vw
real*8 R8_area
real*8 R8_xm2
real*8 R8_x
real*8 R8 _v1

C ***

C * Computations
C ***

R8_a 	 = R8_G_a 	 ! Inside radius
R8_b 	 = R8_G_b 	 ! Outside radius
R8_d1 = R8 G dl_ _ 	 ! Diffusivity in reservoir
R8_d2 = R8_G_d2 	 ! Effective membrane diffusivity
R8_xm = R8_G_xm 	 ! Partition coefficient at A
R8_vw = R8_G_vw 	 ! External aqueous phase volume
R8_xm2 = R8_G_xm2
R8_area = 2.0 * R8 pi * R8_b ! Outside area

R8_X = sqrt(R8_d1 / R8_d2)
C16_Z = R8_vw * CDSQRT(C16_s) / (R8_area * R8_b * R8_xm2)

143

*******,,***

C * Arguments of the Bessel functions that appear in the expressions
C * 	 for al, a3 and a4
C ***

C16_argl = R8_a * CDSQRT(C16_s) / R8_b
C16_arg2 = R8_a * CDSQRT(C16_s * R8_d1 / R8_d2) / R8_b
C16_arg3 = CDSQRT(C16_s * R8_d1 / R8_d2)

C ***

C * 	 Evaluate the Bessel functions.
C ***

call BESIO (C16_argl, C16_IOargl)
call BESIO (C16_arg2, C16_IOarg2)
call BESIO (C16_arg3, C16_IOarg3)

call BESI1 (C16_argl, C16_Ilargl)
call BESI1 (C16_arg2, C16_Ilarg2)
call BESI1 (C16_arg3, C16_Ilarg3)

call BESKO (C16_arg2, C16_KOarg2)
call BESKO (C16_arg3, C16_KOarg3)

call BESK1 (C16_arg2, C16_Klarg2)
call BESK1 (C16_arg3, C16_Klarg3)

return
end

C * R8_REALTIME converts to real time.
C ***

real*8 function R8_REALTIME(RB_THETA, R8_b, R8_d1)

real*8 R8_THETA
real*8 R8_b
real*8 R8_d1

R8_REALTIME = R8_THETA * (R8_b ** 2) / R8_d1

return
end

C ***

C * REALCONC converts to real concentration.
C ***

real*8 function R8_REALCCNC(R8_U, R8_INIT_CONC)

real*8 R8_U
real*8 R8_INIT_CONC

R8_REALCONC = R8_U * R8_INIT_CONC

return
end

C ***

C * EOF
C ***

Facing 144

Table 10. Nomenclature Equivalents for the "Coated Fiber:
Solution in Reservoir" Problem.

Text Mathematica® Fortran

√D1/ D2 X C16_X√D2/ D3

Y C16_Y
m3ubα3/Vu√D3/D1s

Z C16_Z

a/b√s arg1 C16_arg1

√sD1/ D3

arg4 C16_arg4

c/b √sD1/D3

arg5 C16_arg5

a/b √sD1/D2

arg2 C16_arg2

√s D1/D2s

arg3
C16_arg3

C01 C16_G_INIT_CONC

a C16_G_a

A11 A3 C16_a3

A12 A4 C16_a4

A13 A5 C16_a5

A14 A6 C16_a6

A9 A1 C16_a1

b C16_G_b

c C16 G c
C16:611D1

D2 C16_G_d2

D3 C16_G_d3
I0 10 C16_I0

I1 II C16_I 1

K0 K0 C16_K0

K1 K1 C16_K1
m1,2 C16_G_xm

m2,3 C16 G xm2
m3,w C16 G xm3

s s C 16_s
Vw C16 G vw

144

Coated Fiber: Solution in Reservoir

Presented below is the Mathematica® program used to determine expressions

for the coefficients A9, A11 , Al2, A13„ and A14 for the "coated hollow fiber:

solution in reservoir" problem. It is followed by the Fortran code used to

invert the solution numerically from the Laplace domain into the time

domain. The reader is referred to Table 10 for nomenclature relationships

between variables in the text of Chapter 2 and Mathematica® programs and

Fortran code.

Const = So1ve[(1./s + Al IOargl ==

xm (A3 IOarg2 + A4 KOarg2),

X Al Ilargl ==
A3 Ilarg2 - A4 Klarg2,

A3 IOarg3 + A4 KOarg3 ==
xm2 (A5 IOarg4 + A6 KOarg4),

Y (A3 Ilarg3 - A4 Klarg3) ==
(A5 Ilarg4 - A6 Klarg4),

-Z (A5 Ilarg5 - A6 Klarg5) ==
(A5 IOarg5 + A6 KOarg5)},

(Al, A3, A4, A5, A6)];

al = Al /. Const;
a3 = A3 1. Const;
a4 = A4 /. Const;
a5 = AS 1. Const;
a6 = A6 /. Const;

FortranForm[al]
FortranForm[a3]
FortranForm[a4]
FortranForm[a5]
FortranForm[a6]

List(-1./(I0argl*s) - 1.*KOarg2*xm*
(1.*I0arg3*Ilarg1*X*(I0arg3*Klarg4 +
Ilarg3*KOarg4*xm2*Y)*
(-1.*I0arg5 - 1.*Ilarg5*Z)/
((KOarg4*(-1.*I0argl*Ilarg2*s +
IOarg2*Ilargl*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y
1.*I0arg3*Klarg3*Y) -
1.*(-l.*KOarg3*
(-1.*I0argl*Ilarg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(IOargl*Klarg2*s +
Ilargl*KOarg2*s*X*xm))*
(IOarg3*Klarg4 + Ilarg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z) -
1.*(IOarg4*(-1.*IOargl*Ilarg2*s +
IOarg2*Ilargl*s*X*xm)*
xm2*(-1.*Ilarg3*KOarg3*Y
1.*I0arg3*Klarg3*Y) -
1.*(-1.*KOarg3*

145

146

(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
Ilargl*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 +
IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 + KlargS*Z)) -
1.*I0arg3*Ilarg1*X*(-1.*I0arg3*I1arg4 +
IOarg4*I1arg3*xm2*Y)*
(-1.*KOarg5 + KlargS*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*I1arg1*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y -
1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
I1argl*KOarg2*s*X*xm))*
(I0arg3*K1arg4 + Ilarg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*I1arg5*Z) -
1.*(I0arg4*(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm)*
xm2*(-1.*Ilarg3*KOarg3*Y -
1.*I0arg3*Klarg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
I1argl*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 +
IOarg4*Ilarg3*xm2*Y))*
(-1.*KOarg5 + K1arg5*Z)))/I0arg1 -
1.*I0arg2*xm*(-1.*I1arg1*KOarg4*X*xm2*
(-1.*I1arg3*KOarg3*Y - 1.*I0arg3*Klarg3*Y)*
(-1.*I0arg5 - 1.*I1arg5*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*Ilarg1*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y -
1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0argl*K1arg2*s +
I1arg1*KOarg2*s*X*xm))*
(I0arg3*K1arg4 + I1arg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*IlargS*Z) -
1.*(I0arg4*(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm)*
xm2*(-1.*I1arg3*KOarg3*Y -

147

1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
I1arg1*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 +
IOarg4*Ilarg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)) +
1.*I0arg4*I1arg1*X*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*I0arg3*K1arg3*Y)*
(-1.*KOarg5 + Klarg5*Z)/
((KOarg4*(-1,*I0argl*I1arg2*s +
IOarg2*Ilarg1*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y -
1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*Klarg2*s +
I1arg1*KOarg2*s*X*xm))*
(I0arg3*K1arg4 + I1arg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*IlargS*Z) -
1.*(I0arg4*(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm)*
xm2*(-1.*I1arg3*K0arg3*Y -
1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*Ilarg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0argl*Klarg2*s +
I1argl*KOarg2*s*X*xm))*
(-1.*I0arg3*Ilarg4 +
IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)) -
1.*KOarg3*(1.*I0arg3*Ilargl*X*
(I0arg3*Klarg4 + I1arg3*KOarg4*xm2*Y)*
(-1.*I0arg5 	 1.*Ilarg5*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm)*
xm2*(-1.*I1arg3*KOarg3*Y -
1.*I0arg3*Klarg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
Ilargl*KOarg2*s*X*xm))*
(I0arg3*K1arg4 +
I1arg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z) -

148

1.*(IOarg4*
(-1.*I0argl*I1arg2*s +
IOarg2*I1arg1*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y
1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(IOargl*Klarg2*s +
Ilargl*KOarg2*s*X*xm))*
(-1.*I0arg3*Ilarg4 +
IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)) -
1.*I0arg3*Ilargl*X*
(-1.*I0arg3*I1arg4 +
IOarg4*I1arg3*xm2*Y)*
(-1.*KOarg5 + Klarg5*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm)*
xm2*(-1.*I1arg3*KOarg3*Y -
1.*I0arg3*Klarg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*Klarg2*s +
I1arg1*KOarg2*s*X*xm))*
(IOarg3*Klarg4 +
Ilarg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z) -
1.*(I0arg4*
(-1.*I0arg1*I1arg2*s +
IOarg2*I1argl*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y -
1.*I0arg3*K1arg3*Y)
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
I1argl*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 +
IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 +
K1arg5*Z)))/I0arg3)/I0arg1)

List(1.*I1argl*KOarg4*X*xm2*
(-1.*I1arg3*KOarg3*Y - 1.*I0arg3*K1arg3*Y)*
(-1.*I0arg5 - 1.*Ilarg5*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*I1arg1*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y - 1.*I0arg3*K1arg3*Y) -

149

1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
I1arg1*KOarg2*s*X*xm))*
(I0arg3*K1arg4 + I1arg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z) -
1.*(I0arg4*(-1.*I0arg1*Ilarg2*s +
IOarg2*I1argl*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y - 1.*I0arg3*Klarg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0argl*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
I1arg1*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 + IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)) -
1.*I0arg4*I1arg1*X*xm2*(-1.*I1arg3*KOarg3*Y -
1.*I0arg3*K1arg3*Y)*
(-1.*KOarg5 + Klarg5*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*I1arg1*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y - 1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
Ilarg1*KOarg2*s*X*xm))*
(I0arg3*K1arg4 + I1arg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z) -
1.*(I0arg4*(-1.*I0arg1*I1arg2*s +
IOarg2*Ilarg1*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*K1arg2*s +
Ilargl*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 + IOarg4*Ilarg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)) +
KOarg3*(1.*I0arg3*Ilarg1*X*(I0arg3*K1arg4 +
I1arg3*KOarg4*xm2*Y)*
(-1.*I0arg5 - 1.*Ilarg5*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*I1arg1*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y -
1.*I0arg3*K1arg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +

150

IOarg3*(I0arg1*K1arg2*s +
Ilargl*KOarg2*s*X*xm))*
(I0arg3*Klarg4 + Ilarg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z)
1.*(I0arg4*(-1.*I0argl*Ilarg2*s +
IOarg2*Ilargl*s*X*xm)*
xm2*(-1.*Ilarg3*KOarg3*Y -
1.*I0arg3*Klarg3*Y)
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(IOargl*Klarg2*s +
I1argl*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 +
IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)) -
1.*I0arg3*Ilarg1*X*(-1.*I0arg3*I1arg4 +
IOarg4*Ilarg3*xm2*Y)*
(-1.*KOarg5 + KlargS*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm)*xm2*
(-1.*I1arg3*KOarg3*Y
1.*I0arg3*K1arg3*Y)
1.*(-1.*KOarg3*
(-1.*I0argl*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(IOargl*Klarg2*s +
I1arg1*KOarg2*s*X*xm))*
(IOarg3*Klarg4 + Ilarg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z) -
1.*(I0arg4*(-1.*IOargl*Ilarg2*s +
IOarg2*Ilargl*s*X*xm)*
xm2*(-1.*I1arg3*KOarg3*Y -
1.*IOarg3*Klarg3*Y)
1.*(-1.*KOarg3*
(-1.*I0arg1*Ilarg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0argl*K1arg2*s +
Ilarg1*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 +
IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 + K1arg5*Z)))/I0arg3)

List(-1.*I0arg3*Ilarg1*X*(I0arg3*K1arg4 +
Ilarg3*KOarg4*xm2*Y)*
(-1.*I0arg5 	 1.*Ilarg5*Z)/
((KOarg4*(-1.*I0arg1*Ilarg2*s +
IOarg2*Ilargl*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y 	 1.*I0arg3*K1arg3*Y)
1.*(-1.*KOarg3*

151

(-1.*I0argl*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*Klarg2*s +
I1arg1*KOarg2*s*X*xm))*
(I0arg3*Klarg4 + I1arg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z)
1.*(I0arg4*(-1.*I0arg1*I1arg2*s +
IOarg2*I1arg1*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*I0arg3*Klarg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0argl*Ilarg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*Klarg2*s +
I1argl*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 + IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)) +
1.*I0arg3*I1arg1*X*(-1.*I0arg3*Ilarg4 +
IOarg4*I1arg3*xm2*Y)*
(-1.*KOarg5 + Klarg5*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*I1argl*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*I0arg3*Klarg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*Ilarg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*Klarg2*s +
I1argl*KOarg2*s*X*xm))*
(I0arg3*K1arg4 + I1arg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*I1arg5*Z) -
1.*(I0arg4*(-1.*I0arg1*Ilarg2*s +
IOarg2*Ilargl*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*I0arg3*Klarg3*Y)
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(IOargl*Klarg2*s +
I1arg1*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 + IOarg4*Ilarg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)))

List(-1.*I0arg3*I1arg1*X*(-1.*Ilarg3*KOarg3*Y -
-1.*IOarg3*Klarg3*Y)*
(-1.*KOarg5 + Klarg5*Z)/
UKOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*I1argl*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*I0arg3*Klarg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*Ilarg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(IOargl*Klarg2*s +

152

Ilarg1*KOarg2*s*X*xm))*
(I0arg3*K1arg4 + Ilarg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z)
1.*(I0arg4*(-1.*I0argl*I1arg2*s +
IOarg2*I1argl*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*I0arg3*K1arg3*Y)
1.*(-1.*KOarg3*
(-1.*I0argl*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(IOargl*Klarg2*s +
I1argl*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 + IOarg4*I1arg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)))

List(1.*I0arg3*Ilarg1*X*(-1.*Ilarg3*KOarg3*Y -
1.*I0arg3*Klarg3*Y)*
(-1.*I0arg5 - 1.*Ilarg5*Z)/
((KOarg4*(-1.*I0arg1*I1arg2*s +
IOarg2*I1arg1*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*IOarg3*Klarg3*Y) -
1.*(-1.*KOarg3*
(-1.*I0arg1*Ilarg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*Klarg2*s +
I1arg1*KOarg2*s*X*xm))*
(I0arg3*K1arg4 + I1arg3*KOarg4*xm2*Y))*
(-1.*I0arg5 - 1.*Ilarg5*Z) -
1.*(I0arg4*(-1.*I0arg1*Ilarg2*s +
IOarg2*Ilarg1*s*X*xm)*xm2*
(-1.*Ilarg3*KOarg3*Y - 1.*I0arg3*K1arg3*Y)
1.*(-1.*KOarg3*
(-1.*I0arg1*I1arg2*s +
IOarg2*Ilargl*s*X*xm) +
IOarg3*(I0arg1*Klarg2*s +
I1arg1*KOarg2*s*X*xm))*
(-1.*I0arg3*I1arg4 + IOarg4*Ilarg3*xm2*Y))*
(-1.*KOarg5 + Klarg5*Z)))

153

C ***
C * Program model_coat provides release profiles for the coated fiber-
C * solution in reservoir problem.
C *
C * Stephanie Farrell
C * September 1995
C *
C * © Copyright 1995, 1996 Stephanie Farrell
C
C * FILE: COAT.FOR 	 COAT.EXE
C ***

program MODEL_COAT

C ***
C * Function declarations
C ***

real FLOAT
real*8 REALCONC
real*8 REALTIME

external C16_F_COAT
external COAT
external CALCULATION
external DINLAP
external BESIO
external BESI1
external BESKO
external BESK1
external REALCONC
external REALTIME

C ***
C * Variable declarations
C ***

integer I_INDEX
integer I_KMAX

real*8 R8_ALPHA
real*8 R8_RELERR
real*8 R8_T(1)
real*8 R8_FINV(1)

C ***

C * Data input parameters
C ***

character TITLE*80
character VAR_NAME*30

integer I_NUM_TIMES

real*8 R8_TIME_INTERVAL
real*8 R8_INIT_CONC

complex*16 C16_G_a
complex*16 C16_G_b
complex*16 C16_G_c
complex*16 C16_G_dl
complex*16 C16_G_d2
complex*16 Cl6_G_d3
complex*16 C16_G_xm
complex*16 C16_G_xm2

154

complex*16 C16_G_xm3
complex*16 C16_G_vw

character EOF*80

common /IN_PARMS/
& C16_G_a,
& C16_G_b,
& C16_G_c,
& C16_G_dl,
& C16_G_d2,
& C16_G_d3,
& C16_G_xm,
& C16_G_xm2,
& C16_G_xm3,
& C16_G_vw

C ***
C * Read in data
C ***

read *, TITLE
read *, VAR_NAME, I_NUM_TIMES
read *, VAR_NAME, R8_TIME_INTERVAL
read *, VAR_NAME, R8_INIT_CONC

read *, VAR_NAME, C16_G_a
read *, VAR_NAME, C16_G_b
read *, VAR_NAME, C16_G_c
read *, VAR_NAME, C16_G_dl
read *, VAR_NAME, C16_G_d2
read *, VAR_NAME, C16_G_d3
read *, VAR_NAME, C16_G_xm
read *, VAR_NAME, C16_G_xm2
read *, VAR_NAME, C16_G_xm3
read *, VAR_NAME, C16_G_vw
read *, EOF

if (EOF .NE. 'EOF') then
print *,'Input file format
Goto 1000

endif

is incorrect. Aborting.'

*,
*,
*,
*,
*,
*,
*,
*,

*,
*,
*,
*,

print
print
print
print
print
print
print
print
print
print
print
print
print
print

TITLE
`I_NUM_TIMES
`R8_TIME_INTERVAL
`R8_INIT_CONC
'C16_G_a
'C16_G_b
'C16_G_c
'C16_G_dl
'C16_G_d2
'C16_G_d3
'C16_G_xm
`Cl6_G_xm2
`Cl6_G_xm3
'C16_G_vw

I_NUM_TIMES
R8_TIME_INTERVAL
R8_INIT_CONC
C16_G_a
C16_G_b
C16_G_c
C16_G_dl
C16_G_d2
C16_G_d3
C16_G_xm
C16_G_xm2
C16_G_xm3
C16_Gvw

C ***
C * User-supplied arguments for the IMSL subroutine DINLAP
C ***

R8 ALPHA = 0

155

I_KMAX = 10000
RELRELERR = 5.0E-5

C ***

C * Evaluate the solution for the coating section.
C ***

print *,'THETA,U,REAL TIME,REAL CONC.'
Do I_INDEX = I_NUM_TIMES, 1, -1

R8_T(1) = R8_TIME_INTERVAL * FLOAT(I_INDEX)
call DINLAP (C16_F_COAT,

1,
R8_T,
R8_ALPHA,
RELRELERR,
I_KMAX,
R8_FINV)

print '(E15.4, A, E15.4, A, F15.2, A, E15.4)',
R8_T(1), ',/,
R8_FINV(1),
REALTIME(R8_3(1), C16_G_b, C16_G_d1),
REALCONC(R8_FINV(1), R8_INIT_CONC)

end do

1000 continue
end

C ***
C * User-supplied function to which the inverse Laplace transform
C * will be computed
C ***

complex*16 function C16_F_COAT(C16_S)

intrinsic CDSQRT

complex*16 C16_S
complex*16 C16_I0arg5
complex*16 C16_KOarg5
complex*16 C16_a5
complex*16 C16_a6
complex*16 C16_xm3

call COAT(C16_S,
C16_I0arg5,
C16_KOarg5,
C16_xm3,
C16_a5,
C16_a6)

C16_F_COAT = (C16_a5 * C16_I0arg5 t C16_a6 * C16_KOarg5)

return
end

C ***

C * Subroutine BESIO computes Bessel(I,O)
C ***

subroutine BESIO (C16_X, C16_10)

complex*16 C16_X
complex*16 C16_I0

156

C16_I0 = 1.0 + C16_X ** 2 / 4.0 + C16_X ** 4 	 / 	 64.0 +
& 	 C16_X ** 6 	 / 2304.0 + C16_,X**8 	 / 	 147456.0 	 +
& 	 C16_X ** 10 / 	 14745600.0 + C16_X**12 / 2123366400.0 +
&	 C16_X ** 14 / 	 416179814400.0 +
& 	 C16_X ** 16 / 	 106542032486400.0 	 +
& 	 C16_X ** 18 / 	 34519618525593600.0 	 +
& 	 C16_X ** 20 / 	 13807847410237440000.0

return
end

C ***
C * Subroutine BESI1 computes Bessel(I,1)
C ***

subroutine BESI1 (C16_X, C16_I1)

complex*16 C16_X
complex*16 C16_I1

C16_I1 = C16_X/2.0 + C16 X**3/16.0 +
• C16_X**5/384.0 + C16_X**7/18432.0 +
• C16_X**9/1474560.0 + C16_X**11/176947200.0 +

C16_X**13/29727129600.0 +
• C16_X**15/6658877030400.0 +

C16_X**17/1917756584755200.0 +
C16_X**19/690392370511872000.0

return
end

C ***
C * Subroutine BESKO computes Bessel(K,0)
C ***

subroutine BESKO (C16_X, C16_KO)

complex*16 C16_X
complex*16 C16_XL
complex*16 C16_K0

intrinsic CDLOG
intrinsic LOG
intrinsic CDSQRT

C16_XL = LOG(1.0/2.0) + CDLOG(C16_X)

C16___K0 = -0.577215 - LOG(1.0/2.0) +
• C16_X ** 20 * ((7381.0 / 1260.0 - 2 * 0.577215) /
• 27615694820474880000.0 +
• (-C16_XL) / 13807847410237440000.0) +
• C16_X ** 18 *
• ((7129.0 / 1260.0 - 2 * 0.577215)/69039237051187200.0 +
• (-C16_XL) / 34519618525593600.0) +
• C16_X ** 16*((761.0/140.0 - 2*0.577215) /
• 213084064972800.0 +
• (-C16_XL) / 106542032486400.0) +
• C16_X ** 14 * ((363.0/70.0 - 2 * 0.577215) /

832359628800.0 +
(-C16_XL) / 416179814400.0) +

• C16_X ** 12*((49.0/10.0 - 2*0.577215)/4246732800.0 +
• (-C16_XL) / 2123366400.0) +

157

• C16_X ** 10 * ((137.0/30.0 - 2 * 0.577215)/29491200.0 +
• (-C16_XL) / 14745600.0) +
• C16_X ** 8 * ((25.0/6.0 - 2 * 0.577215) /
• 294912.0 + (-C16_XL) /
• 147456.0) +
• C16_X ** 6 * ((11.0/3.0 - 2 * 0.577215)/4608.0 +
• (-C16_XL) / 2304.0) +
• C16_X ** 4 * ((3.0 - 2 * 0.577215)/128.0 +
• (-C16_XL)/64.0) +
• C16_X ** 2 * ((2.0 - 2 * 0.577215)/8.0 +
• (-C16_XL)/4.0) - CDLOG(C16_X)

return
end

C ***
C * Subroutine BESK1 computes Bessel(K,1)
C ***

subroutine BESK1 (C16_X, C16_K1)

complex*16 C16_X
complex*16 C16_XL
complex*16 C16_K1

intrinsic CDLOG
intrinsic LOG
intrinsic CDSQRT

C16_XL = LOG(1.0/2.0) + CDLOG(C16_X)

C16_K1 = 1.0/ C16_X + C16_X ** 17 *
& ((-6989.0/1260.0 + 2*0.577215)/
& 3835513169510400.0 + C16_XL / 1917756584755200.0) +
& C16_X **15*((-1487.0/280.0 + 2*0.577215)/13317754060800.0 +
& C16_XL/6658877030400.0) +
& C16_X **13*((-353.0/70.0 + 2*0.577215)/59454259200.0 +
& C16_XL/29727129600.0) +
& C16_X **11*((-71.0/15.0 + 2*0.577215)/353894400.0 +
& C16_XL/176947200.0) +
& C16_X **9*((-131.0/30.0 + 2*0.577215)/2949120.0 +
& C16_XL/1474560.0) +
& C16_X **7*((-47.0/12.0 + 2*0.577215)/36864.0 +
& C16_XL/18432.0) +
& C16_X **5*((-10.0/3.0 + 2*0.577215)/768.0 + C16_XL/384.0) +
& C16_X **3*((-5.0/2.0 + 2*0.577215)/32.0 + C16_XL/16.0) +
& C16_X *((-1.0 + 2*0.577215)/4.0 + C16_XL/2.0)

return
end

C ***

C * Subroutine COAT evaluates C16_a5 and C16_a6 which
C * are used in C16_F_COAT.
C ***

subroutine COAT (C16_S,
C16_10arg5,
C16_KOargS,
C16_xm3,
C16_a5,
C16_a6)

158

complex*16 C16_3
complex*16 C16_10argl
complex*16 C16_30arg2
complex*16 C16_I0arg3
complex*16 C16_10arg4
complex*16 C16_10arg5
complex*16 C16_Ilargl
complex*16 C16_llarg2
complex*16 C16_Ilarg3
complex*16 C16_Ilarg4
complex*16 C16_Ilarg5
complex*16 C16_KOarg2
complex*16 C16__KOarg3
complex*16 C16_KOarg4
complex*16 C16_KOarg5
complex*16 C16_Klarg2
complex*16 C16_Klarg3
complex*16 C16_Klarg4
complex*16 C16_K1arg5
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_arg4
complex*16 C16_arg5
complex*16 C16_a5subl
complex*16 C16_a5sub2
complex*16 C16_a6subl
complex*16 C16_a6sub2
complex*16 C16_a5
complex*16 C16_a6
complex*16 C16_a
complex*16 C16_b
complex*16 C16_c
complex*16 C16_dl
complex*16 C16_d2
complex*16 C16_d3
complex*16 C16_area
complex*16 C16_vw
complex*16 C16_X
complex*16 C16_Y
complex*16 C16_Z
complex*16 C16_xm
complex*16 C16_xm2
complex*16 C16_xm3

C ***
C * Call calculation to calculate everything necessary for
C * evaluation of C16_a5 and C16_a6.
C ***

call CALCULATION(C16_S,
C16_IOarg1,
C16_10arg2,
C16_IDarg3,
C16_IOarg4,
C16_IOarg5,
C16_Ilargl,
C16_Ilarg2,
C16_Ilarg3,
C16_Ilarg4,
C16_llarg5,

159

C16_KOarg2,
C16_KOarg3,
C16_KOarg4,
C16_KOarg5,
C16_Klarg2,
C16_Klarg3,
C16_Klarg4,
C16_Klarg5,
C16_argl,
C16_arg2,
C16_arg3,
C16_arg4,
C16_arg5,
C16_dl,
C16_(42,
C16_d3,
C16_vw,
C16_a,
C16_b,
C16_c,
C16_X,
C16_Y,
C16_Z,
C16_xm,
C16_xm2,
C16_xm3,
C16_area)

C ***
C * Compute C16_a5
C ***

C16_a5subl = (C16_KOarg4*(-1.*C16_10arg1*C16_llarg2*C16_s +
& C16_10arg2*C16_llarg1*C16_s*C16_X*C16_xm)*C16_xm2*
& (-1.*C16_llarg3*C16_KOarg3*C16_Y -
& 1.*C16_I0arg3*C16_K1arg3*C16_Y) -
& 1.*(-1.*C16_KOarg3*
& (-1.*C16_10arg1*C16_llarg2*C16_s + C16_10arg2*C16_Ilarg1*
& C16_s*C16_X*C16_xm) +
• C16_10arg3*(C16_10arg1*C16_K1arg2*C16_s +
& C16_llarg1*C16_KOarg2*C16_s*C16_X*C16_xm))*
• (C16_IOarg3*C16_Klarg4 + C16_I1arg3*C16_KOarg4*C16_xm2*C16_Y))

C16_a5sub2 = (C16_10arg4*(-1.*C16_10arg1*C16_llarg2*C16_s +
• C16_I0arg2*C16_I1arg1*C16_s*C16_X*C16_xm)*C16_xm2*

(-1.*C16_I1arg3*C16_KOarg3*C16_Y -
& 1.*C16_I0arg3*C16_K1arg3*C16_Y) -
& 1.*(-1.*C16_KOarg3*

(-1.*C16_10arg1*C16_llarg2*C16_s +
& C16_10arg2*C16_llarg1*C16_s*C16_X*C16_xm) +

C16_10arg3*(C16_10arg1*C16_K1arg2*C16_s +
& C16_I1arg1*C16_KOarg2*C16_s*C16_X*C16_xm))*
& (-1.*C16_I0arg3*C16_I1arg4 +
&C16_IOarg4*C16_Ilarg3*C16_xm2*C16_Y))

C16_a5 = (-1.*C16_10arg3*C16_Ilarg1*C16_X*
& (-1.*C16_llarg3*C16_KOarg3*C16_Y -
& 1.*C16_I0arg3*C16_Klarg3*C16_Y)*
• (-1.*C16_KOarg5 + C16_K1arg5*C16_Z)/
& (C16_a5subl*

(-1.*C16_I0arg5 - 1.*C16_I1arg5*C16_Z) -

160

• 1.*C16_a5sub2*
(-1.*C16_KOarg5 + C16_KlargS*C16_Z)))

C ***
C * Compute C16_a6
C ***

C16_a6subl = (C16_KOarg4*(-1.*C16_10argl*C16_11arg2*C16_s +
& C16_10arg2*C16_Ilargl*C16_s*C16 X*C16_xm)*C16_xm2*

(-1.*C16 Ilarg3*C16 KOarg-i*C16_Y -
& 1.*C16 IOarg3*C1-6_Klarg3*CI6_Y)--

1.*(-1.*C16_,KOarg3*
& (-1.*C16_10argl*C16_Ilarg2*C16_s + C16_IOarg2*C16_Ilargl*C16_s*
& C16 X*C16_xm) +
• CT6_I0arg3*(C16 IOarg1*C16_Klarg2*C16_s +
& C16_Ilargl*C16_KOarg2*C16_s*
& C16 X*C16_xm))*
& (C1-6-__IOarg3*C16_Klarg4 + C16_Ilarg3*C16_KOarg4*C16_xm2*C16_Y))

C16 a6sub2 = (C16_10arg4*(-1.*C16_10argl*C16_Ilarg2*C16_s +
& C16_10arg2*C16_Ilargl*C16_s*C16 X*C16 xm)*C16_xm2*

(-1.*C16_Ilarg3*C16_KOarg-3-*C16_ -
& 1.*C16_10arg3*C16 Klarg3*C16_Y) -
& 1.*(-1.*C16_K-Oarg3*

(-1.*C16_IOarg1*C16_Ilarg2*C16_s +
& C16 IOarg2*C16_Ilargl*C16_s*C16_X*C16 xm) +
• CI6_10arg3*(C16_10argl*C16_Klarg2*CT.6_s 	 +

C16_I1argl*C16 KOarg2*C16 s*C16_X*C16_xm))*
• (-1.*C16_10arg -i*C16_,I1arg-4. +
& C16_10arg4*C16_Ilarg3*C16_xm2*C16_Y))

C16_a6 = (1.*C16_10arg3*C16_Ilarg1*C16_X*
(-1.*C16_Ilarg3*C16_KOarg3*C16_Y -

& 1.*C16_10arg3*C16_Klarg3*C16 Y)*
• (-1.*C16 IOarg5 - 1.*C16_ITarg5*C16_Z)/
& (C16_a6subl*

(-1.*C16_10arg5 - 1.*C16_llarg5*C16_Z) -
1.*C16_a6sub2*
(+1.*C16_KOarg5 + C16_Klarg5*C16_Z)))

return
end

C ***
C * Subroutine CALCULATION computes everything necessary for evaluation
C * of C16_a5, and C16_a6
C ***

subroutine CALCULATION(C16_S,
C16_10argl,
C16_10arg2,
C16_10arg3,
C16_I0arg4,
C16_10arg5,
C16_Ilargl,
C16_I1arg2,
C16_Ilarg3,

(Sc C16_Ilarg4,
C16_Ilarg5,
C16_KOarg2,
C16_KOarg3,

suoTqPqndwo3 *

(6SS9E6S -EtT . E = Td-823) aaqampred
Td-811 8*TPea

***.* 0
s3upq.suo3 	 3

*** 3

mA-09T3 '2
'Ewx09T0 '2
'Zulx—S-9TD '2

1111x09T0
'EP —0-9T0 '2
'ZP0-9T3
'TPD9T0

1 D—D9T3
l qD-9T0
'P 0-9TO '3

/SIATUVd —NI/ uommoo

MA-S-9T3 9T.v.xeiduloo
Ewx09TD 9TA, xatdmoD
Zulx-09T0 9T ,4 xatdmoo
wx—S9T0 9T* xaTchloo
EP —5-9T0 9T*xaiduloo
ZP —5 9T3 9T*xe -Edwoo
TP —0 9T3 9T* xeidwoo

D —0 9 -ED gT *3caTdmoo
q 0-9T3 9TAoce Tdmoo

09TD 9T*xeidu1oo

suouralop *
***..*),

	

CeeaP-9T0 	 '2
'E 	 9T3

	i nux-9TD 	 '9
	' -9TH 	 '9
	'Z -9T0 	 '2

	

'A 9TH 	 '2

	

'X-9TD 	 '2

	

' 0 9T3 	 '2

	'mA-9T3 	 '2
	'EP -9TD 	 '2

9TH

	

'TP9 .13 	 '9
	'S 5 -1-2-9TD 	 '2

	'Ebav — 9 -ED 	 '9
	'Zfav-9T3 	 '9

'T-51.2-9TD
'SBIPTX-9TD

	

'TIBIPTH —9T0 	 '2
	'EBIPTH-9TD 	 '2

'Zar2 TH-9TD

	

'Sba2 ON-9TD 	 '2
	'T/BIPON-9TD 	 '2

T9T

intrinsic CDSQRT

complex*16 C16_,S
complex*16 C16_10argl
complex*16 C16_10arg2
complex*16 C16_I0arg3
complex*16 C16_10arg4
complex*16 C16_10arg5
complex*16 C16_llargl
complex*16 C16_Ilarg2
complex*16 C16_Ilarg3
complex*16 C16_Ilarg4
complex*16 C16_Ilarg5
complex*16 C16_KOarg2
complex*16 C16_KOarg3
complex*16 C16_KOarg4
complex*16 C16_KOarg5
complex*16 C16_Klarg2
complex*16 C16_Klarg3
complex*16 C16_Klarg4
complex*16 C16_Klarg5
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_arg4
complex*16 C16_arg5
complex*16 C16_X
complex*16 C16_Y
complex*16 C16_Z
complex*16 C16_dl
complex*16 C16_d2
complex*16 C16_d3
complex*16 C16_a
complex*16 C16_b
complex*16 C16_c
complex*16 C16_area
complex*16 C16_vw
complex*16 C16_xm
complex*16 C16_xm2
complex*16 C16_xm3

C16_a 	 = C16_G_a
C16_b 	 = C16_G_b
C16_c 	 = C16_G_c
C16_dl 	 = C16_G_d1
C16_d2 	 = C16_G_d2
C16_d3 	 = C16_G_d3
C16_xm = C16_G_xm
C16_xm2 = C16_G_xm2
C16_xm3 = C16_G_xm3
C16_vw = C16_Gvw

162

Inside radius
Outside radius excluding coating
Outside radius including coating
Diffusivity in reservoir
Effective membrane diffusivity
Diffusivity in coating
Partition coefficient at C16_a
Partition coefficient at C16_b
Partition coefficient at C16_c

. External aqueous phase volume
C16_area = 2.0 * R8_pi * C16_c ! Outside area

C16_argl = C16_a * CDSQRT(C16_S) / C16_b
C16_arg2 = C16_a * CDSQRT(C16_S * C16_dl / C16_d2) / C16_b
C16_arg3 = CDSQRT(C16_S * C16_dl / C16_d2)
C16_arg4 = CDSQRT(C16_S * C16_dl / C16_d3)
C16_arg5 = C16_c * CDSQRT(C16_S * C16_dl / C16_d3) / C16_b

C16_X = CDSQRT(C16_dl / C16_d2)
C16_Y = CDSQRT(C16_d2 / C16_d3)

163

C16_Z = (C16_xm3 * C16_b * C16_area / C16_vw) *
CDSQRT(C16_d3 / (C16_dl * C16_S))

C ***

C * Call subroutines to evaluate the Bessel functions.
C ***

call BESIO(C16_argl, C16_10argl)
call BESIO(C16_arg2, C16_IOarg2)
call BESIO(C16_arg3, C16_IOarg3)
call BESIO(C16_arg4, C16_10arg4)
call BESIO(C16_arg5, C16_IOarg5)

call BESI1(C16_argl, C16_Ilarg1)
call BESI1(C16_arg2, C16_Ilarg2)
call BESI1(C16_arg3, C16_Ilarg3)
call BESI1(C16_arg4, C16_Ilarg4)
call BESI1(C16_arg5, C16_Ilarg5)

call BESKO(C16_arg2, C16_KOarg2)
call BESKO(C16_arg3, C16_KOarg3)
call BESKO(C16_arg4, C16_KOarg4)
call BESKO(C16_arg5, C16_KOarg5)

call BESK1(C16_arg2, C16_K1arg2)
call BESK1(C16_arg3, C16_Klarg3)
call BESK1(C16_arg4, C16_Klarg4)
call BESK1(C16_arg5, C16_Klarg5)

return
end

C ***

C * Subroutine REALTIME converts to real time.
C ***

real*8 function REALTIME(R8_THETA, C16_b, C16_dl)

real*8 R8_THETA
complex*16 C16_b
complex*16 C16_dl

REALTIME = R8_THETA * (C16_b ** 2) / C16_dl

return
end

C ***

C * Subroutine REALCONC converts to real concentration.
C ***

real*8 function REALCONC(C16_U, C16_INIT_CONC)

complex*16 C16_U
complex*16 C16_INIT_CONC

REALCONC = C16 U * C16_INIT_CONC

return
end

C ***

C * EOF
C ***

Facing 164

Table 11. Nomenclature Equivelents for the "Flat
Membrane: Dispersed Phase in Reservoir" Problem.

Text Mathematica® Fortran

a/b√δ
arg1 C16_arg1

a/b√D1/D2s arg2 C 16_arg2

√D1/D2s

arg3 C16_arg3

α2bm2w/Vw√D2/sD1 Z C16_Z

√D1δ/sD2
X C16_X

C0s/C01
R8_G_CS0_C10

a R87G_a

A15 al

A16 a2

A17 a3 C16 a3

A18 a4 C16_a4

D1 dl R8 G dl

D2 d2 R8_G_d2
b R8_G_b

δ delta C16_delta

φ R8_G_phi

γ gamma C16_gamma

k R8_G_k

m1,2 xm R8_G_xm

m1,s R8_G_xms

m2,w R8_G_xm2

VW R8_G_vw

APPENDIX 2

Flat Membrane: Dispersed Phase in Reservoir

Presented below is the Mathematica ® program used to determine expressions

for the coefficients A15, A16, A17, and A18 for the "flat membrane: dispersed

phase in reservoir" problem. It is followed by the Fortran code used to invert

the solution numerically from the Laplace domain into the time domain. The

reader is referred to Table 11 for relationships between some of the variables

appearing in the text in Chapter 2 and those used in the Mathematica ® and

Fortran Programs.

164

Bcflat = Solve[{al Sqrt[delta] == a2 Sqrt[delta],

X (al exp[argl] - a2 exp[-arg1]) ==
(a3 exp[arg2] 	 a4 exp[-arg2]),

al exp[argl] + a2 exp[-argl] - gamma/delta
xm (a3 exp[arg2] + a4 exp[-arg2]),

-Z (a3 exp[arg3] - a4 exp[-arg3]) ==
(a3 exp[arg3] + a4 exp[-arg3])},

{al, a2, a3, a4)]. ;

Al =al I. Bcflat;
A2 = a2 /. Bcflat;
A3 = a3 /. Bcflat;
A4 = a4 /. Bcflat;

FortranForm[Al]
List(gamma/(delta*exp(-argl) + delta*exp(argl)) +
delta*gamma*xm*

(-(X*exp(-arg1)) +
- X*exp(arg1))*exp(arg2)*

(-exp(-arg3) + Z*exp(-arg3))/
((delta*exp(-argl) + delta*exp(argl))*
(-((-((delta*exp(-argl) +
delta*exp(arg1))*exp(arg2)) +
delta*xm*
(-(X*exp(-arg1)) + X*exp(arg1))*

- exp(arg2))*
(-exp(-arg3) + Z*exp(-arg3))) +
((delta*exp(-argl) + delta*exp(argl))*
exp(-arg2) +
delta*xm*
(-(X*exp(-arg1)) + X*exp(arg1))*
exp(-arg2))*
(-exp(arg3) - Z*exp(arg3)))) -
delta*gamma*xm*
(-(X*exp(-arg1)) + X*exp(arg1))*exp(-

- arg2)*
(-exp(arg3) - Z*exp(arg3))/
((delta*exp(-argl) + delta*exp(argl)) *
(-((-((delta*exp(-argl) +
delta*exp(arg1))*exp(arg2))
delta*xm*
(-(X*exp(-arg1)) + X*exp(arg1))*
exp(arg2))*
(-exp(-arg3) + Z*exp(-arg3))) +

165

....■ ■•••■■

166

((delta*exp(-argl) + delta*exp(argl))*
- exp(-arg2) +
- delta*xm*

(-(X*exp(-arg1)) + X*exp(arg1))*
- exp(-arg2))*

(-exp(arg3) - Z*exp(arg3)))))

FortranForm[A2]
List(gamma/(delta*exp(-argl) + delta*exp(argl)) +
delta*gamma*xm*

(-(X*exp(-arg1)) +
- X*exp(arg1))*exp(arg2)*

(-exp(-arg3) + Z*exp(-arg3))/
((delta*exp(-argl) + delta*exp(argl))*
(-((-((delta*exp(-argl) +

- delta*exp(arg1))*exp(arg2)) +
- delta*xm*

(-(X*exp(-arg1)) + X*exp(arg1))*
- exp(arg2))*

(-exp(-arg3) + Z*exp(-arg3))) +
((delta*exp(-argl) + delta*exp(arg1))*

- exp(-arg2) +
- delta*xm*

(-(X*exp(-arg1)) + X*exp(arg1))*
- exp(-arg2))*

(-exp(arg3) 	 Z*exp(arg3)))) -
- delta*gamma*xm*

(-(X*exp(-arg1)) + X*exp(arg1))*exp(-arg2)*
(-exp(arg3) 	 Z*exp(arg3))/
((delta*exp(-argl) + delta*exp(arg1))*
(-((-((delta*exp(-argl) +

- delta*exp(arg1))*exp(arg2)) +
- delta*xm*

(-(X*exp(-arg1)) + X*exp(arg1))*
- exp(arg2))*

(-exp(-arg3) + Z*exp(-arg3))) +
((delta*exp(-argl) + delta*exp(argl))*

- exp(-arg2) +
- delta*xm*

(-(X*exp(-arg1)) + X*exp(arg1))*
- exp(-arg2))*

(-exp(arg3) - Z*exp(arg3)))))

FortranForm[A3]
List(gamma*(-(X*exp(-arg1)) + X*exp(arg1))*

(-exp(-arg3) + Z*exp(-arg3))/
(-((-((delta*exp(-arg1) + delta*exp(arg1))*

- exp(arg2)) +
delta*xm*
(-(X*exp(-arg1)) + X*exp(arg1))*

167

exp(arg2))*
(-exp(-arg3) + Z*exp(-arg3))) +
((delta*exp(-arg1) + delta*exp(argl))*
exp(-arg2) +
delta*xm*
(-(X*exp(-arg1)) + X*exp(argl))*
exp(-arg2))*(-exp(arg3) -
Z*exp(arg3))))

FortranForm[A4]
List(-(gamma*(-(X*exp(-arg1)) + X*exp(arg1))*

(-exp(arg3) 	 Z*exp(arg3))/
(-((-((delta*.exp(-argl) +
delta*exp(argl))*
exp(arg2)) +
delta*xm*
(-(X*exp(-arg1)) + X*exp(arg1))*
exp(arg2))*
(-exp(-arg3) + Z*exp(-arg3))) +
((delta*exp(-argl) + delta*exp(argl))*

- exp(-arg2) +
delta*xm*
(-(X*exp(-arg1)) + X*exp(arg1))*

- exp(-arg2))*
(-exp(arg3) - Z*exp(arg3)))))

168

o ***
C * Program model_flatsusp provides release profiles for the flat
C * membrane - suspension in reservoir problem
C *
C * Stephanie Farrell
C * August 1995
C *
C * © Copyright 1995, 1996 Stephanie Farrell
C *
C * FILE: FLATSUSP.FOR -) FLATSUSP.EXE
C ***

program MODEL_FLATSUSP

C 	
•

C * Function definitions
C ***

real*8 REALTIME
real*8 REALCONC

complex*16 C16_F_WALL

external C16_F_WALL
external WALL
external CALCULATION
external DINLAP
external REALTIME
external REALCONC

C ***

C * Main program.
C ***

integer I_INDEX
integer I_KMAX
integer I_NOUT

real*8 R8_ALPHA
real*8 R8_EXP
real*8 R8_FLOAT
real*8 R8_RELERR

real*8 R8_T(1)
real*8 R8_FINV(1)

C ***

C ' Data input parameters

character TITLE*80
character VAR_NAME*30

integer I_NUM_TIMES

real*8 R8_TIME_INTERVAL
real*8 R8_INIT_CONC
real*8 R8_G_a
real*8 R8_G_b
real*8 R8_G_dl
real*8 R8_G_d2
real*8 R8_G_xm
real*8 R8_G_vw
real*8 R8_G_xm2
real*8 R8_G_r

169

real*8 R8_G_CsO_C10
real*8 R8_G_phi
real*8 R8_G_k
real*8 R8_G_xms

character EOF*80

common /IN_PARMS/
& R8_G_a,
& R8_G_b,
& R8_G_d1,
& R8_G_d2,
& R8_G_xm,
& R8_G_vw,
& R8_G_xm2,
& R8_G_r,
& R8_G_CsO_C10,
& R8_G_phi,
& R8_G_k,
& R8_G_xms

C **w**
C * Read in data
C ***w***

read
read

*,
*,

TITLE
VAR_NAME, I_NUM_TIMES

read *, VAR_NAME, R8_TIME_INTERVAL
read *, VAR_NAME, R8_INIT_CONC

read *, VAR_NAME, R8_G_a
read *, VAR_NAME, R8_G_b
read *, VAR_NAME, R8_G_d1
read *, VAR_NAME, R8_G_d2
read *, VAR_NAME, R8_G_xm
read *, VAR_NAME, R8_G_vw
read *„ VAR_NAME, R8_G_xm2
read *, VAR_NAME, R8_G_r
read *, VAR_NAME, R8_G_Cs0_C10
read *, VAR_NAME, R8_G_phi
read *, VAR_NAME, R8_G_k
read
read

*,
*,

VAR_NAME,
EOF

R8_G_xms

if (EOF .NE. 'EOF') then
print *,'Input file format is incorrect. Aborting.'
Goto 1000

endif

print *, TITLE
print *, 'I_NUM_TIMES
print *, 'R8_TIME_INTERVAL
print *, 'R8_INIT_CONC
print *, 'R8_G_a
print *, 'R8_G_b
print *, 'R8_G_d1
print *, 'R8_G_d2
print *, 'R8_G_xm
print *, 'R8_G_vw
print *, 'R8_G_xm2
print *, 'R8_G_r
print *, 'R8_G_CsO_C10

I_NUM_TIMES
R8_TIME_INTERVAL

• R8_INIT_CONC
1 , R8_G_a

R8_G_b
• R8_G_d1
R8_G_d2
R8_G_xm
R8_G_vw

• R8_G_xm2
R8_G_r

', R8_G_CsO_C10

170

print *, 'R8_G_phi 	

•

R8_G_phi
print *, 'R8_G_k 	

•

R8_G_k
print *, 'R8_G_xms 	

•

RB_G_xms

C ******x***%**
C * Arguments for the IMSL subroutine DINLAP
C ***

R8_ALPHA = 0
I_KMAX = 10000
R8_RELERR = 5.0E-5

print *,'THETA,U,REAL TIME,REAL CONC.'

Do I_INDEX = I_NUM_TIMES, 1, -1
R8_T(1) = R8_TIME_INTERVAL * Float(I_INDEX)

call DINLAP(C16_F_WALL,
1,

& 	 R8_ALPHA,
R8_RELERR,
I_KMAX,
RB_FINV)

print '(E9.4, A, E9.4, A, F15.2, A, E15.4)',
R8_T(1),
R8_FINV(1),
REALTIME(R8_T(1), R8_G_b, R8_G_dl),
REALCONC(R8_FINV(1), R8_INIT_CONC)

end do

1000 continue
end

o *********************.***************************************w*******
C * User-supplied function to which the inverse Laplace transform
C * will be computed
• *,,,,**,,-******w***

complex*16 function C16_F_WALL(C16_s)

intrinsic CDEXP

complex*16 016_s
complex*16 C16_arg3
complex*16 C16_a3
complex*16 C16_a4

call WALL(C16_s, C16_arg3, 016_a3, C16_a4)

C16_,F_WALL = (016_a3 * CDEXP(C16_arg3) + C16_a4 *
CDEXP(-C16_arg3))

return
end

C **

C * 	 Subroutine WALL evaluates a3 and a4 which are used in F_WALL
C *,,,,*****,,-*****************),***

subroutine WALL(C16_s, C16_arg3, C16_a3, C16_a4)

171

intrinsic CDSQRT
intrinsic CDEXP

complex*16 C16_s
complex*16 C16_gamma
complex*16 C16_delta
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3

•complex*16 C16_X
complex*16 C16_Z
complex*16 C16_a3
complex*16 C16_a4

real*8 R8_XM
real*8 R8_XM2

call CALCULATION(C16_s,
C16_argl,
C16_arg2,
C16_arg3,
C16_X,
C16_Z,
R8_xm,
R8 xm2,
C16_gamma,
C16_delta)

C ***

C * Compute a3
C ***

C16_a3 = (C16_gamma * (-(C16_X * CDEXP(-C16_argl)) + C16_X *
• CDEXP(C16_argl)) *
• (-CDEXP(-C16 arg3) + C16_Z * CDEXP(-C16_arg3)) /
& (-((-((C16 delta * CDEXP(-C16_argl) + C16_delta *

CDEXP(C16_argl)) *
CDEXP(C16_arg2)) +

C16 delta * R8_xm *
(-(C16_X * CDEXP(-C16_argl)) + C16_X * CDEXP(C16_argl)) *
CDEXP(C16_arg2))*

(-CDEXP(-C16_arg3) + C16_Z * CDEXP(-C16_arg3))) +
& ((C16_delta * CDEXP(-C16_argl) + C16_delta * CDEXP(C16_argl)) *

CDEXP(-C16_arg2) +
C16_delta * R8_xm *
(-(C16_X * CDEXP(-C16_argl)) + C16_X * CDEXP(C16_argl)) *
CDEXP(-C16_arg2)) * (-CDEXP(C16_arg3) - C16_Z *

CDEXP(C16_arg3))))

C ***
C * Compute a4
C ***

C16_a4 = (-(C16_gamma * (-(C16_X * CDEXP(-C16_argl)) + C16_X *
• CDEXP(C16_argl)) *

(-CDEXP(C16_arg3) - C16_Z * CDEXP(C16_arg3)) /
(-((-((C16_delta * CDEXP(-C16_argl) + C16_delta *

• CDEXP(C16_argl)) *
CDEXP(C16_arg2)) +

C16_delta * R8_xm *
(-(C16_X * CDEXP(-C16_argl)) + C16_X *

• CDEXP(C16_argl)) *
CDEXP(C16_arg2)) *

172

(-CDEXP(-C16_arg3) + C16_Z * CDEXP(-C16_arg3))) +
((C16_delta * CDEXP(-C16_argl) + C16_delta *

CDEXP(C16_argl)) *
CDEXP(-C16_arg2) +• 	

C16_delta * R8_xm *
(-(C16_X * CDEXP(-C16_argl)) + C16_X * CDEXP(C16_argl)) *
CDEXP(-C16_arg2))*

(-CDEXP(C16_arg3) - C16_Z * CDEXP(C16_arg3)))))
end

C ***

C * Subroutine CALCULATION computes everything necessary for the
C * evaluation of a3 and a4.
C ***

subroutine CALCULATION (C16_s,
C16_argl,
C16_arg2,
C16_arg3,
C16_X,
C16_Z,
R8_xm,
R8_xm2,
C16_gamma,
C16_delta)

C * Constants
C ***

real*8 R8_pi
parameter (R8_pi = 3.14159265359)

c**

C Commons
c**

real*8 R8_G_a
real*8 R8_G_b
real*8 R8_G_dl
real*8 R8_G_d2
real*8 R8_G_xm
real*8 R8_G_vw
real*8 R8_G_xm2
real*8 RB_G_r
real*8 R8_G_CsO_C10
real*8 R8_G_phi
real*8 R8_G_k
real*8 R8_G_xms

common /IN_PARMS/
& R8_G_a,
& R8_G_b,
& R8_G_dl,
& R8_G_d2,
& R8_G_xm,
& R8_G_vw,
& R8_G_xm2,
& R8_G_r,
& R8_G_Cs0_C10,
& R8_Gphi,
& R8_G_k,
& R8_G_xms

173

C ***

c * Variables
C ***.**

complex*16 C16_s
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_X
complex*16 C16_Z
complex*16 C16_gamma
complex*16 C16_delta

real*8 R8_A
real*8 RB_B
real*8 R8_D1
real*8 R8_D2
real*8 R8_XM
real*8 R8_XM2
real*8 R8 VW
real*8 R8_R
real*8 R8_AREA
real*8 R8_CSO_C10
real*8 R8_PHI
real*8 R8_XMS
real*8 R8_V1
real*8 R8_ALPHA
real*8 R8_BETA
real*8 R8_k

C ww******w*****************,,******************************,,*,***,,***
C * Computations
C **,,**************************w*********************************%****

R8_a
R8_b
R8_dl
R8_d2
R8_xm
R8_xm2
R8_vw
R8_R
R8_area

=
=
=
=
=
=
=
=
=

R8_G_a
R8_G_b
R8_G_dl
R8_G_d2
R8_G_xm
R8_G_xm2
R8_G_vw
R8_G r
R8_pi * R8_R ** 2

!
!
!
!
!
!
!
!
!

Inside distance to membrane
Outside distance
Diffusivity in reservoir
Effective membrane diffusivity
Partition coefficient at A
Partition coefficient at B
External aqueous phase volume
Radius of flat membrane
Mass transfer area

R8_Cs0_010 = R8_G_CsO_C10
R8_phi 	 = R8_G_phi
R8_k 	 = R8_G_k
R8_xms 	 = R8_G_xms

R8_vl = R8_pi * R8_R ** 2 * R8_a
R8_alpha = R8_phi / (1.0 - R8_phi)
R8_beta = 	 * R8_b ** 2 / (R8_v1 * R8_phi * R8_dl)
C16_gamma = -1.0 - R8_alpha * R8_CsO_C10 + R8_alpha * C16_s *

R8_CsD_C10 / (C16_s + R8_beta * R8_xms)
C16._delta = 016_s * (1.0 + R8_beta * R8_alpha / (C16_s + R8_beta *

R8_xms))
C16_X = R8_dl * CDSQRT(C16_delta) / (R8_d2 * CDSQRT(C16_s * R8_dl

/ R8_d2))
C16_Z = R8_area * R8_b * R8_xm2 / (R8_vw * CDSQRT(C16_s * 	 /

R8_d2))

C *.***,,.
C * 	 Arguments

174

C *w**-************,-**.*******ir***************************************

C16_argl = R8_a * CDSQRT(C16_delta) / R8_b
C16_arg2 = R8_a * CDSQRT(C16_s * R8_di / R8_d2) / R8_b
C16_arg3 = CDSQRT(C16_s * R8_dl / R8_d2)

return
end

C ..**

C * Function REALTIME converts to real time.
C *** .

real*8 function REALTIME(R8_THETA, R8_b, R8_dl)

real*8 R8_THETA
real*8 R8_b
real*8 R8_d1

REALTIME = R8_THETA * (R8_b ** 2) /

return
end

,-,-,-******w*********,,-**************************,,*******************

C * Function REALCONC converts to real concentration.
C *.,***********.**,,**,,*,,***

real*8 function REALCONC(R8_U, R8_INIT_CONC)

real*8 R8_U
real*8 R8_INIT_CONC

REALCONC = R8_15 * R8_INIT_CONC

return
end

*-.******,..**,-***
C * EOF
C **-.****.***,.****************,-************.***************************,,

Facing 175

Table 12. Nomenclature Equivalents for the "Hollow Fiber:
Dispersed Phase in Reservoir" Problem.

Text Mathematica® Fortran

a/b√δ
arg1 C 16_arg1

a/b√D
1/D2 s

arg2 C 16_arg2

√
D

1/D2 s

arg3 C 16_arg3

C01 R8_G_INIT_CONC
Vw/α2bm2,w√sD

1/D 2

Z C 16_Z

√ D1δ/sD2

X C 16_X

C0s/C01

RS G CSO C10

a R8_G_a

A15 a1

A16 a2

A17 a3 C16_a3

A18 a4 C16_a4

b R8_G_b

8 delta C 16_delta

D1 d 1 R8_G_d 1

D2 d2 R8_G_d2
φ R8_G_phi

γ gamma C16_gamm a

k R8_G_k

m1,2 xm R8_G_xm

m1,s R8_g_xms

m2,w R8_g_xm2

Vw R8_g_vw

175

Hollow Fiber: Dispersed Phase in Reservoir

Presented below is the Mathematica® program used to determine

expressions for the coefficients A19, A21, and A22 for the "hollow fiber:

dispersed phase in reservoir" problem. It is followed by the Fortran code

used to invert the solution numerically from the Laplace domain into the

time domain. The reader is referred to Table 12 for relationships between

variables used in the text in Chapter 2 and those used in the Mathematica®

and Fortran programs.

176

const = Solve[{-gamma/delta + Al IOargl ==

xm (A3 IOarg2 + A4 KOarg2),
X Al Ilargl ==
A3 Ilarg2 - A4 Klarg2,
Z (A3 IOarg3 + A4 KOarg3) ==.

-(A3 Ilarg3 - A4 Klarg3)),{Al, A3, A4}];
General::spelll:

Possible spelling error: new symbol name "gamma"
is similar to existing symbol "Gamma".

General::spelll:
Possible spelling error: new symbol name "KOarg2"

is similar to existing symbol "IOarg2".
General::spelll:

Possible spelling error: new symbol name "Klarg2"
is similar to existing symbol "Ilarg2".

General::stop:
Further output of General::spelll

will be suppressed during this calculation.

Al = Al /. Const;
a3 = A3 /. Const;

a4 = A4 /. Const;

FortranForm[al]
List (gamma/ (delta*I0argl) -

gamma*Ilargl*KOarg2*X*xm*(Ilarg3
IOarg3*Z)/
(IOargl*((delta*IOargl*Klarg2 +
delta*Ilargl*KOarg2*X*xm)*
(Ilarg3 + IOarg3*Z) -
(-(delta*IOargl*Ilarg2) +
delta*IOarg2*Ilargl*X*xm)*
(-Klarg3 + KOarg3*Z))) +
gamma*I0arg2*Ilargl*X*xm*
(-Klarg3 + KOarg3*Z)/
(I0arg1*((delta*I0argl*Klarg2 +
delta*Ilargl*KOarg2*X*xm)*
(Ilarg3 + IOarg3*Z)
(-(delta*I0argl*Ilarg2) +
delta*IOarg2*Ilargl*X*xm)*
(-Klarg3 + KOarg3*Z))))

FortranForm [a3
List (gamma* Ilargl *X* (-Klarg3 + KOarg3*Z)/

((delta*I0argl*Klarg2 +
delta*Ilargl*KOarg2*X*xm)*
(Ilarg3 + IOarg3*Z) -
(-(delta*IOargl*Ilarg2) +
delta*I0arg2*Ilargl*X*xm)*

- (-K1arg3 + KOarg3*Z)))

FortranForm[a4]
List(-(gamma*Ilargl*X*(Ilarg3 + ICarg3*Z)/

- ((delta*I0argl*Klarg2 +
- delta*Ilargl*KOarg2*X*xm)*

(Ilarg3 + IOarg3*Z) -
- (-(delta*I0argl*Ilarg2) +
- delta*I0arg2*Ilargl*X*xm)*
- (-Klarg3 + KOarg3*Z))))

177

178

* *******w**

c * Program model_mhfsusp provides release profiles for the hollow
C * fiber - suspension in reservoir problem.
C *
C * Stephanie Farrell
C * August 1995
C *
C *	 Copyright 1995, 1996 Stephanie Farrell
C *
C * FILE: MHFSUSP.FOR 4 MHFSUSP.EXE
C ***

program MODEL_MHFSUSP

C ***
C * Function definitions
C ***

real*8 R8_REALTIME
real*8 R8_REALCONC

complex*16 C16_F_WALL

external 016_F_WALL
external WALL
external CALCULATION
external DINLAP
external BESKO
external BESIO
external BESI1
external BESK1
external R8_REALTIME
external R8_REALCONC

C ***
C * Main program.
C ***

integer I_INDEX
integer I_KMAX
integer I_NOUT

real*8 Re_ALPHA
real*8 R8RELERR

real*8 R8_T(1)
real*8 R8_FINV(1)

real'8 R8_RADIUS
common R8_RADIUS

C ***
C * Data input parameters
C ***

character TITLE*80
character VAR NAME*30

integer I_NUM_TIMES

rea1*8 R8_TIME_INTERVAL
real*8 R8_INIT_CONC
real*8 R8_G_a
real *8 R8_G_b
real*8 R8_G_dl

179

real*8 R8_G_d2
real*8 R8_G_xm
real*8 R8_G_vw
real*8 R8_G_xm2
real*8 R8_G_CsO_C10
real*8 R8_G_phi
real*8 R8_G_k
real*8 R8G_xms

character EOF*80

common /IN_PARMS/
& R8_G_a,
& R8_G_b,
& R8_G_d1,
& R8_G_d2,
& R8_G_xm,
& R8_G_vw,
& R8_G_xm2,
& R8_G_CsO_C10,
& R8_G_phi,
& R8_G_k,
& R8_G_xms

C ****************..***,:**************,,*****),****************,,**********

C * Read in data
C ***

read
read

*,
*,

TITLE
VAR_NAME, I_NUM_TIMES

read *, VAR_NAME, R8_TIME_INTERVAL
read *, VAR_NAME, R8_INIT_CONC

read *, VAR_NAME, R8_G_a
read *, VAR_NAME, R8_G_b
read *, VAR_NAME, R8_G_d1
read *, VAR_NAME, R8_G_d2
read *, VAR_NAME, R8_G_xm
read *, VAR_NAME, R8_G_vw
read *, VAR_NAME, R8_G_xm2
read *, VAR_NAME, R8_G_CsO_C10
read *, VAR_NAME, R8_G_phi
read *, VAR_NAME, R8_G_k
read
read

*,
*,

VAR_NAME,
EOF

R8_G_xms

if 	 (EOF
print
Goto

.NE. 	 'EOF') 	 then
*,'Input file format is incorrect. Aborting.'

1000
endif

print *, TITLE
print *, 'I_NUM_TIMES ,1, I_NUM_TIMES
print *, 'R8_TIME_INTERVAL ,', R8_TIME_INTERVAL
print *, 'R8_INIT_CONC ,', R8 INIT CONC
print *, 'R8_G_a ,', R8_G_a
print *, 'R8_G_b ,', R8_G_b
print *, 'R8_G_dl ,', R8_G_dl
print *, 'R8_G_d2 ,', R8_G_d2
print *, 'R8_G_xm ,', R8_G_xm
print *, 'R8_G_vw 1, R8_G_vw
print *, 'R8_G_xm2 ,', R8_G_xm2

180

print *, 'R8_G_Cs0_C10 ,',	 R8_G_CsO_C10
print *, 'R8_G_phi ,',	 R8_G_phi
print *, 'R8_G_k ,',	 R8_G_k
print *, 'R8_G_xms ,', R8_G_xms

C ***
C * User-supplied arguments for the IMSL subroutine DINLAP
C ***

R8_ALPHA = 0
I_KMAX = 10000
R8_RELERR = 5.0E-5

print *,'THETA,U,REAL TIME,REAL CONC.'
Do I_INDEX = I_NUM_TIMES, 1, -1

R8_T(1) = R8_TIME_INTERVAL * Float(I_INDEX)

call DINLAP(C16_F_WALL,
1,
R8_T,
R8_ALPHA,
R8_RELERR,
I_KMAX,
R8_FINV)

print '(E9.4, A, E9.4, A, F15.2, A, E15.4)',
R8_T(1),
R8_FINV(1),
R8_REALTIME(R8_T(1), R8_G_b, R8_G_d1),
R8_REALCONC(R8_FINV(1), R8_INIT_CONC)

end do

1000 continue
end

C ***
C * User-supplied function to which the inverse Laplace transform
C * will be computed
C ***

complex*16 function C16_F_WALL(C16_s)

intrinsic CDSQRT

complex*16 C16_IOargWall
complex*16 C16_KOargWall
complex*16 C16_argWall

complex*16 C16_s
complex*16 C16_al
complex*16 C16_a3
complex*16 C16_a4

real*8 R8_D1
real*8 R8 D2

call WALL(C16_s, R8_dl, R8_d2, C16_a3, C16_a4)

C16_argWall = CDSQRT(C16_s * R8_dl / R8_d2)

181

call BESIO(C16_argWall, C16_10argWall)
call BESKO(C16_argWall, C16_KOargWal1)

C16_F_WALL = (C16_a3 * C16_10argWall + C16_a4 * C16 _KOargWall)

return
end

C ***

C * Subroutine BESIO computes Bessel(I,O)
C ***

subroutine BESIO(C16_X, C16_10)

complex*16 C16_X
complex*16 C16_I0

C16_I0 = 	 1.0 + C16_X**2 	 / 4.0 + 016_X**4 / 64.0 +
& 	 C16_X**6 / 2304.0 	 + C16_X**8 / 	 147456.0 	 +
& 	 C16_X**10 / 14745600.0 	 + C16_X**12 	 / 2123366400.0 +
& 	 C16_X**14 / 416179814400.0 +
& 	 C16_X**16 / 106542032486400.0 +
& 	 C16_X**18 / 34519618525593600.0 	 +
& 	 C16_X**20 / 13807847410237440000.0

return
end

C w*********-***
C * Subroutine BESI1 computes Bessel(I,1)
C ****************************** -k**************************************

subroutine BESI1(C16_X, C16_I1)

complex*16 C16_X
complex*16 C16_I1

C16_11 = C16_X/2.0 + C16_X**3/16.0 +
C16_X**5/384.0 + C16_X**7/18432.0 +
C16_X**9/1474560.0 + C16_X**11/176947200.0 +
C16_X**13/29727129600.0 +
C16_X**15/6658877030400.0 +
C16_,X**17/1917756584755200.0 +
C16_X**19/690392370511872000.0

return
end

C ***
C * Subroutine BESKO computes Bessel(K,0)
C **Vr**************

subroutine BESKO(C16_X, C16_KO)

complex*16 C16_X
complex*16 016_XL
complex*16 C16_K0

intrinsic CDLOG

C16 XL = LOG(1.0/2.0) + CDLOG(C16_X)

C16_K0 = -0.577215 - LOG(1.0/2.0) +
C16_X**20* ((7381. 0/1260 . 0 - 2*0 . 577215) /2761569482047488 0000 . 0

182

• + (-C16_XL)/13807847410237440000.0) +
• C16 X**I8*((7129.0/1260.0 	 2*0.577215)/69039237051187200.0 +
• (-CI6_XL)/34519618525593600.0) +
• C16 X**16*((761.0/140.0 - 2*0.577215)/213084064972800.0 +
• (-C16_XL)/106542032486400.0) +
• C16 X**14*((363.0/70.0 - 2*0.577215)1832359628800.0 +
• (-CI6_XL)/416179814400.0) +
• C16 X**12*((49.0/10.0 - 2*0.577215)/4246732800.0 +
• (-C16_XL)/2123366400.0) +
• C16 X**10*((137.0/30.0 - 2*0.577215)/29491200.0 +
• (-CI6_XL)/14745600.0) +

C16 X**8*((25.0/6.0 - 2*0.577215)/294912.0 +
• (-CI6_XL)/147456.0) +
Sc 	 C16_X**6*((11.0/3.0 - 2*0.577215)/4608.0 + (-C16 XL)/2304.0) +
• C16_X**4*((3.0 - 2*0.577215)/128.0 + (-C16_XL)/6i.0) +
• C16_X**2*((2.0 - 2*0.577215)/8.0 + (-C16_XL)/4.0) -
& CDLOG(C16_X)

return
end

C ****,,*****************w**
C * Subroutine BESK1 computes Bessel(K,1)
C **w**.*********, ,,***

subroutine BESK1(C16_X, C16_K1)

complex*16 C16_X
complex*16 C16_XL
complex*16 C16_K1

intrinsic CDLOG

C16_XL = LOG(1.0/2.0) + CDLOG(C16_X)

C16_K1 = 1.0/C16 _X + C16 X**17*((-6989.0/1260.0 + 2*0.577215)/
& 3i355131695104 -60.0 	 + CT6_XL/1917756584755200.0) +
& C16_X**15*((-1487.0/280.0 + 2*0.577215)/13317754060800.0 +
& C16_XL/6658877030400.0) +
& C16_X**13*((-353.0/70.0 + 2*0.577215)/59454259200.0 +
& C16_XL/29727129600.0) +
& C16_X**11*((-71.0/15.0 + 2*0.577215)/353894400.0 +
& C16_XL/176947200.0) +
& C16_X**9*((-131.0/30.0 + 2*0.577215)/2949120.0 +
& C16_XL/1474560.0) +
• C16_X**7*((-47.0/12.0 + 2*0.577215)/36864.0 + C16_XL/18432.0) +
& C16_X**5*((-10.0/3.0 + 2*0.577215)/768.0 + C16_XL/384.0) +
& C16_X**3*((-5.0/2.0 + 2*0.577215)/32.0 + C16_XL/16.0) +
& C16_X*((-1.0 + 2*0.577215)/4.0 + C16_XL/2.0)

return
end

C ,..-*,,*,,,,*******,-***,,******,,***..**

C * Subroutine WALL evaluates a3 and a4 which are used in C16_F_WALL
c *--********,,-**

subroutine WALL(C16_s, R8_dl, R8_42, C16_a3, C16_a4)

complex*16 C16_s
complex*16 C16_10argl
complex*16 C16_10arg2
complex*16 C16_10arg3

183

complex*16 C16_Ilargl
complex*16 C16_Ilarg2
complex*16 C16_Ilarg3
complex*16 C16_KOarg2
complex*16 C16_KOarg3
complex*16 C16_Klarg2
complex*16 C16_Klarg3
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_Z
complex*16 C16_a3
complex*16 C16_a4
complex*16 C16_gamma
complex*16 C16_delta
complex*16 C16_X

real*8 R8_D1
real*8 R8_D2
real*8 R8_VW
real*8 R8_V1
real*8 R8 _A
real*8 R8_B
real*8 R8__XM
real*8 R8_XM2
real*8 R8 AREA

C * Call CALCULATION to calculate everything necessary for
C * evaluation of a3 and a4
C ***

call CALCULATION (C16_s,
C16_IOargl,
C16_IOarg2,
C16_10arg3,
C16_Ilargl,
Cl6_Ilarg2,
C16_Ilarg3,
C16_KOarg2,
C16_KOarg3,
C16_Klarg2,
C16_Klarg3,
C16_argl,
C16_arg2,
C16_arg3,

Sc	 R8_dl,
R8_d2,
R8_vw,
R8_vl,
R8_a,
R8_b,
C16_X,
C16_Z,
R8_xm,
R8_xm2,
R8_area,
C16_gamma,
C16_delta)

C ***

C * Compute a3

184

016_a3 = (C16_gamma * C16_llargl * C16_X * (-C16_Klarg3 +

• C16_KOarg3 * C16_Z) I
& ((C16_delta * C16_10arg1 * C16_Klarg2 +

C16_delta * C16_Ilargl * C16_10arg2 * C16_X * R8_xm) *
(C16_Ilarg3 + C16_I0arg3 * C16_,Z) -

& (-(C16_delta * C16_10argl * C26_ilarg2) +
C16_delta * C16_10arg2 * C16_Ilargl * C16_X * R8_xm) *

(-C16_Klarg3 + C16_KOarg3 * C16_Z)))

C ***
C * Compute a4
C ***

C16_a4 = (-(C16_gamma * C16_I1arg1 * 016_X * (C16_Ilarg3 +
• C16_10arg3 * C16_Z)
& 	 ((C16_delta * C16_IOargl * C16_Klarg2 +

C16_delta * C16_11arg1 * C16_KOarg2 * C16_X *R8_)ark) *
(C16_Ilarg3 + C16_IOarg3 * C16_Z) -

& (-(C16_delta * C16_IOargl * C16_11arg2) +
C16_delta * C16_10arg2 * C16_Ilargi * C16_X * R8_.xin) *

(-C16_Klarg3 + C16_KOarg3 * C16_Z))))

end

C *,******„**
C * Subroutine CALCULATION computes everything necessary for the
C * evaluation of a3, and a4.
C *************,,**

subroutine CALCULATION (016_s,
C16_IOargl,
C16_IOarg2,
C16_IOarg3,
C16_Ilargl,
C16_Ilarg2,
C16_Ilarg3,
C16_KOarg2,
C16_KOarg3,
C16_Klarg2,
C16_Klarg3,
C16_argl,
C16_arg2,
C16_arg3,
R8_dl,
R8_d2,
R8_vw,
Re _v1,
R8_a,
R8_b,
C16_X,
016_Z,
R8_xm,
R8_xm2,
R8_area,
C16_camma,
C16_delta)

C * **
C * Constants
C ******-***

real*8 R8_pi
parameter (R8_pi = 3.14153265359)

185

c **********************.***************.********************************
C Commons
c**

real*8 R8_G_a
real*8 R8_G_b
real*8 R8_G_d1
real*8 R8_G_d2
real*8 R8_G_xm
real*8 R8_G_vw
real*8 R8_G_xm2
real*8 R8_G_CsO_C10
real*8 RB_G_phi
real*8 R8_G_k
real*8 R8_G_xms

common /IN_PARMS/
& R8_G_a,
& R8_G_b,
& R8_G_dl,
& R8_G_d2,
& R8_G_xm,
& R8_G_vw,
& R8_G_xm2,
& R8_G_CsO_C10,
& R8_G_phi,
& R8_G_k,
& R8_G_xms

C ***

C * Variables
C ***

complex*16 C16_s
complex*16 C16_argl
complex*16 C16_arg2
complex*16 C16_arg3
complex*16 C16_I0arg1
complex*16 C16_I0arg2
complex*16 C16_I0arg3
complex*16 C16_Ilargl
complex*16 C16_Ilarg2
complex*16 C16_Ilarg3
complex*16 C16_KOarg2
complex*16 C16_KOarg3
complex*16 C16_K1arg2
complex*16 C16_Klarg3
complex*16 C16_Z
complex*16 C16_al
complex*16 C16_a3
complex*16 C16_a4
complex*16 C16_gamma
complex*16 C16_delta
complex*16 C16_X

real*8 R8_a
real*8 R8_b
real*8 R8_dl
real*8 R8_d2
real*8 R8_vw
real*8 R8_area
real*8 R8_xm2

186

real*8 R8_phi
real*8 R8_xm
real*8 R8_xms
real*8 R8_v1
real*8 R8_alpha
real*8 R8_beta
real*8 Ra_k
real*8 R8_cs0_c10

C ***

C * Computations
C ***

R8_a
R8_b
RS dl
R8_d2
R8_xm
R8_vw
R8_xm2
R8_CsO_C10
R8_phi
R8_k
R8_xms

= R8Ga
= R8_G_b
= R8_G_d1
= R8_Gd2
= R8_G_xm
= R8G_vw
= R8_G_xm2
= R8_G_CsO_C10
= R8_G_phi
= R8_G_k
= R8 G xms

Inside radius
Outside radius
Diffusivity in reservoir
Effective membrane diffusiv
Partition coefficient at A
External aqueous phase volume

R8_area = 2.0 * R8_pi * R8_b 	 ! Outside area

R8_v1 = R8_pi * R8_a**2
R8_alpha = R8_phi / (1.0 - R8_phi)
R8_beta = R8_k * R8_b**2 / (R8_v1 * R8_phi * R8_d1)
C16_gamma = -1.0 - R8_alpha * R8_CsO_C10 + R8_alpha * C16_s *

R8_CsO_C10 / (C16_s + R8_beta * R8_xms)
C16_delta = C16_s * (1.0 + R8_beta * R8_alpha / (C16_s +R8_beta*

R8_xms))

C16_X = R8_dl * CDSQRT(C16_delta) / (R8_,d2 * CDSQRT(C16_s * R8_dl
/ R8_d2))

C16_Z = R8_vw * CDSQRT(C16_s * R8_dl / R8_,c1.2) / (R8_area * R8_b *
R8_xm2)

C ***
C	 Arguments of the Bessel functions that appear in the expressions
C * for al, a3 and a4
C ***

C16_argl = R8_a * CDSQRT(C16_delta) / R8_b
C16_arg2 = R8_a * CDSQRT(C16_s * R8_dl / R8_d2) 	 R8_b
C16_arg3 = CDSQRT(C16_s * R8_d1 / Re_d2)

C ***
C * Evaluate the Bessel functions.
C 	 ****-**

call BESIO(C16_argl, C16_10argl)
call BESIO(C16_arg2, C16_10arg2)
call BESIO(C16_arg3, C16_10arg3)

call BESI1(C16_argl, C16_Ilargl)
call BESI1(C16_arg2, C16_Ilarg2)
call BESI1(C16_arg3, C16_Ilarg3)

call BESKO(C16_arg2, C16_KOarg2)
call BESKO(C16_arg3, C16_KOarg3)

187

call BESK1(C16_arg2, C16_Klarg2)
call BESK1(C16_arg3, C16_Klarg3)

return
end

C ***

C * Subroutine R8_REALTIME converts to real time.
C ***

real*8 function R8_REALTIME(R8_THETA, R8_b, R8_dl)

real*8 R8_THETA
real*8 R8_b
real*8 R8 dl

R8_REALTIME = R8_THETA * (R8_b ** 2) / R8_dl

return
end

C ***

C * Subroutine REALCONC converts to real concentration.
C ***

real*8 function R8_REALCONC(R8_U, R8_INIT_CONC)

real*8 R8_U
real*8 R8_INIT_CONC

R8 REALCONC = R8 _U * R8_INIT_CONC

return
end

C ***

C * EOF
C ***

APPENDIX 3

Following is a sample calculation for a single data point taken from Figure 27

(The release profile of benzoic acid from a nylon hollow fiber with water-filled

pores. Benzoic acid was initially present in a concentration of 100 mg/ml; the

fiber length was 12.0 cm. Experimental parameters, taken directly from the

data file read by the Fortran simulation program, are shown below.

R8_INIT_CONC 100.0000
0.0300

R8_0.3 	 0.0500
R8G_d1 	 8.6000e-6
R8_CI-J12 	 9.0000e-6
R8_G_xm 	 88.0000
R8_G_vw 	 100.0000
R8_G_xm2 	 1.0000

The concentration of benzoic acid in the surrounding water bath is

measured by HPLC, and found to be 0.031 mg/m1 after 95 minutes. The total

amount of agent released per unit fiber length (111t/1)is then found:

\

Mr 	C V 	M
(0.031` --3.–.° (100 ml)

	t 	 W II' 	t) 	 mg= 0.258 —

	

/ 	 Z 	 Z 	 1.2.0 cin

On output, the Fortran program gives the concentration of the agent

C.1
per unit fiber length at the outer surface of the membrane (b)), at the time

points specified on input. From this it is simple to calculate the total amount

of agent released. The concentration of agent per unit fiber length in the

188

(

V.

111 ,

1

189

water bath is related to the concentration per unit length at the outer surface

of the membrane by the distribution coefficient m2,„. At 75 minutes, the

concentration per unit length predicted by the model is 0.243 mg/cm

0,00243
mg

Cu	C. 	 ml cm 	 mgb =
'21

mz 	 = a.00243 	
	1 	 1.0 	 ml cm

The amount released per unit fiber length at time t, M t/1 is related to Gal by

14 , 0.00243 mg 1(100 nil) = 0.243
mg

[(U. ctrl

REFERENCES

I 	 R. Langer, "New methods of drug delivery," Science, 249 (1990), 1527.

2 A. Zaffaroni, "Novel drug delivery device", United States Patent,
3,993,073 (1976).

3 J. Urquhart, K. Chandrasekaran, J. Shaw, "Bandage for transdermally
administering scopolamine to prevent nausea," United States Patent,
4,031,894 (1977).

4 J. Urquhart, K. Chandrasekaran, J. Shaw, "Method and therapeutic
system for administering scopolamine transdermally," United States
Patent, 4,262,003 (1981).

5 G. Flynn and R. Smith, "Membrane diffusion III: influence of solvent
composition and permeant solubility on membrane transport," J. Pharm.
Sci.., 61, 1 (1972) 61.

6 F. Theeuwes, R. Gale, and R. Baker, "Transference: A comprehensive
parameter governing permeation of solutes through membranes," J.
Membrane Sci., 1 (1976), 3.

7 	 R. Dunn, D. Lewis, and L. Beck, "Fibrous polymer for the delivery of
contraceptive steroids to the female reproductive tract," in: D. H. Lewis,
(Ed.), Controlled Release of Pesticides and Pharmaceuticals, Plenum
Press, New York, 1981, p. 125.

8 	 M. Eenink, J. Feinjen, J. Olijslager, J. Albers, J. Riecke and P.
Greidanus, "Biodegradable hollow fibers for the controlled release of
hormones," J. Control. Rel., 6 (1987) 225.

9 G. Wong, V. C. Stent, and R. A. Stanley, "Supported liquid membranes
for peptide separation", presented at ICOM, Heidelberg, Germany, 1993.

10 M. Mezei, Liposomes and the Skin, in A. Florence, H. Patel and G.
Gregoriadis, Liposomes in Drug Delivery, Hardwood Academic
Publishers, Langhorne, PA, (1993).

D. Lasic, Liposomes, American Scientist, 80 (1985) 20.

12 D. Lasic and D. Papahadjopoulos, Liposomes Revisited, Science, 267
(1995), 1275.

190

191

REFERENCES
(Continued)

13 D. Lasic and Y. Barenholz, Handbook of Nonmedical Applications of
Liposomes, CRC Press, Boca Raton, I-IV(1996).

14 S. Penner and S. Sherman, "Heat flow through composite cylinders," J.
Chem. Phys. 15, No.8 (1947), 569.

15 J. Jaeger, "Heat conduction in composite circular cylinders," Phil. Mag.
32, No. 213 (1941), 324.

16 C. Tranter, "Heat flow in an infinite medium heated by a cylinder," Phil.
Mag, 38 (1947): 131.

17 R. Barrer, "Formal theory of diffusion through membranes", in H.
Hopfenberg (Ed.), Permeability of Plastic Films and Coatings, Plenum
Publishing, New York, 1974, pp. 113-123.

18 F. De Hoog, J. Knight, and A. Stokes, "An improved method for
numerical inversion of Laplace transforms," SIAM J. Sci. Stat. Comput.
3 No.3 (1982): 357.

19 C. Varelas, D. Dixon and C. Steiner, "Mathematical Model of Mass
Transport through Dispersed-Phase Polymer Networks," AIChE J., 41
(April 1995): 805-811.

20 T. Papadopoulos, Personal Correspondence, Stevens Institute of
Technology, Hoboken, NJ, 1992.

21 R. Prasad and K. Sirkar, "Dispersion-free solvent extraction with
microporous hollow-fiber modules," AIChE J., 34 (1988) 177.

22 R. Prasad and K. K. Sirkar, "Solvent extraction with microporous
hydrophilic and composite membranes", AIChE J., 33, No.7 (1987) 1057.

23 C. K. Colton, K. A. Smith, E. W. Merrill and P. C. Farrell, "Permeability
studies with cellulosic membranes," J. Biomed. Mater. Res., 5 (1971) 459.

24 R. A. Moss and S. Bhattacharya, "Transverse membrane asymmetry in
model phospholipid bilayers: NBD-phosphatidylethanolamine and the
separation of flip from flop", J. Amer. Chem. Soc., 117, No.33, (1995),
8688.

192

REFERENCES
(Continued)

25 S. Bhattacharya, Personal Correspondence, Rutgers University,
Piscataway, NJ, 1996.

26 P. Shanbhag, "Kinetic studies of 2-phase ozonation of organic pollutants
in wastewater", M.E. thesis, Stevens Institute of Technology, (1992).

27 E. L. Cussler, Diffusion Mass Transfer in Fluid Systems, Cambridge
University Press: New York, 1984, p. 27.

28 R. Bhave and K. Sirkar, "Gas permeation and separation by aqueous
membranfieles immobilized across the whole thickness or in a thin
section of hydrophobic microporous Celgard ® films," J. Membrane Sci. 27
(1986) 225.

29 R. Bhave and K. Sirkar, "Gas permeation and separation with aqueous
membranes immobilized in microporous hydrophobic hollow fibers," ACS
Symposium Series, 347 (1987) 138.

30 B. Kim and P. Hariott, "Critical entry pressure for liquids in hydrophobic
membranes," J. Coll. Inter. Sci., 115 (1987) 1.

31 R. Reid, J. Prausnitz, and T. Sherwood, Properties of Gases and Liquids,
McGraw Hill, New York, 1977.

	A controlled release technique using microporous membranes
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Mathematical Model
	Chapter 3: Experimental Procedures
	Chapter 4: Results and Discussion
	Chapter 5: Conclusions and Recommendations
	Appendix 1: Flat Membrane, Solution in Resevoir
	Appendix 2: Flat Membrane: Dispersed Phase in Reservoir
	Appendix 3
	References

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)

