
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 1996

Towards designing a knowledge-based tutoring
system : SQL-tutor as an example
Gang Zhou
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Databases and Information Systems Commons, and the Management Information
Systems Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Zhou, Gang, "Towards designing a knowledge-based tutoring system : SQL-tutor as an example" (1996). Dissertations. 1000.
https://digitalcommons.njit.edu/dissertations/1000

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1000?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1000&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TOWARDS DESIGNING A KNOWLEDGE-BASED TUTORING
SYSTEM:

SQL-TUTOR AS AN EXAMPLE

by
Gang Zhou

A Knowledge-Based Tutoring System, also sometimes called an Intelligent

Tutoring System, is a computer based instructional system that uses artificial intel-

ligence techniques to help people learn some subject. The goal of the system is to

provide private tutoring to its students based on their different backgrounds, requests,

and interests. The system knows what subject materials it should teach, when and

how to teach them, and can diagnose the mistakes made by the students and help

them correct the mistakes.

The major objective of this dissertation is to investigate and develop a generic

framework upon which we can build a Knowledge-Based Tutoring System effectively.

As an example, we have focused on developing SQL—TUTOR, a tutoring system for

teaching SQL concepts and programming skills. The generic architecture of the

system is rooted at the popular view that a tutoring process between a tutor (either

a human being or a machine) and a student is a knowledge communication process.

This process can be divided into a series of communication cycles and each commu-

nication cycle consists of four phases, namely, planning, discussing, evaluating, and

remedying phases.

One major feature of the architecture proposed by us in this dissertation

is its curriculum knowledge base which contains the knowledge about the course

curriculum. We have developed a representation schema for describing the goal

structure of the course, the prerequisite relationships among the course materials,

and the multiple views to organize these materials. The inclusion of the curriculum

knowledge in a KBTS allows the system to create different curricula for each

individual student and to diagnose the student's errors more effectively.

The system also provides a group of operators for the student to hand-tailor

his/her curricula when he/she starts learning the course. The student can use these

operators to select a specific path to go through the course materials, to pick a specific

topic from the curricula to study, or to remove a particular topic from the curricula.

Since the student can construct his/her own learning plans by these operators, he/she

is relatively free to determine how to study the course materials and, as a result,

he/she can become more active in the tutoring process.

The knowledge about a subject domain is stored in a set of topics and a sample

database. The content of a topic consists of a set of related domain concepts. Each

concept is described by both natural and formal forms. The relationships among the

concepts are modeled a type of semantic network called the context network. The

sample database contains a set of sample tables and an enhanced system catalog

which contains the knowledge about the name, semantic meanings of the database

objects. The built-in Problem Solver of the system allows the system to reason over

the networks and the sample database and answer various kinds of questions raised

by the student about the domain concepts and their relationships.

The knowledge of writing SQL queries is embodied in a set of examples attached

to the topics. Each of such an example is carefully designed for one category of

SQL query problems. An example in SQL—TUTOR is a packed knowledge chunk

which can serve several important teaching purposes, including generating problem

descriptions with different levels of details, formulating various SQL solutions for the

given problem, explaining these solutions to the student, and evaluating SQL queries

written by the student.

TOWARDS DESIGNING A KNOWLEDGE-BASED TUTORING
SYSTEM:

SQL—TUTOR AS AN EXAMPLE

by
Gang Zhou

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

May 1996

Copyright © 1996 by Gang Zhou

ALL RIGHTS RESERVED

APPROVAL PAGE

TOWARDS DESIGNING A KNOWLEDGE-BASED TUTORING
SYSTEM

SQL-TUTOR AS AN EXAMPLE

Gang Zhou

Dr. Pet A. Ng, Dissertation (Advisor 	 Date
Profess of computer and Inf rmation Science Department, NJIT

Dr. James MH-lugh, Committee Member	 Date
Full Professor of Computer and Information Science Department, NJIT

Dr. Richard Scherl, Committee Member 	 Date
Assistant Professor of Computer and Information Science Department, NJIT

Dr. Qian-Hong Liu, Committee Member 	 Date
Assistant Professor of Computer and Information Science Department, NJIT

Dr. Alexander Pasik, Committee Member	 Date
Member of Gartner Group, Stamford, CT

43,1.ymoiXT. Yeh, Comm%ee Member 	 Date
DistiVuished Professor of Computer and Information Science Department, NJIT

BIOGRAPHICAL SKETCH

Author: Gang Zhou

Degree: Doctor of Philosophy

Date: May 1996

Undergraduate and Graduate Education:

• Master of Computer and Information Science,
Jilin University, Changchun, China, 1984

• Bachelor of Computer Engineering,
Jilin University, Changchun, China, 1981

Major: Computer and Information Science

Presentations and Publications:

G. Zhou, Curriculum Knowledge Representation in SQL-TUTOR, in Proceeding
of ED-MEDIA 94-World Conference on Educational Multimedia and Hypermedia,
Vancouver, British Columbia, Canada, 1994.

G. Zhou, J. T. L. Wang, and P. A. Ng, 'A Knowledge-Based Tutoring System for
SQL Programming, in Proceedings of 6th IEEE International Conference on Tools
with Artificial Intelligence, New Orleans, Louisiana, 1994.

G. Zhou, J. T. L. Wang, and P. A. Ng, Curriculum Knowledge Representation and
Manipulation in Knowledge-Based Tutoring System, to appear in IEEE Transactions
on Data and Knowledge Engineering, 1996.

iv

To my parents, for their devotion, to my daughter, Amy, who loves to draw
pictures on this thesis, to my son, Wilson, who sometimes spends more time on his
homework than his father, and to my wife, Lucy, for her love, understanding and

support.

ACKNOWLEDGMENT

It is my pleasure to acknowledge the advice and assistance from my advisor

and colleagues who encouraged me while I wrote this dissertation. My special appre-

ciation goes to Dr. Peter A. Ng, my advisor, for his insightful comments on and

constructive criticism of the dissertation, without which I could never have done this

work.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Development of Knowledge-Based Tutoring System 	 1

1.2 Major Components in Knowledge-Based Tutoring System 	 5

1.2.1 Domain Knowledge 	 6

1.2.2 Student Model 	 8

1.2.3 Pedagogical Knowledge 	 12

1.3 Summary of the Chapter 	 14

2 A GENERIC ARCHITECTURE FOR KBTS 	 18

2.1 Nature of Knowledge-Based Tutoring 	 18

	

2.2 System Control Mechanism 24

2.3 Planning Module 	 26

2.4 Discussing Module 	 28

2.5 Evaluating and Remedying Modules 	 30

2.6 Summary of the Chapter 	 33

3 CURRICULUM KNOWLEDGE REPRESENTATION 	 35

3.1 Teaching Goals and Topics 	 35

3.2 Subtopic -of Relation 	 39

3.3 View- of Relation 	 42

3.4 Precedence -of Relation 	 45

3.5 Topic Association Graph 	 49

	

3.5.1 Node Pool 50

3.5.2 Precedence List 	 52

3.5.3 Relation Matrix 	 53

3.5.4 TAG 	 54

vii

Chapter	 Page

3.6 TAG Related Algorithms 	 55

4 CURRICULUM KNOWLEDGE MANAGEMENT 	 61

4.1 Private Tutoring 	 61

4.2 Learning Goal and Learning Graph 	 64

4.3 TAG Operators 	 68

4.3.1 FOCUS Operator 	 68

4.3.2 SELECT Operator 	 69

4.3.3 SKIP Operator 	 70

4.3.4 STUDY Operator 	 71

4.3.5 DELETE Operator 	 72

4.4 Implement TAG Operators 	 75

4.4.1 Implement FOCUS Operator 	 76

4.4.2 Implement SELECT Operator 	 76

4.4.3 Implement SKIP Operator 	 77

4.4.4 Implement STUDY Operator 	 77

4.4.5 Implement DELETE Operator 	 77

4.5 Traversing a Learning Graph 	 78

5 STUDENT KNOWLEDGE REPRESENTATION 	 82

5.1 Knowledge Status Tree 	 82

5.2 Creation of Knowledge Status Tree 	 84

5.3 Topic Selection during Planning Phase 	 87

6 DECLARATIVE DOMAIN KNOWLEDGE REPRESENTATION 	 90

6.1 Content of a Topic 	 90

6.2 The Representation of Concept 	 93

6.2.1 Two Forms of Declarative Knowledge 	 93

6.2.2 Components of a Concept 	 94

	

6.2.3 Concept List 95

viii

Chapter 	 Page

	

6.3 	 Context Network 	 98

	

6.4 	 Examples of Documents 	 101

6.4.1 	 Example 1: RELATIONAL DATA MODEL 	 101

6.4.2 	 Example 2: RELATIONAL OPERATIONS 	 102

6.4.3 	 Internal Representation of Context 	 104

6.5 The Design of Sample Database 	 107

6.6 Summary of the Chapter 	 109

7 SQL—TUTOR QUESTION ANSWERING MECHANISM 	 110

7.1 Types of Questions and Answers 	 110

7.1.1 	 Answer Type 1 	 111

7.1.2 	 Answer Type 2 	 112

7.1.3 	 Answer Type 3 	 112

7.1.4 	 Answer Type 4 	 112

7.2 Problem Solver 	 114

7.3 The Context Searching Algorithm CSEARCH 	 116

7.4 Answer Formulator 	 118

7.5 Find the Meaning of an Object: RSEARCH 	 120

7.5.1 	 Definition Rule 	 121

7.5.2 	 Reference Rule 	 123

7.5.3 	 RSEARCH Procedure 124

8 REPRESENTING THE KNOWLEDGE OF WRITING SQL QUERIES . . 126

8.1 The Design of an Example 	 126

8.1.1 	 Problem Description 	 127

8.1.2 	 Semantic Query Graph 	 128

8.2 From Semantic Query Graph to SQL Queries 	 130

8.2.1 	 An Example 132

8.3 Annotated Semantic Query Graph 	 133

ix

Chapter 	 Page

8.4 Construction Rule and Feedback Template 	 135

8.4.1 Notations 	 137

8.4.2 F-RULE and F-TEMPLATE 	 137

8.4.3 T-RULE and T-TEMPLATE 	 139

8.4.4 C-RULE and C-TEMPLATE 	 139

8.4.5 RO-RULE and RO-TEMPLATE 	 140

8.4.6 LO-RULE and LO-TEMPLATE 	 141

9 CONCLUSIONS 	 142

9.1 Related Work 	 142

9.2 Contributions 	 144

9.3 Future Directions 	 146

REFERENCES 	 148

LIST OF TABLES

Table 	 Page

1.1 A Correct Rule and a Buggy Rule in LISP Tutor 	 12

3.1 Two Sets of Teaching Goals 	 37

3.2 Some Topics in SQL—TUTOR and Their Contents. 	 38

3.3 Some Topics in SQL—TUTOR and Their Domains. 	 41

6.1 Commonly Used Relations by Contexts 	 100

7.1 Question and Their Internal Representations 	 111

7.2 Answers and Their Internal Representations 	 113

xi

LIST OF FIGURES

Figure 	 Page

1.1 Three Major System Components for KBTS 	 6

1.2 A Portion of SCHOLAR's Semantic Net 	 7

1.3 The Relationship between Domain Knowledge Base and Student Model . 10

2.1 Communication Cycle in KBTS. 	 23

2.2 A Tutoring Process 24

2.3 An Architecture for Knowledge-Based Tutoring System 	 25

2.4 The Architecture of the Planning Module 	 26

2.5 The Architecture of the Discussing Module 	 29

2.6 The Architecture of the Evaluating Module 30

2.7 The Architecture of the Remedying Module 	 32

2.8 A New Architecture for Knowledge-Based Tutoring System 	 34

3.1 A Partial Topic Tree of CONDITIONAL RETRIEVAL. 	 40

3.2 Two Topic Trees of QUERYING TABLES 	 43

3.3 Examples of Topics and Multiple Views 	 45

3.4 Topic Ti_ Is a Precedence of Topic T2 	 46

3.5 Part of Topic Association Graph (TAG) in SQL—TUTOR 	 51

3.6 A DAG with Precedence Relations among Topics 	 53

3.7 Representation of a TAG 	 54

3.8 The Data Structure for a Topic Association Graph 	 56

4.1 Strong and Total Precedence Relationships 	 65

4.2 Two Learning Graphs: (a) is self-contained, but (b) is not 	 68

4.3 The Learning Graph Obtained by Applying Operator SELECT 	 70

4.4 The Learning Graph Obtained by Applying Operator SKIP 	 71

4.5 The Learning Graph Obtained by Applying Operator STUDY 	 73

xii

Figure 	 Page

4.6 The Learning Graph Obtained by Applying DELETE 	 74

5.1 A Knowledge Status Tree 	 83

5.2 The Bypass Graph for the Topics in Figure 5.1 	 86

5.3 A Unknown Hierarchy 	 88

6.1 The Template for a Topic 	 91

6.2 Node Pool, Topics and Concept Lists 	 97

6.3 An Example of Context 	 100

6.4 Context of RELATIONAL DATA MODEL 	 102

6.5 Context of RELATIONAL OPERATION 	 104

6.6 A Context and its Context Array 	 105

6.7 A Context and its Distance Matrix 	 106

6.8 Sample Database COMPANY 	 107

6.9 SQL—TUTOR Enhanced System Catalog 	 108

7.1 The Solution Buffer 	 114

7.2 Problem Solver and Knowledge Bases 	 114

7.3 A Search Graph and a Solution Path 	 118

7.4 The Application of a Reference Rule. 	 124

8.1 A Semantic Query Graph 	 130

8.2 An Annotated Semantic Query Graph 	 136

CHAPTER 1

INTRODUCTION

In this chapter, an overview is presented for the research in the area of Knowledge-

Based Tutoring System (sometimes also called Intelligent Tutoring Systems), a

branch of computer applications in education. We first describe the goals of the

research in this field by briefly reviewing its history; then specify the most important

issues underlying the development of such systems; and finally discuss some major

weaknesses found in the existing systems, from which the research described by this

dissertation is motivated.

1.1 Development of Knowledge -Based Tutoring System

The applications of computer technology in education have been under development

since the early 1960s [60]. A variety of computer-assistant instructional systems were

developed [26, 34, 35, 36, 49, 71, 72] even in the early age of computer. For historical

reasons, the early research of computer on education has been conducted under the

name Computer-Assistant Instruction (CAI).

Traditional CAI has its root in the goal of building interactive teaching devices.

One of the most influential efforts in CAI was the work of Suppes and his associates

[71]. The major contribution of their work was adding brief drill and practice sessions

to regular instruction. This significantly improved the student's achievement in basic

skill areas. Another influential CAI system in the 1960s was TICCIT (Time-Shared,

Interactive, Computer-Controlled Information Television) [11, 43]. The main goal of

TICCIT was to design a cost-effective instructional delivery system. TICCIT was

tested at many schools and eventually became a commercial system.

These early systems opened a new era of CAI. They provided an opportunity

for a large number of people working in the area of computer education to gain

1

2

practical experience with CAI and resulted in the development of many more systems.

One important achievement by these later CAI developments was made towards the

architecture of a system. In the early forms of CAI, all the components (such as

subject materials, student information, instructional strategies) were combined and

stored in the same file. In the early 1970s, Seidel and his associates developed a

prototyped computer training system for the Army Personnel [56, 67] in which the

subject materials and instructional decision rules are separated in different data

files. As the result of this separation, it becomes easy and simple to modify any

instructional rules without requiring any reformulation of the whole system.

In spite of the widespread use of CAI in various educational applications, early

CAI systems have the limitation that all the instructional processes, including presen-

tation formats, as well as the interactions between the systems and its users, have

to be specified in the program at the time when the systems are constructed. As the

result of this limitation, the systems provide the same tutoring to all the students,

and ignore the differences in their backgrounds, achievements, and learning attitudes.

In other words, these systems can only provide very restricted specialized instruction

to an individual student.

Knowledge-Based Tutoring Systems (KBTS) (sometimes also called Intelligent

Tutoring Systems (ITS)) are computer-based instructional systems developed more

recently [1, 9, 17, 22, 31, 42, 48, 54, 55, 59, 60, 65, 70, 77, 78, 81]. The major difference

between a KBTS and a traditional CAI is that the KBTS uses artificial intelligence

techniques to help a person learn the intended subjects. In 1970, Carbonell developed

SCHOLAR system for teaching simple facts about South American geography [17].

The system organizes the subject contents by a complex and well-defined semantic

network, in which each node represents a geographical object and the links between

the nodes represent the geographical relationships. It also has other prominent

3

features such as the Socratic style of teaching and the domain independent inference

strategies.

SCHOLAR was extended to the WHY system by Carbonell's colleagues [68, 69].

The WHY system tutors students about the causes of rainfall, which is a very complex

geographical process involving many factors. In this system, the subject contents are

stored in a hierarchy of scripts that represent the stereotypical sequences of rainfall

events. The major contribution of this project is the formulation of a set of tutorial

rules which implement the Socratic style of teaching.

The SOPHIE (a SOPHisticated Instructional Environment) system [9] can

provide its students a "reactive learning environment" , in which the students can

learn how to diagnose deficient components in an electrical circuit by trying out their

own ideas rather than just receiving instructions from the system. It incorporated

a qualitative model of electrical circuits and a rule base for answering students'

questions and simulating human reasoning.

The idea of the reactive learning environment in SOPHIE have been applied

to BUGGY [8] and QUEST (Qualitative Understanding of Electrical System

Troubleshooting) [77, 78] for constructing diagnostic models. The purpose of

BUGGY is to teach students to learn basic mathematical problem-solving skills. It

provides a mechanism for explaining why a student is making a mistake, instead

of only identifying the mistake. Both QUEST and SOPHIE use a causal calculus

for its internal representation of an electrical system that is directly influenced by

qualitative reasoning, and both of them have the same application domain and adopt

similar tutorial strategies. However, the graphic simulations and causal explanations

of circuit behavior play an important role in QUEST.

WEST [14] was developed for investigating diagnostic strategies required to

explain students' misunderstanding from their observed behaviors. The subject

chosen for the tutoring is a computer educational game called How the WEST

4

was won, which involves the applications of various arithmetic skills. WEST

adopted coaching, a new tutorial strategy, to teach the appropriate manipulations

of arithmetic expressions. The goal of the coaching strategy is to have the students

to enjoy the game and learn the subject as a consequence of fun.

GUIDON [20, 21] is a program for teaching medical diagnostic skills. Using the

rules of the MYCIN (which is an expert system for medical diagnoses) as its tutoring

materials, GUIDON teaches the students about the relevant clinical and laboratory

data and how to use that information for diagnosing the causative organism. It differs

from other KBTSs in terms of the dialogue form between the system and a student.

In order to engage the students in a dialogue about a patient's suspected infection,

GUIDON applied the mixed-initiative style of dialogue which can be controlled either

by the system or the student.

Anderson and his associates developed computer tutoring systems for teaching

high school geometry [1] and LISP programming [2, 54]. The systems were designed

according to a set of pedagogical principles derived from Anderson's ACT* learning

theory [1]. Each of their systems has three models:

• Ideal Student Model: representing the necessary knowledge to solve the various

domain problems;

• Bug Catalogue: representing the knowledge about the common mistakes and

poor strategies of a novice programmer; and

• Tutoring Control Module: representing the pedagogical strategies applied by a

system to communicate with the student.

The Model-Tracing Methodology is used to match each of the student problem

solving behaviors to the rules in the Ideal Student Model or the Bug Catalog. If a

match is found from the Ideal Student Model, then the student is on the right track.

If a match is found from the Bug Catalog, then the student is on the wrong track.

5

One of the major concerns of [32, 39, 64] is to follow a consistent style to teach

students programming. From interviews with tutors and videotapes of interactive

tutoring sessions, they identified five main issues, called tutorial considerations, which

have influence on the tutor to make decisions about which bugs (errors) to be tutored,

when to tutor these bugs, and how to tutor them. The five tutorial considerations

are:

• how critical a bug is;

• what category a bug is;

• what cause a bug to occur;

• what are the appropriate tutorial goals for tutoring a bug; and

• what tutorial interventions would achieve the tutorial goals.

Although different KBTSs have taken different implementations, they have

shared some common components in their system structures. In the following section,

we will discuss the major components found in most of the existing KBTSs and the

problems associated with their designs.

1.2 Major Components in Knowledge-Based Tutoring System

As pointed out in [12, 59, 60, 75, 76], a fully implemented KBTS should have the

following three components (Figure 1.1):

• Domain Knowledge Base: storing the subject materials and skills that a student

should learn from the course;

• Student Model: reflecting a student's background and performance in the

course;

• Pedagogical Knowledge Base: describing the tutoring strategies of the system.

1.2.1 Domain Knowledge

For each KBTS, there is a target domain of the subject materials that the system

intends to teach its students. The target domain (or simply domain) can be

any subject, such as mathematics, physics, chemistry, geography, programming

languages, and English. In general, the domain knowledge can be divided into two

categories: declarative knowledge and procedural knowledge. Declarative knowledge

includes concepts in the domain and the relationships among the domain concepts.

Procedural knowledge includes the rules and procedures for solving problems within

a domain.

In a KBTS, the domain knowledge is contained in the Domain Knowledge

Base (DKB). Declarative knowledge is typically represented by semantic network

[9, 10, 17], scripts-frame [24, 80, 81], and other knowledge representation schemata

in which concepts are recorded in nodes and relations among the concepts are defined

by links. As an example, the domain knowledge in SCHOLAR [17] is represented in

a semantic network shown by Figure 1.2. Corresponding to a geographical object such

as continent, country, and state, there is a node in the network composed of an object

name and a list of the attribute-value pairs. For instance, the object Argentina has

7

the attributes location, latitude, neighborhood countries, etc.. Among these

attributes, there is the part-of relationship between geographic objects, which allows

r figure 1.z It rortron of v n v Ln tS s emanuc net

Procedural knowledge has traditionally been included in KBTSs that carry

out procedural tasks, such as programs for solving arithmetic problems [8], or for

simulating the operations of a stream engine or a recovery boiler [28, 79]. The

typical representation schemata used for specifying the procedural knowledge by

the KBTSs are qualitative model [77, 78], procedural representation [9], production

systems [1, 14, 20, 21, 22, 54], and logic programs [42]. For example, the following

LISP codes define an important rule for a system in equilibrium [80], which can be

explained as follows: if the negative and positive x-force and y-force components of an

object are equal, the object is in equilibrium.

(defrule in-equilibrium
(is-object obj

(and (equal (x-neg-force obj) (x-pos-force obj))

8

(equal (y-neg-force obj) (y-pos-force obj))
(assert (in-equilibrium obj)))))

The domain knowledge base of a KBTS is a conceptualization of the domain

subjects constructed by a teaching expert who designs the curriculum for the course.

For this reason, a DKB is also called an expertise module [23, 501, since it represents

the instructor's expertise about the domain. One problem associated with the design

of the DKB is its completeness and soundness. A DKB is complete if it has encoded

all the knowledge that the students should learn from the course; it is sound if it has

encoded the knowledge correctly. If the instructor's knowledge about the domain is

incomplete and incorrect, then the domain knowledge base can also be incomplete

and incorrect. This tells us that the quality of a DKB depends on the knowledge

quality of the instructor. How to develop a DKB with high quality for a KBTS is a

very important, yet unstressed issue, but its discussion will beyond our interest here.

1.2.2 Student Model

In the process of studying a domain subject, a student will gradually construct

and update a model in his' mind about the domain subjects. This model is an

abstraction of his understanding about the domain and we call it a student mental

model. Generally speaking, the initial student model is small and simple because

the student knows very little about the domain subject at the very beginning of

his study. As the learning continues, the student understands more concepts and

masters more skills to solve various problems in the domain. As a consequence of

this process, the student mental model grows both in its size and complexity.

At any stage of his learning, the student has both correct and incorrect

knowledge about the subject, and has not learned some subject materials. Therefore,

'In writing a work such as this, it is inevitable problem to decide whether to use `he' and
`his' or 'she' and 'her', where no implication with respect to gender is intended. Accordingly,
we will simply use 'he' and 'his' in these cases.

9

some parts of his mental model reflect the correct conceptualization, whereas the

other parts of his mental model are the wrong conceptualization about the domain

knowledge, and some domain knowledge is missing from the mental model. Two

terms, missing conception and misconception, have been used to describe a student's

mastery of a subject. A student has a missing conception if he has not mastered an

item of domain knowledge (e.g. a concept or a skill). A student has a misconception

if he has some wrong knowledge about the subject.

It is a fundamental requirement for an instructor to evaluate a student's

learning performance during a tutoring session, because no tutoring can be effec-

tively accomplished without understanding what are known (both correct and

wrong) and what are not known by the student. An experienced human instructor

always tries to capture the mental model of a student about the subject domain and

uses this type of knowledge to guide his teaching. This is also a major task of a

KBTS. For this reason, many of the existing KBTSs maintain an internal module for

realizing the abstraction of the student domain knowledge. Such a module is called

a student model (SM). Once such a model has been created in a tutoring system, the

system can use it to find out the student's missing conceptions and misconceptions.

A student model may contain three kinds of information about the student

domain knowledge: i) his correct knowledge; ii) his missing conceptions; and iii) his

misconceptions. The student models in some KBTSs [10, 15, 17, 30] can represent

only the missing conceptions from the students domain knowledge. This type of

student model is called the overlay student model. Another common approach for

student modeling is to create a bug model [13, 61] for the purpose of identifying both

missing conceptions and misconceptions from a student.

Conceptually, an overlay student model is a proper subset of the domain

knowledge base. The most prominent advantage of an overlay student model is

that it can be implemented efficiently by attaching a binary number to each item

(a) An Overlay Student Model

Student Knowledge = D1 Student Knowledge = DI + D3

(b) A Bug Student Model

10

in the domain knowledge base. The values of these binary digits indicate whether

the student has mastered this piece of knowledge or not. In Figure 1.3 (a), part

D2 represents the complete set of domain subjects, and part DI., which is a subset

of D2, represents the part of the domain subjects mastered by the student. In an

overlay student model, all the items in D1 will be attached by the binary value

1, indicating this is the part of the overlapping between the expertise and student

domain knowledge, whereas all the items not in D1 will be attached by the binary

value 0, indicating that these items are missing from the student's knowledge.

Figure 1.3 The Relationship between Domain Knowledge Base and Student Model

This type of simple overlay model can be improved by replacing the binary

value with a variant which is a numerical value within a given range, thus it can be

used to indicate more than two mastery levels of the student on the domain subjects.

For example, a system can use 1 to indicate mastery, 0 to indicate ignorance, and

0.5 to indicate partial mastery.

Although the overlay student model is simple and efficient, it can only represent

the missing conceptions of the student. In many cases, just knowing the missing

knowledge is not enough for effective tutoring. Now and then, the student makes

errors because of his misconceptions. Therefore, a more informative student model

11

can not be a simple subset of domain knowledge; it should contain common errors

(both missing conceptions and misconceptions) collected and compiled by classroom

instructors and cognitive scientists.

The goal of the bug model research is to create a representational schema which

can model both missing conceptions and misconceptions of a student. As shown in

Figure 1.3 (b), in a bug student model, the student knowledge is no longer a subset

of a domain knowledge base, because it includes a set of bugs, represented by D3,

which are either missing conceptions or misconceptions. A tutoring system maintains

a library of predefined bugs which are the most common missing conceptions or

misconceptions of the students.

In LISP Tutor [54], for example, an ideal student model 2 and a bug library

have been constructed. The ideal student model contains a set of production rules

which represent the necessary domain knowledge for solving problems, whereas the

bug catalogue contains a set of production rules (called buggy rules) which represent

the common mistakes and poor strategies of novice programmers. Table 1.1 shows a

production rule in the ideal student model and a related rule in the bug catalogue.

The difference between these two rules lies on which function will be used to combine

two lists into one. The ideal model uses APPEND, while the buggy rule uses LIST

(which is commonly used by novice LISP programmers).

When a student is solving a programming problem, the LISP Tutor traces his

solution step by step as the student enters his program. If he takes a correct step,

the tutor will stay silent and wait for further input. If a step is diagnosed as an

error, the tutor will search the bug catalogue for a buggy rule whose application can

generate the same result as of the student's. Then the tutor can catch the bug in

the student's solution by comparing the buggy rule with the correct rule in the ideal

2The ideal student model here is in fact the domain knowledge base of the system. The
name is used here because an ideal student's knowledge should totally match the domain
knowledge base.

12

Table 1.1 A Correct Rule and a Buggy Rule in LISP Tutor

Production Rule in Ideal Model A Related Buggy Rule

IF 	 the goal is to combine LIST1
and LIST2 into a single list

THEN use the function APPEND
and set subgoals to code
LIST]. and LIST2

IF 	 the goal is to combine LIST1
and LIST2 into a single list

THEN use the function LIST
and set subgoals to code
LIST]. and LIST2

model. For instance, if a student's wrong solution can be reproduced by applying

the buggy rule listed in the Table 1.1, then the tutor will think his bug is the use of

the wrong function (LIST) to combine two lists, because the production rule in the

ideal model uses another function (APPEND).

1.2.3 Pedagogical Knowledge

A successful teacher needs not only the knowledge about the domain subject that

he is teaching and the student's understanding about the subject matters, but also

the knowledge of teaching: selecting problems for the student to solve, monitoring

and evaluating his performance, providing assistance upon request, and choosing

remedial material. We call this type of knowledge pedagogical knowledge, which is

the knowledge of instructional strategies. In a KBTS, the pedagogical knowledge is

stored in the pedagogical knowledge base (PKB) of the system. The goal of designing

a PKB is to provide various teaching strategies for a KBTS so that it can act like

an experienced human instructor in a certain instructional situation [41].

In most of the existing KBTSs, the instructional strategies are basically imple-

mented by two methods: the Socratic method and (or) the coaching method. While

applying the Socratic method [17, 68, 69], the tutor teaches a subject by imposing

successive questions to a student. It engages the student in a two-way conver-

13

sation and hopes he will learn the subject while he is answering the questions. For

instance, the Socratic method used in WHY [24] questions a student in a way that

will encourage him to reason about his misconceptions and therefore improve his

knowledge. If a student gives water as the reason for growing rice in China, then the

system will ask him: "Do you think any place with enough water can grow rice?" If

the student has the knowledge that some areas (the North Pole, for example) with

plenty water do not grow rice, he probably would realize that water is not a sufficient

reason for growing rice.

The above question is derived from the following rule: if the student gives an

explanation by stating one or more insufficient factors (water here), then formulate a

general rule (any place with enough water can grow rice) asserting that the given

factors are sufficient and ask the student if the rule is true. The reason for using this

rule is to force the student to consider other causal factors (such as the weather in

this example).

Coaching is another teaching strategy that has been successfully implemented

on several systems [15, 31, 65]. The goal of the coaching is to help a student acquire

skills and abilities for solving problems by engaging him in some activities such as a

computer game. In a coaching situation, if the immediate aim of the student is to

have fun, then skill acquisition is an indirect consequence [14, 31]. While a student

is playing a game, the computer coach observes his performance, interrupts him if he

takes a wrong path or a non-optimal action, and offers useful information or suggests

new strategies. Coaches are best suited in those situations where skills are required

for problem solving (e.g. to diagnose a fault in some electronic circuit). WEST [15]

and WUMPUS [65] are examples of coaching programs.

The Socratic and the coaching strategies represent different approaches to

communicate with the student. A new teaching strategy called mixed- initiative

tutoring [22] can be formed if a tutoring system adopts both the Socratic and

14

the coaching strategies. In a mixed-initiative environment, the system selects the

most appropriate teaching style and switches between the Socratic and coaching

strategies. Therefore, a mixed-initiative tutor could ask successive questions to guide

the student to understand concepts about the subject domain (in this way, it behaves

as a Socratic tutor), or look over the student's shoulder and provide help while the

student is solving problems posed by the system (in this way, it works as a coach).

1.3 Summary of the Chapter

As we have discussed in Section 1.1 and Section 1.2, a KBTS is fundamentally

different from the traditional CAI in the following ways:

1. In a KBTS, the course materials and pedagogical strategies are organized by AI

knowledge representation techniques and are stored separately in the domain

knowledge bases, student models, and pedagogical knowledge bases, whereas a

traditional CAI usually uses a huge, static database that incorporates all the

facts to be taught and the pedagogical actions required in a teaching process.

2. In a KBTS, a model of student performance is maintained and updated dynam-

ically. Therefore problems and remedial comments can be generated differently

for each student. However, a traditional CAI has a very little information about

a student performance.

3. A KBTS is able to diagnose a student's performance based on the student model

and his responses to the questions given by the system and help him correct his

errors, whereas a traditional CAI can only provide predefined remedial actions.

4. A KBTS attempts to solve sophisticated problems posed by a student, while a

traditional CAI can only check a student's solutions with those stored in the

database.

15

However, in the development of SQL—TUTOR [82, 83, 84], a KBTS for teaching

SQL (Structured Query Language) [53, 74] to the students, we found that the current

KBTS research suffers from the following drawbacks:

1. The system control mechanism is not clearly defined. Since KBTS research

has been initiated primarily to explore the capability of AI techniques in

the process of learning and teaching, the KBTS projects have focused on

the knowledge representation issues (domain knowledge, student model,

pedagogical knowledge, etc.), rather than on the control flows among the

system components. Typically, most KBTSs are research prototypes that

focus on only one or two components of their systems; this obscures the need

for coordination among the components and the need for sophisticated control.

As a result, how the various types of knowledge can be used to accomplish a

tutoring task has not been fully addressed and it is still a big burden for KBTS

researchers to implement an effective tutoring system.

2. Some useful knowledge about the subject domain is missing from the three

system knowledge bases, namely, domain knowledge base, student model, and

pedagogical knowledge base. The missing knowledge can play an important

role to improve the effectiveness of a tutoring procedure. It includes:

(a) the goal structure of a subject which describes the association of the

instructional goals with the course materials. Because every course has a

group of instructional goals to be accomplished, a KBTS should have the

knowledge of which goal can be accomplished by teaching what topics.

(b) the different viewpoints on the subject materials which result in different

course curriculums. With this ability, a KBTS can use different curriculums

for teaching different students, or for teaching the same student at different

16

learning stages (situations). This is a primary feature of the so called the

private tutoring.

(c) the prerequisite relations among the topics of the subject. This relation

determines the orders in which the topics are selected to be presented to

the student, and can also help a system diagnose the mistakes made by

the students.

3. Most of the existing systems lack the ability to encourage a student to play

some role in determining the kind of instructional interaction which occurs.

Private tutoring implies that the definition of the domain to be tutored, and

the process of tutoring it, are determined by the both partners (the system and

the student) of a tutoring process. If the instruction is proceeded based to the

student's requests and tailored to the student's background, he is more ready

to understand the domain being learned. However, for the most applications,

the system insists on control from time to time and the student has vary little

chance to express his own wills about the learning.

This dissertation is to investigate how these shortcomings can be overcome

and to provide a framework for constructing effective KBTSs. We have focused on

designing and implementing two systems. The first one is an authoring system called

Tool of Tutors (TT) which provides instructors an environment to create KBTSs for

various domains. The second one is a KBTS called SQL—TUTOR which is built by

using TT for the domain of SQL programming. This dissertation is organized as

follows:

Chapter 1 provides the foundation for understanding what is a KBTS, and the

advantages and weaknesses of the existing KBTSs. Chapter 2 analyzes what elements

constitute a tutoring process and proposes a generic architecture to implement this

process. The curriculum knowledge representation is presented in Chapter 3,

17

which discusses what is the curriculum knowledge for a course, its importance and

properties, and how it is represented in SQL—TUTOR. The discussion of curriculum

knowledge management in Chapter 4 focuses on the manipulation of the curriculum

knowledge stored in a KBTS so that tutoring can be tailored to a student's needs.

Chapter 5 discusses the representation of the system's knowledge about the student,

that is, the knowledge about the known and unknown about the student, and the use

of this type of knowledge to select an appropriate topic for the student to study in the

beginning of a tutoring session. Chapter 6 discusses how to represent the declarative

domain knowledge in a tutoring system so that the various domain concepts and

their relationships can be presented to the students effectively. Chapter 7 introduces

the types of questions that can be answered by SQL—TUTOR and SQL—TUTOR's

question-answering mechanism. Chapter 8 discusses the teaching of the problem

solving skills, using writing SQL queries as example. Finally, Chapter 9 summarizes

the contributions, limitations, as well as the future works of this research.

CHAPTER 2

A GENERIC ARCHITECTURE FOR KBTS

In Chapter 1, we overviewed the research in the field of Knowledge-Based Tutoring

System (KBTS) and introduced the three major components found in a KBTS,

namely, the domain knowledge base, the student model and the pedagogical

knowledge base. In this chapter, we will study the characteristics of a tutoring

process involving a human instructor and a student, discuss in detail what types

of control procedures are necessary for a KBTS to provide effective tutoring, and

introduce a generic architecture based on our discussion to support a tutoring

process.

2.1 Nature of Knowledge-Based Tutoring

With a few exceptions [5, 17, 18, 45, 46, 50], most KBTS research has focused on

domain knowledge representation [76, 77, 80], student model design [56, 63, 69, 72],

and pedagogical knowledge representation [19, 39, 40], as opposed to the behaviors

of a tutoring system during a tutoring process and the coordination of the different

components inside the system to produce the desired behaviors. Because tutoring

is a complicated procedure that usually includes many tasks, such as selecting a

proper topic for a student, answering questions raised by the student about the

topic, evaluating the student's mastery of the topic, diagnosing and helping the

student correct his errors, it is necessary to study not only the types of knowledge

involved in a tutoring process, but also the control modules of the system so that it

can work as a human instructor.

In this section, we study what elements constitute the so called knowledge based

tutoring and how these elements should be incorporated in a tutoring session to

provide meaningful and effective tutoring. Consider the following dialogue between

18

19

a human instructor (I) and a student (S) which reveals many characteristics of the

knowledge based tutoring:

Phase 1:

I: What topic do you want to study today?
S: No idea.
I: OK. Let me select a topic for you. It is TABLE.

The first phase of this dialogue is a necessary preliminary step undertaken so

that the instructor can determine what part of the subject materials to tutor. There

are two approaches applicable here: the topics to be tutored can be selected by either

the student or the instructor, and the student has the priority over the instructor.

The instructor will select a topic only when the student does not want to do so.

The hope is that the student will be motivated to learn, more capable of building

new knowledge, and better be able to integrate the new knowledge with his existing

knowledge.

Phase 2:

I: A TABLE contains information about objects and relationships
among objects and has a unique name within the database.

I: The data in a table is organized in rows and columns. The
structure of a table is determined by a table schema. Each
table in a database usually contains a different kind of
information.

I: Do you have any questions?

S: What are the properties of a table?

I: Each table has a unique table name within a database and its
structure is determined by a table schema. Any other questions?

S: What is a table name?

DEPT

5 Research 234-567 3366

4 Administration 234-567 1256

1 , Headquarters 456-789 0234

20

I: A table name is a character string which identifies the table.
Any other questions?

S: No.

This phase of the dialogue can be further divided into two sections. In the first

section, the instructor presents the content associated with the selected topic to the

student. In the second section, the instructor answers the questions raised by the

student about the topic just presented.

Phase 3:

I: OK. Let me ask you some questions now. Consider the following tables.
What is the birthday of John Smith?

S: January 9, 1955.

I: Good. What projects is his manager working on?

S: Hmmmm 	 no idea.

EMP

John Smith 123-456 09-JAN-55 234-567 5

Frank Wong 234-567 08-DEC-45 456-789 5

Alicia Zelaya 345-678 19-JUL-58 234-567 4

James Borg 456-789 11-NOV-27 1

PEW

1 ProductX Bellaire 5

2 ProductY Sugarland 5

3 Reorganization Houston 1

4 Computerization Stafford 4

DEP...LOC

1 Houston

4 Stafford

5 Bellaire

5 Sugarland

WORK...ON

123-456 1 32

234-567 2 15

345-678 3 25

234-567 1 20

In the third phase of the dialogue, the instructor attempts to evaluate the

student's mastery of the topic by posing some related questions. If the student

21

can not answer the questions correctly, the instructor also tries to find out what has

caused the student's failure. The instructor may follow this procedure to characterize

the student knowledge: "since the student has answered the first question correctly,

he understands the meaning of the data in a single table; however, since he can not

answer the second question, he must have some difficulties to connect the related

data from multiple tables."

Phase 4:

I: OK. Answer these questions. What is John Smith's manager's ID
number?

S: 234-567.

I: Right. Which table contains information about the employees and
their working projects.

S: WORK_ON, I think.

I: Right. What are the meanings of the first two columns of that
table?

S: An employee's ID number and the project number he is working on.

I: Have you found the ID number 345-567 there?

S: Yes.

I: What are the project numbers associated with it?

S: 1 and 2.

I: What are the project names whose numbers are 1 and 2?

S: I don't know.

I: The information about a project is stored in table PROJ. Study
the definition of this table and look at the data in it.

22

In the fourth phase of the dialogue, the instructor helps the student find the

answer. In this example, the instructor tries to help the student by asking consecutive

questions that will eventually lead the answer. The instructor may ask the student

to re-study some material if he finds that some prerequisite knowledge is missing

from the student. If the student is able to answer the question to which he has

failed before, the dialogue can go back to phase 3 and the instructor may pose more

questions about the topic just discussed.

To summarize, the instructor divides a teaching dialogue into a series of phases:

selecting a topic to tutor, discussing the materials related to the selected topic,

getting feedbacks from the students, finding out their problems and helping them

when they have difficulties. We call such a period of the dialogue a knowledge commu-

nication cycle, because this is a two way process: the instructor not only gives lectures

to the students, but also uses the feedbacks from the students to guide his teaching.

In other words, the instructor communicates with the students and both of them are

the partners of the communication.

Similarly, a tutoring process in an environment involving a KBTS and a student

can also be viewed as a series of communication (negotiation) cycles. 1 Each communi-

cation cycle consists of four phases: planning, discussing, evaluating, and remedying

(Figure 2.1). The tasks of these phases can be specified as follows:

1. planning: selecting a new topic for the student to study by either the student

or the system.

2. discussing: displaying to the student the contents of the selected topic stored

in the system, and answering the student's questions about the selected topic.

'Note that Moyse [44], Moyse and Elson-Cook [45], and Wenger [76] also viewed a
tutoring process as knowledge communication, though these authors did not divide the
process into cycles or each cycle into phases.

planning exit

discussing evaluating remedying)

23

Figure 2.1 Communication Cycle in KBTS.

3. evaluating: posing problems associated with the selected topic to the student

and evaluating his performance by analyzing his solutions.

4. remedying: taking any necessary pedagogical actions to correct the student's

errors found in his solutions.

The system control will be passed to a remedying phase whenever a bug (a

missing conception or a misconception) has been found from the student's solution

during an evaluating phase. Otherwise, the system will either go back to the planning

phase to start a new communication cycle, or stop the tutoring process. After the

remedying, the control will be transferred back to the evaluating phase and the

system will re-evaluate the student's performance. If the student still has difficulties

to solve some problems posed to him, the system will continue to diagnose and

remedy until his performance becomes satisfactory.

The communication cycles of a tutoring process can be nested, that is, one cycle

may contain others. This kind of nesting can happen during a remedying phase if the

student model shows that some prerequisite knowledge has been missing from the

student. In such a case, the system may decide to suspend the current communication

cycle and start a new one to re-teach a prerequisite topic to the student. Figure 2.2

portraits a tutoring session consisting of a series of communication cycles in which

24

Figure 2.2 A Tutoring Process

each cycle focuses on one topic. Notice that the communication cycles for topic Y'

and Y" are nested.

2.2 System Control Mechanism

From our discussion in the previous section, we can view a tutoring process as a series

of communication cycles and each of them has four major phases. Figure 2.3 shows

the overall architecture of SQL-TUTOR based on our discussion.' Central to this

architecture is the adding of the curriculum knowledge base and the communication

controller. As a result, the system consists of five major components:

1. Domain Knowledge Base DKB: containing fundamental SQL concepts and their

relationships that a student should learn;

2. Curriculum Knowledge Base CKB: containing the curriculum knowledge about

an SQL course;

2For the sake of simplicity and the aid of our discussion, we use SQL-TUTOR as an
example.

25

r-

SQL-TUTOR

Figure 2.3 An Architecture for Knowledge-Based Tutoring System

3. Pedagogical Knowledge Base PKB: containing the knowledge of teaching SQL

programming;

4. Student Model SM: containing the system's knowledge about the students'

mastery level over SQL concepts and problem solving skills;

5. Communication Controller CC: containing a set of procedures controlling the

system's activities during a tutoring process. These procedures are organized

by four major modules:

(a) planning module: controlling the system's behaviors during a planning

phase;

(b) discussing module: controlling the system's behaviors during a discussing

phase;

(c) evaluating module: controlling the system's behaviors during an evaluating

phase; and

(d) remedying module: controlling the system's behaviors during a remedying

phase.

26

The functions and the design of the Communication Controller will be discussed

in the remaining sections of this chapter, whereas the design of the knowledge bases

(DKB, CKB, SM, and PKB) will be discussed in Chapter 3 through Chapter 8.

2.3 Planning Module

The planning module helps a student select a new topic with a proper difficulty level

based on his background and performance. Figure 2.4 illustrates the components of

the planning module, their input and output data, and their relationships with the

system knowledge bases. There are three knowledge bases related to this module:

the student model contains information about the student's mastery of the domain

knowledge; the curriculum knowledge base contains the course structure and prereq-

,,;n44-,,

27

The system can apply either an active or a passive strategy during a planning

phase. In an active planning mode, the student is in the control of the selection.

He can choose any topic or remove any topic from the course by issuing a TAG

command. Based on the curriculum knowledge stored in the CKB, the system will

suggest a set of schedules to the student for his study without forcing him to follow

any of these schedules. It is up to the student to decide how to go through the course.

In this mode, the student is an actor, who receives advice from the planning module.

During an active planning phase, after the student issues a topic to be selected

or deleted, the Topic Analyst component makes reference to the CKB to generate a

learning graph according to the student's requirement. Each learning graph defines

a set of schedules which can guide the student's study. (A formal definition of the

learning graph and its properties will be given in Chapter 4.) Then the Curriculum

Delivery component traverses the generated learning graph, picks up the topics

contained in the graph in certain orders, and passes them, one at a time, to the

Discussing Module.

In a passive planning mode, the system is in the control of the topic selection.

It executes the following procedure to select a proper topic for the student:

1. First, the Student Status Analyst has access to the student model to determine

his current knowledge status (i.e. what he knows and does not know about

the domain), and stores all the unknown topics into a buffer called Student

Unknown Buffer;

2. Then, the Knowledge Relationship Analyst consults the curriculum knowledge

base to find the prerequisite relationships among the topics in the Student

Unknown Buffer and their relative difficult levels, and generates a topic

hierarchy according to their relationships;

28

3. Next, the Topic Extractor has access to the pedagogical knowledge base to find

out the strategies for determining the selection of the next topic, and passes

the selected topic to the Topic Analyst;

4. Finally, the system proceeds the same procedure as we have described for the

active planning mode: generating a learning graph for the selected topic and

delivering the topics contained in the learning graph to the Discussing Module.

An example showing the processing of a TAG command entered by a student

will be presented in Section 5.3, whereas an example showing the work flow of the

planning module and its interactions with the knowledge bases will be presented in

Section 4.5 after discussing the design of the CKB.

2.4 Discussing Module

Once a topic is received from the planning module, the discussing module is in the

control. It presents the contents of the current topic to the student, and answers the

questions from the student regarding this topic. Figure 2.5 depicts the structure

of the Discussing Module. It proceeds according to the following procedure to

accomplish its tasks:

1. First, the Domain Knowledge Extractor has access to the domain knowledge

base to retrieve the contents (concepts and skills) covered by the topic and puts

them in the Subject Contents Buffer;

2. Then, the Lecture Generator generates a lecture explaining the concepts or

skills of the selected topic to the student;

3. On receiving the lecture, the student is allowed to ask questions about the

topic, which will be analyzed by the Student Question Analyst. The internal

Figure 2.5 The Architecture of the Discussing Module

representation of the question is created and stored in the Question Description

Buffer;

4. Next, the Problem Solver attempts to answer the questions contained in the

Questions Description Buffer. For this purpose, the Problem Solver has to

reason about the domain knowledge stored in the DKB. The solutions for the

question will be saved in the Solution Buffer;

5. Finally, the Answer Formulator has access to the Solution Buffer to display the

solutions to the student. In this way, the system has answered the questions

raised by the student.

Chapter 6 discusses the representation of the declarative domain knowledge

and contains an example showing the function of the discussing module. Chapter

7 describes the design of the Problem Solver and Answer Formulator. Chapter 8

30

discusses the representation of the procedural knowledge. Therefore, the design of

the domain knowledge base DKB for a KBTS is completely covered by Chapter 6

and Chapter 8.

Since the student is allowed to ask questions using natural language in a

restricted way, the Student Question Analyst must be able to understand the

restricted natural language and the Problem Solver must be able to solve domain

problems. Although they are very hard problems in general, we believe that they

can be solved efficiently here because the question domain has been sharply limited

by the topic.

2.5 Evaluating and Remedying Modules

During an evaluating phase, the evaluating module measures a student's mastery of

the current topic by posing him a set of problems associated with the topic and then

evaluating his responses. The structure of this module is shown in Figure 2.6. It

31

1. On receiving a topic from the discussing module, the Evaluation Generator

selects a set of problems associated with the topic from the domain knowledge

base and stores them in the Problem Buffer;

2. Then, the Problem Descriptor converts the problems into a form which is under-

standable by the student, and delivers these problems to the student;

3. After that, the Student Response Analyst reads and analyzes the solution given

by the student, and puts the result data from its analysis into the Student

History. The result data tells whether the solution is correct, partially correct,

or totally wrong;

4. Next, the Student Model Manager analyzes the data in the Student History,

and updates the student model to reflect whether the student has mastered the

material perfectly, or is making some progress on his learning;

5. Finally, if the student's performance is not satisfactory (e.g., he got stuck in his

problem solving process, or his solution is wrong or non-optimal), the Behavior

Analyst is invoked to catch the bugs in the student's knowledge which prevent

him from reaching the optimal solution by analyzing the student history. In

its diagnosing procedure, the Behavior Analyst may need to access the SM

to find out the student's mastery of the topic and the CKB to find out the

background knowledge for the current topic. Whenever a bug is found, the

Behavior Analyst passes it to the Remedying Module.

During a remedying phase, the remedying module helps the student fix his bugs

found in the evaluating phase. The possible remedial actions include: i) giving the

student an example, a hint, a partial solution, or a complete solution; ii) letting him

read the text again and concentrate on some specific parts; and iii) leading him to

identify his errors by asking him some questions. The remedying strategies stored in

Figure 2.7 The Architecture of the Remedying Module

the PKB will determine these remedying actions. For example, one of such strategies

which suggests the student to focus on a part of the domain knowledge could be:

IF 	 the student's error is due to misunderstanding a domain concept,

THEN present and highlight the part of the domain knowledge which

explains the concept.

Figure 2.7 shows the structure of the remedying module. Its proceeds as follows:

1. Based on the pedagogical knowledge stored in the PKB and the type of the

bug delivered from the Evaluating Module, the Remedial Action Generator

creates a remedial plan, which consists of pedagogical actions such as giving

hints, showing examples, etc., and stores this executable plan in the Remedial

Plan Buffer.

2. The Remedying Executor executes this plan. In the process of the execution,

the executor may need the knowledge stored in the DKB. For instance, if the

pedagogical rule shown in the last example has been selected by the Remedial

Action Generator, the Executor will access the DKB to present some concepts.

33

2.6 Summary of the Chapter

Figure 2.8 shows the overall architecture envisaged from our approach. The shaded

rectangles correspond to the four modules of the Communication Controller, whereas

the four shaded ovals correspond to the four knowledge bases. The relationships

between the knowledge bases and the modules of the Communication Controller are

shown by the arcs. Our approach has the following advantages:

1. providing a generic framework for KBTS construction which can be applied to

various domains;

2. incorporating the view that a tutoring process consists of a series of communi-

cation cycles, and each cycle consists of four phases and focuses on one specific

topic into the design of a KBTS;

3. clarifying the knowledge communication behaviors in a tutoring process and

showing what control mechanisms are needed to coordinate the system's

behaviors; and

4. clarifying the roles played by the knowledge bases and their interactions with

the control modules.

Topic
Analyst

Curriculum
Delivery

Topic
Extractor

planning 	

module

Command

question

lecture

problem

solution

Answer

instruction Student

topic

77!:,•
•■•••••• •

Cunicul
 	 Knowledge

.

N

••••')

bug

'I.

Remedial
Action
Getterater

discussing
module

mow]

Base

1
1

4
- - - -
remedying
module

SQL-TUTOR
L

0

Figure 2.8 A New Architecture for Knowledge-Based Tutoring System

CHAPTER 3

CURRICULUM KNOWLEDGE REPRESENTATION

Starting from this chapter, we discuss the designs of the knowledge bases in a

Knowledge-Based Tutoring System (KBTS). The major topics of this chapters are:

1. what is a teaching goal of a course and the goal hierarchy formed by the teaching

goals;

2. what are the relationships among the teaching goals of a course and what are

their impacts to a tutoring process;

3. how the teaching goals and their relationships can be represented in a tutoring

system.

We call the knowledge about the teaching goals, the goal hierarchy, and their

relationships the curriculum knowledge. This is the knowledge about the subject

materials and is stored in the system's curriculum knowledge base CKB.

3.1 Teaching Goals and Topics

Each instructor has a set of instructional objectives to accomplish when he teaches

a course. We call each of these objectives a Teaching Goal (Tgoal) of the course.

A Tgoal describes what the students should know at the end of a tutoring session.

For example, a set of possible teaching goals for tutoring SQL (Structured Query

Language) can be as follows:

• have the students understand basic concepts in relational databases

• have the students learn basic SQL problem solving skills

• have the students learn querying tables

35

36

• have the students learn advanced SQL problems solving skills

• provide a foundation for further studies in database management systems.

Each of these Tgoals can be represented as a (predicate, object) pair, where the

predicate is a verb describing the action to be taken and the object is a list of nouns

or noun phrases specifying the target objects upon which the action to be applied.

Using this formulation, we can rewrite the set of Tgoals described above as follows:

1. (understand, basic concepts)

2. (learn, basic SQL skills)

3. (learn, querying tables)

4. (learn, advanced SQL skills)

5. (provide, foundation)

We can further assume that:

• object "basic SQL skills" includes sub-objects "creating databases and tables",

"querying tables", and "updating tables";

• object "advanced SQL skills" includes sub-objects "optimizing statements",

`creating and using views".

How can a Tgoal be accomplished through a tutoring session? It can be accom-

plished by attaching a list of topics to it and tutoring these topics to the students.

For example, if an instructor's Tgoal is to teach the students basic concepts about

relational databases, and the topic INTRODUCTION introduces these concepts, then

the instructor can associate this topic to his Tgoal. Therefore, we can rewrite a

Tgoal as (teach, topics), a pair of predicate and a list of topics. Table 3.1 shows the

set of transformed Tgoals obtained from the original set of Tgoals given above.

37

Table 3.1 Two Sets of Teaching Goals

Original Tgoals Transformed Tgoals

TO UNDERSTAND BASIC CONCEPTS IN A (TEACH, "INTRODUCTION")
RELATIONAL DATABASE AND SQL

TO INTRODUCE RELATIONAL DATA (TEACH, "RELATIONAL DATA MODEL,
MODEL AND RELATIONAL ALGEBRA RELATIONAL ALGEBRA")

TO GAIN EXPERIENCE IN USING SQL (TEACH, "CREATING DATABASES AND TABLES,
TO SOLVE PROBLEMS QUERYING TABLES,

UPDATING TABLES,

OPTIMIZING STATEMENTS

VIEWS")

TO PROVIDE A FOUNDATION FOR FURTHER (TEACH, "AN INTRODUCTION TO SQL")
STUDIES IN DATABASE SYSTEMS

In this table, the Tgoal "provide a foundation for further studies in database

management systems" is a Tgoal for the entire course; it can be achieved only by

tutoring the students all the topics of the course. Therefore, we associate a special

topic: AN INTRODUCTION TO SQL, which is the name of the course, as the object of

this Tgoal.

After such a transformation, if the object of a Tgoal contains more than

one topics, we can divide it into a list of equivalent Tgoals such that each Tgoal

only contains one topic as its object. For example, in Table 3.1, Tgoal (TEACH,

`OPTIMIZING STATEMENTS' , 'CREATE AND USE VIEWS') can be equivalently repre-

sented by another two Tgoals: (TEACH, 'OPTIMIZING STATEMENTS') and (TEACH,

`CREATE AND USE VIEWS'). As a consequence, each Tgoal has exactly one topic

(object) and can be uniquely identified by the topic. From now on, we will use the

terms topic and object interchangely if there is no confusion arises.

38

For each topic of a course, we associate a character string as its name and

a part of the subject materials to it. We call the subject materials in a topic the

content of the topic. Such a topic can be formally defined as follows:

Definition 1 A topic T of a tutoring system TS is a bipartite T = (NT , CT), where

NT is the name of the topic and CT is a set of contents associated with the topic. ❑

A topic in a tutoring system may correspond to a part, a chapter, a section,

a subsection, and so forth, of a textbook, whose content consists of a subset of

the subject materials. Each content in CT is associated with a piece of text which

may explain a concept in the domain (e.g., TABLE, COLUMN, KEY) or describe how

to solve a problem (e.g., find the manager of a department). We use C E CT to

denote that C is a content of CT. Figure 3.2 shows some topics in SQL—TUTOR

and their content sets. For instance, the name of the first topic in Figure 3.2 is

CONDITIONAL RETRIEVAL, and whose contents describe two SQL concepts: WHERE

CLAUSE and SEARCH CONDITION.

Table 3.2 Some Topics in SQL—TUTOR and Their Contents.

TOPIC NAME	 CONTENTS

CONDITIONAL RETRIEVAL

SIMPLE RETRIEVAL

SIMPLE SEARCH EXPRESSION

ONE TABLE SIMPLE RETRIEVAL

COMPOUND RETRIEVAL

COMPOUND SEARCH EXPRESSION

ONE TABLE COMPOUND RETRIEVAL

MULTI-TABLE COMPOUND RETRIEVAL

{WHERE CLAUSE, SEARCH CONDITION}

{ }

{SIMPLE COMPARISON, RELATIONAL OPERATOR,

PRECEDENCE RULE-1 }

{COLUMN LIST, RESULT TABLE}

0

{LOGICAL OPERATOR, PRECEDENCE RULE-2}

{}

{JOIN}

39

An important feature about the topics in a tutoring system is that they are not

isolated. Instead, they are related to one another in various ways. The relationships

among the topics may have a great impact on the effectiveness of the system.

Therefore, it is necessary for a tutoring system to formulate the knowledge concerning

the relationships among the topics. We have identified three such typical topic

relations, namely, subtopic-of, view-of and precedence-of relations. In the following

sections, we will introduce these relations and discuss in detail their representations

in a tutoring system.

3.2 Subtopic- of Relation

A topic in a tutoring system can be usually decomposed into smaller topics, which

are often called the subtopics of that topic, based on various factors including the

Tgoals of a course to be accomplished. A subtopic, in turn, can be decomposed into

even smaller topics. This process of decomposing a topic into subtopics generates a

tree structure in which each node is associated with a topic, and the descendants of

the node associated with its subtopics. We call such a tree a topic tree.

Definition 2 A topic tree T(T) of a tutoring system TS is a tree rooted at topic T.

Each node in a topic tree is associated with one topic from the subject domain and

its descendants are associated with its subtopics.' ❑

A leaf node (NT , CT), CT 0 0, in a topic tree T(T) is called a unit topic (or

unit). Topic Ti is a subtopic of topic 712 , denoted as S(T1 , T2), if Tr is a descendant

of T2 in T(T). Topic T1 is a child subtopic of T2, denoted as CS(Ti, T2), if T, is

a child of T2 in T(T). Figure 3.1 shows a partial topic tree of topic CONDITIONAL

RETRIEVAL in SQL—TUTOR.

'Since each node in a topic tree is associated with exactly one topic, we can use the
terminologies node and topic interchangely.

40

CONDITIONAL
RETRIEVAL

SIMPLE 	 COMPOUND
RETRIEVAL 	 RETRIEVAL

SIMPLE	 ONE TABLE COMPOUND ONE TABLE MULTI-TABLE
SEARCH	 SIMPLE	 SEARCH	 COMPOUND COMPOUND

EXPRESSION	 RETRIEVAL EXPRESSION RETRIEVAL RETRIEVAL

Figure 3.1 A Partial Topic Tree of CONDITIONAL RETRIEVAL.

Definition 3 Let T be a topic of a tutoring system TS. The domain of T in TS,

denoted as Dom(T), is defined as follows:

1. if T = (NT , CT) is a unit topic, then the domain of T is its content, that is,

Dom(T) = CT;

2. if T = (NT , CT) is not a unit topic, then the domain of T is the union of

its content and the domains of its child subtopics, that is, Dom(T) = CT U

Dom(Ti) U U Dom(Tn), where CS(T,T) and 1 < i < n.

The domain of a topic tree is the domain of its root. ❑

Note that if T1 , . , Tk are the set of subtopics of topic T 	 (NT , CT), the

domain of T can also be written as Dom(T) = CT U CT1 •U CTk. Table 3.3 lists the

domains of CONDITIONAL RETRIEVAL and some of its subtopics (cf. Table 3.2 and

Figure 3.1).

Definition 4 A topic tree T(T) is well defined if for any two different topics, T1 =

(NT, , CT,) and T2 = (NT2 CT2)of (r), we have both CT, n CT2 = 0 and Dom(71)

Dom(T2). ❑

Table 3.3 Some Topics in SQL—TUTOR and Their Domains.

TOPIC	 DOMAIN

41

CONDITIONAL RETRIEVAL

COMPOUND RETRIEVAL

COMPOUND SEARCH EXPRESSION

ONE TABLE COMPOUND RETRIEVAL

MULTI-TABLE COMPOUND RETRIEVAL

{WHERE CLAUSE, SEARCH CONDITION, SIMPLE

COMPARISON, RELATIONAL OPERATOR, PRECEDENCE

RULE-1, COLUMN LIST, RESULT TABLE, LOGICAL

OPERATOR, PRECEDENCE RULE-2, JOIN}

{LOGICAL OPERATOR, PRECEDENCE RULE-2, .101N}

{LOGICAL OPERATOR, PRECEDENCE RULE-2}

{ }

{JOIN}

Therefore, in a well defined topic tree, the contents of any two distinguished

topics can not be overlapped and the domains of any two distinguished topics can

not be the exactly same. For a well defined topic tree, we have the following two

theorems:

Theorem 1 Let T(T) be a well defined topic tree and T1 = (NT , CT) be a node of

T(T). If T1 has only one child subtopic in T(T), then the content of T i is not empty,

or equally, CT1 O.

PROOF Assume that CT1 = 0 and T2 = (NT2 , CT2) is its only child subtopic. By

Definition 3, we have Dom(T1) = CT1 U Dom(T2). Since we assume CTi = 0,

DOM(Ti) = Dorn(T2). That is, T(T) is not well defined. Contradiction. ❑

Theorem 2 Let T1 = (NT,CT,) and T2 = (NT2, CT2) be two different topics of a

well defined topic tree T(T). If T1 and T2 are not ancestors of each other in T(T),

then their domains are disjoint, that is, Dom(T i) n Dorn(T2) = 0.

PROOF Assume Dom(Ti) n Dom(T2)	 0. Let Tim • • Tim be the set of the

subtopics of T1 and T21, • • • Ten be the set of the subtopics of T2. Then Dom(Ti) =

42

CT,UCT„U...UCT,,, and Dom(T2) = CT2 UCT21 U...UCT2n . If Dom(T1)nDorri(T2)

0, then there exist topics 711i (1 < i < m), 712 j (1 < j < n), and a content C such that

C E (CT, U CT„) and C E (CT, U CT,i). Therefore, one of the following must be true:

1. C E CT, and C E CT2 ;

2. C E CT% and C E ar,j ;

3. C E Crii and C E C772;

4. C E CTii and C E Cmj .

Since T1 and T2 are not ancestors each other, T1 0 T2j, T2 0 711 i and Tie T2i.

Therefore, in all the cases, there is a overlap between the contents of two different

topics, that is, T(T) is not well defined, which is a contradiction. ❑

3.3 View- of Relation

For the given domain of a tutoring system, there are usually several ways to organize

the subject materials into topic trees based on various factors. As an example, Figure

3.2 shows two topics trees rooted at topic QUERYING TABLES. In the first topic tree,

the content of QUERYING TABLES is organized by the types of the WHERE clause of

a SELECT statement, therefore it has subtopics BASIC CONCEPTS, UNCONDITIONAL

RETRIEVAL (writing SELECT statements without WHERE clauses), and CONDITIONAL

RETRIEVAL (writing SELECT statements with WHERE clauses). In the second organi-

zation, the content of QUERYING TABLES is organized by the types of the FROM clause

in a SELECT statement, therefore it has subtopics SEARCH EXPRESSION, ONE TABLE

RETRIEVAL (there is one table in a FROM clause), and MULTI-TABLE RETRIEVAL (there

are more than one tables in a FROM clause).

In this section, we explore some possible relationships among these topic trees.

UNCONDITIONAL RETRIEVALBASIC CONCEPTS

QUERYING TABLES

CONSTANT VARIABLE EXPRESSION UNCONDITIONAL
ONE TABLE
RETRIEVAL

UNCONDITIONAL
MULTI—TABLE

RETRIEVAL

CONDITIONAL RETRIEVAL

SIMPLE 	 COMPOUND
RETRIEVAL 	 RETRIEVAL

SIMPLE ONE TABLE COMPOUND ONE TABLE MULTI—TABLE
SEARCH 	 SIMPLE SEARCH COMPOUND COMPOUND

(a)
	 EXPRESSION RETRIEVAL EXPRESSION RETRIEVAL RETRIEVAL

QUERYING TABLES

SEARCH EXPRESSION 	 ONE TABLE RETRIEVAL 	 MULTI-TABLE RETRIEVAL

I
is

BASIC 	 SIMPLE 	 COMPOUND UNCONDITIONAL ONE TABLE ONE TABLE UNCONDITIONAL MULTI-TABLE

	

CONCEPTS SEARCH 	 SEARCH 	 ONE TABLE 	 SIMPLE COMPOUND MULTI—TABLE COMPOUND
EXPRESSION EXPRESSION RETRIEVAL RETRIEVAL RETRIEVAL 	 RETRIEVAL RETRIEVAL

CONSTANT VARIABLE EXPRESSION
(b)

Figure 3.2 Two Topic Trees of QUERYING TABLES

44

Definition 5 Let 71TO and 7 YT2) be two well defined topic trees. 7771) and TYT2)

are compatible if Dom(T1) = Dom(T2). D

Different compatible topic trees reflect different approaches to organize the

domain knowledge in a tutoring system. The capability of organizing the materials

of a topic by different ways allows a system to use different approaches to achieve

the set of teaching goals associated with the topic. A tutoring system with multiple

topic trees in its curriculum knowledge base has two major advantages:

1. For some students, certain organization of a topic is more comfortable and

effective to study than the others. It is always desirable that an instructor can

select the best organization for each student. By the same token, a tutoring

system which can provide multiple organizations for the subject materials can

improve the teaching effectiveness, because it can adopt different organizations,

based on individual needs of the students, to teach different students the same

topic.

2. The system can teach a student the same topic by using different organi-

zations in different situations. For example, a student can use one organi-

zation provided by the system to study a topic for the very first time, and

then use a different organization to review the topic. In this way, the student

can study the same materials from the different approaches and has a better

understanding of what he is learning.

We call each way of organizing the materials of a topic a view of the topic.

Formally, a view can be defined as follows:

Definition 6 A view of topic T is a well defined topic tree of T. ❑

We use S(T1, T2, T(T)) to denote that topic T1 is a subtopic of 712 with respect

to the view T(T). When the context is clear, we still use WI , T2) to denote that

T1 is a subtopic of T2 regardless of the view under which this relation holds.

K L

B C

G I 	 J

M 0N

45

Figure 3.4 shows how multiple views can be associated with nodes. In this

figure, node F has two views. The first view consists of nodes K and L, whereas

the second view consists of node M. Numerical labels within the nodes are used to

distinguish multiple views of the nodes. Therefore, the two views of F are written as

Fl = {K, L} and F2 = {M}, respectively. The following table lists the views of topics

A, B and D:

Figure 3.3 Examples of Topics and Multiple Views

Al-B1-F1 =

A1-B2-F1 = {A,B,C,F,G,K,L}

A2-D1 = {A,C,D,H,N,0}

B1-F1 = {B,E,F,K,L}

B2-F1 = {B,F,G,K,L}

D1 = {D,H,N,0}

A1-B1-F2 = {A,B,C,E,F,M}

A1-B2-F2 = {A,B,C,F,G,M}

A2-D2 = {A,C,D,I,J}

B1-F2 = {B,E,F,M}

B2-F2 = {B,F,G,M}

D2 = {D,I,J}

3.4 Precedence-of Relation

In addition to the topic-subtopic and view relationships, there is another kind

of curriculum relationship among domain concepts and topics, the precedence- of

T '

Ti

(a)

Ti

(b)

46

relationship. Roughly speaking, content C1 is a precedence of content C2, denoted

as P(C1 , C2), if C1 is used to define (describe, or explain) C2 and therefore, C 1

should be taught before C2. In the following definition, the precedence relationships

among a set of topics is formally defined based on the precedence relations among

their contents.

Definition 7 Let T1 = (NT„ CT,) and T2 = (NT2 , Cm) be two different topics in

a view T(T) of a tutoring system. T1 is a precedence of T2 in T(T), denoted as

P(T1,T2, T(T)), if one of the following is true:

1. (first order precedence) there are two contents, C1 and C2, such that C1 E CT„

C2 E Cr, and P(C1,C2);

2. T1 and T2 are not ancestors of each other in T(T) and there is a topic T' such

that S(TI,Ti,T(T)) and P(T', T2 , 7--(T)) (Figure 3.4 (a));

3. Ti and T2 are not ancestors of each other in T(T) and there is a topic T' such

that S(T',T2 ,T(T)) and P(7 11,711 ,T(T)) (Figure 3.4 OW. ❑

Figure 3.4 Topic T1 Is a Precedence of Topic T2

We use P(T1 , T2) to denote that topic T1 is a precedence of topic T2 when we do

not concern under which view this relation holds. Consider Table 3.2 and Figure 3.1.

47

If both contents SIMPLE COMPARISON and RELATIONAL OPERATOR are precedences of

concept LOGICAL OPERATOR, we obtain the following precedence relations:

1. P(SIMPLE EXPRESSION, COMPOUND SEARCH EXPRESSION) (first order precedence).

2. P(SIMPLE RETRIEVAL, COMPOUND SEARCH EXPRESSION) (Item 2 of Definition 7).

3. P(SIMPLE RETRIEVAL, COMPOUND RETRIEVAL) (Item 3 of Definition 7).

The precedence relationship can be used by the system to determine:

• the order in which topics and concepts to be selected and presented to the

students during a tutoring process; and

• the missing prerequisite knowledge if the student can not find the correct answer

of a problem.

For the precedence relations, we have the following results.

Theorem 3 Let Ti T2 T3 and T4 be topics of the topic tree T(T). If S(T1 ,T3),

S(T2 ,T4), and P(T1, T2), then P(T3, T4)•

PROOF Since S(T1, T3) and P(T1 , T2), we have P(T3, T2) (item 2 of Definition 7).

Consider the fact that S(T2, T4), we have P(T3 , T4) (item 3 of Definition 7). ❑

Theorem 4 Topic T1 is a precedence of T2 in a topic tree T(T) if and only if

there exist two contents, C1 and C2, such that C1 E DOM(71), C2 E Dom(T2) and

P(C1 , C2).

PROOF Let T1 = (NT,,CTi) and T2 = (NT2 CT2)• Assume P(Ti , T2), we prove

that there are two contents C 1 and C2 such that C1 E Dom(T1), C2 E Dom(T2) and

P(C1, C2) by induction on the sum of the heights of Ti and T2 in view T(T).

48

1. If HEIGHT(T1)	 HEIGHT(T2) = 2, then neither T1 nor T2 has any	 subtopic,

because both of them are unit topics. By Item 1 of Definition 7, there must

be two concepts C1 and C2, C1 E Cirri , C2 E CT2 and P(Ti , T2,r(T)). Because

CT, C Dom(Ti) and CT2 C Dom(T2), we have C1 E Dom(Ti) and C2 E

Dom(T2).

2. Assume the theorem is true when HEIGHT(T 1)	 HEIGHT(T2) < k.

3. If HEIGHT(T1)	 HEIGHT(T2)	 k, then P(Ti , T2) must come from one the

three cases:

(a) there are two domain concepts, C 1 and C2, such that C1 E CT!, C2 E CT2,

and P(C1 , C2). Since CT, C Dom(T1) and CT2 C Dom(T2), we have

C1 E Dom(T1) and C2 E Dom(T2).

(b) T1 and T2 are not ancestors of each other and there is a topic T' =

(Nr,CD) such that S(T', T1) and P(T', T2). Because S(T', T1), we have

HEIGHT(T') <HEIGHT(T1). Therefore, HEIGHT(T') HEIGHT(T2) < k.

From the induction assumption, there are two concepts, C 1 E CT! and

C2 E CT2 , such that P(C1, C2). Since CT' C Dom(T1) and CT2 C

Dom(T2), we have C1 E Dom(Ti) and C2 E Dom(T2).

(c) T1 and T2 are not ancestors of each other and there is a topic T'

(NT!, CT) such that S(T', T2) and P(T1 , T'). The proof is similar to (b)

and omitted here.

Now suppose that there are two concepts C 1 and C2 such that C1 E Dom(T1),

C2 E Dom(C2), and P(C1 , C2). Since C1 E Dom(T1), there is a topic T' = (NT!, CT')

such that S(T',T1) and C1 E Cr. Similarly, there is a topic T" = (NT", CT►) such

that (T", T2) and C2 E CT".

1. If T1 = T' and T2 = T" , then P(T1 , T2); 	first order precedence

49

2. If T1 T' and T2 T", then P(T1 , T2); 	Item 2 of Definition 7

3. If T1 T' and T2 = T", then P(T1 , T2); 	Item 3 of Definition 7

4. If T1 T' and T2 T", then P(711 , T2)• 	Theorem 3

In all the cases, P(T1, T2)• ❑

Theorem 5 Let T1(T) and T2(T) be two views. If there are two topics T1 and T'

such that P(711,T,T1(T)) and S(71,T,7-1 (T)), then there must be a topic T2 such

that P(T2 ,T',T2 (T)) and S(T2 ,T,7-2 (T)).

PROOF If S(71, T, T2 (T)), then let T2 = T1 and the theorem is true. Otherwise,

from Theorem 4, there are two concepts C1 and C' such that Ci E Dom(Ti), C' E

Dom(T'), and P , 7- i (T)). Since Dom(Ti) C Dom(T), we have C1 E Dom(T).

Because T2(T) is also a view of T, there is a topic T2 = (NT2 , CT2) such that C1 G CT2

and S (T2, T, 7-2(T)) . By Theorem 4, we have P (T2, T', T2(T)) • ❑

Theorem 5 shows us that the different views of a topic are equivalent in the

sense that they provide the same prerequisite knowledge to the other topics. On the

other hand, Theorem 6 shows us that these views also need the same prerequisite

knowledge from the other topics.

Theorem 6 Let 7-1 (T) and 7-2(T) be two views. If there are two topics T' and T1

such that P(T',T1 ,7-(T)) and S(T1, T, T1 (T)), then there must be a topic T2 such

that P(T', T2, 7-2(T)) and S(T2,T,T2(T))•

The proof of this theorem is similar to the proof of Theorem 5.

3.5 Topic Association Graph

If we combine the precedence relations among topics and various views about the

topics, we obtain a graph called the Topic Association Graph (TAG). Formally, a

Topic Association Graph can be defined as follows:

50

Definition 8 A Topic Association Graph in a tutoring system is a quadruple TAG

= (Ns , Arc, 6. ,9, ep), where

• A/ is the set of nodes associated with only one view;

• N, is the set of nodes associated with only more than one views;

• ES is the set of topic-subtopic relations (edges); and

• .Cp is the set of precedence relations. ❑

Figure 3.5 illustrates a part of the TAG in SQL—TUTOR's curriculum

knowledge base in which the subtopic-of and the first order precedence-of relations

among topics are represented by the solid and dotted edges, respectively. In

this graph, there are two views associated with QUERYING TABLES: the first view

consists of nodes QUERYING TABLES, BASIC CONCEPTS, UNCONDITIONAL RETRIEVAL,

CONDITIONAL RETRIEVAL, and their subtopics, whereas the second view consists of

nodes QUERYING TABLES, SEARCH EXPRESSION, ONE TABLE RETRIEVAL, MULTI-TABLE

RETRIEVAL, and their subtopics. In this example, QUERYING TABLES is the only node

with multiple views, though in general, every node in a TAG can have multiple

views as shown in Figure 3.4.

In the following sections, we introduce the major data structures used by our

system to represent a TAG.

3.5.1 Node Pool

All the nodes in a TAG are stored in a list (array) called the Node Pool (NP) of the

TAG. Each entry in a NP corresponds to one node in the TAG and is defined as a

record with the following fields:

1. NAME - the name of the topic associated with the node in the TAG. Examples

of the NP node names in SQL—TUTOR includes QUERYING TABLE, BASIC

CONCEPTS, and CONDITIONAL RETRIEVAL;

	<>-

Prerequisite-ofSubtopic-of

51

QUERYING
TABLES

BASIC
CONCEPTS

I CONSTANT EXPRESSION

UNCONDITIONAL
ONE TABLE -*—
RETRIEVAL

UNCONDITIONAL
---ao MULTI-TABLE

RETRIEVAL

UNCONDITIONAL
RETRIEVAL

SEARCH
EXPRESSION

CONDITIONAL
RETRIEVAL

SIMPLE
RETRIEVAL

COMPOUND
RETRIEVAL

SIMPLE
—4** SEARCH

EXPRESSION

ONE TABLE
SIMPLE

RETRIEVAL

COMPOUND
SEARCH

EXPRESSION

ONE ABLE
COMPOUND
RETRIEVAL

MULTI-TABLE
COMPOUND
RETRIEVAL

ONE TABLE
RETRIEVAL

MULTI-TABLE
RETRIEVAL

Figure 3.5 Part of Topic Association Graph (TAG) in SQL—TUTOR

52

2. LABEL - a unique character string used by the system to identify the node

in the NP. Examples of the NP node labels in SQL—TUTOR include QT

(for QUERYING TABLES), BC (for BASIC CONCEPTS), and CR (for CONDITIONAL

RETRIEVAL);

3. Si and S2 - the knowledge status values of the student; We will introduce them

in the Chapter 5.

4. F and P — the F and P values of the node; We will introduce them in Chapter

5.

5. TOPIC - a pointer pointing to an entry (topic) in the domain knowledge base

DKB which contains the subject materials associated with the topic; We will

discuss the design of the topic in Chapter 6.

6. CONCEPTS - a pointer pointing a concept list; The concept list of a topic contains

all the concepts in the content of the topic. We will discuss the design of the

concept list in the Section 6.2.3.

Three functions have been defined for accessing a NP:

• Index(label, NP) - return the index of a node for a given NP and label.

• Name (index, NP) - return the name of a node for a given NP and index.

• Label (index ,NP) - return the label of a node for a given NP and index.

3.5.2 Precedence List

The precedence relations among the contents (concepts) of a domain subject is repre-

sented by a list called the precedence list. The elements in the precedence list are

pairs of concepts (C1, C2), which are added to the list by the instructor who creates

the curriculum knowledge base CKB. (C 1 , C2) is a member of the precedence list

only if C1 is a precedence of C2

7 7 5

53

Since the precedence-of relations among the concepts can be represented by a

DAG (Directed Acyclic Graph) in such a way that there is an edge from C1 to C2 if

and only of (C1 , C2) is in the precedence list, C1 is a precedence of C2 if and only if

there is a path from C 1 to C2 in the DAG. That is, to test the precedence relation

among two concepts is a path search problem in the DAG.

In order to reduce the search complexity, we assign each concept C a unique

integer as its precedence index (P-index) in the DAG and denote this index of C by

Pi (C). The indices of concepts are assigned in such a way that Pi (C1) < P2(C2) if and

only if P(C1 , C2). Figure 3.6 shows a DAG which represents the precedence relations

among some topics in SQL—TUTOR (cf. Figure 3.2). The integer associated with a

topic is its precedence index.

1 RELATIONAL
OPERATOR

2 PRECEDENCE 	 02 SIMPLE	 4 LOGICAL
RULE-I	 COMPARISON	 OPERATOR

WHERE 	 SEARCH 	 PRECEDENCE
CLAUSE	 CONDITION	 RULE-I1

Figure 3.6 A DAG with Precedence Relations among Topics

3.5.3 Relation Matrix

The view-of and subtopic-of relations among the topics in a TAG are represented by

a N x N matrix RM, where N is the number of topics in the TAG. Node RM[i.,,j]

54

represents the relationships between the TAG nodes whose indices in the node pool

are i and j, respectively. Each node in a RM is a record with three fields: 2

1. Vi — C if TAG node i is a child of node j under the first view of node j; S if

TAG node i is a descendant of TAG node j under the first view of node j;

empty otherwise.

2. V2 — C if TAG node i is a child of node j under the second view of node j; S

if TAG node i is a descendant of TAG node j under the second view of node

j; empty otherwise.

3. V3 — C if TAG node i is a child of node j under the third view of node j; S if

TAG node i is a descendant of TAG node j under the third view of node j;

empty otherwise.

3.5.4 TAG

A TAG is defined as a record which contains five fields (cf. Figure 3.7):

Figure 3.7 Representation of a TAG

1. S — the label of the starting node of the TAG.

2. L — the number of the nodes in the TAG.

3. NP — the NP of the TAG.
2We have limited the number of views which can be associated with a node to 3. That

is, each node in a TAG can have at most 3 views.

55

4. PL — the precedence list of the TAG.

5. RM — the relation matrix of the TAG.

Figure 3.8 shows a part of the node pool, precedence list, and relation matrix

for the TAG in Figure 3.5.

3.6 TAG Related Algorithms

In this section, we introduce some primary algorithms for storing information into

and accessing information from a TAG:

1. IS_CHILD(i, j ,TAG) — If node i is a child of node j in the TAG, return the list

of views VL under which node i is a child of node j; return the empty list [

otherwise.

IS_CHILD(i,j ,TAG)
{

VL = []
if (TAG.RM[i, j] .V1 == C) then VL = VL + [1] ;
if (TAG.RM[i,j] .V2 == C) then VL = VL + [2] ;
if (TAG.RM[i,j] .V3 == C) then VL = VL + [3] ;
return VL;

}

2. IS_SUBTOPIC(i, j ,TAG) — If node i is a descendant of node j in the TAG, return

the list of views VL under which node i is a descendant of node j; return the

empty list [otherwise.

IS_SUBTOPIC(i,j ,TAG)
{

VL = []
if (TAG.RM[i,j] .V1 == C I I TAG.RM[i, j] .V1 == S) then VL = VL + [1] ;
if (TAG.RM[i,j] .V2 == C I I TAG.RM[i, j] .V2 == S) then VL = VL + [2] ;
if (TAG.RM[i,j] .V3 == C I I TAG.RM[i., j] .V3 == S) then VL = VL + [3] ;
return VL;

SIMPLE ONE TABLE COMPOUND ONE TABLE MULTI-TABLE
CONDMONAL SIMPLE SEARCH SIMPLE COMPOUND SEARCH COMPOUND COMPOUND

RETRIEVAL RETRIEVAL
EXPRESSION RETRIEVAL RETRIEVAL EXPRESSION RETRIEVAL RETRIEVAL

CR SCR SSE OSR CCR CSE OCR MCR

• • • II •

NAME

LABEL

CONCEPTS

RELATIONAL RELATIONAL RELATIONAL PRECEDENCE LOGICAL LOGICAL SIMPLE SEARCH
OPERATOR OPERATOR OPERATOR RULE-1 OPERATOR OPERATOR COMPARISON CONDITION

LOGICAL PRECEDENCE SIMPLE SIMPLE PRECEDENCE SEARCH SEARCH WHERE
OPERATOR RULE-1 COMPARISON COMPARISON RULE-2 CONDITION CONDITION CLAUSE

CR 	 SCR SSE 	 OSR 	 CCR 	 CSE 	 OCR MCR

{C„ }

{S„ } {C„ }

{S„ } {C„ }

{C„ }

{S„ } {C„ }

IS„ 1 {C„ }

{S„ } {C„ }

Figure 3.8 The Data Structure for a Topic Association Graph

CR

SCR

SSE

OSR

CCR

CSE

OCR

MCR

57

3. CREATE_CHILD(i , j , V , TAG) — Make node i a child of node j under the view

number V in the TAG.

CREATE_CHILD , j , TAG)
{

switch (V) {
case 1: { 	 TAG.RM[i,j].V1 == C;

CREATE_SUBTOPIC(i,j,1,TAG); }
case 2: { 	 TAG .RM[i , j] .V2 == C;

CREATE_SUBTOP IC (i j , 2 , TAG) ; }
case 3: { 	 TAG.RM[i, j] .V3 == C;

CREATE_SUBTOPIC(i , j , 3 , TAG) ;
}

4. CREATE_SUBTOPIC (i , j ,V TAG) — Make all the descendants of node i to be the

descendants of node j and all the ancestors of node j to be the ancestors of

node i in the TAG.

CREATE_SUBTOPIC(i,j,V,TAG)
{

for (k = 1; k <= TAG.Length; k++) {
if (IS_SUBTOPIC(k, i , TAG) ! =)

switch (V) {
case 1: TAG .RM[k, j , TAG] .V1 = S;
case 2: TAG.RM[k,j,TAG] .V2 = S;
case 3: TAG.RM[k,j,TAG] .V3 = S;

}

if ((V=IS_SUBTOPIC(j ,k,TAG)) !=)
if (1 is a member of V) then

TAG.RM[i,k,TAG] .V1 = S;
if (2 is a member of V) then

TAG.RM[i,k,TAG] .V2 = S;
if (3 is a member of V) then

TAG.RM[i,k,TAG] .V3 = S;

58

5. TYPE(T,TAG) — Return the type of topic T in the TAG: 0 if T is a unit topic;

1 if T is a non -unit node associated with one view; 2 if T is a non-unit node

associated with multiple views.

TYPE (T , TAG)
{

K1 = K2 = K3 = 0;
j = Index(T,TAG.NP);
for (1=1; i <= Tag.Length; i++)

if (TAG.RM[i,j].V1 == C) {
let K1 = 1;
break;

}
for (i=1; i <= Tag.Length; i++)

if (TAG.RM[i,j].V2 == C) {
let K2 = 1;
break;

}

for (i=1; i <= Tag.Length; i++)
if (TAG.RM[i,j].V3 == C) {

let K3 = 1;
break;

}

K = K1 + K2 + K3;
if (K > 1)

return 2;
else

return K;
}

6. IS_PRECED_C (C1 ,C2,TAG) If concept Cl is a precedence of concept C2 in TAG,

return 1; return 0 otherwise;

IS_PRECED_C (C1 , C2 , TAG)

= Pi(C1); 	 12 = Pi(C2);
if (11 > 12) then

return 0;
else

for (each pairs of the form (C1,C3) in PL)

59

13 = Pi(C3);
if (12 == 13) then

return 1;
else if (13 > 12) then

continue;
else if (IS_PRECED_C(C3,C2) = 1) then

return 1;
}

return 0;
}

7.ISJPRECEDJ(T1,T2,TAG) — If topic T1 is a precedence of topic T2 in TAG,

return 1; return 0 otherwise;

IS_PRECED_T(T1,T2,TAG)

for (each concept Cl in the CL of Ti)
for (each concept C2 in the CL of T2)

if (IS_PRECED_C(C1,C2,TAG) == 1)
return 1;

return 0;
}

8.GET_CHILDREN(T,TAG,V) — Return the children of the topic T in the TAG under

the view V.

GET_CHILDREN(T,TAG,V)
{

j = Index(T,TAG.NP); 	 k = 1;
for (i=1; i<=TAG.Length; i++)

switch (V) {
case 1: if (TAG.RM[i,j].V1 == C)

Cs[k++] = Label(i,TAG.NP);
case 2: if (TAG.RM[i,j].V2 == C)

Cs[k++] = Label(i,TAG.NP);
case 3: if (TAG.RM[i,j].V3 == C)

Cs[k++] = Label(i,TAG.NP);

return Cs;

60

9. IS...SP (Ti , T2, TAG) - Return 1 if the topic Ti is a strong precedence of the

topic T2; return 0 otherwise.

IS_SP (T1 , T2 , TAG)
{

= Index (T1 , TAG . NP) ;
2 = Index (T2 , TAG . NP) ;

for (1=1; i<=TAG . Length; i++)
if (is_CHILD (i , i2))

T = Label (1 , TAG .NP) ;
if (! IS_PRECED (T ,T1))

return 0;
}

return 1;

CHAPTER 4

CURRICULUM KNOWLEDGE MANAGEMENT

SQL—TUTOR provides a group of commands called TAG operators (commands)

for the students. By using these operators, a student can focus on one view of a

topic and pick or skip a topic from his learning plans. In this way, the student can

construct his own curriculum based on his interests and requests.

As shown in Figure 2.4, during a planning phase, the student can issue a TAG

command to the Topic Analyst. The Topic Analyst executes the command, generates

a learning graph and passes it to the Curriculum Delivery. The Curriculum Delivery

traverses the learning graph and passes the topics from the graph, one at a time, to

the Discussing Module. In this chapter, we discuss four major issues related to this

procedure:

1. how a learning graph is defined;

2. how the TAG operators are defined;

3. how the TAG operators are implemented; and

4. how the Curriculum Delivery traverses and delivers the topics in a learning

graph to the Discussing Module.

4.1 Private Tutoring

Private Tutoring is generally found to be the most effective form of instruction. In

[54], Reiser and his associates reported that students working with private tutors

can learn the given materials four times faster than those students who study in

a classical classroom by attending lectures, reading texts, and working alone on

homework problems. Bloom [4] found students working with private tutors have a

61

62

better grasp of the materials than a comparable group of students spending the same

amount of time in the classroom.

The goal of KBTS research is to investigate and develop a computer tutoring

system which can provide private tutoring to the students [60]. Such a system is

sensitive to the following characteristics of each individual student:

1. the student's knowledge states (i.e., their known and unknowns) about the

subject materials prior to and during the tutoring; and

2. the student's special learning needs, requests and interests to the subject

materials.

There are two possible approaches that KBTSs can use to implement private

tutoring. In the first approach, the system is at the center of the communication

and takes a directive role in controlling the tutoring from the beginning to the end.

Throughout the whole process of interaction, the student can raise questions, but

nothing else. This is the approach taken by the most of the existing KBTSs. Such a

system maintains a student model and a pedagogical knowledge base in the system.

The student model contains information about the student's understanding and

mastery of the domain subjects and therefore, allows a tutoring system to know

the student's background and performances on the subjects and to use different

teaching procedures and materials to teach different students.

The pedagogical knowledge base contains the knowledge of teaching, that is,

the knowledge of what subject materials the system should present to the student,

and how and when to present it. This type of knowledge allows a KBTS to apply

different teaching strategies during a tutoring process. The teaching strategies can

be chosen based upon several factors, including:

63

• the student's knowledge states maintained in the student model. For instance,

a system can give more examples and explanations to a novice programmer

than an experienced programmer;

• the types of topics. For example, a system can apply the coaching strategy for

tutoring a student problem solving skills and apply the Socratic strategy for

tutoring domain concepts; and

• the stages of problem solving. For example, a KBTS may give a very simple

hint if a student has difficulty to answer a question at the first time. However,

if the student has tried several times and still can not get the correct answer,

then the system may offer more help.

Although this type of tutoring systems are sensitive to the students performance

and can apply different teaching styles, they do not care any concerns of the students

and spend little efforts to stimulate their interests of learning. Therefore, the students

are very passive and hardly to be motivated to learn the subject. As a consequence,

the tutoring is not very effective.

In the contrast to the first approach, the second approach of private tutoring

encourages the students to engage actively in a tutoring process in such a cooperative

way that the system and the student are working as a team. The system sets up the

teaching objectives (e.g. "have the student know how to create a table") for tutoring

topics in a course and the student selects the paths for going through the topics

to achieve the teaching goals. During a tutoring process, the student have certain

degree of freedom to choose or eliminate topics according to his special learning

needs, requests and interests to the subject materials.

One goal of SQL—TUTOR is to implement effective private tutoring by using

the second approach. As we have discussed in Chapter 2, in the active mode of a

planning phase, a student is allowed to select a topic to study. After the topic has

64

been selected, the planning module of the Communication Controller will generate a

learning graph, which is a subgraph of the original TAG for the course, for guiding

the student to study the corresponding topic. In the following sections, we will

formulate the concept of learning graph, discuss some of its properties, and show

how to generate different learning graphs according to different learning objectives.

4.2 Learning Goal and Learning Graph

A learning goal (Lgoal) is a pedagogical objective of a student for a course, which

can be expressed in terms of the topics of the course. Since a tutoring process

is a communication process participated by both an instructor and a student in a

cooperative manner, a KBTS must take the learning objectives of a student into

account.

There are three kinds of Lgoals that a student can issue during a tutoring

process while working with SQL—TUTOR:

1. to choose a particular topic to study (e.g., "to study how to create databases

and tables");

2. to study a topic from a particular organization of the topic materials (e.g., "to

study how to create databases and tables from Pratt's book [53]"); and

3. to exclude a specific topic from his curriculum (e.g., "to skip optimizing

statements") .

SQL—TUTOR provides its students with a group of operators (FOCUS,

STUDY, SELECT, DELETE, SKIP) over a TAG to accomplish their Lgoals. By

applying these operators, a student can construct his personal curriculum based on

his individual requirements. Therefore, the student is relatively free to choose the

best curriculum for himself.

T 	 SP

..;•17

......
T1 	 T21:.

(a) T is a strong precedence of T'

T',	 TP
T

Tl, T2 ..
. .

. 	

..................

T1 	 Tn

(b) T is a total precedence of T'

65

Figure 4.1 Strong and Total Precedence Relationships

Informally, each personal curriculum is called a learning graph. The formal

definition of a learning graph is based on the concept of strong precedence relation.

Definition 9 Let T and T' be two topics in a TAG and P(T,r). T is said to

be a strong precedence of T', denoted as SP(T, T), if for all TZ , CS(Ti , T) implies

P(Ti ,T') (Figure 4.1 (a)). ❑

Consider again the TAG shown in Figure 3.5. Topic BASIC CONCEPTS is a

strong precedence of topic SEARCH EXPRESSION, because we have the following facts:

I. P(EXPRESSION, SIMPLE SEARCH EXPRESSION)

(Given in Figure 3.5)

2. S(SIMPLE SEARCH EXPRESSION, SEARCH EXPRESSION)

66

(Given in Figure 3.5)

3. P(EXPRESSION, SEARCH EXPRESSION)

(1, 2, Item 3 of Definition 7)

4. P(CONSTANT, EXPRESSION)

(Given in Figure 3.5)

5. P(CONSTANT, SEARCH EXPRESSION)

(3, 4 and the transitivity)

6. P(VARIABLE, EXPRESSION)

(Given in Figure 3.5)

7. P(VARIABLE, SEARCH EXPRESSION)

(3, 6 and the transitivity)

8. SP(BASIC CONCEPTS, SEARCH EXPRESSION)

(3, 5, 7 and Definition 9)

Likewise, we can also obtain SP(BASIC CONCEPTS, SIMPLE SEARCH EXPRESSION).

Definition 10 Let T and T' be two topics in a topic tree and P(T, T'). T is said

to be a total precedence of T', denoted as TP(T,T'), if for all Ti , CS(Ti ,T) implies

P(T, Ti) (Figure 4.1 (b)). ❑

Consider again the TAG shown in Figure 3.5. Topic SIMPLE RETRIEVAL is a

total precedence of COMPOUND RETRIEVAL, because we have:

1. S(SIMPLE SEARCH EXPRESSION, SEARCH EXPRESSION)

(Given in Figure 3.5)

2. P(SIMPLE SEARCH EXPRESSION, COMPOUND SEARCH EXPRESSION)

(Given in Figure 3.5)

3. P(COMPOUND SEARCH EXPRESSION, ONE TABLE COMPOUND RETRIEVAL)

(Given in Figure 3.5)

67

4. P(SIMPLE SEARCH EXPRESSION, ONE TABLE COMPOUND RETRIEVAL)

(2, 3, and transitivity)

5. P(COMPOUND SEARCH EXPRESSION, MULTI-TABLE COMPOUND RETRIEVAL)

(Given in Figure 3.5)

6. P(SIMPLE SEARCH EXPRESSION, MULTI-TABLE COMPOUND RETRIEVAL)

(2, 5, and transitivity)

7. P(SIMPLE RETRIEVAL, COMPOUND SEARCH EXPRESSION)

(1, 2, item 3 of Definition 7)

8. P(SIMPLE RETRIEVAL, ONE TABLE COMPOUND RETRIEVAL)

(1, 4, item 3 of Definition 7)

9. P(SIMPLE RETRIEVAL, MULTI-TABLE COMPOUND EXPRESSION)

(1, 6, item 3 of Definition 7)

10. TP(SIMPLE RETRIEVAL, COMPOUND RETRIEVAL)

(7, 8, 9, item 3 of Definition 10)

Definition 11 A learning graph LG = (N', E') of a TAG 	 s, Are, 81 E. p),

where AP C Ais UAI, and E' C E s U Er , is an induced subgraph of the TAG. ❑

From this definition, a learning graph is made of a subset of the nodes and all

the edges between these nodes from a TAG. Thus, given a TAG and a subset of

nodes Al' of the TAG, a learning graph LG (AP, El) is uniquely defined.

A learning graph is self-contained with respect to the TAG if for any topic

T' E AP and SP(T, T'), we have T E N' . A TAG operator is well defined if it always

yields self-contained learning graphs. Intuitively, a self-contained learning graph

contains all the prerequisite contents which have to be covered before studying any

topic in the graph. Thus, a student can study the topics in a self-contained learning

graph without referring any contents outside.

1 1S U.1 Li 1 WU LJGCL1111116 V31 ap110. ka) 10 0C11 - (A/11141111GU, U U to `U) 10 lit/ I,

Figure 4.2 depicts two learning graphs generated from the TAG shown in Figure

3.5. The first graph is self-contained, because topic EXPRESSION has two prerequisite

topics, CONSTANT and VARIABLE, and both of them are also members of the learning

graph. Therefore, a student can learn the topics in this graph without referring to

other topics. On the other hand, the second learning graph is not well defined because

topic EXPRESSION, which is one of the precedences of SIMPLE SEARCH EXPRESSION,

is missing from it.

4.3 TAG Operators

In this section, we introduce the operators which generate learning graphs from a

TAG. We also prove that among these operators, STUDY and DELETE are well

defined.

4.3.1 FOCUS Operator

When there are more than one views associated with a topic, a student can select a

view by using FOCUS operator, or can ask the system to select a view for him. For

the latter case, the system will make the selection based on the rules stored in its

69

pedagogical knowledge base PKB. For example, two of the pedagogical rules could

be:

1. If T(T) is the view used by the student last time when he studied the topic T

and he did not pass the test, then select another view this time.

2. If a view T(T) has been used by many students successfully, then select the

view to study the topic T.

By using operator FOCUS, a student can select a particular view from a topic.

Given a TAG = (N8 , A r c , E3? Ep), a topic T E which are associated with more

than one views, and a view T(T), operation FOCUS(TAG,T(T)) allows a student

to use view T(T) to study topic T and discard all others. Therefore, when there

are more than one view associated with a topic, the student can select his preferable

one.

The result of applying operation FOCUS(TAG,T(T)) is a learning graph

LG = (N', E'), where N' = {T' S(T',T,T(T))}. That is, N' is obtained from

N3 U Mc by removing those topics which are not subtopics of T with respect to

T(T). Consider again the topic QUERYING TABLES in the TAG shown in Figure 3.5.

If a student focuses on its first view labeled by 1, then the learning graph generated

is the topic tree shown in Figure 3.2 (a).

4.3.2 SELECT Operator

Recall that a tutoring process involving a KBTS and a student can be considered

as a knowledge communication between the system and the student. This kind of

communication consists of a series of communication cycles, each of which focuses on

one topic. The topic can be selected by the system, or by the student using operators

SELECT or STUDY.

Given a TAG = (Ai .Ar87 - CI E87 EP) and a topic T of the TAG, the operation

SELECT(TAG,T) generates a learning graph LG = (N', E'), where N' = {T} U

Figure 4.3 The Learning Graph Obtained by Applying Operator SELECT

Since the learning graph generated by a SELECT operation is not necessarily

self-contained (i.e., SELECT is not well defined), the system may find that some

precedence topics that the student has not mastered are not included in the learning

graph. In this case, the system will tell the student that some prerequisite knowledge

is missing from him and let the student decide whether he should go ahead to study

the topics in the learning graph, or study the missing precedence topics first. In

this way, the system works as an advisor who tells the student his knowledge status

regarding the subject materials and the student can select the topic to study.

4.3.3 SKIP Operator

Given a TAG = (Ars , Arc , E s , EP) and a topic T of the TAG, the operation

SKIP(TAG,T) yields a learning graph LG 	 (AP, E'), where Ar' = (N3 U Arc)

— ({T} U N 1) and N 1 = { T' I S(r, T)}. That is, Ai' is obtained from N3 U Arc by

removing T and all its subtopics. Figure 4.4 shows the result of applying operator

SKIP to topic SIMPLE RETRIEVAL in the TAG shown in Figure 3.5. Like operator

SELECT, the learning graph generated by SKIP is not necessarily self-contained.

r 16ul C `"*.`± 1 HZ LiCa1111118 %._.7.1.(1p11 kJ UUCLIllell Uy rvpinyi118, V1JC1u,UV1 IJ IV l 1-

4.3.4 STUDY Operator

Given a TAG = (Ai .1■1,— — c, Es, Ep) and a topic T, the operation STUDY (T AG,T)

creates a learning graph LG (Al', E'), where Al' = {T}U{T' S(T',T)VSP(T,T)).

That is, the learning graph contains T and the topics that are subtopics of T or strong

precedences of T. Therefore, the student can use this learning graph as a personal

curriculum to study the selected topic.

Figure 4.5 shows the resulting graph obtained by applying STUDY to topic

ONE TABLE RETRIEVAL in the TAG of Figure 3.5. In this figure, we have divided the

72

topics into two regions where the Region I includes ONE TABLE RETRIEVAL and all

of its subtopics, whereas the Region II includes all of the topics which are strong

precedences of ONE TABLE RETRIEVAL.

Theorem 7 Operator STUDY is well defined. ❑

PROOF We want to prove that for any topic T1 E Al', if there is a topic T2 such

that SP(T2 , TO, then T2 E Al'.

1. If T1 = T, then T2 E Al' by the definition of Al' in operator STUDY.

2. If T1 	T, then we have either S(Ti,T) or SP(Ti,T). For any topic T2 , if

SP(T2 , T1), by Definition 9, we have (VT3)(CS(T3, T2) -+ P(T3, T1)) (*)•

(a) If S(T1 , T), then by (*) and the item 3 of Definition 7, we have

(VT3)(CS(T3 , T2) 	 P(713,7))• That is SP(T2 ,T).

(b) If SP(Ti, T), then we have P(T1 , T) by Definition 9. Therefore, by (*) and

the transitivity of the precedence relation, we have (VT3)(CS(T3, T2)

P(T3 ,T)). That is, SP(T2 ,T)

In both cases, we have SP(T2,T), or T2 E	 ❑

Both STUDY and SELECT allow a student to select a particular topic to

study, but STUDY differs from SELECT operator in that the resulting learning

graph from STUDY includes all the precedence materials (i.e., the learning graph

generated by the STUDY is always self-contained).

4.3.5 DELETE Operator

Given a TAG = (Ns , Ne , E s , e p) and a topic T of the TAG, the operation

DELETE(TAG,T) allows a student to remove any optional and (or) uninteresting

0 	 J.

topics from his curriculum. The operation DELETE(TAG, T) generates a self-

contained learning graph LG = (AP, 6"), where N' = U ..Af c) — ({T} U N1 U

N2 U .N-3), and

1. Ni ={T' I S(T',T)};

2. N2 = {T' I P(T,T')}; and

3. N3 {T' VT" ,T" is a unit subtopic of T' and T" E (N1 U Ar2)}.

That is, DELETE(TAG,T) removes all the topics in {T} U./Vi U N2 U N3.

Intuitively, Ail contains all the subtopics of T; N2 contains topics that take T as a

precedence; and N3 contains topics that no longer have unit subtopics due to the

removal of topics in {T} U Ar1 U N2.

DELETE allows a student to remove some topic from his curriculum, and

the learning graph generated is always self-contained. If a student wants to remove

74

an optional topic and everything related to the topic from his study curriculum, he

can use DELETE. On the other hand, if the student already knows the material

of a topic and wants to remove it while keeping the related materials in the study

curriculum, he can use SKIP.

A g	 T1 T rig"' Ll 4- 	 .sr.;.. Tiara V 17 Virtt T T AT

1. SIMPLE RETRIEVAL;

2. all the subtopics of SIMPLE RETRIEVAL;

3. COMPOUND RETRIEVAL and its subtopics, because they all take SIMPLE RETRIEVAL

as their precedence;

4. CONDITIONAL RETRIEVAL, because its unit subtopics are all removed.

Theorem 8 Operator DELETE is well defined. ❑

75

PROOF We need to prove that for any topic T1 E N' , if there is a topic T2 such that

SP(T2 , Ti), then T2 e MI . Notice that by Definition 9, if we have SP(T2, T1), then

p(T2, (*)•

If Ti E N i , then T1 4% N2. Suppose that there is a topic T2, SP(T2, T1), but

T2 i% Afi, Or T2 E({T}UN1 U.Ar2 u .A13)•

1. If T2 = T, then P(T, Ti) by (*). Therefore, T1 E Al2, which is a contradiction.

2. If T2 E Ari, then S (T2, T) . By the item 2 of Definition 7 and (*), P(T, T1).

Therefore, T1 E N2, which is a contradiction.

3. If T2 E N2, then P(T, T2). By the transitivity of the precedence relation and

(*), P(T, T2) . Therefore, T1 E .J12 , which is a contradiction.

4. If T2 E N3, then (V T3) (U nit (T3) A S(T3, T2) 	 S(T3, T) V P (T , T3)) .

(a) If p713) (U nit (T3) A S(T3, T2) A P (T , T3)) , then by the item 3 of Definition

7, we have P (T , T2). By the transitivity of the precedence relation and

(*), P(T, T1), or T1 E N2, which is a contradiction.

(b) If (VT3) (Unit(T3) A S(T3, T2) A S(T, T3)), then S(T2 , T). By the item 2 of

Definition 7, P(T, T1), or T1 E N2, which is a contradiction. ❑ .

4.4 Implement TAG Operators

In this section, we introduce algorithms which implement the TAG operators. Since

a learning graph LG is an induced subgraph of a TAG, it can be determined by a

set of topics in the TAG. In our system, we represent a LG by a list containing the

labels of the topics in LG. With this representation, given a TAG, to construct a

learning graph is to create its topic list.

76

4.4.1 Implement FOCUS Operator

The algorithm FOCUS implements the FOCUS operator. The inputs of FOCUS are a

TAG, a topic T of the TAG and a view V associated with T. It creates a list which

contains the labels of topic T and all the subtopics of T under the view.

FOCUS(TAG,T,V)

k = Index(T,TAG.NP);
LG[1] = Label(k,TAG.NP);
1 = 2;
for (1=1; i<=TAG.Length; i++)

switch(V) {
case 1: if (TAG.RM[i,k] .V1 == C I I TAG.RM[1,k] .V1 == S)

LG[1++] = label(i,TAG.NP);
case 2: if (TAG.RM[i ,k] . V2 == C I I TAG .RM[i ,k] .V2 == S)

LG [1+4] = label (i , TAG. NP) ;
case 1: if (TAG.RM[1,k] .V3 == C I I TAG.RM[i,k] .V3 == S)

LG [1++] = label (i , TAG. NP) ;
}

}

4.4.2 Implement SELECT Operator

The algorithm SELECT implements the SELECT operator. The inputs of SELECT

are a TAG and a topic T of the TAG. It creates a list which contains the labels of

topic T and all the subtopics of T.

SELECT (TAG ,T)
{

k = Index (T , TAG . NP) ;
LG [1] = label (k, TAG . NP) ;
1 = 2;
for (1=1; i<=TAG.Length; i++)

if (TAG .RM [1 	 .V1 == C I I TAG.RM[i,k],k] . V1 == S)
LG [l++] = label (i , TAG . NP) ;

else if (TAG .RM[i,k] .V2 == C I I TAG.RM[i,k] .V2 == S)
LG[1++] = label(i,TAG.NP);

else if (TAG.RM[i,k] .V3 == C I I TAG.RM[i,k] .V3 == S)
LG[1++] = label (i , TAG . NP) ;

}

77

4.4.3 Implement SKIP Operator

The algorithm SKIP implements the SKIP operator. The inputs of SKIP are a TAG

and a topic T of the TAG. It creates a list which contains the labels of all the topics

except T and its subtopics.

SKIP (TAG,T)

1 = 1; 	 k = Index(T,TAG.NP);
for (1=1; i<=TAG.Length; i++)

if (i != k && !IS_SUBTOPIC(i,k,TAG))
LG[1++] = label(i,TAG.NP);

}

4.4.4 Implement STUDY Operator

The algorithm STUDY implements the STUDY operator. The inputs of STUDY are a

TAG and a topic T of the TAG. It creates a list which contains the labels of T, the

subtopics of T, and all the topics that are strong precedence of T.

STUDY(TAG,T)

LG[i] = T; 	 1 = 2;
k = Index(T,TAG.NP);
for (i=1; i<=TAG.Length; i++) {

T1 = label(i,TAG.NP);
if (IS_SUBTOPIC(i,k,TAG) II IS_SP(T1,T))

LG[1++] = Ti;

4.4.5 Implement DELETE Operator

The algorithm DELETE implements the DELETE operator. The inputs of DELETE

are a TAG and a topic T of the TAG. It creates a list which contains the labels of

all the topics in TAG except T, the subtopics of T, and the topics of which T is a

precedence.

78

DELETE(TAG,T)
{

k = Index(T,TAG.NP);
1 = 1;
for (each unit topic Ti) {

ii = Index(T1,TAG.NP);
if (ii != k && !IS_SUBTOPIC(il,k,TAG) && !IS_PRECED(k,i1,TAG))

LG[1++] = Ti;
for (i=1; i<=TAG.Length; i++)

if (i != k && !IS_SUBTOPIC(i,k,TAG) && !IS_PRECED(k,i,TAG))
for (j=1; j<=Length(LG); j++)

if (IS_SUBTOPIC(j,i,TAG))
LG[1++] = label(j,TAG.NP);

}

4.5 Traversing a Learning Graph

After the Topic Analyst generates a learning graph, the learning graph is passed to

the Curriculum Delivery. The task of the Curriculum Delivery is to select topics

from the learning graph and pass them to the next phase, the discussing phase.

Since a learning graph usually contains several topics and the orders in which these

topics should be taught are constrained by the subtopic-of, view-of, and precedence-of

relations among the topics, proper strategies are needed to select all the topics in the

learning graph. In this section, we introduce the SQL—TUTOR traversal procedures

and the rules to select the topics from a learning graph.

Definition 12 Let LG be a learning graph. LG is said to have a schedule if for any

two sibling T1 and T2 in a view T(T), we do not have both P(T1 , T2) and P(712,71).

If a learning graph has a schedule, then the precedence relations over the

siblings of a topic form a partial order. Therefore, the Curriculum Delivery is capable

to select topics from the siblings in such a way that for any two siblings 7 71 and T2

79

if P(7- 1 , T2), then T1 is selected before 7'2 . There are three major algorithms in

Curriculum Delivery:

1. The first algorithm, called T-DELIVER, takes two parameters, a TAG and a

learning graph LG. It sorts the topics in the LG based on the precedence-of

relation, and delivers the topics in the sorted order to the Discussing Module.

This algorithm invokes the other two algorithms during its execution.

T-DELIVER(TAG,LG)
{

while (LG is not empty) {
Ts = ❑ ;
for (each topic T in LG) {

i = Index(T,TAG); 	 P = 0;
for (j=1, j<=TAG.Length; ++j)

if (IS_SUBTOPIC(i,j,TAG) {
P = 1;
break;

}

if (!P)
Ts = Ts + [i];
remove T from LG;

T-SORT(Ts,Tn,TAG);
for (each topic T in Tn)

TUTOR-SUBTOPICS(T,TAG);

2. The second algorithm, called T-SORT, sorts a collection of related topics.

Intuitively, this algorithm works by performing topological sorting on a list of

topics based on the precedence-of relationships.

T-SORT(Ts,Tn,TAG)
{

SORTED := 0;
while (Ts is not empty) {

80

T = Ts[1]; 	 i = Index(T,TAG.NP);
PRECED = 0;
for (j=1; j<=TAG.Length; ++j)

if (IS_PRECED(j,i,TAG)) {
PRECED = 1;
break;

}

if (!PRECED) {
remove T from Ts;
SORTED = SORTED + [T];

}

}

}

3. Given a topic T and a TAG, the algorithm TUTOR-SUBTOPICS determines the

order in which the subtopics of T are discussed and calls T-DISCUSS, which is

a function in the Discussing Module, to discuss the topic with the student.

TUTOR-SUBTOPICS(T,TAG)
{

K = TYPE(T,TAG);
switch (K) {

case 0: T-DISCUSS(T,TAG);
case 1: { Ts = GET_CHILDREN(T,TAG,1);

T-SORT(Ts,Tn);
for (each topic T in Tn)

TUTOR-SUBTOPICS(T,TAG);
}

case 2: { Select a view V from T;
Ts = GET_CHILDREN(T,TAG,V);
T-SORT(Ts,Tn);
for (each topic T in Tn)

TUTOR-SUBTOPICS(T,TAG);

}

}

As an example to show how the Curriculum Delivery works, consider the

learning graph shown in Figure 4.5. If that learning graph is passed to T-DELIVER,

then the system will follow the following steps:

81

1. T-DELIVER passes the un-sorted set of topics, {BASIC CONCEPTS, SEARCH

EXPRESSION, ONE TABLE RETRIEVAL}, to T-SORT;

2. T-SORT sorts the passed the topics and return the sorted set of topics, {BASIC

CONCEPTS, SEARCH EXPRESSION, ONE TABLE RETRIEVAL}, to T-DELIVER;

3. T-DELIVER passes the first topic, BASIC CONCEPTS, from the sorted set of topics

to TUTOR-SUBTOPICS;

4. TUTOR-SUBTOPICS sorts the child topics of BASIC CONCEPTS, and pass the unit

topics, CONSTANT, VARIABLE, and EXPRESSION, one by one, to the discussing

module by calling procedure T-DISCUSS;

5. T-DELIVER passes the second topic, SEARCH EXPRESSION, from the sorted set

of topics to TUTOR-SUBTOPICS;

6. TUTOR-SUBTOPICS sorts the child topics of SEARCH EXPRESSION, and pass the

unit topics, SIMPLE SEARCH EXPRESSION and COMPOUND SEARCH EXPRESSION,

one by one, to the discussing module by calling procedure T-DISCUSS;

7. T-DELIVER passes the third topic, ONE TABLE RETRIEVAL, from the sorted set

of topics to TUTOR-SUBTOPICS;

8. TUTOR-SUBTOPICS sorts the child topics of ONE TABLE RETRIEVAL, and pass the

unit topics, UNCONDITIONAL TABLE RETRIEVAL, ONE TABLE SIMPLE RETRIEVAL,

and ONE TABLE COMPOUND RETRIEVAL, one by one, to the discussing module

by calling procedure T-DISCUSS.

CHAPTER 5

STUDENT KNOWLEDGE REPRESENTATION

The student model (SM) in a Knowledge-Based Tutoring System (KBTS) contains

information about the student's mastery of the domain subject (i.e., what materials

are known and unknown by the student). Unlike other tutoring systems in which a

student model is built on the top of the domain knowledge base DKB, our student

model is created based on the topic tree and the precedence relations among the

topics. In this chapter, we address three major issues regarding the design and

applications of the student model:

1. how a student model is formulated;

2. how a student model is created by the system; and

3. how a student model is used to help the system to select a new topic for a

student to study.

5.1 Knowledge Status Tree

In SQL—TUTOR, we use a knowledge status tree, which is obtained by attaching

the knowledge status to the topics of a topic tree, to represent the knowledge status

of a student. Therefore, a knowledge status tree is a student model in our system.

Formally, a knowledge status tree can be defined as follows:

Definition 13 A knowledge status tree is a topic tree with each topic T associated

with a bipartite ks(T) = (Si, S2) called the knowledge status of the topic, where

e 10,11 is a binary number and 0 < 82 < 1 is a decimal number. ❑

The status of a knowledge status tree indicates the system's belief about the

mastery degrees of a student to the subject materials. To be more specific, the

82

SCR (1,0.5)UOR
(1,1)

UR (1,0.5)

UMR
(0,1)

CR (0,0.4)

CCR(0,0.333)

	

C 	 V	 0,E,

	

(1,1) 	 (1,1)

83

student's mastery of the subject materials that are related to a topic T is measure

by two factors, the S i and 82 values of topic T. The Si value of T, denoted as S1 (T),

reflects the student's mastery level to the content of topic T itself. If the system

believes that the student has mastered the content of the topic, it assigns S i (T) = 1;

otherwise, it assigns 81(T) = 0.

The S2 value of topic T, denoted as S2 (T), reflects the student's mastery of the
.subtopics of T. It is defined as S2 (T) = (E v=1. M))

, where each T. 1 < i < j and j

is the number of the unit subtopics of T, is a unit subtopic of T. This definition of

S2 value has the property that if the student has mastered all the unit subtopics of

topic T, then S2 (T) = 1; if the student has not mastered any unit subtopic of topic

T, then S2(T) 0; if the student has mastered some unit subtopics of topic T, then

0 < S2 (T) < 1.

Figure 5.1 shows a knowledge status tree. This tree contains the information

about the student's mastery of the topic QT and its subtopics. Some of the infor-

mation we know from the tree includes:

QT (0,0.6)

cr SSE 	 0.. OSR 	 CSE....,. OCR 	 MCR, 	
.. 	

(0,1)...•-1(1,15'.. .,, (0,1) .. ,.. 11(0,1)
. 	 •

....... ..

Figure 5.1 A Knowledge Status Tree

,,,, , , , ,, , , , , ,,, , , ,, • • 	 (1 , 1) 	 •

• the student has not mastered topic QT (Si (QT) 0), but mastered some of its

subtopics (S2(QT) = 0.6);

84

• the student has mastered the content of BC (S1 (BC) = 1) and the contents of

all its subtopics (S2(BC) = 1);

• the student has mastered topic UR (Si (UR) = 1) and part of its subtopics (S2 (UR.)

= 0.5).

5.2 Creation of Knowledge Status Tree

Given a topic tree, creating a knowledge status tree means to determine the

knowledge status for each topic in the topic tree. In order to determine the

knowledge status of a topic T, we can associate a set of relevant questions with the

topic, pose the questions to the student, and then examine the result of the test. If

the student can pass the test associated with T, then assign S1(T) 1; otherwise,

assign Si (T) = 0. Once the S1 values for all the topics have been determined, we can

calculate the S2 values in a bottom-up fashion, because according to its definition,

the S2 value for a unit topic is always 1 and for a non-unit topic is the average of

the Si values of its unit subtopics.

However, since asking a student to take a test on every topic of a course is time

consuming and it is painful for many students who have to take lots of tests in order

to use a tutoring system, this approach is impractical in many cases. Furthermore,

a student can easily get frustrated and lose confidence if he fails a large number of

tests. (this is especially true for the beginners) Therefore, we want to cut the number

of tests taken by the student as many as possible.

Our method for cutting the number of tests is based on the following two

principles:

1. if topic Ti is a precedence of topic T2 and a student has failed the test on

T1 , then the student should also fail the test on 7'2, and therefore, it is not

necessary for him to take the test on T2 (or the test on T2 can be bypassed).

85

2. if topic T1 is a precedence of topic T2 and a student has passed the test on

T2 , then the student should also pass the test on T 1 , and therefore, it is not

necessary for him to take the test on T1 (or the test on T1 can be bypassed).

As an application of the principles, consider the topics C and E in the topic tree

shown by Figure 5.1. If a student can not pass the test associated with the topic C,

then the system can conclude that he can not pass the test associated with the topic

E either, because the topic C is a precedence of the topic E. Therefore, the system

can assign S 1 (E) = 0 without asking the student to take the test on the topic E. On

the other hand, if the student can pass the test associated with the topic E, then the

system can conclude that he should be able to pass the test associated with the topic

C also because the topic C is a precedence of the topic E. Therefore, the system can

assign Si (C) = 1 without asking the student to take the test on the topic C.

A closer study reveals that the number of the tests which can be cut varies

from topics to topics. For instance, for the unit topics in the topic tree shown in

Figure 5.1, the topics E, SSE, OSR, CSE, OCR, and MCR can be bypassed if the student

fails the test on the topic C, while a failed test on the topic CSE can only cut the

tests on the topics OCR and MCR. Similarly, the topics CSE, SSE, E, C, and V can be

bypassed if the student can pass the test on the topic OCR or NCR, but a passed test

on the topic E can only cut the tests on the topics C and V.

The relationship between a topic T and those topics whose tests can be

bypassed due to a test on T can be modeled by a graph called bypass graph. In a

bypass graph, each node corresponds to a topic, and the nodes are connected by

the precedence relations as we do in a TAG. Associated with each node is a pair of

numbers, called the F value and the P value of the topic. The F value of a topic T,

denoted as F(T), is defined as the number of the tests that can be bypassed if the

student has not mastered topic T (i.e., Si (71) = 0), and the P of a topic T, denoted

as P(T), is defined as the number of tests that can be bypassed if the student has

86

mastered the topic T (i.e., 81 (T) = 1). Therefore, for the knowledge status tree

shown in Figure 5.1, we have F(C) = 6; F(CSE) = 2; P(OCR) = 5; and P(E) = 2. In

a bypass graph, if there is a path from the topic T 1 to the topic T2 then T1 (T2) can

be bypassed by a passed (failed) test on T2 (T1).

Figure 5.2 shows the bypass graph for the topics in Figure 5.1.

C (6,0) . 	 OSR (0,4)

o E (5,2)

V (6,0)

0- SSE (4,3)

CSE (2,4)

OCR (0,5)

MCR (0,5)

Figure 5.2 The Bypass Graph for the Topics in Figure 5.1

If we use T1 —4 T2 to denote that topic Tl should be selected before topic T2 ,

then the rules used by the system to select the topics can be written as follows:

1. if max(F(Ti), P(T1)) > max(F(T2), P(T2)), then Ti -4 T2 .

2. if (F(Ti) + P(Ti)) > (F(T2) + P(T2)), then T1 —+ T2.

When these rules are applied to the bypass graph shown in Figure 5.2, the

system will generate this sequence of the topics, (C, V) -4, E -4 (OCR, MCR) SSE —4

CSE —+ OSR, and test these topics by their orders in the sequence. Topics enclosed by

a pair of parenthesis can be selected randomly. Randomly selected topics have the

same priority.

When the topics are selected by the above rules, their F values and P values

are treated equally, that is, F values and P values have the same contributions to the

selections. However, this is not the best strategy in some situations. For instance,

for a beginner who tends to fails most of the tests instead of passing the tests, the

F value of a topic should have more contribution to the topic selection decisions

than the corresponding P value, because a failure of a test occurs more often than

87

a success. This problem can be resolved by assigning the different weights, wp and

wp, to the F and P values of a topic. Accordingly, we can rewrite the topic selection

rules as follows:

1'. if max(wp • F(T1), Wp • P(T1)) > max(wF F(T2), Wp • P(T2)) then T1 	T2.

2'. if (wp • F(T1) wp - P(T1)) > (wp • F(T2) wp - P(T2)), then Ti 	 T2.

If Wp = Wp = 1, then Rule 1' and Rule 1, Rule 2' and Rule 2 are the same.

When wp 1 and Wp = 0, the above selection rules are of the same form and can

be replaced by Rule 2' itself.

1'. if F(T1) > F(T2), then 	 T2.

2'. if F(T1) > F(T2), then T1 -4 T2.

If the selections of the topics are based on this rule, then they are only

dependent on the F values of the topics. This will result in the topic sequence

(C, V) 	 E -4 SSE -+ CSE 	 (OSR, OCR, MCR) from the topics shown in Figure 5.2.

5.3 Topic Selection during Planning Phase

In this section, we discuss how to select a new topic for the student to study based

on the student model (knowledge status tree). This differs from the discussion of the

previous section in which our concern is to cut the number of the tests taken by the

student so we can build a student model efficiently.

As we discussed in Section 2.3, the first phase of a communication cycle is the

planning phase. During this phase, a new topic is selected for a student to study

either by the system (passive mode) or by the student (active mode). If the topic

is selected by the system, the first step is to access the student model in the system

to find all the unknown topics of the student and the relationships among these

unknown topics. This is done by the Planning Module as described below:

88

1. the Student Status Analyst looks up the knowledge status tree, marks all the

topics whose Si values are less than 1, and puts them into the Student Unknown

Buffer;

2. by consult the curriculum knowledge base (CKB) of the system, the Knowledge

Relationship Analyst constructs a Unknown Hierarchy as shown by Figure 5.3

which contains the topic-subtopic and precedence relations among the unknown

topics.

QT

UR 	 CR

UMR 	 SCR 	 CCR

OSR 	 OCR MCR

Figure 5.3 A Unknown Hierarchy

3. the Topic Extractor selects a topic from the Unknown Hierarchy and passes

it to the Topic Analyst. The selection of the topics are determined by the

pedagogical rules stored in the pedagogical knowledge base PKB (see the

discussion followed).

4. the Topic Analyst applies the TAG operator STUDY (which is discussed in

Section 4.3.2) to each of the topics passed to generate a learning graph, and

sends the learning graph to the Curriculum Delivery.

5. the Curriculum Delivery applies the traversal algorithm discussed in Section

4.4 to traverse the learning graph, and pass the topics currently visited to the

Discussing Module.

89

In the step 3 of the above procedure, a topic is selected from the Unknown

Hierarchy by the Topic Extractor based on the pedagogical rules stored in the

system's pedagogical knowledge base PKB. Currently, three rules are stored there

that are related to this type of selection:

1. if P(Ti, T2), then Ti 	T2. (if topic T1 is a precedence of topic T2, T1 is selected

to study before T2)

2. if S(Ti, T2), then T1 -+ T2. (if topic T1 is a subtopic of topic T2, T1 is selected

to study before T2)

3. if S2(T1) > 82(T2), then T1 ---+ T2. (if the student has the better mastery on

the subtopics of T1 than the subtopics of T2, Ti is selected to study before T2)

When these rules are applied to the Unknown Hierarchy shown in Figure 5.3,

we get the following outcomes:

1. UR -4 CR -4 QT 	 S (UR, QT)

S (CR, QT)

S2(UR) > S2(CR)

2. UMR -4 UR, 	 S(UMR, UR.)

3. SCR -4 MCR -4 CR 	 S(SCR, CR)

S(MCR, CR)

P(SCR, MCR)

4. OSR -4 SR 	 S(OSR, SR)

5. (OCR, MCR) 	 CCR	 S(OcR, CCR)

S(mCR, CCR)

Therefore, the sequence of the topics sent to the Discussing Module is

UMR --4 UR, 	 OSR -4 SCR --4 (OCR, MCR) 	 CCR -+ CR -4 QT.

CHAPTER 6

DECLARATIVE DOMAIN KNOWLEDGE REPRESENTATION

The domain knowledge, which is also called the subject domain, of a knowledge

based tutoring system (KBTS) consists of the subject materials from a course. This

is the target knowledge that a tutoring system intends to teach its students and

can be categorized into either declarative knowledge or procedural knowledge. The

declarative domain knowledge can be expressed as declarative statements (such as

definitions and descriptions of the various domain concepts) and stored as symbolic

structures (such as semantic networks and frames) which are accessible by general

procedures.

In this chapter, we discuss how to represent the declarative domain knowledge

in a KBTS so that

• the subject materials can be presented to the students effectively; and

• various questions raised by the students about the subject materials can be

answered efficiently.

The representation of the procedural domain knowledge in a tutoring system

will be discussed in Chapter 8.

6.1 Content of a Topic

In SQL—TUTOR, the knowledge about SQL is stored in the domain knowledge base

DKB. Recall that in Chapter 3, we have defined a topic T in a tutoring system as

a bipartite T = (NT , CT), where NT and CT are the name and the content of T,

respectively. For each topic T in the system, there is a node in the node pool NP

which contains a pointer called TOPIC pointing to the subject material associated

with T.

90

91

The content of a topic is also called the document of that topic. Formally, a

document can be defined as follows:

Definition 14 The document of a topic T = (NT, CT), denoted as D(T), is the

content of the topic, that is, D(T) = CT. 0

In our system, the document of topic T is made of three parts:

1. Cs — a set of domain concepts associated with the topic T;

2. Cx — the context of the topic which describes the relationships among a group

of domain concepts; and

3. Ca — a set of of auxiliary materials of the topic T which include examples,

92

A topic T may cover several concepts in its domain and thus contains the

subject materials for all of them. These materials are stored in the concept set Cs

in the document associated with T. For instance, the document of topic SIMPLE

SEARCH EXPRESSION in SQL—TUTOR contains the subject materials for three SQL

concepts: SIMPLE COMPARISON, RELATIONAL OPERATOR and PRECEDENCE ORDER. We

will discuss the design of the concept set of a document in Section 6.2.

A set of domain concepts can be related to one another. The knowledge about

the relationships among the domain concepts is represented by the contexts of the

documents. The context of a document can be used by a tutoring system to answer

the student's questions regarding the relationships among the concepts. We will

discuss the design of the context of a document in Section 6.3.

The examples in a document have two applications during a discussing phase:

1. they can be a part of a lecture presented to the student by the system. During

a discussing phase, the Domain Knowledge Extractor receives a topic from the

planning module, uses the topic as the key to retrieve the document associated

with the topic from the domain knowledge base DKB, and puts the various

parts of the documents, including the examples, in the Subject Content Buffer

to allow the Lecture Generator to generate a lecture (see Figure 2.5);

2. they can also be shown to the student at his request during a discussing phase.

The purpose of associating a set of working problems WD and a set of quizzes

QD with a document is to allow the system to be able to pose the appropriate

exercises and quizzes to the students during an evaluating phase. When a topic

is passed to the evaluating module from the discussing module, the Evaluation

Generator will use this topic as the key to retrieve the working problems and quizzes

from the DKB and put them in the Problem Buffer (see Figure 2.6). The Problem

93

Descriptor poses first the working problems to the student for the practice purpose,

and then poses the quizzes to test the student performance.

6.2 The Representation of Concept

As we have introduced in the previous section, part of the declarative knowledge in

SQL—TUTOR is stored in the concept set and the context of a document. In this

section, we first examine the two aspects of the declarative knowledge, then discuss

how to represent the concepts in a document.

6.2.1 Two Forms of Declarative Knowledge

Declarative knowledge can be represented by two types of forms. The first type of the

forms uses a natural language to describe concepts and their relationships. English,

French, German, and Chinese are among the well known natural languages. We call

this form of knowledge the natural form representation of the knowledge. Examples

of this type of representations drawn from algebra, physics, and SQL courses are

given below.

The absolute value of a real number is its distance from zero on the
number line. The absolute value is never negative (algebra).

Whenever there is a net force F acts on an object, it produces an
acceleration a in the direction of the force which is proportional to the
magnitude of the force and inversely proportional to the mass of the
object m (physics).

The SELECT statement is used to retrieve information from a database.
This is the most frequently used statement in SQL. (SQL)

The second form of the representation uses an abstract language to describe

concepts and their relationships. Typical abstract languages include logical expressions,

mathematical formula, tables, graphs, and other formal descriptions such as the

Backus Normal Form (BNF). We call this form of knowledge the abstract form

representation of knowledge. For example, Newton's second law and the syntax of

94

SQL SELECT statement can be expressed by the following mathematical and BNF

formula, respectively.

1. a = 	 -E-•,	 F = ma;

2. select < column_list >
from < table_list >
where < search_condition >

Since the abstract representation uses the formal notations for describing

domain knowledge, it is often necessary to attach natural language explanations to

the formal notations to help people understand their meanings. Examples of this

type of abstract notations with natural explanations are shown below:

1. a = 	 ±1 .rn , a is proportional to F and inversely proportional to m;

2. F = ma; F is equal to the product of a and m.

6.2.2 Components of a Concept

Formally, a concept in the concept set of a document can be defined as follows:

Definition 15 A concept is a quadruple C =	 f), where

1. C, is the name of the concept;

2. Cd is the description of the concept;

3. Cs is the supplement material associated with the concept; and

4. cif is a set of formal notations associated with the concept and their natural

explanations. ❑

The first element of a concept is its name C,,, which must be unique for each

concept throughout the system. DATABASE and TABLE are two examples of the concept

names in SQL—TUTOR. The second element of a concept is its description Cd, which

95

is a natural description of the concept (such as those shown in the previous section).

The third element of a concept is its supplement material C8 , which provides either

additional information about the concept for refining the second element, or another

form of natural description for the concept. In the latter case, the supplement

part serves as another perspective of the concept. For example, given the following

description about the concept JOIN in SQL:

JOIN is a relational operation which retrieves data from two or more
tables.

We may associate the following supplement to it to refine the description:

The data retrieved by JOIN are constrained by the join condition.

We may also associate the following supplement to it to provide another perspective

for the concept:

JOIN is a relational operation which retrieves a subset of the Cartesian
product of two or more tables.

The fourth element of a concept is a set of formal notations and their natural

explanations Cf . For instance, we can associate the following formal notation and

natural explanation to relational operation JOIN:

T1 XI< join condition> T2	 Select all combinations of tables T1 and T2 that satisfy

the join condition

6.2.3 Concept List

In our system, the domain concepts are linked together by the concept lists. The

system maintains a linked list (the system concept list) which contains all the

concepts in the subject domain. Each topic also has a concept list which is a part of

the system concept list and contains all the concepts in the content of the topic. A

node in a concept list consists of four fields:

96

1. LABEL - the label of the topic of which the concept is a content (e.g., QT, BC

and CR).

2. CONCEPT - the name of the concept (e.g., SIMPLE COMPARISON, JOIN).

3.NEXT_CONCEPT_IN_SYSTEM - a pointer pointing the next node in the system

concept list.

4.NEXT_CONCEPT_INJOC - a pointer pointing the next concept which is in the

same document as this node.

Figure 6.2 shows a node pool (which is a part of the curriculum knowledge

base), a set of topics, and the concept lists associated with the concepts (which are

parts of the domain knowledge base).

The following functions are used for accessing information stored in the

documents and concept lists.

1. FIND_DOC (C , TAG) - Return a pointer pointing to the document which contains

the concept C.

FIND_DOC (C , TAG)
{

for (1=1; i<=TAG.Length; i++) {
p = TAG.NP[i].TOPIC->Cs;
tpc = TAG.NP[i].LABEL;
while (p != NULL && p->TOPIC == tpc)

if (p->CONCEPT == C)
return TAG.NP[i].TOPIC;

else
p = p->NEXT_CONCEPT_IN_DOC;

return NULL;
}

2. IS_IN_DOC (C ,T , TAG) - If concept C is a domain concept defined in the

document of topic T, return 1; return 0 otherwise.

Figure 6.2 Node Pool, Topics and Concept Lists

SIMPLE
SEARCH

EXPRESSION

CONDITIONAL
RETRIEVAL NAME

MULTI-TABLE
COMPOUND
RETRIEVAL

TOPIC

CONCEPT

SSE

MCR

JOIN
LOGICAL
OPERATOR

CSR

CONDITIONAL

RETRIEVAL
SIMPLE

RETRIEVAL

SIMPLE
SEARCH

EXPRESSION

ONE TABLE
SIMPLE
RETRIEVAL

COMPOUND
RETRIEVAL

COMPOUND
SEARCH

EXPRESSION

ONE TABLE
COMPOUND
RETRIEVAL

MULTI-TABLE
COMPOUND
RETRIEVAL

CR SCR SSE OSR CCR CSE OCR MCR

• • • II • • • • • • • • • e e 	

/ -, __....../

NAME

LABEL

TOPIC

V
COMPOUND

SEARCH
EXPRESSION

CONCEPT SET

CONTEXT

AUXILIARY MATERIALS

ONE TABLE
SIMPLE
RETRIEVAL

V
CR CR SSE SSE

WHERE SEARCH SIMPLE RELATIONAL
CLAUSE CONDITION COMPARISO OPERATOR

--1(

T_CONCEPT_IN_SYSTEM

T_CONCEPT_IN DOC

PRECEDENCE
RULE-1

OSR
	

OSR

COLUMN
	

RESULT
LIST
	

TABLE

CSR

PRECEDENCE
RULE-2

98

IS_IN_DOC(C,TAG)
* C is a concept, T is a pointer pointing to a document *\
{

for (i=1; i<=TAG.Length; i++) 	 * find the document of T *\
if (TAG NP [i] . NAME == T) {

Tp = TAG . NP [i] . TOPIC ;
break;

}

Dp = FIND_DOC(C,TAG); 	 * find the document containing C *\
return (Tp==Dp ? 1:0);

}

3. IS_DOMAIN_CONCEPT(C , T, TAG) — If concept C is in the domain of topic T, return

1; return 0 otherwise.

IS_DOMAIN_CONCEPT(C,T,TAG)
{

if (IS_IN_DOC(C,T,TAG))
return 1;

else {
let i = Index(T,TAG.NP);
for (j=1; j<=TAG.Length; j++) {

T1 = LABEL(j,TAG);
if (IS_SUBTOPIC(j,i,TAG) && IS_IN_DOC(C,T1,TAG))

return 1;
}

return 0;
}

6.3 Context Network

The DESCRIPTION and SUPPLEMENT sections of a document contain the definitions,

descriptions, and explanations for the various domain concepts, whereas the

CONTEXT section of a document describes the relationships among the domain

concepts. The knowledge represented by the context of a document allows a tutoring

system to answer various questions raised by the students during a discussing phase.

In this section, we discuss the design of the context. In the next chapter, we will

99

introduce how a tutoring system can use the information in the contexts to answer

the student's questions.

We have designed a type of semantic network, called the Context Network, to

represent the contexts of the documents. A context network consists of a set of nodes

and a set of links connecting the nodes. Each node in a context network corresponds

to a concept and there are two types of them: subject nodes and prerequisite nodes.

A subject node (or s-node) corresponds to a concept to be defined by the system.

Examples of the subject nodes in SQL-TUTOR include DATABASE, TABLE and SQL.

If the concept of an s-node in the context of a document is defined by another

document, this s-node is also called a reference node (or r-node). A prerequisite node

(or p-node) in a context network corresponds to a concept that should be known

by the student before he takes the course. Examples of prerequisite nodes in SQL-

TUTOR course include DATA, INFORMATION and SOFTWARE.

Each link in a context network represents a relationship between the two

domain concepts connected by it and has a label describing the relationship. We

use link-label(Ni,Ni,Cx) to denote that there is a link with label link-label

connecting nodes Ni and Nj in the context network C,,. There are two types of links

in a context network:

• relational link (r-link) - connecting a subject (source) and an object (target);

• descriptive link (d-link) - connecting an object (source) and a prepositional

object (target).

As an example, consider the following description about the relationship

between the concepts database and database management system: A database

management system manages data in a database. This description can be repre-

sented by the context network in Figure 6.3. 1 In this context network, there are

1 In defining a context network, each node can have at most one d-link leaving from it.

100

two s-nodes: DATABASE MANAGEMENT SYSTEM and DATABASE; one p-node: DATA; one

relational link: MANAGE (DATABASE MANAGEMENT SYSTEM, DATA) ; and one descriptive

TAT(T1ATA TIATAPACVl

101

6.4 Examples of Documents

In this section, we present the sample documents from SQL—TUTOR. 3 The first

document is associated with the topic RELATIONAL DATA MODEL whose context

network includes six subject nodes (RELATIONAL DATABASE, TABLE, ROW, COLUMN,

TABLE NAME, TABLE HEADING, TABLE BODY, COLUMN NAME, DOMAIN) and two reference

nodes (CHARACTER STRING and DATA TYPE). The second document is associated with

the topic RELATIONAL OPERATIONS whose context network includes four subject

nodes (RELATIONAL OPERATION, SELECTION, PROJECTION, JOIN), one prerequisite

node (DATA), and three reference nodes (TABLE, ROW, COLUMN).

6.4.1 Example 1: RELATIONAL DATA MODEL

CONCEPT SET (Cs)

CONCEPT 1

Name: RELATIONAL DATABASE

Description: A RELATIONAL DATABASE is a collection of two dimensional
structures called tables.

Supplement: A relational database contains data organized in files called
tables.

Notation: [

CONCEPT 2

Name: TABLE

Description: A TABLE contains information about objects and relationships
among objects and has a unique name within the database.

Supplement: The data in a table is organized in rows and columns. The
structure of a table is determined by a table schema. Each table
in a database usually contains a different kind of information.

Notation: [

CONCEPT 3

3 The designs of the examples inside the documents will be discussed in Chapter 8.

Name: ROW

Description: A ROW of a table contains a single item of information about
one object.

Supplement: A row contains information about one of the objects that
the table describes.

CONCEPT 4

Name: COLUMN

Description: A COLUMN of a table contains information about one
property of the objects.

Supplement: Each column has a name which is used to refer to the column
in the table.

102

Figure 6.4 Context of RELATIONAL DATA MODEL

6.4.2 Example 2: RELATIONAL OPERATIONS

Concept Set (CO
CONCEPT 1

Name: RELATIONAL OPERATION

Description: A RELATIONAL OPERATION is used to retrieve data from
tables in a database.

4A r-node in a context network is represented by a solid rectangle with a slash symbol
at the lower right corner.

103

Supplement: The relational data model supports three basic relational
operations, SELECTION, PROJECTION, and JOIN on tables.

CONCEPT 2

Name: SELECTION

Description: SELECTION is an operation which picks out only certain
rows from a table.

Supplement: The selection operation selects a subset of the rows from a
table that satisfy the selection condition.

Notation:

Cr<selection condition> (T) 	 Select rows from table T that satisfy
the selection condition

CONCEPT 3

Name: PROJECTION

Description: PROJECTION is an operation which picks out only
certain columns from a table.

Supplement: The projection operation selects one or more columns from
a table.

Notation:

IV<column ust>(T) 	 Produce a new table with only columns
from the column list

CONCEPT 4

Name: JOIN

Description: JOIN is an operation which produces all combinations
from two tables that satisfy the join condition.

Supplement: To join two tables T1 and T2, you must make sure that
one column in each table has the same type of data.

Notation:

T1 >1<join condition> T2	 Select all combinations from tables T1 and
T2 that satisfy the join condition

Context (Cx):

104

type-of

1	 1 type-of
SELECTION PROJECTION

type-of
RELATIONAL OPERATION JOINNI"'" •

combinesretrieve retrieve

. 	DATA

retrieve

ROW A co.,' ;

I fromI from 1 from
17

TABLE

Figure 6.5 Context of RELATIONAL OPERATION

6.4.3 Internal Representation of Context

The context of a document is represented by a record consisting of an integer (SIZE)

and two arrays (CONX_ARRAY and DIST). The CONX_ARRAY which is the internal repre-

sentation of the context network whose size (the number of records) is defined by

the value of SIZE. Each element in the CONX_ARRAY is a record with six fields:

1. LINK_NAME — the label of the link;

2. SOURCE — the name of the source concept;

3. TARGET — the name of the target concept;

4. LINK_TYPE — the type of the link (r-link or d-link);

5. SOURCE_TYPE — the type of the source concept (s-node, r-node or p-node); and

6. TARGET_TYPE — the type of the target concept (s-node, r-node or p-node).

Figure 6.6 shows the CONX_ARRAY associated with topic RELATIONAL DATA

MODEL (cf. Figure 6.4). It also depicts the relationships among the node pool of a

TAG, the topics of the TAG and the contexts of the topics.

Function IS_IN_CONTEXT (C , Cx) is used to determine if concept C corresponds

to a node in the context Cx.

Figure 6.6 A Context and its Context Array

IS_IN_CONTEXT(C,Cx)
{

for (i=1; i<=Cx.size; i++)
if (C == Cx.CONLARRAY[i].SOURCE 11 C == Cx.CONX_ARRAY[i].TARGET)

return 1;
return 0;

}

The third item of a context record is an array called the distance matrix, which

contains the distances between each pair of the nodes in the context. The distance

between the two nodes is defined as the length of the shortest path between them in

Given a context network Cx, algorithm CONSTRUCT_DIST creates the distance

matrix for the context.

CONSTRUCT_DIST (Cx)
* Create the distance array for context network Cx *\
{

for (each node C in Cx) {
FLAG(C) = 0;
DIST[C,C] = 0;

}

for (each node C in Cx) {
open = {C}; 	 * open is a list of nodes to be explored *\
FLAG(C) = 1;
while (open is not empty) {

X = the first node in open;
remove X from open;
for (each node Y adjacent to X in Cx)

if (FLAG(Y) = 0) {
Cx.DIST[Y,C] = Cx.DIST[X,C] + 1;

107

FLAG(Y) = 1;
open = open + {Y}; 	 * add Y to the end of open *\

}

}

}

}

6.5 The Design of Sample Database

We have designed a sample database called COMPANY in SQL—TUTOR from which

various examples illustrating database concepts can be derived. The sample database

consists of two components: an Enhanced System Catalog (ESC) and five sample

tables. The five sample tables are: EMP, DEPT, PROD, DEPT_LOC, and WORK_ON. A set

of sample data for COMPANY is shown in Figure 6.8.

108

3. the addresses of the definition and reference rules 5 associated with the table

and its columns.

109

Compared with this type of system catalogs, the enhanced system catalog in SQL—

TUTOR contains one more type of information, the content (or semantic meaning)

of each table in the database and each column in a table. Figure 6.9 shows the ESC

in SQL—TUTOR.

6.6 Summary of the Chapter

In this chapter, we discussed how to represent the declarative knowledge in a KBTS.

Our representation schema has the following features:

1. the declarative knowledge base consists of two parts: a set of documents

associated with the topics and the sample database in a system;

2. each document consists of a set of domain concepts, a context, and a group of

auxiliary materials (examples, exercises and quizzes);

3. each concept in the concept set of a document is made of a name, a description,

an optional supplement and an optional formal notation;

4. the context of a document contains the information about the relationships

among the domain concepts.

5. the enhanced system catalog of the sample database can be used by the system

to answer questions from a student, and the sample tables can be used to derive

various examples.

CHAPTER 7

SQL—TUTOR QUESTION ANSWERING MECHANISM

In the previous chapter, we discussed how to represent the domain knowledge in a

knowledge based tutoring system. One strength of our domain knowledge represen-

tation schema comes from its inference capability. With this capability, a tutoring

system can search for the knowledge encoded implicitly in a domain knowledge base

and allow a student to ask various types of questions about the subject matter. In

this chapter, we discuss in detail how SQL—TUTOR answers the questions raised by

the student based on the information stored in the domain knowledge base.

7.1 Types of Questions and Answers

Recall that during a discussing phase, after a student asks a question, the Student

Question Analyst converts the question into an internal format and puts it in the

Question Description Buffer (see Figure 2.5). A student is restricted to ask SQL—

TUTOR any of the following four types of questions about a topic:

1. what-is type. For example, "What is a table?"

2. what-notation type. For example, "What is the notation of the JOIN operator?"

3. what-relationship type. For example, "What is the relationship between a

relational database and a table?"'

4. what-meaning type. For example, "What is the meaning of the table EMP?"

The internal format of a question created by the Student Question Analyst

contains two parts: the type of the question and the concept(s) involved in

1 A yes/no type of question can be converted into a what—relationship type of question.
For example, instead of asking "Is a relational database a collection of tables?" we can
ask, "What is the relationship between a relational database and a table?"

110

111

the question. Table 7.1 shows some examples of questions and their internal

representations. 2 If Q is the question stored in the Question Buffer, then we use

Q .TYPE to refer to the type of the question, Q.OBJ1, Q. OBJ2 and Q. OBJ3 to refer to

the first, second and third objects in the question, respectively.

rT1- 1_ 1 -

The formats of the answer will vary depending on the types of the questions.

Therefore, there are four of them.

7.1.1 Answer Type 1

The answer to a what-is type of question contains the DESCRIPTION and SUPPLEMENT

parts of the concept. For example, if the student asks, "What is a table?" then from

the sample document RELATIONAL DATA MODEL described in the previous chapter,

the answer from SQL—TUTOR will be:

2A what-meaning type of question may ask for the meaning of a table, a column of a
table, a tuple of a table, or a data stored in a column of a table. Therefore, there are four
sub-types of this type of questions.

112

A TABLE contains information about objects and relationships among
objects and has a unique name within the database. (DESCRIPTION)

The data in a table is organized in rows and columns. The structure of a
table is determined by a table schema. Each table in a database usually
contains a different type of information. (SUPPLEMENT)

7.1.2 Answer Type 2

The answer to a what-notation type of question contains the NOTATION part of the

concept. For example, if the student asks, "What is the notation for JOIN operator?"

then from the sample document RELATIONAL DATA MODEL described in the previous

chapter, the answer from SQL-TUTOR will be:

T1 Xl<join condition> T2 	 Select all combinations from tables T1 and
T2 that satisfy the join condition

7.1.3 Answer Type 3

The answer to a what-relationship type of question describes the relationship between

two domain concepts. For instance, if the question raised by a student is, "What is

the relationship between a relational database and a table?" the system will answer:

RELATIONAL DATABASE is -set-of TABLES.

7.1.4 Answer Type 4

The answer to a what-meaning type of question describes the semantic meaning of

an object (a table, column, tuple, or an atomic data) in the sample database. For

example, if the student asks, "What is the meaning of column FNAME in table EMP?"

the system will answer:

Column FNAME of table EMP contains information about employee first
name.

Table 7.2 shows the formats and examples of the answers created by SQL-

TUTOR. The first column of the table lists the type of an answer. The second

113

column lists the kinds of objects contained in the answer. The last column shows

some examples of the answers.

Table 7.2 Answers and Their Internal Representations

The Solution Buffer SBUF in a system is defined as a two-field record: TYPE

and OPTR, where TYPE stores the type of an answer and OPTR is a pointer pointing to

a linked list which contains the objects in the answer. Each node in the linked list

consists of four fields:

1. OBJ — the name of the object (either a concept and a link);

2. LINK_TYPE — the type of a link (either r (r-link) or d (d-link));

3. LINK_DIR — the direction of a link (either f (forward) or b (backward));

4. NEXT — a pointer to the next object in the answer.

Figure 7.1 shows the Solution Buffers corresponding to the third and the last

answers given in Table 7.2.

CSEARCHRSEARCH ANSWER
FORMULATOR

A

• • •
CxkTable n

Table 2

Table 1

SAMPLE DATABASE

Dk

I D2

D1

DOCUMENTS CONTEXT NETWO

1 Utiii
Cx 1

114

	3
	

TABLE
	

part-of r b
	

TABLE BODY
	

set-of r f

TYPE OPTR

	4.4
	

"234-567"
	

MID
	

DEPT

TYPE OPTR

Figure 7.1 The Solution Buffer

7.2 Problem Solver

The Discussing Module of SQL—TUTOR contains a sub-module called the Problem

Solver which governs the construction of an answer for the given question. Once a

question has been added to the Question Description Buffer, the Problem Solver will

be invoked. It constructs an answer and puts the answer into the Solution Buffer.

Figure 7.2 shows the relationship between the Problem Solver and the knowledge

bases in the system.

4SOLUTION

BUFFER

PROBLEM
SOLVER

QUESTION
DESCRIPTION

BUFFER

115

The Problem Solver calls two other procedures during the construction of

an answer. The CSEARCH procedure is used to answer a what-relationship type of

question. It searches the context networks for the relationship between two domain,

constructs a solution path consisting of the node names and link labels from the

context networks, and puts the solution path into the Solution Buffer. We will

discuss the procedure CSEARCH in detail in Section 7.3.

The ANSWER FORMULATOR is in charge of translating the information in the

Solution Buffer into the corresponding natural language description. In the process

of this translation, it may need to retrieve the various parts (DESCRIPTION,

SUPPLEMENT, NOTATION) from the documents by searching the set of document

definitions in the system. If the question is of what-meaning type of question, the

ANSWER -FORMULATOR invokes the RSEARCH procedure to search the pedagogical rules

stored in the pedagogical knowledge base PKB, find the applicable rules to the given

question, and execute the rules to in order ro generate an answer. We will discuss

the design of the ANSWER FORMULATOR and RSEARCH in detail in Sections 7.4 and 7.5,

respectively.

The following algorithm describes the Problem Solver in SQL-TUTOR.

PSOLVER(TAG)
* create a solution path for the question Q in the Question *\
* Description Buffer, put it into the Solution Buffer, call *\
* ANSWER-FORMULATOR to display the solution to the student *\
{

SBUF.TYPE = Q.TYPE;
C1 = Q.OBJ1;
switch (Q.TYPE) {
case (1):
case (2):

SBUF.OPTR->OBJ = C1;
SBUF.OPTR->NEXT = NULL;
break;

case (3) :
C2 = Q.OBJ2;
CSEARCH(C1,C2,TAG,SBUF);

116

break ;
otherwise :

SBUF . OPTR->OBJ = C1;
if (Q . TYPE == 4 . 1) {

SBUF OPTR->NEXT = NULL;
else {

C2 = Q . OBJ2 ;
SBUF . OPTR->NEXT->OBJ = C2;
if (Q . TYPE == 4 . 4)

SBUF . OPTR->NEXT->NEXT->OBJ = Q . OBJ3 ;
SBUF . OPTR->NEXT->NEXT->NEXT = NULL;

else {
SBUF . OPTR->NEXT->NEXT = NULL;

}

}

} 	 /* switch */
ANSWER-FORMULATOR (TAG , SBUF) ;

}

7.3 The Context Searching Algorithm CSEARCH

The Context Searching algorithm CSEARCH takes a question of the form "What is the

relationship between nodes C1 and C2?" and tries to create a solution path from the

starting node C1 to the goal node C2. If such a path can be found (that is, there

is a context containing both Cl and C2), CSEARCH calls another procedure CSEARCH1

to construct a solution path and put it into the Solution Buffer. The following is a

description of the CSEARCH.

CSEARCH (C1 , C2 , TAG , SBUF)
* Construct a solution path from C1 to C2 in TAG and puts it * \
* in the Solution Buffer SBUF *\

D1 = FIND_DOC(C1,TAG); 	 * Find the document *\
Cxl = D1->CONTEXT ; 	 * and context of Cl *\
* if C2 is in the same context as Cl *\
if (IS_IN_CONTEXT(C2,D1))

* construct the solution path *\
SPath = CSEARCH1(Cx1,C1,C2) ;

else { * C2 is not in the context Cx1 *\
D2 = FIND_DOC (C2, TAG) ; 	 * Find the document *\

117

Cx2 = D2->CONTEXT; 	 * and context of C2 *\
* if C1 is in the same context as C2 *\
if (IS_IN_CONTEXT(C1,D2))

* construct the solution path *\
SPath = CSEARCH(Cx2,C1,C2);

else * Cl and C2 are not in the same context *\
SPath = NULL;

}
SBUF = SPath;

}

The solution path constructed by CSEARCH1 is made of the names of nodes and

the labels as well as the directions of the links connecting these nodes. We denote

such a path by [C1,L1(d) ,N1 , L2 (d) , N2 , , Nk , Lk (d) , C2] , where each Ni is a

node name and each L 2 is a link label. The direction of a link is either f (forward

link) or b (backward link). The CSEARCH1 uses the distance matrix associated with

the context to find the shortest path between Cl and C2. It starts from Cl, selects

an adjacent node C of Cl such that C has the shortest distance to C2, adds C and the

link label between Cl and C to the partial solution path, and then starts the search

from C. The algorithm can be described as follows:

CSEARCH1 (Cx , C1 , C2)
* Search the context network Cx to construct a solution path *\
* from C1 to C2 *\
{

MinDist = 10000;
for (each link in Cx of form Ln(C1,C') or Ln(C',C1))

if (C' == C2)
if (Ln(C1,C')) 	 * find forward link from Cl to C2 *\

return ([C1,Ln(f),C2]);
else 	 * find backward link from C1 to C2 *\

return ([C1,Ln(b),C2]);
else

if (DIST[C',C2] < MinDist) {
C= C';
MinDist = DIST[C' ,C2]

}

SPath = CSEARCH1 (C , C2 , Cx) ;

AB C D E F G H I 3 K

0 1 2 3 3 2 3 2 4 3 5

1 0 1 2 2 1 2 1 3 2 4

2 1 0 1 2 2 3 2 4 3 5

3 2 1 0 1 2 2 3 3 4 4

3 2 2 1 0 1 1 2 2 3 3

2 1 2 2 1 0 2 2 3 3 4

3 2 3 2 1 2 0 1 2 1 3

2 1 2 3 2 2 1 0 2 1 3

4 3 4 3 2 3 2 2 0 3 1

3 2 3 4 3 3 1 1 3 0 4

5 4 5 4 3 4 3 3 1 4 0

has_a	 is-set-of
B(2) -1*-- A(3)

is-kind_oi	 is-part_o

A

B

C

is-set_of

F

G

H

I

J

is-part of

EG(0) --7----0)- I 7-7-771117. Khas_a	 nas_a

D

tis-kind_o

F(2)	 H(1)	 J(2)

is-set-of /s-set-of

118

Solution Path: [A,is -set-of(f),B,is-part-of(b),I1,is -set-of(f),G]

Figure 7.3 A Search Graph and a Solution Path

if (Ln(C1,C))
return (append(C1,Ln(f) ,SPath)) ;

else
return (append (C1 , Ln (b) , SPath)) ;

}

As an example, Figure 7.3 shows a search graph generated from the CSEARCH.

The shortest solution path from node A to node G is marked by the bold links. The

numbers besides the nodes are their distances to the goal node G.

7.4 Answer Formulator

After the Problem Solver puts a solution path in the Solution Buffer, the Answer

Formulator will translate the answer from the internal format (solution path) into its

corresponding natural language description so the student can read and understand

it. Besides the information in the Solution Buffer, the Answer Formulator also uses

the DESCRIPTION, SUPPLEMENT and NOTATION parts of a concept in a document.

It may also invoke the RSEARCH procedure to formulate an answer if the question

119

is of a what-meaning question. The following algorithm describes the ANSWER

FORMULATOR.

ANSWER-FORMULATOR (TAG , SBUF)
* formulate an answer from the internal format stored in the *\
* Buffer SBUF and display the answer *\
{

TYPE = SBUF.TYPE;
C = SBUF.OPTR->OBJ
D = FIND_DOC(C,TAG);
switch (TYPE) {

case (1): {
* display the description of concept C in document D *\
DISPLAY_DESC (D,C);
* display the supplement of concept C in document D *\
DISPLAY_SUPP (D,C);
break; }

case (2): {
* display the notation of concept C in document D *\
DISPLAY_NOTA (D,C);
break; }

case (3): {
* translate a solution path to an answer *\
DISPLAY_PATH(C,Cp);
break; }

otherwise:
* search the meaning of an object in sample database *\
RSEARCH(SBUF);

}

}

Procedure DISPLAY_PATH translates a solution path stored in the Solution

Buffer into an answer and display the answer.

DISPLAY_PATH (C ,Cp)
* C is a concept in the Solution Buffer, Cp is a pointer *\
* pointing to the link connecting C and the next node in *\
* the solution buffer *\
{

while (Cp != NULL) {
C' = Cp->NEXT->OBJ; 	 * C' is the next object *\
if (Cp->LINK_DIR = 'f') 	 * if a forward link *\

120

display "C Cp->LINK_NAME Cp->NEXT->OBJ";
else 	 * if a backward link

display "C' Cp->LINK_NAME Cp->NEXT-OBJ";

if (Cp->LINK_TYPE = 'r') 	 * if a r-link *\
C = C';
Cp = Cp->NEXT->NEXT; 	 * get next link *\

}

}

}

For instance, if the solution path stored in the Solution Buffer is [TABLE,

is-part-of (b) , TABLE BODY, is-set-of (f) , ROW], then the answer displayed by

the DISPLAY_PATH is

TABLE BODY is-part-of TABLE; TABLE BODY is-set-of ROW.

7.5 Find the Meaning of an Object: RSEARCH

A student can ask the meanings of four types of objects in the sample database.

These objects are:

1. a table in the sample database (question type 4.1). For example, "What is the

meaning of the table EMP?" In this case, SQL-TUTOR will response with the

kind of information stored in the table (the semantics of the table) by looking

up the Enhanced System Catalog ESC. Therefore, the answer to the above

question will be

"Table EMP contains INFORMATION ABOUT AN EMPLOYEE."

2. a column in a sample table (question type 4.2). For example, "What is the

meaning of the column MID in the table EMP?" In this case, SQL-TUTOR will

response with the kind of information stored in the column (the semantics of

the column) by looking up the ESC. Therefore, the answer for the question

above from the system will be

121

"Column MID of table DEPT contains information about manager's ID number."

3. a tuple of a table in the sample database (question type 4.3). In this case,

SQL—TUTOR will explain the meaning of the tuple to the student by applying

the definition semantic rule (see Section 7.5.1) of the table.

4. a sample data of a column in a table (question type 4.4). In this case, SQL—

TUTOR will response with the semantic meaning of the data item. There are

two possibilities based on the type of the column which contains the selected

data:

(a) If the column is an ordinary one, SQL—TUTOR will just tell the student

that piece of data is an instance of the property represented by the column.

For example, "John is an instance of first name." and "Research is an

instance of department name".

(b) If the column refers to another column in a different table, SQL—TUTOR

will apply some reference rule (see Section 7.5.2) to find the "deeper

meaning" of that piece of data.

7.5.1 Definition Rule

In the relational database model, the relationships among object attributes are

modeled through columns of tables. One column can relate to other columns in

the same table or from different tables. In SQL—TUTOR, the relationships among

columns are governed by two kinds of semantic rules in the pedagogical knowledge

base: definition rules and reference rules. A definition rule is a rule which describes

the meaning of a tuple in one table, whereas a reference rule is a rule which explains

the semantic meaning of a sample data of a column which refers to another column

in a different table.

122

For each table in the sample database COMPANY, there is one definition rule

associated with it. The left-hand side of a definition rule consists of the table

name and a list of parameters, whereas the right-hand side of rule is a template

for generating answers. The number of parameters in the left-hand side should be

equal to the number of columns in the table. When a tuple from the table has

be selected by the student, the associated rule will get fired (activated) and the

parameters in the left-hand side of the rule will be instantiated by the data from the

selected tuple. This instantiation will then be passed to the right-hand of the rule

to cerate an answer.

For example, suppose the definition rule associated with the table DEPT is

IF 	 DEPT(DNUMBER, DNAME, MID, PHONE)

THEN There is a department such that

the department number is DNUMBER,

the department name is DNAME,

the manager's ID number is MID,

and the department phone number is PHONE.

If a student has selected the first tuple from the table DEPT ("5, Research,

234-567, 3366"), then the following instantiations will take place:

• 5 DNUMBER

• Research DNAME

• 234-567 	 MID

• 3366 	 PHONE

Finally, the answer generated by the system will be:

There is a department such that the department number is 5, the
department name is Research, the manager's ID number is 234-567,
and the department phone number is 3366.

123

7.5.2 Reference Rule

A reference rule is used to generate an answer to a student if he has asked a question

about the semantic meaning of a data in a column referring to another column

(foreign key) in a different table. The column which contains the selected data is

called the referring column. Like a definition rule, the left-hand side of a reference

rule may contain parameters which can be instantiated by the data in the sample

database. This instantiation of parameters will then pass to the right-hand side of

the rule to generate an answer.

For example, in the sample database COMPANY, each department has a manager

and the column MID records its manager's ID number, which should be one of the

ID numbers stored in the column ID of the table EMP. This relationship between MID

of DEPT and ID of EMP can be described by the following reference rule (Notice that

the referring column is XID):

IF DEPT (_, DNAME, XID, _), EMP(LNAME,FNAME,XID,_,_,_)

THEN Employee FNAME LNAME is the manager of DNAME department

We have used the underscore _ , a Prolog-like notation, in a parameter list to

denote a dummy parameter, whose actual value will not be included in an answer

and thus has no affect on the final format of the answer.

In Figure 7.4, we can think there exists a matching link between column MID of

table DEPT and column ID of table EMP. If a student has selected data "234-567" in

column MID from table DEPT, then MID will have value 234-567. This value will then

pass to ID column in table EMP because of the matching link between them. Then the

system applies EMP(LNAME,FNAME,234 -567,_,_) and DEPT (_,DNAME,234-567, _) to

match those tuples in the sample database, and yields the following instantiations:

DEPT

5
t-

Research	 t 234-567 3366

4 Administration 234 567 1256

1 Headquarters 45 -789 0234

124

EMP

John Smith 123;456 09-JAN-55 234-567 5

Frank 	 Wong 	
i
1

IFAIMPF475-678

EM B oA

234-567

456-789

08-DEC-45 456-789 5

19-JUL-58 234-567 4

11-NOV-27 - 1

If DEPTLDNAMEX[D, j, EMP(FNAME,LNAME,XID,_,_,J

then EMPLOYEE Frank Wong IS THE MANAGER OF Research DEPARTMENT.

Figure 7.4 The Application of a Reference Rule.

1. {\tt Research} \rightarrow {\tt Dname}

2. {\tt Wong} \rightarrow {\tt LNAME}

3. {\tt Frank} \rightarrow {\tt FNAME}

Therefore, the answer generated is "Employee Frank Wong is the manager of

Research department."

7.5.3 RSEARCH Procedure

The procedure RSEARCH converts the internal format of an answer stored in the

Solution Buffer into its natural language description and displays it to the student.

During this process, it may apply definition rule or reference rule to generate the

answer.

RSEARCH(SBUF)

* TBL is the table name in answer *\
TBL = SBUF.OPTR->OBJ;
switch (SBUF->TYPE) {

case (4.1) {
search the Enhanced System Catalog ESC for table TBL;
T_CONT = Content of TBL found in ESC;
display "Table TBL contains information about T_CONT";
break; }

case (4.2) {
* CLM is the column name *\
CLM = SBUF.OPTR->NEXT->OBJ;
search the Enhanced System Catalog ESC for TBL and CLM;
C_CONT = Content of CLM in table TBL found in ESC;
display "Column CLM in Table TBL contains information

about C_CONT";
break; }

case (4.3) {
* TPL is a tuple from sample database *\
TPL = SBUF.OPTR->NEXT->OBJ;
apply the definition rule for table TBL to tuple TPL;
display the right-hand side of the definition rule;
break; }

case (4.4) {
* DATA is a data from sample database *\
DATA = SBUF.OPTR->NEXT->OBJ;
CLM = referring column in table TBL;
if (CLM is a foreign key in table T') {

apply the reference rule for TBL and T' to DATA;
display the right-hand side of the reference rule; }

else
display "DATA is an instance of Column CLM in

Table TBL"; }

125

CHAPTER 8

REPRESENTING THE KNOWLEDGE OF WRITING SQL QUERIES

The previous two chapters focus on the specification of instruction — the DESCRIPTION,

SUPPLEMENT, NOTATIONS and CONTEXT aspects of a document. In this chapter,

we discuss how to teach problem solving skills to a student, using writing SQL

queries as example. Since each problem solving skill is taught through various

concrete examples, this approach is called Teaching By The Example.

8.1 The Design of an Example

Many researchers suggest that the most obvious difference between an expert and a

novice is that the expert, who has more knowledge than the novice, also organizes

the knowledge more effectively than the novice does. Because of this knowledge

organization, an expert can rapidly evoke the particular items relevant to the problem

at hand [16, 37]. Many research has been done to determine the organization in which

the expert's knowledge is held in the long-term memory. Evidences from the areas

of understanding story, learning text editor, and learning programming language

support the assumption that the expert has built up large libraries of stereotypical

solutions (or canned solutions) for problems as well as strategies for coordinating

and decomposing them [3, 62]. This kind of stereotypical solutions for problems is

called the chunk of knowledge [37]. It has been characterized in terms of goals and

plans, and represented by frames [63] and rules [33, 52].

In SQL—TUTOR, the knowledge chunk for writing SQL queries is stored in the

example associated with a document (remember that an example is an element of

a document). Each example is used to guide the students to solve one type of the

domain problems and contains

• a set of text descriptions of the problem;

126

127

• a graphical representation (Semantic Query Graph) of the domain problem

which can be used to derive solutions for the problem and generate meaningful

feedbacks to the student.

In the following sections, we will discuss different parts of an example and their

applications in a tutoring process.

8.1.1 Problem Description

The set of problem descriptions associated with one example describe the same

problem from different perspectives. By providing descriptions of different levels,

they help the student understand a problem correctly at the first place. As an

example, consider the following three descriptions for one problem:

1. Find out the birthday and the social security number of 'John Smith'. (Description

D1)

2. Retrieve the birthday and the social security number from the employee whose

name is 'John Smith'. (Description D2)

3. Retrieve the birthday and the social security number from the employee whose

first name is 'John' and last name is 'Smith'. (Description D 3)

Compared with the other two descriptions, description D 1 is the most general

one. Such a description is independent to the design of a specific database schema.

For the most people, it is also the easiest one to understand. Description D2 is more

specific than D 1 , because it states one fact (i.e., 'John Smith' is an employee) which

was not mentioned explicitly in D 1 . Description D3 is the most specific one, because

it adds another fact (i.e., 'John' is a first name and 'Smith' is a last name) to its

description. In fact, D3 is very close to an SQL query. Such a description depends

on the fact that the NAME field of an employee is composite which consists of two

subfields, first name and last name.

128

In SQL—TUTOR, we typically associate three or four descriptions to each

problem in an example, organize and display them from the most general one to

the most specific one to the students, and hope that the students can understand

the problem by studying these descriptions.

8.L2 Semantic Query Graph

A Semantic Query Graph (SQG) is a graph which represents a domain problem by

its nodes and links. Each node in an SQG corresponds to one object in an SQL

query and consists of three fields:

• index: a unique integer identifying the node. We usually use the index of a

node, index, to denote the node.

• name: the name of the node, which can be the name of a table, a column, a

constant, or an operator in the SQL query. Sometimes, we also use the index

and name pair (index,name) to denote a node.

• type: the type of the node. There are four of them:

1. table node (T-node): if the node represents a table in the sample database;

2. field node (F-node): if the node represents a column in a table;

3. constant node (C-node): if the node represents an SQL constant; and

4. operator node (0-node): if the node represents an SQL operator.

An 0-node in an SQG can be further categorized into a relational 0-node or

a logical 0-node. A relational 0-node corresponds to an SQL relational operator

(=, >, <, >=, and <=), whereas a logical 0-node corresponds to an SQL logical

operator (and and or).

129

A link in an SQG can be either an attribute link, if it connects a T-node and

a F-node, or an operation link, if it connects two 0-nodes, or one 0-node and one

F-node. An SQG should satisfy the following properties:

• Every F-node has one outgoing link to either a T-node or an 0-node, and/or

one incoming link from a T-node.

• Every C-node has at least one outgoing link to an 0-node.

• Every 0-node has two incoming links. For a relational 0-node, one link is from

an F-node, and another link is from either an F-node or a C-node. For a logical

0-node, both links are from 0-nodes.

• Every but one 0-node has one outgoing link to a logical 0-node.

Figure 8.1 shows an SQG which consists of one T-node (3,EMP); four F-nodes

(1,BDATE), (2,SSN), (5,LNAME), (6,FNAME); two C-nodes (4,Smith), (7,John);

and three 0-nodes (8 ,=) , (9 , =) , (10,AND). Note that the last 0-node, (10,AND),

is the one without outgoing link.

The Semantic Query Graph SQG can play an important role for teaching a

problem solving skill. It is used by the system for three purposes:

1. generating SQL queries which can solve the given problem associated with the

concepts obtained in the topic and display these queries to the students for

their reference purposes;

2. creating constructive feedbacks to the students if they have difficulties to solve

the given problem and need system helps;

3. examining the queries written by the students and evaluating their performance

during their problem solving procedures.

10; AND; 0

Figure 8.1 A Semantic Query Graph

In the following sections, we will discuss how a tutoring system can fulfill these

tasks based on the SQG.

8.2 From Semantic Query Graph to SQL Queries

The algorithm used by SQL-TUTOR to convert an SQG into the equivalent SQL

queries is called QUERY-BUILDER (QB), which generates SELECT-FROM-WHERE form of

SQL queries. In other words, each query generated by QB has the format

SELECT column-list

FROM	 ta ble-list

WHERE search-expression.

The QB calls procedure CONS- S-EXP to construct the search expression in the

WHERE clause of an SQL query. The CONS-S-EXP starts at the operator node, say

(I , 0), with two incoming nodes, (II. ,N1) and (12 , N2) , and without any outgoing

131

link. If one of its incoming nodes is an F-node, then the search expression Ni

0 N2 will be returned. Otherwise, two search expressions, Si and S2, starting

from (I1,N1) and (I2,N2), respectively, will be constructed first and the search

expression Si 0 S2 will be returned by the algorithm. The following is a description

of the procedure:

CONS-5-EXP (SQG, (1 , 0))
* construct a search expression for node (I , 0) from SQG *\
* (1,0) has two incoming nodes and no outgoing node *\
{

(I1 , N1) = the first incoming node of (I , 0) ;
(12 , N2) = the second incoming node of (I , 0) ;
if ((11,01) is an f-node I I (12,02) is an f-node)

return (N1,0 , N2) ;
else

return (CONS-S-EXP (SOG, (I1 , N1)) 0 CONS-S-EXP (SQG , (I2 , N2))) ;
}

For example, given the SQG shown in Figure 8.1, CONSTRUCT-S-EXP builds the

search expression staring at the 0-node (10 , AND) . Since this node is connected to

two other 0-nodes (8, =) and (9, =) , we will first construct two search expressions

Si and S2, starting at (8,=) and (9, , respectively, and then return Si AND S2.

Because the node (8 ,=) connects an F-node (4 ,LNAME) and a C-node (5 , Smith) ,

the algorithm will return LNAME = ' Smith' as the value of 51. Similarly, the search

expression S2, FNAME = ' John' , will be returned from the node (9,=). Finally, the

search expression of the whole query will be

LNAME = ' Smith ' AND FNAME = ' John '

Now, we can describe QUERY-BUILDER as follows:

QUERY-BUILDER (SQG)
* Given an SQG, return the SQL queries derived from it *\

columns = []; 	 tables =];
foreach (F-node (I,N) in SQG)

if ({\tt (I,N)} has only one outgoing links)

132

add (I,O) to columns;
foreach (T-node(I,T) in SQG)

add (I,T) to tables;
find the 0-node (I,O) without outgoing links;
search-exp = CONS-S-EXP(SW,(I,O));
return ("SELECT",columns,"FROM",tables,"WHERE",search-exp);

}

When we apply the above algorithm to the SQG of Figure 8.1, we may obtain

the following results:

1. columns	 {BDATE, SSN}

2. tables	 {EMP}

3. search -exp = { LNAME = 'Smith' AND FNAME = `John'}

Therefore, the SQL query generated is

SELECT BDATE, SSN

FROM EMP

WHERE LNAME = 'Smith' AND FNAME = 'John'

An interesting feature of these two algorithms is their nondeterministic

property. F-nodes and T-nodes are selected randomly by the QUERY-BUILDER

and added into the column list and table list. Similarly, the CONSTRUCT-S-EXP

also randomly picks up the two incoming nodes of the 0-node and constructs the

corresponding search expressions. Because of these random selections, several SQL

queries can be generated from one single SQG.

8.2.1 An Example

In this section, we give a complete example which can be a member of example set

of the skill two-table-retrieval.

133

• PROBLEM DESCRIPTIONS

1. Find the name of the manager of the department 'Research'.
2. Find the name of the manager of the department whose name

is 'Research'.
3. Find the name of the employee who is the manager of the

department whose name is 'Research'.
4. Find the first name and the last name of the employee who is

the manager of the department whose name is 'Research'.

• SEMANTIC QUERY GRAPH:

1. LNAME 	 2. FNAME

3. EMP 	 4. DEPT
-r-- 	 -

5. SSN 	 6. MSSN 	 7. DNAME 	 8. Research

9.= 	 10.=

11. AND

8.3 Annotated Semantic Query Graph

The feedbacks from a tutoring system to its students can be very helpful for the

students to understand why a solution is right or wrong. The feedbacks from SQL—

TUTOR can answer two types of questions:

1. why an object (a table, field, a constant, or an operator) should be included in

a query; and

2. why an object should not be included in a query.

In order to answer these questions about a query, we first create an Annotated

Semantic Query Graph (ASQG) by attaching the semantic meanings to each node

in a Semantic Query Graph, and then construct an answer based on the semantic

134

meanings found in an ASQG. This section focuses on how to generate an ASQG,

whereas the next section discusses how to use the construction rules and feedback

templates to form an answer.

Given a Semantic Query Graph SQG, an ASQG is generated by a three step

procedure as follows:

1. For each T-node and F-node in the SQG, find its semantic meaning by looking

up the Enhanced System Catalog (ESC). For example, the semantic meaning

of LNAME, last name of an employee, can be found in table EMP from the ESC.

2. For each C-node in the SQG,

(a) find the column in the Sample data Base (SDB) which contains this

constant;

(b) find that column and its corresponding semantic meaning from the ESC;

(c) define its semantics to be "instance of the semantics of the column".

As an example, consider constant 'Smith'. Since we can find it from column

LNAME in the sample table EMP and the semantic meaning of LNAME (last name)

from the ESC, the semantic meaning of 'Smith' is "instance of the last name

of an employee"

3. For each 0-node, use the propagation algorithm described below to find out

its semantic meaning.

The propagation algorithm PROP_SEMANTICS calculates the semantic meaning

of an 0-node by looking up and combining the semantics of its two incoming nodes.

When the algorithm needs to find out the semantics of an operator, it will check

the document unit which discusses the concept of this operator. This document unit

lAs a consequence, a constant can be used as a sample data only in one column in the
SDB.

135

should be listed in the prerequisite list of the topic. The algorithm can be described

as follows:

PROP_SEMANTIC(SQG)
* Given an SQG whose F-nodes and C-nodes are already associated *\
* with their semantic meanings, calculate the semantic meanings 4c\
* of the 0-nodes in the SQG *\
{

mark all F-nodes and C-nodes in SQG;
while (there is a unmarked 0-node (I,0)) {

select a unmarked 0-node such that both of its two
incoming nodes have been marked;
call the two incoming nodes (I1,N1) and (12,N2);
S1 = the semantics of (I1,N1);
S2 = the semantics of (I2,N2);
SO = be the semantics of the operator 0;
associate (S1 S S2) with the node (I,O) as its semantics;
mark the node (I,0);

)-
}

Figure 8.2 shows the ASQG obtained by attaching semantic meanings to the

SQG shown in Figure 8.2.1.

8.4 Construction Rule and Feedback Template

SQL—TUTOR uses its construction rules and feedback templates to create the

feedbacks to a student when the student has asked a question about an SQL query.

A feedback template is a predefined pattern for a type of system responses, which

may contain some variable parameters. A construction rule specifies under what

situations a feedback template should be used to construct a feedback and how to

pass the parameters to the feedback template. The construction rules and feedback

templates are stored as pairs in SQL—TUTOR. There are fives pairs of them:

• F-RULE and F-TEMPLATE

• T-RULE and T-TEMPLATE

1. LNAME {last name} 2. FNAME {first name}

3. EMP {employee} 	 4. DEPT {department}
1 	 - -r

' - -1 	 - - - - 	 1

-- 4%-
. Tr) `JD Iluriibr; 	 6. IVHD {manzger ID number} 	 7. DNANM {department none} 	 8. Research {instance of department name}

9. = {employee is the department manager } 	 10. = {department name is Research}

11. AND {employee is the department manager AND department name is Research}

Figure 8.2 An Annotated Semantic Query Graph

137

• C-RULE and C-TEMPLATE

• O-RULE(R) and 0-TEMPLATE(R)

• O-RULE(L) and 0-TEMPLATE(L)

Two retrieval functions, NAME and SEM, can be placed in a template to retrieve the

name and semantic meaning of a given node from an ASQG. The following sections

discuss the construction rule/feedback template pairs in detail.

8.4.1 Notations

We use the following notations to describe a construction rule and feedback template:

• T-node(N): node N is a T-node

• F-node(N): node N is an F-node

• C-node(N): node N is a C-node

• 0-node(N): node N is an 0-node

• R0-node(N): node N is a relational 0-node

• L0-node(N): node N is a logical 0-node

• from(I , J): there is a link from node I to node J in the ASQG;

• ask(I): node I is selected by the student to ask the question.

8.4.2 F-RULE and F-TEMPLATE

The F-RULE will be invoked to construct a feedback if a student has asked a question

about an F-node in an SQL query. It passes actual values to the F-TEMPLATE. This

rule has two formats:

IF 	 ask(F) and F-node(F) and from(F,T) and T-node(T)

138

THEN apply F-TEMPLATE(F , T) to construct a feedback.

IF 	 ask(F) and F-node(F) and from(T,F) and T-node(T)

THEN apply F-TEMPLATE(F T) to construct a feedback.

The first rule can be interpreted as follows: if F is the node that the student asks

about, and F is an F-node, and there is a link from F to T, and T is a T-node, then

pass F and T to the F-TEMPLATE to construct a feedback. The F-TEMPLATE(F , T) is

defined as

Because the SEM(F) of a(n) SEM (T) is represented by the column NAME(F)
in table NAME(T), we include NAME(F) in the query.

For example, given the ASQG shown in Figure 8.2 and the F-node selected by the

student is (1 ,LNAME), the F-RULE will be invoked and it will pass (1, LNAME) and

(3,EMP) to the F-TEMPLATE. Thus, the two parameters of F-TEMPLATE, F and T,

will get values (1, LNAME) and (3,EMP), respectively. Furthermore, the functions

NAME and SEM will return the following results:

1. NAME(F) = NAmE(1,LNAME) LNAME

2. NAME(T) = NAME(3,EMP) = EMP

3. SEM(F) sEM(1,LNAME) = last name

4. SEM(T) = SEM(3,EMP) = employee

Therefore,the feedback constructed from the template will be

Because the last name of an employee is represented by the column
LNAME in table EMP, we include LNAME in the query.

139

8.4.3 T-RULE and T-TEMPLATE

The T-RULE will be invoked to construct a feedback if a student has asked a question

about a T-node in a query. It passes actual values to the T-TEMPLATE. This rule

has the format

IF 	 ask(T) and T-node(T), from(Fj ,T) (j = 1„m),

from(T,Fk) (k m + 1,	 m) and F-node(Fi) (i = 1, ,m„ n)

THEN apply T-TEMPLATE(T , F1 , . , Fn) to construct a feedback.

The T-TEMPLATE(T , F1 i 	 , Fri) is defined as

Because the information about SEM(F 1), 	 .. , sEm(F,,) of a(n) SEM(T) is
stored in table NAME(T), we include table NAME(T) in the query.

For example, given the ASQG shown in Figure 8.2 and the selected T-node (3,EMP),

the T-RULE will be invoked and it will pass (3,EMP), as well as (1,LNAME),

(2,FNAME), and (5, SSN) to the T-TEMPLATE. This will result in the following

feedback:

Because the information about last name, first name, and social
security number of a(n) employee is stored in table EMP, we include
table EMP in the query.

8.4.4 C-RULE and C-TEMPLATE

The c-RULE will be invoked to construct a feedback if a student has asked a question

about a C-node in a query. It passes actual values to the C-TEMPLATE. This rule

has the format

IF 	 ask(C) and from(C, 0) and from(F , 0) and from(T ,F),

C-node(C) and F-node(F) and 0-node(0) and T-node(T)

THEN apply C-TEMPLATE(C , F 0 ,T) to construct a feedback.

The C-TEMPLATE(C , F , 0 , T) is defined as

140

Because we want to compare the sEm(F) of a(n) SEM(T) with SEM(C) to
see if the SEM(F) sEm(0) SEM(C).

For example, given the ASQG shown in Figure 8.2 and the selected C-node

(8,Research), the C-RULE will be invoked and it will pass (8, Research), (7,DNAME),

(10,=), and (4, DEPT) to the C-TEMPLATE. This will result in the following feedback:

Because we want to compare the department name of a(n) department
with Research to see if the department name is Research.

8.4.5 RO-RULE and RO-TEMPLATE

The RO-RULE will be invoked to construct a feedback if a student has asked a question

about a relational 0-node in a query. It passes actual values to either the RO-

TEMPLATE or C-TEMPLATE. This rule has two formats:

IF 	 ask(0) and from(F i , 0) and from(F2 ,0) and from(Tt ,F1)

and from(T 2 , F2) and Ro-node(0) and F-node(F 1)

and F-node(F2) and T-node(T i) and T-node(T2)

THEN apply RO-TEMPLATE(0 , F1 , F2 , T1 , T2) to construct a feedback.

IF 	 ask(G) and from(F, 0) and from(T, 0) and from(T,F)

and Ro-node(0) and F-node(F) and C-node(C) and T-node(ri)

THEN apply C-TEMPLATE(C F 0 , T) to construct a feedback.

The RO-TEMPLATE(0 ,F1 , F2 , T1, T2) is defined as

Because we want to compare the SEM(F 1) of a(n) SEM(T 1) with sEm(F2)
of a(n) SEM(T2) to see if sEm(0).

For example, given the ASQG shown in Figure 8.2 and the selected Ro-node (9,=),

the RO-RULE will be invoked and it will pass (9,=), (5,ID), (6,MSSN), (3,EMP),

and (4,DEPT) to the RO-TEMPLATE. This will result in the following feedback:

141

Because we want to compare the ID number of a(n) employee with the
manager ID number of a(n) department to see if the ID number is
manager ID number.

8.4.6 LO-RULE and LO-TEMPLATE

The LO-RULE will be invoked to construct a feedback if a student has asked a question

about a logical 0-node in a query. It passes actual values to the LO-TEMPLATE. The

LO-RULE has the format:

IF 	 ask(0) and from(I 1 ,0) and from(I2 ,0) and Lo-node(0)

THEN apply LO-TEMPLATE(0 ,Ii,I2) to construct a feedback.

The LO-TEMPLATE(0) is defined as

Because we want to see if sEm(I i) sEm(0) sEm(I2).

For example, given the ASQG shown in Figure 8.2 and the selected LO-node (11, =) ,

the LO-RULE will be invoked and it will pass (11 , =) to the LO-TEMPLATE. This will

result in the following feedback:

Because we want to see if employee is the department manager and
department name is research.

CHAPTER 9

CONCLUSIONS

In this chapter, we will present some related work in the control for knowledge

based tutoring systems and curriculum knowledge representation, summarize the

contributions of this research, and consider future directions.

9.1 Related Work

In the physical world, a plan is a description for a sequence of actions that, if followed,

will change the situations so as to achieve a desired goal. Many KBTS researchers

view a tutoring process as a planning problem [5, 45, 46, 50], where the goal is to have

the student learn some domain knowledge. Instructional planners are designed to

decide what to do next at each point in an instructional situation. Murray [45, 46]

built a blackboard-based dynamic planner which can generate different plans for

delivering lessons customized to each individual student. These lesson plans can be

revised during tutoring process in response to student problem solving performance

and modifications to the student model. The actions in the instructional plan

are procedures that control the text, highlighting, and animation displayed to the

student. In contrast, the planning module in our system is used to analyze the

relationships among related topics and generate learning graphs for the student.

The instructional actions are governed by the planning, discussing, evaluating and

remedying modules.

The planning approach adopted by SCENT [5] separates an instructional

planner into two components: a content planner and a delivery planner. The

content planner is responsible for planning the content of a knowledge communi-

cation session and the delivery planner decides how to present the content. The

planning activity in SCENT centers around the instructional goals such as "have the

142

143

student learn recursion". These instructional goals relate to one another in a variety

of ways. For example, "have the student learn recursion" is a part of "have the

student learn LISP programming" . The instructional goals and their relationships

are embodied in an Goal Knowledge Base (IGKB). An instructional plan consists

of a sequence of instructional goals in the IGKB. In SQL—TUTOR, instructional

goals (Tgoals) are implicitly embodied in a Topic Association Graph (TAG). The

orders of selecting the topics to be tutored are determined by their connections in a

learning graph.

The Domain Expert in ExperTutor [24] is constructed from a Goal/Task

Hierarchy, which is a lattice of lesson components ordered by an epistemic priority

relation. The higher goals in the hierarchy need more expertise than the lower goals.

The student has to study and complete all subgoals before he/she can complete a

goal successfully. The system applies a "left first depth first" traversal algorithm to

generate default instructional sequences. An author can include several rule bases

within each node of the hierarchy to provide alternative teaching styles, further

examples, remediation, tests, and determine the next action from the system.

Lesgold [37] focuses on investigating the structure of the curriculum knowledge

and the construction of curriculum in a tutoring system. They presents a system

for tutoring a basic course in resistor network concepts. They have found four

different views on their instruction: scientific laws, basic measurable properties,

types of circuits, and types of the problems. Under these different views, the course

is organized by the topics regarding to i) scientific laws; (e.g. Ohm's law, Kirchhoff's

law, etc.); ii) current, voltage, and resistance, etc.; iii) the series and parallel circuits;

and iv) the types of the problems presented to the student. (qualitative problems,

quantity problems, etc..). They formulate a curriculum structure which has three

layers of knowledge. The middle layer is the curriculum goal lattice which can incor-

porate a number of viewpoints on the goals of the instruction. An important feature

144

of this formulation is that the lowest level units, the simple lessons, are the same

from the viewpoints. Like a Goal/Task Hierarchy, the connections between the goals

are also created explicitly by the developers. However, the curriculum goal structure

constructed is a goal lattice in which only the root can be associated with multiple

views. In SQL—TUTOR, we have extended this feature by allowing multiple views

to be associated with any non-unit topics.

9.2 Contributions

The first key point in this research is that we have provided a generic framework for

KBTS construction which can be applied to different domains and showed how to

implement them in a tutoring system. The system architecture is based on the view

that a tutoring process consists of a series of communication cycles, and each cycle

consists of four phases and focuses on one specific topic. We also clarified the roles

played by each knowledge base and their interactions with the control procedures in

Communication Controller.

Curriculum knowledge is an important part of knowledge for KBTSs which

can help the system select appropriate topics to study and diagnose the student's

mistakes. The Topic Association Graph {TAG) representation presented in this

dissertation provides a framework for an instructor to explicitly encode his curriculum

knowledge into the system's knowledge base. The TAG is an important part of

knowledge for a KBTS and can help the system select appropriate topics to tutor

and diagnose the student's mistakes. The instructor can incorporate his knowledge

about the goal structure of a course, the multiple viewpoints on a topic, and the

prerequisite relations among the topics into the curriculum knowledge base. Another

feature of our formulation is that the precedence relation among topics are derived

from the prerequisite relation over the domain concepts. The system will check the

consistency property during the derivation process.

145

The current tools provided by SQL—TUTOR allow a student to select a specific

topic and a specific view associated with the topic to study, or to eliminate a topic

from his study. Therefore, the student can tailor the course curriculum based to

his special background, requirements, and interests. In this way, the student can be

more active and more involved in the tutoring, because he has a certain degree of

freedom to select the path to accomplish the teaching goals associated with a course.

The student model in our system is built in the frame of the curriculum

knowledge base. Compared with other systems in which the student models are

created based on the domain knowledge bases, our approach has two prominent

features:

1. the size of the student model has been reduced significantly, because the number

of nodes in a TAG is much smaller than the number of items in a domain

knowledge base (which is the number of the concepts and skills in the domain);

2. the S ir and S2 values of a node in a student model indicates the student's

mastery on both a topic and its subtopics, whereas the traditional student

models can only reflect the student's mastery on a particular item of the domain

knowledge.

The domain knowledge is stored in the documents of the topics and the

sample database in our system. The declarative knowledge is represented by the

DESCRIPTION, SUPPLEMENT and Notation parts of the document. Especially, the

relationships among the domain concepts are described by the CONTEXT parts of

the documents, based on which the system can answer the various types of the

questions from the student.

The procedural knowledge is stored in the EXAMPLE parts of the documents

as the Semantic Query Graphs. A Semantic Query Graph can be used by the

146

system to derive the various SQL queries for a given problem, to evaluate the student

performance, and to generate the meaningful feedbacks to the student.

9.3 Future Directions

The future directions of this research include:

1. to further test the feasibility of the system architecture proposed in this

proposal. Although the current research focuses on tutoring SQL programming,

we believe that the system architecture is generic and can be applied to many

other domains. We are going to create tutoring systems for other domains

after SQL—TUTOR has been fully developed;

2. to explore the feasibility of using neural networks [57] (or connectionist models

[26]) to diagnose and correct the students' mistakes in problem solving. A

neural network is based explicitly on an abstraction of current understanding of

the information processing properties of neurons, which is a parallel, distributed

information processing structure consisting of a large number of processing

elements (PEs) interconnected together with unidirectional signal channels

called connections. These PEs can have very high fan-ins and fan-outs and

communicate with the rest of the network by transmitting a simple value. A

PE transmits the same value to all PEs to which it is connected. All of the

processing that goes on within each PE must be completely local, i.e., they

must depend only upon the current values of the input signal and upon the

values stored in the PE's local memory.

Luc Steel points out in [65] that problem solving executed by connectionist

network can be seen as a special example of heuristic classification which

contains three problem solving steps:

147

• Abstraction of the data to classify the problem into a set of known

categories (possibly one class);

• Association of the categories with a known (abstract) solution;

• Refinement of the solution to adapt it to the concrete case.

It seems quite favorable to apply neural network model approach for student

evaluating and diagnosing because it fits into the heuristic classification very

well:

• The set of solutions given by the student constitute the raw data to be

abstracted, while the known categories correspond to the sets of student

missing conceptions and misconceptions collected by the instructor;

• A remedying template can be created and associated with each category

of missing conceptions and misconceptions and be retrieved based on the

result of the data abstraction from the previous step;

• The remedying template can be instantiated by the data from the problem

posed to the student, the student model, and student's response to form

a concrete remedying plan. The execution of this plan is to correct the

student's mistakes.

REFERENCES

1. J. R. Anderson, C. F. Boyle, and G. Yost, "The geometry tutor," in Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, Los
Angeles, California, pp. 1-7, 1985.

2. J. R. Anderson and E. Skwarecki, "The Automatated Tutoring of Introductory
Computer Programming," Communications of the ACM, vol. 29, no. 9,
pp. 842-849, 1986.

3. J. B. Black, D. S. Kay, and E. M. Soloway, "Goal and Plan Knowledge Represen-
tation: From Stories to Text Editors and Programs," Interfacing Thought:
Cognitive Aspects of Human - Computer Interactions (J. M. Carroll ed.),
The MIT Press, Cambridge, Massachusetts, pp. 36-60, 1987.

4. B. S. Bloom, "The 2 Sigma Problem: The Search for Methods of Group
Instruction as Effective as One-to-One Tutoring," Educational Researcher,
vol. 13, pp. 3-16, 1984.

5. B. J. Brecht, G. I. McCalla, J. E. Greer, and M. Jones, "Planning the Content
of Instruction," Artificial Intelligence and Education: Proceedings of the
4th International Conference on Al and Education, IOS, Amsterdam,
Netherlands; Springfield, Virginia, pp. 32-41, 1989.

6. J. S. Brown and K. VanLehn, "Repair Theory: A Generative Theory of Bugs
in Procedural Skills," Cognitive Science, vol. 4, pp. 379-426, 1980.

7. J. Brown and R. Burton, "Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills," Cognitive Science, vol. 2, pp. 155-192, 1978.

8. J. Brown, R. Burton, and A. Bell, "SOPHIE: A Step Towards a Reactive
Learning Environment," International Journal of Man Machine Studies,
vol. 7, pp. 675-696, 1975.

9. J. Brown, R. Burton, and J. Kleer, "Pedagogical, Natural Language and
Knowledge Engineering Techniques in SOPHIE I, II and III," in Intel-
ligent Tutoring Systems (D. Sleeman and J. S. Brown, eds.), Academic
Press, London, 1982.

10. C. V. Bunderson, "The Design and Production of Learner-Controlled
Courseware for the TICCIT System," International Journal of Man-
Machine Studies, vol. 6, pp. 479-491, 1974.

11. M. L. Burger and J. F. Desoi, "The Cognitive Apprenticeship Analogue: a
Strategy for Using ITS Technology for the Delivery of Instruction an as
a Research Tool for the Study of Teaching and Learning," International
Journal of Man -Machine Studies, vol. 36, pp. 775-795, 1992.

148

149

12. R. R. Burton, "Diagnosing Bugs in Simple Procedural Skills," in Intelligent
Tutoring Systems (D. Sleeman and J. Brown, eds.), Academic Press,
London, 1982.

13. R. R. Burton and J. S. Brown, "An Investigation of Computer Coaching
for Informal Learning Activities," in Intelligent Tutoring Systems
(D. Sleeman and J. Brown, eds.), Academic Press, London, 1982.

14. R. R. Burton and J. S. Brown, "A Tutoring and Student Modeling Paradigm
for Game Environments," Computer Science and Education ACM SIGCSE
Bulletin, vol. 8, no. 1, 1983.

15. J. J. Canas, M. T. Boja, and P. Gonzalvo, "Mental Models and Computer
Programming," International Journal of Human - Computer Studies,
vol. 40, pp. 795-811, 1994.

16. J. R. Carbonell, "AI in CAI: An Artificial Intelligence Approach to Computer
Assisted Instruction," IEEE Transactions on Man -Machine Systems,
vol. 11, pp. 190-202, 1970.

17. A. Cawsey, "The Structure of Tutorial Discourse," Artificial Intelligence and
Education: Proceedings of the 4th International Conference on AI and
Education, IOS, Amsterdam, Netherlands; Springfield, Virginia, pp. 47-
53, 1989.

18. T. W. Chan, "Curriculum Tree: A Knowledge-Based Architecture for Intel-
ligent Tutoring Systems", in Intelligent Tutoring Systems: Second Inter-
national Conference on Intelligent Tutoring Systems, ITS'92, (C. Frasson,
G. Gauthier and G.I. McCalla, eds.), Spring-Verlag, New York, pp. 140-
147, 1992.

19. W. J. Clancey, "Tutoring Rules for Guiding a Case Method Dialogue," Inter-
national Journal of Man -Machine Studies, vol. 11, pp. 25-49, 1979.

20. W. J. Clancey, "Tutoring Rules for Guiding a Case Method Dialogue," in Intel-
ligent Tutoring Systems (D. Sleeman and J. Brown, eds.), Academic Press,
London, 1982.

21. W. J. Clancey, Knowledge -Based Tutoring: The GUIDON Program, MIT Press,
Cambridge, Massachusetts, 1983.

22. W. J. Clancey, J. J. Barnett, and P. R. Cohen, "Applications-Oriented AI
Research: Education," in The Handbook of Artificial Intelligence (A. Barr
and E. A. Feigenbaum, eds.), vol. 2, William Kaufmann Publishing
Company, Los Altos, California, 1982.

23. A. Collins, "Processes in Acquiring Knowledge," in Schooling and the Acqui-
sition of Knowledge (R. Anderson, R. Spiro, and W. Montage, eds.),
Lawrence Erinaum Associates, Hillsdale, New Jersey, 1979.

150

24. N. G. Craske, T. Richards, and G. Cumming, "ExperTutor, a Generic Purpose
Intelligent Educational System", In Advanced Research on Computer in
Education (R. Lewis and S. Otsuki, eds.), Elsevier Science Publishers,
North-Holland, pp. 301-306, 1991.

25. W. J. Crowder, "Automatic Tutoring by Means of Intrinsic Programming," in
Automatic Teaching: The State of Art (E. Galanter, ed.), Wiley, New
York, 1959.

26. J. A. Feldman and D. H. Ballard, "Connectionist models and their impli-
cations: readings from cognitive science", in Connectionism in Perspective
(D. Waltz and J. A, eds.), Ablex Publishing Corporation, Norwood, New
Jersey, 1988.

27. K. Forbus and A. Steven, "Using Qualitative Simulation to Generate Expla-
nations," Tech. Rep. 4480, Bolt, Beranek and Newman, Cambridge,
Massachusetts, 1981.

28. D. Gentner and A. Stevens, Mental Models, Lawrence Erlbaum Associates,
Hillsdale, New Jersey, 1984.

29. I. P. Goldstein, "The Genetic Graph: A Representation for the Evolution of
Procedural Knowledge," in Intelligent Tutoring Systems (D. H. Sleeman
and J. Brown, eds.), Academic Press, London, 1982.

30. I. P. Goldstein and B. Carr, "The Computer as Coach: An Athletic Paradigm
for Intellectual Education," in Proceedings of the Annual Meeting the
Association for Computing Machinery, Seattle, Washington, 1977.

31. W. L. Johnson and E. Soloway, "PROUT: An Automatic Debugger for Pascal
Programming," Artificial Intelligence and Instruction: Applications and
Methods, Addison Wesley Publishing Company, Massachusetts, 1987.

32. D. M. Kaminski, "A Knowledge Base Approach to Learning to Program in
Prolog," in Computer Assisted Learning, 4th International Conference,
ICCAL '92 (T. Tomek, ed.), Nova Scotia, Canada, Springer-Verlag, New
York, 1992.

33. G. P. Kearsley, Computer Based Training: A Guide to Selection and Implemen-
tation, Addison Wesley Publishing Company, Massachusetts, 1983.

34. G. P. Kearsley, B. Hunter, and R. J. Seidel, "Two Decades of Computer Based
Instruction Projects: What Have We Learned?" T.H,E. Journal, 1983.

35. J. A. Kulik, C. C. Kulik, and P. A. Cohen, "Effectiveness of Computer-based
College Teaching: A Meta-analysis of Findings," Review of Educational
Research, 1980.

151

36. J. Larkin, J. McDermott, D. P. Simon, and H. A. Simon, "Expert and Novice
Performance in Solving Physics Problems," Science, pp. 1335-1342, June
1980.

37. A. M. Lesgold, "Toward a Theory of Curriculum for Use in Designing Intel-
ligent Instructional Systems", in Learning Issues for Intelligent Tutoring
Systems, (H. Mandl and A. M. Lesgold, eds.), Springer-Verlag, New York,
1988.

38. D. C. Littman, J. Pinto, and E. Soloway, "An Analysis of Tutorial Reasoning
About Programming Bugs," in Proceedings of the Eighth National
Conference on Artificial Intelligence, Philadelphia, Pennsylvania, 1986.

39. P. Marcenac, "An Authoring System for ITS Which is Based on a Generic Level
of Tutoring Strategies," in Computer Assisted Learning, .4th International
Conference, ICCAL '92 (T. Tomek, ed.), Nova Scotia, Canada, Springer-
Verlag, New York, 1992.

40. K. V. Marcke, "Instructional Intelligent Expertise," Tutoring Systems: Second
International Conference on Intelligent Tutoring Systems, ITS'92,
Spring-Verlag, New York, 1992.

41. J. Mcdonald, "The EXCHANGE CAI System," in University-Level Computer-
Assistance Instruction at Stanford: 1968- 1980 (P. Suppes, ed.), Institute
for Mathematical Studies in the Social Sciences, Stanford University,
Stanford, California, 1981.

42. M. D. Merrill, E. W. Schneider, and K. Fletcher, TICCIT, Englewood Cliffs,
New Jersey, 1980.

43. R. Moyse, Knowledge Negotiation Implies Multiple Viewpoints, IOS,
Amsterdam, Netherlands, Springfield, Virginia: IOS, Amsterdam,
Netherlands, pp. 140-149, 1989.

44. R. Moyse and M. Elson-Cook, "Knowledge Negotiation: An Introduction,"
Knowledge Negotiation, (R. Moyse and M. Elson-Cook eds.), Academic
Press, New York, pp. 1-19, 1992.

45. W. R. Murray, "Control for Intelligent Tutoring Systems: A Blackboard-based
Dynamic Instructional Planner," in Artificial Intelligence and Education:
Proceedings of the 4th International Conference on AI and Education
(D. Bierman, J. Breuker, and J. Sandberg, eds.), IOS, Amsterdam,
Netherlands, May 1989.

46. W. R. Murray, "A Blackboard-based Dynamic Instructional Planner," in
Proceedings of the Twelfth National Conference on Artificial Intelligence,
Boston, Massachusetts, 1990.

152

47. H. S. Nwana, "FITS: A Fraction Intelligent Tutoring System," in Proceedings
of the Thirteenth National Conference on Artificial Intelligence, 1991.

48. J. Orlansky and J. String, "Computer -based Instruction for Military Training,"
Defense Management Journal, 1981.

49. 0. C. Park, R. S. Perez, and R. J. Seidel, "Intelligent CAI: Old
Wine in New Bottles, or a New Vintage," Artificial Intelligence
and Instruction: Application and Methods, Addison-Wesley Publishing
Company, Massachusetts, 1987.

50. D. R. Peachey and G. I. McCalla, "Using Planning Techniques in Intel-
ligent Tutoring Systems," International Journal of Man -Machine Studies,
vol. 24, pp. 77-98, 1986.

51, P. G. Poison, "A Quantitative Theory of Human-Computer Interaction," Inter-
facing Thought: Cognitive Aspects of Human - Computer Interaction, The
MIT Press, Cambridge, Massachusetts, 1987.

52. P. J. Pratt, A Guide to SQL, Boyd and Fraser Publishing Company, Boston,
Massachusetts, 1989.

53. B. J. Reiser, J. R. Anderson, and R. G. Farrell, "Dynamic Student Modeling in
an Intelligent Tutor for LISP Programming," in Proceeding of the Eighth
International Joint Conference on Artificial Intelligence, Los Angeles,
California, 1985.

54. C. B. Schwind, "An Intelligent Language Tutoring System," International
Journal of Man-Machine Studies, vol. 33, pp. 557-579, 1990.

55. R. J. Seidel, Current Status of Computer-Administered Instruction Work Under
Project IMPACT, Human Resources Research Organization, Alexandria,
Virginia, 1971.

56. V. J. Shute, "Regarding the I in ITS: Student Modeling," in Proceeding of
ED-MEDIA 94 - World Conference on Educational Multimedia and
Hypermedia, Vancouver, British Columbia, Canada, 1994.

57. P, K. Simpson, Artificial Neural Systems, Pergamon Press, New York, 1990.

58, D. H. Sleeman, "Intelligent Tutoring Systems: A Review," in Proceedings of the
EdCompCon '83 Meeting, 1983.

59. D. H. Sleeman and J. S. Brown, Intelligent Tutoring Systems, Academic Press,
London, 1982.

60. D. H. Sleeman and R. J. Hendley, "ACE: A System Which Analyses Complex
Explanations," in Intelligent Tutoring Systems (D. H. Sleeman and
J. Brown, eds.), Academic Press, London, 1982.

153

61. E. Soloway, "Learning To Program 	 Learning To Construct Mechanisms
and Explanations," Communication of the ACM, vol. 29, pp. 850-858,
September 1986.

62. E. Soloway, K. Ehrlich, J. Bonar, and J. Greenpan, "What do Novice
Know About Programming," Directions in Human/Computer Interaction
(A. Badre and B. Shneiderman eds.), Ablex Publishing Corporation,
Norwood, New Jersey, pp. 27-54, 1982.

63. J. C. Spohere and E. Soloway, "Simulating Student Programmers," in Proceeding
of the Ninth International Joint Conference on Artificial Intelligence,
Detroit, Michigan, 1989.

64. J. C. Stansfield and I. Goldstein, "Wumpus Advisor I: a First Implementation
of a Program That Tutors Logical and Probabilistic Reasoning Skills," in
AI Lab Memo 881, MIT Press, Cambridge, Massachusetts, 1979.

65. L. Steel, "Connectionist Problem Solving — An AI Perspective", in Connec-
tionism in Perspective (D. Waltz and J. A, eds.), Ablex Publishing Corpo-
ration, Norwood, New Jersey, 1988.

66. J. Stelzer and J. Garneau, "Project IMPACT Software Documentation:
Overview of the Computer Administered Instruction Subsystem," Tech.
Rep. 72-21, Human Resources Research Organization, Alexandria,
Virginia, 1972.

67. A. L. Stevens, A. Collins, and S. Goldin, "Misconceptions in Student's
understanding," International Journal of Man -Machine Studies, vol. 11,
pp. 145-156, 1979.

68. A. L. Stevens and A. Collins, "The Goal Structure of a Socratic Tutor,"
in Proceedings of the Association for Computing Machinery Annual
Conference, 1982.

69. N. A. Streitz, "Mental models and metaphors: Implications for the design
of adaptive user-system interface," in Learning Issues for Intelligent
Tutoring Systems (L. Mandl, ed.), Springer-Verlag, New York, 1988.

70. P. Suppes, M. Jerman, and D. Brian, Computer- assisted Instruction: The 1965-
66 Stanford Arithmetic Program, Academic Press, New York, 1968.

71. P. Suppes and M. Morningstar, Computer-assisted Instruction at Stanford:
1966-68: Data, Models and Evaluation of Arithmetic Program, Academic
Press, New York, 1972.

72. T. Tokuda and A. Fukuda, "A Probabilistic Inference Scheme for Hierarchical
Buggy Models," International Journal of Man-Machine Studies, vol. 38,
pp. 857-872, 1993.

154

73. R. F. van der Lans, Introduction to SQL, Addison-Wesley Publishing Company,
Massachusetts, 1988.

74. Y. Visetti and P. Dague, "Plan Inference and Student Modeling in ICAI,"
in Proceedings of Ninth National Conference on Artificial Intelligence,
Seattle, Washington, 1987.

75. E. Wenger, Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge, Morgan
Kaufmann Publishers, Los Altos, California, 1987.

76. B. Y. White and J. R. Frederiksen, "Modeling Expertise in Troubleshooting
and Reasoning about Simple Electric Circuit," in Proceedings of the Sixth
Cognitive Science Conference, Boulder, Colorado, pp. 337-343, 1984.

77. B. Y. White and J. R. Frederiksen, "Intelligent Tutoring Systems Based upon
Qualitative Model Evaluations," in Proceedings of the Eighth National
Conference on Artificial Intelligence, Philadelphia, Pennsylvania, 1986.

78. B. Woolf, "Theoretical Frontiers in Building a Machine Tutor," Artificial
Intelligence and Instruction: Application and Methods, Addison-Wesley
Publishing Company, Massachusetts, 1987.

79. B. Woolf, D. Blegen, J. Jansen, and A. Verloop, "Teaching a Complex Industrial
Process," in Proceedings of the Eighth National Conference on Artificial
Intelligence, Philadelphia, Pennsylvania, 1986.

80. Y. Yano, A. Kashhara, and W. McMichael, "Stabilizing Student Knowledge in
Open Structured CAI," International Journal of Man -Machine Studies,
vol. 37, pp. 595-612, 1992.

81. G. Zhou, "Curriculum Knowledge Representation in SQL-TUTOR," in
Proceeding of ED-MEDIA 94 -World Conference on Educational
Multimedia and Hypermedia, Vancouver, British Columbia, Canada, 1994.

82. G. Zhou, J. T. L. Wang, and P. A. Ng, "A Knowledge-Based Tutoring System for
SQL Programming," in Proceedings of 6th IEEE International Conference
on Tools with Artificial Intelligence, New Orleans, Louisiana, 1994.

83. G. Zhou, J. T. L. Wang, and P. A. Ng, "Curriculum Knowledge Representation
and Manipulation in Knowledge-Based Tutoring System," to appear in
IEEE Transactions on Data and Knowledge Engineering, 1996.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1996

	Towards designing a knowledge-based tutoring system : SQL-tutor as an example
	Gang Zhou
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: A Generic Archtecture for KBTS
	Chapter 3: Curriculum Knowledge Representation
	Chapter 4: Curriculum Knowledgment Management
	Chapter 5: Student Knowledge Representation
	Chapter 6: Declarative Domain Knowledge Representation
	Chapter 7: SQL-Rutor Question Answering Mechanism
	Chapter 8: Representing the Knowledge of Writing SQL Queries.
	Chapter 9: Conclusions
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

