
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-1999

A new-generation class of parallel architectures and their A new-generation class of parallel architectures and their

performance evaluation performance evaluation

Qian Wang
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation Recommended Citation
Wang, Qian, "A new-generation class of parallel architectures and their performance evaluation" (1999).
Dissertations. 992.
https://digitalcommons.njit.edu/dissertations/992

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Fdissertations%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/992?utm_source=digitalcommons.njit.edu%2Fdissertations%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright low of the United States (Title 17, United
States Code) governs the ma~ing of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to fum ish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be "used for any

purpose other than private study, scholarship, or research."
If a, user ma~es a request for, or later uses, a photocopy or
reproduction for purposes in excess of "fair use" that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
"Pages from: first page # to: [ost page #" on the print dialog screen

NJI
_Itr~ Sderw:t 6:
TedInoIogy U_'s.lty

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

A NEW-GENERATION CLASS OF PARALLEL ARCHITECTURES
AND THEIR PERFORMANCE EVALUATION

by
Qian Wang

The development of computers with hundreds or thousands of processors and

capability for very high performance is absolutely essential for many compu-

tation problems, such as weather modeling, fluid dynamics, and aerodynamics.

Several interconnection networks have been proposed for parallel computers. Never-

theless, the majority of them are plagued by rather poor topological properties that

result in large memory latencies for DSM (Distributed Shared-Memory) computers.

On the other hand, scalable networks with very good topological properties are

often impossible to build because of their prohibitively high VLSI (e.g., wiring)

complexity. Such a network is the generalized hypercube (GH). The GH supports

full-connectivity of its nodes in each dimension and is characterized by outstanding

topological properties. In addition, low-dimensional GHs have very large bisection

widths. ,1\!e propose in this dissertation a new class of processor interconnections,

namely HO,1\!s (Highly Overlapping ,Vindows), that are more generic than the CH,

are highly scalable, and have comparable performance. ,1\!e analyze the communi-

cations capabilities of 2-D HOW systems and demonstrate that in practical cases

HO,1\! systems perform much better than binary hypercubes for important commu-

nications patterns. These properties are in addition to the good scalability and

low hardware complexity of HO,V systems. ,1I,1e present algorithms for one-to-one,

one-to-all broadcasting, all-to-all broadcasting, one-to-all personalized, and all-to-all

personalized communications on HO,1I,1 systems. These algorithms are developed

and evaluated for several communication models. In addition, we develop techniques

for the efficient embedding of popular topologies, such as the ring, the torus, and

the hypercube, into I-D and 2-D HO\i\1 systems. The objective is to show that 2-D

HO\i\1 systems are not only scalable and easy to implement, but they also result in

good embedding of several classical topologies.

A NEW-GENERATION CLASS OF PARALLEL ARCHITECTURES
AND THEIR PERFORMANCE EVALUATION

by
Qian Wang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

May 1999

Copyright © 1999 by Qian \iVang

ALL RIGHTS RESERVED

APPROVAL PAGE

A NEW-GENERATION CLASS OF PARALLEL ARCHITECTURES
AND THEIR PERFORMANCE EVALUATION

Qian Wang

Dr. Sotirios G. Ziavra~, Dissertation Advisor J ~ Date
Associate Professor of Electrical and Computer Engineering,
and Computer and Information Science, NJIT

Sf I?; 77
Dr. David N assimi, Committee Member 'Date
Associate Professor of Computer and Information Science, NJIT

Dr. James McHugh, Committee Member Date
Professor of Computer and Information Science, NJIT

Dr. l\1engchu Zhou, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Alex Gerbessiotis, Committee Member Date
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Qian \I'lang

Degree: Doctor of Philosophy

Date: May 1999

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer and Information Science,
New Jersey Institute of Technology, Newark, NJ, 1999

• lVlaster of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Science in Electrical Engineering,
Huazhong University of Science and Technology, \i\1uhan, China, 1988

Major: Computer Science

Presentations and Publications:

Q. \i\lang and S.G. Ziavras, "PO\'verful and Feasible Processor Interconnections
\i\1ith an Evaluation of Their Communications Capabilities," International
Symposium on Parallel Architectures, Algorithrns, and Networks, Freemantle,
Australia, June 23-25, 1999.

Q. "'"ang and S.G. Ziavras, "Network Embedding Techniques for a New Class of
Feasible Parallel Architectures Capable of Very High Performance," Interna
tional Conference on Applied Informatics, Innsbruck, Austria, February 15-18,
1999.

S.G. Ziavras and Q. Wang, "Robust Interprocessor Connections for Very-High
Performance," in: Robust Comm'unication Networks: Interconnection and
Survivability, N. Dean, F. Hsu and R. Ravi (Eds.), American Mathematical
Society, Rhode Island, 1999.

Q. \i\lang "Optical Flow Determination and IVlotion Analysis," Master's Thesis, New
Jersey Institute of Technology, Ne"w Jersey, 1993.

IV

To my husband Dong Liu

v

ACKN O\VLED G IVIENT

I \vould like to express my deepest appreciation to Dr. Sotirios G. Ziavras,

who not only served as my research supervisor, providing valuable and countless

resources, insight and intuition, but also constantly gave me support, encouragement,

and reassurance.

Special thanks are given to Dr. David Nassimi, Dr. James McHugh, Dr.

Mengchu Zhou, Dr. Alex Gerbessiotis for actively participating in my committee.

Many of my fellow graduate students in the Computer and Information Science

Department are deserving recognition for their support. I also wish to thank Leon

Jololian, Karen Hare for their help over the years.

I thank my family members, Dong Liu, Guoqi \iVang, Hui Yi, Xuanshi V/ang,

Ying Liang, Luzhong \iVang, for their affectionate support, patience, and encour

agement throughout the duration of this project.

This research was supported in part by the NSF jDARPA (also cosponsored by

NASA) New Millennium Computing Point Design Grant ASC-9634775.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 The Class of HOVl Architectures . 5

1.1.1 Their Structure 6

1.1.2 Further Implementation Issues .. 11

1.2 The Class of Wrap-Around HO'vV Architectures. 14

2 COST ANALYSIS. .. 17

2.1 Cost Analysis for the Regular HOH/(p, lV, 1) 17

2.2 Cost Analysis for the \iVrap-Around HOl1'(p, w, 1) 23

3 1-D HO\iV SYSTEM EMBEDDINGS .. 30

3.1 Embedding a Ring into a 1-D HO\iV System 31

3.2 Embedding a 2-D Mesh into a 1-D HOW System. 33

3.2.1 2-D Regular Mesh. .. 33

3.2.2 2-D \iVraparound Mesh or Torus. .. 36

3.3 Embedding a Binary Tree into a 1-D HOVl System 37

3.4 Embedding a Hypercube into a 1-D HO\iV System. 38

4 2-D HO\i\T SYSTEM ENIBEDDINGS .. 40

4.1 Embedding a Ring into a 2-D HO\iV System 40

4.2 Embedding a 2-D Mesh/Torus into a 2-D HO\i\T System. 40

4.3 Embedding a Binary Tree into a 2-D HO\iV System 42

4.4 Embedding a Hypercube into a 2-D HO\i\T System 44

5 COMMUNICATION OPERATIONS ON 1-D HOW SYSTEMS 52

5.1 One-to-One Communication. .. 54

5.2 One-to-All Broadcasting .. 55

5.2.1 Model-1....................................... 55

VB

Chapter Page

5.2.2 Model-2 and Model-3 58

5.3 All-to-All Broadcasting .. 60

5.3.1 Model-I ··· 61

5.3.2 Model-2....................................... 63

5.3.3 Model-3 ··· 67

5.4 One-to-All Personalized Communication. 70

5.4.1 Model-1 and Model-2 70

5.4.2 Model-3....................................... 72

5.5 All-to-All Personalized Communication , 73

5.5.1 Model-1 and Model-2 74

5.5.2 Nlodel-3....................................... 76

6 COMMUNICATION OPERATIONS ON 2-D HO\V SYSTEMS 83

6.1 One-to-One Communication. .. 83

6.2 One-to-All Broadcasting .. 84

6.2.1 Model-I....................................... 84

6.2.2 Model-2 and Model-3 85

6.3 All-to-All Broadcasting .. 87

6.3.1 Model-I....................................... 88

6.3.2 Model-2....................................... 89

6.3.3 Model-3....................................... 90

6.4 One-to-All Personalized Communication .. 91

6.4.1 Model-1 and Model-2 91

6.4. 2 Model-3....................................... 92

6.5 All-to-All Personalized Communication " 93

6.5.1 I\1odel-l and Model-2 93

6.5.2 Model-3....................................... 97

7 COMMUNICATION OPERATIONS ON BINARY HYPERCUBES 99

Vlll

Chapter Page

7.1 One-to-One Communication 101

7.2 One-to-All Broadcasting , 101

7.3 All-to-All Broadcasting '. 102

7.4 One-to-All Personalized Communication. 102

7.5 All-to-All Personalized Communication. .. 105

8 PERFORIVIANCE COMPARISONS BETVVEEN HO\V AND BINARY
HYPERCUBE SYSTEMS .. 109

9 PERFORMANCE COMPARISONS BET\VEEN HO\V AND GENER-
ALIZED HYPERCUBE SYSTEMS 119

10 CONVERSION OF COMMUNICATIONS ALGORITHMS FOR GENER
ALIZED HYPERCUBES. .. 129

11 CONCLUSIONS AND FUTURE \VORK .. 137

APPENDIX A SIMULATION FOR ALL-TO-ALL PERSONALIZED COMMU
NICATION ON I-D HOWS .. 138

REFERENCES .. 153

IX

LIST OF FIGURES

Figure Page

1.1 The 2-D generalized hypercube GH(7,2) ... 3

1.2 The neighbors of the node with address k in the 1-D HO\I\'(p,\v,l) system. 6

1.3 1-D HO\V system with 15 processors and window size of 3, 4, and 5,
respectively. ... 9

1.4 Examples of 2-D HOW systems with w=3. (a) HOHf(4, 3, 2). (b)
HOlll(5, 3, 2). (c) HOVV(6, 3,2). (d) HOVV(7, 3,2) " 10

1.5 1-D wrap-around HO\V systems with 15 processors and window size of
3, 4, and 5, respectively 15

1.6 The 2-D wrap-around HOH/(7, 3,2) 16

2.1 Colinear layout of the 1-D HO\V system with 12 PEs and window size of
4, and its brute-force decomposition into printed-circuit layers. 19

2.2 Colinear layout of the 1-D HO\i\T system with 12 PEs and window size of
5, and its brute-force decomposition into printed-circuit layers. 20

2.3 Colinear layout of the 1-D HO\i\T system with 12 PEs and window size of
4, and its decomposition into printed-circuit layers using vertical and
horizontal lines. .. 24

2.4 Colinear layout of the 1-D HO\V system with 12 PEs and window size of
5, and its decomposition into printed-circuit layers using vertical and
horizontal lines " 25

2.5 Colinear layout of generalized hypercube with 12 PEs, and its decompo-
sition into printed-circuit layers using vertical and horizontal lines .. " 26

2.6 Decomposition of the 1-D wrap-around HOVV(12, 4,1). 28

2.7 Decomposition of the 1-D wrap-around H01;f1(12, 5,1). 29

3.1 The definition of dilation, congestion and expansion. .. 31

3.2 (a) A 16-processor ring and (b) its embedding into the 1-D HO\i\T(p,w,l)
systen1 .. " 32

3.3 Embedding a p-processor ring into the 1-D HO""(p,w,1) system with
another technique " 32

x

Figure Page

3.4 (a) Source 3x5 mesh and (b) its optimal embedding into the 1-D
HO\V(15,3,l) system. .. 34

3.5 (a) Source 5x3 mesh and (b) its optimal embedding into the 1-D
HO\V(15,3,1) system , 34

3.6 Mapping the 7 x 7 mesh in two different ways. 35

3.7 4x4 ivraparound mesh and its optimal mapping onto the 1-D HO\V(16,8,1)
systen1. .. 36

3.8 (a) A 31-processor full binary tree with depth d = 5 and the numbering
of its nodes and (b) its optimal embedding into the 1-D HOW(31,8,1)
systeln. .. 37

3.9 (a) A 16-processor hypercube vvith binary addresses for its nodes and (b)
its optimal embedding into a 1-D HO\V(16,8,1) system. 39

4.1 Embeddings of rings into 2-D HO\i\1 systems. 41

4.2 Embeddings of rings into 2-D HOVV systems when the numbers of nodes
in the rings are smaller than those in the HO\V systems. 41

4.3 Mapping the 6 x 6 torus onto a 2-D HOIN system with window size of
3. Consecutive bold segments in a row/column implement wraparound
connections in the torus. 42

4.4 Optimal mapping of the 3-1evel binary tree onto the 2-D HO\i\1(3,2,2)
systen1. .. 43

4.5 Optimal mapping of the 4-1evel binary tree onto the 2-D HO\i\1(4,2,2)
system. The two distinct building blocks for the mapping of 3-level
binary trees are enclosed in dotted lines. '" 44

4.6 IvIapping the 5-1evel binary tree onto the 2-D HO\V(6,2,2) system. 45

4.7 Optimal mapping of the 6-level binary tree onto the 2-D HO\iV(8,2,2)
systen1. .. 46

4.8 Optimal 3-D and 4-D hypercube embeddings into the HO\V(4,2) system
(method one). .. 47

4.9 5-D hypercube and its embedding into a 2-D HOV'l system (method-one).
Optimal mapping is derived if w 2: 4. 48

4.10 5-D hypercube embedding with the second method. This figure shows
the original hypercube, the embedding of the 3-D hypercube into the
building block HO\V(3,2,2), and the final embedding into the 2-D
HO\iV(6,3,2) system. 50

Xl

Figure

4.11 6-D hypercube embedding in a 2-D system using method two. (Actually
method-two and method-one are the same for even number dimension
hypercube.) This figure shows the building block and the embedding
in 2-D system..

5.1 Different output port models ..

5.2 One-to-all broadcast

5.3 One-to-all broadcasting under model-l with 12 processors and window
size of 3. A number in parentheses is the label of the source processor
from '.\'hich data has been broadcast. All communication steps are

Page

51

53

55

sho\\'n. .. 57

5.4 One-to-all broadcasting under model-2 and model-3 with 12 processors
and window size of 3. A number in parentheses is the label of the source
processor from which data has been broadcast. All communication
steps are shown. 59

5.5 All-to-all broadcast. . .. 61

5.6 All-to-all broadcasting under model-l with 12 processors and window size
of 3. The numbers in parentheses for each processor are the labels of
source processors from which data was received prior to the current
communication step. .. 62

5.7 All-to-all broadcasting under model-3 with 12 processors and window size
of 3. Addresses of processors from which values have been received at
the end of each step are shown. .. 68

5.8 One-to-all personalized communication. 71

5. 9 All-to-all personalized communication. . 74

5.10 Chosen linear arrays in the HOVV(10, 3,1) for all-to-all personalized
communication 76

6.1 Processor addresses in the HOvV(5, 3, 2). . 83

6.2 One-to-all broadcasting under model-2 and model-3 with two different
methods, both of \vhich have the same number of communication steps.
A filled circle means that the current processor has already received the
message broadcast by the source. All communication steps are shown
here. We assume that w-=3. For the worst case, we assun1e POD to be
the source. 86

Xll

Figure

6.3 One-to-all personalized communication under model-3, for w = 3. The
Cartesian coordinates of destination processors are shown as pairs of
numbers. A shaded circle means that the corresponding processor has

Page

already received the personalized message sent by the source. 94

7.1 One-to-all communication procedure with 16 processors, for a hypercube
systen1. ., 100

7.2 All-to-all communication procedure with 16 processors, for a hypercube
system ... , 100

8.1 Comparisons between HOVV and binary hypercube systems for one-to-all
broadcasting with message size 711, = 2 words , III

8.2 Comparisons between HOW' and binary hypercube systems for one-to-all
broadcasting with message size 7n = 5 words , 111

8.3 Comparisons between HOVV and binary hypercube systems for one-to-all
broadcasting with message size Ttl, = 10 words. 112

8.4 Comparisons between HO\V and binary hypercube systems for one-to-all
broadcasting with message size m = 20 words 112

8.5 Comparisons between HO\i\f and binary hypercube systems for all-to-all
broadcasting with message size m = 2 words , 113

8.6 Comparisons between HOVl and binary hypercube systems for all-to-all
broadcasting with message size TIL = 5 words , 113

8.7 Comparisons between HO\V and binary hypercube systems Jor all-to-all
broadcasting with message size m = 10 words , 114

8.8 Comparisons between HOV/ and binary hypercube systems for all-to-all
broadcasting with message size 1n = 20 words , 114

8.9 Comparisons between HO\i\T and binary hypercube systems for one-to-all
personalized communication with message size Tn = 2 words , 115

8.10 Comparisons between HO\i\T and binary hypercube systems for one-to-all
personalized communication with message size m = 5 words , 115

8.11 Comparisons between HOW and binary hypercube systems for one-to-all
personalized communication with message size Tn = 10 words , 116

8.12 Comparisons between HOW and binary hypercube systems for one-to-all
personalized communication with message size m = 20 words , 116

8.13 Comparisons between HOW and binary hypercube systems for all-to-all
personalized communication with message size m = 2 words , 117

XllI

Figure Page

8.14 Comparisons between HOVV and binary hypercube systems for all-to-all
personalized communication Ivitb message size Tn = 5 words. 117

8.15 Comparisons between HOW and binary hypercube systems for all-to-all
personalized communication with message size rn = 10 words " 118

8.16 Comparisons between HOVV and binary hypercube systems for aU-to-all
personalized communication with message size Tn = 20 words " 118

9.1 Comparisons between HO\1\1 and generalized hypercube systems for one-
to-all broadcasting with message size Tn = 2 words. 121

9.2 Comparisons between HO\lV and generalized hypercube systems for one-
to-all broadcasting with message size Tn = 5 words " 121

9.3 Comparisons between HO\lV and generalized hypercube systems for one-
to-all broadcasting with message size Tn = 10 words " 122

9.4 Comparisons between HOVV and generalized hypercube systems for one-
to-all broadcasting with message size Tn = 20 words. 122

9.5 Comparisons between HO\i\f and generalized hypercube systems for all-
to-all broadcasting with message size Tn = 2 words " 123

9.6 Comparisons between HO\i\f and generalized hypercube systems for all-
to-all broadcasting with message size Tn = 5 words " 123

9.7 Comparisons between HO\i\f and generalized hypercube systems for all-
to-all broadcasting with message size Tn = 10 words " 124

9.8 Comparisons between HO\i\f and generalized hypercube systems for all-
to-all broadcasting with message size Tn = 20 words " 124

9.9 Comparisons between HO\1\1 and generalized hypercube systems for one-
to-all personalized communication with rnessage size TtL = 2 words .. " 125

9.10 Comparisons between HO\1\1 and generalized hypercube systems for one-
to-all personalized communication with message size Tn = 5 words .. " 125

9.11 Comparisons between HO\1\1 and generalized hypercube systems for one-
to-all personalized communication with message size Tn = 10 words. " 126

9.12 Comparisons between HO\i\f and generalized hypercube systems for one-
to-all personalized communication with message size Tn = 20 words. " 126

9.13 Comparisons between HO\1\1 and generalized hypercube systems for all-
to-all personalized communication with message size Tn = 2 Ivords .. " 127

9.14 Comparisons between HO\1\1 and generalized hypercube systems for all-
to-all personalized communication with 1118ssage size 117, = 5 words. . 127

xiv

Figure Page

9.15 Comparisons between HO\;Y and generalized hypercube systems for all-
to-all personalized communication with message size m = 10 ,,'ords ... 128

9.16 Comparisons between HO\iV and generalized hypercube systems for all-
to-all personalized communication "vith message size Tn = 20 words. .. 128

10.1 The spanning tree BSTo2 of the GHS,2 132

10.2 The spanning tree BSTo2 of the HOIV(5, 3, 2). 132

10.3 The spanning tree BSTo2 of the GHS,2 133

10.4 The spanning tree BSTo2 of the HOIV(8, 3, 2). Shaded nodes show the
procedure for the GH. 134

10.5 The spanning tree BSTo2 of the HOH!(8, 4,2). Shaded nodes show the
procedure for the GH 135

10.6 The spanning tree BSTo2 of the HOVV(8, 5, 2). Shaded nodes show the
procedure for the GH. 136

xv

LIST OF TABLES

Table Page

1.1 Comparison of existing interconnection networks. All network$ have I\T =
pn = 2m nodes. .. 14

1.2 Comparison of interconnection netv/orks. All networks have N = pn = 2m

nodes. ... 16

5.1 The propagation rules of one-to-all broadcasting under model-I. 56

5.2 The detailed steps for all-to-all broadcasting under model-2 " 64

5.3 The detailed steps for all-to-all broadcasting under model-2 using a wrap
around system with 16 processors. .. 65

5.4 The detailed steps for all-to-all broadcasting under model-2 using a wrap
around system with 17 processors. .. 66

5.5 The detailed steps for all-to-all broadcasting under model-3 using a wrap
around system with 16 processors. .. 67

5.6 The detailed steps for all-to-all broadcasting under model-3 using a wrap-
around system with 17 processors " 69

5.7 The detailed steps for one- to-all personalized communication under
111odel-3. .. 73

5.8 The detailed steps for all-to-all personalized communication in 1-D HOVv
under model-3. " 78

5.9 The detailed steps for all-to-all personalized communication in 1-D HO\i\T
under model-3. (continue-I) .. 79

5.10 The detailed steps for all- to-all personalized communication in 1-D H O\i\T
under model-3. (continue-2) .. 80

5.11 The detailed steps for all-to-all personalized communication in 1-0 HOW
under model-3. (continue-3) " 81

5.12 The detailed steps for all-to-all personalized communication in 1-0 HO\i\T
under model-3. (continue-4) " 82

6.1 The initial and final state of HOW(5,3,2) " 87

6.2 Messages received in the first two detailed steps for all-to-all broadcasting
within the rows of the HOVV(5, 3, 2) system. 90

XVI

Table Page

6.3 The initial and final states for one-to-all personalized communication in
the HO\'V(p,w,2). 91

6.4 The initial state for all-to-all personalized communication in 2-D HOW
systen1 : 95

6.5 The final result for all-to-all personalized communication in a 2-D HO\J\T
systen1. .. 96

7.1 Detailed information for all-to-all broadcasting on the hypercube 103

7.2 Detailed information for one-to-all personalized communication on the
hypercube. .. 104

7.3 Detailed information for all-to-all personalized communication on the
hypercube. .. 106

7.4 Detailed information for all-to-all personalized communication on the
hypercube (continued). 107

7.5 Detailed information for all-to-all personalized communication on the
hypercube (continued). 108

9.1 Cost comparison between the HOVV(J15, w, 2) and GH(J15, 2) systems .. 120

XVll

CHAPTER 1

INTRODUCTION

The demand for ever greater performance by many computation problems has been

the driving force for the development of computers with thousands of processors.

Two important aspects are expected to dominate the mcl,ssively-parallel processing

field. High-level parallel languages supporting a shared address space (for DSM

computers) and point-to-point interconnection networks with \vorkstation-like

nodes. Near PetaFLOPS (i.e., 1015 floating-point operations per second) and

more performance is required by many applications, such as weather modeling,

simulation of physical phenomena, fluid dynamics, aerodynamics, simulation of

neural networks, simulation of chips, structural analysis, real-time image processing

and robotics, artificial intelligence, seismology, animation, real-time processing of

large databases, etc. Dongarra pointed out in 1995 that the world's top ten technical

computing sites had peak capacity of only about 850 GigaFLOPS, with each site

containing hundreds of computers. The goal of 1 TeraFLOPS (i.e., 1012 floating

point operations per second) peak performance was reached in late 1996 with the

installation of an Intel supercomputer at Sandia Laboratories.

The PetaFLOPS performance objective seems to be a distant dream primarily

because of the, as currently viewed, unsurmountable difficulty in developing 10\\1-

complexity, high-bisection bandwidth, and low-latency networks to interconnect

thousands of processors (and remote memories in DSM systems). To quote Dally,

"wires are a limiting factor because of power and delay as well as density" [6].

Several interconnection networks have been proposed for the design of massively

parallel computers, including, among others, regular meshes and tori [7], enhanced

meshes [17], fat trees, (direct binary) hypercubes (9], and hypercube variations

[lJ [l1J [12]. The hypercube dominated the high-performance computing field in

1

2

the 1980's because it has good topological properties and rather rich intercon

nectivity that permits efficient emulation of many topologies frequently employed

in the development of algorithms [9] [14]. Nevertheless, these properties come at

the cost of often prohibitively high VLSI (primarily wiring) complexity due to a

dramatic increase in the number of communication channels with any increase in the

number of PEs (processing elements). Its high VLSI complexity is undoubtedly its

dominant drawback, that limits scalability [14] and does not permit the construction

of powerful, massively-parallel systems. Two nodes in the 'In-cube or m-D hypercube

with 2m nodes are neighbors if and only if their unique m-bit addresses differ in a

single bit. The versatility of the hypercube in emulating efficiently other important

topologies constitutes an incentive for the introduction of hypercube-like intercon

nection net\'\'orks of lower complexity that, nevertheless, preserve to a large extent

the former topological properties [1] [12]. Indirect implementations of hypercubes

have also been proposed [8].

To support scalability, current approaches to massively-parallel processmg

use bounded-degree networks, such as meshes or k-ary n-cubes (i.e., tori), with

low node degree (e,g., the FLASH, Cray Research MPP, Intel Paragon, and Tera

computers), However, low-degree networks result in large diameter, large average

internode distance, and small bisection width. Relevant approaches that employ

reconfiguration to enhance the capabilities of the basic mesh architecture (e.g.,

reconfigurable mesh, mesh with multiple broadcasting, and mesh with separable

broadcast buses) will not become feasible for massively-parallel processing in the

foreseeable future because of the requirements for long clock cycles and precharged

switches to facilitate the transmission of messages over long distances [17],

The high VLSI complexity problem is unbearable for generalized hypercubes

(GHs). Contrary to nearest-neighbor k-ary n-cubes that form rings with k nodes

in each dimension, G Hs implement fully-connected systems with k nodes in each

3

Figure 1.1 The 2-D generalized hypercube GH(7,2).

dimension [16]. The n-D (symmetric) generalized hypercube GH(k,n) contains k71

nodes. The address of a node is Xn-1Xn-2".XjXO, where .Ti is a radix-k digit with 0 :::;

Xi :::; k -1. This node is a neighbor to the nodes 'with addresses Xn-1Xn-2".X~""TIXO,

for all 0 :::; i :::; 17, - 1 and x~ f. Xi. Therefore, tvvo nodes are neighbors if and only if

their n-digit addresses differ in a single digit. For the sake of simplicity, we restrict

our discussion to symmetric generalized hypercubes where the nodes have the same

number of neighbors in all dimensions. Therefore, each node has k - 1 neighbors

in each dimension, for a total of n· (k - 1) neighbors per node. The n-D GH(k, n)

has diameter equal to only n. Figure 1.1 shows the GH(7, 2) with 2 dimensions (i.e.,

17, = 2) and k = 7. For 17, = 2 and k an even number, the diameter of the GH is only 2

and its bisection width is the immense k3
/ 4. The increased VLSI/wiring cost of G Hs

results in outstanding performance that permits optimal emulation of hypercubes

and k-ary 17,-cubes, and efficient implementation of complex communication patterns

[4] [3].

4

In order to reduce the number of communication channels in systems similar

to the generalized hypercube, the spanning bus hypercube uses a shared bus for the

implementation of each fully-connected subsystem in a given dimension. Hov\Tever,

shared buses result in significant performance degradation because of the overhead

imposed by the protocol that determines each time ownership of the bus. Similarly,

hypergraph architectures implement all possible permutations of their nodes in

each dimension by employing crossbar switches [10]. Reconfigurable generalized

hypercubes interconnect all nodes in each dimension dynamically via a scalable

mesh of very simple, low-cost programmable switches [15J. However, all these

proposed reductions in hardware complexity may not be sufficient for very high

performance computing.

To summarize, low-dimensional massively-parallel computers with full connec

tivity for their nodes in each dimension, such as generalized hypercubes, are very

desirable because of their outstanding topological properties (e.g., extremely small

diameter and average internode distance, and immense bisection width), but their

electronic implementation is a Herculean task because of packaging (and primarily

wiring) constraints. We propose in this dissertation a new class of interprocessor

connection architectures, namely HO"\i\1s (standing for architectures with Highly

Overlapping \Vindo'ws), which employ the generalized hypercube [3] [16] [26J [19J

with outstanding topological properties (e.g., extremely small diameter and average

internode distance, and immense bisection width) as the basic building block. HO\Vs

are also obtained from generalized hypercubes by removing some of their processor

interconnections in order to reduce the wiring complexity and render them viable

structures for very high-performance computing. Large generalized hypercubes have

outstanding topological properties; however, they are characterized by very high

wiring complexity that p,r0hibits their implementation [11] [18J [19J. In contrast,

5

HOWs can be viable while having simultaneously topological properties comparable

to those of generalized hypercubes.

This dissertation is organized as follows. Chapter 1 introduces HO\IVs, a

new class of parallel architectures. Chapter 2 introduces cost analysis for HO\Vs.

Chapters 3 and 4 present the embedding of various interconnection networks into

I-D and 2-D HOVV systems. Chapters 5 and 6 present and analyze communication

operations for I-D and 2-D HO\i\! systems, respectively. Chapter 7 briefly analyzes

communication operations for (direct binary) hypercubes. Finally, Chapters 8 and 9

present performance comparisons involving hypercubes (binary and generalized) and

2-D HO\i\l systems.

1.1 The Class of HOW Architectures

The definition of the generalized hypercube network, which is the building block of

HOVis, is first in order. \Ve shall show later in this section that HO\i\Ts can also be

derived from generalized hypercubes by selectively removing some of their interpro

cessor connections. The terms node and processor are used interchangeably. The n-D

(symmetric or balanced) generalized hypercube GH(p, 17,) with p nodes per dimension

contains a total of pn nodes [16]. The address of a node is X n -lXn -2' .. XIXO, where

the radix-p digit Xi is 0 :::; Xi :::; P - 1 for i = 0, 1, ... ,17,- 1. Two nodes are neighbors

if and only if their n-digit addresses differ in a single radix-p digit. This generalized

hypercube can be obtained from the n-D mesh by replacing the linear arrays in each

dimension with fully-connected systems. Therefore, each node in the GH(p, n) has

17, x (p - 1) neighbors and its diameter is equal to just n.

Lmv-dimensional generalized hypercubes have very impressive bisection widths.

\i\lhen a network is cut into two equ2J halves, its bisection width is the number of

edges that run between these two halves; dense/heavy communications operations

can benefit from a large bisection width. For 17, = 2 and p an even number, the

6

?w±l neighbors of processor k

0 0 0 0 0 00 000
0 2 k-w k k±w p-3 p-2 p-l

I· wineiow for processor k ... 1

I""" I
winelow for processor k-I .1

Figure 1.2 The neighbors of the node with address k in the 1-D HO\V(p,w,l) system.

bisection width of the GH(p,n) is the immense p3/4. Also, generalized hypercubes

implement efficiently very demanding communications operations, such as broad-

casting and multicasting [26] [4]. Their outstanding topological properties are the

result of their high node degree (that is, the large number of connections per node)

which, however, has negative effect on the \viring complexity.

1.1.1 Their Structure

We first introduce the class of 1-D HO\V processor interconnections [29] [30].

HOT;{!(p, w, 1) denotes a 1-D HOW system with p nodes and window size w. Each

node with unique address k, where 0 ::; k ::; p - I, is connected directly to all nodes

within the windows of size w immediately to its left and right. More specifically, its

neighbors have addresses 0 ::; k ± 'i, ::; P - I, for all i = 1,2,3, ... ,w. Therefore, all

connections are local in this 1-D system and span up to w nodes to the left and w

nodes to the right of the referenced node. Figure 1.2 shows the neighbors of a node

in a 1-D HO\V system.

Each processor k belongs to as many as w + 1 maximal-sized 1-D generalized

hypercubes GH(w + 1,1) (i.e., fully-connected subsystems); they can be derived

by starting with the subsystem spanning node k and all its left neighbors in the

colinear representation of the HOW(p, w, 1), and shifting each time the window

by one position to the right until the last subsystem spans node k and all its right

7

neighbors. Therefore, each such pair of successively-derived GH(w+l, l)s have a very

large overlap that forms a GH(w, 1). The HOVV(p, w, 1) can also be derived from the

GH(p, 1) by removing for each node, in the colin ear representation of the GH{p, 1),

those edges that connect it to nodes outside of the left and right windmvs defined by

w. Therefore, existing algorithms for generalized hypercubes can be modified easily

to run on HOV,/s because of the following reasons:

• HO\I\Ts are derived from generalized hypercubes by removing some edges .

.. HO\Vs contain many smaller, highly-overlapping generalized hypercubes.

Not only do HOVis have reduced wiring complexity than GHs of similar size,

but also the locality of processor interconnections in HO\iVs can be a viable solution

for very high-performance computing [29J [30] [31J:

.. Moore's Imv predicts the doubling of transistor density for chips every 18

months. Multiprocessor chips have already appeared in the market and this

design concept is expected to have in the near future a very significant market

share in the high performance computing field. Local intrachip processor

connections, such as those required predominantly in HO\Vs, will then be very

effective .

• Intrachip and/or local interchip connections could be implemented efficiently

with current and expected electronic technologies for reasonable values of the

window size w; in contrast, the global interconnections required in generalized

hypercubes are much more difficult to realize. Improvements in intrachip

and/or interchip interconnection technologies can increase the value of w.

• Free-space optical interconnects are expected to become viable and commonplace

in the near future for the local interconnection of chips [19]. Very substantial

work is carried out in research laboratories, quite often with federal support,

8

for the efficient realization of free-space interconnects within computer systems;

,\iVDM (wavelength-division multiplexing) will be employed for the transmission

of multiple bits in parallel [19]. Because of the fact that chromatic dispersion

becomes a major problem in '\t\!DM for distances larger than Clfbout a meter,

the global interconnections required in generalized hypercubes will still be very

difficult to implement. Therefore, HO'\t\ls will increase further their advantage

over GHs with respect to interconnection complexity.

All of the above demonstrate that HO'\t\Ts are more prone than GHs to scalability

related to technological advancements.

The (symmetric) n-D HOTiV(p, w, n) with p nodes per dimension is constructed

recursively, so that each node has up to 2wn neighbors. A node has address

X n -lXn -2 ... Xi' .. XI.TO, where Xi is a radix-p digit with 0 :::; Xi :::; P - 1 for

all i = 0,1,"', n - 1. The neighbors of this node have addresses that differ

from its own address only in a single radix-p digit, that is they have addresses

Xn-l X n -2 ... x: ... XIXO, where 1 :::; IXi - x:1 :::; 'W for 0 :::; i :::; n - 1. This HO\t\l

system contains pn nodes. It is important to note that such a system contains many,

highly-overlapping generalized hypercubes GH(w + 1, n). The HOTIV(p, 'W, n) can

also be derived from the GH(p, n) by removing in each dimension all connections

for each node that do not fall into its left and right neighborhood windows defined

by w. Figure 1.4 shows 2-D HO'\t\l systems containing 16,25,36, and 49 processors,

respectively, and having window size w = 3. The HOliV(4, 3,2) in Figure 1.4.a

is identical to the GH(4, 2). In general, the HOVV(p,p - 1, n) is identical to the

GH(p, n). Also, the HOliV(p, 1, n) is identical to the n-D mesh.

Figure 1.3 shuws 1-D HOW systems containing 15 processors and having

window size of 3,4, and 5, respectively. Figure 1.4 shows the 2-D HOH!(4, 3, 2),

HOVV(5, 3, 2), HOTiV(6, 3, 2), and HOVV(7, 3, 2) systems containing 16,25,36, and

49 processors, respectively, and having window size 'W = 3.

9

(a) I-D system with IS-processor and window_size=3

(b) I-D system with IS-processor and window_size=4

(c) I-D system with IS-processor and window_size=S

Figure 1.3 1-D HOW system with 15 processors and window size of 3, 4, and 5,
respectively.

10

(a) PEs=16

(b) PEs=25

(c) PEs=36

(d) PEs=49

Figure 1.4 Examples of 2-D HO\i\1 systems with w=3. (a) HOVV(4, 3, 2). (b)
HOHf(5, 3, 2). (c) HOHf(6, 3,2). (d) HOVV(7, 3, 2).

11

The next tvw theorems are pertinent:

Theorem 1.1.1 The diameter of the HOVV(p,w,n) is nrr:ll-

PROOF. In the vwrst case, a message may have to traverse all ndimensions to

reach its destination. The diameter of the 1-D HOVV(p, w, 1) is r~ 1· It becomes

nfP:ll for the n-D HOVV(p, w, n) .•

Theorem 1.1.2 The number of channels ~n the n-D HOliV(p, w, n) is npn-lCll

where C1 = 3!f(2p - w - 1) is the number of channels in the l-D HOVV(p, w, 1).

PROOF. The number of channels Cl in the 1-D HOliV (p, w, 1) is (p - w)w +

L~=(/ i or (p-w)w+ (w-;l)w or 3!f (2p-w-1). This is because starting from the leftmost

node and proceeding sequentially to the rightmost node in the colinear representation

of the 1-D system, each node contributes w new channels except for the rightmost

w nodes. The i - th node from the right, where 0 :::; i :::; w - I, contributes i new

channels. The proof for the n-D HOVV(p, w, n) is based on mathematical induction.

The number of channels in the 2-D HOVV(p, w, 2) is 2pCl because it contains p

rows and p columns of 1-D H01;f1(p, w, 1)s. Let the number of channels Cn-l in the

(n - l)-D HOVV(p, w, n -1) be (n - 1)pn-2c1 . The n-D HOVV(p, w, n) is formed by

connecting together in HOVV(p, w, 1) structures all nodes with the same address in

p independent HOVV(p, w, n - l)s with pn-l nodes each. Therefore, the number of

channels Cn in the H01;f1(p, w, n) is PCn-l + p71-1 C1 or npn-l Cj ••

1.1.2 Further Implementation Issues

V\1e will analyze the following systems and derive the equations for calculating their

numbers of channels.

• the binary hypercube, (i.e. the m-cube);

• the k-ary n-cube;

12

.. the generalized hypercube GH(k, n);

.. the 2-D HOltV(2 T , w, 2);

.. the n-D HOFl(k, w, n).

Assume all systems have the same number N of processors, \\'here .N = kn =

2m The following are the derivations for these systems .

.. In the m-cube each node connects to 717, other nodes. Nodes share channels in

pairs, so the total number of channels is ~m2m .

.. In the k-ary n-cube each node has 2n neighbors and there are kn nodes. The

total number of channels is ~2nkn = nk 11
•

.. In the generalized hypercube GH(k, n) each of the k nodes connects to the

remaining k - 1 nodes along one dimension. There are n dimensions and kT!

nodes. The total number of channels is n(k - 1) k;' .

,. For the 2-D HOH!(2T, w, 2), since the 1-D HOVV(k, w, 1) is the building block

we first calculate the number of channels in the 1-D HOW(k,w,l) system. For

the first (starting from the left side) k - w nodes, each node has w channels

because the window size is wand connects to the w nodes to its right. Following

this rule, no wire will be counted twice. For the rightmost w nodes, the number

of channels will be 0+ 1 +2+· . ·+w -1 = (w-;1)w. The total number of channels

in the 1-D HO\iV(k,w,l) is (k - w)w + (W-;l)W = w((k - w) + W~l) = w(k - Wil).

For the 2-D HOltV(k, w, 2), there are k2 nodes, and each nodes has up to 4w

neighbors. It can be viewed as k rows and k columns of HOVV(k, w, 1) systems,

and therefore the total number of channels is 2kw(k - Wil).

,. The n-D HOVV(k, w, n), contains k 11 nodes and kn- 1 1-D HOTlIl(k, w, 1)

building blocks. Applying mathematical induction, we find that the total

number of channels in the n-D HOliV(k, w, n) is nkn-1w(k - Wil).

13

Table 1.1 compares the numbers of channels in the binary hypercube (i.e., m

cube), the k-ary n-cube (i.e., n-D torus), the generalized hypercube GH(k, 11), the

2-D HOVV(2T, w, 2), and the n-D HOHf(k, w, n), all with the same number N of

processors.

This dissertation focuses on 2-D HO\V systems because of their simplicity, high

bisection Iyidth, and ease of implementation. For a comparison, assume bidirectional

data channels for full-duplex communications (i.e., simultaneous data transfers in

both directions) and that N = k n = 2m (therefore, k = 1'ITlln = 2mln). For an

example, assume systems Ivith N = 16,384 processors (i.e., m = 14) and 64-bit data

channels; the numbers of wires in these systems are:

.. ~ * 14 * 214 * 64 = 7 * 16384 * 64 = 7,340,032 channels (also means 14,680,064

full-duplex bidirectional wires) for the 14-cube with diameter 14;

.. 2 * 1282 * 64 = 2,097,152 channels (also means 4,194,304 full-duplex bidirec

tional wires) for the 128-ary 2-cube with diameter 128;

• 2 * 1282
-

1 * 127;128 * 64 = 133,169,152 channels (also means 266,338,304 full

duplex bidirectional wires) for the GH(128, 2) with diameter 2;

.. 128 * 32 * (2 * 128 - 32 - 1) * 64 =58,458,112 channels (also means 116,916,224

full-duplex bidirectional wires) for the H01¥ (128,32,2) with diameter 8;

• 128 * 16 * (2 * 128 - 16 - 1) * 64 =31,326,208 channels(also means 62,652,416

full-duplex bidirectional wires) for the H01¥(128, 16,2) with diameter 16; and

• 128 * 8 * (2 * 128 - 8 - 1) * 64 =16,187,392 (also means 32,374,784 full-duplex

bidirectional wires) for the HOvV(128, 8, 2) with diameter 32.

For the comparative analysis of these results, we emphasize again that HO\i\T

systems with reasonable window size ware scalable, and could be implemented with

14

Table 1.1 Comparison of existing interconnection networks. All net\",orks have
_N = pn = 2m nodes.

Network Number of channels Diameter
m-cube if * log2 N m = log2 N . 71, * log2 P

I 1

71,*N 71, * l j\~n J - 71,* lE.J N;; -ary 71,-cube - 2
GH(N~, 71,)

I N
logpN = 71, (N;; - 1) * 71, * 2

HOl¥(VN, w, 2) VN * W * (2 * VN - W - 1) 2 * r\/N-q = 2 * rE.::~q
HOW(N~, w, n)

1 1
IV I W

~ * N 1
--; * w * (2 * N-; - w - 1) n * rNn,-ll = 71, * rp,~ll

current and expected electronic and/or optical technologies because of the locality

of their interconnects. In contrast, binary hypercubes are not scalable because the

node degree increases with increases in the number of processors and, therefore, are

difficult to build. Also, large generalized hypercubes are impossible to build because

of their very large wiring complexity.

1.2 The Class of Wrap-Around HOW Architectures

Similarly to the wrap-around mesh, Ive introduce here vvrap-around HOVV archi-

tectures. For the \vrap-around HOltV(k, w, 1) system, each node will have 2w

neighbors, that is w neighbors to its left and w nodes to its right. Figure 1.5 shows

the 1-D wrap-around H01¥(15, 3, I), HOliV(15, 4, 1), and HOTi/(15, 5, 1) systems.

Figure 1.6 shows the 2-D wrap-around HOTi/(7, 3, 2) system.

Each processor in the n-D wrap-around HOliV(p, w, 71,) has 2wn neighbors.

The derivation of the total number of channels in the wrap-around HOTiV(k, w, n)

system is then as following. Because each node has 2nw neighbors and processors

share channels in pairs, each processor contributes nw channels to the whole system.

Therefore, the total number of channels is kn - 1 * k * nw = knnw. Its diameter is half

of that for the regular HOliV(k, w, 71,). Table 1.2 shows the comparison of different

netv·.rorks.

15

Ca) J-O wraparound HOW(lS.3,J).

(b) J-O wraparound HOW(IS,4,J)

(e) 1-0 wraparound HOWeJS,S,!)

Figure 1.5 1-D v:.rrap-around HOW systems with 15 processors and window size of
3, 4, and 5, respectively.

16

Figure 1.6 The 2-D wrap-around HOliV(7, 3, 2).

Table 1.2 Comparison of interconnection networks. All networks have N = pH = 2m

nodes.

Network N umber of channels Diameter
m-cube if * log2 N 177, = log2 N = 17, * log2 P

1
1

N-n-ary n-cube nLN 17, * l N2 n J = 17, * l ~ J
GH(N~, 17,) (1 N N-n -1)*17,* 2 logpN = 17,

HOVV(VN,w, 2) VN * w * (2 * VN - w - 1) 2* 1~-11 =2* 171
HOTiflwrap('-'Fl, w, 2) 2*w*N 2* 1&-11 =2* 1E.=l1 1w 2w
HOTlV(N~, w, 17,) n N1-1. (? Nl. 1) 17,* IN~-ll =n* r~l 2*~ n *w* _* n -w-

HOHlw1.ap(N~, w, 17,) n*w*N 17,* rN*,~ll =n* r~l

CHAPTER 2

COST ANALYSIS

In this chapter, a VLSI cost comparison between 1-D HOVV systems and generalized

hypercubes is presented. To determine the VLSI cost, we measure the number of

wires and the complexity of the system based on the number of layers in the colinear

layout of the circuit.

2.1 Cost Analysis for the Regular HOVV(p, lV, 1)

A VLSI cost comparison between 1-D HOVVs and generalized hypercubes IS

presented. Since the focus of our attention in this dissertation are 2-D systems

with p nodes in each dimension, this 1-D comparison is assumed to be carried out

for each of the p rows and p columns in the 2-D systems (i.e., for their building

blocks). The next definition is pertinent.

DEFINITION 2.l. The crossing numbeT of a gmph is the m'lni11wm nU'lnbeT of

edge CTossings needed to dmw the gmph in the plane [27J.

This number is related to the area needed to layout the graph for VLSI implemen

tation. To eliminate all edge crossings, several printed-circuit layers may have to

be implemented. Not only does the number of layers affect the VLSI cost, but the

thickness also of each layer contributes to the cost measure.

To determine the VLSI/wire cost, we measure the complexity of each system

based on the minimum number of layers required in the colinear layout of the circuit

for zero edge crossings and/or the width of each layer. In the colinear layout, all

nodes in the 1-D system lie on the same straight line. The chosen rules of routing

the wires for 1-D systems are:

.. Vife consecutively number the processors 0, 1, 2, ... , p - 1, from left to right.

17

18

• Going from left to right, for even-numbered processors the wires go to the top

half of the printed-circuit board .

• For odd-numbered processors, the yvires go to the bottom half of the printed-

circuit board.

These basic rules of routing the wires minimize their maXImum collective width,

~MCT¥ (expressed in number of wires), in the x dimension. Figure 2.1 shows the

colinear layout of the 1-D H01¥(12, 4,1) and its brute-force decomposition for its

implementation with two layers that eliminate all edge/wire crossings. However, the

number of layers that eliminate all wire crossings depends on the value of w, and

thus it increases \vith increases in the window size. For example, Figure 2.2 shows

that the HOliV(12, 5, 1) requires three layers for the elimination of all wire crossings.

The following theorems are pertinent.

Theorem 2.1.1 The AICT¥ in the colineQ,1' layout of the l-D HOI¥(p, w, 1) with a

single layer is

~MCliV = { ~(~ ~ 1) for even w
(W;l)_ for odd W

fOT pmctical cases with w < ~. FOT the l-D genemlized hypeTcube GH(p, 1), the

value of AICVV is (p - 3)¢ + p - 1 - 2¢2 with ¢ = l P~l J .

PROOF. A1Cl¥ can be determined by finding the maximum number of those

wires that are located in either the upper or lower half of the layer between P Ew - 1

and PEw. If w is even, then this maximum number corresponds to the lower half

of the layer because PEw-I, which is the rightmost PE in the leftmost window, is

the last PE that contributes to A1CT¥ and contributes to the lower half (because

it has an odd address). Therefore, we have P E1 contri bu ting two wires because it

is connected to PEw and P Ew+l outside of this leftmost windo·w. P E3 contributes

four wires because it is connected to PEw, P Ew+1 , P EW+2 and P Ew+3 , and so on.

19

rr- MCW (Maximulll Collecti\'e Width) = 6

~

t =
1/

r-n
~ '!) ~ '---

~J
'---

,2.- • 5 7 S 9 10 II

(u) Colinc/'If I~yout nfthe nrlc-dillu:llsionul j·D HOW iY:;km 'ith 12 PE'~ !md window size- of 4

- - r-

~
'-- -

I 2 3 ~ 5 6 7 S 9 10 II

(b) The dccompru:itinn: the first layer.

CD

(c) l1u~ decumposition. the second Inycr

Figure 2.1 Colinear layout of the 1-D HOVV system with 12 PEs and window size
of 4, and its brute-force decomposition into printed-circuit layers.

20

IIII
I

If In I

r-=-- II
I II I I I Irl I I I I 61

L- ' '- '----- 1- '------ ! -'--
2 3),':'-- 5 ~ 7 ~ ~ 10 II 0 -' u ,

'-

Jl
-

(li}Colin~M l:l.yout orthe llne~diH,\Il':IIs:iol1aJ J-D HOW S:YlOtcm u.;th 12 PE's and window ;;iu: of 5

r--

c:::£: '-- '-- '-
I 2) 4 5 ~ 7 g 9 10 11

(b) The uccompl);'iioll: the fin;t layer

10 II

(c) The dt:c()tnpusiun. the >CC,lIIJ layer

10

(J) Tht': uccornposion: the third hlyer

Figure 2.2 Colin ear layout of the I-D HO\V system with 12 PEs and window size
of 5, and its brute-force decomposition into printed-circuit layers.

21

w

Therefore, we have _MCTtfI = 2 + 4 + 6 + 8 + ... + w, or L-Sl 2i where w/2 is an

integer or, finally, ¥j-C?f + 1). For odd w, however, _MCTIV corresponds to the upper

half of the layer because P E11J - 1 , which is the rightmost PE in the leftmost window)

is the last PE that contributes to AfC1tf1 and contributes to the upper half (because

it has an even address). Therefore, we have P Eo contributing one wire because it

is connected to PEw. P E2 contributes three wires because it is connected to P E11J)

P Ew+ 1 and P Ew +2, and so on. Therefore, we have .M Cltfl = 1 + 3 + 5 + 7 + ... + w, or
w-I tV-I

Li~O (2i+ 1) where W~l is an integer, or 2Li~1 i+ (W~l + 1) Of, finally, (W~1)2. To

obtain these results, we assumed that all W wires leaving P Ew - 1 exist, and therefore

w - 1 + w < p or w < 9. This should be expected to be the practical case for

HO\iVs. However, the results do not cover generalized hypercubes because for them

we have w = p - 1. Therefore, generalized hypercubes must be treated separately.

Because of the symmetry in 1-D generalized hypercubes, without loss of generality

we can find the .1\1C1;)1 by focusing on the upper half of the printed-circuit. In fact,

we can count the contribution of each PE in a left-to-right order. Let 0; be equal to

p - 1. P Eo contributes 0; wires because it is connected to a neighbors to its right.

P E2 contributes a - 4 wires to lI1CHI because it is connected to a - 2 neighbors

to its right and two levels of wires emanating from P Eo can be reused (therefore,

P E2 also can use the same wire levels). Similarly, P E4 contributes 0; - 8 wires to

.M CHI because it is connected to 0; - 4 neighbors to its right and four levels of

wires emanating from P Eo can be reused. Similarly, P E6 contributes a - 12 wires

to _MCHI because it is connected to 0; - 6 neighbors to its right and six levels of

wires emanating from PEo can be reused. In general, PEi , where i = 2j, contributes

a - 2] wires to J11CT;)I because it has a -] neighbors to its right and it can reuse

] levels of wires emanating from P Eo. HJwever, even-numbered PEs i for which

a - i is negative or zero do not contribute to .1\1CVV. Therefore, contributing PEs

22

have addresses 2i, with a - 4i 2: 0 or i ::; l ~ J. The value of 114 CTV is then given by

-:ZT=o(a - 4i), \"here ~ = l~J. This sum is also equal to (p - 3)~ + p - 1 - 2~2. 1&

This theorem shuws that HOVls have much smaller wire width CMCTV) than

generalized hypercubes for pract.ical cases because this width is O(w2
) arid O(p2),

respectively. The next theorem shows the number of printed-circuit boards (i.e.,

layers) required t.o eliminate all \\'ire crossings when the brute-force decomposit.ion

of t.he type shown in Figure 2.1 is applied.

Theorem 2.1.2 The nwnber of layers that eliminate all wire cTOssings with brute

force decomposition of the HOVV(p, w, 1) is r*l. It becomes 1 + rp;41 f07' the geneT

alized hypercube.

PROOF. Assuming the wire routing rules defined earlier and the brute-force

decomposition to produce zero wire crossings, we focus for the proof on a single

window. Each layer deals with a pair of consecutive nodes within the window and

there are r w/21 pairs. Thus, we need a total of r*llayers for the H01;j1(p, w, 1). For

the generalized hypercube, going from left to right in the colinear representation of

the system, each layer contains two successive nodes that connect to all other nodes

to their right. However, up to four rightmost nodes can be combined in the last

layer with zero \V1re crossings, and thus the total number of layers for the generalized

hypercube is 1 + r~l .•
\1I/e observe that the numbers of layers in HOWs and generalized hypercubes

of similar size are O(w) and O(p), respectively. This is another advantage of HO'1I/s

that renders them more viable for implementation than generalized hypercubes.

It is worth also mentioning here another wire routing technique, namely

restricted routing [28], that requires only two layers for the implementation of

any system represented in the 2-D space. As a result, both HOVVs and gener

alized hypercubes require two printed-circuit layers regardless of their size. In the

23

case of restricted routing, horizontal and vertical \\!ire segments are laid on two

different ,viring layers. Figures 2.3, 2.4 and 2.5 demonstrate this technique for

the HOVV(12, 4, I), HOH!(12, 5,1) and GH(12, 1) systems, respectively. Horizontal

and vertical wires can then cross over each other without any electrical connect.ion.

If a connection is needed, a cont.act is placed at the respective intersection; these

contact.s contribute to the \1L8I cost. Therefore, the total vI/iring cost with restricted

routing has four components:

• The t.otal number of wires. This number is O(Wp2) and O(p3) for 2-D HOVVs

and CHs, respectively.

• The maximum collective width of wires, }\1ClV (it. affects the cost of the larger

layer that contains the horizontal wires). This number is O(w 2
) and O(l}) for

HOVVs and CHs, respectively.

• The length of t.he \vires. The maximum length is O(w) and O(p) for HO\i\Ts

and CHs, respectively.

• The total number of electrical connections (contacts) between the two layers.

This number is twice the total number of wires. Therefore, it is O(Wp2) and

O(p3) for HOVis and CHs, respectively.

Therefore, HOWs are superior to CHs even with restricted routing. Vile can conclude

that HO\1\1s are more prone to implementation than CHs for reasonable values of w.

The following sections also show that HO'Ws can deliver very high performance.

2.2 Cost Analysis for the Wrap-Around HOH!(p, w, 1)

Let us now further investigate the \1L8I wire cost of HO\l\1s with wrap-around

connections. From Figures 2.6 and 2.7, it is very clear that the maximum collective

width (MC\I\1) increases wit.h increases in the window size w. It is because in

24

II

i [liI
- - - -

! I~
~ 'sl 7) (~

-
0 ~ , 4 (6 (,-!-- 10 (II - ,--=-- ~ ,

!

'--- ! '----- I
(II) G..hnellf Inyou(of 111e ollc-dllnensHmnl \·D HOW ;;:ysaem ·1111 12 PE s alii..! wmdow &I:t.e of ..

10 II

CD CD CD GJ GJ CD CD CD

Figure 2.3 Colinear layout of the I-D HO\iV system with 12 PEs and window size
of 4, and its decomposition into printed-circuit layers using vertical and horizontal
lines.

25

j Illn! I fl
,- -

'--- 7J
~ ~ ~ ~ '----

! 4 5 ;-- ~ ,2- 10 II ..-=-- ' ,-

I
! ! L-I '=== '===

(a) Cohnen. lfiyout uf Ihe une--dIlIlCns.tolllll 1·0 HOW s:),stem with 12 PE s and wIndow size of)

o 10 II

(b) DCl'l.)mposilioll with vertical lilles.

Figure 2.4 Colinear layout of the 1-D HO\i\1 system "lith 12 PEs and window size
of 5, and its decomposition into printed-circuit layers using vertical and horizontal
lines.

26

!!, ! I ! I I I , I
j

i

(tl) Cohncnr layout nfthe tHlC'·JullI:nslOflul .genc:nlh;r.cd hypercuOe ""',tb minimi7..l.'-u numher ol)(wIres.

I
o ,

(h) D':COIlI!}();::itinn of vcnlcllilines

(c) Decompl)c;;ilioll ()flwr17 .. ulllnlltllt':$

Figure 2.5 Colinear layout of generalized hypercube with 12 PEs, and its decom
position into printed-circuit layers using vertical and horizontal lines.

27

order to connect pairs of nodes belonging to the leftmost and rightmost ,vindows,

respectively, in the colinear layout, the wires will cross the entire printed-circuit

plane. The number of wires needed to connect all nodes in the two opposite ends is

w + (w - 1) + (w - 2) + ... + 1 = w(~H). Of course, Vire could split the \vires equally

between the upper and lower halves of the layer.

The follmving theorem determines the value of MC\iV.

Theorem 2.2.1 The MCWin the colineaT layout of the wmp-amund I-D HOW(p,w, 1)

with a single layeT is

{
¥fUi + 1) + rW(~+l)l faT even w

.Mel'll = (W;1)2 + rW(~+l)l faT odd w

PROOF. Refer to the proof for the regular 1-D HO\iV(p,w,l). The total number

of extra wires for the wrap-around system is W(~+l). \Ne could split the wires equally

between the upper and lower halves of the layer. So, \ve need to add rW(~+l)l to the

equation for the regular 1-D HO\V(p,w,l) .•

28

III

I

II 11111~i 1111r- I
r----

l I l& ~ I
,--h ~

Llt

i 7 '9 0 I ,0 (J 4 (~ ~)) (10 11

r ,--
I

Il --

(:1) Colluelif layuut of the un-r:-O!Jl1enSlllllll! I~D HOW system wllh 12 PE S tluJ u'l1ulm .. ' Size of 4

10 11

CD GJ GJ GJ CD CD GJ CD CD

(c) Drcompm;itiull with horl7.()l1ln! line.!>

Figure 2.6 Decomposition of'the 1-D ,vrap-around HOVV (12,4,1).

29

III I I I
I

I
i I I I

n~
Ie- C-

i
I

II II I Il 10~
I

- u - '--:]
I

,- '--

~ I ~ 3 ,--:- 5 ~ S 9 Ii
I

- I '----

10 II

Figure 2.7 Decomposition of the I-D wrap-around HOTV(12, 5, 1).

CHAPTER 3

I-D HOW SYSTEM EMBED DINGS

In this chapter, we discuss embeddings of various v;ridely-used interconn~ction

networks into I-D HO\V systems. Such embeddings could prove very beneficial

as HO\V and related systems demonstrate significant promise in scalable parallel

processing [18] [19] [29J [30] [31].

Some definitions are pertinent for the analysis of results. Given two graphs

G(V, E) and G' ("V', E'), embedding the graph G into the graph G' results in the

mapping of each vertex in the set V onto a vertex in the Ii' and of each edge in the

set E onto an edge, or a set of edges in E'. There are three important parameters

that determine the quality of mapping a graph G(V, E) onto a graph G' (V', E').

• Dilation of a source edge in E: the number of edges in E' that the edge in E

is mapped onto.

• Congestion of a target edge in E': the number of source edges mapped onto

the edge in E'.

• Expansion: the ratio of the number of nodes in the set V' to that in the set

V.

Example: referring to the figure 3.1, there are two graph: source graph G(4, 2),

target graph G' (9,8). The parameters are following:

• dilation of (A,B): is 5.

• dilation of (C,D): is 4.

• congestion of (K,L): is 2.

• expansion: is 9/4.

30

31

A'

1_-/-_-""" C'

D~--------t-----------~~--~~~D'

Source Graph with N nodes Target Graph with N' nodes

Figure 3.1 The definition of dilation, congestion and expansion.

In this dissertation, we try, if possible, to limit the scope of the discussion to

cases \"here the expansion is one, for the sake of cost effectiveness.

3.1 Embedding a Ring into a 1-D HOW System

A ring of p nodes with addresses 0 to p -1 can be embedded into a 1-D HOW system

with p nodes by mapping the ring processor with address i, where i = 0, 1,2, ... , p-1,

onto the distinct processor x, where x = 0,1,2, ... ,p - 1. Our embedding procedure

distinguishes between even and odd addresses x, with x = 2k and x = 2k + 1,

respectively, in the 1-D system and uses the function i = C(k) to get the address i

of the corresponding processor in the ring. The function C (k) is defined as follows:

C(k) = { k if x = 2k, for k = 0,1,2, ... , 19 J
. (p - 1) - k if x = 2k + 1, for k = 0,1,2, ... , ip;ll - 1

It is easy to see that this mapping technique requires a window size of at least

w = 2 for optimal mapping (i.e., the dilation is one). Figure 3.2 illustrates the

embedding of a sixteen-processor ring into a 1-D HUVV system, also with sixteen

processors.

For w > 2, we can also use several other embedding functions for optimal

mapping, including the function C' (k) that follows:

32

(0)------;,-'" Outside numbering:
processor number in the ring

---'1,-----;,- Inside numbering:
processor number in the I-D system

(2) (6)

6 10
(3) (5)

Figure 3.2 (a) A 16-processor ring and (b) its embedding into the 1-0 HO\V(p,w,l)
system.

(p-l)
~v-l)

... -E) 0 G-e--e-e- ...
(p-2) (p-l-k)

6c;bv-~~ .. .< -'0--60==0
I' /

(0) (1) (2) (3)

w-l 2w-1, __ ' ',----fJ-2 p-l

Figure 3.3 Embedding a p-processor ring into the 1-0 HOW(p,w,l) system with
another technique.

33

C' (k) = and k = 0, I, 2, ... , L 7 J
{

(w - l)k + (w - j) if x = (k + l)w - j, for j = 2,3,4, ... , W

(p - 1) - k if.T = (k + l)w - I, for k = 0, I, 2, ... ,171 - 1

Figure 3.3 illustrates the general embedding of a p-processor ring into the 1-D

HOV/(p,w,l) system, using the function C/. All proposed embeddings have dilation

one, congestion one, and expansion one.

3.2 Embedding a 2-D Mesh into a 1-D HOW System

Vie present here embedding techniques for the 2-D mesh and torus topologies. The

target architectures are 1-D HO"\i\! systems. In a subsequent section, we will shmv

that much better embeddings can be derived if the target HO"\i\! systems are 2-D.

3.2.1 2-D Regular Mesh

Considering a p x n mesh with p rows and n columns, we can embed this mesh

into a (p x n)-processor 1-D HOW system by mapping the processor (i,j), where

i = 0, I, 2, ... ,p - 1 and j = 0, 1,2, ... , n - I, of the mesh onto the processor

.T = H(i, j), where x = 0, I, 2, ... , (pn - 1) of the 1-D system. The function H(i, j)

is defined as follows:

H(i .)={ ~+jJ~ ifp::S;n,fori=O,l,2, ... ,p-1and.i=0,l,2, ... ,n-1
,J 'tP + J if p > n, for i = 0, I, 2, ... ,p - 1 and j = 0,1,2, ... ,n - 1

This mapping of a mesh onto a 1-D system has the following properties:

• If p < n., with column-wise mapping of mesh nodes and window size of at least

p the mapping is optimal (with dilation one).

• If p > n, with row-wise mapping of mesh nodes and window size of at least n

the mapping is optimal.

• If p = n, the row-wise mapping is the same as the column-wise mapping.

34

(0,0) ° (0,1) 3 (0,2) 6 (0,3) 9 (0,4) 12

13

14

(a)

(b)

Figure 3.4 (a) Source 3x5 mesh and (b) its optimal embedding into the I-D
HO\iV(15,3,1) system.

(0,0) ° (0, I) I (0,2) 2

(a)

(b)

Figure 3.5 (a) Source 5x3 mesh and (b) its optimal embedding into the I-D
HO\iV(15,3,1) system.

o 234 5 6
o 0 0 0 0 0 0
---------------------------------,
-;- y - - - -s - - - - -9- - - - -10- - - -11- - - -12 - - - -13'
:0 0 0 0 0 0 0
~---------------------------------,
'-14 - - - IS - - - 16 - - - 17 - - - 18 - - -19 - - - "20
:0 0 0 0 0 0 0
I _____________ - _ - - - - - - - - - - - - - - - - - -,

: -2 C - - - 2'X - - -23- - - - 24- - - - 25- - - -26 - - -2f
'0 0 0 0 0 0 0 1- _______________________________ _

; -is- - - -i9- - - -3-0- - - -3-(- - -32- - - -3Y - - -34-

:0 0 0 0 0 0 0
---------------------------------,
_________________________________ 1

'35 36 37 38 39 40 41
:0 0 0 0 0 0 0
,- 42 - - - 43 - - - 44 - - - 45 - - - 46 - - - 47 - - - 48'
:0 0 0 0 0 0 0
1 __ -- __ ---------------------------

Figure 3.6 Mapping the 7 x 7 mesh in two different ways .

35

• The window size must be at least p = 17, = mi17,{p, n} for an optimal mapping.

Figures 3.4 and 3.5 illustrate optimal embeddings of the 3x5 and 5x3 meshes,

respectively, into the I-D HGVV(15,3,l) system. In order to get an optimal mapping,

the window size w should be at least equal to the min{p, n}. If rnin{p, n} >

w 2: l min;p,n} J, then the mapping is suboptimal with maximum dilation two; if

l
min{pn}J lmin{pn}J 'I I .. I t' 1 . 1 . d'l t' 2' > w 2: 3 ' , t len t le mappmg IS su)OP Ima WIt 1 maXImum 1 a IOn

three' etc. In the general case if lmin{p,n}J > w > lmin{p,n}J where m is a I)osition
, , 771 - m+1 '

integer, then the embedding has maximum dilation m + 1. The expansion and

congestion are both one.

The best mapping is not unique. For example, we can use another \vay to get

a best mapping for the same windmv size. Figure 3.6 is an example to map the

7 x 7 mesh onto a I-D system using two different ways; the first mapping applies

row-major order while the second mapping is along the diagonals (i.e., along the

dashed lines).

36

(0,0) (0,3) (0,1) (0,2) (0,0)0 (0,3) 1 (0,1)2 (0,2)3

0 0 0 0 0 0 0 0

(l,0) (l,3) (l,l) (1,2) (3,0)4 (3,3)5 (3,1)6 (3,2)7

0 0 0 0 0 0 0 0

(2,0) (2,3) (2,1) (2,2) (1,0)8 (l,3)9 (1,1)10 (1,2)11

0 0 0 0 0 0 0 0

(3,0) (3,3) (3,1) (3,2) (2,0)12 (2,3)13 (2,1)14 (2,2)15

0 0 0 0 0 0 0 0

(a) 4x4 wraparound mesh: source (b) row-wise intermediate step (c) column-wise intermediate step
with processor number in 1-0 system

(d) 1-0 system: target

Figure 3.7 4x4 wraparound mesh and its optimal mappmg onto the 1-D
HO\V(16,8,l) system.

3.2.2 2-D Wraparound Mesh or Torus

Embedding a p x n wraparound mesh into a 1-D system is a natural combi-

nation and extension of embedding (p + n) rings and a 2-D mesh into a 1-D

system. Vile can embed a p x n wraparound mesh into a (p x n)-processor 1-

o HO\lV system by mapping the processor (i, j) of the torus onto the processor

(G(i,j); where j is fixed)II(G(i,j); where i is fixed)IIH(i,j). The symbol II denotes

concatenation of two different mappings onto the 1-0 HO\V system. The functions

"G" and "H" were defined earlier for the ring and mesh embeddings.

Figure 3.7 is a step-by-step example for mapping a 4x4 wraparound mesh. This

mapping of a wraparound mesh onto a 1-D system is a natural combination/extension

of ring and mesh mappings, and therefore it inherits all the properties associated

with the latter mappings. For example, the window size should be at least equal to

2 x min{p, n} for optimal mapping.

37

16

Level # (d) Required minimun window size
for optimal mapping (dilation=l)

3 d-2 ------------'3-;. 5 8 = 2 = 2

24 2 d-2
------.;"';..- 4 4=2=2

1 d-2
------;;.~ 3 2=2=2

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
(a)

o d-2
2 1=2=2

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(b)

Figure 3.8 (a) A 31-processor full binary tree with depth d = 5 and the numbering
of its nodes and (b) its optimal embedding into the I-D HOV/(31,8,l) system.

3.3 Embedding a Binary Tree into a I-D HOW System

Binary trees can be embedded into a I-D system in several ways. Consider a full

binary tree of level d containing 2d - 1 processors. A good embedding can be derived

by numbering the nodes of the full tree in the manner shown in the example of

Figure 3.8. The number assigned to a tree node then denotes the address of the

corresponding node in the HO\i\l system.

This mapping has the following properties:

• It is a recursive mapping

• The required minimum window size for optimal mapping is 2d
-

2
, where d is

the level of the full tree.

If 'W < 2d - 2 , the mapping is suboptimal. To find the dilation for suboptimal

mapping, the following proposition is pertinent.

38

Proposition 1. For the embedding of a full binary tree with depth d and

2d -1 nodes into a 1-D HO"\iV system with the same number of nodes, we need 2d- i - 1

connections at distance 2i in the 1-D linear-array configuration of the HO"\iV system,

for i = 0, 1,2, ... , d - 2.

d f b I b d r 2dw- 21 Corollary 1. The maximum ilation or a su optima em e ding is

and corresponds to two source edges.

Corollary 2. If w is not a power of two, the maXllTIUm congestion for

suboptimal embedding is one. Othenvise, for w = 2v
, with v < d - 2, the maximum

congestion is d - 2 and corresponds to two target edges.

3.4 Embedding a Hypercube into a 1-D HOW System

Ad-dimensional (direct binary) hypercube consists of p = 2d processors, and a (d+ 1)-

dimensional hypercube is constructed by connecting together pairs of processors with

the same addresses in two d-dimensional hypercubes [9J [14J. Two nodes are neighbors

in the d-dimensional hypercube if and only if their unique d-bit addresses differ in a

single bit (lJ [9] (11].

We can embed the d-dimensional hypercube into the 1-D HO"\iV system with

2d nodes by mapping each hypercube node to the node with the same address in

the HO"\iV system. The window size should be at least equal to 2r1
-

1 for optimal

mapping. For a large value of d, the mapping should normally produce large dilation

because of the large difference in the dimensionalities of the two systems. A large

dimensional HO\iV system could produce very good results. For this reason, we avoid

further analysis of this mapping for 1-D HO"\iV systems.

Figure 3.9 shows the embedding of a 16-processor hypercube into a 16-processor

1-D HOW system.

39

(a)

Figure 3.9 (a) A 16-processor hypercube with binary addresses for its nodes and
(b) its optimal embedding into a I-D HO\i\T(16,8,l) system.

CHAPTER 4

2-D HOW SYSTEM EMBEDDINGS

In the following sections, we propose embeddings of various interconnection networks

into 2-D HO\iV systems. VVe limit the scope of the discussion to cases in which the

number of rows and the number of columns are the same, and equal to n, in the 2-D

HOW system. 2-D HO\V system embeddings are extensions of 1-D HO'I\1 system

embeddings. Therefore, everything we discuss here is based on the preceding section.

4.1 Embedding a Ring into a 2-D HOW System

An optimal ring mapping is always possible with expansion one if the window size is

at least 2. 'I\1e visit the nodes in a serpentine-like, column-wise way where the first

column is scanned sequentially for an even number of rows. In this case, even with

w = 1 \ve produce an optimal mapping. 1:<'or an odd number of rows, the nodes in

the first column cannot be visited sequentially, but still an optimal mapping exists

for w > 2, as shown in Figure 4.l.

If the number of processors in the source graph is (n - 1)2 < PEs < n2
, where

n is a positive integer, we just use one or more links connecting nodes at distance 2

to bypass several processors in the 2-D HO'rV system for optimal mapping, as shown

in Figure 4.2.

4.2 Embedding a 2-D Mesh/Torus into a 2-D HOW System

It is straightforward to get an optimal mapping for the regular mesh. 'I\1e apply the

ring mapping for I-D systems in individual rows and columns. An optimal mapping

for wraparound edges of the torus does not exist if the target graph does not contain

fully-connected rows and columns (we assume an expansion equal to one).

40

41

Lna-l
(a) PEs=16

(b) PEs=25

(e) PEs=36

(d) PEs=49

Figure 4.1 Embecldings of rings into 2-D HO\i\T systems.

Figure 4.2 Embeddings of rings into 2-D HOW systems when the numbers of nodes
in the rings are smaller than those in the HO\i\T systems.

42

(a) 6x6 torus (b) mapping ontO the 2-D system

Figure 4.3 Mapping the 6 x 6 torus onto a 2-D HOVl system with window size of
3. Consecutive bold segments in a row/column implement wraparound connections
in the torus.

Otherwise, for the wraparound mesh (i.e., torus) we split the wraparound

connections into a minimal number of segments based on the window size provided

by the 2-D HO\i\T system. Some target processors are then used not only to process

data but also to forward data destined to otherwise neighbors in the torus. The

target system should still be expected to perform very well for algorithms employing

the torus.

The dilation of wraparound connections is then rn:1l. The mapping of torus

wraparound links can always be chosen so that the maximum congestion is one,

assuming that w ~ 2. Figure 4.3 is an example to map the 6 x 6 torus onto the 2-D

HOvV(6,3,2) system, using a window size of 3.

4.3 Embedding a Binary Tree into a 2-D HOW System

Binary trees can be embedded into 2-D HOv\! systems in several ways. Such an

embedding could be used for the implementation of data reduction operations [13).

Consider a full binary tree of level l containing 21 - 1 processors and the 2-D

43

o

(a) 3-level binary tree (b) the mapping onto the 2-D system

Figure 4.4 Optimal mapping of the 3-1evel binary tree onto the 2-D HO\iV(3,2,2)
system.

HOV\!(h/21 - 11, w,2) system for the smallest expansion. Vie assume that w 2::: 2.

The two basic building blocks used in our binary tree mapping are for the 3-level

tree, and are shown in Figures 4.4 and 4.5. These two building blocks and their

mirror images are employed for the mapping of larger trees. For example, Figure

4.6 shows a mapping where the building block #1 at the upper-left corner of Figure

4.5 and its three mirror images are used for the mapping of the four distinct 3-level

trees containing leaves of the original 5-1evel tree. The mirror images are employed

to minimize the distances between the roots of these trees for connections at the

next level. The largest dilation of edges is 2 in this case (the reason for this is that

there is no way to directly connect processor-1 and processor-4, or processor-2 and

processor-6; \ve use two edges to connect them together as shown with the bold lines

in Figure 4.6).

In general, a large binary tree of levell is viewed as four appropriately connected

subtrees of level l - 2 for which embeddings into a 2-D HOV\! system are easily

obtained recursively; interconnection of their roots after the embeddings are then

easily derived. An example is shown in Figure 4.7. The maximum dilation is two for

binary trees with an odd number of levels. Otherwise, we have optimal embeddings.

o

7 8 9 10 11 12 13 14

(a) 4-level binary tree

r------------------~

, 7 3 8
I

__ .J._

I I

I 9 ,
1 ______ -.,

r----- I
I

I
------1--

1
P I I o)-----{ }-----{ I I , ~ __________________ ~ I

V
Building block as shown in figure 4 I

Y
Another building block for tbe 3-1evel binary tree mapping

(b) tbe mapping onto the 2-D system

44

Figure 4.5 Optimal mapping of the 4-level binary tree onto the 2-D HO\i\T(4,2,2)
system. The two distinct building blocks for the mapping of 3-level binary trees are
enclosed in dotted lines.

4.4 Embedding a Hypercube into a 2-D HOW System

\i\Te can embed a (direct binary) hypercube into a 2-D HOW system with two different

methods, based on the desired expansion.

First, we consider the embedding of the d-D hypercube into the 2-D HO\i\T

system with 2f%1 x 2f%1 nodes, corresponding to minimal expansion. \i\Te can embed

this hypercube recursively as shown in Figures 4.8 and 4.9, where optimal mapping

is achieved because of the large windows. This mapping is derived from the classical

2-D representation of hypercubes; optimal mapping results if w 2: 2 f%1- 1
. In the

general case, the largest dilation of edges for this mapping technique is r2r~-11. The

advantage of this method is that it is very simple and easy to implement, but its

disadvantage is that half of the processors are wasted \vhen d is an odd number. The

maximum congestion is one if w is not a power of two. If w = 2v , with 'U < r~l - 1,

the ma..'{imum congestion for the mapping that minimizes the maximum dilation is

(r~l - 1) - v + 1 or r~l - v. The expansion is 22~11.

Second, in order to minimize the number of unused processors in the 2-D HO\i\T

system if d is odd, we can use another method to embed the d-D hypercube into the

15 16 l7 18 19 20 21 22 23 24 25 26 27 28 29 30
(a) 5-level binary tree

r------------, r------------,
I 15 7 16 I

I

117

o

o
r---- J

I 19

I

121

}------{

I 23 11 24 I

I

125

o
1-----

127

I
129

I

12 26

(b) the mapping onto the 2-D system

Figure 4.6 Mapping the 5-1evel binary tree onto the 2-D HOW(6,2,2) system.

45

46

0r\

r --

131- 32 33- 34 -35 36- 37-38 39 -40 41-42 -4344-45 46 47 -48 49-50 sf 52- 53 54 555657-58 -5960- G1 -62
(a) 6-level binary tree

1

1

1 I
I

1

I ____________ ~

::~?
1 1

14 4 3 I
I 1 1 1 __________________ ~ _________________ l

(b) the mapping onto the 2-D system

This mapping is based on the

4-level mapping. including

the 4-level mapping building

block and its threc minors. as

shown in the bold dash line.

Figure 4.7 Optimal mapping of the 6-1evel binary tree onto the 2-D HO\V(8,2,2)
system.

47

o o o o

(a) 3-D hypercube o o o o
(b) mapping of the 2-D system

(c) 4-D hypercube Cd) mapping of the 2-D system

Figure 4.8 Optimal 3-D and 4-D hypercube embeddings into the HOVl(4,2) system
(method one).

48

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 4.9 5-D hypercube and its embedding into a 2-D HO\1\1 system (method-one).
Optimal mapping is derived if w 2:: 4.

49

()
d-3. . d-2 d

2-D HOVV k,w,2 system, where k = 3 * 2-"2 1f d 1S odd, or k = 2 * 2'""'2 = 2"2 if d is

even. This recursive mapping method is based on the fact that the d-D hypercube

is formed from four (d- 2)-D hypercubes. Vv'hen d is even, then we use the mapping

of 22 hypercube as the fundamental building block; when d is odd, then we use the

mapping of 23 hypercube as the fundamental building block The advantages of this

method are that we can save a lot of otherwise unused processors and that the 2-D

mapping looks neater when d is an odd number. The embedding of the 3-D hypercube

into the "building block" HO\iV(3,2,2) is used recursively. As shown in Figure 4.10,

the embedding into the building block results in only one unused node. The source

edges (000,100), (100,101) and (110,111) have dilation two in the building block, and

the congestion is two for the target edge (110,100) -- which also means there are

3 edges with dilation tvw, and there is 1 edge with congestion tVI'O.. Figure 4.10

shows the embedding of a 5-D hypercube using four 3-D hypercube building blocks

in HOvV(3,2,2)s. This example shows that there are only four unused nodes.

In the general case, with the second method for an odd d the chosen target

system is the HO"\i\f(3 x 2d;3 , w, 2) for the best mapping with minimum expansion.

The expansion is actually equal to 9X;:-3 or ~.

Proposition 1: Given the d-D binary hypercube, if d ~s even, the lar:qest

dilation of edges is r2r~~-11 and the congestion is 1.

Proposition 2: If d is odd with method-two, there aTe 2d
-

3 edges with

3(,!2d-3 1)
congestion 2, the largest dilation of edges is nwx{2, r w -1), and there are at

least 3 x 2d- 3 edges with dilation 2, and 2d
-

3 unused nodes.

Lemma 1: In the building block (3-D binary hypercube), there are (3 x 23 /2) or

12 edges. Among them there is only one edge (node 110 to node 100) with congestion

2, there are thr·ee edges with dilation 2.

This can be easily proven from in Figure 4.10. Only four unused nodes result

with this mapping.

50

Figure 4.10 5-D hypercube embedding with the second method. This figure shows
the original hypercube, the embedding of the 3-D hypercube into the building block
HOW(3,2,2), and the final embedding into the 2-D HOVV(6,3,2) system.

51

01

1 ____________ 1

Fiigure 4.11 6-D hypercube embedding in a 2-D system using method two. (Actually
mtethod-two and method-one are the same for even number dimension hypercube.)
TIhis figure shows the building block and the embedding in 2-D system.

CHAPTER 5

COrvIMUNICATION OPERATIONS ON I-D HOW SYSTEJVIS

Our focus in this dissertation is 2-D HOVV systems. However, I-D HO\I\T systems are

their building blocks (BBs), and therefore we first develop communication routines

for l-D HO\I\T systems. Before we propose algorithms for implementing various

communication patterns on l-D HO\I\T systems, introductory material is needed to

facilitate evaluation of the algorithms. The communication latency, that is the time

consumed to communicate a message between t\VO processors in the system, depends

on the following parameters [5] (20):

• Startup time (t s): the time consumed by the sending processor. It comprises the

time to prepare the message (producing the header, trailer, and error correction

information), the time for the routing algorithm at the source, and the time to

send the first part of the message to the appropriate communication port.

• Per-word tmnsfer tim,e (tw): the time taken by a \vord to traverse a channel.

If the channel bandwidth is b words per second, then each word takes time

tw = lIb.

.. Cornb'inir"g time (tc): the time consumed by an intermediate node to switch a

message from an input to an output port; it also includes the time to combine

incoming messages, if needed, and send them to the appropriate output port.

Vie calculate only the time taken by a message to reach the input port of the

destination. Additional time may be needed to get the data from that port. In store

and-forward (SF) routing, with a message traversing a path with multiple links,

each intermediate processor forwards the message to the next processor in the path

after it has received the entire message. To increase the utilization of communication

resources and reduce communication time, wormhole routing divides a message

52

53

(a) model-l with one output port (b) model-2 with mUltiple pons
and the same output value

(c) model-3 with multiple pons
and different omput values

Figure 5.1 Different output port models.

into flits (flow-control digits). As the header flit advances along the chosen path,

the remaining flits [ol1O\v in the same path in pipelined fashion. If the header flit

encounters a channel already in use, this flit is blocked until the channel becomes

available [5). Normally, the flit size coincides with the channel width. The combining

time tc is ignored in wormhole routing.

We develop algorithms under three different communication models. For all of

the models, each processor can receive more than one message at a time in different

input ports. These models differ in how they can use their output ports.

• Model-1: Each processor can use only one output port at a time.

• Model-2: Each processor can use multiple output ports simultaneously, as

long as all output ports contain the same value.

• Model-3: Each processor can use multiple output ports simultaneously, and

different output ports can have different values.

The architecture considered here is a 1-D system. There are three different

models in a 1-D system which are used for communications, as shown in Figure 5.1.

In the following subsections we develop algorithms for various communication

operations on 1-D HOVI systems and derive corresponding execution times for the

aforementioned models. The analysis is done each time for SF and wormhole routing,

in this order. These operations are very frequently used in parallel processing [13J

[4J.

54

5.1 One-to-One Communication

This basic operation sends a message from one processor to another.

With SF routing, sending a single message containing m words takes ts + mtwl +

te(l - 1) time, where l is the number of links traversed by the message. For a 1-D

HOW system with p processors and window size w, l is at most rJ1:
11, and therefore

the time for a single message transfer has the upper bound of

assuming no contention with other messages at intermediate processors.

With wormhole routing, assume that the Hit is one word, and therefore the flit

transfer time is two If the message traverses l links, then the header of the message

takes ts + ltw time to reach the destination. If the message is m words long, then the

remaining Hits will reach the destination in time (m - 1)tw after the arrival of the

header. Therefore, the upper bound is

p-1 p
T(VV R)one_to_one = ts + tw f--l + (m - l)tw = O(rn + -)

w W

For the wrap-around HOIIV(p, w, 1). l is at most fp-1l and therefore it takes
2w '

half of the time for the regular HOVV(p, w, 1) system.

Therefore the time \vith SF routing for a single message transfer has the upper

bound of

The time with wormhole routing for a single message transfer has the upper

bound of

55

5.2 One-to-All Broadcasting

One-to-all broadcasting is an operation where a single processor sends the same data

of Tl1 words to all other processors. Initially, only the source processor has the data of

size Tn that needs to be broadcast. At the termination of the procedure, there are p-1

copies of the initial data, one copy residing in each of the other processors. The naive

\,\ray to perform one-to-all broadcasting is to sequentially send p - 1 messages from

the source to the other p - 1 processors. For the sake of efficiency, every processor

could keep a copy of the message it receives from a neighbor, and then could forward

this message to one or more of its other neighbors.

M One-to-all broadcast M M

o 0 o --------> 0 0
Figure 5.2 One-to-all broadcast.

5.2.1 Model-l

M

o

Since there is only one output port "available" for each processor at each transfer

step, we consider two different stages. We assume that the leftmost processor is the

source, for worst case timing. In the first stage, we copy the data to all processors

(PEs) in the source's window of size w In the second stage, the data in the leftmost

window is propagated to the right, one window size at a time.

We introduce two parameters here: S1 represents the number of transfer steps

needed to fill the first window, and S2 represents the number of transfer steps needed

in the second stage to copy the values in the first window into the remaining windows.

In the first stage, the propagation doubles each tim.e the number of PEs that receive

the message, and therefore the processors within the window are assumed to form a

binary tree. Vve have the following relations among S1,82, and w:

S1 = flog(w + 1)1
S 2 = r (p - 2 s 1) / w 1

All logarithms in this dissertation are in the base 2.

56

Table 5.1 The propagation rules of one-to-all broadcasting under model-I.

S PEmax P Etotal
1 2S 1 = 21 1 1),::; ?i 1 = 2s-1 1 - ,,-,i-l - -

2 25 1 22 1 2 2::::' ?i 1 = 2s _ 1 3 - - t-1 - -

3 25 1 23 1 =4 2:::5 ?i 1 = 25 - 1 =7 - i-l ~

Sl 2S 1 251 1 tS .)i-1 = 2S - 1 = 251 1 - t-1 - -

VVe can also use Table 5.1 to illustrate the propagation rules to follow in the

first stage. (S is the number of the transfer step in the first stage, P Emax is the

maximum number of PEs that can receive a copy at each transfer step, and P Etotal

is the total number of PEs that have received a copy at each transfer step).

Figure 5.3 shows an example. The communication time for one-to-all broad-

casting under model-1 and SF routing has the uppeT bound of

This asymptotic time is optimal.

With wormhole routing, the uppeT bound is

O(m logp)
if (p - 1) ~ w

O(m logw + 1n~J
if (p - 1) > w

O(m + logp)
if (p - 1) ~ w
O(m + logw + ;!;)
if (p - 1) > w

assuming that incoming data can simultaneously be stored locally and also be trans-

ferred to the next PE in the path.

For wrap-around HOVV(p, w, 1). It will need S'1 steps to fill the leftmost window

and rightmost \vindmvs, which is 2 * Sl' Also it will need s~ steps which is only half

of S2 to copy the values in the leftmost and rightmost windows into the remaining

57

(a) HOW(l2.3.1) with initial information

MeO) M(O)
0---0 0 0 0 0 0 0 0 0 0 0

0 2 3 4 5 6 7 8 9 10 11
(b) First communication step (Stage 1)

~O)
0 0 0 0 0 0 0 0

0 2 3 4 5 6 7 8 9 10 J I
(c) Second communication step (Stage 1)

M(O) M(O) M(O) M(O) M(O) M(O) M(O)

0 0 0 0 0 0
0 2 3 4 5 6 7 8 9 10 J 1

(d) Third communication step (Stage 2)

M(O) M(O) M(O) M(O) M(O) M(O) M(O) M(O) M(O) M(O)

0 0 0 0 0 0
0 2 3 4 5 6 7 8 9 10 II

(e) Fourth communication step (Stage 2)

M(O) M(O) M(O) M(O) M(O) MeO) M(O) M(O) M(O) M(O) M(O) M(O)

0 0 0 0 0 0 0 0
0 2 3 4 5 6 7 8 9 10 11

(f) Fifth communication step (Stage 2)

Figure 5.3 One-to-all broadcasting under model-1 with 12 processors and windO\\'
size of 3. A number in parentheses is the label of the source processor from 'vvhich
data has been broadcast. All communication steps are shown.

windows. Therefore,

S'l = 2flog(w + 1)1
I _ fP-1-2si 1

S2 - 2w

58

Therefore, the communication time of the wrap-around HOVV(p, w, 1) for one-

to-all broadca.sting under model-1 and SF routing has the uppeT bound of

{

ts + mtw\logp1 +tc(\logpl-1) O(mlogp)
Twrap _ if (p - 1) ::S w

onLto_all,l - ts + mtW(S'l + s~) + tc(Sl + s~ - 1) O(mlogw + 111;;;)

if (p - 1) > w

\iVith \vormhole routing, the uppeT bound on the communication time is

Special-case: Fully connected I-D subsystems.

O(n1 + log p)
if (p - 1) ::S w

O(m + logw + !)
if (p - 1) > w

For a fully connected

subsystem, the procedure is similar to that for stage-l under our model-I. Therefore,

With wormhole routing, the communication time is

5.2.2 Model-2 and Model-3

For one-to-all broadcasting, there is only one value to be sent, and therefore the

procedures for this operation are identical under model-2 and model-3. Assume the

leftmost PE as the source. Model-2 is not inferior to model-3 because up to w output

ports are "available" to the right of each processor at each transfer step as long as

these ports transfer the same value, which is the case here. The first stage now

consumes one transfer step and the total number of transfer steps is f(p - l)/w 1.
Figure 5.4 shows an example. The communication time has the uppeT bound of

This asymptotic time is optimal.

o 2

M(O) M(O) M(O)

0
0 2

M(O) M(O) M(O)

0 0 0
0 2

M(O) M(O) M(O)

0 0 0
0 2

(a) HOW(l2,3,1) with initial information

M(O)

3
o

4
o
5

o
6

o
7

(b) First communication step (Stage 1)

M(O) M(O) M(O) M(O)

Yo 0
3 4 7

o
8

0
8

(c) Second communication step (Stage 2)

M(O) M(O) M(O) M(O) M(O) M(O)

0
3 4 5 7 8

(d) Third communication step (Stage 2)

M(O) M(O) M(O) M(O) M(O) M(O)

o
9

0
9

M(O)

9

M(O)

o
10

0
10

0
10

M(O)

o
II

0
11

0
11

M(O)

0 0 0 0

~~I 3 4 5 6

(e) Fourth communication step (Stage 2)

59

Figure 5.4 One-to-all broadcasting under model-2 and model-3 with 12 processors
and window size of 3. A number in parentheses is the label of the source processor
from which data has been broadcast. All communication steps are shown.

60

With wormhole routing, the uppeT bound is

f _ p-1 I _. P
T(H R)onc-to_all,2 - ts + tw f--l. (m - l)tw - O(m + -)

w w

For the wrap-around HOliV(p, w, 1). Every node can be treated similarly, and

the communication time is exactly half of that for the regular HOW(p, w, 1) system.

Therefore, the communication time of the wrap-around HOVV(p, w, 1) for one-

to-all broadcasting under model-2 and model-3 and SF routing has the uppeT bound

of

With wormhole routing, the upper bound on the communication time is

Special-case: Fully connected I-D subsystems. It is easy to get the result

for the fully connected subsystem; the one-to-all broadcasting just needs one transfer

step. Therefore,

\!\Tith wormhole routing, the communication time is

5.3 All-to-All Broadcasting

In all-to-all broadcasting, which is a generalization of one-to-all broadcasting, all p

processors simultaneously initiate a broadcast. A processor sends the same m-word

message to every other processor, but difIerent processors may broadcast different

messages.

61

11.110 _Mo 11'10
Nh 1\11 11111

1110 1111]\1p - 1 All-to-all broadcast 111p _ 1 lv1p _ 1 111p _ 1

0 0 0 - - - - - - -- > 0 0 0
Figure 5.5 Al1-to-all broadcast.

5.3.1 Model-1

For model-I, there is only one output port of each processor we can use at a time.

In order to let every processor pass information to a neighbor in each step, we

deliberately choose those channels that form a ring, as shown in Figure 5.6. If

communication is performed circularly in a single direction, then each processor

receives all (p - 1) pieces of information from all other processors in (p - 1) steps.

The time taken by the entire operation is

This asymptotic time is optimal because each processor can use only one output port

at a time, and therefore each message must make p - 1 = O(p) hops.

With wormhole routing, the communication time is

because the header of each message is blocked at each intermediate node until the

previous message ha.s completely departed.

For the wrap-around HOVV(p, w, 1). Since only one cycle has to be formed in

order to pass the information around, the communication time is exactly the same

as that for the regular HOVV(p, w, 1).

~(O) ~(l) ~(2) ~(3) ~(4) ~(5) ~(6) 11(7) ~(8) ~(9) ~(lO)

(a) HOW(l2,3,1) with initial infonnation

~(O,l) ~(2,O) ~(4,2) ~(6,4) ~(8,6) ~(lO,8)
,/- - - - - - - - ~ - - - - - - - -.:;;::.. - - - - - - - - ~ - - - - - - - - -::>- - - - - - - - - ..;:>-- - - - ->,

2 3 4 5 6 7 8 9

\

\

, I

,~- - - - -::::;:. - - - - - - - - ~ - - - - - - - - ~ - - - - - - - - ~ - - - - - - - - ~ - - - - - - - _/

~(l,3) ~(3,5) ~(5,7) ~(7,9) ~(9,11) ~(l1,10)

(b) First communication step

~(0,1,3) ~(2,O,1) ~(4,2,0) ~(6,4,2) ~(8,6,4) ~(10,8,6)
,/- - - - - - - - -?::>- - - - - - - - - ~ - - - - - - - - ~ - - - - - - - - -::>- - - - - - - - - ~ - - - ->,

I \
\

7
\ I

'.....:r- - - - -4 - - - - - - - - ~ - - - - - - - - ~ - - - - - - - - ...c::::::. - - - - - - - - -:::E- - - - - - - - _I

MO,3,5) ~(3,5,7) ~(5,7,9) ~(7,9,11) M(9,1l,10) ~(ll,10,8)

(c) Second communication step

~(O, 1,3,5) ~(2,0, 1,3) ~(4,2,O,l) ~(6,4,2,0) ~(8,6,4,2) ~(lO,8,6,4)

I

I

,/- - - - - - - -..;;;>- - - - - - - - - ~ - - - - - - - - ~ - - - - - - - - ~ - - - - - - - - ~ - - - - >-,

o 2 3 7 8 9
, I

'-oE::- - - - ~ - - - - - - - - ~ - - - - - - - - ~ - - - - - - - - ~ - - - - - - - - ~ - - - - - - - _/

~(l,3,5,7) ~(3,5,7,9) ~(5,7,9,11) ~(7,9,1l,10) ~(9,11,lO,8) ~(ll,lO,8,6)

(d) Third communication step

~(0,1,3,5,7,9, ~(2,0,1,3,5,7, ~(4,2,0,1,3,5, M(6,4,2,0,1,3, M(8,6,4,2,0,1, M(l0,8,6,4,2,0,
11,10,8,6,4,2) 9,11,10,8,6,4) 7,9,11,10,8,6) 5,7,9,11,1 0,8) 3,5,7,9,11 ,10) 1,3,5,7,9,11)

I

I ,

/- - - - - - - - ~ - - - - - - - - -::::>- - - - - - - - -.;::.- - - - - - - - - .:::>- - - - - - - - - ..;;:>- - - - ->,
\

\

\ ° 2 3 4 5 8 9
, I

,-<- - - - -<:E- - - - - - - - - ~ - - - - - - - - -<:::::- - - - - - - - - -<:E- - - - - - - - - ~ - - - - - - - _/

M(3,5,7 ,9,11, M(5,7,9,1l, 10, M(7,9,11,10, M(9,1l,1O,8, M(lI,10,8,6,

62

11(1,3,5,7,9,11,
10,8,6,4,2,0) 10,8,6,4,2,0,1) 8,6,4,2,0,1,3) 8,6,4,2,0,1 ,3,5) 6,4,2,0,1 ,3,5,7) 4,2,0,1,3,5,7,9)

(e) Eleventh communication step

Figure 5.6 All-to-all broadcasting under model-1 with 12 processors and window
size of 3. The numbers in parentheses for each processor are the labels of source
processors from which data was received prior to the current communication step.

63

Special-case: Fully connected I-D subsystems. As for a fully connected

1-D subsystem, no intermediate node 'Nill be involved in the broadcasting procedure.

The time taken by the entire broadcasting procedure is

\iVith wormhole routing, the communication time is

5.3.2 Model-2

The broadcasting procedure follows:

• First stage: Each PE sends its message to all of its neighbors .

• Remaining stages: Assume the stage i, where i = 1,2, ... , fp:
11 - 1. In one

direction, beginning from position iw and also involving all its successors, send

the messages from the PEs 0, 1, ... , (p -1- i'W -1) through all possible channels.

In the other direction, beginning from position (p - 1 - i'W) and also involving

all its predecessors, send the messages from the PEs p -I, P - 2, ... , (i'W + 1). If

there is an overlap between these two directions, then split this stage into two

steps in order to make sure that every PE sends just one value at a time. From

all the messages it contains, each time a PE sends out the message received

earlier from its most distant PE.

Table 5.2 shows the detailed steps involved in the broadcasting procedure for

12 PEs and a window of size 3. It consumes five steps. Refer to Figure 5.7 for an

example. The example in Figure 5.7 is for model-3, and therefore ((step" in the table

stands for "stage" under model-2. However, the only difference between the two

models is in the second transfer step, because there is an overlap between the two

64

Table 5.2 The detailed steps for all-to-aH broadcasting under model-2.

I

Po PI P2 P3 I P4 P5 P6 P7 P8 P9 PlO Pll
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0, ~ 0),2, 1,2,3, 2,3,4, 3,4)5) 4,5,6, 5,6,7, 6,7,8, 7,8,9, 8,9,10

1,2,3 2,3,4 3,4,5 4,5,6 5,6,7 6,7,8 7,8,9 8,9,10 9,10,11 10,11 II

Q 0,1 0,1,2 1,2,3 2,3,4 3,4,5 4,5,6 5,6,7

4,5,6 5,6,7 6,7,8 7,8,9 8,9,10 9,10,11 10,11 II

7,8,9 8,9,10 9,10,11 10,11 II Q 0,1 0,1,2 1,2,3 2,3,4

10,11 I II Q 0,1

directions; therefore, \ve need to split this "transfer step" into two steps for model-2.

The whole procedure consumes five steps under model-2.

The total time taken by this operation is

p-l p-l
TalLto_all,2 = ts + 1ntw(\--1 + x) + tc(\--l + x-I)

w w

where x is the number of stages needed to be split into two steps, and x should satisfy

the condition xw < p - 1 - xw. So :17 is the largest integer less than P2-:,}' Therefore,

This asymptotic time is optimal because the diameter of the system is 0 (!).

With wormhole routing, the communication time is

p-l p
T(VV R)alUo_alL,2 = ts + mtw(,--1 + x) = O(m-)

w w

because of message blocking on reused channels.

For the wrap-around HOVV(p, w, 1). Every node could be treated similarly,

so the number of transfer steps is ,P:1l. Although each node has 2w neighbors, we

divide w because output ports must transfer the same message. Tables 5.3 and 5.4

show detailed information for this process.

65

Table 5.3 The detailed steps for all-to-all broadcasting under model-2 using a wrap
around system \'\Iith 16 processors.

Po PI P2 P3 P4 Ps P6 P7 P8 P9 PIO Pll P12 PlS PH PlS
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13
13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 I
3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2
12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11

11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10
10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4
6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8
8 9 10 11 12 13 14 15 0 I 2 3 4 5 6 7

7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 ,

Therefore, the communication time of the wrap-around HOHf(p, w, 1) for one-

to-all broadcasting under model-2 and SF routing is

wrap - r p - 11 (r p - 11) - 0 (p)
TalLto_all,2 - ts + mtw --;;;- + tc --;;;- - 1 - m w

With wormhole routing, the communication time is

() wJ'ap _' I 'rP - 11 - O(p) T ,ltV R alUo_oll,2 - ts T 1ntw --;;;- - m w

Special-case: Fully connected I-D subsystems. For a fully connected

subsystem, only one transfer step is needed to accomplish the broadcasting

procedure.

With wormhole routing, the communication time is

66

Table 5.4 The detailed steps for all-to-all broadcasting under model-2 using a wrap
around system with 17 processors.

PO PI])2 P3])4 P5
])G I P7 P8 P9]110 PII PI2 P13 {l14 PI5 PIG

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2

13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12

12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10

I
11

11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 I 3

5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4

6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5

10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9

9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8

8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7

7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6

67

Table 5.5 The detailed steps for all-to-all broadcasting under model-3 usino- a wrap-
around system with 16 processors. D

Po PI P2 P3 P4 P5 P6 P7 Ps P9 PIO Pl! Pl2 Pl3 PH PI5
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
15

1: I
1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
13 14 I 15 0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2
12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
11 12 13 14 15 0 1 2 3 -1 5 6 7 8 9 10
10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9
-1 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4
6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 , I I

5.3.3 Model-3

This procedure is very similar to that for model-2. Since each individual processor

can send different messages at the same time, we do not need to split any step,

as shown in the example of Figure 5.7. The total time taken by this operation is

optimal and given by

])-1])-1]J
TalLto_oll,3 = ts + 1Td·w r--l + tcU--l - 1) = O(m-)

W W W

With wormhole routing, the communication time is

68

~(O) ~(l) ~(2) ~(3) ~(4) ~(5) ~(6) ~1(7) ~(8) ~(9) ~(lO) ~1(1 1)

(0) I-D system (PES=12, window_size=3) wilh initial information

(1) First communication step

(2) Second communication step

(3) Third communication step

o o o o o o
(4) Fourth communication step

]]0]]1]]2])3]]4])5]]6]]7])8]]9]]10])11

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q., ~ 0,1,2, 1,2,3, 2,3,4, 3,4}5, 4,5,6, 5,6,7, 6,7,8, 7,8,9, 8,9,10

1,2,3 2,3,4 3,4,5 4,5,6 5,6,7 6,7,8 7~81g 8,9,10 9,10,11 10,11 11

.Q 0,1 0,1,2 1,2,3 2,3,4 3,4,5 4J5~6 5,6,7

4,5,6 5,6,7 6,7,8 7,8,9 8,9,10 9,10,11 10,11 11

7,8,9 8,9,10 9,10,11 10,11 11 Q 0,1 0,1,2 1,2,3 2,3,4

I 10,11 I 11 .Q I 0,1

Figure 5.7 All-to-all broadcasting under model-3 with 12 processors and window
size of 3. Addresses of processors from which values have been received at the end
of each step are shown.

69

Table 5.6; The detailed steps for all-to-all broadcasting under model-3 using a wrap
around syS;tem with 17 processors.

Po PI
I

P2 P3 P4 P5 P6 P7 P8 P9 PI0 Pl1 P12 PI3 P14 Pl5 P16

(0) (1) I (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

16 0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1
3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2
13 14 15 16 0 1 2 3 -1 5 6 7 8 9 10 11 12
12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11
11 12 13 14 15 16 0 I 2 3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3
5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4
6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5

10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9

9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8

8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7

7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6

70

For the wrap-around HOW'(p, w, 1). The number of transfer steps is r~ 1.
Tables 5.5 and 5.6 show detailed information for this process.

Therefore, the communication time of the wrap-around HOVV(p, w, 1) for one

to-all broadcasting under model-3 and SF routing is

\iVith \'101'mhole routing, the communication time is

rp(lXfR)wrap - rP - 11 - O(p)
.L 'f aILto_all,3 - ts + mtw ~w - 7n-

~ w

Special-case: Fully connected 1-D subsystems. For a fully connected 1-D

subsystem, the whole broadcasting procedure just needs a single transfer step.

With wormhole routing, the communication time is

T(1V R)~~llto al13 = ts + mtw = O(m) - - ,

5.4 One-to-All Personalized Communication

One-to-all personalized communication is an operation where the source processor

sends (p - 1) unique messages, each one destined for a different processor in the

system. Unlike one-to-all broadcasting, one-to-all personalized communication does

not involve any duplication of data. However, the communication patterns for one-

to-all broadcasting and one-to-all personalized communication are identical; only the

sizes and contents of messages are different.

5.4.1 Model-1 and Model-2

Even though under model-2 each processor has multiple outports available in each

step, all the outports are supposed to transport the same message. But for one-to-

all personalized communication, the source processor has different messages to be

o
One-to-all personalized

communication
- - - - - - -- >

Figure 5.S One-to-all personalized com.munication.

71

transmitted. In this case, the communication procedures are exactly the same for

both model-1 and model-2. For these two models, no matter what the window size is,

it will take (p - 1) transfer steps for this communication operation. A ring structure

is used to communicate values, as shown in Figure 5.6. Messages going farther have

higher priority of transmission. The total time taken by this operation is

This is similar to the asymptotic time consumed by the source, and therefore it is

optimal. The shortest paths in the ring are chosen to reach respective destinations.

For the sake of simplicity, assume that the source is Po. To reach the PE Px, \'\'here

1 ::; x ::; (p - 1), the message makes r ~ 1 hops. Assume that the source first sends out

the messages destined for the odd-numbered PEs. It then transmits messages to the

even-numbered PEs. Assume for the second case the PE Px \vith .1: = 2y. This PE

will receive its message with delay te(y -1) + TlLtw(y - 1) after it was transmitted by

the source. The time left for t.he source to complete the entire operation is mtw(y-1),

because (y - 1) is the number of messages still to be transmitted. Therefore, the

"combining time" term used in the equation is for the worst case, where y = r~ 1.

With wormhole routing, the total number of flits to be transferred by the

source is (p - 1)rn. Messages going farther have higher priority of transmission. The

communication time is

T(VV R)one-to_alLpers,l = ts + mtw(p - 1) = O(mp)

72

This also represents the time consumed by the source because of the pipelining of

messages and the chosen priority for message transmission.

Special-case: Fully connected I-D subsystems. Referring to the previous

case, we know that even under a fully connected 1-D subsystem, we still need (p -1)

transfer steps. The total time taken by this operation is

'!\lith wormhole routing, the communication time is

5.4.2 Model-3

Under model-3, the one-to-all personalized communication operation can be done as

follows. For the \;vorst case, we assume Po to be the source:

• First, the processor Po passes the w most distant messages to its w neighbors,

so that a destination processor with higher address gets a message for a higher-

addressed processor.

• Second, the processor Po similarly passes the next w most distant messages to

its window, while all processors that received an intermediate message earlier

pass that message to their neighbor at distance w in the next window (i.e.,

window to their right) .

., The second step repeats until all processors receive their own message.

Table 5.7 shows a complete example for 12 processors and window size of 3.

The total time taken by this operation is

p-1 p-1 P
Toncto_aILpe7's,3 = is + rrdw 1--1 + icU--l - 1) = O(rl1

w
)

w w

which has the same asymptotic complexity with the time consumed by the source,

and therefore it is optimal.

73

Table 5.7 The detailed steps for one-to-all personalized communication under model-
3.

Po PI P2 P3 P4 P5 P6 P7 P8 P9 PlO Pu

rnO--ll

ma, mI, rl12, rng rl110 rl1ll

1713, rl14, 77151

m6, m7, 1718

mo, ml, m2, m6 1717 mg rl1g mlO 1'n11

1713, 7114) 7115

1710, 71111 1712 rn3 rn4 1715 m6 1717 7118 rl1g 71110 mll

rno 7111 1'112 1713 m4 1715 7716 1717 1718 mg 17110 mll

With wormhole routing, all processors receive their messages simultaneously

in time ts + mtw r~ 1, because of message pipelining and message blocking resulting

from the m-fiit messages. Therefore, the total communication time is

which is again optimal because it is identical to the time consumed by the source

with peak utilization of its communication ports and no data duplication.

Special-case: Fully connected I-D subsystems. For a fully connected 1-

o subsystem, the entire communication operation needs just a single transfer step.

Therefore,

T Juli - t t - 0(') one_to_alLpers,3 - s + 171 w - 1n

\i\!ith wormhole routing, the communication time is

5.5 All-to-All Personalized Communication

In all-to-all personalized communication, also known as total exchange, each

processor sends a distinct message of size m to every other processor. Unlike

74

all-to-all broadcasting, all-to-all personalized communication does not involve any

duplication of data.

NIo,o
11/10 1

lv1p - I ,0 _Mo,o 111o,] .~10,p-l

, !l1p- I ,] "MI,o !l11,1]\11,p-l

All- to-all personalized

NIo,p-1 }I,1p- l ,p-1 communication NIp-l,o -Mp-I,l J\!Jp_] ,p-l

o 0 - - - - - - -- > 0 0
Figure 5.9 All-to-all personalized communication.

5.5.1 Model-l and Model-2

For all-to-all personalized communication, the source processor has different messages

to be transmitted. Although model-2 has mUltiple outports available, all the

outports are supposed to transport the same message. Therefore, the communi-

cation procedures are exactly the same for both model-1 and model-2.

V\Te form a ring here, as in Figure 5.6. In each transfer step every processor

transfers the m-word message destined for its farthest remaining processor. If only

one direction in the ring is used for all transfers, then the total number of transfer

steps is equal to Z,f::l1 (p-i) = Z,f::l1 i = (P~l)P. The total time taken by this operation

is

p-l p-l

ts + L mtw(p - i) + L tc(p - i-I)
i=l i=]

(p - 1) P (p - 1) (p - 2)
t s + mtw + tc ..:.:--~::...--~

2 2

However, for the shortest paths, and therefore for smaller communication time,

both directions in the ring should be used. In this case, there are r~ 1 "large"

communication stages. In the i-th "large" stage, where i = 1,2, ... , r~l, each

processor transmits the respective messages to the processors at the same distance

i to its left and to its right, exclusively in this order. If p is even, then the r~ l-th

0

75

"large" stage implements transmissions in only one of the t\VO directions in the ring.

Therefore, the total number of transfer steps to neighbors is equal to

2~rP - 1HrP ~ 11 + 1) - uP - 11 - lP - 1 J)
2 2 2 2 2

rP~IF+lP~IJ

The total time is

which is asymptotically optimal because each processor sends out 0 (p) messages of

m words each, and the average distance traveled is O(p).

With wormhole routing, the communication time is

T (Vii R) all_to_all_peTs, 1

p-l p-l
ts+mtwU~12+l~J)

O(m1i)

Special-case: Fully connected I-D sUbsystems. For a fully connected I-D

subsystem, all the processors use one port at a time to send a single message, and

therefore the entire communication operation needs (p - 1) steps.

\Vith wormhole routing, the communication time is

o
•
9

76

Figure 5.10 Chosen linear arrays in the HOlll(10, 3,1) for all-to-all personalized
communication.

5.5.2 Model-3

The all- to-all personalized communication operation involves a lot of message

transfers. Vie will not necessarily derive the most efficient procedure here, because

such a procedure can be of a very complex nature. We present a simple procedure that

comprises two stages. The basic idea is to use the largest possible number of linear

arrays for pipelined message transfers, with the smallest possible number of nodes

per such array. Figure 5.10 shows the chosen linear arrays in the H01V(10, 3,1) .

• First stage: this is the initialization stage where local transfers are employed to

move messages to processors that belong to the aforementioned linear arrays.

Every processor passes all relative messages to neighbors in its windO\v(s). For

a given destination message, it passes that message to its neighbor that belongs

to a linear array containing that destination; if two such neighbors exist, the

one closer to the destination is chosen. It takes up to 31 = r~ 1 cycles to

finish the initialization, which is the same as the maximum number of values

to be sent from a processor to another one .

• Second stage: the linear arrays are used to transfer the values. There are

w linear arrays to be used. Vie need up to 32 = r~ 1 - 1 cycles to finish

the broadcasting along the linear arrays, which is the same as the maximum

number of values a processor has to send in a single dimension; messages going

farther have higher priority.

The total time taken by this operation is

77

p-l p-l
ts + 2 mtw r --:;;;-1 + mtc(2 r --:;;;-1 - 1)

O(mE.)
w

An example with 10 processors and ·window size equal to 3 is shmvn In the

follmving tables:

With worrnhole routing, the communication time is

p - 1 P
T(Hi R)alUo_aILpers,3 = ts + 2 1ntw f--1 = 0(1'17,-)

W W

Special-case: Fully connected I-D subsystems. For a fully connected I-D

subsystem, all the processors use all output ports sending different destined messages

to their destination in one single step. The total time taken by the operation is

\Vith wormhole routing, the communication time is

78

Table 5.8 The detailed steps for all-to-all personalized communication in l-D HOVV
under model-3.

Initial state with all information

Po PI P2 P3 P4 Ps P6 P7 Ps])9

{O,O} {l,O} {2,O} {3,O} { 4,O} {5,O} {6,O} {7,O} {S,O} {9,O}
{O,l} {l,l } {2,1 } {3,1} { 4,l} {5,1 } {6,l} {7,l } {S,l} {9,1}
{O,2} {1,2} {? ?} -,- {3,2} { 4,2} r ?} 0,- {6,2} {7,2} {S,2} {9,2}
{O,3} {l,3} {2,3} {3,3} { 4,3} {5,3} {6,3} {7,3} {S,3} {9,3}
{O,4} {1,4 } {2,4} {3,4} { 4,4} {5,4} {6,4} {7,4} {S,4} {9,4}
{O,5} {l,5} {2,5} {3,5} { 4,5} {5,5} {6,5} {7,5} {S,5} {9,5}
{O,6} {l,6} {2,6} {3,6} { 4,6} {5,6} {6,6} {7,6} {S,6} {9,6}
{O,7} {1,7} {2,7} {3,7} { 4,7} {5,7} {6,7} {7,7} {S,7} {9,7}
{O,S} {l,S} {2,8} {3,8} { 4,8} {5,8} {6,8} {7,8} {8,8} {9,8}
{O,9} {1,9} {2,9} {3,9} { 4,9} {5,9} {6,9} {7,9} {8,9} {9,9}

Step-I: exchanging information with all connected neighbors.

Po PI P2 P3 P4 Ps P6 P7 Ps P9
{O,O} {l,l } {2,2} {3,3} { 4,4} {5,5} {6,6} {7,7} {8,8} {9,9}
right {O,l} {O,2} {O,3}

{1,2} {l,3} {1,4}
{2,3} {2,4} {2,5}

{3,4} {3,5} {3,6}
{4,5} { 4,6} { 4,7}

{5,6} {5,7} {5,8}
{6,7} {6,8} {6,9}

{7,8} {7,9}
{8,9}

left {9,O} {9,1} {9,2}
{8,O} {8,l} {8,2}

{7,O} {7,l } {7,2}
{6,O} {6,1} {6,2}

{5,O} {5,l } {5,2}
{4,O} { 4,l} { 4,2}

{3,O} {3,l } {3,2}
{2,O} {2,l }
{1,O}

{O,4} {1,5} {2,6} {3,7} { 4,O} {5,O} {6,O} {7,O} {8,O} {9,O}
{O,5} {1,6} {2,7} {3,8} { 4,8} {5,1 } {6,1} {7,1} {8,1} {9,l }
{O,6} {I,7} {2,8} {3,9} { 4,9} {5,9} {6,2} {7,2} {8,2} {9,2}
{O,7} {I,8} {2,9} {7,3} {8,3} {9,3}
{O,8} {I,9} {8,4} {9,4}
{O,9} {9,5}

79

Table 5.9 The detailed steps for all-to-all personalized communication in I-D HO\i\I
under model-3.(continue-l)

Step-2: transferring the farthest messages through all connected neighbors.

Po Pi P2 P3 P4 P5 P6 P7 Ps P9
{O,O} {l,l} {2,2} {3,3} {4,4} {5,5} {6,6} {7,7} {8,8} {9,9}
{1,O} {O,l} {O,2} {O,3} {1,4} {2,5} {3,6} { 4,7} {5,8} {6,9}
{2,O} {2,1} {1,2} {1,3} {2,4} {3,5} { 4,6} {5,7} {6,8} {7,9}
{3,O} {3,1} {3,2} {2,3} {3,4} { 4,5} {5,6} {6,7} {7,8} {8,9}

{ 4,1} { 4,2} {4,3} {5,4 } {6,5} {7,6} {8,7} {9,8}
{5,2} {5,3} {6,4} {7,5} {8,6} {9,7}

right {O,7} {O,8} {O,9}
{I,7} {I,8} {I,9}

{2,7} {2,8} {2,9}
{3,7} {3,8} {3,9}

{ 4,8} { 4,9}
{5,9}

left {9,O} {9,1 } {9,2}
{8,O} {8,1} {8,2}

{7,O} {7,1} {7,2}
{6,O} {6,1 } {6,2}

{5,O} {5,1}
{ 4,O}

{O,4} { 1,5} {2,6} {7,3} {8,3} {9,3}
{O,5} {l,6} {8,4} {9,4}
{O,6} {9,5}

80

Table 5.10 The detailed steps for all-to-all personalized communication in I-D HO,V
under model-3. (continue-2)

Step-3: intermediate step to transfer information.

Po PI P2 P3 P4 P5 P6 P7 P8 P9
{O,O} {l,l} {2,2} {3,3} { 4,4} {5,5} {6,6} {7,7} {8,8} {9,9}
{1,O} {O,l} {O,2} {O,3} {1,4} {2,5} {3,6} { 4,7} {5,8} {6,9}
{2,a} {2,1 } {1,2} {1,3} {2,4} {3,5} { 4,6} {5,7} {6,8} {7,9}
{3,a} {3,1} {3,2} {2,3} {3,4} {4,5} {5,6} {6,7} {7,8} {8,9}

{4,1} { 4,2} { 4,3} {5,4} {6,5} {7,6} {8,7} {9,8}
{5,2} {5,3} {6,4} {7,5} {8,6} {9,7}

{6,3} {7,4} {8,5 } {9,6}

right {a,4} {a,5} {O,6}
{1,5} {1,6} {a,7}

{2,6} {1,7} {a,8}
{2,7} {1,8} {a,9}

{3,7} {2,8} {1,9}
{3,8} {2,9}

{4,8} {3,9}
{ 4,9}
{5,9}

left {9,3} {9,4} {9,5}
{9,2} {8,3} {8,4}

{9,1} {8,2} {7,3}
{9,O} {8,1} {7,2}

{8,a} {7,1} {6,2}
{7,O} {6,1 }

{6,O} {5,1 }
{5,O}
{ 4,O}

81

Table 5.11 The detailed steps for all-to-all personalized communication in 1-D HO\i\1
under model-3. (continue-3)

Step-4: intermediate step to transfer information.

Po Pl P2 P3 P4 Ps P6 P7 Ps P9
{O,O} {1,1 } {2,2} {3,3} { 4,4} {5,5} {6,6} {7,7} {8,8} {9,9}
{1,O} {O,l} {O,2} {O,3} {1,4} {2,5} {3,6} { 4,7} {5,8} {6,9}
{2,O} {2,1} {1,2} {I,3} {2,4} {3,5} { 4,6} {5,7} {6,8} {7,9}
{3,O} {3,1} {3,2} {2,3} {3,4} {4,5} {5,6} {6,7} {7,8} {8,9}

{4,1 } { 4,2} { 4,3} {5,4} {6,5} {7,6} {8,7} {9,8}
{5,2} {5,3} {6,4} {7,5} {8,6} {9,7}

{6,3} {7,4} {8,5} {9,6}
{ 4,O} {5,1} { 4,8} {5,9}
{5,O} { 4,9}
{6,O} {3,9}

right {} {} {O,4}
{} {1,5} {O,5}

{2,6} {I,6} {O,6}
{2,7} {I,7} {O,7}

{I,8} {3,7} {O,8}*
{} {2,8} {O,9}

{3,8} {I,9}
{2,9}

left {9,5} {} {}
{9,4} {8,4} {}

{9,3} {8,3} {7,3}
{9,2} {8,2} {7,2}

{9,1} {6,2} {8,1} *
{9,O} {7,1 } {}
{8,O} {6,1 }
{7,O}

82

Table 5.12 The detailed steps for all-to-all personalized communication in l-D HOVl
under model-3. (continue-4)

Step-5: intermediate step to transfer information.

Po PI P2 P3 P4 P5 P6 P7 P8 P9
{O,O} {l,l } {2,2} {3,3} { 4,4} {S,S} {6,6} {7,7} {8,8} {9,9}
{l,O} {O,l } {O,2} {O,3} {l,4} {2,S} {3,6} { 4,7} {5,8} {6,9}
{2,O} {2,l } {l,2} {l,3} {2,4} {3,5} { 4,6} {5,7} {6,8} {7,9}
{3,O} {3,l } {3,2} {2,3} {3,4} { 4,S} {S,6} {6,7} {7,8} {8,9}

{ 4,l} { 4,2} {4,3} {5,4} {6,5} {7,6} {8,7} {9,8}
{S,2} {5,3} {6,4} {7,5} {8,6} {9,7}

{6,3} {7,4} {8,5} {9,6}
{ 4,O} {5,l } {4,8} {5,9}
{5,O} { 4,9}
{6,O} {3,9}
{7,O} {6,l } {6,2} {7,3} {O,4 } {O,S} {O,6} {O,7} {O,8} {O,9}
{8,O} {7,l} {7,2} {8,4} {9,S} {3,7} {2,8} {l,9}
{9,O} {8,1 } {3,8} {2,9}

right {l,S} {2,6}
{1,6} {2,7}

{1,7} {1,8}
left {7,3} {8,4}

{7,2} {8,3}
{8,1 } {8,2}

CHAPTER 6

COl\1MUNICATION OPERATIONS ON 2-D HOW SYSTEMS

Assume symmetric 2-D HOVV systems with p processors. The numbers for rows

and columns are then 0, I, ... , vp - 1. For example, Figure 6.1 shows the processor

addresses in the 2-D system HOH!(5, 3, 2).

POO POI P02 P03 P04

PlO P11 P12 P13 P14

P20 P21 P22 P23 P24

P30 P31 P32 P33 P34

P40])·11 P42 P43 P44

Figure 6.1 Processor addresses in the HOVV(5, 3,2).

6.1 One-to-One Communication

\Ve assume, without loss of generality, that POD is the source processor and that the

destination is at distance l.

With SF routing, sending a single message containing m words takes ts +mtwl +

te(l - 1) time, where l is the number of links traversed by the message. For a 2-D

HO\V system with a total of P processors (having vp rows and vp columns) and

window size w, l is at most 2 r V:-1l, and therefore the time for a single message

transfer has the upper bound of

vp-1 .. vp-1 _ vp
Tone to one = ts + 2mtw r 1 + tc(2 r 1 - 1) - O(m-) - - w w w

assuming no contention with other messages at intermediate processors.

83

84

With wormhole routing, for a single message transfer on t.he 2-D HOVI system

the upper bound is

6.2 One-to-All Broadcasting
6.2.1 Model-1

For the best possible performance, we first have to determine 'which of the row or

column windo-IV the source belongs to is closer to the center of that row or column,

respectively. If it is the row vi1indow, then the source broadcasts within that row, and

this is follo-wed by broadcast.ing from those row PEs into all columns. Otherwise, ,ve

begin with column broadcasting. However, here we assume the Vlorst case, where

the source PE is in the first window of the corresponding 1-D HO\V row and column

subsystems. Using the same notations as for the 1-D HO\i\l system, 31 represents the

number of transfer steps needed to fill the first window in this row and 32 represents

the number of transfer steps needed in the second stage to copy the values from the

first window into the remaining windows of this row. \i\1e already know the following

relations among Sl,32, and w

S1 = pog(w + 1)1
32 = r(VJ5 - 2Sj)/w 1

This operation is done by first broadcasting within the aforementioned row and

then from that row within all the columns. The communication time under model-1

with SF routing has the upper bound

I
ts + 2mtw flog VJ51 + t c (2l1og VJ51 - 1)

T -
ondo_all,l - ts + 2mtw(31 + S2) + tc(2(Sl + S2) - 1)

O(Tnlog VJ5)
if (VJ5 - 1) ~ w
O(m logw + m{J)
if (VJ5 - 1) > w

\Vith wormhole routing, the upper bound is

O(m + log vP)
if (vP - 1) .s; w

O(m + log w + {!-)
if (vP - 1) > w

85

assuming that incoming data can be stored locally and can simultaneously be trans-

ferred to the next PE in the path.

Special-case: Fully connected I-D subsystems. For fully connected

subsystems that form a 2-D generalized hypercube, the procedure is similar to

that for (JP - 1) = 'W under model-I.

VVith wormhole routing, the communication time is

T(l¥ R)~~~l Lo alll = ts + 2tw flog v'Pl + (m - l)tw = O(m + log v'P) - - ,

6.2.2 Model-2 and Model-3

For the one-to-all broadcasting operation, there is only one value to be sent, and

therefore the \I,ihole procedure for model-3 is exactly the same as that for model-

2. Figure 6.2 shows two different methods used for one-to-all broadcasting. The

numbers of communication steps for the two methods are the same. However, method

(b) is easier to program, because it is an extension of the respective method for the

I-D HOW system. This method first broadcasts within the row and then within all

columns. The upper- bound on the total time taken by this operation is

With wormhole routing, the upper- bo'u,nd is

, . yIP - 1 vP
T(W R)one-to_all,2 = ts + 2tw I 1 + (111 - l)tw = O(m + -)

'W W

86

o o

o o o 000 o

o o o 000 o

o o o 000 o

o o o o o o o o o o
(a) step-l (b) step-l

o o o o o o

o o o o o o

I o

o

o o o

o

o

o

o

o

o

o o

o o
(a) step-2 (b) step-2

I I I---: o o o o 0
(a) step-3 (b) stcp-3

I I I I I
(a) stcp-4 (b) step-4

Figure 6.2 One-to-all broadcasting under model-2 and model-3 with two different
methods, both of ·which have the same number of communication steps. A filled
circle means that the current processor has already received the message broadcast
by the source. All communication steps are shown here. 'Ale assume that \v=3. For
the worst case, we assume POQ to be the source.

87

assuming that the dimension to be traversed is changed just after the first flit. is

received.

Special-case: Fully connected 1-D subsystems. It is easy to see that for

fully connected 1-D subsystems, one-to-all broadcasting needs just two transfer steps.

Therefore,

Vlith wormhole routing, the communication time is

6.3 All-to-All Broadcasting

The following table 6.1 shows the initial message state and the required final state

for all-to-all broadcasting in a 5x5 system.

Table 6.1 The initial and final state of HO\iV(5,3,2).

Initial state of HOW(5,3,2) Required final state

rno,o mO,l r11O,2 mO,3 InO,4 MM MM MM MM MM
ml,O In1,1 Inl,2 1n1,3 In1,4 MM MTvI MlvI MM MM
rn~2,0 In2,1 rn2,2 m2,3 In2,4 MM MM MM MM MM
r113,0 r113,1 1T)'3,2 17/,3,3 7n3,4 M1\11 MM MM MM MM
r114,0 1714,1 m4,2 m4,3 1714,4 MM MIV1 MM 1v1M MM

where each processor receives messages from all other processors, and therefore

771,0,0 m'O,1 171,0,2 1710,3 mO,4

ml,O ml,] m'1,2 1711,3 m1,4

.M.M = 171,2,0 17/,2,1 m'2,2 1712,3 17/,2,4

1713,0 17/,3,1 m3,2 1713,3 1713,4

m4,0 m'4,1 r114,2 m4,3 Tl14,4

The procedure repeats many times the corresponding procedure for the 1-

D HOW system. That is, processors first exchange messages along rows, so that

each processor has vp messages at the end for the processors on its own column.

88

Then, processors exchange their vP messages along columns by repeating the same

procedure vP times I,:vithin the columns.

6.3.1 Model-1

For model-I, there is only one output port of each processor we can use at a time.

In order to let every processor pass some information to a neighbor, we deliberately

choose some channels to form a ring on each row/column. V.,re assume pipelining of

messages along rows and columns.

VVe start with all-to-all row broadcasting that takes time is + T = is + (vP

I)miw +ic(vp- 2), as derived for the I-D HO\i\l system in Subsection 3.l.1. The vp

column broadcasts then take time VPT, because all-to-all I-D HOVV broadcasting is

repeated Vp times. The time taken by the entire operation is

is + (1 + yIP)miw(yIP - 1) + (1 + yIP)tc(.Jp - 2) + tc

is + (p - I)miw + (p - yIP - I)ic = O(n/'p)

The last ic term is for switching from row broadcasting into column broadcasting.

This asymptotic time is optimal because each processor can use only one output

port at a time, and therefore each message ,,,,ill make 0 (p) hops to visit all 0 (p)

processors.

With wormhole routing, within each rov" the entire time is is + m(vP - 1)i"UJl

assuming the formation of a ring. This is because each processor starts receiving

flits with the first data transfer, pipelining of messages is applied, and the total

number of flits each processor receives is m(vP -1). Similarly, for columns the time

is TnvP(vP - I)iw. The total time is

T(ll1 R) alLto_a.ll, 1 = is + Tn(I + yIP) (yIP - I)iw = is + m(p - l)iw = O(mp)

89

Special-case: Fully connected I-D subsystems. As for the 1-0 subsystem,

there is one tc that will be involved in the broadcasting procedure within the row

and the column. The time taken by the entire broadcasting procedure is

assuming again two steps (rmv-wise and column-wise steps) in the implementation.

vVith wormhole routing, the communication time is still

6.3.2 Model-2

Based on the algorithm proposed for the 1-0 HU\iV system, the total time taken by

this operation is

vvhere x is the largest integer less than 1-1
. The algorithm for the 1-D HO\i\T system _w

is used (1 + JP) times, once for the rows and .jj5 times for the columns.

With wormhole routing, the communication time is

.jj5-1]J
T(TiV R)alLto_all,2 = ts + 2mtw(i l + x) (1 + Jp) = O(m-)

w w

Special-case: Fully connected I-D subsystems. For the 1-0 subsystem, only

two transfer steps are needed to accomplish broadcasting. Therefore,

vVith wormhole routing, the communication time is

90

Table 6.2 Messages received in the first two detailed steps for all-to-all broadcasting
within the [O\vs of the HOVV(5, 3, 2) system.

Initial state Step 1 Step 2

THOO ill 0 1 7n02 1n03 1n04 7nOl 71"100 TnOO 1T/,00 TnOl rn04 77~00 .

Tn02 7n02 77~01 mOl 17~02

7n03 1n03 rn03 m02 m03

7n04 rn04 1n04

7nlO Tn 11 m12 771 13 7n14 Tn11 Tn 10 Tn 10 17'LlO Tn 11 7n14 7nlO

77~12 n~12 rnll ,nll 1n12

m13 Tl113 17~13 17112 Tn 13

TH14 TI~14 ml4

m20 17~21 7n22 17~23 i7124 77121 7n20 TI~20 17~20 17121 7n24 17120

17~22 7n22 17121 1'11,21 77122

17~23 77123 17123 1'n22 77123

7//'24 17124 7//'24

'm30 17131 17132 m33 17134 17~31 1T/'30 17130 m30 17131 17134 77130

77132 77132 17131 17131 Tl132

77~33 77133 1T/'33 11132 m'33

I TI~34 11~34 77134

1'11,40 17141 77142 17143 17144 77141 11140 17140 1'1140 1'1141 1)~44 77140

77142 17~42 1I~41 1)141 77142

17143 m43 11143 1)142 1'11,43

m44 11144 11144

6.3.3 Model-3

Table 6.2 shows the first two steps involving all-to-all broadcasting under model-3.

It is very similar to the procedure for model-2. Since each individual processor can

send different messages at the same time, we do not need to split any stage. The

total time taken by this operation is

JP-1 _ JP-l P
TalUo_all,3 = ts + (1 + Jp)mtw I 1 + tc(l + Jp) (I 1 - 1) = O(m-)

w w w

With wonnhole routing, the communication time is

91

Table 6.3 The initial and final states for one-to-all personalized communication in
the HO\;Y(p,\v,2).

Initial state Required final state
7no,o 7nO,1 mO,2 mO,3 mO,4 1
7n1,0 Tn1,1 'I?(,l,2 Tn1,3 'I?('l,4

1n2,0 1n2,1 'I?(,2,2 'I?('2,3 1n2,4 rno,O 1nO,1 rnO,2 1nO,3 1nO,4

1n3,0 1n3,1 1n3,2 'I?13,3 'I?13,4 I

rn4,0 m4,1 rn4,2 7n4,3 1/('4,4

1/11,0 Tnl,l 1nl,2 7nl,3 T/{,1,4

rn2,0 111'2,1 1n2,2 1n2,3 11/'2,4

1113,0 77('3,1 11('3,2 77('3,3 71"1'3,4

11{,4,0 11/"1,1 1n4,2 7n4,3 rn4,4

Special-case: Fully connected 2-D subsystems. For the 2-D gener-

alized hypercube, the whole broadcasting procedure needs just t\VO transfer steps.

Therefore,

With wormhole routing, the communication time is

6.4 One-to-All Personalized Communication

Table 6.3 shmvs the initial state and the required final state for one-to-all person-

alized communication in the 5 x 5 2-D HOHi(5, 3, 2) system. Vie assume, without

loss of generality, that Poo is the source processor.

6.4.1 Model-1 and Model-2

Because of personalized data, the same procedure is applied for model-1 and model-

2. Restricted by the availability of only one output port at a time for each processor,

independently of the window size it will take (vP - 1) transfer steps along a row

or a column for a processor to send personalized data to all other processors. In

92

the first phase, the source processor, assume POD, passes messages within its row for

all processors in the corresponding columns. Messages going farther have higher

priority of transmission. This process is implemented as vp one-to-all personalized

communications within the row (i.e., 1-D HGW system). At the end of the first phase,

each of the first row processors \'vill have vp messages. All vp messages of each first

rmv processor will be transferred in the second phase along the corresponding column

applying again one-to-all personalized communication. The total time taken by this

operation is

v'P - 1
Tondo_aILpe1"s,l = ts + (vp + l)mtw(vp - 1) + te(l + vp)(r 2 1 - 1)

vp-1
= ts + (p -l)ndw + te(1 + vp)(r 2 1-1) = O(mp)

With wormhole routing, the communication time is

Special-case: Fully connected I-D subsystems. Referring to the previous

case, we know that even under a fully connected 1-D subsystem, we still need (JP-1)

transfer steps along each row and each column. The total time taken by this operation

1S

With wormhole routing, the communication time is

6.4.2 Model-3

Vve first send the messages that must travel the longest distance using simultaneously

all column and row connections. (Note: it is a different method than that used for

93

model-I.) Figure 6.3 shows the exact steps needed for the HOH1(5, 3, 2) system,

with Poo being the source. The number of message transfer steps is 2 r ~-ll, the

same as the diameter of the system. The uppeT bound on the total time is

which is optimal.

With wormhole routing, the uppeT bound is

Special-case: Fully connected 1-D subsystems. For the fully connected

I-D subsystem, the whole communication operation needs just two transfer steps.

Therefore,

With wormhole routing, the communication time is

6.5 All-to-All Personalized Communication

Tables 6.4 and 6.5 shmv the initial state and the required final result for all-to-all

personalized communication in a 5 x 5 2-D system. T\vo phases are implemented

again.

6.5.1 l\1odel-1 and Model-2

\lYe form rings on rows and columns. In each transfer step the message size is 'Tn

words and every processor tries to transfer the message(s) destined for its farthest

processor. ,Ve start \vith row transfers and continue with vp all-to-all personalized

94

0

0 0 0

0 0 0

0 0 0 0

0 0 0 0 0

(a) first step (b) second step

o 0

o 0

(c) third step Cd) fourth step

Figure 6.3 One-to-all personalized communication under model-3, for w = 3. The
Cartesian coordinates of destination processors are shown as pairs of numbers. A
shaded circle means that the corresponding processor has already received the person
alized message sent by the source.

95

Table 6.4 The initial state for all-to-all personalized communication in 2-D HO\i\T
system.

Initial state of HO\i\T(5,3,2)
{(O,O),(O,O) },{ (0,0),(0,1) },{ (0,0),(0,2) },{ (0,0),(0,3) },{ (0,0),(0,4)}, {(1,O),(O,O)} ,
{(0,0),(1,0) },{ (0,0),(1,1) },{ (0,0),(1,2) },{ (0,0),(1,3) },{ (0,0) ,(1,4)},
{(0,0),(2,0) },{ (0,0)'(2,1) },{ (0,0),(2,2) },{ (0,0),(2,3) },{ (0,0) ,(2,4)},

{(O,O) ,(3,0)},{ (0,0),(3,1) },{ (0,0) ,(3,2) },{ (0,0),(3,3) },{ (0,0),(3,4)},
{(O,O),(4,O)},{ (0,0),(4,1)}, {(O,O),(4,2)},{ (0,0), (4,3)}, {(O,O),(4,4)}
{(I ,0) ,(O,O)}, {(I ,0) ,(O,l)}, {(1,0) ,(0,2)}, {(I ,0), (0,3)}, {(l,O), (O,4)}, {(l,l),(O,O)},
{(1,0),(1,0) },{ (1,0),(1, 1) },{ (l,O),(l,2)}, {(l,O),(1,3)}, {(l,O),(l,4)},
{(I ,0) ,(2,O)},{ (1,0) ,(2,1)}, {(l,O), (2,2)},{ (1,0) ,(2,3)}, {(l,O), (2,4)}, ~

{(1,0),(3,0)),{ (1,0),(3,1) },{ (1,0),(3,2) },{ (1,0) ,(3,3)}, {(1,0),(3,4)},
{(l,O),(4,O) },{ (1,0),(4,1) },{ (1,0),(4,2)},{ (1,0),(4,3) },{ (1,0),(4,4)}
{(2,0),(0,0) },{ (2,0),(0,1) },{ (2,0),(0,2) },{ (2,0),(0,3) },{ (2,0),(0,4)}, {(2,1),(O,O)},
{(2,O),(l,O) },{ (2,0),(1,1) },{ (2,0),(1,2) },{ (2,0) ,(1,3) },{ (2,0),(1,4)},
{(2,0),(2,O) },{(2,0),(2,1) },{ (2,0)'(2,2) },{ (2,0),(2,3) },{ (2,0),(2,4)}, .. , ...

{(2,0),(3,0)),{ (2,0)'(3,1) },{ (2,0),(3,2) },{ (2,0),(3,3) },{ (2,0),(3,4)},
{(2,0),(4,0) },{ (2,0),(4,1) },{ (2,0),(4,2) },{ (2,0),(4,3) },{ (2,0),(4,4)}
{(3,0),(O,O) },{ (3,0) ,(0,1) },{ (3,0),(0,2) },{ (3,0),(0,3) },{ (3,0),(0,4)}, {(3,1),(O,O)},
{(3,0),(1,0) },{ (3,0) ,(1,1) },{ (3,0),(1,2) },{ (3,0),(1,3) },{ (3,0),(1,4)},
{(3,0),(2,0)}, {(3,O),(2,1)}, {(3,O),(2,2) },{ (3,0),(2,3) },{ (3,O),(2,4)},

{(3,0),(3,O) },{ (3,0) ,(3,1) },{ (3,0),(3,2) },{ (3,0),(3,3) },{ (3,0),(3,4)},
{(3,O), (4,0)}, {(3,O),(4,1)}, {(3,O), (4,2)},{ (3,0),(4,3)}, {(3,O), (4,4)}
{(4,O),(O,O)},{ (4,0) ,(O,l)}, {(4,O),(0,2) },{ (4,0) ,(0,3) },{ (4,0),(0,4)}, {(4,l),(0,0)},
{(4,0),(1,0) },{ (4,0),(1,1)},{ (4,0),(1,2)},{ (4,O),(1,3)},{ (4,O),(l,4)},
{ (4, 0), (2,0)}, {(4,0), (2,1) }, { (4,0), (2,2)}, { (4,0), (2,3)}, { (4,0), (2,4)}, ~

{ (4,0), (3,O)}, {(4,0), (3,1) }, { (4,0), (3,2) }, {(4,0), (3,3) }, { (4,0), (3,4) },
{(4,0),(4,O)}, {(4,0) ,(4,1)},{ (4,0), (4,2)}, {(4,0),(4,3)}, {(4,0),(4,4)}

96

Table 6.5 The final result for all-to-all personalized cornmunication in a 2-D HO\J\l
system.

Required final state of HOW(5,3,2)
{(O,O) ,(O,O)},{ (0,1),(0,0) },{ (0,2) ,(0,0) },{ (0,3),(0,0) },{ (O,4),(O,O)}, {(O,O),(O,1)},
{(1,0) ,(O,O)}, {(1,1) ,(O,O)}, {(1,2), (O,O)}, {(1 ,3),(0,0)}, {(1,4), (O,O)},
{(2,O) ,(O,O)},{ (2,1) ,(0,0) },{ (2,2),(0,0)},{ (2,3),(0,0) },{ (2,4),(O,O)},
{(3,O),(O,O)},{ (3,1) ,(0,0) },{ (3,2),(O,O)},{ (3,3) ,(0,0) },{ (3,4),(O,O)},
{(4,0), (0,0) },{ (4,1),(O,O)},{ (4,2) ,(O,O)},{ (4,3) ,(O,O)}, {(4,4),(0,0)}
{(O,O),(l,O)},{ (0,1),(1,0) },{ (0,2),(I,O)},{ (0,3) ,(1 ,0) },{ (O,4),(I,O)}, {(O,O),(l,l)},
{(I,O),(I,O) },{ (1,1),(1,0) },{ (1,2),(1,0) },{ (1,3),(1,0) },{ (1,4),(l,O)},
{(2,0),(l,O) },{(2,1),(1,0) },{ (2,2),(1,0) },{ (2,3),(1,0)},{ (2,4),(l,O)}, . ~
{(3,0),(1,0)},{(3,1),(1,0)},{(3,2),(1,0)},{(3,3),(1,0)},{(3,4),(1,0)},
{(4,0),(1,0) },{ (4,1)'(1,0) },{ (4,2),(1,0) },{ (4,3),(1,0)},{ (4,4),(1,0)}
{(0,0),(2,0)},{ (0,1) ,(2,0) },{ (0,2),(2,0) },{ (0,3),(2,0)}, {(0,4),(2,0)}, {(0,0),(2,1) },
{(1,0),(2,0)},{ (1,1) ,(2,0) },{ (1,2),(2,0) },{ (1,3) ,(2,0)},{ (1,4),(2,0)},
{(2,0),(2,O)} ,{ (2,1) ,(2,O)},{ (2,2)'(2,0) },{ (2,3),(2,0) },{ (2,4),(2,0)}, .,

{(3,O),(2,O)},{ (3,1) ,(2,O)},{ (3,2),(2,O)},{ (3,3) ,(2,O)},{ (3,4),(2,0)},
{(4,0), (2,0)}, {(4,1) ,(2,0)}, {(4,2), (2,0)},{ (4,3) ,(2,0)}, {(4,4), (2,O)}
{(O,O),(3,0) },{ (0,1),(3,0)},{ (0,2),(3,0) },{ (0,3) ,(3,0) },{ (0,4),(3,0)}, {(0,0),(3,1)},
{(1,0),(3,O) },{ (1,1),(3,0) },{ (1,2),(3,0) },{ (1,3),(3,O)},{ (1,4),(3,O)},
{(2,0),(3,O) },{ (2,1),(3,0) },{ (2,2),(3,O)}, {(2,3) ,(3,0) },{ (2,4),(3,0)},

{(3,O),(3,O)},{ (3,1),(3,0) },{ (3,2),(3,0)},{ (3,3),(3,O)},{ (3,4),(3,0)},
{(4,0),(3,0) },{ (4,1),(3,0) },{ (4,2),(3,0) },{ (4,3),(3,0)}, {(4,4),(3,O)}
{(O,O),(4,0) },{ (0,1)'(4,0) },{ (0,2),(4,0) },{ (0,3),(4,0) },{ (0,4),(4,O)}, {(0,0),(4,l)},
{(I,O),(4,0) },{ (1,1),(4,0) },{ (1,2),(4,0) },{ (1,3),(4,0) },{ (1,4),(4,O)},
{(2,0),(4,O) },{ (2,1),(4,0) },{ (2,2),(4,0) },{ (2,3),(4,0) },{ (2,4),(4,0)},

{(3,0),(4,0) },{ (3,1),(4,0) },{ (3,2),(4,0) },{ (3,3),(4,0) },{ (3,4),(4,0)},
{(4,0),(4,O)},{ (4,1),(4,O)},{ (4,2),(4,0) },{ (4,3),(4,0)},{ (4,4),(4,0)}

I

I

I

I

97

communications within columns. Based on the implementation of (v'P + 1) all-to-all

personalized 1-D HOVV operations, we get

With wormhole routing, the communication time is

!) (rv'P - ll2 Lv'P - 1 J 3/2 T(H R)aIUo_alLpers,l = is + (JP + 1 rntw 2 + 2) = O(mp)

Special-case: Fully connected I-D subsystems. For a fully connected 1-D

system, because all the processors use one port at a time to send a single message,

the total time taken is the same as that for the regular case.

The total time taken by this operation is

\t\!ith wormhole routing, the communication time is

6.5.2 Model-3

The implementation of this operation requires the following steps:

• Each processor transmits v'P values to each of the other vP - 1 processors on

its row, to be later distributed on the corresponding columns. At the end of

this step, each processor has received (v'P - 1) * v'P messages. This operation

is equivalent to vP aU-to-all personalized communications on an 1-D HO\iV

(row).

98

• In this step, each processor transmits the values it received earlier and its O\vn

Jp - 1 values to the other processors on its colurnn. Since vP - 1 of the

messages received in the first step were destined for this particular processor,

the number of messages to be transmitted is (.jj5-1)*.jj5- (.jj5-1) +(vP-1) =

(vP - 1) * .jj5.

So the total number of all-to-all personalized 1-D HOV" communications is

.jj5(vP - 1) + vP = p. Therefore, the total amount of time is

vP-1 y'P-1
ts+p(2mtwf 1+ mtc(2f 1-1))

w w
p3/2

O(m-)
w

With wormhole routing, the time is

Special-case: Fully connected I-D subsysterns. For a fully connected 1-D

subsystem, all the processors use all output ports sending different destined messages

to all accessible processors. The total time taken by the operation is

\Vith wormhole routing, the communication time is

CHAPTER 7

COMMUNICATION OPERATIONS ON BINARY HYPERCUBES

Vile compare here the performance of 2-D HO\iV systems wit.h t.hat. of binary

hypercubes for the studied set of communication operations. The (binary) hypercube

is an interconnection network that has been widely used in parallel processing,

primarily in the 1980's. A tremendous number of algorithms have been developed

for this system. The d-D binary hypercube or d-cube contains 2d nodes. Two nodes

are neighbors if and only if their d-bit unique addresses differ in a single bit. A

hypercube with p nodes has (~logp) edges.

No matter what communication model we are using (such as model-I, model-2,

or model-3), the number of transfer steps is the same and depends on d = logp.

The examples shown in this section are for the I6-processor hypercube or 4-

cube.

Of course, the one-to-all communication procedure is different from the all-to

all communication procedure. For one-to-all communication, the channels used in

this communication procedure are shown in Figure 7.1. In each step, there is only

one message sent along each direction. The number of channels and which channel

will be used are shown in Figure 7.1.

For all-to-all communication, in each step there are 21ogp-l = 24- 1 = 8 channels

to be used and the pairs of processors exchange their information. Of course, different

channels v-lill be used in different steps. Figure 7.2 shows the channels involved in

the 4-cube for all-to-all communication.

For the sake of simplicity, we restrict our comparisons to model-3, the most

powerful communication model, by also assuming the st.ore-and-forward routing

technique. In fact, the equations we derive for the hypercube are also valid under

model-I and model-2. First, we briefly evaluate communication operations for

hypercubes [5]. Then, comparisons with HO\iV systems follow in Section 6.

99

100

(a) step-one (b) step-two

(e) step-three (d) step-four

Figure 7.1 One-to-all communication procedure with 16 processors, for a hypercube
system.

(a) step-one (b) step-two

(e) step· three (d) step-four

Figure 7.2 All-to-all communication procedure with 16 processors, for a hypercube
system.

101

7.1 One-to-One Communication

Routing in the hypercube is carried out by first producing the XOR (exc1usive

OR) result bet\veen the d-bit source and destination addresses and then routing the

message in those dimensions where the bit in the XOR result is equal to 1. Two

addresses may differ in up to d bits, and therefore the maximum distance is equal to

d = logp.

Therefore, the uppeT bound on the communication time is

7.2 One-to-All Broadcasting

The implementation of this communication operation requires the traversal of all

d dimensions. Despite the fact that the order chosen for the traversal of the d

dimensions does not matter, the description here assum.es that this traversal starts

with the highest dimension. In the first phase, the source processor sends the message

to its neighbor in the (d -- l)-th dimension. In the second phase, the source and the

processor that previously received the message send a copy to their neighbors in the

(d - 2)-th dimension. In general, in the s-th phase, the 2s -
1 processors that have a

copy of the message send a copy to their neighbors in the (d - s)- th dimension, for

1 :::; s:::; d.

The communication time required here is the same as the worst-case commu

nication time required for one-to-one communication, the only difference being that

for one-to-all broadcasting the message is stored in the intermediate nodes while

for one-to-one communication the message is not stored in the intermediate nodes.

Therefore,

Tone_to_all = ts + mtw logp + (logp - l)tc = O(m logp)

102

7.3 All-to-All Broadcasting

This operation is carried out in d = logp steps. Pairs of processors exchange infor-

mation in each step. Each step doubles the size of the data to be exchanged between

processors in the next step because processors concatenate their current data with

the data they receive. Each step i, for i = 1,2, ... , d, implements communications in

a different dimension i, and the size of all messages in step i is (2 i
- 11n) words. The

communication time is

logp

is + (2: 2i-Im)iw + (logp - l)ic
i=l

is + 1n(210gp
- l)iw + (logp - l)tc

is + m(p - l)iw + (log]) - l)ic = O(mp)

Table 7.1 shows the entire procedure of all-to-all broadcasting in the 4-cube.

7.4 One-to-All Personalized Communication

The communication patterns are similar to those for one-to-all broadcasting.

However, the amounts of information to be exchanged in different steps differ

dramatically. In step i, for i = 1,2, ... , d, a processor that has received earlier data

(or the source processor for i = 1) sends half of its data to its neighbor in dimension

i; the set of 2d
-

i values sent to that neighbor is for the 2d - i processors v"ith the

higher addresses if the neighbor has a higher address (otherwise, the values are for

the 2d
-

i processors with the lower addresses). The communication time is

logp

Tondo_alLpeTs = is + (2: 2!ogp-im)tw + (logp - l)tc
i=l

log p-l

ts + (2: 2im)tw + (log]) - l)tc
i=O

ts + m(2logp - l)tw + (logp - l)tc

ts + m(p - l)tw + (logp - l)tc = o (mp)

Table 7.2 shows the details involved in this communication.

103

Table 7.1 Detailed information for all-to-all broadcasting on the hypercube.

Initial state

Po with message mo PI with message ml P1 with nl6Ssage 1112 P3 with message rIt3

P4 with message m4 PS with messa,ge 7TIS Pa with rnessage '1116 P7 with tuessage m7

PB with message ms P9 with message 7119 PIO with message rl110 PI! with n1essage 11111

P12 with message m12 PI3 with message m!3 PI4 with message 111!4 PIS with message 11115

First step (anlOng two processors with first bit difference, such as Po and Pl')
mO,ml rno, ml 1712, 'Ili3 7112, m3

m4,7TIs 711:11 ms H16 ~ 1n7 7n6, in?

1nS, mg mg, mg n~lO, 11111 11110, mll

m121 111,13 ffi12,11'113 71114,11115 11114, mlS

Second step (among two processors with second bit diflerence, such as Po and P2.)
rrtO,ml,n1,2)7113 mo,in l,7n2,m3 nLO)n11)7n2)TIt3 rnO,lnl,7712,11ls

TrLt ,1ns)7n6,l1l7 7714,1115,m61rrt7 7114 lilt5 ~nL61rn7 7Tt.1 ~rn5 ,711,6 ,1117

ms,rl1g,71l1O,mll rns 11?l9,m lO, m ll 7118 ,Tr19,1111 0 ,nlll rn,SlYl19,1nlQ,rrtll

1TI12,71t13 ,7n14 ,rn15 m12,11113,m14)711.15 r11.12,m13,11t14,11l15 111,12)11113,71114 ,m15

Third step (aIIlong two processors with third bit difference, such as Po andpd

71l0,7n l,m2,m3 7nO,1?11 ;1"(1.2,7113 7ll0,ml,7'J12,m3 ino ,il'l1 ,7n2,11'1..3

711.4 ,n1.5 ,rI1.e ,tn7 rrL111Tl-5 ,7.,.1.6 ,in7 1714,7n5,1n6,rn7 71'14 ,rnS,m6 ,1117

Hto,ntl,Hl2,rrL3 mO,nll,1112,ffi3 1nC , Tn1 1 rn .. 2 , ll13 rnO)ml)ffi2)m3

1n4,11151711.(j.,7n7 171'1 lrnS l1n6-,1117 111.4,1'11.5,1116)111.7 1'11.(\,111.5)711.G ,71'1.7

m811719JmlO~m11 ffiS,lng;n110,ml1 mS ,1119,7n lO,11'1.11 11L8,1ng,71110,nq 1

71112 ,1n13,711.14 ,71'115 1I112,1n13 ,17114 ,rn15 11112 ,H113 ,1l1',14 ,17115 nl.12 ,1l'113;rn14 111115

1I18,rn'9,71'110,71111 ,nS,1ng,mlO,rn ll rrL8,7119 ,n110 "nIl 7TtS,7Ttg ,711'10,11111

7Tt 12 ,nLI3 ,m 1-1,11115 ffi12,H"L131m14)711..]5 m12 ,rrq3,17114 ,1l115 m12 ,11'113 ,rrL} 'I)11115

Fourth step (among two processors with forth bit difference, such as Po and ps.)

T11'-0, 111 1,1?12, 7n3 1710,7lLl,rrL2,1!"3 mO,nt1 ,m2 ,1113 rnO ,1n 1,nl2,71l3

111,1 ,rn5)1116 ,n17 m'l ,ms)1116,1117 11t41111S,n1(nn17 rn4 ,r115 ,1110 1111,7

n~8,1l19,mlO,nq 1 1118,'r1'19,rrQO,mll mS I 7?l.9)ln lO)m11 1118 ,rn9,m,10 ,7nll

rfL} 2,m13 ,177,14 ,11115 Ht12 lrTl.13 ,11114 ,n-115 7YL12)11113)m14,71115 m12 ,11113 linl.:!. linl5

'f7'to 11111)m2 ,m3 lTLO,rnl,m2,m3 1TtO,1nl,1"]1,2,rI13 rnO ,m1 1m2)1TI3

m4,171s,m6,nL7 rJ14,mSlrn6,Trt7 m4 ,,-n5 ,1116 ,7n7 rn4 ,trl5,m-6 ,1117

mS, 7(19)m10,n1 11 Ins)1119,71'1..10,1':n11 rn8 ~m9,rn1o,nL11 rnS)m9~rnl0,mll

71112 ~rrl,l3 ,11114 ,1n15 m12,7nI3,111 14,m15 77112 ,nt13 ,7"1114 ,inI5 rn12)rnl3)11114 ,17115

7110 ,n1l,rn2 ,n13 111,011111 J iTI2 ,1n3 /110, 711 1,m2,1TI3 rno ,7n 1 tTn2 ,7n3

1114)7n5Im,Gl7117 'nl4)7n5)'n16 , nL7 7114 ,rn"5,1n6 lm7 rn4)1115)1116 ,'rn7

I11S,711g, rn lO,rn ll 7ns ,111g,rn 10)7n l1 'rnS,fllg,11110,nl11 7118,7119,71110,71111

1nl2 ,1)1]3)111.14)r11:.15 111.12,771 13,711 14,11115 m12 ,11113 ,1'n·14 ,'(11.15 '0112 ,/n13,1TI14 ,111.15

7nO,ffi1)1?12,1113 ,."-2..0 ,ml ,m2 ,1113 rno,ml,r11.2,1n3 1no ,ml ,rn .. 21rJl-3

1Y!.4)m5,7n6,n~7 1n4 ;n15 ,1'n,6 ,m7 711.4,1715,7116,7l17 1114) 1115) m6 I IT!.7

rnS,m91'lnlO,n1.1] 111.8,1719,mlO,mll rns ~n~9In1.10,mll 1118}1ng ,n1.1 0 ,1'1111

ffi12,mI311?114,71115 rn1217J113,m14,nl15 1TI12,TI113,m14,m15 ffi12)111.13,111,14 ,1n] 5

104

Table 7.2 Detailed information for one-to-all personalized communication on the
hypercube.

Detail information about one-to-all personalized cmnmunication.
Initial state

Po with message PI P2 P3

TnO,Tn1,m2,'T/13 with no message with no message vvith no message
'T/14,1/1,5,1/1,6, l11,7

ms ,I11,g,'T/11O, l11, ll

m12,m13,7?1-14,mI5

P4 P5 P6 P7

\vith no message with no message with no message with no message

Ps pg PlO P11

with no message with no message with no message with no message

P12 P13 P14 PIS

with no message with no message with no message with no message

First step: Message transfer from Po to])s.

mO,mj,Tn 2,1/1,3

1/1,4 , 'T/15, 1'11,6,1'11,7

1T/'8, 'T/1g, 17110 ,mll

17112 ,m13, 17114,17115

Second step: Message transfer from Po to PI and froIn Ps to pg.

1/1,0 ,1712,1/1,4 ,1?1-6 m],1?1-3,m5,1717

fis, m'10, 1?1-12, 1'11,14 1?1-g ,17111, 'T/113, 'T/115

Third step: Message transfer from Po to P2, from PI to P3,

fronl Ps to PIa, and from pg to P11

'T/10,m'4 1'11,1, 1715 1712,1/1,6 fi3,1?1-7

171S,17112 1?1-9, 111,13 111,lO,m14 mn,m15

Fourth step: Message transfer from Po to P4, from PI to P5,

from P2 to P6, and from P3 to P7;

from])s to])12, from pg to P13, from])10 to])14, and from P11 to P15.

mo m1 m'2 m3

m'4 1?1-5 fi6 'T/17

1?1-S 1719 filO mll

'T/112 111,13 17114 m15

105

7.5 All-to-All Personalized Con"lmunication

This operation also requires log p communication steps. Each processor contains p

values in each step. In step i, for i = 1,2, ... , d, each processor sends half of its data to

its neighbor in the i-th dimension; these data are destined for processors whose the

i-th bit in the address is similar to that of the chosen neighbor. The communication

time is

Tables 7.3, 7.4, and 7.5 show the details involved in this communication

procedure.

106

Table 7.3 Detailed information for all- to-all personalized communication on the
hypercube.

Detailed information for all-to-all personalized communication.

Initial state

Po with messa.ge PI with message P2 with l1lC'ssage Ps with Hl_ossage

mOQ,mOl,m02. m 03

m04 ,rnOS ,mOB ,m07 n1-24 , 111,25,17126. n1-27

rn08 ,mOS ,1110.10 ,1710,11 17tlS ,11119,111] .10 ,m I,ll m 38 ,fi 39 ,InS.lD ,rag,ll

mO,12 ,mO, 13 ,mO.14 ,m,O, 15 Tn1 ,12 ,nt}, 13.m 1,14,1n 1, 15 11'13,12,»13,13 ,In:i,14 ,ln3.IS

1>4 ,-,,,ith :,nessagc P5 ,.",ith l'nessagc P6 .. vith Hlossage P7 ,ith messago

11164 ,1n05. '11166,111-67 111-7_1,'1'175. 1'n 76,n117

n158. n1.59 ,111.5 ,10 ,nt-S.ll 1n68 ,11169 ,711,D, 10 ,1116, 11

nl5-,12 ,1'n.5,13. ,fnS.l·1. m S,] 5 171-6,12 ,n16, 13 ;rno,l.t ,111.6,15 TTL 7 ,12 , n1 7 .13 •In 7, 1,1 ,n1-7 .15

P8 .,. ... i th message pg with message PIC with message PI! with message

1nl0,O ,11110, 1 ,rn 10.'2 ,nl-l0,3 rnl1,O ,11l11 ,1 ,n"t! 1,2 ,Httl.3

ffiS.1, m·S5, 11'1-86, rn87 11l10, -1 ,lliIO,!) ,nqO, G ,rn 10, 7 Tn 11.4 ,Jll.ll.5,11'1l1,6 ,111} 1.7

nt-ss ,lnS9.n18, 10,1)"1.8.11 111.98 ,111g9 ,m_g, 10 ,Tng,Il 11110,8 , rn l0,9 ,Tn 10, 10 ,,-n 10, 11 1111 1 ,8 ,n1-11,9 ,ntll ,10,mll,11

r11s, 12 ,ma.IS ,rng, 14 ,rnS,IS 1'1'1.0,12,1119,13, lng, 1.-1, f1!9, 15 TI1IQ, 12 ,11110,13 ,Otl0, H ,J1qO, 15 U111, 12 , 711 11,13 , Jl1 11.I4,i1'1 11 ,15

Pl2 with message PI3 with message Pl-t with Hlcssage PIS \vith message

l1l12,0 ,Tn 12,1 ,m 12.2 ,rn12,3 11113,0,111.13.1, rH13,2 ,rn13,S 71"1.14,0, Ut1·t.t, 1111-1, 2 ,ln14.3 111-15,0,17115,1 ,rn15. 2. n1 15,3

111.12,4,17112.5 ,in 12,6 ,in 12. 7 11113,4 ,m 13.5 ,1'1113,6 ,TTl-IS. 7 T11-14 ,4 ,1'11 1-1,5 ,nlI4,6,Trt14, 7 1n 15,4 ,11115.5,1'n 15,0 ,n!} 5, 7

Tn12,S ,111-12,9 ,m"12,1 0 ,Tn 12.11 nl13,8 ,Tn I3.9,m 13,10 ,rn 13, 11 rn14,S ,11114,9 ,171 14,lO, rn l_1, 11 r11.15,8 ,1n 15,0 ,171-15.10 ,r11 15, 11

ffi12.12 ,7n12,13 ,11'1.12,14 , rn 12, 15 mI3, 12,m13.13 ,m13, 14;m 13,15 n114, 12 ,f11.14, 13 ,Tl1.1'1.14 ,111.14, 15

First step (among two processors with first bit difference, such as Po and Pl.)

rnoo ,11'1.10, 1H02, ntI2

111.04 ,11114 ,Ot06,11116

1nos ,71:1.18,111.0,10 ,nIl, 10 n109 ,m19,n'O,11 ,111.1, II ;11-28 ,n1-38 ,1112, 10 ,11"l3,10

n10,12 ,nt 1,12,1'110,1"1 ,Tn 1,14 1110,13 ,rn l,13 ,ntO, 15 ,m l, 15

nl.'IO ,11150 ,TI'l-42, rn 52

rn-1,9 ,1"nS9 ,nt4" 11 ,mS, 11 H169,n179,1n6,11 ,11'1.7.11

111-0;,12,1715,12 ,111.·1, 14 ,1115,}-:1 1'n4, 13 ,1"Us, 13 ,nL1,15,1715, 15 Til a , 12,])"1-7,12 , rJ1 0.1-1 ,1n7, 14

Tl110.0 ,111.11,0 ,11110,2 ,nq 1,2 1"J!10,1 ,m 11,1,111-10,3 ,nq 1,3

ml0,4,U1.11,4. 111 10,6,»1-11,6 ffil0,S.IHll,5,171.10,7 , 711 11, 7

rn 88, -,--/1,08,11'18,10 ,lng ,10 171.S9.rn 99,Ji1-S.11,mg,ll Tn 10.8 ,mIl.S , n1 1Q,10,nq 1, 10 mlO,g,1Tl.}I,D, rn lO,111 7Tl I1,11

1'1'18,12 ,17"1-9,12,11"18.11 ,11t9,14 mS,13 ,'171.9, 13,1718,15 ,rn9, 15 mlO, 12 ,nt} 1 ,12 ,n1.10,14 ,n1.11,14

nl12.0 ,m 13,0 ,1'1112.2 ,1n 13,2 m 14,0 , ln 15.0 ,1T1.14 ,2 ,nl15.2 n1.1.1,1 ,11"1-15,1.1n]4.3 ,771:15,3

m12,4 ,111.13,4 ,mI2.6 ,ltl13,G Tn12.5 ,1nI3,5 ,nt 12.1.n q 3, 7 1'n 14,-1 ,n115"1,riL14,6 ,Tll 15,6 11l14,5 ,1n15,5 ,irqq. 7,111.15.7

1n12,8,m13,8.m 12,10 , rn 13, 10 nq 2,9 ,r11 13,9 ,ffi12, 11 , n1 13. 11 n114,8 ,1TI 15,8 ,71l14, 10 ,77l15, 10 'lll-14.9 ,rnI5,9.f1t 1-1.11 ,In 15, 11

rnl2, 12.m 13, 12 ,nl12,14 ,nl}3, 1-1 flt12.13 ,T11-13, 13 ,m 12.15,1n13, 15 7'11 14,13 ,'llt}5, 13 ,rJ1.14, 15 ,1nU5-,16

107

Table 7.4 Detailed information for all- to-all personalized communication on the
hypercube (continued).

Second step (among two processors with second bit difference, such as Po and P2.)

moo ,mlO ,m:W ,n1.30

InO.l! ,,-rq,ll ,111 2,11.lnS, 11

111.0,12 ,111}, 12,1112,12 ,rH:3,12 mO.lS ,rn 1, 13 ,n12, 13 , tIl 3. 13 1710,14 ~Tn 1,14 ,m2.14 ,171 3, 14

17141 ,rJlSl ,rHO} ,11171

nL:1S .n1S8 ,171.68,171 78 rn-1, 10 ,1n.5,10 ,T1'16 , 10 ,1117.10 J114,11 ,1115,11 ,lTt6,ll ,r1l7 ,II

171 4,12, 171 5,12,1116,12,1117,12 n:l-.1. 14,1115,1-1 ,nI6, 14 ,1117.14 711.1,15 ,rnS, 15 ,lTI6-,15, rn";. 15

1'n81 ,1"1191.11110,1 ,Tnl1.1 mS2 ,H192 ,71110.2 ,171 11,2 T1183 ,n-LOS ,nt 10.3 ,»111.3

1n84 ,17104,71110.4 ,Ttl-II ,4 11185 ,n195 ,mID.S ,11'1} 1,5 mS7 , n197 ,nQO,7 ,11111, 7

m·ss .17l98,mlO,8,ml1,8 m89 ,1"1109 ,171.10,9,171.11,9 tnS,lO ,tng,IO ,Ul I0, 10 ,11111,10 7118.11 ,rng,I1 ,1n-l0.11.1)111,11

rna, 12 ,lng, 12 ,m 10, 12 ,n1 11,12 rn8,13 ,7ng,13,mlO,13 ,m 11, 13 mS.l1 ,rng, 11.17l-10.14 ,11'1-11.14 'InS.1S ,-nt9, 15 ,1nIO, 15 .111.11, 15

17l12,O ,11113.0 ,111.14,0 ,;nlS,O 17112.1,11LI3.1,TnI·i,l.nI15.1 l1q 2,2 ,In 13,2 '1n 14,2 ,rn 15,2 17112.3 ,Tn 13,3 ,11111,3 ,lnI5,3

Tl'l12,4 ,UL13,-1 ,ffiI4,4 ,1'11 15,4 7n 12,5 ,nLlS,"; ,'I1Q.1,5 , 711 15.5 Tn 12,G , 111. 13.6,:n 1·1 ,6 ,11115,6 11112,7 ,1n13, 7 ,11't 14,7 ,nL 15, 7

Tn 12,8 ,1nI3,8 ,m14,S ,tn 15,8 t11-12,9 ,r1113,9 ,111 14,9 ,n1-15,9 m 12, 10 ,711.13, 10,1111.1.10 ,r11 15, 10 rn12, 11 ,mI3, 11 ,m-14, 11 ,mlS,ll

111-12.1:2 ,111.13.12 ,11114, 12 ,m 15, 12 "tnl:?, 13 ,rn 13,13,11114,1.3- , 171 15,13 n112, 14 ,7"11 13,1-1, rn14, 14 ,1ll-15, 14 rn-12, 15,71113,15,11114, 15,1H 15, 15

Third step (among two processors with third bi t difference, such as Po and P4.)

moo ,rn 10 ,1U::W ,ra30 1HOI ,Tn 11 ,l1t21 ,17131 rH03 ,Tn13 ,11123 ,Ht33

rnO!} ,nll9 ,11129 ,0139 T110, 10 , nt 1, 10 ,1n 2, 10 , n13. 10 111.0,11,1711,11 ,1n2, 11 ,J'n 3.11

'1'114,10 ,rn'5, 10 ,1716, 10 ,111.7, 10

rn45 ,:mS5 ,17165 ,11175 171.16,11'156, 7n66, 11) 76

rno, 12 ,n1}, 12 , 1n2, 12 ,111-3, 12 TnO,13 ,m 1,] 3 ,11"1.2.13 ,Tn~i, 13 nl-O, l.1,m 1,1-1 , nt2.14 ,1113, 14 n10, 15 ,lHl,15. rn Z.Hi ,fu 3, 15

1114,13,'1'11 5, 13 ,7110,13 ,1Y"7, 13 1111,14,1115,14,111.0,14 ,rrl7, 14 1")14,15 ,H1S,15 ,rna, 15 ,111'7,15

InSO, rngo,rn 10,0 ,rn 11 ,0 mSl ,lHgl.HqO, 1 ,inlI, 1 1"n 82 ,11192 ,r11. 10,2 ,1nl1, 2

nt12,Q ,m 13.0 ,1n 1-1,0 ,ra 15,0 ffi12, 1 ,111.13,1 ,nll-l,1 ,ffi 15,1 rn 12:2 ,1rL 13,2 ,1n 14,2 ,m15.2 1n 12,3 ,n't}3,3 ,711.1·1 ,3 ,17115,3

msa ,ntV8 ,11'110,8 ,m 11.8 rnS9 ,nt9l),rn10.9 ,lnl1 ,9 r118.10 ,r11g, 10 , 171 10, 10 ,111-11,10 TnS,ll ,111.9,11 ,n110, II ,m 11,11

rn 12,8 ,71t 13,8 ,m 14,8 , nt lS.8 PI.} 2, 9 ,Dl 13,9, n11-1,D ,17115, 9 71112,10,1'1113,10 ,Tn 14,10 ,111.15,10 1n12,11 , Tn 13,11 ,ml-1,11 ,111-15,11

mS·1 ,11194 ,H110,1 , rH l1,4 mS5 , 171 05 ,Tn 10,5,lH 11.5 1")1.86 ,n-t9o ,1n-lO,6 ,Tn 11,6 rnS7 ,Hl!)7 ,mIG, 7 "nIl, 7

rn12,·1. Tn 13, 4, 1n 1'1, 4,111 15,4 H1.12.5, 11113,5, m'1<1,5.lTl15,5 11112,6 ,m 13.6 ,Tn 14,6 ,m 15,6 711 12,7 ,Hl I3, 7 ,tT.! 14,7 ,ntIS. 7

r118, 12 ,1TI9,12 ,n110, 12 ,1n 11,12 1nS.13 ,rng, 13 ,lnl0.13 ,ill} 1.13 111S,14 ,lng.14 , fl1. l0,14 ,1ll-tl, 14 rns, 15 ,rng,15 ,111.10,1.5 ,n}, 11,15

ffi12, 12 ,,11.13, 12 ,1TL14, 12 ,lH IS, 12 Tn 12, 13 ,11113.13 ,ffi14, 13 ,rn15.13 m12,14 , 711 13.14 ,rnI4, 1." , 17t I5, 14 1TI12, IS ,nqs, 15. 171-1·1. 15,nt15. 15

108

Table 7.5 Detailed information for all-to-all personalized communication on the
hypercu be (continued).

Fourth step (among two processors with fourth bit difference, such as Po and P8.)

t1100 ,111-10 ,Tf1ZO.17130 '(JI01 ,11111 ,11121 ,lH31

111.12,711 52,11162, n1 72

r.nSl.l1l91, 1l1 10,1,mll,} 711.82 ,1n02 ,r11.10,2 ,11111.2

171 12,0 ,lTLla,O ,r)"1 14,0 ,11'L15.0 nt12,2.ffi13.2, Tn 1-1,2 ,111 15.2 tn 12.3 ,111 13,3,1111-1,3,11"115,3

7n05. Tn 15 ,1'11.'25, Tll35 Tfl06 ,Hl 16,n}26 ,71136

111,84,1110.1 ,Tn 10,-1,11111,4 H185 ,11L95 ,71l10,5 ,1'n 11.5 TJ186,J1tg6 .H"llO,Q ,n1-11 ,6 111-8.7 ,rH97 lm'IO, 7 , n1 11, 7

Ttl-I '2,4 ,1n13,_1"n114,4 ,11"1-15.4 1n12,5 ,mI3,S ,1711_1,5 ,Hl 15,5 "In]2,7 ,n113, 7 ,lH14, 7.17115, 7

lUOS ,THIS ,rH28 , ru 3S m·o, 10 , ra 1, 10 ,111-2.10 ,TTl-3.10 rnO,11 ,Tnl ,11,7'112.11 ,H13, 11

111-48,17158 I 1"n68, 111.78 nl-·i, 10 ,71l 5, 10 , rn6,10 ,m7, 10 111.1.,11,1115.11, 711 6.11,111-7,11

111-88,1"1108, HlIO,8, fTt11 ,8 l'f189 ,111-99 ,r7l. 10, 9 ,rn 11, 9 THS, 1 Q ,111.9. 10 ,711 10. 10 ,m'11, 10 Tns, 11,1119,11 ,IThIO, 11,TH 11.11

11112,8 ,n113,8,111.14,8 ,ntlS,S 77112,9 ,lll 13, 9 , n1. 14, 9 ,7l'Q 5,9 J1112, 11 ,m·13.11 ,mH.ll ,mIS,Il

1110,12 ,nq,1 2,m2, 12 ,711-3, 12 rI10,}3 ,lTII.I:t ,7"11-2,13 ,1'n 3.13

n1-1.12,111-5, 12 ,rTIu, 12 ,m?, 12 m4,14 ,1115,14 ,l115, 1,1 , ln 7 .14 n1"1,15,r(1.5, 15 , lne, 15 , lTI 7, 15

lng, 12 ,7119.12 ,n-qQ, 12 ,Jfl-l1.12 JTIS, 13 ,rnO, 13 ,r71,10, 13 ,r-n 11,13 nlB, 14 ,lng, 14 ,11110, 1~1 ,nt 11,14 rn·8.15 ,mo. IS ,11110, 15 ,Jl1 11,15

m12,12 ,mI3, 12 ,mH, 12,71'115,12 l'rq 2, 13,m 13,13 ,Tn 14,13 ,ln lS, 13 J1L}2,14 ,ln 13, 1;(,71114,14 ,111-15,1_1 HlJ2.1S , m 13, 15 ,m14,15 ,lTI 15, 15

CHAPTER 8

PERFORMANCE COMPARISONS BETWEEN HOW AND BINARY
HYPERCUBE SYSTEMS

In this section we compare the communications capabilities of 2-D HOVV systems and

hypercubes. Vie consider communications under model-3 which permits a processor

to send out different values simultaneously using different channels, because t.his is

often actually the case with real systems. \Ve assume t.hat tw is one unit of time and

t.hat ts = tc = 0 in order t.o simplify t.he calculations.

The equat.ions derived in the previous sections for 2-D HOW syst.ems follow:

The equat.ions for hypercube systems are:

TonLto_alLpers = m(p - l)tw = O(mp)

109

110

It becomes obvious that HOVv systems perform asymptotically better than

hypercubes in one-to-all personalized communication and all-to-all broadcasting. In

the other two types of communications, the result of the comparison depends on the

value of w. The remaining figures show cOlnparative results for practical cases, where

the suitability of HO\V systems for very high performance computing is demonstrated

further.

CD

600 r---------~----------_.----------_.----------_,----------_,

500

400

Binary hypercube system -<r-
2-D system with w=4 ----.
2-D system with w=8

2-D system with w=16-+'

.§ 300

200

100

oL~~ .. ~;~~.,~,,;c~~~~---.. ~t~.:~~:=·~=· ====== =:it~~·~ .. ==~~~~========----9
o 2000 4000 6000 8000 10000

processors

111

Figure 8.1 Comparisons between HO\i\T and binary hypercube systems for one-to-all
broadcasting with message size 171 = 2 words.

ID

.§

600 r-----------r-----------,----------.,----------,------------

500

400

300

200 .-----

100 ././'

Binary hypercube system -<l>-

2·0 system with w=4 ----.
2-D system with w=8

2-D system with w=16 + .. .

O~~ ______ _L __________ L-________ -L __________ ~ ________ ~

o 2000 4000 6000 8000 10000
processors

Figure 8.2 Comparisons between HO\i\T and binary hypercube systems for one-to-all
broadcasting with message size 171 = 5 words.

<ll

.§

600 r-----------r-----------r----------,r---------~----------~

500

400

.. '
300

200

100

•... ' +-...... _-+

,i

.. '

Binary hypercube system -<>-
2-D system with w=4 -----
2-D system with w=8

2-D system with w=16 +---

,-,---"' .--

O~ __________ L_ __________ L-________ ~L_ ________ ~ __________ ~

o 2000 4000 6000 8000 10000
processors

112

Figure 8.3 Comparisons between HO\i\T and binary hypercube systems for one-to-all
broadcasting with message size 171, = 10 words.

<ll

.§

600 r-----------,--------r~-----------.----------~----------~

-'

/,'/'/
500

400

300

,

;,,/'

...

Binary hypercube system --<)--

2·0 system with w=4 -----
2-D system with w=8

2-D system with w=16 -+---

~
/ ,,- --................ +

200 /' _..... ... _---.--.---".-.-.-- ... ,,--.-
i ,." +

100 ~: ::':;--.. ..

T ------+,,-

O~ __ --------L-----------L---------~L---------~----------~
a 2000 4000 6000 8000 10000

processors

Figure 8.4 Comparisons between HO\i\T and binary hypercube systems for one-to-all
broadcasting with message size 1ft = 20 words.

Q)

E
-."

10OGO r----------,r----------.----~----_,----------_.----------~

8OGO

6000

4000

2000

.. -

hypercube system -<>-
2-D system with w=4 ----
2-D system with w=8

2-D system with w=16 -+--

.;.-. -: :;;.=;:;.::- + -...... .
O~~~~----L-----------~----------~--------~~--------~

o 2000 4000 6000 8000 10000
processors

113

Figure 8.5 Comparisons between HOVv and binary hypercube systems for all-to-all
broadcasting with message size Tn = 2 words.

8000

6000

4000

2000

... 4--.......• -_•.•...

2000 4000 6000 8000 10000
processors

Figure 8.6 Comparisons between HO\i\T and binary hypercube systems for all-to-all
broadcasting with message size 7n = 5 words.

QJ

§

10000r-----~----._--------_.~--------_.----------~----------_,

8000

6000

4000

2000

, .'
/ .. '

/~ .. "

hypercube system ---
2-):)' system with w=4 .'--'
.2:0 system with w=8

... ·2-0 system with w=16 '''''''''

0~L-________ L-__________ L-________ ~L-________ ~L-________ ~

o 2000 4000 6000 8000 10000
processors

114

Figure 8.7 Comparisons between HO\i\1 and binary hypercube systems for all-to-all
broadcasting with message size 177, = 10 words.

ClJ

.§

10000.--.--------.----------.-----------.----------~----------_,

hyp~;~ube system ---
2~.D system with w=4 ._-_ .

8000

6000

4000

2000

;

,

,

, ,

,/ ::' /

,: ,,: ...
/ .. :' .. /0.

. 2'0 system witll w=8
2-0 system with w=16 + ..

., ;

.... /

./
o~----------~--------~~--------~----------~----------~

o 2000 4000 6000 8000 10000
processors

Figure 8.8 Comparisons between HO\i\T and binary hypercube systems for all-to-all
broadcasting with message size 17'1 = 20 words.

<Il
E . ."

115

10000r-----------r----------,~--~----_.----------_,----------_,

hypercube system -<>-
2·D system with w=4
2·D system with w=8

2·D system with w=16 .+ ..

8000

6000

4000

2000 -+

.... -r

processors

Figure 8.9 Comparisons between HO\V and binary hypercube systems for one-to-all
personalized communication with message size m = 2 words.

ill
E

+=

10000 r-----------.-----------r----------.r-------~-,------------

8000

6000

4000

2000

..........
I ." -t

<~ .. :.:~:

..............................

.>t-..........•...

.. -r

.. nypercube system -<>
.2·D system with w=4

.... 2·D system with w=8
. 2·D system with w=16 +

.......................................

.......................

.".-1-

0~L---------L-__________ ~ __________ L-__________ L-________ ~

o 2000 4000 6000 8000 10000
processors

Figure 8.10 Comparisons between HOW and binary hypercube systems for one-to
all personalized communication with message size m = 5 words.

10000 ,..------,-----.,---------y------,-------;---,---------,

8000

6000

4000

2000 ///

* .. /

.... -!1·ypercube system -+
._2-0 system with w=4 ---- .

. / - 2-D system with 1'1=8
/ 2-D system with 1'1=16 + ..

O~~----L------L------L------~L--------J

o 2000 4000 6000 8000 10000
processors

116

Figure 8.11 Comparisons between HO\iV and binary hypercube systems for one-to
all personalized communication with message size m = 10 words.

10000 r--r-~-~r_--------,r--------,-------.------~

8000

6000

4000

2000

2000 4000
processors

6000

hypercube system -+-
2-D system with 1'1=4 ----.
2-D system with w=B

2-D system with 1'1=16 + ...

BOOO 10000

Figure 8.12 Comparisons between HO\iV and binary hypercube systems for one-to
all personalized communication with message size m = 20 words.

Q)

600000 r-----------,----------,,----------.-----,-----.-----------,
,elnary hypercube system ->-

:' 2-D system with w=4 ----
" 2-D system with w=8

500000

400000

.§ 300000

200000
/ ..•......•............................

A

...............................

///

100000

O~~~~ ____ L-__________ L-________ ~~ ________ ~L-________ ~

o 2000 4000 6000 8000 10000
processors

117

Figure 8.13 Comparisons between HOW and binary hypercube systems for aU-to-all
personalized communication with message size m = 2 words.

600000 .-----------.---------c-,---------~r----------,r-----------

500000

400000

Q}

E 300000
z

200000

100000

2000 4000 6000
processors

Binary hypercube system -<)-

2-D system with 1'0'=4 ----.
2-D system with w=8

2-D system with w=16.;-····

8000 10000

Figure 8.14 Comparisons between HO\i\1 and binary hypercube systems for all-to-all
personalized communication with message size 171 = 5 words.

600000.-----------~--------~r_--------,,----------_.--------~

500000

400000

<!l
:§ 300000

200000

4000
processors

6000

Binary hypercube system -<>-
2-D system with w=4 ----
2-D syste with w=8 ----

2-0 syst with w=16 -+---

8000 10000

118

Figure 8.15 Comparisons between HO\i\T and binary hypercube systems for all-to-all
personalized communication ,vith message size m = 10 words_

600000 r-------,---,--,------,-,---,------,-----------,---------------,

500000

400000

'" -E 300000

200000

100000

2000 4000 6000
processors

Binary hypercube system --;;--
2-D system witll w=4 ----
2-D system with w=8 -----

2-D system with w=16 -+-

8000 10000

Figure 8.16 Comparisons between HO\!\l and binary hypercube systems for all-to-all
personalized communication with message size rn = 20 words_

CHAPTER 9

PERFORMANCE COMPARISONS BETWEEN HOvV AND
GENERALIZED HYPERCUBE SYSTEMS

In this section \\le compare the communications capabilities of 2-D HO\i\T systems and

generalized hypercubes. Vie consider communications under model-3 which permits a

processor to send out different values simultaneously using different channels, because

this is often actually the case with real systems. \iVe assume that tw is one unit of

time and that ts = tc = 0 in order to simplify the calculations.

The equations derived in the previous sections for 2-D HO\iV systems follow:

y'P-l p
TalLio_all,3 = mtw(1 + JP) I 1 = O(m-)

w w

. y'P - 1 p3/2
TalLio_aILpel's,3 = 2pn~1 ltw = O(m--)

w w

The generalized hypercube is special case of our HO\iV system. The equations

for generalized hypercube systems (or I-D fully connected HOW subsystem) are:

Tful/ ()
aIUo_aILpers,3 = 1TI P - 1 tw = O(1TIp)

119

120

Table 9.1 Cost comparison bet,veen the H01/\!(y15, w, 2) and GH{...fi5. 2) systems.
Cost Comparison

System one-to-all all-to-all one-to-all-pers. all-to-all-pers.
broadcasting broadcasting communication communication

HOVV(y15,w,2) O(mpw) 0(mp3/2W) 0(mp3/2w) o (n/,p2w)
GH(...fi5,2) i 0(1'17,p3/2) 0(mp2) o (mp2) o (7T/,p5/2)

The remaining figures show comparisons between generalized hypercubes and

HO\iV systems. It becomes obvious that generalized hypercube systems perform

better than HO\iV systems from the communication time point of view. But the

generalized hypercube has a fundamental design disadvantage. It has very large

wiring complexity, as demonstrated by its bisection width. The bisection width is

defined as the minimum number of wires that must be cut to separate the network

into two equal halves [23]. A very large bisection width makes the network impossible

to build. The bisection width of the GH(k,17,) is O(kn+l).

It is derived as follows. The bisection width of the GH(y15, 1) is r~l * l ~J,
because when cutting the graph into two halves the edges which connect the left

I ~l nodes with the right L ~ J nodes must be removed. For the G H (JP, 2) the

bisection width is JP * I~l * L ~J = 0(y15 p) = 0(p3/2) and for the GH(k, 17,) the

bisection width is kn
-

1 * r~l * L~J = O(kn+l).

For the 1-D FIOFV(y15, w, 1) the bisection width is 1+2+3+·· .+w = W(~+l) =

O(w2). For the 2-D HOW(y15,w, 2) the bisection width is w(~+l) * JP = O(vp w2).

Let us define the cost of an interconnection network as the product of the

"communication time" and the "bisection ,vidth". This is a reasonable cost measure

because "ve should like to achieve small communication time with a small system

complexity. Table 9.1 shows the costs of the HOVV(vp, w, 2) and the GH(vp,2)

for vp ~ w. This table also shows that reductions in the cost are proportional to

reductions in the value of wand this leads to predictability. The HOVV(vp, w, 2)

outperforms the GH(JP, 2).

100 r-----------r---------~r_--------_.----------_,----------~

80

60

40

Generalized hypercube system -<r-
2-D systeJll with w=4 ----.
2-D system with w=8 .-.--

2:p--system with w= 16 --+

------- -- ----------

O~--------~~--------~-----------J----------~----------~
o 2000 4000 6000 8000 10000

processors

121

Figure 9.1 Comparisons between HOVl and generalized hypercube systems for one
to-all broadcasting with message size Tn = 2 words.

Q)

.§

100 r--------r--r---------_,-----------.~--------_,----------_.

80

60

40

Generalized hypercube system -<r-
2-D system with w=4 ----.
2-D system with w=8 ---.-

2-0 system with w=16 .. +

~~--~----~----------~-----------------------o

2000 4000 6000 8000 10000
processors

Figure 9.2 Comparisons between HOVV and generalized hypercube systems for one
to-all broadcasting with message size m = 5 words.

600 r----------.r---------_,----------_,-----------,-----------,

500

400

300

200

"Xl //'/

;'.-

generalized hypercube system -{l-

2-D system with w=4 -----
2-D system with w=8 ... --

2-D system with w=16 -+---

o~~--______ ~ __________ L_ ________ ~ __________ ~ __________ ~

o 2000 4000 6000 8000 10000
processors

122

Figure 9.3 Comparisons between HO\i\T and generalized hypercube systems for one
to-all broadcasting with message size Tn = 10 words.

Q}

600r----------.r-------~_,----------_.----------_,----------_.

500

400

Generalized hypercube system -<>-
2-D system with w=4 -----
2·D system with w=8

2·D system with w=16+--

:§ 300

200

100
t- _.+-

.....
..... ' .

........

A ···-

O~ __________ L_ __________ ~ ________ ~ __________ ~ __________ ~

o 2000 4000 6000 8000 10000
processors

Figure 9.4 Comparisons between HO\i\T and generalized hypercube systems for one
to-all broadcasting with message size m = 20 words.

10000 r-----------r---------~----------_.----------_.----------_.

8000

6000

4000

2000

,-.... ----
o -'"::: ...

o 2000

-,'

,,'

4000
processors

Generalized hypercube system _
2-D system with w=4 ----.
2-D system with w=8

6000

2-D system with w=16+····

......... ,.. .. - .. -
..... - ..

8000 10000

123

Figure 9.5 Comparisons between HOVv and generalized hypercube systems for all
to-all broadcasting with message size 'IT), = 2 words.

Q}

-§

10000 r-----------r----------,,----------,----------,.------------

8000

6000

4000

/,/"//

2000

"'////

/,////

Generalized bypercube system _
~b system with w=4 ----.

/2-0 system with w=8

//"'/""" ',0 'y,<Om wOh w." '"

,/"////"

I~,~~<~.-~··~-~~==t===========~==========~==========~--------~ 0.' --.

o 2000 4000 6000 8000 10000
processors

Figure 9.6 Comparisons between HO\'\1 and generalized hypercube systems for all
to-all broadcasting with message size 'IT), = 5 words.

10000 r-----------r----------nr---------_,--------~_,----------_.

8000

6000

4000

2000

,

,

.. .r
........

.......................

........
•........•..•.......

.................

Generalized"hypercube system -<>
/2·0 system with w=4

.... 2·0 system with w=8 ...
. 2·0 system with w=16 --+ .. -

.......................... / .. /

...........
..............

/ ::-+'_/_ .. /_./_ -. <>----------------<> / :~ .. ~
O~~--------L-__________ L-__________ L-________ ~~ ________ ~

o 2000 4000 6000 8000 10000
processors

124

Figure 9.7 Comparisons between HO\iV and generalized hypercube systems for all
to-all broadcasting with message size m = 10 words.

10000 r----------cr----------nr----------.--------~_,----------_.
, Generalized .. ·~ypercube system -<>-
t ·· .. 2·0 system with w=4 ---- .

.... / 2·0 system with w=8
, ... /." 2·0 system with w=16 .+

8000 .•... / . /

.
6000

4000

2000 !:' ./

~
/.<'/// .
l ·/

o j

o 2000 4000 6000 8000 10000
processors

Figure 9.S Comparisons between HO\I\/ and generalized hypercube systems for all
to-all broadcasting with message size m = 20 words.

ill

.§

10000 r-----------r-----------r----------,r---------~r_----------

8000

processors

Generalized hypercube system -v-
2-D system with w=4 ----.
2-D system with w=8

2-D system with w=16+-···

125

Figure 9.9 Comparisons between HOW and generalized hypercube systems for one
to-all personalized communication with message size Tn = 2 words.

ill

. §

10000r-----------r---------~r---------_.--------~~----------_,

8000

6000

4000 -

2000

. ,f-...•...•

.........

....................

..............

........
. ..r,

Generalized·ti'ypercube system -v
.-~-o system with w=4 ----.

.... 2-D system with w=8 -.. -
, 2-D system with w=16 -+

,

.............
~ .. ,

.+
..................

,/ .. ,.- ..;.

1~:~.··;*~···~=====t==========~========================~ ________ J a -li-' /
a 2000 4000 6000 8000 10000

processors

Figure 9.10 Comparisons between HO\iV and generalized hypercube systems for
one-to-all personalized communication with message size m = 5 words.

10000 ~----------r---------~~---------'--------~-'----------~

8000

6000

4000

. .

. . .

. //

""

. ,./

2000 :,':'

:' .. >t-•.••.• /

/ /~"/"_A--_----v------------------------<>
~ O~~ ________ L-__________ L-________ ~L-________ ~ __________ ~

o 2000 4000 6000 8000 10000
processors

126

Figure 9.11 Comparisons between HOV\l and generalized hypercube systems for
one-to-all personalized communication with message size m = 10 words.

Q}

.§

10000 r-----r---~r----------,-----------.----------~----------_.

8000

6000

4000

2000

,

, ,
.

:' ./ ..
/..::'
f(
!:

.
. .

.

.

Generalized hypercube system '"'>-
2-D system with w=4 ----.
2-D system with w=8

2-D system with w=16-+··

O~~ ________ L-__________ L-__________ L-________ ~L-________ ~

a 2000 4000 6000 8000 10000
processors

Figure 9.12 Comparisons between HOW and generalized hypercube systems for
one-to-all personalized communication with message size m = 20 words.

127

150000
.. ,/

,.
.•....•. /

<lJ
.§ 100000

. .f//

50000
......................

2000 4000 6000 8000 10000
processors

Figure 9.13 Comparisons between HOv\! and generalized hypercube systems for
all-to-all personalized communication with message size m = 2 words.

200000 r---------~r_--~-----,r-_c-------,----------_,----------_.

150000

<ll
§ 100000

50000

2000 4000
processors

Generalized hypercube system -0-

2-D system with w=4 ----.
2-D system with w=8

2-D system with w=16 +

6000 8000 10000

Figure 9.14 Comparisons bet\veen HOW and generalized hypercube systems for
all-to-all personalized communication with message size m = 5 words.

<lJ

200000r---------~._--,_----_,~--------_.----------_.----------~

150000

Generalized hypercube system -<>-
2-D system with w=4 ----.
2-D system with w=8

2-D system with w=16 .+ .. .

.~ 100000

50000

O~~--______ L-__________ L-________ ~L-________ ~ __________ ~

o 2000 4000 6000 8000 10000
processors

128

Figure 9.15 Comparisons between HOW and generalized hypercube systems for
all-to-all personalized communication ivith message size 1T/, = 10 words.

200000 .-----~--~r_---------,----------_.----------_.----------~

150000

OJ

.~ 100000

50000

2000 4000
processors

Generalized hypercube system -<>-
2·D system with w=4 ----.
2·0 system with w=8

2-D system with w=16 .+

6000 8000 10000

Figure 9.16 Comparisons betiveen HO\i\1 and generalized hypercube systems for
all-to-all personalized communication with message size 171 = 20 words.

CHAPTER 10

CONVERSION OF COMTv1UNICATIONS ALGORITHIVIS FOR
GENERALIZED HYPERCUBES

Because the G Hk,n is the building block of our HOV\T systems, it is \\'orth trying

to modify existing communications methods used for the GHk,n' The following

terms are used for constructing BST (Balanced Spanning Tree) and BSG (Balanced

Spanning Subgraph) graphs [4}.

DEFINITION 10.1. GHk,n, an n-dimensional k-ary generalized hypercube, is

an undirected graph of N = klt nodes, each one labeled by an n-digit number in

radix k arithmetic. Each node v is connected to n(k - 1) other nodes with which it

differs in only one digit; i.e., node v = Vn-l ... Vi+l ViVi-l ... va is connected to nodes

DEFINITION 10.2. The tTanslation of a node v with respect to node s, denoted

by Ts(v), is defined to be the node t = Ts(v), so that ti = (Vi + sd mod k, for

o ::; i ::; n -- 1. The inverse tmnslation of a node v with respect to node s, denoted

by Ts-l(V), is defined to be the node t = Ts-1(v), so that ti = (Vi - Si) mod k, for

O::;i::;n-l.

DEFINITION 10.3. Consider the function T from the set {O, 1"", k - 1} to

itself as follows:

. {O if i = 0
T(~) = (i rnod (k - 1)) + 1 otherwise

(Notice that T maps digit 0 to itself and the remaining digits as follows: 1- > 2- >

3- > ... - > k - 1- > 1.) The Totation of a node v = Vn-l'" Vi+lV{Ui-l ... va,

denoted by R(v), is defined to be the node Vn -2 ... Vi+ 1 ViVi-l ... VOT (Vn - d.

DEFINITION 10.4. An ordered group of nodes, each one derived from its

subsequent one cyclically by the application of a rotation, is called a necklace.

DEFINITION 10.5. The binaTY cOTTespondent of a node v of GI-h,n is the

binary nUlnber obt.ained if we substitute each nonzero digit in v with the digit 1.

129

130

The generator node of a necklace is defined to be the largest among the nodes of the

necklace that have the largest binary correspondent.

DEFINITION 10.6. The displacernent of a node v, denoted by D(v), is defined

to be the minimum number of rotations that we have to apply on v iI) order to derive

the generator of its necklace.

DEFINITION 10.7. The peTiod of a node v, denoted by P(v), is defined to be

the number of nodes contained in the necklace to which it belongs.

DEFINITION 10.S. An unfolded necklace is an ordered group of exactly n(k-1)

nodes, not necessarily distinct, each one obtained from it subsequent one cyclically

by the application of a rotation.

DEFINITION 10.9. A shortest path balanced spanning tree, rooted at node on

(it represents n zeros) of the GI-h,n and denoted by BSTon, is defined through the

following parent function. For node v, with D(v) = i, let p be the position of its first

nonzero digit cyclically to the left of position n - 1 - i. Then the parent of this node

in the BSTon is

parentBSTon (v) = { 0
Vn-l ... V p+l OVp--l ... Vo

if v = on
if v -::j:: 0

DEFINITION 10.10. A shortest path spanning s1tbgraph, rooted at node on of

the G Hk,n and denoted by BSGoTt, is defined through the following parent function.

By parentBSGon (v, i) we denote the parent of node v in the ith, where 0 :s; i:S; n(k-

1), spanning tree of BSGon. For node v with D(v) = i nwd P(v), 0 :s; i :s; n(k - 1),

let Pi be the position of its first nonzero digit cyclically to the left of position n-1-i:

parentBSGon (v, i) = . {
0 if v = on
Vn-l . " Vpi+lOVpi-l ... Vo If v -::j:: 0

Figures 10.1 and 10.3 show the BSTo2 ofthe GHS,2 and the GHS,2) respectively.

The translation operation with respect to node s is applied to all the nodes of the

BSTon to obtain the BSTs rooted at any node s.

131

Using a similar method, \ve can create the BSTo2 for the HOTiV(p, W, 2) based

on the BSTo2 for the GHp ,2, where k = p in the GHk,n- It is based on the fact that

HOVls can be obtained from GHs by removing some edges_ These steps are:

• Create the BSTo2 of the GHp ,2-

• Break non-connected edges in the HOVV(p, w, 2) which are connected in the

G Hp ,2, using the path ,,,,,hich consists of all possible edges of window size w_

• If there is a conflict bet,veen intermediate nodes and leaf nodes (with the same

parent), then the intermediate nodes stay where they are and the leaf nodes

move to the next level.

Figures 10.2 and 10.4 show the BSTo2 of the HOvV(5, 3,2) and the

HOvV(8, 3, 2), respectively. Similarly, Figures 10.5 and 10.6 show the BSTo2 of

the H01/V (8,4,2) and the HOVV (8,5,2), respectively. Shaded nodes in these figures

show the procedure for the GHS,2' According to [4], the one-to-all personalized

communication consumes time 0 C::((:~:n on the GI-h,n' For the HOVV(p, w, n),

the modification of this communication procedure results in time 0 (~). This is

similar to what we also derived with our procedure in Chapter 6. Therefore, we do

not elaborate further on the problem of modifying algorithms for the GHk,n from

[4J.

132

f)
00 0°1 0°2 0

03 004- GH _5.2 k=5

d=1 01-> 10 -> 02 -> 20 -> 03 -> 30 -> 04 -> 40 ->01

0
10

0
11

0
12

0
13

0
14 d=2 11 -> 12 -> 22 -> 23 -> 33 -> 34 -> 44 -> 41 -> II

13->32->24->43->31-> 14->42->21-> 13

0
20

0
21 TJ ?"

0
24 O-~ 0-"

The necklaces of GH_5.2

0
30 "I OJ "? OJ-

0
33

0
34 d=1 {40. 04. 30. 03.20.02. 10. Ol}

d=2 {44, 34. 33. 23. 22.12. 11.41)
40

0 0
41

0
42

0
43 44

0 {42. 14,31.43.24,32.13.21)

Figure 10.1 The spanning tree BST02 of the GHS ,2'

13

14

Figure 10.2 The spanning tree BST02 of the HOvV(5, 3, 2).

f§
jO

O
0

°1

0
°
2

d

3
0

04

d
5

0
10

d

l
d

2
0

13

0
14

d

5

0
2

0

d
l

d
2

d
3

d4
0

2
5

dO

d
l

d
2

d
3

d
4

d
5

0
4

0

0
41

d

2
d

3
0

44

0
45

dO

d
l

d
2

d
3

d
4

d
5

0
60

0

61

0
62

d

3
0

6
4

0

65

dO

d
l

0
72

d

3
d

4
d

5

d
6

d
7

G
I"

U
,2

k=

8

d
6

0
17

d=

1
01

 -
>

10
 -

>
02

 -
>

20
 -

>
03

 -
>

30
 -

>
04

 -
>

40
 -

>
05

 -
>

50
 -

>
06

 -
>

60
 -

>
07

 -
>

70

d=
2

I 1
 ->

 1
2

->
 2

2
->

 2
3

->
 3

3
->

 3
4

->
 4

4
->

 4
5

->
 5

5
->

 5
6

->
 6

6
->

 6
7

->
 7

7
->

 7
1

d6
d

7
13

 -
>

32
 -

>
 2

4
->

 4
3

->
 3

5
->

 5
4

->
 4

6
->

 6
5

->
 5

7
->

 7
6

->
 6

1
->

 1
7

->
 7

2
->

 2
1

14
 -

>
42

 ->
 2

5
->

 5
3

->
 3

6
->

 6
4

->
 4

7
->

 7
5

->
 5

 I
->

 1
6

->
 6

2
->

 2
7

->
 7

3
->

 3
1

d
6

d
7

15
 -

>
52

 ->
 2

6
->

 6
3

->
 3

7
->

 7
4

->
 4

1

0
46

d

7
11

1e
 n

ec
kl

ac
es

 o
f G

H
_8

,2

d=
1

(7
0.

07
.

60
"

06
.

50
, O

S,
 4

0.
 0

4,
 3

0.
03

.
20

, 0
2,

 1
0,

 0
1

J

d
6

d
7

d=
2

(7
7.

 6
7,

 6
6,

 5
6,

 5
5.

 4
5,

 4
4,

 3
4,

 3
3,

 2
3,

 2
2,

 1
2,

 1
1,

71
 J

(7
6

,5
7

.6
5

,4
6

,5
4

,3
5

,4
3

,2
4

,3
2

,1
3

,2
1

,7
2

.
17

.6
1

J

0
66

0

67

(7
5

.4
7

.6
4

,3
6

.5
3

.2
5

.4
2

,
14

.3
1.

 7
3.

 2
7,

 6
2.

 1
6.

51
 J

P
4

,
37

, 6
3.

 2
6,

 5
2,

 1
5,

41
 J

d
6

0
77

!
30

F
ig

u
re

 1
0.

3
T

he
 s

pa
nn

in
g

tr
ee

 B
S

T o
2

of
 t

he
 G

H
g

,2
'

f-
I

C
J,

j
C

J,
j

01

F
ig

u
re

 l
O

A
 T

h
e

sp
an

ni
ng

 t
re

e
B

S
T o

2
of

 t
he

 H
0

1
V

(8
, 3

, 2
).

S
ha

de
d

no
de

s
sh

ow
 t

h
e

pr
oc

ed
ur

e
fo

r
th

e
G

H
.

1-
1
~

~

00

30

03

02

10

01

'1
F

ig
u

re
 1

0.
5

T
h

e
sp

an
ni

ng
 t

re
e

B
S

T o
2

of
 t

he
 H

O
V

V
(8

, 4
, 2

).
S

ha
de

d
no

de
s

sh
ow

 t
he

 p
ro

ce
du

re
 f

or
 t

he
 C

H
.

J
-l

C

J.
j

CJ
'\

20

02

10

01

F
ig

u
re

 1
0.

6
T

he
 s

pa
nn

in
g

tr
ee

 B
S

T o
2

cif
 th

e
H

O
T¥

(8
, 5

, 2
).

S
ha

de
d

no
de

s
sh

ow
 t

he
 p

ro
ce

du
re

 f
or

 t
he

 G
loO

r.

I-
'
~

C
7)

CHAPTER 11

CONCLUSIONS AND FUTURE WORK

V'le introduced in this dissertation a neVi' class of scalable architectures capable of very

high performance. We also proposed algorithms for the implementation of various

important communication operations, under frequently used communication models.

VVe finally compared the performance of this class of architectures with that of the

hypercube for the aforementioned communication operations. Our results show that

not only are our architectures scalable and feasible with current technology, but

also they perform better than the hypercube for several highly demanding communi

cation operations. Of course, HOV.,r systems perform outstandingly better than the

currently popular torus systems, because of their much better topological properties.

Further ,;vork is needed on HO\i\l systems with wrap-around connections, and

on embeddings and communications operations on n-D HOV" systems. Also, data

reduction operations should be studied on 2-D and n-D HO\i\l systems.

137

APPENDIX A

SIMULATION FOR ALL-TO-ALL PERSONALIZED
COI'vl1\1UNICATION ON 1-D HOWS

In all-to-all personalized communication, also known as total exchange, each

processor sends a distinct message of size m to every other processor. It involves a

lot of message transfers. Vve will not necessarily derive the most efficient procedure

here, because such a procedure can be of a very complex nature. \Ve present a

simple procedure that comprises t,\,O stages. The basic idea here is that the first

stage is initialization in which every processor exchanges related messages with its

connected neighbors. The second stage is for sending related messages using the

longest channel, when they are available.

The simulation code is

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

static num_of_nodes=12;
static window_size=3;

typedef struct _msg {
int src;
int dest;

} msg;

typedef struct node {

int number;
int tbLsize;
int index;
msg *Hable;

} node;

static node *all_nodes_1;
static node *all_nodes_2;

1* node number *1

static node *current_state, *next_state;
static step;

138

static IDSg *new_ffisg Ont src, int dest);
static void init node (node *p, int n) ;
static void sort_node (node *p);
static void sort_all_node(void);
static void copy_aILnodeO;
static void add_ffisg (node *pNode, msg *pM) ;
static msg *get_msg (node *pNode, int i) ;
static void del_msg (node *pNode, IDSg *pM) ;
static void init all (void);
static void print_all (void);

static void exchange_direct_nodeCnode *pl, node *p2);

static int get_rightmost_IDsg (node *P,
msg *msg_vector[window_sizeJ);

static int get_leftmost_msg (node *p,
msg *msg_vector[window_sizeJ);

static
static int *node_used;
mainCint argc, char **argv)
{

int i;
int w;
node *pNodel;
node *pNode2;
int done;

if (argc >= 2)
nUID_of_nodes

if (argc >=3)

window size

step = 0;
print_all 0 ;

= atoiCargv [1]) ;

= atoi Cargv [2J) ;

/*first step, exchange all nodes within window_size*/
for (i =0 ; i < nUID_of_nodes ; i++) {

pNodel = current_state+i;
for (w = 1 ; w <= window_size; w++) {

139

}

}

if (i + W < nUID_of_nodes) {

}

pNode2 = current_state + i+w;
exchange_direct_node(pNode1, pNode2);

sort_all_node();
step++;
print_all();

msg_array = (msg **)malloc(sizeof(msg*)*window_size);
node used = (int *)malloc(sizeof(int)*window_size);
while (1) {

int dest;
done = 1;

copy_alI_node (current_state, next_state);
/* send msg to right */
for (i = 0; i < nUID_of_nodes; i++) {

if (get_rightmost_msg(current_state + i, msg_array» {

memset(node_used, 0, sizeof(int)*window_size);
/* first try destination already within window */
for Cw = 0; w < window_size; w++) {

if (!msg_array[w])
continue;

if Cmsg_array[w]->dest <= i+window_size) {
/* already with window size */
if (!node_used[msg_array[w]->dest - i-1]) {

del_msgCnext_state + i, msg_array[wJ);
add_msg(next_state + msg_array[w]->dest,

msg_array[wJ);
node_used[msg_array[w]->dest - i-1J = 1;

} else {
int ww = w;
while (ww < window_size) {

if Cnode_used[window_size - ww -1J) {
ww++;
continue;

}

dest = i + window size - ww;
if (msg_array[w]->dest < dest) {

140

}

}

}

/*

}

}

}

}

ww++;
continue;

if (dest < nliffi_of_nodes) {
del_rnsgCnext_state + i,
msg_array[wJ);
add_rnsgCnext_state + dest,

}

msg_array[wJ);
node_used[window_size - ww -lJ
break;

1· ,

* then try the algorithm: longest destination using
* longest w
*/

for (w = 0; w < window size
if (!rnsg_array[wJ)

w++) {

}

break;
if (rnsg_array[wJ->dest > i+window_size) {

}

int ww = w;
while (ww < window_size) {

}

if (node_usedCwindow_size - ww -lJ) {

}

ww++;
continue;

dest = i + window size - ww;
if (dest < nurn_of_nodes) {

del_msg(next_state + i, msg_array[wJ);
add_msgCnext_state + dest, msg_arrayCwJ);
node_usedCwindow_size - ww -lJ = 1;

}

break;

done = 0;

/* send msg to left */

141

for (i = num_of_nodes-1; i >=0; i--) {
if (get_leftmost_msg(current_state + i, msg_array» {

mernset(node_used, 0, sizeof(int)*window_size);
for (w = 0; w < window_size ; w++) {

}

if (!rnsg_array[wJ)
continue;

if (msg_array[wJ->dest >= i-window_size) {
1* already with window size *1

}

if (!node_used[i - rnsg_array[wJ->dest - 1J) {
del_msg(next_state + i, rnsg_array[wJ);
add_rnsgCnext_state + msg_array[wJ->dest,

msg_array[wJ);
node_used[i - rnsg_array[wJ->dest - 1J = 1;

} else {

}

int ww = w;
while (ww < window_size) {

}

if Cnode_used[window_size - ww -lJ) {

}

ww++;
continue;

dest = i - (window_size - ww);
if Cmsg_array[w]->dest > dest) {

}

ww++;
continue;

if (dest >= 0) {

}

del_rnsgCnext_state + i, msg_array[wJ);
add_msg(next_state + dest, msg_array[wJ);
node_used[window_size - ww -1J = 1;
break;

for (w = 0; w < window_size w++) {
if (!rnsg_array[wJ)

break;
if (rnsg_array[w]->dest < i-window_size) {

int ww = w;
while (ww < window_size) {

if (node_used[window_size-ww-1J) {
ww++;

142

}

}

}

}

}

continue;
}

dest = i - Cwindow_size - ww);
if C dest)= 0) {

}

del_msgCnext_state + i, msg_array[w]);
add_msgCnext_state + dest, msg_arrayCw]);
node_usedCwindow_size - ww -1] = 1;

break;

done = 0;
}

}

if (done)
break;

pNode1 = next_state;
next_state = current_state;
current_state = pNode1;
sort_alLnode 0 ;
step++;
print_all () ;

static void
exchange_direct_node(node *p1, node *p2)
{

msg *pM;
int i;

/* send msg from p1, to p2 */
for (i = 0; i < p1 -) index; i++) {

}

if (pi -) table[i]-)dest == p2 -) number) {
pM = get_msgCpi, i);
add_msgCp2, pM); /* send to p2 */

}

/* send msg from p2, to pi */
for (i = 0; i < p2 -) index; i++) {

143

if C p2 -) table[i]-)dest == p1 -) number)
pM = get_msgCp2, i);

add_msgCp1, pM); /* send to p1 */
}

}

}

static int cmp_msgCconst void *p1, const void *p2)
{

}

msg **m1 = Cmsg **)p1;
msg **m2 = Cmsg **)p2;
return C*m1) -) dest - C*m2) -) dest;

static void
sort_node(node *p)
{

{

qsort(p -) table, p -) index, sizeof(msg *), cmp_msg);
}

static void
sort_all_nodeevoid)
{

}

int i;
for (i =0 ; i < num_of_nodes ; i++)

sort_node(current_state+i);

static void
copy_all_node(node *p1, node *p2)
{

}

int i;
int j;
for (i =0 ; i < num_of_nodes ; i++) {

p2[i] . number = p1[i] .number;
p2[i] .tbl_size = p1[i] .tbl_size;
p2[i] . index = p1[i] . index;

}

for (j = 0 ; j < p1[i] .index; j++)
p2[i] .table[j] = p1[i] .table[j];

static int
get_rightmost_msgCnode *pNode, msg *msg_array[window_size])
{

144

}

int my_num = pNode -> number;
int ret;
int l;

int J = 0;

1* note! the messages in node->table are sorted *1
for (i = pNode -> index - 1; i >= 0; i--) {

}

msg *pMsg = pNode->table[i];
int distance = pMsg->dest - my_num;
if (distance > 0) {/*this msg should send to righ*1

msg_array[j++] = pMsg;
if (j >= window_size)

break;
}

ret = j;
while (j < window_size)

msg_array[j++] = NULL;

1* remove msg from node *1
for (i = 0; i < window_size; i++) {

if (msg_array[i])
del_msg(pNode, msg_array[i]);

}

return ret;

static int
get_leftmost_msg(node *pNode, msg *msg_array[window_size])
{

int my_num = pNode -> number;
int ret;
int i;

int j = 0;

1* note! the messages in node->table are sorted *1
for (i = 0; i < pNode -> index - 1; i++) {

msg *pMsg = pNode->table[i];
int distance = my_num - pMsg->dest;
if (distance > 0) {/*this msg should send to left*1

145

}

}

ret = j;

msg_array[j++] = pMsg;
if (j >= window_size)

break;

while (j < window_size)
msg_array[j++] = NULL;

/* remove msg from node */
for (i = 0; i < window_size; i++) {

if (msg_array[i])
del_msg(pNode, msg_array[i]);

else
msg_array[i] = 0;

}

return ret;
}

static msg *
new_msg(int src, int dest)
{

}

msg *ret = malloc(sizeof(msg»;
ret -> src = src;
ret -> dest = dest;
return ret;

static void
add_msg(node *pNode, msg *pMsg)
{

}

pNode -> table[pNode->index]
pNode -> index++;

static msg *
get_msg(node *pNode, int i)
{

msg *ret;
if (i >= pNode -> index)

return 0;

ret = pNode -> table[i];

pMsg;

146

}

pNode -> table[i] = pNode -> table[pNode->index - 1J;
pNode -> index--;
return ret;

static void
del_msg(node *pNode, msg *pMsg)
{

}

int i;
for (i =0 ; i < pNode -> index; i++) {

}

if (pMsg == pNode -> table[i]) {

}

pNode -> table[i] =pNode->table[pNode->index-1];
pNode -> index--;
return;

static void
init_node(node *pNode, int num)
{

}

msg *m;
int i;

pNode -> number = num;
pNode -> tbl_size = num_of_nodes*num_of_nodes;
pNode -> table = (msg **)malloc(

sizeof(msg*)*pNode->tbl_size);
pNode -> index = 0;

for (i =0 ; i< num_of_nodes; i++) {
m = new_msg(num, i);
add_msg(pNode, m);

}

static void
init_all(void)
{

int i;
all nodes 1 =
all_nodes_2

(node *)malloc(sizeof(node)*num_of_nodes);
(node *)malloc(sizeof(node)*num_of_nodes);

147

}

current_state = all_nodes_1;
next_state = all_nodes_2;

for (i = 0; i < nUID_of_nodes; i++) {
init_nodeCcurrent_state + i, i);
init_nodeCnext_state + i, i);

}

static void
print_all(void)
{

}

int i;
int j;
int printed;

j = 0;

printfCItStep %d\n", step);
while (1) {

}

ffiSg *pM;
printed = 0;
for (i = 0; i < nUffi_of_nodes ; i++) {

}

if (j < current_state[i] . index) {
pM = current_state[i] .table[j];
printf("%2d,%-2d ", pM->src,pM->dest);
printed = 1;

} else
printf(" II);

j++;
printf(lI\nlt);

if (! printed)
return;

The running results for HOVV(10, 3,1) and HOliV(ll, 4,1) are:

For HDW(iO,3,1):

Step °
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

148

149

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1
0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2
0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3
0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4
0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5
0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6
0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7
0,8 1,8 2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8
0,9 1,9 2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9

Step 1
0,0 0,1 0,2 0,3 4,0 5,0 6,0 7,0 8,0 9,0
3,0 1,1 1,2 1,3 1,4 5,1 6,1 7,1 8,1 9,1
1,0 4,1 2,2 2,3 2,4 2,5 6,2 7,2 8,2 9,2
2,0 2,1 4,2 3,3 3,4 3,5 3,6 7,3 8,3 9,3
0,4 3,1 3,2 4,3 4,4 4,5 4,6 4,7 8,4 9,4
0,5 1,5 5,2 6,3 7,4 5,5 5,6 5,7 5,8 9,5
0,6 1,6 2,6 5,3 5,4 7,5 6,6 6,7 6,8 6,9
0,7 1,7 2,7 3,7 6,4 6,5 8,6 7,7 7,8 7,9
0,8 1,8 2,8 3,8 4,8 8,5 7,6 8,7 8,8 8,9
0,9 1,9 2,9 3,9 4,9 5,9 9,6 9,7 9,8 9,9

Step 2
0,0 4,0 5,0 6,0 7,0 8,0 9,0 9,1 9,2 9,3
3,0 1,1 1,2 5,1 6,1 7,1 8,1 8,2 8,3 9,4
1,0 3,1 4,2 1,3 2,4 6,2 7,2 7,3 8,4 9,5
2,0 2,1 2,2 2,3 3,4 3,5 3,6 5,7 9,8 8,9
0,4 4,1 3,2 3,3 4,4 4,5 4,6 4,7 6,8 7,9
0,5 0,1 5,2 6,3 7,4 5,5 5,6 7,7 5,8 9,9
0,6 1,5 0,2 4,3 1,4 2,5 6,6 6,7 7,8 6,9

1,6 2,6 5,3 6,4 6,5 8,6 8,7 8,8
0,7 1,7 0,3 5,4 8,5 7,6 9,7 5,9

0,8 2,7 3,7 7,5 9,6 4,9
1,8 2,8 3,8 4,8
0,9 1,9 2,9 3,9

Step 3
0,0 5,1 7,0 8,0 8,1 8,2 7,3 8,4 9,5 5,9
3,0 1,1 1,2 9,0 7,1 9,2 8,3 9,4 3,8 4,9
1,0 3,1 4,2 1,3 9,1 7,2 9,3 3,7 4,8 3,9
2,0 2,1 2,2 2,3 6,4 3,5 3,6 5,7 9,8 8,9
6,0 4,1 3,2 3,3 3,4 4,5 4,6 4,7 6,8 7,9
5,0 0,1 5,2 6,3 4,4 5,5 5,6 7,7 5,8 9,9
4,0 6,1 0,2 4,3 1,4 2,5 6,6 6,7 7,8 6,9

150

0,4 6,2 5,3 7,4 6,5 8,6 8,7 8,8

1,5 0,3 5,4 8,5 7,6 9,7

0,5 0,6 2,4 7,5 9,6 2,9

1,6 0,7 2,8 0,9

2,6 1,7 1,8 1,9

2,7 0,8

Step 4
0,0 9,0 7,1 9,1 7,2 9,3 2,6 2,7 6,8 5,9

3,0 1,1 1,2 9,2 8,3 9,4 5,6 4,7 3,8 4,9

1,0 3,1 4,2 1,3 8,4 9,5 6,6 3,7 4,8 3,9

2,0 2,1 2,2 2,3 6,4 3,5 3,6 5,7 9,8 8,9

6,0 4,1 3,2 3,3 3,4 4,5 4,6 7,7 5,8 7,9

5,0 0,1 5,2 6,3 4,4 5,5 8,6 8,7 8,8 9,9

4,0 6,1 0,2 4,3 1,4 2,5 7,6 6,7 7,8 6,9

8,0 8,1 6,2 5,3 7,4 6,5 9,6 9,7 0,8 1,9

7,0 5,1 8,2 0,3 5,4 8,5 1,7 1,8 0,9 2,9

7,3 2,4 7,5 2,8
0,4 0,5
1,5 1,6

0,6 0,7

Step 5
0,0 7,1 9,2 8,3 9,4 1,5 2,6 2,7 6,8 5,9
3,0 1,1 1,2 9,3 0,4 0,5 5,6 4,7 3,8 4,9
1,0 3,1 4,2 1,3 8,4 9,5 6,6 3,7 4,8 3,9
2,0 2,1 2,2 2,3 6,4 3,5 3,6 5,7 9,8 8,9
6,0 4,1 3,2 3,3 3,4 4,5 4,6 7,7 5,8 7,9
5,0 0,1 5,2 6,3 4,4 5,5 8,6 8,7 8,8 9,9
4,0 6,1 0,2 4,3 1,4 2,5 7,6 6,7 7,8 6,9
8,0 8,1 6,2 5,3 7,4 6,5 9,6 9,7 0,8 1,9
7,0 5,1 8,2 0,3 5,4 8,5 0,6 1,7 1,8 2,9
9,0 9,1 7,2 7,3 2,4 7,5 1,6 0,7 2,8 0,9

For HDW(i1,4,1)

Step °
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0
0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1
0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2
0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3
0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4
0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5

151

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6

0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7 10,7

0,8 1,8 2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8 10,8

0,9 1,9 2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9 10,9

0,10 1,10 2,10 3,10 4,10 5,10 6,10 7,10 8,10 9,10 10,10

Step 1
0,0 0,1 0,2 0,3 0,4 5,0 6,0 7,0 8,0 9,0 10,0

1,0 1,1 1,2 1,3 1,4 1,5 6,1 7,1 8,1 9,1 10,1

2,0 2,1 2,2 2,3 2,4 2,5 2,6 7,2 8,2 9,2 10,2

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 8,3 9,3 10,3

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 9,4 10,4

0,5 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 10,5

0,6 1,6 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,10

0,7 1,7 2,7 7,3 7,4 7,5 9,6 7,7 7,8 7,9 7,10

0,8 1,8 2,8 3,8 8,4 8,5 7,6 9,7 8,8 8,9 8,10

0,9 1,9 2,9 3,9 4,9 9,5 8,6 8,7 9,8 9,9 9,10

0,10 1,10 2,10 3,10 4,10 5,10 10,6 10,7 10,8 10,9 10,10

Step 2
0,0 5,0 6,0 7,0 8,0 9,0 10,0 10,1 10,2 10,3 10,4

1,0 0,1 0,2 6,1 7,1 8,1 9,1 9,2 9,3 9,4 10,5

2,0 1,1 1,2 0,3 0,4 7,2 8,2 8,3 10,8 10,9 10,10

3,0 2,1 2,2 1,3 1,4 1,5 2,6 3,7 4,8 9,9 9,10

4,0 3,1 3,2 2,3 2,4 2,5 3,6 4,7 5,8 5,9 8,10

0,5 4,1 4,2 3,3 3,4 3,5 4,6 5,7 6,8 6,9 7,10

0,6 5,1 5,2 4,3 4,4 4,5 5,6 6,7 7,8 7,9 6,10

1,6 6,2 5,3 5,4 5,5 6,6 7,7 8,8 8,9

0,7 1,7 6,3 6,4 6,5 9,6 9,7 9,8 5,10

0,8 7,3 7,4 7,5 7,6 8,7 4,10
2,7 8,4 8,5 8,6 10,7
1,8 2,8 9,5 10,6 4,9
0,9 1,9 3,8 3,9 3,10

0,10 2,9 2,10
1,10

Step 3
0,0 6,1 7,2 9,0 9,1 9,2 10,4 10,5 2,8 3,9 5,10
1,0 0,1 0,2 10,0 10,1 10,3 9,4 2,7 3,8 2,9 4,10
2,0 1,1 1,2 0,3 10,2 9,3 2,6 3,7 10,8 10,9 10,10
3,0 2,1 2,2 1,3 0,4 1,5 3,6 4,7 4,8 9,9 9,10
4,0 3,1 3,2 2,3 1,4 2,5 4,6 5,7 5,8 5,9 8,10
8,0 4,1 4,2 3,3 2,4 3,5 5,6 6,7 6,8 6,9 7,10
7,0 5,1 5,2 4,3 3,4 4,5 6,6 7,7 7,8 7,9 6,10

152

6,0 8,1 6,2 5,3 4,4 5,5 9,6 9,7 8,8 8,9 2,10

5,0 7,1 8,2 6,3 5,4 6,5 7,6 8,7 9,8 4,9 3,10

7,3 6,4 7,5 8,6 10,7

8,3 7,4 8,5 10,6 1,10

0,5 8,4 9,5 0,8 0,10

1,6 1,7 0,9
0,6 0,7 1,9

1,8

Step 4
0,0 10,0 10,1 10,2 9,3 9,4 0,6 2,7 2,8 3,9 5,10

1,0 6,1 7,2 10,3 10,4 10,5 2,6 3,7 3,8 2,9 4,10

2,0 0,1 0,2 0,3 8,4 0,5 3,6 4,7 10,8 10,9 10,10

3,0 1,1 1,2 1,3 0,4 1,5 4,6 5,7 4,8 9,9 9,10

4,0 2,1 2,2 2,3 1,4 2,5 5,6 6,7 5,8 5,9 8,10

8,0 3,1 3,2 3,3 2,4 3,5 6,6 7,7 6,8 6,9 7,10

7,0 4,1 4,2 4,3 3,4 4,5 9,6 9,7 7,8 7,9 6,10

6,0 5,1 5,2 5,3 4,4 5,5 7,6 8,7 8,8 8,9 2,10

5,0 8,1 6,2 6,3 5,4 6,5 8,6 10,7 9,8 4,9 3,10

9,0 7,1 8,2 7,3 6,4 7,5 10,6 0,7 1,8 1,9 0,10

9,1 9,2 8,3 7,4 8,5 1,7 0,8 0,9 1,10
9,5
1,6

Step 5
0,0 10,1 10,2 9,3 9,4 9,5 0,6 2,7 2,8 3,9 5,10
1,0 6,1 7,2 10,3 10,4 10,5 2,6 3,7 3,8 2,9 4,10
2,0 0,1 0,2 0,3 8,4 0,5 3,6 4,7 10,8 10,9 10,10
3,0 1,1 1,2 1,3 0,4 1,5 4,6 5,7 4,8 9,9 9,10
4,0 2,1 2,2 2,3 1,4 2,5 5,6 6,7 5,8 5,9 8,10
8,0 3,1 3,2 3,3 2,4 3,5 6,6 7,7 6,8 6,9 7,10
7,0 4,1 4,2 4,3 3,4 4,5 9,6 9,7 7,8 7,9 6,10
6,0 5,1 5,2 5,3 4,4 5,5 7,6 8,7 8,8 8,9 2,10
5,0 8,1 6,2 6,3 5,4 6,5 8,6 10,7 9,8 4,9 3,10
9,0 7,1 8,2 7,3 6,4 7,5 10,6 0,7 1,8 1,9 0,10

10,0 9,1 9,2 8,3 7,4 8,5 1,6 1,7 0,8 0,9 1,10

REFERENCES

L S. G. Ziavras, "RH: A Versatile Family of Reduced Hypercube Interconnection
Networks," IEEE Transact£ons on Parallel and Distr£buted System,s, Vol.
5, No. ll, Nov. 1994, pp. 1210-1220.

2. C. Qiao and R. Melhem, "Reducing ComnlUnication Latency with Path
Multiplexing in Optically Interconnected Multiprocessor Systems," IEEE
Transactions on Pamllel and Distributed Systern,s, Vol. 8, No.2, Feb.
1997, pp. 97-108.

3. J. K. Antonio, L. Lin, and R. C. Metzger, '(Complexity of Intensive Commu
nications on Balanced Generalized Hypercubes," Intenwt£onal Parallel
Processing Syrnposiwn, 1993, pp. 387-394.

4. P. Fragopoulou, S. G. AId, and H. Meijer, "Optimal Communica.tion Primitives
on the Generalized Hypercube Network," Journal oj Parallel and
Distributed Computing, Vol. 32, 1996, pp. 173-187.

5. V. Kumar, A. Grama, A. Gupta., and G. Karypis, Ini1'Odnction to Pamllel
C07nputing: Design and Analysis oj Algorithms, Benjamin/Cummings,
California, 1994.

6. VI/. Dally, "Netvvork a,nd Processor Architecture for Message-Driven
Computers," in: lILSI and Pamllel C07nputation, R. Suaya and G.
Birtwistle (Eds.), Morgan Kaufmann, California, 1990, pp. 140-222.

7. W.J. Dally and C.L. Seitz, "'I'he Torus Routing Chip," Journal oj Distributed
Computing, Vol. 1, No.3, 1986, pp. 187-196.

8. M.C. Pease, III, "The Indirect Binary n-Cube Microprocessor Array," IEEE
Tmnsaclions on . Computers, C-26(5), 1977, pp. 458-473.

9. C.L. Seitz, "Concurrent VLSI Architectures," IEEE Tmnsaclions on
Computers, C-33(12), 1984, pp. 1247-1265.

10. T. Szymanski, (("Hypermeshes": Optical Interconnection Networks for Parallel
Computing, " Jonnw/ oj Parallel and Distributed Compnbng, Vol. 26,
1995, pp. 1-23.

11. L.D. Vv'ittie, "Comrnunication Structures for Large Networks of IVIulticom
puters," IEEE Tmnsaclions on C07npv.iers, C-30(4), 1981.

12. S.G. Ziavras, ((Generalized Reduced Hypercube Interconnection Networks for
Massively Parallel Computers," in: Networks JOT Parallel Com]),utat'ions,
D.F. Hsu, A. Rosenberg, and D. Sotteau (Eds.), American Mathematical
Society, Rhode Island, 1995, pp. 307-325.

153

154

13. S.G. Ziavras and A. Mukherjee, "Data Broadcasting and Reduction, Prefix
Computation, and Sorting on Reduced Hypercube Parallel Computers,"
Parallel Computing 22, 1996, pp. 595-606.

14. S.G. Ziavras, "On the Problem of Expanding Hypercube-Based Systems,"
Journal of Parallel and Distributed C07nputing, 16(1), 1992, pp. 41-53.

15. S.C:. Ziavras, "Scalable i\1ultifolded Hypercubes for Versatile Pa.rallel
Computers," Parallel Pmcessing LetteTs, 5(2), 1995, pp. 241-250.

16. L.N. Bhuyan and D.P. Agrawal, "Generalized Hypercube and Hyperbus
Structures for a Computer Network," IEEE Transactions on Cornp'U,teTs

33 (4), 1984, pp. 323-333.

17. S.C. Ziavras, "Investigation of Various Mesh Architectures with Broadcast
Buses for High-Performance Computing," VLSI Design; Specia.l Issue
High Performance Bus-Based Architectures, pp. 29-53, 1999.

18. S.C. Ziavras, H. Grebel, and A.T. Chronopoulos, "A Low-Complexity Parallel
System for Cracious, Scalable Performance. Case Study for Near
PetaFLOPS Computing," 6th Symposium on FmntieTs Massively Parallel
Computing, Special Session New Millennium Computing Point Designs,
1996, pp. 363-370.

19. S.G. Ziavras, H. Grebel, and A.T. Chronopoulos, "A Scalable/Feasible Parallel
Computer Implementing Electronic and Optical Interconnections for 156
TeraOPS Minimum Performance," PetaFLOPS ArchitectuTe WOTkshop,
1996, pp. 179-209.

20. P.T. Gaughan and S. Yalamanchili, "Adaptive Routing Protocols for Hypercube
Interconnection Networks," IEEE ComputeT, May 1993, pp. 12-23.

21. P.\iV. Dowd, "High Performance Interprocessor Communication Through
Optical 'Wavelength Division Multiple Access Channels," Pmceedi'ngs of
Intenwtional Symposium on ComputeT ATchitectuTe, 1991, pp. 96-105.

22. A. Abraham, K. Padmanabhan, "Performance of Multicomputer Networks
under Pin-out Constraints," Jounwl of Parallel and DistTibuted
Computing, Vol. 12, 1991, pp. 237-248.

23. A. Agarwal, "Limits on Interconnection Network Performance," IEEE Trans
actions on Parallel and DistTibuted Systems, Vol. 2, 1991, pp. 398-412.

24. C.D. Thompson, "Area-Time Complexity for VLSI," Proceedings of 11th Annual
ACM Symposium on Theory of Computing, May 1979, pp. 81-88.

25. \N.J. Dally, "\iVire-Efficient VLSI Multiprocessor Communication Networks,"
Pmceedings of 1987 Stanford ConfeTence on Ad'uanced ReseaTch in VLSI,
MIT Press, Cambridge, MA, 1987, pp. 391-415.

155

26. S.G. Ziavras and S. Krishnamurthy, "Evaluating the Communications
Capabilities of the Generalized Hypercube Interconnection Netv.wrk,"
Concurrency: Pmctice and Experience, (accepted for publication).

27. J.D. Ullman, Computational Aspects of IILSI, Computer Science Press,
t-.1aryland, 1984.

28. P. Banerjee, Pamllel Algorithms for IILSI Computer-Aided Design, Prentice
Hall, New Jersey, 1994.

29. Q. \iVang and S.G. Ziavras "Powerful and Feasible Processor Interconnections
with an Evaluation of Their Communications Capabilities," Intenw
tional Symposium on Pamllel Architectures, Algorith1ns, and Networks,
Freemantle, Australia, June 23-25 1999.

30. Q. VI/ang and S.G. Ziavras "Net\vork Embedding Techniques for a New Class of
Feasible Parallel Architectures Capable of Very High Performance," Inter
national Conference on Applied Informatics, Innsbruck, Austria, Feb. 23-
25 1999.

31. S.G. Ziavras and Q. \iVang, "Robust Interprocessor Connections for Very-High
Performance," in: Robust Communication Networks: Interconnection and
Survivability, N. Dean, F. Hsu and R. Ravi (Eds.), American Mathe
matical Society, Rhode Island, 1999.

	A new-generation class of parallel architectures and their performance evaluation
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Info Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Cost Analysis
	Chapter 3: 1-D HOW System Embeddings
	Chapter 4: 2-D HOW System Embeddings
	Chapter 5: Communication Operations on 1-D HOW Systems
	Chapter 6: Communication Operations on 2-D HOW Systems
	Chapter 7: Communication Operations on Binary Hypercubes
	Chapter 8: Performance Comparisons Between HOW and Binary Hypercube Systems
	Chapter 9: Performance Comparisons Between HOW and Generalized Hypercube Systems
	Chapter 10: Conversion of Communications Algorithms for Generalized Hypercubes
	Chapter 11: Conclusions and Future Work
	Appendix A: Simulation for All-to-All Personalized Communication on 1-D HOWs
	References

	List of Figures (1 of 6)
	List of Figures (2 of 6)
	List of Figures (3 of 6)
	List of Figures (4 of 6)
	List of Figures (5 of 6)
	List of Figures (6 of 6)

	List of Tables (1 of 2)
	List of Tables (2 of 2)

