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ABSTRACT

A NEW-GENERATION CLASS OF PARALLEL ARCHITECTURES
AND THEIR PERFORMANCE EVALUATION

by
Qian Wang
The development of computers with hundreds or thousands of processors and
capability for very high performance is absolutely essential for many compu-
tation problems, such as weather modeling, fluid dynamics, and aerodynamics.
Several interconnection networks have been proposed for parallel computers. Never-
theless, the majority of them are plagued by rather poor topological properties that
result in large memory latencies for DSM (Distributed Shared-Memory) computers.
On the other hand, scalable networks with very good topological properties are
often impossible to build because of their prohibitively high VLSI (e.g., wiring)
complexity. Such a network is the generalized hypercube (GH). The GH supports
full-connectivity of its nodes in each dimension and is characterized by outstanding
topological properties. In addition, low-dimensional GHs have very large bisection
widths. We propose in this dissertation a new class of processor interconnections,
namely HOWs (Highly Overlapping Windows), that are more generic than the GH,
are highly scalable, and have comparable performance. We analyze the communi-
cations capabilities of 2-D HOW systems and demonstrate that in practical cases
HOW systems perform much better than binary hypercubes for important commu-
nications patterns. These properties are in addition to the good scalability and
low hardware complexity of HOW systems. We present algorithms for one-to-one,
one-to-all broadcasting, all-to-all broadcasting, one-to-all personalized, and all-to-all
personalized communications on HOW systems. These algorithms are developed
and evaluated for several communication models. In addition, we develop techniques

for the efficient embedding of popular topologies, such as the ring, the torus, and



the hypercube, into 1-D and 2-D HOW systems. The objective is to show that 2-D
HOW systems are not only scalable and easy to implement, but they also result in

good embedding of several classical topologies.
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CHAPTER 1

INTRODUCTION

The demand for ever greater performance by many computation problems has been
the driving force for the development of computers with thousands of processors.
Two important aspects are expected to dominate the massively-parallel processing
field. High-level parallel languages supporting a shared address space (for DSM
computers) and point-to-point interconnection networks with workstation-like
nodes. Near PetaFLOPS (i.e., 10'® floating-point operations per second) and
more performance is required by many applications, such as weather modeling,
simulation of physical phenomena, fluid dynamics, aerodynamics, simulation of
neural networks, simulation of chips, structural analysis, real-time image processing
and robotics, artificial intelligence, seismology, animation, real-time processing of
large databases, etc. Dongarra pointed out in 1995 that the world’s top ten technical
computing sites had peak capacity of only about 850 GigaFLOPS, with each site
containing hundreds of computers. The goal of 1 TeraFLOPS (i.e., 10! floating-
point operations per second) peak performance was reached in late 1996 with the
installation of an Intel supercomputer at Sandia Laboratories.

The PetalFLOPS performance objective seems to be a distant dream primarily
because of the, as currently viewed, unsurmountable difficulty in developing low-
complexity, high-bisection bandwidth, and low-latency networks to interconnect
thousands of processors (and remote memories in DSM systems). To quote Dally,
“wires are a limiting factor because of power and delay as well as density” [6].
Several interconnection networks have been proposed for the design of massively-
parallel computers, including, among others, regular meshes and tori [7], enhanced
meshes [17], fat trees, (direct binary) hypercubes [9], and hypercube variations

[1] [11] [12]. The hypercube dominated the high-performance computing field in



the 1980’s because it has good topological properties and rather rich intercon-
nectivity that permits efficient emulation of many topologies frequently employed
in the development of algorithms [9] [14]. Nevertheless, these properties come at
the cost of often prohibitively high VLSI (primarily wiring) complexity due to a
dramatic increase in the number of communication channels with any increase in the
number of PEs (processing elements). Its high VLSI complexity is undoubtedly its
dominant drawback, that limits scalability [14] and does not permit the construction
of powerful, massively-parallel systems. Two nodes in the m-cube or m-D hypercube
with 2™ nodes are neighbors if and only if their unique m-bit addresses differ in a
single bit. The versatility of the hypercube in emulating efficiently other important
topologies constitutes an incentive for the introduction of hypercube-like intercon-
nection networks of lower complexit‘y that, nevertheless, preserve to a large extent
the former topological properties [1] [12]. Indirect implementations of hypercubes
have also been proposed [8].

To support scalability, current approaches to massively-parallel processing
use bounded-degree networks, such as meshes or k-ary n-cubes (i.e., tori), with
low node degree (e.g., the FLASH, Cray Research MPP, Intel Paragon, and Tera
computers). However, low-degree networks result in large diameter, large average
internode distance, and small bisection width. Relevant approaches that employ
reconfiguration to enhance the capabilities of the basic mesh architecture (e.g.,
reconfigurable mesh, mesh with multiple broadcasting, and mesh with separable
broadcast buses) will not become feasible for massively-parallel processing in the
foreseeable future because of the requirements for long clock cycles and precharged
switches to facilitate the transmission of messages over long distances [17].

The high VLSI complexity problem is unbearable for generalized hypercubes
(GHs). Contrary to nearest-neighbor k-ary m-cubes that form rings with & nodes

in each dimension, GHs implement fully-connected systems with k& nodes in each



. 2 N
7 {‘ W
NL_\ ¥ ]
f—t ] —
—
L 1
e
S -
ax ’

Figure 1.1 The 2-D generalized hypercube GH(7,2).

dimension [16]. The n-D (symmetric) generalized hypercube GH (k,n) contains k"
nodes. The address of a node is z,_1Z,—2...2;2g, Where z; is a radix-k digit with 0 <
z; < k—1. This node is a neighbor to the nodes with addresses z,_12,-2...7;...2, 20,
for all 0 <1 < mn —1 and ! # z;. Therefore, two nodes are neighbors if and only if
their n-digit addresses differ in a single digit. For the sake of simplicity, we restrict
our discussion to symmetric generalized hypercubes where the nodes have the same
number of neighbors in all dimensions. Therefore, each node has k£ — 1 neighbors
in each dimension, for a total of n - (k — 1) neighbors per node. The n-D GH (k,n)
has diameter equal to only n. Figure 1.1 shows the GH(7,2) with 2 dimensions (i.e.,
n=2)and k = 7. Forn = 2 and k an even number, the diameter of the GH is only 2
and its bisection width is the immense k®/4. The increased VLSI/wiring cost of GHs
results in outstanding performance that permits optimal emulation of hypercubes

and k-ary n-cubes, and efficient implementation of complex communication patterns

(4] [3}.



In order to reduce the number of communication channels in systems similar
to the generalized hypercube, the spanning bus hypercube uses a shared bus for the
implementation of each fully-connected subsystem 1n a given dimension. However,
shared buses result in significant performance degradation because of the overhead
imposed by the protocol that determines each time ownership of the bus. Similarly,
hypergraph architectures implement all possible permutations of their nodes in
each dimension by employing crossbar switches [10]. Reconfigurable generalized
hypercubes interconnect all nodes in each dimension dynamically via a scalable
mesh of very simple, low-cost programmable switches [15]. However, all these
proposed reductions in hardware complexity may not be sufficient for very high
performance computing.

To summarize, low-dimensional massively-parallel computers with full connec-
tivity for their nodes in each dimension, such as generalized hypercubes, are very
desirable because of their outstanding topological properties (e.g., extremely small
diameter and average internode distance, and immense bisection width), but their
electronic implementation is a Herculean task because of packaging (and primarily
wiring) constraints. We propose in this dissertation a new class of interprocessor
connection architectures, namely HOWs (standing for architectures with Highly
Overlapping Windows), which employ the generalized hypercube [3] [16] [26] [19]
with outstanding topological properties (e.g., extremely small diameter and average
internode distance, and immense bisection width) as the basic building block. HOWs
are also obtained from generalized hypercubes by removing some of their processor
interconnections in order to reduce the wiring complexity and render them viable
structures for very high-performance computing. Large generalized hypercubes have
outstanding topological properties; however, they are ‘characterized by very high

wiring complexity that prohibits their implementation [11] [18] [19]. In contrast,



HOWSs can be viable while having simultaneously topological properties comparable
to those of generalized hypercubes.

This dissertation is organized as follows. Chapter 1 introduces HOWs, a
new class of parallel architectures. Chapter 2 introduces cost analysis for HOWs.
Chapters 3 and 4 present the embedding of various interconnection networks into
1-D and 2-D HOW systems. Chapters 5 and 6 present and analyze communication
operations for 1-D and 2-D HOW systems, respectively. Chapter 7 briefly analyzes
communication operations for (direct binary) hypercubes. Finally, Chapters 8 and 9
present performance comparisons involving hypercubes (binary and generalized) and

2-D HOW systems.

1.1 The Class of HOW Architectures

The definition of the generalized hypercube network, which is the building block of
HOWs, is first in order. We shall show later in this section that HOWSs can also be
derived from generalized hypercubes by selectively removing some of their interpro-
cessor connections. The terms node and processor are used interchangeably. The n-D
(symmetric or balanced) generalized hypercube GH (p,n) with p nodes per dimension
contains a total of p” nodes [16]. The address of a node is z,,_1Zy_o - - - 2129, where
the radix-p digit z; is 0 < z; <p—-1for: =0,1,---,n—1. Two nodes are neighbors
if and only if their n-digit addresses differ in a single radix-p digit. This generalized
hypercube can be obtained from the n-D mesh by replacing the linear arrays in each
dimension with fully-connected systems. Therefore, each node in the GH(p,n) has
n X (p — 1) neighbors and its diameter is equal to just n.

Low-dimensional generalized hypercubes have very impressive bisection widths.
When a network is cut into two equal halves, its bisection width is the number of
edges that run between these two halves; dense/heavy communications operations

can benefit from a large bisection width. For n = 2 and p an even number, the
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Figure 1.2 The neighbors of the node with address k in the 1-D HOW (p,w,1) system.

bisection width of the GH(p,n) is the immense p3/4. Also, generalized hypercubes
implement efficiently very demanding communications operations, such as broad-
casting and multicasting [26] [4]. Their outstanding topological properties are the
result of their high node degree (that is, the large number of connections per node)

which, however, has negative effect on the wiring complexity.

1.1.1 Their Structure

We first introduce the class of 1-D HOW processor interconnections [29] [30].
HOW (p,w, 1) denotes a 1-D HOW system with p nodes and window size w. Each
node with unique address k, where 0 < k < p — 1, is connected directly to all nodes
within the windows of size w immediately to its left and right. More specifically, its
neighbors have addresses 0 < k+7 < p-—1,foralls=1,2,3,---,w. Therefore, all
connections are local in this 1-D system and span up to w nodes to the left and w
nodes to the right of the referenced node. Figure 1.2 shows the neighbors of a node
in a 1-D HOW system.

Each processor k£ belongs to as many as w 4+ 1 maximal-sized 1-D generalized
hypercubes GH(w + 1,1) (i.e., fully-connected subsystems); they can be derived
by starting with the subsystem spanning node k and all its left neighbors in the
colinear representation of the HOW (p,w,1), and shifting each time the window

by one position to the right until the last subsystem spans node k and all its right



neighbors. Therefore, each such pair of successively-derived G H(w+1, 1)s have a very
large overlap that forms a GH (w, 1). The HOW (p, w, 1) can also be derived from the
GH(p, 1) by removing for each node, in the colinear representation of the GH(p, 1),
those edges that connect it to nodes outside of the left and right windows defined by
w. Therefore, existing algorithms for generalized hypercubes can be modified easily

to run on HOWs because of the following reasons:
e HOWs are derived from generalized hypercubes by removing some edges.
e HOWs contain many smaller, highly-overlapping generalized hypercubes.

Not only do HOWs have reduced wiring complexity than GHs of similar size,
but also the locality of processor interconnections in HOWs can be a viable solution

for very high-performance computing [29] [30] [31]:

e Moore’s law predicts the doubling of transistor density for chips every 18
months. Multiprocessor chips have already appeared in the market and this
design concept is expected to have in the near future a very significant market
share in the high performance computing field. Local intrachip processor
connections, such as those required predominantly in HOWs, will then be very

effective.

e Intrachip and/or local interchip connections could be implemented efficiently
with current and expected electronic technologies for reasonable values of the
window size w; in contrast, the global interconnections required in generalized
hypercubes are much more difficult to realize. Improvements in intrachip

and/or interchip interconnection technologies can increase the value of w.

e [ree-space optical interconnects are expected to become viable and commonplace
in the near future for the local interconnection of chips [19]. Very substantial

work is carried out in research laboratories, quite often with federal support,



for the efficient realization of free-space interconnects within computer systems;
WDM (wavelength-division multiplexing) will be employed for the transmission
of multiple bits in parallel [19]. Because of the fact that chromatic dispersion
becomes a major problem in WDM for distances larger than about a meter,
the global interconnections required in generalized hypercubes will still be very
difficult to implement. Therefore, HOWs will increase further their advantage

over GHs with respect to interconnection complexity.

All of the above demonstrate that HOWSs are more prone than GHs to scalability
related to technological advancements.

The (symmetric) n-D HOW (p, w, n) with p nodes per dimension is constructed
recursively, so that each node has up to 2wn neighbors. A node has address
Tpe1Tn—2 - *Ti - T1Lg, Where z; is a radix-p digit with 0 < 2; < p — 1 for
all ¢ = 0,1,---,n — 1. The neighbors of this node have addresses that differ
from its own address only in a single radix-p digit, that is they have addresses
Ty 1Tpen %, T13g, where 1 < |2y — 23] < w for 0 < ¢ < n — 1. This HOW
system contains p™ nodes. It is important to note that such a system contains many,
highly-overlapping generalized hypercubes GH(w + 1,n). The HOW (p, w,n) can
also be derived from the GH(p,n) by removing in each dimension all connections
for each node that do not fall into its left and right neighborhood windows defined
by w. Figure 1.4 shows 2-D HOW systems containing 16, 25, 36, and 49 processors,
respectively, and having window size w = 3. The HOW (4,3,2) in Figure 1.4.a
is identical to the GH(4,2). In general, the HOW (p,p — 1,n) is identical to the
GH(p,n). Also, the HOW (p, 1,n) is identical to the n-D mesh.

Figure 1.3 shows 1-D HOW systems containing 15 processors and having
window size of 3, 4, and 5, respectively. Figure 1.4 shows the 2-D HOW (4,3,2),
HOW(5,3,2), HOW (6,3,2), and HOW (7,3,2) systems containing 16, 25, 36, and

49 processors, respectively, and having window size w = 3.
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(a) 1-D system with I5-processor and window_size=3

(c) 1-D system with 15-processor and window_size=5

Figure 1.3 1-D HOW system with 15 processors and window size of 3, 4, and 5,
respectively.
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Figure 1.4 Examples of 2-D HOW systems with w=3.
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HOW (5,3,2). (c) HOW(6,3,2). (d) HOW(7,3,2).

(a) HOW (4,3,2).
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The next two theorems are pertinent:
Theorem 1.1.1 The diameter of the HOW (p,w,n) is n[E=2].

PROOF. In the worst case, a message may have to traverse all n-dimensions to
reach its destination. The diameter of the 1-D HOW (p,w, 1) is [E=2]. It becomes

n[22] for the n-D HOW (p,w,n). o

Theorem 1.1.2 The number of channels in the n-D HOW (p,w,n) is np" ‘e,

where ¢; = 2(2p — w — 1) is the number of channels in the 1-D HOW (p, w, 1).

PROOF. The number of channels ¢; in the 1-D HOW (p,w, 1) is (p — w)w +
Svtior (])——w)er%Dﬂ or ¥(2p—w~1). Thisis because starting from the leftmost
node and proceeding sequentially to the rightmost node in the colinear representation
of the 1-D system, each node contributes w new channels except for the rightmost
w nodes. The 7 — th node from the right, where 0 < ¢ < w — 1, contributes ¢ new
channels. The proof for the n-D HOW (p, w, n) is based on mathematical induction.
The number of channels in the 2-D HOW (p,w,2) is 2pc; because it contains p
rows and p columns of 1-D HOW (p,w, 1)s. Let the number of channels ¢,_; in the
(n—1)-D HOW (p, w,n—1) be (n — 1)p"%c;. The n-D HOW (p, w, n) is formed by
connecting together in HOW (p, w, 1) structures all nodes with the same address in

p independent HOW (p,w,n — 1)s with p”~! nodes each. Therefore, the number of

channels ¢, in the HOW (p,w,n) is pc,_y + p™ ey or np™~ley. o

1.1.2  Further Implementation Issues
We will analyze the following systems and derive the equations for calculating their

numbers of channels.
e the binary hypercube, (i.e. the m-cube);

e the k-ary n-cube;



the generalized hypercube GH (k,n);
the 2-D HOW (2% ,w, 2);

the n-D HOW (k, w, n).

Assume all systems have the same number N of processors, where N = k" =

2™ The following are the derivations for these systems.

In the m-cube each node connects to m other nodes. Nodes share channels in

pairs, so the total number of channels is é—m‘Z’".

In the k-ary m-cube each node has 2n neighbors and there are &™ nodes. The

total number of channels is $2nk™ = nk".

In the generalized hypercube G'H(k,n) each of the £ nodes connects to the
remaining & — 1 nodes along one dimension. There are n dimensions and £"

nodes. The total number of channels is n(k — 1)"‘—2i

For the 2-D HOW (2% ,w, 2), since the 1-D HOW (k,w, 1) is the building block
we first calculate the number of channels in the 1-D HOW (k,w,1) system. For
the first (starting from the left side) & — w nodes, each node has w channels
because the window size is w and connects to the w nodes to its right. Following
this rule, no wire will be counted twice. For the rightmost w nodes, the number
of channels will be 0+ 142+ 4+w—-1= (“’—T_,lﬁ The total number of channels

in the 1-D HOW (k,w,1) is (k —w)w + (-13_71-)2 =w((k—w)+ w_2_-1) = w(k— “’;”)-

For the 2-D HOW (k,w,2), there are k? nodes, and each nodes has up to 4w
neighbors. It can be viewed as k rows and k& columns of HOW (k, w, 1) systems,

and therefore the total number of channels is 2kw (k — ®£).

The n-D HOW(k,w,n), contains k™ nodes and k"' 1-D HOW(k,w,1)
building blocks. Applying mathematical induction, we find that the total

number of channels in the n-D HOW (k, w, n) is nk™ 'w(k — %),
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Table 1.1 compares the numbers of channels in the binary hypercube (i.e., m-
cube), the k-ary n-cube (i.e., n-D torus), the generalized hypercube GH(k,n), the
2-D HOW (2% ,w,2), and the n-D HOW (k,w,n), all with the same number N of
Processors.

This dissertation focuses on 2-D HOW systems because of their simplicity, high
bisection width, and ease of implementation. For a comparison, assume bidirectional
data channels for full-duplex communications (i.e., simultaneous data transfers in
both directions) and that N = k™ = 2™ (therefore, k = N'/» = 2™/") For an
example, assume systems with N = 16, 384 processors (i.e., m = 14) and 64-bit data

channels; the numbers of wires in these systems are:

o 15 14%2M %64 =7x16384 % 64 = 7,340,032 channels (also means 14,680,064

full-duplex bidirectional wires) for the 14-cube with diameter 14;

e 2 x 1282 % 64 = 2,097,152 channels (also means 4,194,304 full-duplex bidirec-

tional wires) for the 128-ary 2-cube with diameter 128;

o 2128771 & 1216128 4 64 = 133,169, 152 channels (also means 266,338,304 full-

duplex bidirectional wires) for the GH (128, 2) with diameter 2;

® 128%32 % (2% 128 —32~ 1) %64 =58,458,112 channels (also means 116,916,224

full-duplex bidirectional wires) for the HOW (128, 32, 2) with diameter 8;

® 128 % 16 * (2 + 128 — 16 — 1) * 64 =31,326,208 channels(also means 62,652,416

full-duplex bidirectional wires) for the HOW (128, 16, 2) with diameter 16; and

° 1288 (2% 128 — 8 — 1) » 64 =16,187,392 (also means 32,374,784 full-duplex

bidirectional wires) for the HOW (128, 8,2) with diameter 32.

For the comparative analysis of these results, we emphasize again that HOW

systems with reasonable window size w are scalable, and could be implemented with
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Table 1.1 Comparison of existing interconnection networks. All networks have
N = p" = 2™ nodes.

Network Number of channels Diameter
m-cube Doxlogy, N m = log, N = n *logy p
1
Nw-ary n-cube nx N nox |85 =nx 2]
GH(N=w, n) (Nw — 1) % n* z log, N =n
HOW(VN,w,2) | VNsws(2+VN—w=1) | 2 [¥E=1] =25 [224]
HOW(N#,w,n) | 2+ N'=a swx (2% No —w — 1) n o« [HE=1] = o [221]

current and expected electronic and/or optical technologies because of the locality
of their interconnects. In contrast, binary hypercubes are not scalable because the
node degree increases with increases in the number of processors and, therefore, are
difficult to build. Also, large generalized hypercubes are impossible to build because

of their very large wiring complexity.

1.2 The Class of Wrap-Around HOW Architectures

Similarly to the wrap-around mesh, we introduce here wrap-around HOW archi-
tectures. For the wrap-around HOW (k,w,1) system, each node will have 2w
neighbors, that is w neighbors to its left and w nodes to its right. Figure 1.5 shows
the 1-D wrap-around HOW(15,3,1), HOW (15,4,1), and HOW (15,5,1) systems.
Figure 1.6 shows the 2-D wrap-around HOW (7,3, 2) system.

Each processor in the n-D wrap-around HOW (p,w,n) has 2wn neighbors.
The derivation of the total number of channels in the wrap-around HOW (k,w,n)
system is then as following. Because each node has 2nw neighbors and processors
share channels in pairs, each processor contributes nw channels to the whole system.
Therefore, the total number of channels is k"™ x k * nw = k"nw. Its diameter is half
of that for the regular HOW (k,w,n). Table 1.2 shows the comparison of different

networks.



15

s

e ——
O N0 SN E e
LERKRRRRER GG
_—  —— ——

g ONN-N--u-=
SR
\A\\f\w&‘/‘ 2

(c) 1-D wraparound HOW(15,5,1)

Figure 1.5 1-D wrap-around HOW systems with 15 processors and window size of
3, 4, and 5, respectively.
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Figure 1.6 The 2-D wrap-around HOW (7, 3,2).

Table 1.2 Comparison of interconnection networks. All networks have N = p™ = 2™
nodes.
Network Number of channels Diameter
m-~cube L xlog, N m = logglN = n % log, p
Ni-ary n-cube nx N n * L—N—Q—_’-J =nx*|L]

GH(N=,n)
HOW (V/N,w,?2)
HOW®er(\/N w,?2)
HOW (N=,w,n)
HOWY ™ (Nw w,n)

(N% —1DsnxZ

\/Y\T*w*(Q*\/f\_f—:Lu—i)

2xwx N
1 1
BxNVwsws (25 Nw —w—1)

7ok w ok N

log, N =n
2% [ZE] =24 222
24 A1) = 94 [521]

nx [Hrl=nx[4




CHAPTER 2

COST ANALYSIS

In this chapter, a VLSI cost comparison between 1-D HOW systems and generalized
hypercubes is presented. To determine the VLSI cost, we measure the number of
wires and the complexity of the system based on the number of layers in the colinear

layout of the circuit.

2.1 Cost Analysis for the Regular HOW (p, w, 1)
A VLSI cost comparison between 1-D HOWSs and generalized hypercubes is
presented. Since the focus of our attention in this dissertation are 2-D systems
with p nodes in each dimension, this 1-D comparison is assumed to be carried out
for each of the p rows and p columns in the 2-D systems (i.e., for their building
blocks). The next definition is pertinent.

DEFINITION 2.1. The crossing number of a graph is the minimum number of

edge crossings needed to draw the graph in the plane [27].
This number is related to the area needed to lay out the graph for VLSI implemen-
tation. To eliminate all edge crossings, several printed-circuit layers niay have to
be implemented. Not only does the number of layers affect the VLSI cost, but the
thickness also of each layer contributes to the cost measure.

To determine the VLSI/wire cost, we measure the complexity of each system
based on the minimum number of layers required in the colinear layout of the circuit
for zero edge crossings and/or the width of each layer. In the colinear layout, all
nodes in the 1-D system lie on the same straight line. The chosen rules of routing

the wires for 1-D systems are:

e We consecutively number the processors 0, 1, 2, --+, p — 1, from left to right.

17
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e Going from left to right, for even-numbered processors the wires go to the top

half of the printed-circuit board.

e For odd-numbered processors, the wires go to the bottom half of the printed-

circuit board.

These basic rules of routing the wires minimize their maximum collective width,
MCW (expressed in number of wires), in the = dimension. Figure 2.1 shows the
colinear layout of the 1-D HOW (12,4,1) and its brute-force decomposition for its
implementation with two layers that eliminate all edge/wire crossings. However, the
number of layers that eliminate all wire crossings depends on the value of w, and
thus it increases with increases in the window size. For example, Figure 2.2 shows
that the HOW (12,5, 1) requires three layers for the elimination of all wire crossings.

The following theorems are pertinent.

Theorem 2.1.1 The MCW in the colinear layout of the 1-D HOW (p,w, 1) with a

single layer 1s
L2+ 1) for even w
(w2 for odd w

for practical cases with w < 9123— For the 1-D generalized hypercube GH (p, 1), the

value of MCW is (p — 3)¢p +p — 1 — 2¢% with ¢ = | EL].
4

PROOF. MCW can be determined by finding the maximum number of those
wires that are located in either the upper or lower half of the layer between PE,,_,
and PE,. If w is even, then this maximum number corresponds to the lower half
of the layer because PE,_;, which is the rightmost PE in the leftmost window, is
the last PE that contributes to MCW and contributes to the lower half (because
it has an odd address). Therefore, we have PFE; contributing two wires because it
is connected to PE,, and PFE, ., outside of this leftmost window. PFE; contributes

four wires because it is connected to PE,, PEy.1, PE,.; and PE,,3, and so on.
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= MCW (Maximum Collective Width) = 6

) Colinear tayout of the one-dimensional 1-D HOW system with 12 PE's uad window size of 4.

(b) The decomposition: e first layer.

{¢) The decomposition: the second tnyer.

Figure 2.1 Colinear layout of the 1-D HOW system with 12 PEs and window size
of 4, and its brute-force decomposition into printed-circuit layers.
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Figure 2.2 Colinear layout of the 1-D HOW system with 12 PEs and window size
of 5, and its brute-force decomposition into printed-circuit layers.
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Therefore, we have MCW =2 +4+6+8+---+w, or Y72, 2i where w/2 is an
integer or, finally, ¥(¥% + 1). For odd w, however, MCW corresponds to the upper
half of the layer because PE,,_;, which is the rightmost PE in the leftmost window,
is the last PE that contributes to MCW and contributes to the upper half (because
it has an even address). Therefore, we have PEj contributing one wire because it
is connected to PE,. PF, contributes three wires because it is connected to PE,,
PFE,., and PE, 5, and so on. Therefore, we have MCW = 14+3+5+74---+w, or

w=l w—1

.2 (2i+ 1) where =1 is an integer, or 2 Y, 1+ (¥ + 1) or, finally, (%)% To

2

obtain these results, we assumed that all w wires leaving PFE,,_; exist, and therefore
w—14+w<porw< 9“_:—] This should be expected to be the practical case for
HOWs. However, the results do not cover generalized hypercubes because for them
we have w = p — 1. Therefore, generalized hypercubes must be treated separately.
Because of the symmetry in 1-D generalized hypercubes, without loss of generality
we can find the MCW by focusing on the upper half of the printed-circuit. In fact,
we can count the contribution of each PE in a left-to-right order. Let « be equal to
p— 1. PEy contributes o wires because it is connected to « neighbors to its right.
PE, contributes o — 4 wires to M CW because it is connected to o — 2 neighbors
to its right and two levels of wires emanating from PEj can be reused (therefore,
PFE, also can use the same wire levels). Similarly, PE4 contributes oo — 8 wires to
MCW because it is connected to « — 4 neighbors to its right and four levels of
wires emanating from PFEy can be reused. Similarly, PFs contributes oo — 12 wires
to MCW because it is connected to a — 6 neighbors to its right and six levels of
wires emanating from PEj can be reused. In general, PE;, where i = 27, contributes
« — 25 wires to MCW because it has o — j neighbors to its right and it can reuse
J levels of wires emanating from PFEy. However, even-numbered PEs 4 for which

o — 1 is negative or zero do not contribute to MCW. Therefore, contributing PEs
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have addresses 23, with o« — 4¢ > 0 or ¢ < [§]. The value of MCW is then given by
Zf’zo(a — 417), where ¢ = |2]|. This sum is also equal to (p—3)p+p—1—2¢° =
This theorem shows that HOWs have much smaller wire width (MCW) than
generalized hypercubes for practical cases because this width is O(w?) and Op?),
respectively. The next theorem shows the number of printed-circuit boards (i.e.,
layers) required to eliminate all wire crossings when the brute-force decomposition

of the type shown in Figure 2.1 is applied.

Theorem 2.1.2 The number of layers that eliminate all wire crossings with brute-
force decomposition of the HOW (p,w,1) is [%]. It becomes 1 + [3—5—4-] for the gener-

alized hypercube.

PROQOF. Assuming the wire routing rules defined earlier and the brute-force
decomposition to produce zero wire crossings, we focus for the proof on a single
window. Each layer deals with a pair of consecutive nodes within the window and
there are [w/2] pairs. Thus, we need a total of [Z ] layers for the HOW (p, w,1). For
the generalized hypercube, going from left to right in the colinear representation of
the system, each layer contains two successive nodes that connect to all other nodes
to their right. However, up to four rightmost nodes can be combined in the last
layer with zero wire crossings, and thus the total number of layers for the generalized
hypercube is 1+ [E52]. o

We observe that the numbers of layers in HOWs and generalized hypercubes
of similar size are O(w) and O(p), respectively. This is another advantage of HOWs
that renders them more viable for implementation than generalized hypercubes.

It is worth also mentioning here another wire routing technique, namely
restricted routing [28], that requires only two layers for the implementation of
any system represented in the 2-D space. As a result, both HOWs and gener-

alized hypercubes require two printed-circuit layers regardless of their size. In the
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case of restricted routing, horizontal and vertical wire segments are laid on two
different wiring layers. Figures 2.3, 2.4 and 2.5 demonstrate this technique for
the HOW (12,4,1), HOW (12,5,1) and GH (12, 1) systems, respectively. Horizontal
and vertical wires can then cross over each other without any electrical connection.
If a connection is needed, a contact is placed at the respective intersection; these
contacts contribute to the VLSI cost. Therefore, the total wiring cost with restricted

routing has four components:

e The total number of wires. This number is O(wp?) and O(p?) for 2-D HOWs

and GHs, respectively.

e The maximum collective width of wires, M CW (it affects the cost of the larger
layer that contains the horizontal wires). This number is O(w?) and O(p?) for

HOWSs and GHs, respectively.

e The length of the wires. The maximum length is O(w) and O(p) for HOWs

and GHs, respectively.

e The total number of electrical connections (contacts) between the two layers.
This number is twice the total number of wires. Therefore, it is O(wp?) and

O(p®) for HOWs and GHs, respectively.

Therefore, HOWs are superior to GHs even with restricted routing. We can conclude
that HOWSs are more prone to implementation than GHs for reasonable values of w.

The following sections also show that HOWSs can deliver very high performance.

2.2 Cost Analysis for the Wrap-Around HOW (p, w, 1)
Let us now further investigate the VLSI wire cost of HOWs with wrap-around
connections. From Figures 2.6 and 2.7, it is very clear that the maximum collective

width (MCW) increases with increases in the window size w. It is because in
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(1) Colinear layout of the ane-dimenxional 1-D HOW system with 12 PE's aisd window size of 4

{b} Decompaosition with vertics! lines

o O W @O W W @ W @© @ @ W

{c) Decomposition with horizontal lines

Figure 2.3 Colinear layout of the 1-D HOW system with 12 PEs and window size
of 4, and its decomposition into printed-circuit layers using vertical and horizontal
lines.
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{8} Colinear layout of the one-dimeasional 1-D HOW system with 12 PE's and window size of 5
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(b) Decomposition with vertical laes.
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(€) Decompasition with horizontal Hnes.

Figure 2.4 Colinear layout of the 1-D HOW system with 12 PEs and window size
of 5, and its decomposition into printed-circuit layers using vertical and horizontal
lines.
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Figure 2.5 Colinear layout of generalized hypercube with 12 PEs, and its decom-
position into printed-circuit layers using vertical and horizontal lines.
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order to connect pairs of nodes belonging to the leftmost and rightmost windows,
respectively, in the colinear layout, the wires will cross the entire printed-circuit
plane. The number of wires needed to connect all nodes in the two opposite ends is
w+w—1)+w=-2)+...+1= 3%1—) Of course, we could split the wires equally
between the upper and lower halves of the layer.

The following theorem determines the value of MCW.

Theorem 2.2.1 The MCW in the colinear layout of the wrap-around 1-D HOW (p,w,1)

with a single layer is

w(w 4 1) 4 (22D for even w
MCW =<¢ 22 4
{ (wh)? + {_i___ll ] for odd w

PROOQOF. Refer to the proof for the regular 1-D HOW (p,w,1). The total number

of extra wires for the wrap-around system is M

. We could split the wires equally
between the upper and lower halves of the layer. So, we need to add [2=2T w“)] to the

equation for the regular 1-D HOW(p,w,1). e



28

Ly {] 2 .. - SR, )

0 i 6 7 3 9 10 1t ]
(a1} Cofinear layout of the one-dimensionat 1D HOW system with 12 PE’s and window size of 4
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Figure 2.6 Decomposition of the 1-D wrap-around HOW (12,4,1).
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Figure 2.7 Decomposition of the 1-D wrap-around HOW(12,5,1).



CHAPTER 3

1-D HOW SYSTEM EMBEDDINGS

In this chapter, we discuss embeddings of various widely-used interconnection
networks into 1-D HOW systems. Such embeddings could prove very beneficial
as HOW and related systems demonstrate significant promise in scalable parallel
processing [18] [19] [29] [30] [31].

Some definitions are pertinent for the analysis of results. Given two graphs
G(V,E) and G'(V',E'), embedding the graph G into the graph G' results in the
mapping of each vertex in the set V onto a vertex in the V' and of each edge in the
set E onto an edge, or a set of edges in £'. There are three important parameters

that determine the quality of mapping a graph G(V, E) onto a graph G' (V', E').

e Dilation of a source edge in E: the number of edges in E' that the edge in E

is mapped onto.

e Congestion of a target edge in £': the number of source edges mapped onto

the edge in E'.

e Expansion: the ratio of the number of nodes in the set V' to that in the set

V.

Example: referring to the figure 3.1, there are two graph: source graph G(4, 2),

target graph G' (9,8). The parameters are following:
e dilation of (A,B): is 5.
e dilation of (C,D): is 4.
e congestion of (K,L): is 2.

e expansion: is 9/4.

30
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' = - ~
A T‘E
|
B
c
D
- _/ . S
Source Graph with N nodes Target Graph with N’ nodes

Figure 3.1 The definition of dilation, congestion and expansion.

In this dissertation, we try, if possible, to limit the scope of the discussion to

cases where the expansion is one, for the sake of cost effectiveness.

3.1 Embedding a Ring into a 1-D HOW System
A ring of p nodes with addresses 0 to p— 1 can be embedded into a 1-D HOW system
with p nodes by mapping the ring processor with address 7, wherez = 0,1,2,...,p—1,
onto the distinct processor z, where x = 0,1,2,...,p—1. Our embedding procedure
distinguishes between even and odd addresses z, with 2 = 2k and z = 2k + 1,
respectively, in the 1-D system and uses the function 7 = G(k) to get the address i
of the corresponding processor in the ring. The function G(k) is defined as follows:

G(k) = k if v =2k, for k=0,1,2,..., 2]
YTl p=1)—k ifz=2k+1,fork=0,1,2,..., [} -1

It is easy to see that this mapping technique requires a window size of at least
w = 2 for optimal mapping (i.e., the dilation is one). Figure 3.2 illustrates the
embedding of a sixteen-processor ring into a 1-D HOW system, also with sixteen
Processors.

For w > 2, we can also use several other embedding functions for optimal

mapping, including the function G’ (k) that follows:



Outside numbering:
processor number in the ring

> Inside numbering:
processor number in the 1-D system

Figure 3.2 (a) A 16-processor ring and (b) its embedding into the 1-D HOW (p,w,1)
system.

-1 -2 -1-k
ORONONE) U ({(L%,_z) PR

Figure 3.3 Embedding a p-processor ring into the 1-D HOW(p,w,1) system with
another technique.
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(w—1Dk+w-3) fz=(k+w-7j,forj=234,.. ., w

G'(k):: and}.::&l’g)._‘)tag_llj
oD o= (b w1, 1 b =0,1,2,.., [54] -1

Figure 3.3 illustrates the general embedding of a p-processor ring into the 1-D
HOW(p,w,1) system, using the function G'. All proposed embeddings have dilation

one, congestion one, and expansion one.

3.2 Embedding a 2-D Mesh into a 1-D HOW System
We present here embedding techniques for the 2-D mesh and torus topologies. The
target architectures are 1-D HOW systems. In a subsequent section, we will show

that much better embeddings can be derived if the target HOW systems are 2-D.

3.2.1 2-D Regular Mesh

Considering a p x n mesh with p rows and n columns, we can embed this mesh
into a (p x n)-processor 1-D HOW system by mapping the processor (z,3), where
t = 0,1,2,...,p—1and 5 = 0,1,2,...,n — 1, of the mesh onto the processor
x = H(i,j), where z = 0,1,2,..., (pn — 1) of the 1-D system. The function H(, j)
is defined as follows:

s i < i .
H(i,j):{z—rjp if p <n, fors ,i,

0
w+ 7 iftp>mn, fori=0,
This mapping of a mesh onto a 1-D system has the following properties:

e If p < n, with column-wise mapping of mesh nodes and window size of at least

p the mapping is optimal (with dilation one).

e If p > n, with row-wise mapping of mesh nodes and window size of at least n

the mapping is optimal.

e If p =n, the row-wise mapping is the same as the column-wise mapping.
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(a)

Figure 3.4 (a) Source 3x5 mesh and (b) its optimal embedding into the 1-D
HOW(15,3,1) system.

0,00 O (02)2

Figure 3.5 (a) Source 5x3 mesh and (b) its optimal embedding into the 1-D
HOW(15,3,1) system.
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Figure 3.6 Mapping the 7 X 7 mesh in two different ways.

e The window size must be at least p = n = min{p,n} for an optimal mapping.

Figures 3.4 and 3.5 illustrate optimal embeddings of the 3x5 and 5x3 meshes,

respectively, into the 1-D HOW(15,3,1) system. In order to get an optimal mapping,

the window size w should be at least equal to the min{p,n}. If min{p,n} >

w > L’—”—’%”-ﬂj, then the mapping is suboptimal with maximum dilation two; if

| midpnl | s gy > [—@émj, then the mapping is suboptimal with maximum dilation

three; etc. In the general case, if [3’—’”%11)——’31] >w > |2l | where mois a position

m-1

integer, then the embedding has maximum dilation m + 1. The expansion and

congestion are both one.

The best mapping is not unique. For example, we can use another way to get

a best mapping for the same window size. Figure 3.6 is an example to map the

7 x 7 mesh onto a 1-D system using two different ways; the first mapping applies

row-major order while the second mapping is along the diagonals (i.e., along the

dashed lines).
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(a) 4x4 wraparound mesh: source (b) row-wise intermediate step (c) column-wise intermediate step

with processor number in 1-D system

(d) 1-D system: target

Figure 3.7 4x4 wraparound mesh and its optimal mapping onto the 1-D
HOW(16,8,1) system.

3.2.2 2-D Wraparound Mesh or Torus

Embedding a p x n wraparound mesh into a 1-D system is a natural combi-
nation and extension of embedding (p + n) rings and a 2-D mesh into a 1-D
system. We can embed a p x n wraparound mesh into a (p x n)-processor 1-
D HOW system by mapping the processor (¢,7) of the torus onto the processor
(G(z,7); where j is fixed)||(G(i, 7); where 7 is fixed)||H (¢,5). The symbol || denoteé
concatenation of two different mappings onto the 1-D HOW system. The functions
“G” and “H” were defined earlier for the ring and mesh embeddings.

Figure 3.7 is a step-by-step example for mapping a 4x4 wraparound mesh. This
mapping of a wraparound mesh onto a 1-D system is a natural combination/extension
of ring and mesh mappings, and therefore it inherits all the properties associated
with the latter mappings. For example, the window size should be at least equal to

2 x min{p,n} for optimal mapping.



37

Level # (d) Required minimun window size
for optimal mapping (dilation=1)

_ 3 42
J 8=2=2

2 d-2
4 4=2=2

1 d-2
3 =2 =2

0 d-2
2 1=2=2

(a)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(b)

Figure 3.8 (a) A 31-processor full binary tree with depth d = 5 and the numbering
of its nodes and (b) its optimal embedding into the 1-D HOW(31,8,1) system.
3.3 Embedding a Binary Tree into a 1-D HOW System

Binary trees can be embedded into a 1-D system in several ways. Consider a full
binary tree of level d containing 2¢ — 1 processors. A good embedding can be derived
by numbering the nodes of the full tree in the manner shown in the example of
Figure 3.8. The number assigned to a tree node then denotes the address of the
corresponding node in the HOW system.

This mapping has the following properties:
e It is a recursive mapping

e The required minimum window size for optimal mapping is 2472, where d is

the level of the full tree.

If w < 2972, the mapping is suboptimal. To find the dilation for suboptimal

mapping, the following proposition is pertinent.
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Proposition 1. For the embedding of a full binary tree with depth d and
2¢ —1 nodes into a 1-D HOW system with the same number of nodes, we need 247!
connections at distance 2* in the 1-D linear-array configuration of the HOW system,
fori=10,1,2,...,d — 2.

Corollary 1. The maximum dilation for a suboptimal embedding is [3%3]
and corresponds to two source edges.

Corollary 2. If w is not a power of two, the maximum congestion for
suboptimal embedding is one. Otherwise, for w = 29, with v < d — 2, the maximum

congestion is d — 2 and corresponds to two target edges.

3.4 Embedding a Hypercube into a 1-D HOW System
A d-dimensional (direct binary) hypercube consists of p = 2¢ processors, and a (d-+1)-
dimensional hypercube is constructed by connecting together pairs of processors with
the same addresses in two d-dimensional hypercubes [9] [14]. Two nodes are neighbors
in the d-dimensional hypercube if and only if their unique d-bit addresses differ in a
single bit [1] [9] [11].

We can embed the d-dimensional hypercube into the 1-D HOW system with
2¢ nodes by mapping each hypercube node to the node with the same address in
the HOW system. The window size should be at least equal to 247! for optimal
mapping. For a large value of d, the mapping should normally produce large dilation
because of the large difference in the dimensionalities of the two systems. A large
dimensional HOW system could produce very good results. For this reason, we avoid
further analysis of this mapping for 1-D HOW systems.

Figure 3.9 shows the embedding of a 16-processor hypercube into a 16-processor

1-D HOW system.
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Figure 3.9 (a) A 16-processor hypercube with binary addresses for its nodes and
(b) its optimal embedding into a 1-D HOW(16,8,1) system.



CHAPTER 4

2-D HOW SYSTEM EMBEDDINGS

In the following sections, we propose embeddings of various interconnection networks
into 2-D HOW systems. We limit the scope of the discussion to cases in which the
number of rows and the number of columns are the same, and equal to n, in the 2-D
HOW system. 2-D HOW system embeddings are extensions of 1-D HOW system

embeddings. Therefore, everything we discuss here is based on the preceding section.

4.1 Embedding a Ring into a 2-D HOW System

An optimal ring mapping is always possible with expansion one if the window size is
at least 2. We visit the nodes in a serpentine-like, column-wise way where the first
column is scanned sequentially for an even number of rows. In this case, even with
w = 1 we produce an optimal mapping. For an odd number of rows, the nodes in
the first column cannot be visited sequentially, but still an optimal mapping exists
for w > 2, as shown in Figure 4.1.

If the number of processors in the source graph is (n — 1)2 < PEs < n?, where
n is a positive integer, we just use one or more links connecting nodes at distance 2
to bypass several processors in the 2-D HOW system for optimal mapping, as shown

in Figure 4.2.

4.2 Embedding a 2-D Mesh/Torus into a 2-D HOW System
It is straightforward to get an optimal mapping for the regular mesh. We apply the
ring mapping for 1-D systems in individual rows and columns. An optimal mapping
for wraparound edges of the torus does not exist if the target graph does not contain

fully-connected rows and columns (we assume an expansion equal to one).

40
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(a) PEs=16
(b) PEs=25

(c) PEs=30

(d) PEs=49

Figure 4.1 Embeddings of rings into 2-D HOW systems.

Figure 4.2 Embeddings of rings into 2-D HOW systems when the numbers of nodes
in the rings are smaller than those in the HOW systems.
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(a) 6x6 torus (b) mapping onto the 2-D system

Vg

Figure 4.3 Mapping the 6 x 6 torus onto a 2-D HOW system with window size of
3. Consecutive bold segments in a row/column implement wraparound connections
in the torus.

Otherwise, for the wraparound mesh (i.e., torus) we split the wraparound
connections into a minimal number of segments based on the window size provided
by the 2-D HOW system. Some target processors are then used not only to process
data but also to forward data destined to otherwise neighbors in the torus. The
target system should still be expected to perform very well for algorithms employing
the torus.

The dilation of wraparound connections is then [2=1]. The mapping of torus
wraparound links can always be chosen so that the maximum congestion is one,
assuming that w > 2. Figure 4.3 is an example to map the 6 x 6 torus onto the 2-D

HOW(6,3,2) system, using a window size of 3.

4.3 Embedding a Binary Tree into a 2-D HOW System
Binary trees can be embedded into 2-D HOW systems in several ways. Such an
embedding could be used for the implementation of data reduction operations [13].

Consider a full binary tree of level [ containing 2' — 1 processors and the 2-D
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(a) 3-level binary tree (b) the mapping onto the 2-D system

Figure 4.4 Optimal mapping of the 3-level binary tree onto the 2-D HOW(3,2,2)
system.

HOW([v20 — 1], w,2) system for the smallest expansion. We assume that w > 2.
The two basic building blocks used in our binary tree mapping are for the 3-level
tree, and are shown in Figures 4.4 and 4.5. These two building blocks and their
mirror images are employed for the mapping of larger trees. For example, Figure
4.6 shows a mapping where the building block #1 at the upper-left corner of Figure
4.5 and its three mirror images are used for the mapping of the four distinct 3-level
trees containing leaves of the original 5-level tree. The mirror images are employed
to minimize the distances between the roots of these trees for connections at the
next level. The largest dilation of edges is 2 in this case (the reason for this is that
there is no way to directly connect processor-1 and processor-4, or processor-2 and
processor-6; we use two edges to connect them together as shown with the bold lines
in Figure 4.6).

In general, a large binary tree of level [ is viewed as four appropriately connected
subtrees of level | — 2 for which embeddings into a 2-D HOW system are easily
obtained recursively; interconnection of their roots after the embeddings are then
easily derived. An example is shown in Figure 4.7. The maximum dilation is two for

binary trees with an odd number of levels. Otherwise, we have optimal embeddings.
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o b—2 Q)

7 8 9 10 11 12 13 14
(a) 4-level binary tree B

ilding block as shown in figure 4 \f{

(e

Another building block for the 3-level binary tree mapping

(b) the mapping onto the 2-D system

Figure 4.5 Optimal mapping of the 4-level binary tree onto the 2-D HOW(4,2,2)
system. The two distinct building blocks for the mapping of 3-level binary trees are
enclosed in dotted lines.

4.4 Embedding a Hypercube into a 2-D HOW System
We can embed a (direct binary) hypercube into a 2-D HOW system with two different
methods, based on the desired expansion.

First, we consider the embedding of the d-D hypercube into the 2-D HOW
system with 2151 % 2f5] nodes, corresponding to minimal expansion. We can embed
this hypercube recursively as shown in Figures 4.8 and 4.9, where optimal mapping
is achieved because of the large windows. This mapping is derived from the classical

2-D representation of hypercubes; optimal mapping results if w > 9181-1 In the

2l$1-1
w

general case, the largest dilation of edges for this mapping technique is [ 1. The
advantage of this method is that it is very simple and easy to implement, but its
disadvantage is that half of the processors are wasted when d is an odd number. The
maximum congestion is one if w is not a power of two. If w = 2¥, with v < {%1 -1,
the maximum congestion for the mapping that minimizes the maximum dilation is
([41 = 1) —v+1or [4] — v. The expansion is —2—?2[7@

Second, in order to minimize the number of unused processors in the 2-D HOW

system if d is odd, we can use another method to embed the d-D hypercube into the
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Figure 4.6 Mapping the 5-level binary tree onto the 2-D HOW(6,2,2) system.
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system.
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(a) 3-D hypercube O O O O

(b) mapping of the 2-D system

{(c) 4-D hypercube

(d) mapping of the 2-D system

Figure 4.8 Optimal 3-D and 4-D hypercube embeddings into the HOW (4,2) system
(method one).



O O O
O O O
O O @)
O O O

O

O

O

O

O

O

O

@)

O

O

48

Figure 4.9 5-D hypercube and its embedding into a 2-D HOW system (method-one).

Optimal mapping is derived if w > 4.
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2-D HOW(k,w,2) system, where k = 3% 2% if dis odd, or k = 2% 2% = 2% if d is

even. This recursive mapping method is based on the fact that the d-D hypercube
is formed from four (d — 2)-D hypercubes. When d is even, then we use the mapping
of 22 hypercube as the fundamental building block; when d is odd, then we use the
mapping of 2% hypercube as the fundamental building block The advantages of this
method are that we can save a lot of otherwise unused processors and that the 2-D
mapping looks neater when d is an odd number. The embedding of the 3-D hypercube
into the “building block” HOW(3,2,2) is used recursively. As shown in Figure 4.10,
the embedding into the building block results in only one unused node. The source
edges (000,100), (100,101) and (110,111) have dilation two in the building block, and
the congestion is two for the target edge (110,100) —- which also means there are
3 edges with dilation two, and there is 1 edge with congestion two.. Figure 4.10
shows the embedding of a 5-D hypercube using four 3-D hypercube building blocks
in HOW(3,2,2)s. This example shows that there are only four unused nodes.

In the general case, with the second method for an odd d the chosen target

. d—3 . . . .. .
system is the HOW(3 x 277, w, 2) for the best mapping with minimum expansion.

gx24-3

The expansion is actually equal to =3

Wi

or

Proposition 1: Given the d-D binary hypercube, if d 1s even, the largest

. . : T¢1-1
dilation of edges is [? Zw

1 and the congestion is 1.

Proposition 2: If d is odd with method-two, there are 2473 edges with
congestion 2, the largest dilation of edges is maz(?2, [54[2——?3——32]), and there are at
least 3 x 2973 edges with dilation 2, and 2472 unused nodes.

Lemma 1: In the building block (3-D binary hypercube), there are (3% 2*/2) or
12 edges. Among them there is only one edge (node 110 to node 100) with congestion
2, there are three edges with dilation 2.

This can be easily proven from in Figure 4.10. Only four unused nodes result

with this mapping.
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Figure 4.10 5-D hypercube embedding with the second method. This figure shows
the original hypercube, the embedding of the 3-D hypercube into the building block
HOW (3,2,2), and the final embedding into the 2-D HOW(6,3,2) system.



51

il “"ﬂq Il g_wn " il ‘
f«,«qm:f.gm..m:-m f
‘m ‘ H{vl” .‘. 'Axv.

um‘u ‘\! "\'»P WV —:
7 v“ ﬁm'l\ ﬁmﬁ"n"

“b.

mv ""nn‘ Reiny *‘um
‘l ‘ll ‘{ull\ .‘ i\“

‘I' y

Fiigure 4.11 6-D hypercube embedding in a 2-D system using method two. (Actually
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This figure shows the building block and the embedding in 2-D system.



CHAPTER 5

COMMUNICATION OPERATIONS ON 1-D HOW SYSTEMS

Our focus in this dissertation is 2-D HOW systems. However, 1-D HOW systems are
their building blocks (BBs), and therefore we first develop communication routines
for 1-D HOW systems. Before we propose algorithms for implementing various
communication patterns on 1-D HOW systems, introductory material is needed to
facilitate evaluation of the algorithms. The communication latency, that is the time
consumed to communicate a message between two processors in the system, depends

on the following parameters [5] [20]:

e Startup time (t,). the time consumed by the sending processor. It comprises the
time to prepare the message (producing the header, trailer, and error correction
information), the time for the routing algorithm at the source, and the time to

send the first part of the message to the appropriate communication port.

e Per-word transfer time (t,,): the time taken by a word to traverse a channel.
If the channel bandwidth is b words per second, then each word takes time

t, = 1/b.

e Combining time (t.): the time consumed by an intermediate node to switch a
message from an input to an output port; it also includes the time to combine

incoming messages, if needed, and send them to the appropriate output port.

We calculate only the time taken by a message to reach the input port of the
destination. Additional time may be needed to get the data from that port. In store-
and-forward (SF) routing, with a message traversing a path with multiple links,
each intermediate processor forwards the message to the next processor in the path
after it has received the entire message. To increase the utilization of communication

resources and reduce communication time, wormhole routing divides a message

52
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(a) model-1 with one output port (b) model-2 with multiple ports (c) model-3 with multiple ports

and the same output value and different output values

Figure 5.1 Different output port models.

into flits (flow-control digits). As the header flit advances along the chosen path,
the remaining flits follow in the same path in pipelined fashion. If the header flit
encounters a channel already in use, this flit is blocked until the channel becomes
available [5]. Normally, the flit size coincides with the channel width. The combining
time t, is ignored in wormhole routing.

We develop algorithms under three different communication models. For all of
the models, each processor can receive more than one message at a timé in different

input ports. These models differ in how they can use their output ports.

¢ Model-1: Each processor can use only one output port at a time.

e Model-2: Each processor can use multiple output ports simultaneously, as

long as all output ports contain the same value.

e Model-3: Each processor can use multiple output ports simultaneously, and

different output ports can have different values.

The architecture considered here is a 1-D system. There are three different
models in a 1-D system which are used for communications, as shown in Figure 5.1.
In the following subsections we develop algorithms for various communication
operations on 1-D HOW systems and derive corresponding execution times for the
aforementioned models. The analysis is done each time for SF and wormhole routing,
in this order. These operations are very frequently used in parallel processing [13]

[4].
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5.1 One-to-One Comrmunication

‘This basic operation sends a message from one processor to another.

With SF routing, sending a single message containing m words takes t, +mt,l+
t.(l — 1) time, where [ is the number of links traversed by the message. For a 1-D
HOW system with p processors and window size w, ! is at most f%], and therefore

the time for a single message transfer has the upper bound of
p—1 p—1
Tone_to_one = ts + ﬂztw("“q‘j‘)“"} -+ tc([T} - 1) = O('in‘?u’)

assuming no contention with other messages at intermediate processors.

With wormhole routing, assume that the flit is one word, and therefore the flit
transfer time is t,,. If the message traverses [ links, then the header of the message
takes t, + It,, time to reach the destination. If the message is m words long, then the
remaining flits will reach the destination in time (m — 1)t, after the arrival of the

header. Therefore, the upper bound is
-1
T(W R)one so_one = ts + tu (LI +(m = 1)ty, = O(m + ?u_)
w

For the wrap-around HOW({p,w,1). [ is at most (Pgiwl], and therefore it takes
half of the time for the regular HOW (p,w, 1) system.
Therefore the time with SF routing for a single message transfer has the upper

bound of

P (Bt - 1) = 0(md)

wraep .
Tone_w_one - ts + m/tw 2?,0 9‘11)

The time with wormhole routing for a single message transfer has the upper

bound of

. —1
T(W R) i one = te + bul =] o (m = 1t = O(m + 1)

4
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5.2 One-to-All Broadcasting

One-to-all broadcasting is an operation where a single processor sends the same data
of m words to all other processors. Initially, only the source processor has the data of
size m that needs to be broadcast. At the termination of the procedure, there are p—1
copies of the initial data, one copy residing in each of the other processors. The naive
way to perform one-to-all broadcasting is to sequentially send p — 1 messages from
the source to the other p — 1 processors. For the sake of efficiency, every processor
could keep a copy of the message it receives from a neighbor, and then could forward
this message to one or more of 1ts other neighbors.

M One-to-all broadcast M M M
OO O ———---—- >0 0 - O

Figure 5.2 One-to-all broadcast.

5.2.1 Model-1

Since there is only one output port “available” for each processor at each transfer
step, we consider two different stages. We assume that the leftmost processor is the
source, for worst case timing. In the first stage, we copy the data to all processors
(PEs) in the source’s window of size w In the second stage, the data in the leftmost
window is propagated to the right, one window size at a time.

We introduce two parameters here: s; represents the number of transfer steps
needed to fill the first window, and s, represents the number of transfer steps needed
in the second stage to copy the values in the first window into the remaining windows.
In the first stage, the propagation doubles each time the number of PEs that receive
the message, and therefore the processors within the window are assumed to form a
binary tree. We have the following relations among s1,s2, and w:

51 = [log(w + 1)]
s = [(p—2%)/w]

All logarithms in this dissertation are in the base 2.
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Table 5.1 The propagation rules of one-to-all broadcasting under model-1.

S PEman: PE’total
5851 _ 92—1 __ = S 51— :
. 23 =2 =2 271 =2-1=3
NS -1 . 83— 5 i ¢
312 2T =4 | 92,27t =25-1=7
sy | 257t =271 D27 =25 —1=2% 1

We can also use Table 5.1 to illustrate the propagation rules to follow in the
first stage. (S is the number of the transfer step in the first stage, PE,,,; is the
maximum number of PEs that can receive a copy at each transfer step, and P Ly
is the total number of PE's that have received a copy at each transfer step).

Figure 5.3 shows an example. The communication time for one-to-all broad-

casting under model-1 and SF routing has the upper bound of

ts + mty[logp] + t([logpl — 1) = O(mlogp)
Tone to_all,l — if (p N 1) S w
- ts 4+ miy(s1 4 82) + to(s1 +s2 —1) = O(mlogw +m2)
if(p—1)>w

This asymptotic time is optimal.

With wormhole routing, the upper boundis

to+ ty[logp] + (m—1t, = O(m+logp)

if(p—1) <w
/ - ! =
T(W R)one to_ait, ts 4 ty(s1 + s2) + (M — L)ty O(m + logw + £)

if (p—1)>w

i

assuming that incoming data can simultaneously be stored locally and also be trans-

ferred to the next PE in the path.

For wrap-around HOW (p,w,1). It will need s, steps to fill the leftmost window
and rightmost windows, which is 2 % s;. Also it will need 5’2 steps which is only half

of s, to copy the values in the leftmost and rightmost windows into the remaining
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(a) HOW(12,3,1) with initial information

M(0) M(0)
o—0 O O O O O O O O O O
0 1 2 3 4 5 6 7 8 9 10 11

(b) First communication step (Stage 1)

O O O O O O O O

0 1 2 3 4 5 6 7 g 9 10 11
(c) Second communication step (Stage 1)

M@©O) M(@O) M@O) M@O M@© MO MO
O o O o O o©
0 1 2 3 4 5 6 7 8 9 10 1

(d) Third communication step (Stage 2)

M@©O) M(@©O) MOy MO) MO MO MO M©O MO MO

o O o O o O
0 1 2 3 4 5 6 7 8 9 10 1

(e) Fourth communication step (Stage 2)

M0y M@©O) M@y MOy MO MO MO M@O) MO MO MO M)

c o o o o 0O O O
0 1 2 3 4 5 6 7 8 9 10_~11

(f) Fifth communication step (Stage 2)

Figure 5.3 One-to-all broadcasting under model-1 with 12 processors and window
size of 3. A number in parentheses is the label of the source processor from which
data has been broadcast. All communication steps are shown.



58

windows. Therefore,

Therefore, the communication time of the wrap-around HOW (p, w, 1) for one-

to-all broadcasting under model-1 and SF routing has the upper bound of

ts +mty[logp] +t([logp] —1) = O(mlogp)
Twrap — if (p - 1) _<_ w
one-to.all,1 ts 4+ Mty (s) + 85) +te(s1 + 53— 1) = O(mlogw +m2)
if(p—1)>w
With wormhole routing, the upper bound on the communication time is
ts +ty[logp] + (m = U)t, = O(m +logp)
g if(p—1)<w
T(WR)Z 0t = L P
( Jone to_ait1 ts +tw(s) +83) +(m—1)t, = O(m+logw + 2)
f(p—1)>w
Special-case: Fully connected 1-D subsystems. For a fully connected

subsystem, the procedure is similar to that for stage-1 under our model-1. Therefore,
1
Tof,;‘e_w_a“’l = t, + mty,[logp] + t([logp] — 1) = O(mlogp)
With wormhole routing, the communication time is

TWR)M iy =t +t,[logp] + (m — 1)t, = O(m + log p)

5.2.2 Model-2 and Model-3

For one-to-all broadcasting, there is only one value to be sent, and therefore the
procedures for this operation are identical under model-2 and model-3. Assume the
leftmost PE as the source. Model-2 is not inferior to model-3 because up to w output
ports are “available” to the right of each processor at each transfer step as long as
these ports transfer the same value, which is the case here. The first stage now
consumes one transfer step and the total number of transfer steps is [(p — 1)/w].

Figure 5.4 shows an example. The communication time has the upper bound of

p—1

-1 o
Tonc-to_all,? =1s + "ntwl—zj‘l’;““] + tc([ 1 - 1) = 0(777‘:1;)

w

This asymptotic time is optimal.
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{2y HOW(12,3,1) with initial information

M( ) © M@

c o o O O O O O
4 5 6 7 8 9 10 1

(b) First communication step (Stage 1)

M@ M(@O) M@O) M@O) MOy MO M)

O o O c O O
0 1 2 3 4 5 6 7 8 9 10 11

(c) Second communication step (Stage 2)

M@y M(@©) M@ MOy M@O) MO M@O) MOy MO M©

o O o O o O
0 1 2 3 4 5 6 7 8 9 10 11

(d) Third communication step (Stage 2)

MOy M(@O) M@© M@O)y MOy MO MOy MO M@O) M@ MO M(©O)

O O o o o O O O
0 1 2 3 4 5 6 7 8 9 10 11

(e) Fourth communication step (Stage 2)

Figure 5.4 One-to-all broadcasting under model-2 and model-3 with 12 processors
and window size of 3. A number in parentheses is the label of the source processor
from which data has been broadcast. All communication steps are shown.
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‘With wormhole routing, the upper bound is

-1
T(M/R>one_to_all,‘2 =15+ 1y [p w ] + (TH‘ - 1>tw = 0(777' + 2)
w

For the wrap-around HOW (p,w,1). Every node can be treated similarly, and
the communication time is exactly half of that for the regular FOW (p, w, 1) system.
Therefore, the communication time of the wrap-around HOW (p, w, 1) for one-

to-all broadcasting under model-2 and model-3 and SF routing has the upper bound

of

wrap p—1 p—1 P
Tone-to_attz = ts + Mty [ =1+ tc(f‘“.‘z‘;uq - 1) =0(m=)

With wormhole routing, the upper bound on the communication time is
7 p\wrap . P 1 _ b
T(M R)one_to-all 2 tS + tUJ{ -i + (777, - 1)tw - O(m + _—)
’ 2w w
Special-case: Fully connected 1-D subsystems. It is easy to get the result
for the fully connected subsystem; the one-to-all broadcasting just needs one transfer
step. Therefore,

i
Tg;?e_to_all,'Z - ts + 77’1.tw = O(Tn’)

With wormbhole routing, the communication time is

T<V‘/R)(j)‘:él_i0_au,2 = tS + 77wa = O(?TL)
5.3 All-to-All Broadcasting
In all-to-all broadcasting, which is a generalization of one-to-all broadcasting, all p
processors simultaneously initiate a broadcast. A processor sends the same m-word
message to every other processor, but different processors may broadcast different

messages.
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M, My My
A4’1 Adl !\41
M, M, M,_, All-to-all broadcast M,_, M, M;;—l
O O O -—------- > O O - O

Figure 5.5 All-to-all broadcast.

5.3.1 Model-1

For model-1, there is only one output port of each processor we can use at a time.
In order to let every processor pass information to a neighbor in each step, we
deliberately choose those channels that form a ring, as shown in Figure 5.6. If
communication is performed circularly in a single direction, then each processor
receives all (p — 1) pieces of information from all other processors in (p — 1) steps.

The time taken by the entire operation is
Tattto_attyn = ts +miy(p — 1) +ic(p — 2) = O(mp)

This asymptotic time is optimal because each processor can use only one output port

at a time, and therefore each message must make p — 1 = O(p) hops.

With wormbhole routing, the communication time is
T(W R)an_ioaiig = ts + miy(p — 1) = O(mp)

because the header of each message is blocked at each intermediate node until the

previous message has completely departed.

For the wrap-around HOW (p,w,1).  Since only one cycle has to be formed in
order to pass the information around, the communication time is exactly the same

as that for the regular HOW (p, w, 1).
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(e) Eleventh communication step

Figure 5.6 All-to-all broadcasting under model-1 with 12 processors and window
size of 3. The numbers in parentheses for each processor are the labels of source
processors from which data was received prior to the current communication step.
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Special-case: Fully connected 1-D subsystems. As for a fully connected
1-D subsystem, no intermediate node will be involved in the broadcasting procedure.

The time taken by the entire broadcasting procedure is
0 3 _
T({I?_to-all,l = tS T TI’Ltw (p - 1) — O(?TL]))
With wormhole routing, the communication time is

T<I/I/R)£Z;il£0_ﬂ,u,l =t +mty,(p—1) = O(mp)

5.3.2 Model-2

The broadcasting procedure follows:
e First stage: Each PE sends its message to all of its neighbors.

o Remaining stages: Assume the stage 4, where i = 1,2,...,[&2] — 1. In one
direction, beginning from position 1w and also involving all its successors, send
the messages from the PEs 0,1, ..., (p— 1 —14w—1) through all possible channels.
In the other direction, beginning from position (p — 1 —iw) and also involving
all its predecessors, send the messages from the PEs p—1,p—2, ..., (lw+1). If
there is an overlap between these two directions, then split this stage into two
steps in order to make sure that every PE sends just one value at a time. From
all the messages it contains, each time a PE sends out the message received

earlier from its most distant PE.

Table 5.2 shows the detailed steps involved in the broadcasting procedure for
12 PEs and a window of size 3. It consumes five steps. Refer to Figure 5.7 for an
example. The example in Figure 5.7 is for model-3, and therefore “step” in the table
stands for “stage” under model-2. However, the only difference between the two

models is in the second transfer step, because there is an overlap between the two
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Table 5.2 The detailed steps for all-to-all broadcasting under model-2.

Po D D2 D3 P4 Ps Ds 2 Ds Pa Do Pri
@O 1MW @ 1] @ 6y @© (@] @) |(0)]00)]ay
0, 01, | 012 | 1,23, | 234, | 345, | 456, | 567, | 678, | 789, | 89,10
1,23 | 234 | 345 | 456 | 567 | 678 | 7,89 | 89,10 | 9,10,11 | 10,11 | 11
0 0,1 0,12 | 1,2,3 234 | 345 | 456 | 567
4,56 | 567 | 67,8 | 7,89 | 89,10 | 9,10,11 | 10,11 1
{ 78,9 [3,9,10 rg, 0,11—[ 10,11 } 11 L { i 0 [ 0,1 t 0,1,2 ] 1,2,3

ounf o [ 1 [ T 1 1 [ |

L]

directions; therefore, we need to split this “transfer step” into two steps for model-2.
The whole procedure consumes five steps under model-2.

The total time taken by this operation is
p—1 p—1
Tattto_anng = ts + mtw([T] +z) + TL((T] +z—1)

where z is the number of stages needed to be split into two steps, and x should satisfy

the condition zw < p — 1 — zw. So z is the largest integer less than 1’2—;} Therefore,

p
Tall-Lo_atl,Z = O(m-—)
w

This asymptotic time is optimal because the diameter of the system is O(Z).

With wormhole routing, the communication time is

p—1
T(W R)atso_annp = ts + mtw((l-)——;—uw] +z) = O(mg)

because of message blocking on reused channels.

For the wrap-around HOW (p,w,1). Every node could be treated similarly,
so the number of transfer steps is [2=4]. Although each node has 2w neighbors, we
divide w because output ports must transfer the same message. Tables 5.3 and 5.4

show detailed information for this process.
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Table 5.3 The detailed steps for all-to-all broadcasting under model-2 using a wrap-
around system with 16 processors.

Po P1 P2 P3 P4 Ps Ps P7 P8 P9 pio P11 P12 P1a P14 Pis
@OIMIA ]| @] |G ] o] e ay]| a2l as) (14) | (15)
B0 123|405 6| 7| s s [ 10 | 1 12 ] 13 | 14
411041 2| 34|56 |7 8 9 LV ! 12 | 13
(Bl lo 123|456 7 8 9 01 1112
Lp24 345 678|910 n 12 0 13 | 14 | 15 0
213 0405 6 77| 8|9 w12 | 13 14 15 0 1
3P4y 5 6] 71819 w0213 14115 0 1 2
5] 0|12 314 s 6 7 8 9 10 | 1
op12 f 3 g (1510 (1 [ 2 (3 | 4 5 6 7 8 9 10
10 /11 [ 12 V13 f 14|15 ] 0] 1| 2|3 4 5 G 7 8 9
4 45 |6 {7 4849 w1213 ] 14 | 15 0 1 2 3
5 p 6 | 7 8 b o]z 314 15 0 1 2 3 4
6 1 7 | 8 1 9 L1011 12{13) 14 15] 0 1 2 3 4 5
9 | 10011 {12013 | 14|15 0| 1 (2 3 1 5 8 7 8
8 19 110 )11} 12 )13 14 15) 0 |1 2 3 4 5 6 7
71 8 | 9 1011|1213 14}15]0 1 2 3 4 5 6

Therefore, the communication time of the wrap-around HOW (p, w, 1) for one-

to-all broadcasting under model-2 and SF routing is
LT e = te+ [P0 12 1) = O(m)
all_to_all, W 2w w
With wormhole routing, the communication time is

all_to_all,

X -1
T(WR)Z® = 4 mwﬂ-{u—-] = O(mlw)—)

Special-case: Fully connected 1-D subsystems. For a fully connected
subsystem, only one transfer step is needed to accomplish the broadcasting
procedure.

sz?_lio_au,z =t + mit,, = O(m)

22

With wormhole routing, the communication time is

TUVR)iﬁl_lzo-au,z =ty + mty, = O(m)
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Table 5.4 The detailed steps for all-to-all broadcasting under model-2 using a wrap-
around system with 17 processors.

Po p1 n2 P3 P4 Ps Ps p7 P8 Pa Pio P11 P12 713 P14 Pis pPis
O M@ | WG 6 | @IE) e a0 ay | a]|as)] )| as)|as)
16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 16 0 1 2 3 4 5 6 7 9 10 11 12 13 14
14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1
3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2
13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12
12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11
11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3
5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4
6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5
10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9
9 10 11 12 13 14 15 | 16 0 1 2 3 4 5 6 7 8
8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7
7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6
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Table 5.5 The detailed steps for all-to-all broadcasting under

: model-3 using a wrap-
around system with 16 processors.

Po m p2 p3 Py Ps Ps b7 Ps Pa Pio P11 P12 P13 Dig Bis
OIMIAIG O] 6] o6 o] ay () 2y | (3) | a4) | (15)
151 o 1 2 3 4 |5 6 7 8 9 10 11 12 13 14
14 115 0 1 2 31 4 5 | 6 7 8 9 10 11 12 13
131141 0 1 21 3 | 4 5 | 6 7 8 9 10 11 12
1 2 3l ajys 67t s8 9wl n 12 13 14 15 0
2 3] 4 5 1617 81911011} 12 13 14 15 0 1
3 4 5 6 708 19 11|12 13 14 15 0 1 2
12 113 |14 )15 ] o 1 2 1314 |5 6 7 8 9 10 11
112013115 0|1 2 31 4 5 6 7 8 9 10
10 1111213 1alis| o 1 2 | 3 4 5 6 7 8 9
4 5 6 L7 | 89 11112113 14 15 0 1 2 3
5 6 | 7 18| 9 1wl j12]13l1al 13 0 1 2 3 4
6 708 b9 w12} ]alisl oo 1 2 3 4 5
EREREEEEETEEY 151 0 1 2 3 4 5 5 7 8
8 9 110111 12131415 o 1 2 3 4 5 6 7
7 8 1 9 jwiil]12]13)14]15] o 1 2 3 4 5 6

5.3.3 Model-3

This procedure is very similar to that for model-2. Since each individual processor
can send different messages at the same time, we do not need to split any step,
as shown in the example of Figure 5.7. The total time taken by this operation is

optimal and given by

p—1

p—1 2
Tall_to..all,B - ts =+ 7TLtw[T_1 + tC(( 1 - 1) = O(m"u—;

With wormhole routing, the communication time is

-1 p
T(WR)oit_toau3 = ts + mtwfg*[u‘—gi = O(m=)
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(2) Second communication step

SSEee

(3) Third communication step

@oaoooo@

(4) Fourth communication step

Po ” Pa P3 Pa Ps Ps P Ps Dy Do P11
O 1@ 1@ G 1@ | 6 ® (@) |9 00)]@a1
0, 0,1, | 01,2 | 1,23, | 2,34, | 345 | 456, | 567, | 678, | 7,89, | 89,10
1,23 | 2,34 345 | 4,56 | 567 | 678 | 7,89 | 89,10 | 910,11 | 10,11 11
0 0,1 0,1,2 | 1,23 | 2,34 | 34,5 | 4,56 | 56,7
4,5,6 5,6,7 @7_@ Z’_Sﬁ 8,9,10 9,10,11 10,11 11

Lm]zs,e)j)lg,la,nlxo,llt L]_l j ];— l 0,1 10,1,2[1,2,3‘%]
u [ 1 T [ 1o o]

Figure 5.7 All-to-all broadcasting under model-3 with 12 processors and window
size of 3. Addresses of processors from which values have been received at the end
of each step are shown.
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Table 5.6: The detailed steps for all-to-all broadcasting under model-3 using a wrap-
around sysstem with 17 processors.

Po p1 P2 P3 Da Ps Ps 24 2] 28] P1o P11 P12 P13 Pia s Pis
O MW@ @le|eloleo|a|ay]ay! s (14) | (15) | (16)
16 ] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 1 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
14 4 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 il 12 13 14 15 16 0
2 3 4 5 6 7 8 9 107 11 12 13 14 15 16 0 1
3 4 5 6 7 8 9 10 11 ¢ 12 13 14 15 16 0 1 2
13 | 14 15 | 16 0 1 2 3 4 5 6 7 8 9 10 i1 12
12 | 13 14 | 15 | 16 ] 1 2 3 4 5 6 7 8 9 10 11
1t | 12 13 | 14 [ 15 | 16 0 1 2 3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 | 11§ 12 | 13 14 15 16 0 1 2 3
5 6 7 8 9 10 0 11 | 12 13| 14 15 16 0 1 2 3 4
6 7 8 9 10 11 12113 14] 1514 16 0 1 2 3 4 5
10 | 11 12 ] 13 | 14§ 15 | 16 ] 1 2 3 4 5 6 7 8 9
9 i0 11 12 | 13 | 14 | 15 | 16 0 1 2 3 4 5 6 7 8
8 9 10011 | 12 013114115161, 0 1 2 3 4 5 6 7
7 8 9 10 | 11 | 12713 14| 15| 16 0 1 2 3 4 5 6
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For the wrap-around HOW (p,w,1).  The number of transfer steps is =1
Tables 5.5 and 5.6 show detailed information for this process.
Therefore, the communication time of the wrap-around HOW (p, w, 1) for one-

to-all broadcasting under model-3 and SF routing is

r , p—1 p—1 p
Toil otz = ts + miy [ 50 ]+ tc({"‘gw_1 -1)= O(ma)

With wormhole routing, the communication time is

p—1

—1=0(mE)

T(WR)ai to_ans = ts + mibw| 2w w

Special-case: Fully connected 1-D subsystems. For a fully connected 1-D

subsystem, the whole broadcasting procedure just needs a single transfer step.
T =t ty = O
all_to_all,3 7 “S + Miy = 'ITL)
With wormhole routing, the communication time is

T(WR)[ s = ts +mty = O(m)

all to

5.4 One-to-All Personalized Communication
One-to-all personalized communication is an operation where the source processor
sends (p — 1) unique messages, each one destined for a different processor in the
system. Unlike one-to-all broadcasting, one-to-all personalized communication does
not involve any duplication of data. However, the communication patterns for one-
to-all broadcasting and one-to-all personalized communication are identical; only the

sizes and contents of messages are different.

5.4.1 Model-1 and Model-2
Even though under model-2 each processor has multiple outports available in each
step, all the outports are supposed to transport the same message. But for one-to-

all personalized communication, the source processor has different messages to be
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My

M,

: One-to-all personalized

M, communication My M, M,y
O O 0O ---—----- > O O O

Figure 5.8 One-to-all personalized communication.

transmitted. In this case, the communication procedures are exactly the same for
both model-1 and model-2. For these two models, no matter what the window size is,
it will take (p — 1) transfer steps for this communication operation. A ring structure
is used to communicate values, as shown in Figure 5.6. Messages going farther have

higher priority of transmission. The total time taken by this operation is
p—1
Tone_tonall_pers,l =t + miy (p - 1) + tc(l_w};_"} - 1) = O(?TL]))

This is similar to the asymptotic time consumed by the source, and therefore it is
optimal. The shortest paths in the ring are chosen to reach respective destinations.
For the sake of simplicity, assume that the source is py. To reach the PE p,, where
1 <2 < (p—1), the message makes [5] hops. Assume that the source first sends out
the messages destined for the odd-numbered PEs. It then transmits messages to the
even-numbered PEs. Assume for the second case the PE p, with 2 = 2y. This PE
will receive its message with delay t.(y — 1) +mt,, (y — 1) after it was transmitted by
the source. The time left for the source to complete the entire operation is mt,, (y—1),
because (y — 1) is the number of messages still to be transmitted. Therefore, the

“combining time” term used in the equation is for the worst case, where y = (2—2-_11

With wormhole routing, the total number of flits to be transferred by the
source is (p — 1)m. Messages going farther have higher priority of transmission. The

communication time is

T(VVR)onc_to_all_pers,l =15+ 777:1511,(]3 - 1) = O(mp)
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This also represents the time consumed by the source because of the pipelining of

messages and the chosen priority for message transmission.

Special-case: Fully connected 1-D subsystems. Referring to the previous
case, we know that even under a fully connected 1-D subsystem, we still need (p —1)

transfer steps. The total time taken by this operation is
u
To{:f:-to-all_pers,l = tS + ﬂltw (P - 1) = 0(77747)
With wormhole routing, the communication time is

T(pVR)(j:sg_.to_all_pers,l = tS + Tntw (p - 1) = O(?’T?p)

5.4.2 Model-3
Under model-3, the one-to-all personalized communication operation can be done as

follows. For the worst case, we assume pg to be the source:

e First, the processor py passes the w most distant messages to its w neighbors,
so that a destination processor with higher address gets a message for a higher-

addressed processor.

e Second, the processor pg similarly passes the next w most distant messages to
its window, while all processors that received an intermediate message earlier
pass that message to their neighbor at distance w in the next window (i.e.,

window to their right).

e The second step repeats until all processors receive their own message.

Table 5.7 shows a complete example for 12 processors and window size of 3.
The total time taken by this operation 1s

»—1 p—1 2
Tone_io_all_;uers,ii =15 + miy [T‘] + tc(‘—T_l - 1) = 0(771—@)

which has the same asymptotic complexity with the time consumed by the source,

and therefore it is optimal.
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Table 5.7 The detailed steps for one-to-all personalized communication under model-
3.

Po P P2 D3 y2 Ps De Pr Ps Pg P | Pu
Mg_—_11

My, My, M2, | Mg | Myg | M
My, My, s,
Mg, My, Mg

Mg, My, Ma, | Mg my g Mg | Tyg | M1y
M3y, My, Ms

Mg, My, Mg Mg My My Mg mey msg Mg | Mg | My

My my Mo ms3 my Mg Mg iy mg Mg Mg | M1y

With wormbhole routing, all processors receive their messages simultaneously
in time ¢, +mi, [E1], because of message pipelining and message blocking resulting

from the m-flit messages. Therefore, the total communication time is

p—1 D
T(VVR)one_Lo_ald_.pers,B = ts + 7’)’!,( Wtw = O(m’—zu:)

w

which is again optimal because it is identical to the time consumed by the source

with peak utilization of its communication ports and no data duplication.

Special-case: Fully connected 1-D subsystems. For a fully connected 1-
D subsystem, the entire communication operation needs just a single transfer step.
Therefore,

full . — -
Tone-to_all-pcrs,S - té‘ + 77’Ltw - 0(7’1’)

With wormhole routing, the communication time is
i
T(M/R)i:ie_w_ail_persﬁ = tS + ’ITLtw = O(m)
5.5 All-to-All Personalized Communication

In all-to-all personalized communication, also known as {fotal ezchange, each

processor sends a distinct message of size m to every other processor. Unlike
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all-to-all broadcasting, all-to-all personalized communication does not involve any

duplication of data.

Moo M, My_1p Moo My, My pr
My, My, My 14 My o M, Mypoy
: : All-to-all personalized : :
Mopor Mipa My 1,4 communication M,_1o My_ya My 1 p1
O O «+ O -----—-- > O O - 0

Figure 5.9 All-to-all personalized communication.

5.5.1 Model-1 and Model-2

For all-to-all personalized communication, the source processor has different messages
to be transmitted. Although model-2 has multiple outports available, all the
outports are supposed to transport the same message. Therefore, the communi-
cation procedures are exactly the same for both model-1 and model-2.

We form a ring here, as in Figure 5.6. In each transfer step every processor
transfers the m-word message destined for its farthest remaining processor. If only
one direction in the ring is used for all transfers, then the total number of transfer
steps is equal to S0 (p—1) = Y2 i = (~73:,_)1—>’f The total time taken by this operation
is

p—1

p—1
Tall_ta_al[_pers,l = t;+ Z Mty (P - 2) + z tc(p —1 - 1)
1=l

i=1

(p—1 ~1)(p—2
:tﬁmtww?)pﬁc(p ){)(p )

= O(mp?)

However, for the shortest paths, and therefore for smaller communication time,

both directions in the ring should be used. In this case, there are fﬂ—;;,—ﬂ “large”
Lag he i-th “large” st: here + = 1,2 e-l acl
communication stages. In the 2-th “large” stage, where 1 = 1, ,...,f 5 1, each
processor transmits the respective messages to the processors at the same distance

1 to its left and to its right, exclusively in this order. If p is even, then the [95—1]4;11
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(44 - » v . T T 3 3 : :
large” stage implements transmissions in only one of the two directions in the ring.

Therefore, the total number of transfer steps to neighbors is equal to

el 1 1 1.p—1 1
. p— p- o Llep— p— p—1 p-1
2 — — Z
23 - (=1 - D = ity - 12 - 125
p—1,, p—1
= e B
The total time is
rezli—
-1 ~1 2 - -
Tutsoanperss = to+mby((Eo=12 4 | B= 2 3 wi- (12227 - |22
z - i=0 “ =
. p—1.5 p-—1 p—1,, _p—-1 p—1

= O(mp’)

which is asymptotically optimal because each processor sends out O(p) messages of

m words each, and the average distance traveled is O(p).

With wormhole routing, the communication time is

(251

2 i — 1 -1
T(VVR)all_to-all_pers,l = ts +2 Z m iw = ’n’ww((p 5 —] - Lp 9 .D
i=1 & 2
-1 -1
= ¢+ mt([Po=1+ (B2
2 2
= O(mp?)

Special-case: Fully connected 1-D subsystems.  For a fully connected 1-D
subsystem, all the processors use one port at a time to send a single message, and

therefore the entire communication operation needs (p — 1) steps.
U
Taflilo_alt_pers,l =15 + miy (p - 1) = O(mp)
With wormhole routing, the communication time is

T(W R) = t, + miy,(p— 1) = O(mp)

all _to_all_pers,1
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8§ 9

Figure 5.10 Chosen linear arrays in the HOW(10,3,1) for all-to-all personalized
communication.

5.5.2 Model-3

The all-to-all personalized communication operation involves a lot of message
transfers. We will not necessarily derive the most efficient procedure here, because
such a procedure can be of a very complex nature. We present a simple procedure that
comprises two stages. The basic idea is to use the largest possible number of linear
arrays for pipelined message transfers, with the smallest possible number of nodes

per such array. Figure 5.10 shows the chosen linear arrays in the HOW (10,3, 1).

e First stage: this is the initialization stage where local transfers are employed to
move messages to processors that belong to the aforementioned linear arrays.
Every processor passes all relative messages to neighbors in its window(s). For
a given destination message, it passes that message to its neighbor that belongs
to a linear array containing that destination; if two such neighbors exist, the
one closer to the destination is chosen. It takes up to s; = [E=1] cycles to
finish the initialization, which is the same as the maximum number of values

to be sent from a processor to another one.

e Second stage: the linear arrays are used to transfer the values. There are
w linear arrays to be used. We need up to s» = [E=2] — 1 cycles to finish
the broadcasting along the linear arrays, which is the same as the maximum
number of values a processor has to send in a single dimension; messages going

farther have higher priority.
The total time taken by this operation is

Tall_ta_all_pe'rs,B = t,+ 777:(31 + SQ)tw + ’177,(81 + 52 — 1)tc
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1

—-1 -
= s+ 2 miy I’%] + mie(2 f]-)—zu-ﬂ -1)

S

An example with 10 processors and window size equal to 3 is shown in the

following tables:

With wormbhole routing, the communication time 1s

p—1 p
T(M/R)all_to_all_pers,S =15+ 2 777'twl“'“_‘l - O(Tn_)
w w
Special-case: Fully connected 1-D subsystems. For a fully connected 1-D

subsystem, all the processors use all output ports sending different destined messages

to their destination in one single step. The total time taken by the operation is

full =ty + mity, = O(m)

all to_all_pers,3

With wormhole routing, the communication time is

T(W R) = t, + mi, = O(m)

all_to_all_pers,3
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Table 5.8 The detailed steps for all-to-all personalized communication in 1-D HOW
under model-3.

Initial state with all information

P

Po

{0,0}
{01}
{0,2}
{03}
{04}
{0,5}
{0,6}
{0,7}
{0,8}
{0,9}

J4!

{1,0}
{1,1}
{1,2}
{13}
{14}
{1,5}
{1,6}
{1,7}
{1,8}
{1,9}

D2

{2,0}
{2,1}
{2,2}
{2,3}
{24}
{2,5}
{2,6}
{2,7}
{2.8}
{2,9}

Ps3 P4 Ps Ps

{3,0} | {4,0} | {5,0} | {6,0}
{3,1} | {41} | {5,1} | {6,1}
{3,2} | {4,2} | {5,2} | {6.2}
{3,3) | {4,3} | {5,3} | {6.3}
{3,4} | {44} | {5,4} | {6,4}
{3,5} | {4,5} | {5,5} | {6,5}
(3,6} | {4,6} | {5.6} | {6,6}
{3,7} | {4,7} | {5,7} | {6,7}
{3,8} | {4,8} | {5,8} | {6,8}
{3,9} | {4,9} | {5,9} | {6,9}

2
{7,0}
{7.1}
{7,2}
{73}
7,4}
{7,5}
{76}
{7,7}
{7.8}
{7,9}

Ds

{8,0}
{81}
{82}
{8,3}
{84}
{8,5}
{8,6}
{87}
{88}
{8,9}

{9,0}
{9,1}
{9,2}
{9.3}
{9,4}
{9,5}
{9.6}
{9,7}
{9.,8}
{9,9}

Step-1:

exchanging information with all connected neighbors.

P3

Ds

P

Do
{0,0}
right

left

{3,0}
{2,0}
{1,0}

{0,4}
{0,5}
{0,6}
{0,7}
{0,8}
{0,9}

P1
{1,1}
{0,1}

{4,0}
{3,1}
{2,1}

{1,5}
{1,6}
{1,7}
{1.8}
{1,9}

P2
2.2
{0.2)
{12}

{5,0}
{4,1}
{3,2}

{2.6}
{2,7}
{2.8}
{2,9}

P4 Ds Yo
{3,3} | {4,4} | {5,5} | {6.,6}
{03}
{1,3} | {1,4}
{2,3} | {2,4} | {2,5}
{34} | {3,5} | {3.6}
{4,5} | {4,6}
{56}

{9,0}
{8,0} | {8,1}
{7,0} | {71} | {7,2}
{6,0} | {6,1} | {6,2}
{51} | {52}
{42}

{3,7} | {4,0} | {5,0} | {6,0}
{3,8} | {4,8} | {5,1} | {6,1}
{3,9} | {4,9} | {5,9} | {6,2}

pr
{77}

{4,7}
{5,7}
{6,7}

9,1}
8.2}

{7.0}
{7.1}
{7.2}
{7.3}

{8.8}

{5.8}
{6.8}
{7.8}

{9,2}

{8,0}
{8,1}
{8,2}
{8,3}
{8,4}

{9.9}

{6,9}
{7.9}
{8.9}

{90}
{9,1}
{9,2}
{9,3}
{9,4}
{9,5}
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Table 5.9 The detailed steps for all-to-all personalized communication in 1-D HOW

under model-3.(continue-1)

Step-2: transferring the farthest messages through all connected neighbors.

D2

P9

Do

{0,0}
{1,0}
{2,0}
{3,0}

right

left

0.4)
(0,5)
{0.6)

P

{1,1}
{0,1}
{2,1}
{3.1}
{41}

{0,7}

{4,0}

{1,5}
{1,6}

(22
{0,2}
{1,2}
{3,2}
{4,2}
{5,2}
{0.8}
{1,7}

{5,0}

{2.6}

P3

{3,3}
{0,3}
{13}
{2,3}
{43}
{53}
{0,9}
{18}
{2,7}

{6,0}
{5,1}

P4

{4,4}
{14}
{2,4}
{34}
{5,4}
{64}

{1.9}
{2.8}
{3.7}

{7.0}
{6,1}

7)0

{5,5}
{2,5}
{3,5}
{4,5}
{6,5}
{7,5}

{2,9}
{3.8}

{8,0}
{7.1}
{6,2}

Ps

{6,6}
{3.6}
{4,6}
{5.6}
{7.6}
{8,6}

{3,9}
{4.8}

{9.0}
{8,1}
{7.2}

Pr

{7.7}
{47}
{5,7}
{6,7}
{8,7}
{9,7}

{4.9}

{9,1}
{8,2}

{7.3}

Ds

{8,8}
{58}
{68}
{7.8}
{9,8}

(5,9
{9,2}

{8,3}
{8,4}

{9,9}
{6,9}
{7.9}
{8,9}

{9.3}
{9,4}
{9.5}
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Table 5.10 The detailed steps for all-to-all personalized communication in 1-D HOW
under model-3. (continue-2)

Step-3: intermediate step to transfer information.

Po

D1

P4

{0,0}
{1,0}
{2.0}
{3,0}

right

left

{6,0}
{5,0}
{4,0}

{1,1}
{0,1}
{2,1}
{3,1}
{4,1}

{0,4}

{7,0}
{5,1}

D2 D3 Ps Ps P

{‘2,2 {3,3} {4,4} {5,5} {6,6} {7,7}
{0,2} | {0,3} | {1,4} | {2,5} | {3,6} | {4,7}
{1,2} {1,3} {2,4} {3,5} {4,6} {5,7}
{3,2} | {2,3} | {3,4} | {4,5} | {5.6} | {6,7}
{4,2} | {4,3} | {5,4} | {6,5} | {7.6} | {8,7}
{5,2} {5,3} {6,4} {7,5} {8,6} {9,7}
{6,3} | {7,4} | {8,5} | {9,6}

{0,5} | {0,6}
{1,5} | {1,6} | {0,7}
{2,6} | {1,7} | {0,8}
{2,7} | {1,8} | {0,9}
{3,7} | {2,8} | {1,9}
{3.8}

{9,3} | {9,4}
{9,2} | {8,3} | {8,4}
{9,1} | {8,2} | {73}
{9,0} | {81} | {7.2}
{8,0} | {7,1} | {6,2}
{61}

Ps

{88}
{58}
{6.8}
{7.8}
{9.8}

{2,9}
{4.8}

{9,5}

P9

{9.9}
{6,9}
{7.9}
{89}

{3,9}
{4,9}
{5,9}
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Table 5.11 The detailed steps for all-to-all personalized communication in 1-D HOW
under model-3. (continue-3)

Step-4: intermediate step to transfer information.
Do n P2 P3 P4 Ds Ps P Ps Dy
{0,0} | {1,1} | {2,2} | {3,3} | {4,4} | {5,5} | {66} | {7.7} | {88} | {9,9}
{1,0} | {0,1} | {0,2} | {0,3} | {1,4} | {2,5} | {36} | {4,7} | {6.8} | {6,9}
{2,0} | {2,1} | {1.2} | {1.3} | {24} | {3,5} | {46} | {57} | {6,8} | {7.9}
(30} | (31} | {32} | {23} | {3.4) | {45} [ {5.6} | {67} | {78} | {8.9}
{41} | {42} | {43} | {5.4} | {6,5} | {7,6} | {8,7} | {98}
{52} | {53} | {6.4} | {75} | {86} | {87}
{63} | {74} | {8,5} | {9,6}
{40} | (5.1} {48} | {59}
5.0} [49)
{6,0} {3,9}
right {+ | { {0.4}
{} {15} | {05}
{2,6} | {1.6} | {0,6}
27y [ {17} | {07}
{1.8} | {3,7} | {0,8}*
0oz |09
{38} | {19}
[2,9)
left sl |0
{94} | {84} | {}
{9,3} 1 {83} | {7:3}
{9.2) | {82} | {7.2}
{91} | {6,2} | {8,1}*
{9.0} | {71} | {}
{8,0} | {6,1}
{7,0}




Table 5.12 The detailed steps for all-to-all personalized communication in 1-D HOW
under model-3. (continue-4)

Step-5: intermediate step to transfer information.

Po

P3 Ps Pr

Pg

{0,0}
{1,0}
{2,0}
{3.0}

{4.0}
{5,0}
{6,0}
{7.0}
{8,0}
{9,0}

right

left

Y4

{1.1}
{0,1}
{21}
{3,1}
{41}

{5,1}

{6,1}
{7.1}
{8.1}

{8,1}

P2 Dq Ps

{2,2} 1 {3,3} | {4,4} | {5,5} | {6,6} | {7,7}
{0,2} | {0,3} | {1,4} | {2,5} | {3,6} | {4,7}
{1,2} | {1,3} | {24} | {3,5} | {4,6} | {5,7}
{3,2} {2,3} {3,4} {4,5} {5,6} {6,7}
{4,2} | {4,3} | {5,4} | {6,5} | {7,6} | {8,7}
{5,2} | {5,3} | {6,4} | {7,5} | {8,6} | {9,7}
{63} | {7.4} | {8,5} | {9.6}

{6,2} | {7,3} | {0,4} | {0,5} | {0,6} | {0,7}
{7,2} {8,4} | {9,5} {3,7}

{1,5} | {2,6}
{1.6}

st Wane
N
[

{7,3} | {84}
{7,2} | {83}
18,2}

Ds

{88}
{5,8}
{6,8}
{7.8}
{9,8}

{4.8}

(0.8}
{28)
{38)

{1.8}

{9,9}
{6,9}
{7.9}
{8,9}

{5.9}
{4,9}
{3,9}
{0,9}
{1,9}
{2,9}




CHAPTER 6

COMMUNICATION OPERATIONS ON 2-D HOW SYSTEMS

Assume symmetric 2-D HOW systems with p processors. The numbers for rows
and columns are then 0,1,---,,/p — 1. For example, Figure 6.1 shows the processor

addresses in the 2-D system HOW (5,3, 2).

Poo | Por | Po2 | Pos | Pod
P1o | P11 | P12 | P13 | Dua
P20 | P21 | P22 | D23 | P4
P3o | P31 | P32 | P33 | Daq
P10 | Pa1 | Pa2 | P43 | Daa

Figure 6.1 Processor addresses in the HOW (5, 3, 2).

6.1 One-to-One Communication
We assume, without loss of generality, that pgy is the source processor and that the

destination is at distance .

With SF routing, sending a single message containing m words takes t, +mit, [+
to(l — 1) time, where [ is the number of links traversed by the message. For a 2-D

HOW system with a total of p processors (having /p rows and ,/p columns) and

. . . y—1 . . . .
window size w, [ is at most Zf‘/’z) 1, and therefore the time for a single message

transfer has the upper bound of

Py 20 1y = o D)

Tone_to_one - ts + 2771151,,[
w w

assuming no contention with other messages at intermediate processors.

83
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With wormhole routing, for a single message transfer on the 2-D HOW system

the upper bound 1s

\/ﬁu_ 1] +{(m —1)t, = O(mw\gz)

T(M/R)one_to_one - ts + th[- )

6.2 One-to-All Broadcasting
6.2.1 Model-1

For the best possible performance, we first have to determine which of the row or
column window the source belongs to is closer to the center of that row or column,
respectively. If it is the row window, then the source broadcasts within that row, and
this is followed by broadcasting from those row PEs into all columns. Otherwise, we
begin with column broadcasting. However, here we assume the worst case, where
the source PE is in the first window of the corresponding 1-D HOW row and column
subsystems. Using the same notations as for the 1-D HOW system, s; represents the
number of transfer steps needed to fill the first window in this row and s; represents
the number of transfer steps needed in the second stage to copy the values from the
first window into the remaining windows of this row. We already know the following

relations among s1,8,, and w

s1 = [log(w + 1)]

2= [(Vh—2)/u]
This operation is done by first broadcasting within the aforementioned row and
then from that row within all the columns. The communication time under model-1
with SF routing has the upper bound

b + 2t [log /B + t(2log Bl —1) = O(mlog/7)

(
T'I L = 4
one_to-all,1 ts + 2mt, (51 + 89) +1(2(51 +89) = 1) = O(mlogw + m%)

it (Vp—1)>w
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With wormhole routing, the upper bound is
ts + 2t,[log /Bl + (m — 1)ty = O(m + log/p)
if

e =
T(W R) one-to_atl 1 ts + 2ty (s) 4+ $2) + (m = D)t, = O(m+logw + wp)

assuming that incoming data can be stored locally and can simultaneously be trans-

ferred to the next PE in the path.

Special-case: Fully connected 1-D subsystems. For fully connected
subsystems that form a 2-D generalized hypercube, the procedure is similar to

that for (,/p — 1) = w under model-1.
Tofy:eliw,a!l,l = ts + 2mty Dog \/iﬂ ~+ tC(Qflog \/Z_ﬂ — 1) = O(mlog \/ﬁ)
With wormhole routing, the communication time is

T(WR)IE o iy = ts + 2tu[log /B + (m — L)ty = O(m + log \/p)

6.2.2 Model-2 and Model-3

For the one-to-all broadcasting operation, there is only one value to be sent, and
therefore the whole procedure for model-3 is exactly the same as that for model-
2. Figure 6.2 shows two different methods used for one-to-all broadcasting. The
numbers of communication steps for the two methods are the same. However, method
(b) is easier to program, because it is an extension of the respective method for the
1-D HOW system. This method first broadcasts within the row and then within all

columns. The upper bound on the total time taken by this operation is

-1 -1
Tonetoaitz = ts + 2771tw[\/ﬁw 1 + tc(g(%_] - 1) = O(m—\/—ij)

w

With wormhole routing, the upper bound is

-1
T(WR)one_to_all,Q =g Qtw"\/fw " -+ (771 — 1)tw — O(m + ﬂ)

w



86

O O @) O O O
O O O O O O
O O O O O O
O O O O O @) O O O O
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(a) step-4 {b) step-4

Figure 6.2 One-to-all broadcasting under model-2 and model-3 with two different
methods, both of which have the same number of communication steps. A filled
circle means that the current processor has already received the message broadcast
by the source. All communication steps are shown here. We assume that w=3. For
the worst case, we assume pgg to be the source.
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assuming that the dimension to be traversed is changed just after the first flit is

received.

Special-case: Fully connected 1-D subsystems. It is easy to see that for

fully connected 1-D subsystems, one-to-all broadcasting needs just two transfer steps.

Therefore,

piull =1, + 2mity, + t. = O(m)

one-to_all,2 = 73

With wormhole routing, the communication time is

T(WR)M catt = bs 4 2ty + (M~ D)ty =t + (m + D)ty = O(m)

one._to

6.3 All-to-All Broadcasting
The following table 6.1 shows the initial message state and the required final state

for all-to-all broadcasting in a 5x5 system.

Table 6.1 The initial and final state of HOW(5,3,2).

Initial state of HOW(5,3,2) Required final state
Moo | Mo | Mo2 | Mos | Moa || MM | MM | MM | MM | MM
Mig | Mg | Mig | Mis | Mag || MM | MM | MM | MM | MM
Mag | Moy | Mao | Mas | Mea | MM | MM | MM | MM | MM
mao | M3y | Mas | Mys | mMag || MM | MM | MM | MM | MM
Mag | May | Mag | Mas | Maq || MM | MM | MM | MM | MM

where each processor receives messages from all other processors, and therefore

Moo Mo Mg Moz Moy
1o Mg My Magz Mig
MM =<¢ myg Mmao1 Mas Moz May
3.0 Mz1 M3z M3z ™3 .4
4o May My My3z 144

The procedure repeats many times the corresponding procedure for the 1-
D HOW system. That is, processors first exchange messages along rows, so that

each processor has ,/p messages at the end for the processors on its own column.
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Then, processors exchange their ,/p messages along columns by repeating the same

procedure /p times within the columns.

6.3.1 Model-1
For model-1, there is only one output port of each processor we can use at a time.
In order to let every processor pass some information to a neighbor, we deliberately
choose some channels to form a ring on each row/column. We assume pipelining of
messages along rows and columns.

We start with all-to-all row broadcasting that takes time ¢, + 7 = &, + (/P —
L)ymty, +1t.(y/p — 2), as derived for the 1-D HOW system in Subsection 3.1.1. The |/p
column broadcasts then take time /p7, because all-to-all 1-D HOW broadcasting is

repeated ,/p times. The time taken by the entire operation is

Tall-to-all,l = ts + (1 + \/]5>"Yn’tw(\/Z—7 - 1) + (1 -+ \/ﬁ)ic(\/ﬁ - 2) + tc

= ts+ (p— 1)miy + (p— V2 — 1)t. = O(mp)

The last . term is for switching from row broadcasting into column broadcasting.
This asymptotic time is optimal because each processor can use only one output
port at a time, and therefore each message will make O(p) hops to visit all O(p)

Processors.

With wormhole routing, within each row the entire time is t; + m(\/]_J — Dy,
assuming the formation of a ring. This is because each processor starts receiving
flits with the first data transfer, pipelining of messages is applied, and the total
number of flits each processor receives is m(,/p —1). Similarly, for columns the time

is m+/p(\/P — 1)tw. The total time is

T(WR)autoau1 =ts +m(l + /)P — Dty =ts + mp — 1)t, = O(mp)
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Special-case: Fully connected 1-D subsystems.  As for the 1-D subsystem,
there is one ¢, that will be involved in the broadcasting procedure within the row

and the column. The time taken by the entire broadcasting procedure is

T e = ts + 2mity (/B — 1) + tc = O(my/p)

assuming again two steps (row-wise and column-wise steps) in the implementation.

With wormhole routing, the communication time is still
1
T(T/T/R)glt;_to_all,l = tS + 777’(\/]—5 + l)tw = O(?’I’L\/ﬁ)

6.3.2 Model-2
Based on the algorithm proposed for the 1-D HOW system, the total time taken by

this operation is

v —1 -1
Tati_to_all2 = t3+(1+\/]_5)mtw(|r\/_w ]+x)+tc(1+\/§5)([—\[w—~]+a;-—1) = O(mg)
where z is the largest integer less than ‘{f—: The algorithm for the 1-D HOW system

is used (1 + ,/p) times, once for the rows and ,/p times for the columns.

With wormhole routing, the communication time is

—1
T(M/R)a”_m_aug =t + 27ntw([\/~w ] + ZL)(l -+ \/]3) = 0(771—5)-)

Special-case: Fully connected 1-D subsystems.  For the 1-D subsystem, only

two transfer steps are needed to accomplish broadcasting. Therefore,

ull
Tc{ll-to-all,Q =t; + (1 + \/p)miy, = O(m.\/p)

With wormhole routing, the communication time is

T(I’I/R)iﬁl_lto-au,z =t + (1 + /p)mty, = O(my/p)
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Table 6.2 Messages received in the first two detailed steps for all-to-all broadcasting
within the rows of the HOW (5, 3, 2) system.

Initial state Step 1 Step 2
Tgg | Moy | Moo 1 Mg | Mg Mo1 | Mpg | Moo | Mlog | Moy M4 Moo,
Moz | M2 | o1 | Moy | Mo

Moz | Moz | Moz | Moy | Mg
Mgy | TMog | Mgy

Mg | My | Mo | Mg | Mg My | Mayg | Mo | Mg | My M4 mio
M2 | My | My | M1 1 My
M3 | Mg | Mg | Tlyo | s
Mg | Mg | Mgy
Moy | Moy | Moo | Mag | Moy Moy | g | MTog | Mg | Moy Mo4 Mg
Moo | Moy | Moy | Moy | Moy
Moz | Mog | Mag | Moy | Mag
MMog | Moy | Ty

Tag | Mgy | Mzo | Ty | Mg 31 | Mg | Mg | Mag | M3y M34 LAY
Mgo | Mge | Ty | Mgy | Migo
T3 | Mgz | Tgy | Ti3g | Mas
Migg | T3q | M3y
Mag | Mgy | TMgo | Mgz | 44 M4y Myp | Tlgg | Mg | TMay 44 My
Mg | TMas | Mgy May | Ty
Mgy | Tas | T4z | Mg | g3
TNaq | TMaq | TNyy

6.3.3 Model-3

Table 6.2 shows the first two steps involving all-to-all broadcasting under model-3.
It is very similar to the procedure for model-2. Since each individual processor can
send different messages at the same time, we do not need to split any stage. The

total time taken by this operation is

Tott_toaus =1ts + (1 + \/]S)mtw[@;‘l-] + (1 + \/]3)([—\/—%——1} - 1) = O(mi%)

w

With wormhole routing, the communication time is

p— 1
T(W R)aii_to-atis = ts + mty (L/_—]T} (1+p) = O(m—g)
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Table 6.3 The initial and final states for one-to-all personalized communication in
the HOW(p,w,2).

Initial state Required final state
Moo Mo, M2 Mo3 Mo
Myp My My Tty 3 Mg

M2 7712’1 771-2’2 777,2,3 777,-_2,4 7?7;0)0 Mg my 2 Mg.3 77'110,4
™m3,e 7Mi3,1 M32 Mg 3 M34
My 0 L7 N1 Tn,4,2 My 3 g4

myo myy Mya | M3 | Mg

Moo | Moy | M2 | Mag | May
msgo 7713’1 Mg o | MM33 77?,3,4

¥ )

Mg | Mgy | Mg | Mgz | Ty g

Special-case: Fully connected 2-D subsystems. For the 2-D gener-
alized hypercube, the whole broadcasting procedure needs just two transfer steps.
Therefore,

ull
Tc{ll_to_all,i& = tS + (1 + \/ﬁ)ﬂltw = O('I’I?,\/];)

With wormhole routing, the communication time is

T(WR) o ans = ts + (1 v/B)miby = O(m/p)

6.4 One-to-All Personalized Communication
Table 6.3 shows the initial state and the required final state for one-to-all person-
alized communication in the 5 x 5 2-D HOW (5, 3, 2) system. We assume, without

loss of generality, that pgo is the source processor.

6.4.1 Model-1 and Model-2

Because of personalized data, the same procedure is applied for model-1 and model-
9. Restricted by the availability of only one output port at a time for each processor,
independently of the window size it will take (,/p — 1) transfer steps along a row

or a column for a processor to send personalized data to all other processors. In
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the first phase, the source processor, assume pgg, passes messages within its row for
all processors in the corresponding columns. Messages going farther have higher
priority of transmission. This process is implemented as ,/p one-to-all personalized
communications within the row (i.e., 1-D HOW system). At the end of the first phase, .
each of the first row processors will have ,/p messages. All | /p messages of each first
row processor will be transferred in the second phase along the corresponding column
applying again one-to-all personalized communication. The total time taken by this

operation is

Tone_m_all_pers,l =15 + (\/ﬁ + 1)77'wa(\/:75 - 1) -+ tc(l + \/ﬁ)(l'

=ty (p — Drmty + 21+ VA([LE2] = 1) = O(mp)

(W]

With wormhole routing, the communication time is

T (W R)one_toatipers,y = ts + (1 + /P)mity (/P — 1) =t + miy,(p — 1) = O(mp)

Special-case: Fully connected 1-D subsystems. Referring to the previous
case, we know that even under a fully connected 1-D subsystem, we still need (/p—1)
transfer steps along each row and each column. The total time taken by this operation
is
u ~
Tg;ﬁz_to-all__pers,l = ts + (\/p + 1)’”]'7510(\/5 - 1) = tS + (p - 1)777,tw = O(mp)

With wormhole routing, the communication time is

T(W R)/ te+2t, (/P —2) + (p— )mt, = O(mp)

one-lo_all_pers,l =

6.4.2 Model-3
We first send the messages that must travel the longest distance using simultaneously

all column and row connections. (Note: it is a different method than that used for
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model-1.) Figure 6.3 shows the exact steps needed for the HOW (5,3,2) system,

with pgo being the source. The number of message transfer steps is 2{"/}3_1], the
w

same as the diameter of the system. The upper bound on the total time is

-1 -1
Tone-to,all_pers,:} = ts +2!‘\/ﬁw ]77Q'tw(\/.73“ 1) +tc(2[\/ﬁ ] - 1)(\/5._ 1) = O(T)’I,E
w

w

which is optimal.

With wormhole routing, the upper bound is

~1
T({/VR)one_to_all_pers,B - ts + 771tw2[\/]3 ](\/2_5 - 1) - O(mg)

w w

Special-case: Fully connected 1-D subsystems. For the fully connected
1-D subsystem, the whole communication operation needs just two transfer steps.

Therefore,

ull
Tcﬁme-to_all-pere,(& = ts + (1 + (\/]3 - 1))7771@ = O(m p)

With wormhole routing, the communication time is

T(VVR) i’s(lzl_to-all_pev‘s,B = té‘ + \/]_57'”;&“) = O(m\/ﬁ)

6.5 All-to-All Personalized Communication
Tables 6.4 and 6.5 show the initial state and the required final result for all-to-all
personalized communication in a 5 X 5 2-D system. Two phases are implemented

agaln.

6.5.1 Model-1 and Model-2
We form rings on rows and columns. In each transfer step the message size is m
words and every processor tries to transfer the message(s) destined for its farthest

processor. We start with row transfers and continue with |/p all-to-all personalized
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(c) third step (d) fourth step

Figure 6.3 One-to-all personalized communication under model-3, for w = 3. The
Cartesian coordinates of destination processors are shown as pairs of numbers. A
shaded circle means that the corresponding processor has already received the person-
alized message sent by the source.
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Table 6.4 The initial state for all-to-all personalized communication in 2-D HOW

system.
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Table 6.5 The final result for all-to-all personalized communication in a 2-D HOW

system.
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communications within columns. Based on the implementation of (/7 + 1) all-to-all

personalized 1-D HOW operations, we get

ok

VP~ .]2+x\/]_7——-1j)+

Tall-to_all_pers,l =15+ (\/]3 + 1)777'75111([ 9 L o

(VDY 29 o Y222y 4 | B2 )) = O

2

With wormhole routing, the communication time is

51, ~1 .
T(W R)ati_ioatt_pers,, = ts + (/P + 1)777‘75111(([——‘7-_12 + L\/ﬁz ] = O(m?f/“)

Special-case: Fully connected 1-D subsystems. For a fully connected 1-D
system, because all the processors use one port at a time to send a single message,
the total time taken is the same as that for the regular case.

The total time taken by this operation is

” (p = 1)1 (p—1)p
Tafll_l:o_all_pers,l = tS + Tn’tw \/_ -+ tC( 9 \/‘_ - 1) = O(Tn'palg)

Z F4

With wormhole routing, the communication time is

T(WR)ut =1, + (VP — 1)(p — 1)m = O(mp*/?)

all _to_all _pers,1

6.5.2 Model-3

The implementation of this operation requires the following steps:

e Each processor transmits ,/p values to each of the other ,/p — 1 processors on
its row, to be later distributed on the corresponding columns. At the end of
this step, each processor has received (\/p — 1) * \/p messages. This operation
is equivalent to ,/p all-to-all personalized communications on an 1-D HOW

(row).
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e In this step, each processor transmits the values it received earlier and its own
VP — 1 values to the other processors on its column. Since /p — 1 of the
messages received in the first step were destined for this particular processor,
the number of messages to be transmitted is (\/p—1)*,/p—(\/p—1)+(\/p—1) =

(P —1) % /D

So the total number of all-to-all personalized 1-D HOW communications is

VPP — 1) + /P = p. Therefore, the total amount of time is

p—1 p—1
Tall_to_all_pers,S = ls+p (2 'nltwf—\/‘w ] + mtc(—‘ [\/—w -] - 1))
3/2
= O(m—)
w

With wormhole routing, the time is

p-—1 p*?
T(T/‘/R)a!l_w-all_persﬁ = ts =+ P m,thf\/iw —l = O(m w

)

Special-case: Fully connected 1-D subsystems. For a fully connected 1-D
subsystem, all the processors use all output ports sending different destined messages

to all accessible processors. The total time taken by the operation is
u
Tcﬁ?_towail_pers;} = tS + (p - 1)77’Llfw = 0(7”}7)
With wormhole routing, the communication time is

T(VVR)illzl_lto_al[_pers,l% =15+ (p - 1)’”“-10 = O(mp)



CHAPTER 7
COMMUNICATION OPERATIONS ON BINARY HYPERCUBES

We compare here the performance of 2-D HOW systems with that of binary
hypercubes for the studied set of communication operations. The (binary) hypercube
is an interconnection network that has been widely used in parallel processing,
primarily in the 1980’s. A tremendous number of algorithms have been developed
for this system. The d-D binary hypercube or d-cube contains 2¢ nodes. Two nodes
are neighbors if and only if their d-bit unique addresses differ in a single bit. A
hypercube with p nodes has (£ logp) edges.

No matter what communication model we are using (such as model-1, model-2,
or model-3), the number of transfer steps is the same and depends on d = logp.

The examples shown in this section are for the 16-processor hypercube or 4-
cube.

Of course, the one-to-all communication procedure is different from the all-to-
all communication procedure. For one-to-all communication, the channels used in
this communication procedure are shown in Figure 7.1. In each step, there is only
one message sent along each direction. The number of channels and which channel
will be used are shown in Figure 7.1.

For all-to-all communication, in each step there are 2'°%6P~! = 21-1 = § channels
to be used and the pairs of processors exchange their information. Of course, different
channels will be used in different steps. Figure 7.2 shows the channels involved in
the 4-cube for all-to-all communication.

For the sake of simplicity, we restrict our comparisons to model-3, the most
powerful communication model, by also assuming the store-and-forward routing
technique. In fact, the equations we derive for the hypercube are also valid under
model-1 and model-2. First, we briefly evaluate communication operations for

hypercubes [5]. Then, comparisons with HOW systems follow in Section 6.

99
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{(cy step-three (d) step-four

Figure 7.1 One-to-all communication procedure with 16 processors, for a hypercube
system.

(c) step-three (dy step-four

Figure 7.2 All-to-all communication procedure with 16 processors, for a hypercube
system.
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7.1 One-to-One Communication
Routing in the hypercube is carried out by first producing the XOR (exclusive-
OR) result between the d-bit source and destination addresses and then routing the
message in those dimensions where the bit in the XOR result is equal to 1. Two
addresses may differ in up to d bits, and therefore the maximum distance is equal to
d = logp.

Therefore, the upper bound on the communication time is

Tone_to_one = ts + mity, logp + (logp — 1)t. = O(mlogp)

7.2 One-to-All Broadcasting

The implementation of this communication operation requires the traversal of all
d dimensions. Despite the fact that the order chosen for the traversal of the d
dimensions does not matter, the description here assumes that this traversal starts
with the highest dimension. In the first phase, the source processor sends the message
to its neighbor in the (d -- 1)-th dimension. In the second phase, the source and the
processor that previously received the message send a copy to their neighbors in the
(d — 2)-th dimension. In general, in the s-th phase, the 257! processors that have a
copy of the message send a copy to their neighbors in the (d — s)-th dimension, for
1<s<d.

The communication time required here is the same as the worst-case commu-
nication time required for one-to-one communication, the only difference being that
for one-to-all broadcasting the message is stored in the intermediate nodes while
for one-to-one communication the message is not stored in the intermediate nodes.
Therefore,

Tone_to_at = ts + miy, logp + (logp — 1)t = O(mlogp)
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7.3 All-to-All Broadcasting
This operation is carried out in d = logp steps. Pairs of processors exchange infor-
mation in each step. Each step doubles the size of the data to be exchanged between
processors in the next step because processors concatenate their current data with
the data they receive. Each step 4, for 1 = 1,2, ...,d, implements communications in
a different dimension 7, and the size of all messages in step 4 is (2°"!m) words. The

communication time is

logp
Tall_to_all - tS + (Z 21~17n)t2‘) "T" (lng - 1>tc
1=

1
= t, +m(2'°? — 1)t,, + (logp — 1),

= ty+m(p— Dit, + (logp—1)t. = O(mp)

Table 7.1 shows the entire procedure of all-to-all broadcasting in the 4-cube.

7.4 One-to-All Personalized Communication
The communication patterns are similar to those for one-to-all broadcasting.
However, the amounts of information to be exchanged in different steps differ
dramatically. In step ¢, for ¢ = 1,2, ..., d, a processor that has received earlier data
(or the source processor for : = 1) sends half of its data to its neighbor in dimension
i; the set of 297% values sent to that neighbor is for the 2¢7% processors with the
higher addresses if the neighbor has a higher address (otherwise, the values are for

the 247 processors with the lower addresses). The communication time is

log p

Tone_to_all—Pers = I+ (Z Zlogp—i'm)t’w + (lng - 1)tb
i=1
logp—1 ]
= 1+ ( Z 2'm)t, + (logp — 1)1,
1=0

= t,+m(2"987 — 1)t, + (logp — 1),

= ty+mp— Dty + (logp— Dt. = O(mp)

Table 7.2 shows the details involved in this communication.
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Table 7.1 Detailed information for all-to-all broadcasting on the hypercube.

Initial state

po with message myg

p1 with message m,

pp with message mo

pa with message mg

pa with message ng

ps with message ms

ps with message mg

p7 with message my

pg with message mg

ps with message mo

pi1g with message mjg

p11 with message my;

pr2 with message my2

p13 with message mia

p1a with message m4

p1s with message mys

First step (among two processors with first bit difference, such as py and p;.)

mg, My mg, M mz, m3 my, m3
M4, M5 Mg, Ms me, 1My g, My
ms, My Mgy Mg miyo, M1y g, Myl
miz, M3 mMy2, 713 M4, M5 Mmi4, Mis

Second step (among two processors with second bit difference, such as py and ps.) |

TRO,ML,T2,M3

mMg,TMny,M2, 13

Mg,y M, 13

TG,y 1 7713

Ty, TTLE 110,117

74,725,716, 117

T4 ,Ts 716, TIL7

T4 115,170,710 T

mg,me,m1q,7M1

g, 19,110,111

TE, TG, 71107181 L

Mg,Img,1myg,M1y

My12,7113,7M14,IN015

12,713,778 14,1M15

TIy2,7101 3,771 4,701 5

M)12,1M13,17114,7015

Third step (among two processors with third bit difference, such as pg and p4.)

Mg, My, 2, M3

T4 TG TG, TI0T

T, ,TTL2,1T3

TN4,IM5 16,117

O, 2, TR

4,105,106, 10T

T,y 1T 2,13

T4, TILS TG, 17

g, MLy Mg 13

1Ly 1TV 110G, TTLT

Tng,Iny M, Ing

9T 4,715 TG T

MO, ,Te, Mg

4,77k5,7016,707

TG, Ty, T2, TG

My, My e, Ty

Mg, Mg, 716,711

Ty2,M13,77014,1015

Mg,MMy,M1p,Mi}

Ty2,9113,1M14,T015

TMg,71g9,mM 10,71}

M12,TN13,7714,77015

Mg, Mg, 1M10,1M11

™M12,7013,M14,1M 5

MR, ING, 10,7

12,7 13,7014,7701 5

Mg ,1mMg,110,71]

M2, 1e13,M14,75

TRR,TNG,1TL10,TT Y}

TMy2,i1E3,M14,7M15

mg,ig, Mg,y

TE12,71013,1701 4,701 5

Fourth step (amo

ng two processors with forth bit difference, such as pg and ps.)

MY,y T2, TG
Ty T, TTLG , 17U
TR, MG ,T10,1T1 ]

My2,M13,M7E14,715

TIQ Ty ,1712,TI3
T4 TS TG, 7107
mMg,Mg, 71 o,Mny1

TN12,71013,77014,T7015

Mg, 11,112,113
T4, TTLE TG, TILT
™mMg,mo, Mg, M1y

1A ,771]3,77114,77115

g, T2 ,IN3
T4 IS NG, TNT
118,719,110, T71]

TMy2,M13,7714,M5

10,17, T, T3
4,15, 1706, 7T
Mg, 719,TN 10,711 ]

12,713,714, 15

o,y M2,
T4 ,75,g, 17
g, 1ity,mMmi1o,771 1

12,113,7004,M1 5

T ,TI) T2, TNS
T4 T TG ITLT
ML8,79, 110,71 1

T12,I1 13,714,701 8

TG, T, T2 ,ITN3
Mg, 1ILE , 1TL7
71,19, 710,711

TN12,713,TM14,11 5

M,y TR, TR
M4 ,Ms, NG, TNY
TR, TG, 110,711}

mMy2,M13,M14,7015

TN, Ty, TN2,T1L3
FE Y S Y L T AN 1
TR, TN, 0,11 )

Ty2,TE3,T14,1101 5

RO, Ty ,TPL2,TTL3
L4 ,TILE TG, 1LY
g, g, 10,1 L

M12,MM13,17214,715

TIQ,TI 712,713
Tre4 15 ,ING 17
TG, TG, 111,771 )

12,713,714, 5

Mo, My, 72,713
L4 TG TG, TTLT
Thg,1129,TI 10,111 1

TMN12,713,714,7115

RO, T2,
T4 ,T05 TG, LT
me,"ig, 110,11

TM12,7013,77014,101 5

QT T2, TS
TTL4 115, TG, 11T
Mg LY, 7110171y

M) 2,713,701 4,715

T, M1,1M2, TNy
N4, 105,10 ,TTLY
TILR TG, TT210,710 11

TN12,1113,7M 14,1715
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Table 7.2 Detailed information for one-to-all personalized communication on the
hypercube.

Detall information about one-to-all personalized communication.

Initial state
po with message D1 D2 D3
Mg, My, 7,3 with no message | with no message | with no message
Mg, M5, 106,107
Mg, Mg, Mg, 1M1
My2,77013,77014,1M5

P4 Ps Ds b7

with no message | with no message | with no message | with no message
Ps Ps Pio bu

with no message | with no message | with no message | with no message
P12 D13 D14 Dis

with no message | with no message | with no message | with no message

First step: Message transfer from pgy to pg.

™Mo,T7y,779,1 3
My, M5, Mg, 117

g, Mg, M10,MM11
TM12,77713,71014,7M15

Second step: Message transfer from pg to p; and from pg to pg.
mg,Me, 1My, Mg ™my,"™Mg, s, 17

Mg, 110,112,714 | T, TT1,77113,770 5

Third step: Message transfer from pg to p2, from p; to ps,
from pg to pig, and from pg to p13

Mg,y My, M5 ™Mo, Mg M3, 1My

Mg,M 2 Mg, 3 10,714 1y, Ms

Fourth step: Message transfer from pg to pg, from py to ps,
from py to pg, and from p3 to pv;
from pg to pyo, from pg to pi13, from pig to P14, and from py; to pis.

My my Mo ms
My M5 Mg My
g My mMip 33!
mya M3 Tly4 Mis
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7.5 All-to-All Personalized Communication
This operation also requires logp communication steps. Each processor contains p
values in each step. In step z, forez = 1,2, ..., d, each processor sends half of its data to
its neighbor in the i-th dimension; these data are destined for processors whose the
i-th bit in the address is similar to that of the chosen neighbor. The communication
time 18

Tall_to..ail__pev‘s = ts + (log p)(gm)tw + (logp - 1)756 = O(Tnp 1ng)

Tables 7.3, 7.4, and 7.5 show the details involved in this communication

procedure.
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Table 7.3 Detailed information for all-to-all personalized communication on the
hypercube.
Detailed information for all-to-all personalized communication.

Initial state

po with message
MR, IGL TN02.7203
TRO4,1N 05,706 TN0T
TQ§:709,110,10+7120,11

M, 12,70, 13,770,14,770,15

py with message
LU To RLLLE S RLLLS SALLLS &)
TMigq,M 5,015,007
TRIGVEGTEL 160721, 11

™M, 12,71,13.:3781, 14,701,156

p2 with messags
mM20,M2Y N3, T3
TR ,TR5, TG, 2T
M2g,726,M2,106,M2, 11

M ,12.7712,13,772,14,M2,15

ps with message
M0, MIL NG MGy
MR4, N5, 185,y
™M3g,.mM39,M13,10.73,11

™M3,12.73,13.M3,14.7M3,15

p4 with message
M40 .41, 42,743
TR, TTE45 TG, 4T
48,149,711 4,10,104,11

T4 12,7704, 13,704 14,7784 15

ps with message
RS- U REALY-S WELT: PR 1
Ng4. 55,56, M7
TER L RBEG-TE 107725, 11

s 12475, 13.M5,14.M5,15

ps with message
MBEINGE TG TGS
M4, NG, NG MGT
MGG TG, 10,7106, 11

TRE 12,716,135 1406, 15

p7 with message
Mg M7 NTR M
7 TSR, My
7”75,"!79,7‘1}7‘10,1717"1

T, 12,717 1307 14,715

pg with message
mgg,mgy LY, MBI
T84, TNZE, TMEGINBT
MGG LG ITIE 10,718,111

Mg 12.78,13,718,14.718,15

pg with message
™mgQ .Y, YR Mg]
MY4, N5, 79677157
7GR TM9G. MG 10,779 11

TG, 12,10,13,M9, 14,176,185

p1o with message
™mi0,0,7M10,1.710,2,:710,3
M0, 4,77210,5,T010,8,7010,7
T10,8:72110,9.771190,10.7210,11

T19,12,710,13,77810,14.7110,15

p1: with message
M131,0,M11,1.7011,2,711.3
TRy, 4,771,501 8,T011,7
M11,8,M11,9.751,10,M 11,11

TPE, 12,13, 1309701) 14,011,156

piz with message
M3, 0,112,1,7112,2,7M112,3
My2,4.M12,5.7M12,6:712,7

M12,8:7212,9,112,10.7112,11

TRL2 §2,:712,13,7112,14,:77012,15

p13 with message
M33,0,7413,1,7113,2,7013,3
T13,4,713,5.7713,6,MM13,7
™M13,8,713,0,713,10.7M13,11

TM13,12.M13,13.M13,14.7 13,15

p1g4 with message
14,0, 14,1,9014,2,7814,3
TR14 4,14 5.7014,6.7014,7
T4 8:M14,6.77814 10,714,111

TE14,1247M014,13,770 14 14,M114,15

p1s with message
Mm15,0:7115,1.7115,2,7M15.3
M5, 4,.7M15,5,M15,6,M15,7
ME8M15,0,715,10,7715, 11

TYE 12,7015 1311015, 14,7015 156

First step (amo

ng two processors with

first bit difference, such as pg and p;.)

TROG LG, RO, T2
Y4 T4, T05 L6
LG8, 10.711,10

MO, 12,71 12,710, 14,71 14

TROLTR11 03,13
MES LS, TT LT
Mg M9, 11.™M 1,11

™M 13.71,13.70,15,71,15

TM2g 30, ag Mg

g, T34, MG, M 36

TR2E .38 ,TT2 10,7713, 10

T2 12, IE3,12472 14,73 14

may,T31,™ag,mag
TLyE RS, DT T
Mg, MEsMa,11.M3, 11

M2,13.773,13,72,15.M3 15

M0, MEQ AR 52
M44,71 54,746,756
4G, IEE, 14, 10,1725,10

TG, 12,775,124 14,7715 14

41 ,IME] 3,53
45 TRES M7 TG T
T4g NG,

1775 11

T4, 13,715,13,914,15,705,15

TG .JTRT70,.™Mg2 17

TG4 TN T4 GG TG

TEETTELIILE 10,77 10

MG, 12,707,125 14,7 14

LLA3:D ALY & RERLI R RN LL &)
MGE 75, MET,M77
TGO NTENG, 11,77 11

TG, 13T, 13,TNG15,.TT 15

MEO.MYG B, NGD
M4, Y4, MEG.TIGE
TGS .98, M, 10,710,10

Mg, 12,MM19,12,MM8 14,719, 14

™g1,7Ng1 771831793
TMgE, TG, TgT7 NGT
TG MGG INE, 11.G, 1}

Mg, 13,79,13,MM8,15,79,15

T™106,0:7211,0,7110,2,7011,2
M10,4:711,4M10,6.711,8
TN1Q,8:T11,8,77010,10.7011,10

10,122,111 ,12,7110,14,77011,14

M10,1:711,1,7010,3,M11,3
T10,5,711,5.M 10,7711, 7
0,971,970, 11,7118

T 10,134771%,13,7010,15.9 11,15

M12,0,713,0.712,2,7M13,2
12 .4.37013 4.7112,6:713.6

TR12,8.77113,8,7112,10,13,10

T12,32,9M13,12,7012,14,7213,14

Y2, 1.T13,1,7712,3,M13.3
T12,5,M18,5,7712,7,7113,7
M12,9,M18,0,7012,11,7213, 11

T12,13.7113,13,71712,15.971315

M14,06715,0:714,2,715,2
M4 ,4,7015 4,701 61015,06
TM14,8,7015,8,14,10:7115,10

Tg 12,705,127 14,14,T015 14

T4, 1,T15,1.7014,3.0715.3
14 §5WILE, 65,7014 7,7 15.7
™M14,0:7015 9.77014,11.7215,11

T34,139016,13:770 14,15, 15,15
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Table 7.4 Detailed information for all-to-all personalized communication on the
hypercube (continued).

Second step (among two processors with second bit difference,

such as pg and py.)

TGO, 020,71 30
Q4 M4 T24.TT3Y
MO IN 1IN 2R, LR

M@, 12,7y 12,702 12,113,312

[ D UL S UELL SRTLLN Y]

705, 15,2535

MGG, M 2. M3

MO, 13,701, 13,7102,13,M3,13

g2, 12,22, M3
QG 1E.M 25, MY
TO,10,1M1,10,712,10,723,10

TG, 14T, 14,702,114 .73 14

QG g S I3
QT MEYT 2T, M3T
TRG, 11 11702 11,7703 1)

O, 15,71 15.M2,15.M3,15

7".10‘17150,17150,77170
44,54 TG4, 774
T4 TTLES TILER.TTITS

Mg, 12,775,12,7106,12,7127 12

Mg, M5, M5, M7

M5 IEE IG5, 75

M 49,159,986, 70

M4, 13,9785,13,705,13,:1717,13

Mg2,ME2,ME2,M72
465G, TI36 M TE
M4q.10.75,10,776,10 717,10

TR 14,005 14,706, 14,7 14

M43 .M 53,M6e3,M73
myy,Mms7,Me7,M77
Trg 11,708 119706, 11,1787 1)

TG 15725 15,76, 15077 15

MEH,TG0:77E10,0,71 1,0
M4, TG4 710,471, 4
MEE,MgE,T10,8:71111,8

g, 12,M9,12,7210,12,M11,12

MY ,INGL 10,1701,

Mgs,mMys:mM10,5.711,5

Mgy, MYn.M10,9.1711,9

TG, 13,7g,13,77110,13,711,13

mg2, MR, M1g,2,111,2
™MgE.MYE.M10,6.9111,6
ME,10. 70, 10,710,106, 11,10

TR, 14,79, 1417810, 14,7711, 14

Tg3.17193,710,3,71 1,3
Mgy MYT 10,7 1,7
Mg, 11.MY, 11,710,115 ,11

MG 1579, 15.7010,15,70 11,15

TM12,0113,0,7114,0,715,0
PULD 45T13,4,70 14,470 15,4
™M12,8.7013,8,T014,8,1215,8

M2 12,7013, 12,7714, 12,715, 12

TRI2,1.T13,1.714,1,715,1
T, 53,5 14,5,70 15,5
M12,5,MM13,5,714,0,715.0

T2, 13,7713,13,7014,13:7115,13

™12,2,7013,2,714,2,M15,2

T12,6.7013,6:7114,6,M 15,8

M32,10:713,10.714,10 715,10

TILY2, 14,013,140 14, 147015, 14 |

M12,3.713,3.M14,3,9115.3
T a 7,113, 7,004, 7,71815,7
TEE2,11+7713,11577014,11477015,11

T2, 157013 15,701 4,15.7015,15

Third step {among two processors with

third bit difference, such as py and py4.)

T IM10,77120,71030

40 yME0,PLE0, 770

™Qg,.M18,M28. N3

TR48, MBS, INEE, T

QYT TR2Y, TS

T4, MEy g1 T

™Mgg g, 29,130

T4g,MEy,MGge,M79

g2, My, MY, M3y
M40 M52, IMEe M2
TE,10.M1,10.72,10,7M3,10

M4 10.35,10:76,10,M7,10

M3, 3,M23,M33
M43, ME3,TRGY LTS
TRO11T 1T, 11,018,11

M4 11T 11,706,117 11

Q4,714,771 24, 39

44 TE54, 77164074

MG, 12,711,12,M02,12,M3 12

Mg 12,7705,12.005,12,77 12

M5, 15,125,735
45,755, M5, 175
Q13,71 13.702,13,7723,13

M4,13,M5,13,716,13,7,13

mYg,I 16, 2G,M3E
M46 MEETEE T TG
MO, 14771 ,145T2 14,923, 14

Mg 14,705,14.7706,14,T77 14

Q7MY 7,07 37
M7 TG\ IMET,MT7
TG 15T 15,702 15,713, 15

T4,15.9715,15,715,15,M7 15

TMEG. GO TN10,0.711,0

T12,0.713,0,714,0,71715,0

MR G M10,8,71211,8

™M12,§:71)13,8,714,8-M 15,8

MGG N0, 1,711, 1
TRL2,1 T3, 1 74,1715, )
TRGTEGD.T10,6,7011,8

™12,0,77113,9,M14,0,715,9

TG, MGy, Mg 2,7 1,2
™12,2. 13,27 14,2,7015,2
TRE,10.776,10+71110,10,711,10

T12,10:72%3,10:714,10,5715,10

R3,TO3,7 10,8, 1 3
M2,3,713,3.7014,3,7715,3
LG, 117G 115710, 11

M12,11+713,11:772014,11,1015,11

TRBA TG4, 10,4701 4
YYD 4,T03,4,T 14, 4,715 4

g 127G 12,710,127 11,12

T12,12,7113,12,M0 14,12, 15,12

mys,Te5,710,5.7011,5
T12,5,M%13,5,7M14,5.715,5
Mg, 13.499,13,7110,13,71711,13

M12,13,7M113,18,714,13,:715,13

TMEEMO5.710,6.711,6
Mi2,6.713,6:77014,6.M15,8
TRE 14,T1G, 1470 10,1470 11,14

T2, 14,7013, 5477014, 1o TS 14

M7 g7 10,7711, 7
Ty 7 Y3 7T 14 7,705, T
™G 15,710, 15.7210,15:7011,15

TM12,15,7113,15.1M 14,15, 7115, 15
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Table 7.5 Detailed information for all-to-all personalized communication on the
hypercube (continued).

Fourth step (among two processors with fourth bit difference, such as py and pg.)

MpO.T10,T20, M0

M40, MEQ TGO TETO

B ,MNGO,TI0,0.7011,0

M12,04713,0,7214,0.7015.0

L SRS P S SR R B

M4y.M5y gy IT71

W1 .IMYL, TR0, 1,71,

M2, 1.77013,1,7014,1.0715,

ME2 I, May M3
42 MR, TG, T2
M2 MG MG, 2,2

M12,2,7013,2,714,2,7115,2

TROZ 13, M2, M3y
M43, ME53,TNE3 ,T‘ll.?g
M3, TMe3,M10,3.M 1,3

My2 3,7%313,3,M14,3.7215,3

M4 T 424,034

M4 TREGTE4, 074

Mg TG TR Y0 41 4

TRY2 4713, 4,7014,4,TR15 .4

MOE.TN1E 725,723,
M45, 55,765 TS
TGS, INH5,7710,5:711,5

T12,5,713,5,7 14,5715 5

MGG T E. 28,736
TR4GINEG . TNEE 76
TEE.TQG,IN10,6.7111,6

™M12,6+713,8:7114,6,M 15,6

g7,y T T gy
M7 RET . INGT YT
M7 GT Ny, 7ML, T

MY, 7RG, T4, 7,7 15,7

RULYOENALES B RELLS S FRLLS: 1:]

M4g.ME8,TMEE. 1178

Mgg. M Yg.T110,8:M11,8

W12,8,7113,8,M14,8.9715.8

mog.mig,Mag,M39
M49,MEG,M 60,70
TIgH,IRGY. 10,6, TN11,9

M12,649113,047014,8,715,9

MY, 1047, 10.1102,10,723,10
My, 10+75,10:M6,10:717,10
mg 10,719,10,7210,10,7711,10

M32,10:713,10:7%14,10,7115,10

TREO, 1T 11,7702,31,7T03,11
Ty 11 115,11,706,11,M07 11
TG, 11T, 11,710,11,M 11,11

Y2, 1E.77113,117014,11,.7015, 18

M, 12,7, 12,72,12,73,12
Mq,12.75,12,7M6,12:TM7 12

Mg, 12.719,12,M30,12.711,12

TR, I2.713,12,77014,12,77215, 12

TRQ,13,771,13,702,13,.7M3 13
M4q,13,75,13.76,13,M7,13
MG, 13.79,13,7010,13.77 11,13

12,13.7713,153.714,13,715,13

TG, 14,701 14,782, 14,703,14
T4 14,105, 14,703,147 14
MG 14,TRG 14,7M10,14.7011,14

TEY2 14,7013, 1477014 ,14,77115,14

MO,15.71,15.7M2,15,73,15
Mq,16,715,15,106,15,M7,15
Mg, 15,79,15,710,15,7131,15

TI2,15.733,15.7014, 15,715,115




CHAPTER 8

PERFORMANCE COMPARISONS BETWEEN HOW AND BINARY
HYPERCUBE SYSTEMS

In this section we compare the communications capabilities of 2-D HOW systems and
hypercubes. We consider communications under model-3 which permits a processor
to send out different values simultaneously using different channels, because this is
often actually the case with real systems. We assume that ¢,, is one unit of time and
that t; = t, = 0 in order to simplify the calculations.

The equations derived in the previous sections for 2-D HOW systems follow:

‘)mtw{\/ﬁ— 1] = Of \@)

Tone_to_ail,B. - 4 m——
w w

p— 1
Tati_to_anz = Mty (1 + \/;l«?)(ﬁw ] = O(mg—)

-1
Tone_to_all_persﬁ = 2(\/2_5@” ~‘777't211(\\/ﬁ - l) = O(’ITL:L%)

—1
Talt_to_a£l~pcv‘s,3 = Q]Jﬂlf[%—’—'ltw = O(mL)

The equations for hypercube systems are:

Tone_to-ail - m(logp)tw = O(m lng)
Totitoatt = mp — 1)ty = O(mp)
Tone-towall,pers = m(p - I)tw = O(”HJ)

3
Tt -toaii_pers = (logp) (%m)tw = O(mplogp)
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It becomes obvious that HOW systems perform asymptotically better than
hypercubes in one-to-all personalized communication and all-to-all broadcasting. In
the other two types of communications, the result of the comparison depends on the
value of w. The remaining figures show comparative results for practical cases, where
the suitability of HOW systems for very high performance computing is demonstrated

further.
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Figure 8.1 Comparisons between HOW and binary hypercube systems for one-to-all
broadcasting with message size m = 2 words.
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Figure 8.2 Comparisons between HOW and binary hypercube systems for one-to-all
broadcasting with message size m = 5 words.



600 ‘ ] _ |
Binary hypercube system ——
2-D 'system with w=4 ----
2-D system with w=8 ----
2-D system with w=16 -+~
500 | |
400 | = |
£ 300} |
200 - |
100 —
o] M L ' . ' '
0 2000 4000 6000 8000 15000
processors

112

Figure 8.3 Comparisons between HOW and binary hypercube systems for one-to-all

broadcasting with message size m = 10 words.
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Figure 8.4 Comparisons between HOW and binary hypercube systems for one-to-all

broadcasting with message size m = 20 words.
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Figure 8.5 Comparisons between HOW and binary hypercube systems for all-to-all

broadcasting with message size m = 2 words.
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Figure 8.6 Comparisons between HOW and binary hypercube systems for all-to-all

broadcasting with message size m = 5 words.
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Figure 8.7 Comparisons between HOW and binary hypercube systems for all-to-all
broadcasting with message size m = 10 words.
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Figure 8.8 Comparisons between HOW and binary hypercube systems for all-to-all
broadcasting with message size m = 20 words.
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Figure 8.9 Comparisons between HOW and binary hypercube systems for one-to-all
personalized communication with message size m = 2 words.
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Figure 8.10 Comparisons between HOW and binary hypercube systems for one-to-
all personalized communication with message size m = 5 words.
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Figure 8.11 Comparisons between HOW and binary hypercube systems for one-to-
all personalized communication with message size m = 10 words.
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Figure 8.12 Comparisons between HOW and binary hypercube systems for one-to-
all personalized communication with message size m = 20 words.
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Figure 8.13 Comparisons between HOW and binary hypercube systems for all-to-all

i

personalized communication with message size m = 2 words.
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Figure 8.14 Comparisons between HOW and binary hypercube systems for all-to-all

personalized communication with message size m = 5 words.
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Figure 8.16 Comparisons between HOW and binary hypercube systems for all-to-all

personalized communication with message size m = 20 words.



CHAPTER 9

PERFORMANCE COMPARISONS BETWEEN HOW AND
GENERALIZED HYPERCUBE SYSTEMS

In this section we compare the communications capabilities of 2-D HOW systems and
generalized hypercubes. We consider communications under model-3 which permits a
processor to send out different values simultaneously using different channels, because
this is often actually the case with real systems. We assume that ¢, is one unit of
time and that t; = ¢, = 0 in order to simplify the calculations.

The equations derived in the previous sections for 2-D HOW systems follow:

VP= 1 _ o)

w w

fone_to_all,S = 27ntw'_

-1
Toti_to_att,3 = My (1 4+ /D) (\/ﬁw 1= O(m%)

-1
Tone_ca_all_pers,:i = 2{\/—10 ]771tw(\/j3 - 1) = O(m%)

\/23-— l]tw = O(mﬂi)

w w

Tall_to_all..pers,S = 2])771|—

The generalized hypercube is special case of our HOW system. The equations

for generalized hypercube systems (or 1-D fully connected HOW subsystem) are:

ull
T/ toail 3 = 2Miy, = O(m)

one.

ull
Tc{ll_to_au,S =m(l+ /p)t, = O(m+/p)
Tfull _ .
one_to_all_pers,3 — 777’\/]—5tw = 0(771 ]))

ull
Tcﬂl_to-ali_pers,‘& = 77’6(]) - 1)tw - O(TTLP)
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Table 9.1 Cost comparison between the HOW (,/p,w,2) and GH(,/p, 2) systems.

Cost Comparison
System one-to-all all-to-all one-to-all-pers. | all-to-all-pers.
broadcasting | broadcasting | communication | communication
HOW (\/p,w,2) | O(mpuw) O(mp*w) | O(mp*?w) O(mpw)
GH(\/p,2) O(mp*/?) O(mp?) O(mp?) O(mp°’?)

The remaining figures show comparisons between generalized hypercubes and
HOW systems. It becomes obvious that generalized hypercube systems perform
better than HOW systems from the communication time point of view. But the
generalized hypercube has a fundamental design disadvantage. [t has very large
wiring complexity, as demonstrated by its bisection width. The bisection width is
defined as the minimum number of wires that must be cut to separate the network
into two equal halves [23]. A very large bisection width makes the network impossible
to build. The bisection width of the GH (k,n) is O(k™*1).

It is derived as follows. The bisection width of the GH(,/p, 1) is {@] * [%—EJ,
because when cutting the graph into two halves the edges which connect the left
[—‘gﬂ nodes with the right L—‘—/;’—)j nodes must be removed. For the GH(,/p,2) the
bisection width is \/p * [-\é—")) « [Y2| = O(,/p p) = O(p*'?) and for the GH(k,n) the

bisection width is &*~! x [£] = [£] = O(k™1).

For the 1-D HOW (,/p, w, 1) the bisection width is 14+2+3+---+w = “’(“;“L” =
O(w?). For the 2-D HOW (/p, w,2) the bisection width is ﬂ%ﬂl #/p = O(y/p w?).

Let us define the cost of an interconnection network as the product of the
“communication time” and the “bisection width”. This is a reasonable cost measure
because we should like to achieve small communication time with a small system
complexity. Table 9.1 shows the costs of the HOW (\/p,w,2) and the GH(\/p, 2)
for \/p > w. This table also shows that reductions in the cost are proportional to

reductions in the value of w and this leads to predictability. The HOW (\/p, w, 2)

outperforms the GH(\/p, 2).
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Figure 9.1 Comparisons between HOW and generalized hypercube systems for one-

to-all broadcasting with message size m = 2 words.
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to-all broadcasting with message size m = 5 words.
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Figure 9.4 Comparisons between HOW and generalized hypercube systems for one-

to-all broadcasting with message size m = 20 words.
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Figure 9.5 Comparisons between HOW and generalized hypercube systems for all-
to-all broadcasting with message size m = 2 words.
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Figure 9.6 Comparisons between HOW and generalized hypercube systems for all-
to-all broadcasting with message size m = 5 words.
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Figure 9.7 Comparisons between HOW and generalized hypercube systems for all-

to-all broadcasting with message size m = 10 words.
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Figure 9.8 Comparisons between HOW and generalized hypercube systems for all-

to-all broadcasting with message size m = 20 words.
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Figure 9.9 Comparisons between HOW and generalized hypercube systems for one-
to-all personalized communication with message size m = 2 words.
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Figure 9.10 Comparisons between HOW and generalized hypercube systems for
one-to-all personalized communication with message size m = 5 words.
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Figure 9.11 Comparisons between HOW and generalized hypercube systems for

one-to-all personalized communication with message size m = 10 words.
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Figure 9.13 Comparisons between HOW and generalized hypercube systems for
all-to-all personalized communication with message size m = 2 words.
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Figure 9.14 Comparisons between HOW and generalized hypercube systems for
all-to-all personalized communication with message size m = 5 words.
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Figure 9.15 Comparisons between HOW and generalized hypercube systems for
all-to-all personalized communication with message size m = 10 words.
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all-to-all personalized communication with message size m = 20 words.



CHAPTER 10

CONVERSION OF COMMUNICATIONS ALGORITHMS FOR
GENERALIZED HYPERCUBES

Because the GHj, is the building block of our HOW systems, it is worth trying
to modify existing communications methods used for the GHy,. The following
terms are used for constructing BST (Balanced Spanning Tree) and BSG (Balanced
Spanning Subgraph) graphs [4].

DEFINITION 10.1. GHy,, an n-dimensional k-ary generalized hypercube, is
an undirected graph of N = k™ nodes, each one labeled by an n-digit number in
radix k arithmetic. Each node v is connected to n(k — 1) other nodes with which it
differs in only one digit; i.e., node v = v, - - - V11 U;V;—1 - - - g 18 connected to nodes
v = v,y - UVl -y forall0 < <n—1,0< v; <k-1,and v # v;.

DEFINITION 10.2. The translation of a node v with respect to node s, denoted
by Ts(v), is defined to be the node t = Ty(v), so that t; = (v; + s;) mod k, for
0 <i<mn-1 The inverse translation of a node v with respect to node s, denoted
by T7'(v), is defined to be the node t = T7!(v), so that #; = (v; — s;) mod k, for
0<1<n-1.

DEFINITION 10.3. Consider the function r from the set {0,1,---,k — 1} to

itself as follows:

74(1'):{0 ifi=0

(t mod (k— 1))+ 1 otherwise
(Notice that » maps digit 0 to itself and the remaining digits as follows: 1— > 2— >
3— > -+—= >k —1= > 1.) The rotation of a node v = vyp_1 - Vig1ViUi_1 - - Vg,
denoted by R(v), is defined to be the node v, - - - v;1 100, - - v (vn_1).
DEFINITION 10.4. An ordered group of nodes, each one derived from its
subsequent cne cyclically by the application of a rotation, is called a necklace.
DEFINITION 10.5. The binary correspondent of a node v of GHy,, is the

binary number obtained if we substitute each nonzero digit in v with the digit 1.
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The generator node of a necklace is defined to be the largest among the nodes of the
necklace that have the largest binary correspondent.

DEFINITION 10.6. The displacement of a node v, denoted by D(v), is defined
to be the minimum number of rotations that we have to apply on v in order fo derive
the generator of its necklace.

DEFINITION 10.7. The period of a node v, denoted by P(v), is defined to be
the number of nodes contained in the necklace to which it belongs.

DEFINITION 10.8. An unfolded necklaceis an ordered group of exactly n{k—1)
nodes, not necessarily distinct, each one obtained from it subsequent one cyclically
by the application of a rotation.

DEFINITION 10.9. A shortest path balanced spanning tree, rooted at node 0"
(it represents n zeros) of the GHy, and denoted by BSTy., is defined through the
following parent function. For node v, with D(v) = 7, let p be the position of its first
nonzero digit cyclically to the left of position n —1 —¢. Then the parent of this node
in the BSTy» is

%) ifv=0"

parent®3Ton (v) = o
Un—1 " Ups10Vp1 - - v v 5#0

DEFINITION 10.10. A shortest path spanning subgraph, rooted at node 0" of
the GH; , and denoted by BSGyn, is defined through the following parent function.

tB5Co0 (9, i) we denote the parent of node v in the ith, where 0 < i < n(k —

By paren
1), spanning tree of BSGg. For node v with D(v) =i mod P(v), 0 <1 < n(k — 1),
let p; be the position of its first nonzero digit cyclically to the left of position n—1—4:

@] ifv=0"

parentBCon (4 1) = :
Up—1 " Up; 410U, -~ vg v #0

Figures 10.1 and 10.3 show the BSTy: of the GHs 5 and the G Hjy », respectively.
The translation operation with respect to node s is applied to all the nodes of the

BSTy to obtain the BST, rooted at any node s.
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Using a similar method, we can create the BSTge for the HOW (p, w, 2) based
on the BSTy for the GH, o, where k = p in the GHyyn. It is based on the fact that

HOWs can be obtained from GHs by removing some edges. These steps are:

o Create the BSTy» of the GH)».

e Break non-connected edges in the HOW (p, w, 2) which are connected in the

G H,», using the path which consists of all possible edges of window size w.

e If there is a conflict between intermediate nodes and leaf nodes (with the same
parent), then the intermediate nodes stay where they are and the leaf nodes

move to the next level.

Figures 10.2 and 10.4 show the BSTy: of the HOW(5,3,2) and the
HOW (8,3,2), respectively. Similarly, Figures 10.5 and 10.6 show the BSTy: of
the HOW (8,4, 2) and the HOW (8, 5, 2), respectively. Shaded nodes in these figures

show the procedure for the GHg,. According to [4], the one-to-all personalized

communication consumes time O (:711((5:11))) on the GHy,. For the HOW (p,w,n),
the modification of this communication procedure results in time O (:—E}) This is
similar to what we also derived with our procedure in Chapter 6. Therefore, we do

not elaborate further on the problem of modifying algorithms for the GH , from

[4].
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Figure 10.1 The spanning tree BSTgy: of the GHj .
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Figure 10.2 The spanning tree BSTy2 of the HOW (5,3, 2).
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CHAPTER 11

CONCLUSIONS AND FUTURE WORK

We introduced in this dissertation a new class of scalable architectures capable of very
high performance. We also proposed algorithms for the implementation of various
important communication operations, under frequently used communication models.
We finally compared the performance of this class of architectures with that of the
hypercube for the aforementioned communication operations. Our results show that
not only are our architectures scalable and feasible with current technology, but
also they perform better than the hypercube for several highly demanding communi-
cation operations. Of course, HOW systems perform outstandingly better than the
currently popular torus systems, because of their much better topological properties.

Further work is needed on HOW systems with wrap-around connections, and
on embeddings and communications operations on n-D HOW systems. Also, data

reduction operations should be studied on 2-D and n-D HOW systems.
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APPENDIX A

SIMULATION FOR ALL-TO-ALL PERSONALIZED
COMMUNICATION ON 1-D HOWS

In all-to-all personalized communication, also known as total ezchange, each
processor sends a distinct message of size m to every other processor. It involves a
lot of message transfers. We will not necessarily derive the most efficient procedure
here, because such a procedure can be of a very complex nature. We present a
simple procedure that comprises two stages. The basic idea here is that the first
stage is initialization in which every processor exchanges related messages with its
connected neighbors. The second stage is for sending related messages using the
longest channel, when they are available.

The simulation code is

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

static num_of_nodes=12;
static window_size=3;

typedef struct _msg {
int src;
int dest;

} msg;

typedef struct _node {
int number; /* node number */
int tbl_size;
int index;
msg **table;
} node;

static node #*all_nodes_1;

static node *all_nodes_2;

static node *current_state, #next_state;
static step;
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static msg *new_msg (int src, int dest);
static void init_node (node *p, int n);
static void sort_node (node *p);

static void sort_all_node(void);

static void copy_all_node();

static void add_msg  (node *pNode, msg *pM);
static msg *get_msg (node *pNode, int i);
static void del_msg  (node *pNode, msg *pM);
static void init_all (void);

static void print_all (void);

static void exchange_direct_node(node *pl, node *p2) ;

static int get_rightmost_msg (node *p,

msg *msg_vector[window_size]);
static int get_leftmost_msg (node *p,

msg *msg_vector[window_size]);

static msg *¥msg_array,
static int *node_used;
main(int argc, char **xargv)
{

int 1i;

int w;

node *pNodel;
node *pNode2;
int done;

if (arge >= 2)
num_of_nodes = atoi(argv[i]);

if (argc >=3)
window_size = atoi(argv[2]);

init_all();

step = 0;
print_all();

/*first step, exchange all nodes within window_size*/
for (i =0 ; 1 < num_of_nodes ; i++) {

pNodel = current_state+i;

for (w =1 ; w <= window_size; w++) {
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if ( 1 + w < num_of_nodes) {
pNode2 = current_state + i+w;
exchange_direct_node(pNodel, pNode2);

sort_all_node();
step++;
print_all();

msg_array = (msg **)malloc(sizeof (msg*)*window_size);
node_used = (int *)malloc(sizeof (int)*window_size);
while (1) {

int dest;

done = 1;

copy_all_node(current_state, next_state);
/* send msg to right */
for (i = 0; 1 < num_of_nodes; i++) {
if (get_rightmost_msg(current_state + i, msg_array)) {

memset (node_used, 0, sizeof(int)*window_size);
/* first try destination already within window */
for (w = 0; w < window_size ; w++) {
if (imsg_arrayl[w])
continue;
if (msg_array[w]->dest <= i+window_size) {
/* already with windew size */
if (!node_used[msg_array[w]->dest - i-1]) {
del_msg(next_state + i, msg_arraylw]);
add_msg(next_state + msg_array[w]->dest,
msg_arrayl[w]) ;
node_used[msg_array[w]->dest - i-1] = 1;
} else {
int ww = w;
while (ww < window_size) {
if (node_used[window_size - ww -1]) {
WW+H+
continue;
+
dest = i + window_size - ww;
if (msg_array[w]->dest < dest) {
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WW++;
continue;

}

if (dest < num_of_nodes) {
del_msg(next_state + i,
msg_array[w]);
add_msg(next_state + dest,

msg_array[w]);

node_used[window_size - ww -1] = 1;
break;

* then try the algorithm: longest destination using
* longest w
*/
for (w = 0; w < window_size ; w++) {
if (!msg_arrayl[w]l)
break;
if (msg_array[w]->dest > i+window_size) {
int ww = w;
while (ww < window_size) A
if (node_usedl[window_size - ww -1]) {
WWt+
continue;
}
dest = i + window_size - ww;
if (dest < num_of_nodes) {
del_msg(next_state + i, msg_arraylw]);
add_msg(next_state + dest, msg_arraylw]);
node_used[window_size - ww -1] = 1;
}

break;

/* send msg to left */
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for (i = num_of_nodes-1; i >=0; i——) {
if (get_leftmost_msg(current_state + i, msg_array)) {
memset (node_used, 0, sizeof(int)*window_size);
for (w = 0; w < window_size ; w++) {
if (imsg_array[w])
continue;
if (msg_arrayl[w]->dest >= i-window_size) {
/* already with window size */
if ('node_used[i - msg_arraylw]->dest - 11) {
del_msg(next_state + i, msg_array([w]);
add_msg(next_state + msg_array[w]->dest,
msg_array [w]);
node_used[i - msg_arrayl[w]->dest - 1] = 1;
} else {
int ww = w;
while (ww < window_size) {
if (node_used[window_size - ww -1]) {
WW++
continue;
ks
dest = i - (window_size - ww);
if (msg_array[w]->dest > dest) {
Ww++;
continue;
¥
if ( dest >= 0) {
del_msg(next_state + i, msg_arraylw]);
add_msg(next_state + dest, msg_arrayl[w]);
node_used(window_size - ww -1] = 1;
break;
}
by

}
+
}
for (w = 0; w < window_size ; w++) {
if (!msg_array[w])
break;
if (msg_array(w]->dest < i-window_size) {
int ww = w;
while (ww < window_size) {
if (node_used[window_size-ww-1]) {
WWt+;
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continue;

by

dest = i - (window_size - ww);

if ( dest >= 0) {
del_msg(next_state + i, msg_array[wl);
add_msg(next_state + dest, msg_array[w]);
node_used[window_size - ww -1] = 1;

3

}

break;

if (done)
break;

pNodel = next_state;
next_state = current_state;
current_state = plodel;
sort_all_node():

stept+;

print_all();

static void
exchange_direct_node(node *pl, node *p2)
{

msg *pM;

int i;

/* send msg from pl, to p2 */
for (i = 0; i < pl -> index; i++) {
if ( pl -> table[il->dest == p2 -> number) {
pM = get_msg(pl, i);
add_msg(p2, pM); /* send to p2 */
}
}
/* send msg from p2, to pl %/
for (i = 0; i < p2 -> index; i++) {
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if ( p2 -> table[i]l->dest == pl -> number) {
pM = get_msg(p2, 1i);

add_msg(pl, pM); /* send to pl */
}

b
¥
static int cmp_msg(const void *pl, const void *p2)
{

msg **ml = (msg **)pl;

msg **m2 = (msg **)p2;

return (*ml) -> dest - (*m2) -> dest;
}

static void
sort_node (node *p)

{
gsort(p —-> table, p -> index, sizeof(msg *), cmp_msg);

static void
sort_all_node{void)

{
int 1i;
for (1 =0 ; i < num_of_nodes ; i++)
sort_node(current_state+i);
}

static void
copy_all_node(node *pl, node *p2)

{
int 1i;
int j;
for (i =0 ; i < num_of_nodes ; i++) {
p2[i] .number = p1[i] . number;
p2[i] .tbl_size = pi1[i].tbl_size;
p2[i).index = p1[i].index;
for (j = 0 ; j < ptli].index; j++)
p2[i].table[j] = p1(i].tablel[j];
}
}

static int
get_rightmost_msg(node *pNode, msg *msg_arrayl[window_size])

{



int my_num = pNode —> number;
int ret;
int 1;

int j = 0;

/+ note! the messages in node->table are sorted */
for (i = pNode -> index - 1; i >= 0; i--) {
msg *pMsg = pNode->tablelil;
int distance = pMsg->dest - my_num,
if (distance > 0) {/*this msg should send to righ*/
msg_array[j++] = pMsg;
if (j >= window_size)
break;

ret = j;
while (j < window_size)
msg_array[j++] = NULL;

/* remove msg from node */
for (i = 0; i < window_size; i++) {
if (msg_arrayl[il)
del_msg(pNode, msg_arrayl[il);

return ret;

static int
get_leftmost_msg(node #*pNode, msg *msg_arrayl[window_size])

{

int my_num = pNode -> number;
int ret;
int i;

int j = 0;

/* note! the messages in node->table are sorted */
for (i = 0; 1 < pNode -> index - 1; i++) {
msg *pMsg = pNode->tablel[il];
int distance = my_num - pMsg->dest;
if (distance > 0) {/*this msg should send to leftx*/
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msg_array[j++] = pMsg;
if (j >= window_size)
break;

ret = j;
while (j < window_size)
msg_array[j++] = NULL;

/* remove msg from node */
for (i = 0; i < window_size; i++) {
if (msg_array[i])
del_msg(pNode, msg_array([il);
else
msg_array[i] = 0;
}

return ret;

static msg *
new_msg(int src, int dest)

{

msg *ret = malloc(sizeof(msg));
ret -> sxc = src;

ret -> dest = dest;

return ret;

static void
add_msg(node *pNode, msg *pMsg)

{

pNode -> table[pNode->index] = pMsg;
pNode -> index++;

static msg *
get_msg(node x*pNode, int i)

{

msg *ret;

if (i >= pNode -> index)
return 0;

ret = pNode -> tablel[i];
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pNode -> table[i] = pNode -> table([pNode->index - 11;
pNode -> index—-—;
return ret;

}

static void
del_msg(node *pNode, msg *pMsg)

{
int 1;
for (i =0 ; i < pNode -> index; i++) {
if (pMsg == pNode -> tablel[i]) {
pNode -> tablel[i] =pNode->table[pNode->index-1];
pNode -> index-——;
return;
}
}
}

static void
init_node(node #*pNode, int num)

{
msg *m;
int 1;
pNode -> number = num;
pNode -> tbl_size = num_of_nodes*num_of_nodes;
pNode -> table = (msg **%)malloc(
sizeof (msg*)*pNode->tbl_size);
pNode -> index = 0;
for (i =0 ; i< num_of_nodes; i++) {
m = new_msg(num, 1i);
add_msg(pNode, m);
}
}

static void
init_all(void)

{
int 1i;
all_nodes_1 = (node *)malloc(sizeof (node)*num_of_nodes):
all nodes_2 = (node *)malloc(sizeof (node)*num_of_nodes);



current_state = all_nodes_1;
next_state = all_nodes_2;

for (i = 0; i < num_of_nodes; i++) {

init_node(current_state + i, i);
init_node(next_state + i, i);

static void
print_all(void)

{
int i;
int j;
int printed;
J=0;
printf("Step %d\n", step);
while (1) {
msg *pM;
printed = O;
for (i = 0; i < num_of_nodes ; i++) {
if ( j < current_statel[i].index ) {
pM = current_state[i].tablel[j];
printf ("%2d,%-2d ", pM->src,pM->dest);
printed = 1;
} else
printf (" ")
}
j++;
printf("\n");
if (!printed)
return;
}
}

The running results for HOW (10,3,1) and HOW (11,4, 1) are:

For HOW(10,3,1):

Step O
0,0

1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0

9,0
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