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ABSTRACT

ON-LINE STATE AND PARAMETER ESTIMATION
IN NONLINEAR SYSTEMS

by
David A. Haessig

On-line, simultaneous state and parameters estimation in deterministic, nonlinear

dynamic systems of known structure is the problem considered. Available methods are

few and fall short of user needs in that they are difficult to apply, their applicability is

restricted to limited classes of systems, and for some, conditions guaranteeing their

convergence don't exist.

The new methods developed herein are placed into two categories: those that involve

the use of Riccati equations, and those that do not. Two of the new methods do not use

Riccati equations, and each is considered to be a different extension of Friedland's

parameter observer for nonlinear systems with full state availability to the case of partial

state availability. One is essentially a reduced-order variant of a state and parameter

estimator developed by Raghavan. The other is developed by the direct extension of

Friedland's parameter observer to the case of partial state availability. Both are shown to

be globally asymptotically stable for nonlinear systems affine in the unknown parameters

and involving nonlinearities that depend on known quantities, a class restriction also true

of existing state and parameter estimation methods. The two new methods offer,

however, the advantages of improved computational efficiency and the potential for

superior transient performance, which is demonstrated in a simulation example.

Of the new methods that do involve a Riccati equation, there are three. The first is

the separate-bias form of the reduced-order Kalman filter. The scope of this filter is

somewhat broader than the others developed herein in that it is an optimal filter for



linear, stochastic systems involving noise-free observations. To apply this filter to the

joint state and parameter estimation problem, one interprets the unknown parameters as

constant biases. For the system class defined above, the method is globally

asymptotically stable.

The second Riccati equation based method is derived by the application of an

existing method, the State Dependent Algebraic Riccati Equation (SDARE) filtering

method, to the problem of state and parameter estimation. It is shown to work well in

several nonlinear examples involving a few unknown parameters; however, as the

number of parameters increases, the method's applicability is diminished due to an

apparent loss of observability within the filter which hinders the generation of filter gains.

The third is a new filtering method which uses a State Dependent Differential

Riccati Equation (SDDRE) for the generation of filter gains, and through its use, avoids

the "observability" shortcomings of the SDARE method. This filter is similar to the

Extended Kalman Filter (EKF), and is compared to the EKF with regard to stability

through a Lyapunov analysis, and with regard to performance in a 4 th order stepper motor

simulation involving 5 unknown parameters. For the very broad class of systems that are

bilinear in the state and unknown parameters, and potentially involving products of

unmeasured states and unknown parameters, the EKF is shown to possess a semi-global

region of asymptotic stability, given the assumption of observability and controllability

along estimated trajectories. The stability of the new SDDRE filter is discussed.
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CHAPTER 1

INTRODUCTION

In the study of control system design theory, particularly classical control theory, it is

typically assumed that the designer has perfect knowledge of the system to be controlled.

Not only does the designer know the system structure, i.e. the exact dynamic equations

governing the evolution of the controlled state, but he or she also knows the system

parameters precisely. This, however, is generally not true. In most physical systems,

the characteristics of the system change for various reasons: parameters (e.g. friction)

may change with temperature or over the life of the unit, rapid shifts in system dynamics

can occur due to a catastrophic change of some sort, resonant frequencies can shift, and

so on. As a result, a design that is stable and effective at one condition can become

unstable and ineffective at another. This is also true of much of the modem control

methods developed since the 1960's 1 . Thus, many of the powerful classical and modem

design techniques that assume knowledge of the dynamic model can become ineffective

in the face of parameter uncertainty. Parameter estimation techniques provide a way to

address this problem.

On-line parameter estimation techniques attempt to extract, in real time, parameter

information from a dynamic system providing full-state availability, i.e. all of the state

variables are measured with sufficient accuracy so that state estimation is not required.

The best estimate of system parameters can then be used in a parameter dependent

A great deal of effort since the early 80's, however, has been directed at the design of stable controllers

for systems with quantifiable uncertainty.

1



2

controller to adapt to parameter changes. In many applications, however, the entire state

of the underlying dynamic system is not measured directly, and as a result it is necessary

to estimate the unmeasured state variables as well as the unknown parameters. In

comparison to the problem of parameter estimation alone, this is a significantly more

difficult problem because it is inherently nonlinear. Even the simplest expression

involving an unknown parameter 0 and an unknown state variable x, their product Ox , is

nonlinear. Suitable techniques have therefore been slow in coming.

Nevertheless, a wide range of technologies exist that could benefit by the availability

of stable state and parameters estimation methods. Applications can be noted in the

literature in the areas of electronic systems, communication systems, guidance and

navigation systems, chemical systems, mechanical and robotic systems, biomedical

systems, financial systems, etc. Consider the following example which appeared in a

Special Issue on Medicine in the IEEE Transactions on Automatic Control [44]. The

application is a ventricular assist device that works with an impaired heart to meet the

cardiovascular demands of the patient. A dynamic model of blood flow through the

heart is used to enable the implementation of an effective control strategy. The dynamic

model presented,

involves three states and 5 uncertain hemodynamic parameters. (The variable pA is an
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measurements include noise. Thus, this problem involves uncertain parameters

multiplying unmeasured state variables that require estimation. In [44] the authors

employ an Extended Kalman Filter (EKF) to estimate quite effectively both the state and

parameter vectors, online. There is, however, no known guarantee of stability with the

EKF, which can be a cause of concern in some cases, especially in this one where a

patient's health could be affected. A filter similar in complexity that possesses a

property of asymptotic stability would therefore be greatly advantageous. The stability

of the EKE and of the new filter with bilinear systems of this type is examined herein,

and a proof of stability for the EKF is given. A simulation example of a similar system,

a 4th order stepper motor with 5 unknown parameters, is examined in Chapter 5.

1.1 Motivation

Perhaps the most important general application of the type of method developed in this

thesis is that of the adaptive controller. In a controller designed using the Indirect

approach, the control law explicitly contains an "Estimation" section and a "Control"

section (see Figure 1.1). The "Estimation" section performs the simultaneous estimation

of the unknown parameters Band the state x. The "Control" section (to the right of the

line) then use these estimates as if they were true. Thus, both the "Controller Design"

and "Controller" blocks contain algorithms designed under the assumption that the state

and parameter vectors are known. (This idea is referred to as the "Certainty Equivalence

Principle" [2] .) As a result, the Estimation and Control sections of an Indirect Adaptive

Controller can be defined independently, and then these separate parts can be brought
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together to create the complete adaptive control law. The estimation methods developed

in the present work can be applied in this type of adaptive control system design.

Figure 1.1 Indirect Adaptive Control Showing Simultaneous State And Parameter
Estimation On Left

1.2 Problem Definition and System Class

This section introduces the notation necessary for the mathematical definition of the

problem to be addressed, and it gives a precise statement of the classes of systems to be

considered. In all cases it is assumed that the structure of the system is known, and that

a mathematical model of the actual system under study is available. What is unknown

are the initial state of the system and specific parameter values.

An uncertain nonlinear continuous-time dynamic system in most general form can be

represented:

where f( ) and h( ) are nonlinear functions,



where w(t) and v(t) are zero mean gaussian noise processes of proper dimension, and

where

5

are the state, unknown parameters, known input, and measurement vectors, respectively;

t is time. This general nonlinear structure is considered by most investigators to be too

general for the development of systematic analysis and synthesis techniques. Therefore,

we define the following three restricted system classes, all involving uncertain

parameters, and use these definitions to clearly identify the contribution that has been

made by each of the new methods developed in the present work. They will be called

System Class A, B, and C, and will be ranked in order of increasing generality. In other

words, System Class B includes System Class A but not System Class C.

System Class B: System Class B is given by:

Measurement and process noise are assumed to be zero. The matrices A(t), B(t), E(t) and

C(t) may be time-varying, but are known. Also, it should be recognized that E(t), a

known matrix function of time, can contain nonlinear functions that depend on known



encompass nonlinear systems represented as:

When working with reduced-order observers, it is convenient to arrange the state

variables of (1.6) into two groups, the first m that are directly measured and the

remaining n-m that are unmeasured. This may require a linear state transformation to

eliminate C(t) in the measurement equation. System B can then be represented using the

following partitioned state equations:

System Class A: System Class A shall be identical to System Class B, equation (1.7),

with the exception that submatrices Al2 and A22 shall be constant rather than functions of

time.

System Class C: System Class C shall be similar to Class B with an important exception,

the nonlinear matrix E() shall be allowed to depend on the entire state, and the

unmeasured elements of x that apear in E() shall appear linearly, such that E09 is

bilinear in the unmeasured states and unknown parameters:

6
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1.3 Overview of Existing Methods

One might expect that any of the available techniques for estimating the state of a

nonlinear process could potentially be applied to the problem of state and parameter

estimation. Surveys of existing continuous-time nonlinear observation methods are

found in [30] and [42] . In general, however, the joint state and parameter estimation

problem falls outside the scope of most nonlinear observation techniques. The difficulty

most often involves the poles at the origin contributed by parameter states. To illustrate

this, we consider the following nonlinear system,

Raghavan [36] proposes the observer:

Equation (ARE)

for some small scalar e, to be determined such that the above is solvable. However, it

will not be possible to solve this ARE unless the matrix A is Hurwitz. With parameter

estimation, this requirement is violated because of the pole contributed at the origin by

each unknown parameter. As a result, Raghavan's method fails when applied to

parameter estimation. In fact, most nonlinear observations techniques when applied to

the joint state and parameter estimation problem, encounter the same difficulty. Those
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that can be applied successfully to this problem have most likely been identified as such

in the literature. (Note that the Raghavan observer described in Chapter 3 is another

method developed specifically for state and parameter estimation.)

Most of the contributions made to the body of theory that specifically address the

joint state and parameter estimation problem have involved System Class B, i.e.

nonlinear systems representable with time-varying linear models. These methods are

listed below in Table 1.1 and will be discussed in some detail in Section 3.2. They

include the full-order Kalman filter, the Bastion and Givers filter, the Narandra and

Annaswamy filter, and the Raghavan filter. As you will note, these methods apply only

to System Class B, with two applicable only to single-input single-output systems.

Table 1.1 — Existing Methods for Simultaneous State and Parameter Estimation

The problem of simultaneous state and parameter estimation in linear systems was

solved with the advent of the Kalman filter, although this fact was not initially

recognized. Friedland demonstrates the use of the Kalman filter for parameter and state
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estimation in describing its use for the calibration of an inertial system in [14]. He

further clarifies the suitability of the Kalman filter for parameter estimation by his

development of the Separate-bias Kalman filter in [11] , where the Kalman filter is used

for bias estimation, a problem that again falls into System Class B. Bias estimation is

described in several other references, including an alternative derivation given in [21],

and also later for time-varying bias in [22], [20] and [1].

Another investigator, Rusnak, who has worked with the Kalman filter for parameter

and state estimation, examines in [39] the conditions necessary for observability in

single-input single-output (SISO) linear systems. His primary conclusion is that

persistent excitation is necessary to guarantee observability and stability. He extends his

analysis to multi-input multi-output systems using non-minimal realizations of the plant

in [40] .

A few continuous-time methods have been developed in recent years for the on-line

estimation of parameters only, in nonlinear dynamic systems in which the entire state

vector is available. These are the method of Narendra and Kudva [33] and the method of

Friedland [17] . Both are described in detail in Section 3.1.

The problem of state and parameter estimation in nonlinear systems that include

System Class C has been addressed by Caglayan, et.al. in [6] , who develop the extended

form of the Separate-Bias Kalman filter for nonlinear systems, i.e. the Separate-Bias

Extended Kalman Filter (EKF). However, like the standard EKF, no conditions for the

stability of this filter are given, and so this method is not discussed in Chapter 3.

Another continuous-time method applicable to this problem has been developed by Cho

and Rajamani in [7] where an adaptive observer is provided which possesses guaranteed
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converge properties for a special class of systems involving Lipschitz bounded

nonlinearities. Because of the relative newness of this work, it has not been included in

the descriptions given in Chapter 3.

1.4 Research Objectives

This effort has focused on the problem of simultaneous state and parameter estimation in

deterministic dynamic systems of known structure. The objectives of the effort were:

• to develop methods providing improved computationally efficiency and

stability over existing methods

• to develop methods which can be applied to a wider class of systems than

those covered by existing methods

• to identify and prove conditions for the asymptotic stability of the new

methods

1.5 Contributions of Thesis

This thesis contributes five new methods for the online joint estimation of parameters and

the state variables in dynamic systems. These new methods are separated into two

groups: (1) those that involve Riccati equations, and (2) those that do not. All five

methods are described briefly below and are listed in Table 1.2 along with some pertinent

data useful for their comparison.

(1) and (2) — Nonlinear Observers One and Two: These methods are those that do

not involve Riccati equations. Both possess some similarity to Friedland's parameter

estimator [17] , and both extend Friedland's estimator, which assumes full state

availability, to the case of partial state availability. One is a reduced-order variant of
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Raghavan's full-order nonlinear state and parameter observer given in [36]. The global

stability of this new method is proven for System Class B. Although it does not involve

a Riccati equation, it does involve an auxiliary matrix differential equation.

Nevertheless, this new filter has been found to be easier to apply than the Riccati

equation based methods in that it does not require excessive tuning to yield acceptable

results. This is demonstrated in a simulation example. In addition, it offer the advantage

of reduced computational loading over some existing methods, the order of the filter

being reduced by the number of measured states.

The second non-Riccati based method is one that is developed by directly extending

Friedland's parameter estimator [17] to the case of partial state feedback. It does not

involve any type of matrix differential equation. Consequently, of the available

methods, new and existing, it is the least demanding computationally. Its stability is

guaranteed when applied to System Class A. The method requires that the user find

nonlinear functions that have application specific jacobian matrices, and it is often

difficult to find these function, particularly as system order increases.

(3) Separate-Bias Reduced-Order Kalman Filter: The first of the three Riccati

equation based techniques developed herein is this Separate-Bias Reduced-Order Kalman

filter. In 1969, Friedland developed the original separate-bias Kalman filter for

stochastic systems involving constant and unknown bias and non-zero measurement noise

[11]. In this present work, the limiting form of the separate-bias Kalman filter for

vanishing measurement noise is derived. Several key features of the reduced-order filter

are worth noting. First, it is the optimal filter for the conditions defined, and as such, the

global stability of this new filter is guaranteed. Secondly, it has a desirable two-stage
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structure; the parameters and states are estimated in separate uncoupled stages, which

permits the use of two separate parallel processors if desired or if processing power is

limited. In addition, it is convenient to use, in that many physical systems possess this

structure naturally. Thirdly, like the full-order Separate-bias Kalman filter, this reduced-

order Separate-bias filter replaces computations involving large matrices with

computations involving smaller matrices, thereby improving numerical stability and in

some cases computational efficiency.

(4)SDARE State and Parameter Estimator: The State Dependent Algebraic

Riccati Equation (SDARE) filtering technique is applied to the problem of state and

parameter estimation and shown to work well in a number of simple examples including

some from System Class C. However, it is found to be less than well suited for state and

parameter estimation as the number of unknown parameters increases beyond 2 or 3.

This is due to the lack of observability in the pair [A(x), C(x)] that is exacerbated as the

number of unknown parameters is increased.

(5)A General Nonlinear Filtering Method: A new nonlinear filtering technique

that applies to general nonlinear systems is proposed. It is shown to avoid the

observability shortcomings of the SDARE filtering method through the use of a State

Dependent Differential Riccati Equation (SDDRE). This filter is similar to and

compared to the Extended Kalman filter (EKF) herein. For bilinear systems of System

Class C, the stability of both the EKF and the new filtering method are examined. The

semi-global asymptotic stability of the EKF is proven under mild assumptions.



Table 1.2 — New Methods for Simultaneous State and Parameter Estimation*
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*(Note that all are applicable to MIMO Systems)



CHAPTER 2

BACKGROUND

This chapter contains the background material needed for the development of the new

filtering methods presented in Chapter 4. A number of somewhat disconnected topics

are covered. General stability and Lyapunov stability theory are covered in Sections 2.1

and 2.1.1. A stability proof for time-varying systems that possess a form of symmetry

common to many filtering techniques is covered in Section 2.1.2. Observability, which

is always a required condition for stability, is discussed in Section 2.1.3. Two existing

filtering techniques, the Separate-bias [11] and Reduced-order Kalman filters [15] , are

presented in Sections 2.2 and 2.3, respectively, as background for the new filter

developed in Section 4, the Separate-bias Reduced-order Kalman Filter [19]. Another

fairly new method, State Dependent Algebraic Riccati Equation (SDARE) filter [32] is

described in Section 2.4 and applied to the problem of state and parameter estimation in

Section 4.3.

2.1 Stability

Perhaps the most important property that any filtering algorithm can possess is that of

asymptotic stability. Simply put, a filter that is asymptotically stable works. If

conditions on, for example, the system structure or input signal content, can be identified

which guarantee the stable operation of the filter, then the filter can be used in those

applications with assurance that it will work. This section contains a review, therefore,

of stability theory. In particular it covers the Lyapunov stability theorems that are used to

prove the asymptotic stability of the new filtering methods presented herein.

14
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Stability theory enables the user to draw conclusions about the stability of a system

without deriving solution trajectories either analytically or numerically. This is often

quite important because in most practical applications it is often difficult, if not

impossible, to analytically derive solution trajectories, and it is typically not possible to

probe and test, via simulation, all possible conditions that could affect the solution. An

unstable case could be missed and a stability assessment of the system based on

simulation could be incorrect.

Stability theory in general falls into two areas:

• Input-Output Stability

• Equilibrium Stability

Input-output stability assesses whether a particular class of inputs (usually magnitude

bounded) will produce a bounded (i.e. stable) output. Equilibrium stability is concerned

with the behavior of a dynamic system near or around an equilibrium point. Although

our focus is on the latter, the control input u will be included in our evaluation of

stability. As in most filtering problems, the control is assumed to be a known input

which in many cases must be present to persistently excite the system, in order for all of

the states to be observable.

The type of equilibrium stability that a system possesses can fall into a number of

different categories. An equilibrium is said to be stable if all trajectories starting nearby

remain nearby; it is unstable otherwise. It is called asymptotically stable if it is not only

stable but also if all trajectories tend to the equilibrium as time approaches infinity. It is

uniformly stable, or uniformly asymptotically stable if the character of the stable behavior

(i.e. convergence speed) does not depend on the initial time. It is exponentially stable if
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an exponential upper bound can be applied to the norm of the convergent error state, as is

true in stable linear systems.

There are also different terms used to define the size of the region over which the

stability property applies. A region of attraction is defined to be a region of the state

space within which the state trajectories are guaranteed to be stable and converging

asymptotically to the equilibrium contained therein. A system is globally stable if the

region of attraction is shown to be the entire state space. It is semi-globally stable if the

region of attraction containing the equilibrium is large (i.e. not infinitesimal), but not the

entire state space. A system is locally stable if the stability characteristics are assessed

using a dynamic model obtained by linearization (of a nonlinear model). Local stability

conclusions hold only within an infinitesimal region containing the equilibrium, where it

can be assured that the linear terms dominate system behavior.

In the sections that immediately follow, existing theory on the stability of nonlinear

dynamic systems is presented. Only that part of existing stability theory which is

subsequently used herein is covered.

2.1.1 Lyaponov Stability

One of the most important contributions to the body of existing stability theory occurred

about a century ago, made by the Russian mathematician, A.M.Lyapunov [24].

Lyapunov's method has received considerable use because if its applicability to nonlinear

systems, and because it does not require the analytical derivation of solution trajectories.

A scalar continuously differentiable function V(x) is postulated, defined in a domain
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negative semi-definite (definite) if V(x) is positive semi-definite (definite). Stability

is assessed by examining the time rate of change of this positive definite function along

solution trajectories as governed by the differential equations governing the system under

study. If a proposed function can be found whose first derivative is always negative

except at the origin, then asymptotic stability is assured. This is stated formally in the

following theorem, where we consider the n th order, time-varying dynamic system,

Theorem 2-1 (Asymptotic Stability) — For the system (2.1), if there exists a scalar

A function V(x,t) satisfying (a) and (b) is a Lyapunov function. If the function and

conditions (a) and (b) are independent of the initial time, then the system is said to

possesses uniform asymptotic global stability. If the a function meets the conditions

region of attraction.



classification degenerates from one of asymptotic stability to one of stability only.

possible to upgrade the stability classification to one of asymptotic stability.

In the above, system (2.1) is assumed to be time varying. If it is not, i.e.

where f (0) = 0 , then the conditions for stability are much simpler, as follows:

Theorem 2-2 (Asymptotic Stability, Time Invariant Systems) — For the system (2.2),

18

state space, then system stability properties are global.

The following nth order ordinary differential equation
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involving a matrix L(t) that is symmetric, positive semi-definite and time-varying, is one

that often occurs in filtering applications. In [31], the authors exploit this specific

structure to establish conditions of global asymptotic stability of (2.3). In some of the

new methods presented in Chapter 4 the error dynamics are of the form as given by (2.3).

In these cases we use the following theorem to prove the stability of the method:

Theorem 2-3 — Suppose L(t) is a symmetric positive semi-definite matrix of bounded

piecewise continuous functions. Then the equation

is uniformly asymptotically stable if and only if there exist real number a > 0 and b such

that

If there exists a fixed vector w that causes the integrand of (2.5) to equal zero over

any point along that line is an equilibrium over that interval, clearly violating the

conditions for asymptotic stability. Also, if there exists a fixed vector w such that the

as an alternative to condition (2.5), one can apply the following:
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2.1.3 Observability

A stable observer can exist only for systems which are observable. A test for

observability is therefore a useful first step in the development of any observer. A linear

possible to determine any arbitrary initial state x(0) by using only a finite record

time-varying system is the following:

Theorem 2-4 — (Observability Grammian) A system is observable if and only if the

matrix:

Proof of this observability theorem can be found in [16] .

A test for observability in nonlinear systems of the form,

is given by Isidori in [23], where it is shown that in an observable nonlinear system, the

following is true:

the Lie derivative of h(x) along vector field f (x) , defined recursively as



21

If the rank of the matrix given in (2.9) is less than n in some region of the state space, the

system is not observable in that region.

2.2 Separate-Bias Kalman Filter

In [11] , Friedland considers the problem of simultaneously estimating the state x and

bias vector b of a linear process

with observations

are white Gaussian noise processes with spectral densities Q and R, respectively. The

matrices A, B, C, D, E, and F are known and possibly time-varying. Friedland points out

that one method for handling this estimation problem is through state augmentation. The

equation is formed by augmenting the original process dynamics (2.10) with the bias

dynamic equation

The filter then estimates the bias terms as well as the state of the original problem. This

method is reasonably effective when the number of bias terms is small relative to the
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number of states. Then, the bias does not significantly increase the dimension of the new

problem. On the other hand, when the number of bias terms is comparable to or larger

than the number of states of the original problem, the augmented state vector is

substantially larger in dimension than that of the original problem. As a result, the filter

implementation involves computations with much larger matrices which increases the

likelihood of numerical conditioning difficulties, and in some cases precludes their

solution and the accurate estimation of the state and bias.

The Separate-Bias Kalman filter as given originally in [11] , reduces the likelihood

of numerical conditioning problems by separating the state and parameter filtering

equations into two separate filters that run in parallel, thereby reducing the sizes of the

and (2.11), is obtained by summing the "bias-free" state estimate x , computed as if no

bias were present, and a bias correction term Vi :

The optimal bias estimate b is obtained by processing the residuals of the bias-free state

estimator, y — 	 , in a filter that is separate and distinct from the bias-free filter, as

shown in Figure 2.1.

Figure 2.1 Separate-Bias Full-order Kalman Filter
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Discussion Over the last 30 years, Friedland's Separate-Bias Kalman filter has received

considerable attention. Alternate derivations have been developed by Mendel and

Washburn [28] and by Ignagni [21]. A suboptimal filter was derived by Ignagni for the

case of time-varying bias[22]. An extended Kalman filter type of the separate-bias

estimator for nonlinear systems was developed by Mendel [29]. The Separate-bias
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estimator has received this attention for two primary reasons: (1) many physical systems

naturally take the separate-bias form, so that its application is convenient, and (2) it

provides an inherent numerical stability and efficiency that can yield improved

performance. To see this, compare equations (2.16), (2.18), and (2.19), to the equation

that the same number of differential equations are involved in either case; however, the

number of simultaneous nonlinear differential equations which must be integrated to

propagate (2.16), (2.18), and (2.19) is less than the number involved in the propagation of

depends only on the solution to (2.18). Thus (2.16), (2.18), and (2.19) are serially (not

mutually) coupled, and consequently they can be solved sequentially rather than

simultaneously. On the other hand, (2.20) involves the same number of mutually

coupled, simultaneous differential equations. Since numerical integration errors increase

rapidly with the number of simultaneous equations integrated, the estimated state and

bias covariance as given by (2.16) through (2.19) can be expected to be more accurate

than that given by (2.20). Thus, the separate-bias full-order Kalman filter can be, and

apparently often is, better conditioned numerically than the centralized Kalman filter

arising with state augmentation.



2.3 Reduced-order Kalman Filter

The reduced-order Kalman filter to be used in herein applies to the systems that can be

represented as:

25

Observation noise is absent, as is the basic assumption with the reduced-order Kalman

filter. Also, without any great loss in generality, it is assumed that the state variables are

defined so that the first m of them are measured directly (i.e. C = [I 0]) and the

remaining n-m are not measured at all. This corresponds to a partitioning of the state

vector and matrices in (2.23) and (2.24) as follows:

(The overbars are used here for consistency with the notation employed in Section 4.3.3)

Filtering Equations The reduced-order Kalman filter for the process with the matrices

partitioned as above is given by [15]



The time derivative of the Kalman gain matrix in (2.26) can be generated by

differentiating (2.27) with the help of (128). Also, in these expressions it is assumed

A reduced-order Kalman filters of this form can therefore exist only for systems which

measured states in (2.23).

Equations (2.24)-(2.31) completely define the reduced-order Kalman filter and will

serve as a starting point for the development of the Separate-bias Reduced-order Kalman

filter in Section 4.3.

2.4 State Dependent Algebraic Riccati Equation Filter

A new filtering technique known as the State Dependent Algebraic Riccati Equation

(SDARE) filter [32] , is reviewed here and is applied in Section 4.3 to the joint state and

parameter estimation problem. In general, it applies to general nonlinear systems

having the form:



inputs w and v are gaussian, zero mean white process and measurement noise

to the nonlinear estimation problem (see [32] ) as follows. First, the nonlinear system

(2.32) is converted to state dependent coefficient (SDC) form:

observer, but with state estimate dependent matrices is constructed:

with a filter gain given by

P(x) is the positive definite solution to the state-estimate-dependent algebraic Riccati

equation

27



More detail on the theory and application of the SDARE approach can be found in [8]

and [9] , where the authors develop the SDARE regulator for nonlinear control.
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CHAPTER 3

EXISTING METHODS, AN OVERVIEW

This chapter describes existing continuous-time methods for the on-line estimation of

parameters only, and for the on-line simultaneous estimation of the state and parameters,

in linear and nonlinear, continuous-time dynamic systems. The parameter estimation

problem arises when the entire state vector is available, i.e. m=n, so that only 8 need be

estimated. The state and parameter estimation problem occurs when m<n, so that both x

and 6 must be estimated simultaneously. These are discussed in Sections 3.1 and 3.2,

respectively.

3.1 Parameter Estimation

The methods of this section apply to systems that can be represented by the following

equations

recognize this as System Class B.

3.1.1 Standard Linear Theory

The linear parameter estimation problem defined above can be readily handled by

standard reduced-order observer and estimation theory. This is demonstrated with the

following two theorems.

29
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Theorem 3-1 — Let 9 represent the estimate of the unknown parameter vector. Given

the system described by equation (3.1), if a matrix K(t) can be found such that the matrix

product K(t)E(t) is a fixed (i.e. constant) Hurwitz matrix, then the parameter observer,

is globally asymptotically stable. (Note that the functional dependence of the observer

dynamics on time is not shown in (3.2) to simplify the notation.)

Proof The estimation error:

is differentiated to define the error dynamics. Noting that Ô= 0 ,

Since KE is a constant Hurwitz matrix, the observation error will decay asymptotically to

zero regardless of initial condition, thus the observer (3.2) is globally asymptotically

stable. ❑

Note 1 The problem defined above is often referred to as a bias estimation problem with

0 representing the unknown biases and with E(t) being a fixed coefficient matrix. In

any practical problem the rank of E will equal the number of unknown biases p; i.e. each

bias will impact the state. That being the case, it is always possible to determine a fixed

K matrix such that KE is a fixed Hurwitz matrix, thereby satisfying Theorem 3-1.
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Note 2 Practical applications do exist which involve a time-varying E matrix, and in

some cases it is this time variation that enables the design of an asymptotically stable

parameter observer by Theorem 3-1. In the calibration of an inertial system, for

example, the matrix E(t) is a piece-wise constant function that depends on the orientation

of the input rate and acceleration vectors. During well defined time segments, E is a

known constant matrix, and an appropriate K is applied that causes specific elements of

the parameter error vector to converge to zero. The overall calibration experiment must

be constructed so that over the entire calibration time interval, the entire parameter vector

is estimated. An experiment that achieves this will also meet the observability grammian

rank condition given in Theorem 2-4 above.

Note 3 Another way to generate a K(t) yielding global asymptotic stability when E(t) is

time-varying is via the reduced-order Kalman filter described in Sec. 2.3. In [14]

Friedland presents the full-order Kalman filter as a method for the estimation of uncertain

parameters in dynamic stochastic systems. It appears, however, that no one has

suggested in the open literature that the reduced-order Kalman filter be used for

parameter estimation in linear or nonlinear systems in cases where the entire state vector

is available. Nevertheless, it seems like a fairly obvious application of the theory,

therefore it is presented below in order to provide a complete background of the existing

techniques.

Theorem 3-2 — Consider the system
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where we and wx are white gaussian noise processes of appropriate dimension and with

spectral density matrices Qθ and Qx, respectively. (Since the Kalman filter applies to

stochastic systems, process noise is included in the parameter dynamics as well as in the

(3.2) with gain and covariance:

and initial covariance P(0) = Po , is globally and asymptotically stable. The derivative of

K can be calculated with the equation

Proof Application of the equations for the reduced-order Kalman filter, (2.23) through

(2.30), to the augmented system

above. Thus, (3.2) and (3.4) together comprise the reduced-order Kalman filter for

estimating the unknown parameters of (3.1). The parameter states are assumed to be

observable, satisfying Theorem 2-4, therefore by standard Kalman filtering theory, the

filter given by (3.2) and (3.4) is optimal and guaranteed to yield asymptotically

convergent parameter estimates, globally. ❑
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3.1.2 Narendra and Kudva's Method

In Section 3.4 of [33] , Narendra and Kudva develop a method for identifying linear time-

invariant systems of the form

where the entire state vector x is available, where the matrices A, B, C are unknown (i.e.

contain unknown parameters). A similar method is contained in [27]. For consistency

with the rest of this manuscript, we consider the following equivalent form:

where the matrices A and B are known, 0 is the vector is unknown parameters, and E(x, u)

is a matrix and g(x, u) a vector of known, possibly nonlinear functions of x and u.

For the system having the form (3.6), Narendra and Kudva's proposed filter has the

following form:

symmetric positive definite matrix to be defined by the solution of the Lyapunov

equation

Theorem 3-3 — Consider the system (3.6) and the state and parameter filters (3.7) and

(3.8) with AF a Hurwitz matrix. The convergence of the filter estimates to their true

values is guaranteed, both globally and asymptotically.

Proof The following candidate Lyapunov function is proposed;



The state and parameter errors,

are differentiated for use in the candidate Lyapunov function, yielding;
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Clearly, the parameter update law causes the first term to drop out, leaving only the

second. Since AF is a fixed Hurwitz matrix, it is always possible to solve the Lyapunov

equation

for a positive definite matrix P, given any nxn symmetric, positive-definite matrix Q.

With (3.11) and the parameter observation law (3.8), the function (3.10) becomes

asymptotically stable.

Discussion Narendra's and Kudva'a method can be applied to the same problem as that

handled by the reduced-order Kalman filter discussed above; however, it can be less

demanding computationally. When comparing the two, one notes that the Narendra and

Kudva filter involves an additional nth order state estimator, but does not include the pXpth
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order parameter covariance update matrix differential equation. Thus, the number of

independent differential equations with Narendra and Kudva is (n + p), whereas with the

reduced-order Kalman filter it is p(p + 3)/2 . The computational advantage of the

Narandra-Kudva filter becomes more pronounced as the number of parameters increases.

3.1.3 Friedland's Parameter Estimator

The parameter estimation method developed by Friedland [17] also applies to nonlinear

systems of the form (3.1); i.e. to systems affine in the unknown parameter. His

parameter observer is given by

where 0(x) is an appropriately chosen nonlinear fuction and 1(x) is its Jacobian matrix:

The differential equation for the propagation of the parameter estimation error

is a linear equation of the form

such that (3.14) is stable.

Theorem 3-4 — Consider the nonlinear system (3.6) and the parameter estimator given by



convergence of the parameter estimation error is assured.

Proof One way to achieve the required symmetry and positive semi-definiteness is by

Discussion Friedland's method is the simplest computationally. The parameter

estimate is given by a single vector differential equation of order p, as compared to

(n + p) and p(p + 3)/2 for the Narendra-Kudva (NK) and reduced-order Kalman filters,

respectively. However, while the NK and Kalman parameter estimators can always be

applied, the application of Friedland's estimator depends on the user's ability to find a

Kalman filter approaches, which can both definitely be applied at a higher computational

cost.

3.2 State and Parameter Estimation

Section 3.1 discussed existing methods for continuous-time parameter estimation in

systems falling into System Class B, with full state availability, y(t)=x(t), i.e. the

parameter estimation problem. In this section, existing methods for simultaneous state

and parameter estimation for systems of Class B and partial state availability are

36
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presented. These include the methods of Narendra and Annaswamy, Bastin and Gevers,

Rusnak, and Raghavan. In addition, the application of standard Kalman filtering theory

to this problem is covered. Thus, we are considering

3.2.1 Standard Linear Theory

state and parameter estimation problem defined above can be readily handled by standard

linear reduced-order observer and estimation theory. This is demonstrated in the

following two theorems.

Theorem 3-5 — Given the system described by equation (3.17), if matrices K 1 (t) and



is globally asymptotically stable.

Proof Substitution of (3.17), (3.19) and (3.20) into the derivatives of ex = x2 — x2 and
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Since this error dynamics equation involves a constant Hurwitz matrix by assumption, the

observer (3.19)-(3.20) is globally asymptotically stable. r.:1

Note 1 If the matrices in (3.17) are time-varying, and it is difficult to find K 1 (t) and

K2 (t) matrices that such that (3.18) is constant, then the user can resort to the reduced-

order Kalman filter, i.e. (3.19)—(3.20), with appropriate gain and covariance matrices.

As an alternative, the separate-bias reduced-order Kalman filter, a new method developed

herein and discussed in Section 4, can also be employed.

Note 2 Rusnak, et.al ., in [38] and [40] , examine the use of the Kalman filter for

simultaneous state and parameter estimation in single-input, single-output systems. In

particular, they focus on the persistence of excitation conditions needed to guarantee
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observability. In [39], these same authors extend their analysis of observability to multi-

input, multi-output (MIMO) systems using non-minimal realizations of the plant.

However, if the system is of System Class B, there is no need to convert to a non-

minimal form, as one can apply the full or reduced-order Kalman filters to the augmented

MIMO system directly.

3.2.2 Narendra and Annaswamy's Method

A method for simultaneous state and parameter estimation in single-input single-output

(SISO), linear, time-invariant systems is developed by Narandra and Annaswamy in [34]

They use the fact that any controllable and observable SISO system

of order n, with unknown parameters 0 can be represented by the following non-minimal

(2n-1) th order system:

and the matrix A are user selectable design parameters. The authors propose for this

system the following state observer:
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where F is a user defined, diagonal weighting matrix. A proof of stability for this system

can be found in [34] and will not be repeated here. Some points to note regarding this

method:

(1) It applies only to SISO time-invariant systems,

(2) The states of the original system are not estimated; those of the equivalent system are

estimated, and to examine these states, an inverse transformation must be applied.

3.2.3 Bastin and Gevers' Method

Bastin and Gevers develop in [3] a globally stable state and parameter observer for

single-input single-output nonlinear systems that can be represented as:
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an observable pair. The unknown parameters in (3.21) multiply functions of only known

quantities, therefore this system falls into System Class B. For this system, the authors

propose the following state and parameter observer:

In [3] the authors demonstrate the transformation of several physical systems into the

necessary form given by (3.21)-(3.22). Conditions permitting the application of a

nonlinear change of coordinates to transforms somewhat more general nonlinear systems

into this form are provided by Ricardo in [37].

3.2.4 Raghavan's Method

Raghavan, in [36], also considers the class of system we have defined as System Class B;



42

where for ease of notation the control input B(t)u is assumed to be contained in g() and

the plant noise is dropped. Raghavan assumes that both A and C are constant matrices

and that the pair [A, C] is observable. For this system he develops the observer given

below, involving the following two auxiliary filters:

where k is an arbitrary positive scalar.

Stability Analysis Notice that the system dynamics (3.23) can be represented

The solution to the system dynamics equations (3.23) can therefore be written as

From this, Raghavan notes that the true state x(t) can be written in terms of the solutions

to the auxiliary filter equations:



then the observer is asymptotically stable globally.



CHAPTER 4

NEW METHODS

The five new methods developed as part of this dissertation effort are presented. Two do

not involve the use of Riccati equations: (1) the nonlinear observer obtained by

combining the methods of Raghavan and Friedland, and (2) the nonlinear observer

obtained by directly extending Friedland's parameter observer to the case of partial state

feedback. The remaining three are those that do involve Riccati equations. They are: (1)

the Separate-bias Reduced-order Kalman filter, (2) the State Dependent Algebraic Riccati

Equations (SDARE) filter applied to the problems of joint state and parameter estimation,

and (3) the State Dependent Matrix Differential Riccati Equation (SDDRE) filter,

proposed herein as a general filtering method and also applied to this joint estimation

problem. The global stability of the first three methods is proven. The stability of the

SDDRE filter when applied to bilinear systems of System Class C is examined and

compared to that of the Extended Kalman Filter (EKF). A proof of semi-global stability

of the EKF for this system class under mild assumptions is also provided.

4.1 Nonlinear Reduced-Order Observer 1

A globally stable algorithm for simultaneous estimation of the state and parameters in

nonlinear dynamic system with partial state availability is derived by combining the

concepts developed by Raghavan in [36] for the design of a full order observer(reviewed

in Section 3.2.4) with the techniques used by Friedland in [16] to derive reduced-order

estimators. The resulting filter has some nice advantages over the others. The new

filter is of order (n m+ p) + (n — m) p , which is lower than that of the Raghavan [36],

44
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the Narandra-Annaswamy (NA) [34] , and the Bastion-Gevers (BG) [3] filters. In

addition, the new filter is somewhat easier to apply than the NA and BG filters, in that it

is not necessary to find and apply a coordinate transformation to bring the system into

proper form.

4.1.1 System Class

We'll continue by considering the nth order, multi-input, multi-output, uncertain nonlinear

system having the form :

are known, possibly time-varying coefficient matrices.

4.1.2 Observer Equations

The state estimate will be given in the fashion typical of reduced-order observers:

where L is to be a matrix to be determined by the user. The vector 2 is given by
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(In the development of the reduced-order Kalman filter, this step results in an observation

equation that contains noise, allowing the standard Kalman filter to be applied to the sub-

system governing the unmeasured states.) This new equation is combined with (4.1) to

yield another form of the new observation equation:
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measurement, we would stop and the filter would be defined by equations (4.4) through

If such a function can be found, then by defining,

we see that

respectively. Thus, equations (4.12) and (4.14) can replace (4.10) and (4.8), thereby

avoiding the use of j , . The ability to do this depends, of course, on the success one has

function cannot be found, then the user of this method would have to resort to the use of

equations (4.10) and (4.8) involving j, .

The idea of using a reduced-order form to eliminate 57 is used by Friedland in [16]

to derive the reduced-order Kalman filter. Interestingly, the application of this technique

here results in a parameter observer update law having the same form as the parameter



observer proposed by Friedland in [17] for nonlinear systems with full state feedback.

This is further discussed below.

4.1.3 Error Dynamics and Stability

The system dynamic equation (4.2) can be converted into a form with a stable
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This is a non-homogeneous, linear vector differential equation with two driving terms,

one that is solely a function of time t, and the other that depends on a time dependent
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Proof of Stability The stability of the system requires persistency of excitation. This is

Then, by Theorem 2-3 of Section 2.1.2, global, asymptotic stability of (4.17) is

4.2 Nonlinear Reduced-Order Observer 2

Friedland's parameter observer for nonlinear dynamic systems with full state availability

is extended to include systems with partial state availability. We begin by considering a

general nonlinear system, and for it derive the nonlinear observer equations. Then, in

order to illustrate the difficulty one encounters in generating a stability result when
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dealing with general nonlinear systems, we consider the class of systems that are affine in

the unknown parameter 0 and involve nonlinearities that depend on the unknown state x2.

Finally, these difficulties are avoided and a stability result is derived for the more

restrictive system class, System Class A, which as stated earlier, is affine in a parameter&

and involves nonlinearities that depend only on the known quantities, t, y, and u. Like

Friedland's original parameter observer, this new observer has very low computational

overhead, the order of the filter equaling the number of unknown states and parameters,

(n — m + p) .

4.2.1 Background

Friedland extends the linear, reduced-order observer

globally (assuming conditions of persistent excitation are satisfied and the system is

affine in the unknown parameter vector). A important feature of Friedland's method is

its low computational requirement. His parameter observer has order p, the number of

unknown parameters. There are no other dynamic equations involved, unlike Narendra's

observer which also involves an n th order state filter, or any of the others which involve

either auxiliary filters or covariance update equations.
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4.2.2 General Observer Equations

Consider the following general nonlinear dynamic system with partial state available by

direct measurement,

Again we assume, without loss of generality, that the first m states are measured and the

remaining n-m are not. Following the approach taken by Friedland, we propose a



equations become:
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affine in the unknown parameter vector 6 and depend in an arbitrary nonlinear way on

the unknown substate x2. They are included here initially to shown how they influence

the error dynamics in a way that defies analysis. Then they are removed to permit

analysis.

Substituting the state dynamic equations (4.22) and (4.23) into the error dynamics

(4.18) and (4.19) result in the error equations:



where functional dependencies are eliminated except where necessary for clarity.

The second term in (4.24), involving the nonlinear terms G,() and G2(), greatly

complicates any analysis of stability that one would attempt for this system. In fact,

were it not for the presence of G 1 0 and G20, the error dynamics would be completely

linear. Therefore, to avoid this problem, we further restrict the class of system to that

defined in Chapter 1 as System Class A, which is repeated below.

4.2.4 Error Dynamics for System Class A

We again consider System Class A:
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which is a linear, time-varying, homogeneous matrix differential equation and as such,

much easier to handle analytically. The observer equations for this class of system are:
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Theorem 4-1 — Given the nonlinear dynamic system (4.25) and (4.26) of System Class

can be selected such that M(t) is a positive semi-definite symmetric matrix, then a

sufficient condition for the convergence of the state and parameter errors is the existence

Proof Consider the candidate Lyapunov function,

matrix and P2 is an pxp. The time derivative of V is
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Since P is positive definite symmetric and M is positive semi-definite symmetric by

design, the term MP + PM will also be positive semi-definite and symmetric. Thus, the

first term in (4.32) is a positive semi-definite symmetric matrix which we will designate

The second term can be simplified due to the block diagonal structure of P and A.

Defining
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which is not possible if (4.33) holds. Thus, stability of the observer,(4.27) and (4.28), for

4.2.4.1 Design Procedure:

2. Verify that (4.31) is satisfied.

This design procedure is illustrated in the following two examples.

4.2.4.2 Simulation Example One: Consider the simple, second order system with one

unknown parameter:

Following the design procedure stated above;



2. One can test if (4.31) is satisfied for any y(t) and find that it is satisfied.

3. The following observer functions are identified as having the needed jacobians:

Following (4.27) and (4.28), one finds that the observer equations are:

59

simulation results shown below in Figure 4.1 show that the observer estimates converge

to their true values.



Figure 4.1 Simulation of Nonlinear Observer 2 in Simple 2nd Order Example

4.2.4.3 Simulation Example Two: In this example, we consider the third order system

with two unknown parameters and two measurements:
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Thus, we have the following submatrices
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and,

Given the dimensions of this problem:

thus, the matrix

Now, following the design process defined above;

1. To achieve a form for M(t) that can be made symmetric, we let

where K1, K2, L1, and L2 are constants. Then,

which can be made symmetric by setting L1 = —K1 and L2 = -K2 , such that

The matrix M(t) is then positive semi-definite for any K 1 > 0 and K 2 > 0 .

2. One can test if (4.31) is satisfied for any y(t) and find that it is satisfied.

3. Observer functions that are consistent with the jacobians K(y) and Φ (y), were found:



and following (4.27) and (4.28), the observer equations are:
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With observer gains K1 = K2 = 1 , initial conditions

4.2. Note that the observer estimates converge to their true values.

4.2.5 Comparison of the Non-Riccati Equation Based Methods

Nonlinear Observers 1 and 2 are both extensions to Friedland's method for parameter

estimation in nonlinear systems with full state availability [17] Comparison of the two

reveals that their parameter update laws are identical. One can see this by comparing
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equation (4.28) to equations (4.12)-(4.14). They are also identical to Friedland's in [17]

different, as can be seen by comparing (4.27) to (4.4)-(4.7). A closer examination of

these differences is potential an area of future research.

Figure 4.2 Simulation of Nonlinear Observer 2 in 3 rd Order Example

4.3 Separate-Bias Reduced-Order Kalman Filter

In this section the optimal two-stage Kalman filter for linear systems that involve noise-

free observations and constant, unknown bias is derived. This new filter consists of two

uncoupled filters running in parallel, one providing an estimate of the bias vector, and

one an estimate of the unmeasured state vector. The absence of measurement noise

results in a reduction in the order of the state estimator, the order equaling the number of
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states less the number of observations. Like the full-order separate-bias Kalman filter

developed in 1969 [11] , this new filter offers the same potential for improved numerical

accuracy and reduced computational burden over the centralized Kalman filter arising

with state augmentation. In Section 4.3.3, this new filter is applied to the problem of

state and parameter estimation.

4.3.1 System Class

The problem under consideration is that of simultaneously estimating the state x and bias

vector b of a linear process

with observations

noise process with spectral density matrix Q, and where A, B, C, D, E, and F are

coefficient matrices, possibly time-varying. It will be assumed that the states are

arranged such that the first m are directly measured and the remaining n -m are not

can be accommodated by converting to the assumed form (4.35) by a simple coordinate

transformation of the form z = Tx .
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4.3.2 Filter Equations

The separate-bias reduced-order Kalman filter developed herein is presented below in its

entirety in equations (4.36) through (4.50), and is shown in block diagram form in Figure

Optimal State Estimates:



Separate-Bias Filter:
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Figure 4.3 Separate-Bias Reduced-Order Kalman Filter
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Theorem 4-2 — The optimal filter in separate-bias form for the linear system governed by

equations (4.34)-(4.35), and driven by zero mean, white gaussian process noise having

spectral density Q, is that given by (4.36)-(4.50). If the system state variables and

biases are all observable, so that Theorem 2-4 holds, then the global asymptotic

convergence of the filter estimates to the true values is assured.

Proof It has long been known that the optimal filter for the linear dynamic system

(4.34) having measurements that are free of noise is the reduced-order Kalman filter [15] .

In the remainder of this section the reduced-order Kalman filter is converted to an

equivalent separate-bias form. This equivalence therefore guarantees that it is both

optimal and globally convergent, as is its progenitor. CI

Derivation of the Coupled Filtering Equations This development begins with the

application of the reduced-order Kalman filter to a system with unknown bias. First, the

state vector of the system, (4.34) and (4.35), is partitioned into directly measured and

unmeasured substates:

(The more general observation equation, (4.35), can be converted into this simpler form
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In accordance with the reduced-order filter given in Section 2.3, we define the sub-

unknown bias vector b,

then becomes

These, when substituted into the general reduced-order Kalman filtering equations (2.24)



are partitioned accordingly:

A similar approach is taken to derive the coupled covariance update equations. The

matrix P of (2.28) is partitioned in accordance with the substates contained in 1.2 as

follows:
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Using the submatrices (4.54) and the covariance matrix equation (2.28) we derive:

Similarly, the partitioned Kalman matrices in (4.56) and (4.57) are derived by expanding

(2.27):



where

which completes the derivation of the coupled state and covariance equations. In this

coupled form, the reduced-order Kalman filter for systems with bias offers no advantage

over the centralized reduced-order Kalman filter from with it was derived. The claimed

improvement in numerical stability and computational efficiency is achieved by casting

this filter into the separate-bias form, which thereby eliminates the coupling. This is

done below.

The "Bias-Free" State Estimator It is noted that (4.61) and (4.62) together are

for t > 0, and hence Px satisfies

The interpretation of (4.69) and (4.70) is that if the bias b is perfectly known at t = 0, then
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that in which there is no bias. The bias-free estimator is therefore the reduced-order



(Wiggles (—) rather than hats (A) are used to denote the new variables of the "bias-free"

filter.)

The State Transformation As in the case of the full-order separate-bias Kalman filter,

we introduce the transformation:

where 12 is the estimate of x2 if no bias were present. The matrix S is to be determined

such that this relationship (4.74) holds. To this end, we substitute into (4.74) equations

(4.56), (4.57), and (4.71), yielding

For this expression to hold for all y independent of the estimator states z 1 , z 2 , and z , the

terms multiplying y must cancel, thus

which leaves

In order for (4.76) and (4.77) to hold we must have

Into this last equation we substitute equations (4.58), (4.59) and (4.72). Then, using

equations (4.76), (4.78), and (4.57) to simplify the result yields,
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Finally, using (4.76) to eliminate K, results in

which is satisfied when

derived below.

The Separate-Bias Estimator The dependence of the separate-bias estimator on the

optimal state estimate i2 is eliminated by substituting (4.74) into (4.59), yielding

You will note that the Separate-Bias Estimator depends on the known input u, feedback

separate-bias estimator is the residual of the "bias-free" estimator [16] . Since there is no

residual in a reduced-order filter, both the measurement y and the "bias-free" estimator

inputs to the separate-bias estimator.

Decoupling of the Variance Equations The covariance P, defined originally by (2.28)

applies when the bias is known, plus a correction which depends on the covariance of the

to be denoted by
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Similarly, (4.87) becomes

Furthermore, the submatrices of (4.85) can be computed as follows:

Hence, it is possible to avoid the solution of the mutually coupled equations (4.60)-(4.62)

these results in (4.92).

selected to satisfy

0, i.e. when there is no a priori correlation between the state and bias, one choice of

initial conditions is

74
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Note that equation (4.95) is the same as the matrix differential equation (4.80) governing

simultaneously satisfies the state transformation relationship (4.74) and the variance

transformation equations given by (4.93)-(4.97).

Steady-State Observer In certain applications the accuracy and complexity of the time-

varying Kalman filter may not be needed, and in its place a steady-state observer may

suffice. The steady-state separate-bias reduced order observer has the same structure as

that shown in Figure 4.3; however, the Kalman gain matrices, K and K2 , are replaced

by constant matrices determined in some other way, e.g. pole placement. The bias

correction matrix S of (4.80) then becomes a constant matrix given by:
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4.3.3 Application to State and Parameter Estimation

Equations (4.34)-(4.35), the system for which the Separate-bias Reduced-order Kalman

filter was developed, are equivalent to the nonlinear system class identified in Section 1.2

as System Class B;

Thus, this new method can be readily applied to the problem of simultaneous state and

parameter estimation in problems of System Class B. The unknown parameter vector C

is simply interpreted as a bias.

4.4 SDARE State and Parameter Observer

The State Dependent Algebraic Riccati Equation (SDARE) method develop by Mracek,

et.al. [32] is applied in this section to the problem of simultaneous state and parameter

estimation. Although conditions for the convergence of the filter have not been

determined, the method has proven to work quite well when simulation tested in several

examples involving lower order, nonlinear systems, including some from System Class

C. However, as the number of unknown parameters increases beyond two, the

lead us to conclude, therefore, that the SDARE method is best suited for state and

parameter estimation problems when only two or three unknown parameters are involved.

In addition, it has prompted the development of a nonlinear filter which is similar to the
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SDARE filter in that it involves a state dependent Riccati equation, but differs in that it

avoids the need for state and parameter observability at each instant in time.

System Class The SDARE method defined by (2.36)-(2.38) can be applied directly to

general nonlinear systems expressed here in State Dependent Coefficient form:

4.4.1 Filter Equations

To develop the SDARE filter for simultaneous state and parameter estimation we use the

common approach of state augmentation. The parameters are assumed to evolve in

accordance with

SDARE filter then estimates the parameters as well as the state, assuming that conditions

of observability and controllability (discussed below) are satisfied in the augmented

system.

Equations (4.98)-(4.99) can be then be written in compact form:

where



and where dependence on u is not shown for clarity. In addition we define

design of the filter must be nonzero with rank p, otherwise the filter gains associated with

Application of the SDARE method to this system results in filter equations,

where the filter gain matrix has been partitioned as follows:
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Observability Requirements A system can be observable in the nonlinear sense as

defined by (2.9) and yet fail the "linear system" observability test defined for the pair

under study must pass both the linear and nonlinear observability tests. Then, not only is

it truly observable in the nonlinear sense so that an observer can exist for the system, but
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it will also be possible to use the "linear systems" algebraic Riccati equation as a

mechanism for generating filter gains.

The Separate-Parameter SDARE Filter The technique defined above requires the

where n and p are the number of states and unknown parameters, respectively. Because

this algebraic Riccati equation must be solved in real time, in problems of higher

dimension, time loading and/or the cost for controller electronics can become an issue.

Another related issue is that of numerical ill-conditioning due to the larger size of the

matrices involved. This problem is addressed by this author in [18] where a two-stage

arrangement is developed for the nonlinear SDARE filter when applied to state and

"parameter-free" state estimator, and a pth order "separate-parameter" filter, where p is the

a pth order ARE and an n th order ARE which must be solved on-line on each pass through

line. This method has been shown to perform successfully in several examples in [18]

and has been successfully applied in [35] to an induction motor.

4.4.2 Examples

4.4.2.1 Friction Estimation and Compensation: A second-order system with friction

is considered:

with ()being the coefficient of friction to be estimated. The position x l is measured:
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Although the measurement is noise free, the filter is given a nonzero measurement noise

spectral density so that the filter gains are finite, and the process noise is selected to

"excite" all of the states of the augmented system:

The matrices of the state-augmented SDARE filter, (4.99)-(4.102) which will be used to

estimate both the state vector and friction coefficient, are

All three states of the augmented system are observable, as the following algebraic

thus the system is observable for all x .

The control law in this example is taken to be of the form

friction compensation. The gains were selected to yield a natural frequency of 10 rad/sec

and damping factor of 0.707. Figure 4.4 shows the transient response of the combined

state and friction coefficient estimator with a square wave reference input shown (solid

line) and initial conditions



The estimated coefficient of friction converges on the actual value, and as it does,

tracking response improves. The hangoff error present initially is eliminated after

several cycles.
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Figure 4.4 SDARE Filter Performance, Friction Estimation And Compensation Example

4.4.2.2 Damped Harmonic Oscillator: A linear second-order system with natural

frequency 0, and damping 0, is given by

It is assumed that the state x, is available for direct noise-free measurement, and that the

two parameters are unknown but constant. The nonlinear observability test, equation

the observation equation and state equation function f (x) are given by:
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has full rank as long as the state {x 1 , x2 } avoids the origin. In other words, the nonlinear

system is observable if it is persistently excited. However, it is shown below that the

system does not pass the linear observability test unless the parameter dynamics model

provided to the filter is modified. There are two parameters and two parameter dynamic

equations that enter into the filter. One is left alone and the other is changed to a markov

process with a very long (105) time constant:

In this example the matrices of the state-augmented SDARE filter are

so in this case



equal to zero.

The simulation results for this system, for the following numerical data,

the following initial conditions,

and the control input
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are shown in Figure 4.5 and Figure 4.6. The estimation errors all converge to zero.

Figure 4.5 State Estimation Error, Damped Harmonic Oscillator
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Figure 4.6 Parameter Estimation Error, Damped Harmonic Oscillator

4.4.3 Discussion

In this last example a system with two unknown parameters was found to be nonlinearly

observable for all x in a region of the state space, but not linearly observable in that same

region. As a result, the SDARE would not provide gains for use in the SDARE filter.

which results in the loss of linear observability needed to solve the ARE at each instant in

time. To avoid this problem, each new parameter state must be disguised from the others

by adding insignificant terms to those equations which make those parameter states

"linearly" observable. The ARE will then provide a set of gains for what it sees as a

linearly observable system. If the system is truly observable, the filter may converge.

However, as the number of unknown parameters increases (beyond two), it become more

difficult to fool the ARE solver by altering the parameter state dynamics, and thus the
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suitability of the SDARE method decreases. The technique in the next section was

developed to avoid this problem.

4.5 A New Nonlinear Filter

In this section a new nonlinear filter is proposed which avoids the shortcomings of the

SDARE filter. This new filter does not require that the dynamic system be linearly

observable at every instant, as does the SDARE filter. Instead, it must be observable over

a finite time interval [0,7]. This essential difference is achieved through the use of a

differential Riccati equation rather than the algebraic Riccati equation as used in the

SDARE filter [32] .

The new filter is generated using the State Dependent Coefficient (SDC)

representation of the nonlinear plant. Both the state estimate and covariance propagation

equations are based upon this SDC system representation. Thus, this filter is the natural

nonlinear extension of the time-varying Kalman filter to nonlinear systems using the

State Dependent Riccati Equation approach. Because it involves a state dependent

differential Riccati equation, it is similar to the Extended Kalman filter (EKF); however,

the EKF involves jacobian matrices, whereas the new filter involves the SDC matrices.

The stability of both the new filter and the Extended Kalman Filter (EKF) when

applied to the joint state and parameter estimation problem are examined below. Ljung

has shown in [25] that the EKF, when applied to this problem, does not possess the

property of global asymptotic convergence, but in fact may diverge or provide biased

estimates. Nevertheless, for the EKF, a candidate Lyapunov function is derived that



86

proves, under mild assumptions, the existence of a semi-global region of asymptotic

stability.

4.5.1 Filtering Equations

In the definition of the new general nonlinear filtering approach, we consider the general,

time-dependent nonlinear system

expressed in State Dependent Coefficient form as follows:

The new filter being proposed is:

where P is the solution of the state dependent, matrix differential Riccati equation

with initial condition

The matrices W and V are symmetric, possibly time-varying design matrices, positive

semi-definite and positive definite, respectively, to be defined by the user. They are

essentially the equivalent of the process and observation noise spectral density matrices

of the linear Kalman filter.

Note 1 This filter given above differs from the Extended Kalman filter for the nonlinear

system (4.110), in that there is no use of the jacobians of the system and observation
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nonlinear function vectors, f (t, x) and h(t, x) . Instead, the filter is entirely defined in

terms of the matrices given by the State Dependent Coefficient form (4.111). The EKF,

on the other hand, is given by:

and P given by the solution of the matrix differential Riccati equation

parameterization.

Note 2 Cloutier, et.al., in [8] and [9] , did not have the option of using a differential

Riccati equation in their definition of the nonlinear SDARE regulator, because in the

underlying linear optimal control problem the Riccati equation must be solved backwards

in time. They chose therefore to use the control algebraic Riccati equation as a means

for generating regulator gains. In the case of the nonlinear filtering problem, however,

the underlying optimal filtering problem involves a covariance propagation equation that

moves forward in time, making the extension to a real-time, nonlinear algorithm possible.

The generation of the temporal Riccati solution using a differential rather than an

algebraic Riccati equation also makes sense from a computational viewpoint because it is

much less computationally demanding to propagate a Riccati equation one step forward

in time by numerical integration than it is to solve the algebraic Riccati equation.



4.5.2 Local Stability

Theorem 4-3 — Assume that the SDC matrices F(x) and H(x) are smooth, having

continuous first derivatives, and that the pair (F(x), H(x)) is observable in a small

neighborhood Q around X . Then the new nonlinear filter, (4.112)-(4.113), is locally

asymptotically stable.

governed by the dynamic equation:
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The second term in this equation is small compared to the first because of the presence of

which, neglecting noise is,



guaranteed to be Hurwitz (i.e. all eigenvalues left of the imaginary axis), thus (4.116) is

stable, locally and asymptotically. ❑

4.5.3 Application to Bilinear Dynamic Systems

System Class C, which includes terms involving the multiplication of unknown

parameters and unmeasured states, can be represented as follows:

equation (4.117) above will be dropped from this point forward for brevity. If a known

control input exists, it must simply be added where appropriate in the filtering equations

that follow.

The state and parameter vectors are appended in the usual manner, yielding
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However, because the system is bilinear the following relationships may be defined:



or in the following equivalent form:

In fact, any linear parameterization relating (4.121)-(4.122) and (4.123)-(4.124) is also a

valid and exact representation of the underlying system dynamics. If we define the

Thus, parameterized system matrices are defined:
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represented as:



The new filter, when applied to this system is therefore:

where P is the solution of the matrix Riccati differential equation

The EKF is also to be generated, as a point of comparison, for bilinear systems. The EKF

for the augmented system (4.127) - (4.128) is:

where P is the solution of the matrix Riccati differential equation.

It involves the jacobian matrices:

Notice that these are invariant with respect to parameterization value.

4.5.4 Stability Background

Before embarking immediately upon an assessment of stability for the filters defined

above, it will be helpful to step back within the body of known theory, to examine related
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problems that we know possesses guaranteed stability properties, and review the

applicable stability theory. Then it will be more readily apparent how stability is affected

by the extension being considered. To move back into known theory, it will be assumed

problem then becomes one of state estimation only, and the new filter (4.129)-(4.130),

and the EKF (4.131)- (4.132), becomes a standard, linear Kalman filter, for which

stability is guaranteed. The theory reviewed will cover:

• a linear, time-invariant system and filter with gain given by filter algebraic

Riccati equation,

• a linear, time-invariant system and time-varying Kalman filter, and

• a linear, time-varying system and time-varying Kalman filter.

Lyapunov stability can be shown in all of these cases. The impact that the extended

condition -- parameter uncertainty -- has upon stability, is examined for both the EKF and

the new filter.

Case A: Time-Invariant System and Filter The system and filter are in this case given

by:

To guarantee the existence of a stabilizing gain matrix K, the fixed design matrices V and

W must be positive definite and positive semi-definite, respectively. In addition, the
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pairs [A, C] and LA, W 1/2 .1 must be observable and controllable, respectively. This

guarantees the existence of a positive definite solution to the filter algebraic Riccati

equation, and the existence of K.

To prove stability, we consider the candidate Lyapunov function:

candidate function has the following time derivative along the solution trajectories,

where 77 w + K(t)v is the noise. Noise is neglected below as it does not impact the

stability result. Noting that the algebraic Riccati equation can be manipulated as

follows:

one finds that when substituted into the above,

Although W and KVK' are individually only positive semi-definite, given standard

Riccati equation theory, their sum is guaranteed to be positive definite.

Consider now the conditions of Theorem 2-2. Since the matrix P is symmetric and

positive definite, the same is true for 13-1 , so that

(a)	 L(e)> 0	 for all e 0
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satisfying Condition (a). In addition, the matrix [KVK' +W] is symmetric and positive

that

which satisfies Condition (b). Thus both conditions of Theorem 2-2 are satisfied. L(e)

is therefore a Lyapunov function and the global asymptotic stability of the filter is

proved.

Case B: Time-Invariant System and Time-Varying Kalman Filter The system

equations are the same as above, however the filter is now given by

So, for this case the error dynamics,

are time varying.

To prove stability, we consider a candidate Lyapunov function involving the inverse

of the time-varying covariance matrix P(t) :

Taking the time derivative along the solution trajectories yields,

note that the Riccati equation can be expressed as follows:
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Thus, upon substitution into the above,

where we have again neglected the noise term. After simplifying this expression

becomes:

which is of the same form as the previous case, except that K(t) and P(t) are now time

varying.

Although the system is time invariant, the filter is not, so to assess stability it is

necessary to apply the more restrictive conditions of Theorem 2-1. This theorem

requires that the candidate, time-varying Lyapunov function be bounded from above and

below by fixed, time invariant positive definite functions. In addition, the time

derivative of the candidate function must be bounded from above by a fixed, time

invariant negative definite function.

To identify an upper bound on L(t) it is necessary that no row or column of P(t) go to

time invariant pair [A, W V 2 ] is controllable. In general this requires that W be positive

semi-definite, including diagonal elements that guarantee rank P(t) = n, or equivalently,

that there exist no zero rows of P(t) for all t > 0 . Then it is possible to identify a scalar

value on the unit hypersphere

such that
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Thus it is necessary that the system be controllable by the process noise matrix W for the

Lyapunov function to exist.

To identify a lower bound, it is necessary that the time invariant system be

observable as defined by the pair [A, C]. If not observable, the covariance of the

unobservable state(s) which are being driven (i.e. controlled) by the process noise as

defined above will tend to infinity as time increases. The associated diagonal elements

of the covariance inverse 	 (t) will go to zero as a result, causing L(t) to violate any

lower quadratic bound that might be placed upon it. Thus, if the system is observable,

P -1 (t) will not go to zero and it will be possible to identify a minimum that occurs on the

unit hypersphere .

Because P -1 (t) is positive definite, 6 is guaranteed to be greater than zero, so that

Thus it is necessary that the system be observable for the Lyapunov function to exist.

In summary we have

and Theorem 2-1, Condition (a) is satisfied.

Consider next the time derivative of L(t), which is, neglecting the noise term,

Again, by standard Kalman filtering theory for a system that is both observable and

controllable, the time-varying matrix that appears here is positive definite. Consequently,
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it is possible to determine, for any particular initial covariance matrix which defines P(t)

Then,

which satisfies Condition (b) of Theorem 2-1. L(t) is therefore a Lyapunov function, and

the Kalman filter is asymptotically stable about the origin e = 0. Since the system is

linear, asymptotic stability is assured globally.

Case C: Time-varying System and Time-varying Kalman Filter The analysis of

stability in this case is identical to that of Case B and therefore will not be repeated.

However, for time-varying systems, the controllability and observability requirements

that must hold for a Lyapunov function to exist are defined in terms of the Observability

and Controllability Grammians (see [16] ) rather than the algebraic tests. If these

requirements are satisfied, quadratic bound on the functions L(t) and L(t) can be shown

to exist, making L(t) a Lyapunov function, and guaranteeing the asymptotic stability of

the time-varying Kalman filter globally.

4.5.5 Stability with Bilinear Dynamic Systems

The error dynamics of the new filter and of the EKF both evolve in accordance with:

we are free to choose the parameterization values, a and /3, for both the true system and
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the dynamic model used in the filter and that different values could be used for each.

There could be four different values used, that is. However, to avoid the added

complication, we consider just two cases:

The same values are used in both the filter and in our representation of the true system.

Case (1) is examined first. Here,

These expressions involve the estimated and true state and parameter vectors. It would

be useful to rewrite these in terms of submatrices that multiply the error vectors,

Thus, the error dynamic and measurement equations can also be expressed as:



Note that the matrices in these expressions are different than those of the system

equations, (4.121)-(4.122), or (4.123)-(4.124). There are two additional submatrices

matrices above are the jacobians of the system and observation vectors respectively,

We now consider Case 2 where α = β = 1. In this case

and

By going through the same type of algebraic manipulations as above, we find that in this

case the error dynamics and measurement equation are:
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These are identical in form to that of Case 1, (4.137)-(4.138); however, these involve x

In the more compact form, the error dynamics can be expressed exactly as either:
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So the error dynamics in either case depend on an estimated term and on a true term. It

turns out that this complicates the proof of stability. Since neither case avoids this

complication, we will continue only with Case 1 from this point forward.

4.5.5.1 Stability of the EKF: The following candidate Lyapunov function is proposed:

where P(t) is the solution of a differential Riccati equation, either (4.129) or (4.132).

Taking the time derivative along the error state trajectory (4.141) yields

where you will note that the covariance propogation equation of the EKF has been used

equation. Doing so results in



A quick look at the first four lines of this expression and one might think that they all

cancel, but they do not. The true parameter vector 0 appears in some, and the estimated

preclude cancellation.) Further simplification of (4.144) can be accomplish by

examining individual terms. For example,
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Similarly,

So if a new matrix is defined:



then (4.144) can be expressed as:

or equivalently,

This is a quadratic expression that contains two terms. The first term

is that which appears with the standard Kalman filter for linear systems and state

estimation only. This term is symmetric and will be positive definite if the system is

controllable by the noise (as defined by W) and observable. The second term is

S 0, the second term disappears and the expression (4.146) reduces to exactly the same

equation (4.135) as that of the standard Kalman filter for state estimation only. Thus the

additional term represent the impact that parameter uncertainty has on this stability

assessment. However, because S → 0 as eθ → 0 , the first term can and will dominate

the second in some region of the error state space including the origin. Clearly, this is

true over some finite region around the origin where e 9 = 0 where S vanishes, i.e. S = 0.

In fact, the matrix function S of (4.145) is linear in e9 and can be represented
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The new terms are cubic in the error, whereas the original terms are second order in the

error. The second order, quadratic terms will dominate the cubic terms over a finite

region of the error space, thus we can conclude that this function indicates that there

exists a finite (as opposed to arbitrarily small) region of the error space wherein the

candidate Lyapunov function is positive definite.

Theorem 4-4 — If the bilinear system described by equations (4.119) - (4.120) is:

(a) Controllable: The Controllability Grammian

given some positive semi-definite matrix W.

(b) Observable: The control input u persistently exciting over the interval [t, T] as

indicated by the non-singularity of the observability grammian:

(c) Controllable and Observable along estimated trajectories: The bilinear system that

satisfies Conditions (a) and (b) along the actual state trajectories x(t) and with the true
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Proof By Condition (c), the covariance solution P(t) over the interval is bounded above

and below (as in the linear Kalman filter case), such that there exist scalar constants 6

satisfying Condition (a) of Theorem 2-1. In addition, the term KVK' + W in equation

(4.146) is positive definite per Riccati equation theory, and bounded from below, such

that there exists a position scalar γ:

Thus there will exist a finite region

where the positive definite term dominates the cubic terms in (4.147), such that the

positive scalar

exists. Then

and Condition (b) of Theorem 2-1 is satisfied. Consequently, L(t) is a Lyapunov
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The proof given above is valid if the assumed conditions are true. A difficulty arises

in that we are unable to verify the validity of Condition (c). Although it is possible to

assess the controllability and observability of the linear, augmented system given fixed,

true parameters in the system A, B, and C matrices, we can only assume that this implies

the observability and controllability of the augmented system along the estimated state

and parameter trajectories. A test to verify that Condition (c) holds given (a) and (b)

does not, as of yet, exist and is a potential topic for future research.

4.5.5.2 Stability of the New Filter: For the same candidate Lyapunov function

(4.143), with the "covariance" update equation of the new filter, one finds

This is simplified in the same manner as done previously:

Again individual terms are examined for cancellations.



Similarly,

106

can be represented

Thus the new filter appears to be less stable than the EKF, in that the indefinite terms are

proportional to the parameter vector itself, rather than the parameter error vector.
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Nevertheless, the same indication of stability applies, in a region where the indefinite

term is dominated by the positive definite term.

4.5.5.3 Stability When all Unknown Parameters Multiply the Control Input

Theorem 4-5 — If the system (4.117)-(4.118) is such that only the input distribution

and it is persistently excited such that the conditions for observability and controllability

are met, then the new nonlinear filter, (4.129)-(4.130), is globally asymptotically stable.

controllability of the system. Bounds on the candidate Lyapunov function and its time

derivative can be shown to exist. Thus, by Lyapunov's 2nd theorem (Sec. 2.1.1, Theorem

2-1), the filter is globally asymptotically stable. ❑

moves back into the more restricted System Class B, and for this class the new filter is

equivalent to the standard full-order Kalman filter, which is guaranteed to be stable

globally.



CHAPTER 5

EXAMPLES

5.1 Comparison of All Methods in a Simple Example

The existing methods and the new methods reported herein are compared in this section

by applying each to a simple 2nd order linear, time-invariant, single-input, single-output

uncertain system:

When expressed in state variable form

Existing methods that are applied are (1) the full-order Kalman filter, (2) the

reduced-order Kalman filter of Section 3.2.1, (3) Narendra and Annaswamy's method of

Section 3.2.2, (4) Bastin and Gevers' method of Section 3.2.3 and (5) Raghavan's method

of Section 3.2.4. The new methods applied include (1) the Separate-bias Reduced-order

Kalman filter of Section 4.1, and (2) the Nonlinear Observer 1 of Section 4.2. Nonlinear

Observer 2 of Section 4.3 was attempted, however, without success (see Section 5.1.8).

Neither the new SDDRE filter nor the EKF were applied, because for this problem they

are identical to the full-order Kalman filter. In all cases a similar reasonable effort was

applied to produce the filter. In some, more time could have been spent adjusting filter

gains to produce better performance; however, it was felt that an accurate comparison
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should also consider the level of effort required to generate the filter. The application of

an (approximately) equal amount of time spent on each thus eliminates that variability.

In all cases, simulations were run with zero initial conditions on the state, the state

estimate, and the parameter estimates:

although, the state estimate z , does not exist in some examples involving reduced-order

observers. In all cases the same persistently exciting control

was applied.

5.1.1 Full-order Kalman Filter

To apply the full-order Kalman filter, the state and parameter vectors are appended,

creating the dynamic system:

The white process and measurement noise processes, although assumed to be zero, are

shown in these equations because of their association with the noise spectral density

matrices W and V of the Kalman filter. Both are chosen, or tuned, to produce the desired

filter response.

Results The observer equations in this case are:
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where C = [1 0 0 0]. The following initial state estimate covariance matrix P(0),

and noise density matrices:

give the results shown in Figure 5.1.

Figure 5.1 Full-Order Kalman Filter
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Remarks As can be seen by the simplicity of the filtering equations, this observer is

easy to implement and, like the Kalman filter for time invariant systems, intuitive. The

computational load, on the other hand, is relatively high, involving a total of 14 coupled

differential equations. The parameter estimates converges fairly well, and the change in

02 is detected. Although the convergence in the estimate of x 2 is poor, presumably the

response could be improved by better tuning of the design parameters in W and V.

5.1.2 Reduced-Order Kalman Filter

Observer Equations The Reduced-order Kalman filter (see Eq. ( 5.2)) involves the

submatrices:

and the following constant matrices:

where Q is the process noise spectral density matrix selected for this simulation.

The observer equations updated in continuous time are given by:



where the initial conditions for z and P given by:

The response with this filter are shown in Figure 5.2.

Remarks When compared to the full-order Kalman filter, computational loading in this

example is lessened from 14 to 9 coupled equations. Nevertheless, transient
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Figure 5.2 Reduced-Order Kalman Filter



5.1.3 Narendra and Annaswamy's Observer

For this example problem the Narendra and Annaswamy observer is:

113

parameters were employed:

Figure 5.3 Narendra and Annaswamy's Adaptive Observer
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Remarks. The filter given above is 4th order. Thus, computational loading is

significantly less than both the full-order (14 th order) and reduced-order (9 th order)

Kalman filters. However, the performance of this filter is significantly different from the

previous two. The position estimation error does not contain a hangoff as did the

previous two, which is good. However, the transient swings are larger and the change in

6 2 is not accurately estimated. Also, 6 1 is not estimated very accurately.

5.1.4 Bastion and Gevers' Observer

The Bastion and Gevers method requires the system to be of the form

where R is a stable, constant Hurwitz matrix. We convert ( 5.1), repeated here in state-

space form:

to the required form through the change in coordinates:

with c2 a positive constant. The system dynamics in this coordinate system:

clearly has the form that is required.

In accordance with the Bastion and Gevers' observer definition as given in [3] and in

Section 3.2.3 the following observer equations are derived:



State Equations:

Parameter Observer:

Auxiliary Equations:
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Figure 5.4 Bastion and Gevers' Adaptive Observer
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Remarks In this case computational loading is moderate; the observer is 6 th order.

Although transient swings are large like Narandra and Annaswamy's observer, there is

less ringing, and good convergence does eventually occur. It appears to be better than all

of the observers discussed thus far, and it appears to be fairly robust in that it accurately

tracks the change in 62 that occurs at t = 30 seconds. The change does cause, however,

excessive swings in all of the estimates.

5.1.5 Raghavan's Observer

Raghavan's adaptive observer is most easily expressed in matrix form, even for this

simple example. Thus, for this 2nd order example, the observer equations are:

system matrices are given by the plant expressed in the necessary form:

Remarks This observer is 8 th order. Transient swings, shown in Figure 5.5, are large,

but not as large as those produced by the Bastin and Gevers' filter. The convergence is



accurately tracked.
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Figure 5.5 Raghavan's Adaptive Observer

5.1.6 Reduced-Order Separate-Bias Kalman Filter

The Reduced-Order Separate-Bias Kalman filter of Section 3.2.1, when applied to system

( 5.1), is expressed as follows:

Bias-Free Filter:



Separate-Bias Filter:
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with a process spectral density matrix of

the system performance is as shown in Figure 5.6.

Remarks This filter is 9th order. Very good convergence is achieved initially, however,

the change in 02 is not tracked very well. Again, with additional tuning it would

probably be possible to improve tracking through a parameter change. Presumably a

system such as this would be well served by the addition of a failure detection

mechanism.



Figure 5.6 Reduced-Order Separate Bias Kalman Filter

5.1.7 Nonlinear Observer 1

The submatrices that are needed to construct this reduced-order filter are in this example:

Given these, the straightforward application of equations (4.63)-(4.67) yields:
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that one such vector function is the following:

Thus, given the above, it is possible to generate the other jacobians needed in Equation

(4.71)

which upon substitution into Equation (4.70) yields

These two equations replace the parameter update equation ( 5.3) given above.

Remarks This filter is of order 5, which is 3 less than Raghavan's In comparison, one

Performance appears to be much better than the full-order Raghavan observer in this test

case, in that the large transients and long settling times have been significantly reduced.
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other estimates.



Figure 5.7 Nonlinear Observer 1

5.1.8 Nonlinear Observer 2

Friedland's observer when applied to this example yields error dynamics:

with K, L1 and L2 constants. There is no choice of constants that can produce a

symmetric matrix, thus (4.87) cannot be satisfied. One could proceed with the

application of this filter anyway, however there would be no guarantee of convergence.
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5.1.9 Summary of Results and Discussion

The key observations to be made about the various methods applied in this simple test

example are summarized in Table 5.1. In general, all of the methods converged, as they

should since global asymptotic stability is, for this class of system, guaranteed by all of

these methods. Some, however, performed significantly better than others. All of the

Kalman filter based methods did a good job in estimating the initial parameter values, but

did not do too well in tracking the change in 02 . The Narandra-Annaswammy observer

performed similarly, tracking the initial values well and the change in 0 2 poorly. This

filter, however, has the added disadvantage of being somewhat more difficult to apply.

Those filters that estimated the initial values correctly and tracked the change in 62 well

were the Bastion-Gevers filter, the Raghavan filter, and the Nonlinear Observer 1. The

advantage that the Nonlinear Observer 1 has over the others appears to be the much

reduced transient swings that occur initially and after the step change in 02 . In addition,

it also has the lowest order of the three.



Table 5.1.1 Summary of Results, All Methods in a Simple Example
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Ease of Application Key: 1 — Easy, with little tuning required; 2 — Moderate, with some

tuning required; 3 — Difficult, requiring a preliminary transformation to proper form

5.2 Stepper Motor Example

The new SDDRE nonlinear filtering technique developed in the previous chapter for

systems bilinear in their unknown parameters and state variables (i.e. System Class C)

and the Extended Kalman Filter (EKF), are applied in this section to a parameter

estimation problem involving a 4 th order permanent magnet stepper motor with six (6)

unknown parameters. Through simulation experiments, we demonstrate that the

performance of both are stable. Not only do both filters generate convergent state and

parameter estimates, but the results indicate that a region of convergence exists and that
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region appears to be at least semi-global, as indicated by the theory. Actually, a set of

initial conditions leading to non-convergence could not be found.

5.2.1 Model

In [4] A.J. Blauch, et. al. demonstrate the use of a batch least-squares estimation

algorithm in the identification of the parameters of a permanent magnet stepper motor.

The motor model:

is nonlinear, 4 th order, and contains six (6) unknown parameters and two (2) inputs, all of

which are defined in Table 5.2 and Table 5.3. In addition, there is a known parameter

involved, N, which is related to the motor step size. As noted, the model is clearly

nonlinear. Equations ( 5.4) and ( 5.5) contain the multiplication of two state variables,

WO and a current, and in equation ( 5.6) there is coulomb friction. There also exists the

nonlinearity introduced by the multiplication of an unknown parameter with an

unmeasured state variable (i.e. System Class C); we will be considering the case in

which the viscous friction coefficient B is unknown.



Table 5.2 — State Variable and Input Definitions
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Table 5.3 - System Parameter Definitions

The measurements that will be assumed in this case study will include both phase

currents, iq and id, and the motor shaft position O. This is typical in motion control

applications involving stepper motors.

All of the parameters listed in Table 5.3 can have some degree of uncertainty. The

inertia constant J can vary as the load being driven by the motor varies. In addition,

motor viscous friction B is also typically very poorly known, more so than the motor

resistance R, inductance L, and torque constant Km. All can vary somewhat with

temperature and/or time, and so all five (5) of these parameters are assumed to be

unknown and requiring estimation. The coulomb friction coefficient C, on the other
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hand, multiplies the hard nonlinearity, sgn(ω (t)). It therefore must be considered a

known if we are to satisfy the restriction of System Class C.

The following definitions:

allow the system model (5.1)-(5.4) to be expressed in the more compact form:

The state variables (5.5) are arranged in this order so that the first three are measured,

and the remaining one is not.

Actual parameter values are listed in Table 5. 1.4. These give rise to the following

true parameter values:



Table 5. 1.4 — Stepper Motor Parameter Values
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5.2.2 Filter Equations

Both the SDDRE filter and the EKF simulation tested with this example depend on the

These define the State Dependent Coefficient (SDC) representation for the augmented

system :



5.2.3 Simulation Conditions

The initial conditions for applied in this simulation experiment were the following:

A persistently exciting control action applied was in both examples:

where the direct voltage is 0 and the quadrature voltage is a 28 volt, 25 Hz square wave.

The filter design matrices:

were selected by trial and error after examining a few transient simulations. In all cases

both filters were stable, however their speed of response required adjustment.

In the first simulation example, the coulomb friction coefficient C is set to a known

value, zero. The system is then bilinear in the remaining coefficient and state variables,
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thereby satisfying the constraints of System Class C, to which the proof of stability

applies. The results of the first simulation, which involved perfect knowledge of the

coulomb friction coefficient, are shown in Figure 5.8 through Figure 5.12 below. The

oscillations that occur in all of these results are caused by the 25 Hz drive voltage

excitation applied to the motor. The 50 Hz oscillation that appears in the parameter

estimates is caused by the rectification that occurs due to the modulation of the filter

gains at 25 Hz.
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Figure 5.8 Parameter Estimates, Stepper Motor, SDDRE (solid), EKF (dotted), Coulomb
Friction Known to be Zero
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Figure 5.9 Parameter Estimates, Stepper Motor, SDDRE (solid), EKF (dotted), Coulomb
Friction Known to be Zero

Figure 5.10 Parameter Estimates, Stepper Motor, SDDRE (solid), EKF (dotted),
Coulomb Friction Known to be Zero
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Figure 5.11 State Estimates, Stepper Motor, SDDRE (solid), EKF (dotted), Coulomb
Friction Known to be Zero

Figure 5.12 State Estimates, Stepper Motor, SDDRE (solid), EKF (dotted)Coulomb,
Friction Known to be Zero
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In all plots, the SDDRE filter result is plotted as a solid line and the EKF result as a

dotted line. The true parameters are shown as dashed lines. Clearly, the filter estimates

all converge nicely to their true values after a short transient. This occurs even though

the initial parameter errors were in some cases very large. In fact, as noted, a set of

initial conditions yielding unstable performance could not be found, indicating that the

region of convergence is apparently large. The difference between the estimates

provided by the EKF and SDDRE filter is only apparent in the parameter estimates. The

states estimates are virtually identical and indistinguishable on the plots.

In the next simulation test, the viscous damping is assumed to be zero and known,

and the coulomb friction C is an unknown that is estimated by the filter. These results

are given in Figure 5.13 through Figure 5.17. You will note that both filters again do a

excellent job in estimating the unknown states and parameters. Like the first test, initial

conditions leading to instability could not be found.

Finally, in a third example both C and B were assumed to be unknown, and in this

case the filter is found to be stable but not asymptotically stable. The filter estimates did

not converge to their true values. This is as expected because only the sum of the two

parameters multiplying the velocity state is observable.

The non-Riccati equation based techniques developed herein were not tried on this

problem because they do not readily handle applications that fall into System Class C.



Figure 5.13 Parameter Estimates, Stepper Motor, SDDRE (solid), EKF (dotted),
Coulomb Friction Unknown, Viscous Damping Zero
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Figure 5.14 Parameter Estimates, Stepper Motor, SDDRE (solid), EKF (dotted),
Coulomb Friction Unknown, Viscous Damping Zero
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Figure 5.15 Parameter Estimates, Stepper Motor, SDDRE (solid), EKF (dotted),
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Figure 5.16 State Estimates, Stepper Motor, SDDRE (solid), EKF (dotted), Coulomb
Friction Unknown, Viscous Damping Zero
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Figure 5.17 State Estimates, Stepper Example Stepper Motor, SDDRE (solid), EKF
(dotted), Damping Zero



CHAPTER 6

CONCLUSIONS AND RECOMMENDED FUTURE WORK

Five new methods were developed for the simultaneous, on-line estimation of the

unmeasured state variables and unknown parameters in linear and nonlinear dynamic

systems of known structure. Two fundamentally distinct groups were defined: those

that do not involve Riccati equations, and those that do. Two methods were developed

that do not, and both are considered to be extensions of Friedland's parameter observer

from full to partial state availability. The first, referred to herein as Nonlinear Observer

1, is a reduced-order variant of Raghavan's adaptive observer. The method is globally

stable for systems affine in the unknown parameters and involving nonlinear functions of

known quantities. The second, called Nonlinear Observer 2, is a new state and

parameter observer obtained by the direct extension of Friedland's parameter observer to

the case of partial state availability. It also is globally stable for the same system class

noted above, with an added restriction that the Al2 and A22 submatrices be time invariant.

In the category of methods that do involve Riccati equations, three methods were

developed: (1) the Separate-bias Reduced-order Kalman filter, (2) the State Dependent

Algebraic Riccati Equations (SDARE) filter applied to the joint state and parameter

estimation problem, and (3) the State Dependent Differential Riccati Equation (SDDRE)

filter, proposed herein as a general filtering method and also applied to this joint

estimation problem. The global stability of the Separate-bias Reduced-order Kalman

filter is assured for systems affine in the unknown parameters and involving nonlinear

function of known quantities. The stability of the SDDRE filter when applied to systems

bilinear in the unknown parameters and estimated state was examined; however, the
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results were inconclusive. The semi-global stability of the Extended Kalman filter for

this same system class was proven, given mild assumptions regarding system

observability and controllability along estimated trajectories.

Nonlinear Observer 1, created by combining the approach developed by Raghavan

with the nonlinear reduced-order filtering ideas developed by Friedland, appears to

outperform all others in the simple example provided in Chapter 5. Transients swings

were comparatively small, and the step change in one parameter was accurately tracked.

In addition, computational demands were moderate. Compared to the

Narandra-Annaswamy and Bastion-Gevers observers, it is of comparable order and computational

loading, but it provides significantly better tracking of the parameters and states.

Nonlinear Observer 2, created by directly extending Friedland's parameter

observation method to the case of partial state availability, was shown to be the least

demanding computationally of all methods available, new and previously existing, the

order equaling the number of estimated states and parameters. When computational time

loading is the primary concern, Nonlinear Observer 2 is clearly the best choice. Its

applicability, however, depends on the structure of the system and on the success a user

has in finding suitable nonlinear functions, which can be difficult. If this method cannot

be applied, the next best choice computationally is Nonlinear Observer 1, which can

always be applied successfully to systems that fall into Class B (affine in parameters

multiplying nonlinearities depending on known quantities). Finally, if the system is

stochastic and optimal performance is desired, and the additional computational burden

can be tolerated, the Separate-bias Reduced-order Kalman filter can be applied.
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The Separate-bias Reduced-order Kalman Filter is the optimal filter in separate-

bias form for estimation of the state and biases in linear systems involving measurements

that are noise-free. Although applicable to the problem considered herein, the estimation

of the state and parameters in deterministic systems, its applicability is somewhat broader

in that it can be used to provide an optimal estimate in stochastic systems having known

process noise statistics.

The predecessor of the present method, the full-order Separate-bias Kalman filter,

has over the last 30 years received considerable use due to its inherent numerical stability

and efficiency, and because many physical systems naturally take the separate-bias form.

Prior to the development of the reduced-order form of the Separate-bias Kalman filter,

only the full-order form was available even for applications involving measurements

having insignificant levels of noise. In those applications, the computational savings of

the reduced-order form can now be realized without loss of the inherent numerical

stability and efficiency inherent in the separate-bias structure. Numerical stability,

efficiency, and the computational savings of the reduced-order form could be important,

for example, in embedded applications involving limited processing capability.

With regard to future work, two recommendations are made. In some applications

only part of the measurement vector is noise-free. A useful future result would therefore

be the optimal separate-bias filter that applies when part of the measurement vector is

noise-free and part contains noise. Also, to make the method more easily applied using

digital hardware, the discrete-time form of this same filter could be derived.

When the application involves a system that exceeds the limitations of System Class

B and falls into System Class C (bilinear in unknown parameters and estimated states),
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two methods can apply, an existing method called the SDARE Filter and a new method

called the SDDRE Filter. Both are general filtering algorithms applicable to general

nonlinear system estimation problems, the difference being that the SDARE filter uses a

frozen, algebraic Riccati equation and the SDDRE uses a complete Riccati equation,

including the time derivative term. Both were applied herein to the state and estimation

problem.

The SDARE filter was found to work quite well in several examples of lower order

(i.e. two unknown parameters and two states). However, as the number of parameters

increases beyond two, the method becomes difficult to apply due to an apparent lack of

"observability" within the filter. It becomes necessary to distinguish each new

parameter from the previous by altering their dynamics as seen by the filter, so that they

become observable in the linear sense, such that the algebraic Riccati equation has a

solution. This is a suitable approach for a few parameters, but as the number grows,

numerical difficulties tend to result.

The observability problems of the SDARE filter prompted the development of the

SDDRE filter. By using a complete Riccati equation, the need for "linear" observability

is eliminated. It is replace by the requirement that the system be observable over a time

interval rather than at every instant, which is a much easier condition to achieve. The

SDDRE is therefore recommended over the SDARE filter, because it avoids these

potential "linear" observability problems that preclude filter operation even when the

system is observable. In addition, it is recommended because the computational

demands associated with the generation of the Riccati solution are greatly reduced. It is
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much easier to propagate one step forward in time the solution to a set of differential

equations than it is to solve a similarly dimensioned algebraic Riccati equation.

The new SDDRE filter was shown to be similar to the Extended Kalman Filter in

structure, particularly for systems bilinear in the state and parameters. An assessment of

the stability of both filters was performed using Lyapunov theory. A semi-global (finite)

region of stability has been shown to exist for the EKF applied to bilinear systems. The

system states and parameters must be observable. The observablility of the system along

the true state trajectory and with the true parameters, is assumed to affirm of the

observablility of the system along the estimated state and parameter trajectory.

Ljung examined the stability of the EKF when used as a parameter estimator in

linear systems and found no guarantee of convergence under any condition. The results

of this present work indicate that when used as a parameter estimator in a linear system,

the EKF will produce convergent state and parameter estimates providing that the

augmented system is controllable and observable along true trajectories, and the initial

parameter estimation errors are small.

Both the new SDDRE filter and the EKF were simulation tested on a 4th order

stepper motor with 5 unknown parameters. The new filter was found to provide similar

and potentially better transient performance than the EKF, which is somewhat surprising

when noting that the theory developed herein indicates that the EKF is stable, and is

inconclusive with regard to the SDDRE filter. Perhaps the new SDDRE filter can be

shown in future studies to have similar or superior stability characteristics over the EKF,

as the simulation results suggest. The stability of the SDDRE filter when applied to

bilinear systems is an area of potentially fruitful future investigation.
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