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ABSTRACT

A METHODOLOGY FOR SOLVING THE NETWORK
TOLL DESIGN PROBLEM

by
Mei Chen

Congestion pricing has been regarded as an efficient method to reduce network-wide

travel cost. In this dissertation, a methodology for toll design is developed to provide

policy-makers with suggestions on both where to charge tolls and how much the tolls

should be. As opposed to the traditional approach of marginal social cost pricing, this

methodology is capable of dealing with the more realistic case, in which only a small

number of links can be tolled. Furthermore, this methodology is expanded to

accommodate multiple user groups.

The toll design problem can be formulated using both deterministic and stochastic

route choice models. The most natural formulation of this problem in both cases is a

bilevel formulation. Such formulations are very difficult to solve because of the

nonconvexity and nondifferentiability of the constraint set. In this dissertation, the

problem is converted into a single level, standard nonlinear optimization problem by

making certain simplifying assumption. This single-level version of the toll design

problem can be solved using a variety of well-developed algorithms.

Tests show that this approach can be used to generate reasonable results and

provide valuable decision support to policy-makers.
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CHAPTER 1

INTRODUCTION

1.1 Background

Increasing traffic congestion in metropolitan areas has become a significant concern to

policy-makers in recent years. From 1975 to 1987, the fraction of peak-period miles

traveled on interstate highways with volume/capacity (V/C) ratios higher than 80 percent

increased from 42 to 63 percent. In just two years, from 1985 to 1987, the rush hour

traffic classified as congested by the US Department of Transportation rose from 61

percent to 63 percent (Small et al. 1989). Statistics show that in 1997, the urban

interstate system had 55 percent of its peak period travel with V/C ratio higher than 0.8

(Federal Highway Administration 1997). Commuters are stuck in traffic for longer

periods of time at rush hours, causing huge losses of time and fuel. At the same time,

emissions from idling and accelerating engines accompanying the stop-and-go traffic

greatly degrade air quality. The cost of delay in U.S urban areas, based on estimates of

motorists' value of time and wasted fuel, totaled $43 billion in 1990 (Shrank 1993). The

cost would be even higher if externalities such as reduced air quality were also included.

Even though billions of dollars have been spent expanding urban freeways and

public transportation systems, traffic congestion remains a problem. Various demand

management policies, including carpool or vanpool, high occupancy vehicle (HOV)

lanes, elimination of employer-subsidized parking, and implementation of flextime work

schedules, have been suggested to ease congestion. Unfortunately none of them have

1
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offered substantial relief. For example, in the case of HOV, a 1992 survey showed that

only 28 percent of commuters occasionally used the HOV system in Southern California.

Ridesharing has increased slightly, but not even close to the extent anticipated. The one-

way average travel time savings of 14 minutes one way has not been sufficient to

persuade a higher proportion of solo drivers to forgo the convenience, flexibility, and

comfort of driving alone (Bhatt 1994). A recent study on the evaluation of HOV lanes on

1-80 in New Jersey also showed only a slight increase in peak period percentages of

HOVs and people in HOVs. From 1980 to 1990, the carpooling percentages have

dropped from 19.7 percent to 13.4 percent nationally, and from 18.3 percent to 12.4

percent in New Jersey (Parsons Brinckerhoff Quade & Douglas, Inc. 1997). Besides, it is

argued that the HOV facilities are likely to produce only a small reduction in traffic, if

any, along the mixed traffic lanes, and such reductions are likely to last for a short period

only until latent demand fills up the roads again (Bhatt 1994). Under the circumstances

of tighter restrictions on expanding highway capacity, the enforcement of stringent air

quality standards, and the development of advanced technology, congestion pricing, as an

efficient and practically feasible tool, is becoming the focus of transportation planners.

The central idea of congestion pricing is to charge different tolls on different

facilities at different times of day in order to reduce congestion. Examples include tolling

roads and bridges, charging fees for entering congested areas, HOV buy-in, and changing

parking and transit pricing. In practical application, there are several basic forms of

congestion pricing (Gomez-Ibanez and Small 1994):

(1) Point pricing, in which a traveler passing a point at a specific time is charged a

fee;
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(2) Cordon pricing, in which a traveler entering a congested area is charged a fee

at each entry point into the area;

(3) Zone pricing, in which road users traveling within a cordoned area pay a fee;

(4) Parking pricing, in which higher parking charges are applied in congested

areas during the most congested periods;

(5) Charges for distance traveled within a congested area or on a congested route.

Two forms of congestion pricing in operation are cordon pricing in Singapore and

charges for distance traveled on the Al toll road outside Paris. Additional examples of

cordon pricing can be found in three Norwegian cities where the tolls do not vary by time

of day. In the United States, a hybrid version of point pricing, HOV buy-in, in which

solo drivers would be provided the option of paying to travel on the underused HOV

lanes, is actively proposed.

Through changing road users' route choice, time of travel, and mode choice,

congestion pricing is considered as an effective method of relieving congestion.

Furthermore, the recent development in the electronic toll collection technology has made

congestion pricing technically feasible. However, congestion pricing has been a matter

of public policy debate in the United States for years because people question its political

feasibility. Two issues are involved here, public acceptance of direct payment for road

use, which is widely viewed as a free good, and the fairness to those unable to pay

congestion fees without incurring economic hardship. Particularly, the social equity issue

is a significant political barrier to the enactment of congestion pricing. The congestion

fee may constitute a larger proportion of expense for low-income people, so they are

more likely to be "tolled off' the road. These issues contribute to the difficulties of
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implementing congestion pricing policies thus far in the United States. Therefore, when

designing a congestion pricing policy, the social equity issue has to be addressed and a

reasonable revenue distribution package has to be developed in order to overcome the

political barrier.

It is believed that using revenues to fund transportation improvements and broad

economic benefits to road users through reduced taxes, rebates, or community programs

may provide the greatest overall benefit and earn the widest political support. Small

(1992) suggests that the revenue generated from congestion pricing may be used in

various places, such as reducing taxes, and fund capacity expansion. Based on some case

studies, it is concluded by Small (1992) that the efficiency of the transportation system

would be improved if congestion pricing strategies are carefully designed and properly

implemented, and the benefits would outweigh the costs.

In addition to all of these theoretical discussions of congestion pricing policy,

there have been several practical experiments.

Since 1975, Singapore has been charging a fee to motorists who wish to enter the

congested central business district (CBD) during morning and evening peaks (Hau 1992).

Shortly after this system was imposed, the number of vehicles entering the CBD during

the restricted hours declined by 44 percent. Twenty years later, after some modifications

to the program, vehicle trips into the CBD during morning peak hours remain some 25

percent below the 1974 level (Gomez-Ibanez and Small 1994).

In France, a simple congestion pricing system has been implemented on a toll

road outside Paris to deal with the weekend peak demand caused by the return of city

residents on Sunday afternoons from weekend retreats. The time-varied price has caused
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enough travelers to change their travel schedule to avoid the excessive delay on the road

(Gomez-Ibanez and Small 1994).

In Hong Kong, an extended experiment with electronic road pricing technology

was conducted from 1983 to 1985. The system performed quite well, but because of

political difficulties the congestion pricing project was not implemented (Dawson and

Catling 1986). In 1990, a so-called "Revenue Neutral Peak Pricing Policy" was

implemented on the mass transit railway system in Hong Kong. A differential pricing

system was established to reroute transit passengers travelling from Kowloon to the CBD

during the morning peak. Studies showed this policy did not have a highly significant

effect on route choice of passengers, even though the cost difference between the two

alternatives was large in terms of magnitude (Li and Wong 1994).

In Norway, the cities of Bergen, Oslo, and Trondheim have put in place "toll

rings" around each city since 1986, 1990 and 1991, respectively. Among them, Oslo and

Trondheim have implemented electronic toll technology (Larson 1988, Lauridsen 1990,

Medland and Polak 1993). About 80 percent of the revenue earned in Trondheim is

collected electronically, and the toll collection technology in both Oslo and Trondheim

costs about 15 percent of the total revenue earned. Even though these pricing practices

were initiated for revenue collection rather than congestion alleviation, they have been

getting increasing support from the public because of their effects on congestion

management, and their experience could be readily adapted to congestion pricing.

There are also several other cities that are considering congestion pricing

proposals. A toll ring proposal in Stochholm has been filed in which motorists would be

charged for entering the central city via its inner ring road. In the Netherlands, a proposal
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is being developed for the Randstad region that would impose a charge for entering the

primary road system during the morning peak. Also, in England, congestion pricing is

being actively considered in London and Cambridge. There has been a study for London

focusing on the public and political acceptance of various pricing proposals (May 1975,

May and Gardner 1990).

In the United States, there are several proposals for congestion pricing in the San

Francisco Bay Area and in Southern California. In order to shift some peak period traffic

demand on the San Francisco-Oakland Bay Bridge to the off-peak and to transit, the

congestion pricing pilot project of the San Francisco Bay Area suggested doubling or

tripling of the existing bridge toll during peak hours (Dittmar et al. 1994). In the San

Diego area, it has been proposed that solo drivers pay a toll to use an existing underused

HOV lane, which is the so-called "HOV buy-in", while carpools are still exempted from

this charge (Duve 1994). There is also a private toll road, the Riverside Freeway (SR 91)

in Southern California, on which peak-period fees are imposed on solo drivers using the

newly constructed express lanes paralleled to the existing freeway. Similar to the

proposal in the San Diego area, carpools will use this express lane without charge

(Fielding 1994). However, the California congestion pricing projects aim at reducing the

congestion only on the tolled road instead of the whole area-wide transportation network.

Given the high level connectivity of the highway system, these pricing strategies

certainly have built-in flaws.
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1.2 Theoretical Basis of Congestion Pricing

Economists have proposed the concept of congestion pricing to allocate scarce highway

capacity, especially under congested road conditions, such as Pigou (1920), Knight

(1924), Walters (1961), and Vickrey (1963). By making road users pay the full marginal

social cost of using the highways, congestion pricing could significantly reduce traffic

congestion, thus reduce time lost, reduce air pollution and save energy.

1.2.1 General Idea

The economic theory behind the congestion pricing can be explained graphically, as

shown in Figure 1-1.

Figure 1-1 Marginal Social Cost Congestion Toll

In the absence of a congestion toll, the quantity of traffic flow will be that which

occurs at the point where the average user cost curve intersects the demand function. As

can be seen, short-run marginal cost is considerably higher than the average cost at this
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point. This is because the marginal cost curve represents the cost to all drivers of adding

one more driver to the traffic stream during the same time period, while the average cost

curve gives the average cost experienced by individual drivers. Perceiving only this

average cost, an additional driver is likely to join a congested traffic stream. In the

absence of a congestion toll, since he/she may only be aware of the average cost he/she

will experience and is largely unaware of the increased cost, called external cost shown in

Figure 1-1 as AB, that he/she is imposing on all other drivers.

If the road users are made to pay the full marginal social costs of driving during

the peak period, urban traffic congestion will be fairly alleviated. This can be

accomplished by charging a congestion toll in the amount of CD as shown in Figure 1-1,

to all users driving on that specific roadway during peak period. At this point, each

driver will experience the short-run marginal cost P * instead of average individual cost

P ° , thus the traffic demand would decrease from Q ° to Q *

However, this theoretical model has some limitations. McMullen (1993) indicates

this model is simplistic in that it ignores the fact that different vehicle types might impose

different costs on the roadway. For example, large trucks obviously inflict more damage

and thus higher road costs. Also, this theoretical model applies only to one section of a

specific roadway. Furthermore, this model assumes that vehicle drivers are fully

cognizant of the private costs of a vehicle trip while studies show that highway users

usually significantly underestimate the cost of vehicle operation as well as the value of

drivers' time spent in traffic jams.

Gomez-Ibanez (1992) points out that the above principle for road pricing does not

apply well in cases when more than one road is involved and there are toll-free
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substitutes which could significantly reduce the effectiveness of tolls in managing

demand. Since in most practical situations the availability of toll-free competition may

be crucial to secure the political support for toll programs, the calculation of the optimal

toll level becomes much more complicated.

In the following section, two categories of research on congestion pricing, route

choice modeling and departure time choice modeling, which constitute the theoretical

basis of congestion pricing policy will be discussed.

1.2.2 Route Choice Modeling

In the context of route choice models involving congestion tolls, Dafermos and Sparrow

(1971) introduce a method to determine the congestion toll on each link that makes the

resultant user equilibrium (UE) flow pattern identical to that of the system optimum (SO).

This equilibrium flow pattern will generate the minimum total travel time for the whole

network. Specifically, the system optimization problem is first solved for the system

optimal flow pattern, then the link toll vector can be obtained by solving the user

equilibrium under this toll pattern which produces the system optimal flow pattern

obtained previously.

Dafermos (1973) extends the above method for networks with multiple user

groups. It is shown that the system-optimizing flow pattern can still be obtained in this

case by charging tolls. Also, link-based as well as route-based tolling policies are

discussed.

Smith (1979) generalizes this method of marginal social cost charge for networks

with link interaction and variable demand. It is proved that if the cost and the demand
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functions satisfy certain weak smoothness conditions, the local optimal marginal social

cost charges on the transportation network could be found.

Usually in the network traffic equilibrium problem, route cost is considered as the

summation of the costs of those links defining the route, while this is often not practically

true. Gabriel and Bernstein (1997) point out that there are many situations in which the

additive assumption is inappropriate, including nonlinear valuation of time, non-additive

transit fares, and non-additive tolls (such as the practice on the New Jersey Turnpike).

The existence and uniqueness conditions as well as convergence results for a generic

nonlinear complementarity method are established. In a later work by Bernstein and

Gabriel (1996), a route generation method based on the non-smooth equation/sequential

quadratic programming (NE/SQP) algorithm is developed for solving this traffic

equilibrium problem with non-additive route costs.

1.2.3 Departure Time Choice Modeling

In the context of departure time choice models involving congestion tolls, Vickrey (1969)

discusses the bottleneck congestion and the use of congestion tolls vs. capacity expansion

to provide optimal adjustment. It is shown that a time-varying congestion toll during

peak hours could be an important element in developing an efficient transportation

system, even in the long run.

Arnott et al. (1990) extend the previous studies by proposing a coarse toll, which

is defined as a one-step fee paid at the front of the queue over a time interval.

Equilibrium is reached when all travelers have the same travel costs, which consists of

queuing time and schedule delay. It is found the optimal toll would generate
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substantially greater efficiency gains than those obtained from previous estimates, which

ignored the change in frequency distribution of departure time. In addition, a significant

portion of this efficiency gain can be achieved by applying the one-step coarse toll, which

involves much lower implementation cost than the more complex time-varying toll.

Arnott et al. (1992) present a method of charging the user-group-specific

congestion tolls to improve the temporal and spatial separation of user types over roads.

A model with two groups of drivers choosing between two parallel routes is established,

in which the trip cost of a driver in either group is assumed to be a linear function of the

number of drivers in each group taking the same route. Also, through the discussion on

the interaction between the spatial and the temporal separation of user groups, it is found

that it may be more efficient to separate user groups temporally rather than spatially.

Bernstein (1993) proposes a congestion pricing scheme involving continuous tolls

and subsidies on a simple two route network. The impact of this pricing scheme under

various implementations is examined. It is shown that with the help of electronic toll

collection technology, this pricing scheme with time-varying tolls and subsidies may

overcome some public objections to congestion pricing.

Chen and Bernstein (1995) extend the one-directional bottleneck model to study

the AM/PM commuting. It is indicated that with the help of toll collection technology,

the time-varying congestion toll can be applied to influence the departure time of

travelers in both directions, when tolls can only be collected in one direction.

Particularly, such tolling scheme combining tolls and subsidies has to be network-varied.
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1.3 Finding Appropriate Tolls

How to design an effective tolling scheme has long been an issue of focus in planning

congestion pricing policy. In particular, what is the appropriate toll on the network has

been discussed in many studies recently.

Ferrari (1995) shows that when the roadway network has links with physical

capacity constraints, the deterministic static traffic equilibrium model with elastic

demand may have no solution at all. This results from the fact that some links may bear

flows higher than their capacities. By charging congestion tolls on these links, the

equilibrium can be reached. The computation method for these additional costs is based

on the use of modified link cost functions. Compared with the congestion tolls derived

from the traditional marginal social cost pricing, the congestion tolls obtained by using

this method are markedly less. However, there is no proof that this method is general and

can be extended to large networks.

Bergendorff et al. (1996) present a tolling methodology for transportation

networks that also ensures the resultant equilibrium flows to be the system optimum. In

this model, various optimization criteria can be specified, such as minimizing the total

amount of tolls collected from users, or minimizing the number of toll plazas. With the

marginal social cost as one element of the possible tolls, this model would generate a toll

pattern involving less tolled links, compared to the ordinary marginal social cost tolls.

Based on the concept of bi-criterion equilibrium traffic assignment, Dial

(forthcoming) presents a model, an algorithm and heuristic for link-based toll design. In

this model, the travelers' value of time is considered as a stochastic variable. The

optimal toll will induce a user equilibrium flow pattern that is system optimal. However,
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for a more practical case where link tolls are bounded, the computation demand becomes

formidable. Test results of a heuristic on a mid-sized network show that tolling only

some congested links can greatly reduce total travel time and increase the travel speed.

Based on the theory of marginal social cost pricing, Wie and Tobin (1998) present

two types of dynamic congestion pricing model. Two types of time-varying congestion

tolls can be determined by solving a convex control formulation of the dynamic system

optimal traffic assignment. It is shown that the equilibria under tolls for both cases are

identical to the result of such assignment.

Yang and Meng (1998) introduce an optimization model to obtain the departure

time and the schedule delay of commuters as well as the optimal time-varying tolls of

bottlenecks, given the elastic demand functions and schedule delay costs associated with

each destination. This model is constructed over a combined application of the space-

time expanded network (STEN) representation of time-varying traffic flow and the

conventional network equilibrium modeling techniques.

1.4 Objectives of This Research

From a theoretical perspective, these papers are quite interesting. However, either they

are not network-oriented (such as Vickrey 1969, Arnott et al. 1992, and Chen and

Bernstein 1995, etc.), or, they presume marginal social cost pricing (such as Dafermos

and Sparrow 1971, Dafermos 1973, Bergendorff et al. 1996, Dial forthcoming, Wie and

Tobin 1998, and Yang and Meng 1998). Congestion pricing has a profound impact on

people's route choice decision on the whole network, not only those who travel on the

tolled roads. So, it is very important to study route choice behavior over the entire
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network. Furthermore, in practice, it is clear that not all links are tollable. In fact, only

very few links of the network can be tolled (such as bridges and tunnels, etc.). Little has

been done to solve this "real world" congestion toll design problem. Hence, the primary

objective of this dissertation is to study this more realistic toll design problem. More

specifically, assuming that only a subset of the links in the network can be tolled and that

there are multiple user groups over the network, the toll design problem will be

formulated for both deterministic and stochastic route choices.

Intuitively, the toll design problem can be formulated as a bilevel optimization

problem with nonlinear objective function and the solution set of another optimization

problem as its constraint. Unfortunately, this constraint is nondifferentiable and

nonconvex, and, hence this kind of optimization problem is very difficult to solve. To

simplify this problem, it is proposed that the toll design problem be formulated as a

single-level optimization problem by making certain simplifying assumptions. This

simplified problem will have a set of differentiable, nonlinear equality constraints.

Compared to the original problem, this problem can be solved much more easily using

the algorithms for solving a standard nonlinear programming problem.

Another contribution of this dissertation is the extension of this toll design

problem to accommodate multiple user groups over the network. It is well known that

congestion pricing will have a significant impact on all road users. Since there are

various types of vehicles, each with different operating characteristics (such as cars and

trucks), they have different congestion externalities. So, it may be appropriate to charge

different tolls to different vehicles. In addition, since the income level differs among

travelers who may have different route choice behavior, charging the identical toll may
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force some travelers with lower income to switch to other routes, which would raise the

social equity issue. Therefore, incorporating these factors into the congestion toll design

model is necessary for planning an effective and widely accepted tolling policy. In this

dissertation, a toll design model with multiple user groups will be developed. However,

the nonconvexity of the problem, which is mostly attributable to the presence of multiple

user groups, makes even the simplified toll design problem very complicated. Various

solution techniques will be used to find the best solution to the problem on a practical

network.

The plan of this dissertation is as follows. Chapter 2 presents a review of the

literature related to the toll design problem, as well as the very similar but well-studied

continuous network design problem. Chapter 3 presents the formulation of the toll design

problem with deterministic route choice. The relationship between the bilevel

formulation and the single level formulation for deterministic toll design problem is also

discussed. Chapter 4 presents the formulation of the stochastic toll design problem. Also

discussed is the relationship between the deterministic and stochastic toll design

problems. In Chapter 5, several small examples are presented to illustrate how charging

tolls on certain links would decrease the total travel cost. Chapter 6 introduces various

algorithms for solving the simplified toll design problem, and discusses the applicability

of these algorithms to toll design problems with deterministic and stochastic route

choices. Chapter 7 presents a case study for the toll design problem, in which a practical

network is chosen to test the methodology developed in Chapters 3 and 4. The

dissertation concludes with Chapter 8, which contains conclusions and direction of future

research.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The toll design problem is to find the network toll pattern that would minimize or

maximize some objectives subject to constraints on the tolls and a constraint or

constraints that ensure(s) that the resulting flow pattern is in equilibrium. An important

underlying assumption of this problem is that the set of links in the network on which

tolls could be placed is known.

In this problem, there are basically two types of decision-makers with different

objectives. The transportation planner wishes to find a network toll pattern to minimize

the total network-wide travel time, while the road users choose the routes that minimize

their individual travel costs. Figuratively speaking, the transportation planner evaluates

the total travel time obtained from the equilibrium flow pattern under various toll

schemes and determines the best tolling plan. Ignoring the details for the moment,

suppose that the planner knows that a particular link toll pattern, r , can give rise to any

number of route flow patterns F E E„ where Er denotes the set of equilibrium route

flow patterns of the network under the network toll pattern r . Then, if the route travel

cost under the route flow pattern F is denoted by C(F) , the planner's problem is

16
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Now, since travelers are "competing" with each other, one would expect that for

any given toll pattern, any traffic pattern that would result would be an equilibrium of

same kind. Because of the dependency of travel cost on the flow, these two decision-

making processes actually interact with each other. In order to minimize the total travel

time, the planner's decision on how much to charge and where on the network to impose

the tolls is based on the user equilibrium flow pattern. This pattern in turn results from

the users' route choice decision under the network toll pattern set by the planner.

For problem (2.1), suppose Er is a singleton. Then the planner's problem can be

written as

However, in general this is not the case. It is commonly known that the equilibrium route

flow is usually not unique even though the equilibrium link flow is. Therefore, ET , as the

set of equilibrium route flow patterns, most likely contains multiple elements. So,

considering that the route flow is a decision variable in the road user's problem, problem

(2.1) can be treated as if the planner chooses r and F . But that F must be constrained

to be an appropriate behavioral response to T . That is

subject to

Generally, users' route choice decisions can be deterministic (in which case users

will always choose the minimum cost route), or stochastic (in which case users choose

their routes probabilistically). Therefore, the toll design problem can be divided into two
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categories, the one with deterministic route choice and the one with stochastic route

choice. In this chapter, the existing literature on both types of toll design problem will be

reviewed. Previous studies of the continuous network design problem will also be

reviewed because of the similarity between that problem and the toll design problem.

2.2 Toll Design Problem with Deterministic Route Choice

In the deterministic route choice case, for any given toll pattern, road users will assign

themselves to the route that minimizes their individual travel cost (inclusive of tolls). In

patterns of the network, then the travelers' problem is to find the optimal route flow

which is the variational inequality formulation of the deterministic equilibrium problem.

Consider a transportation network comprised of a finite set of links, A , (with

cardinality 1.A1 ) and nodes, N (with cardinality IN! ). Let W (with cardinality 1W1 )

denote the set of origin-destination (0-D) pairs, /3,4, denote the set of routes that connect

Further, let Fp denote the flow on route p . The set of feasible route flow patterns can

be given by



19

Associated with each link and route is a travel time function and a travel cost

function. The vector of link travel times is denoted by t , the vector of link travel costs

(exclusive of tolls) is denoted by c, and the vector of link tolls is denoted by r .

Similarly, the vector of route travel times is denoted by T , the vector of route travel costs

(exclusive of tolls) is denoted by C , and the vector of route tolls is denoted by T . It is

The set of equilibrium route flows is then given by

which is simply the set of solutions to the variational inequality formulation of the

equilibrium problem. And, if f denotes a vector of link flows, the set of equilibrium

link flows is then given by

Based on the deterministic route choice concept, Tan (1997) presents an link-

based bilevel formulation of the toll design problem, as shown in equation system (2.8).
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The objective of the toll design problem is to minimize the total travel time,

which is a nonlinear differentiable function. Its convexity depends on the form of the

link cost functions. If the standard Bureau of Public Road (BPR) function is chosen, the

objective function is then convex. However, the constraint set of the toll design problem

raises serious questions. From the above formulation, it is observed that the constraint

problem in this case). Therefore, this constraint is nondifferentiable and nonconvex,

which means descent direction method can not be used to find even a local optimum.

Tan (1997) proposes two heuristics for solving this toll design problem. One is

the probabilistic search method, in which trial solutions of a network toll vector are

repeatedly generated and evaluated by comparing the total travel time induced by the

equilibrium flow under these toll patterns. It is expected that this method may give

acceptable results at a much lower computational cost. However, generating trial

solutions of the toll vector is a pure random process. The other one is a descent method,

in which the gradient information is obtained numerically to facilitate the search for

descent direction. However, due to the inaccuracy of numerical results, this method can

not guarantee convergence before the objective value starts to increase.

However, it can be observed that the above bilevel formulation of the toll design

problem is very similar to the well-known continuous transportation network design

problem. Although the toll design problem has not been studied extensively, the
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continuous network design problem has been studied for decades. Thus, the continuous

network design problem and its algorithms will be discussed next.

2.2.1 Continuous Network Design Problem with Deterministic Equilibrium
Constraints

Continuous network design problems generally deal with continuous investment decision

variables. They were proposed because of the computational difficulties experienced

with mixed integer programming algorithms for discrete network design problems with a

large number of 0-1 variables (Dantzig et al. 1976 and Morlok et al. 1973).

If co denotes the set of feasible equilibrium link flow patterns, then

Let y denote the vector of link investment decision variables, B denote the budget limit,

and h denote the vector of unit costs of link improvements. The basic formulation of the

continuous network design problem is as follows:

The objective of the continuous network design problem is to minimize the total
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Equation (2.10b) is the deterministic equilibrium constraint, equation (2.10c) is the

budget constraint that ensures that the total cost of improvements does not exceed the

budget allowed.

2.2.2 Algorithms for Deterministic Network Design Problems

Many papers have been written about the continuous network design problem focusing

on the development of algorithms giving exact, global solutions as well as being

computationally efficient.

Based on previous formulations and solution algorithms for the network design

problem, it is proposed by Dantzig et al. (1979) that continuous investment decision

variables be used and the system optimal traffic assignment is performed in the lower-

level in place of the more reasonable user equilibrium traffic assignment. This greatly

simplifies the solution process by avoiding the mixed integer programming and

nonconvex programming. When there is no budget constraint, a decomposition method

is used to solve this network design problem. For the case in which a budget constraint is

used, a Lagrange multiplier technique is used to obtain the solution by solving a series of

traffic assignment problems, one for each value of the multiplier.

Abdulaal and LeBlanc (1979) propose a nonlinear unconstrained optimization

formulation of the network design problem with continuous investment variables.

Powell's method and the Hook and Jeeves's method are employed to solve the problem

with convex and concave investment functions, respectively. Tests show that the convex

investment costs result in minor additions to existing capacities for almost all links

proposed for improvements, while on the other hand, concave investment costs result in
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large increases in existing capacities for only those links with high V/C ratios, and

negligible additions to other links. However, for each link improvement update at the

upper level, a user equilibrium problem needs to be solved at the lower level. Therefore,

these algorithms have high complexity with respect to computation time that prohibits

their application for solving real-world problems that usually have large magnitude.

It is demonstrated in Marcotte (1983) that the lower level user equilibrium of the

network design problem can be formulated as a variational inequality for each link of the

network provided that the cost functions are separable, twice continuously differentiable

and strictly increasing. This would make use of the gradient information in the solution

procedure of the lower level problem, and thus would improve the efficiency of those

solution methods for the network design problem. The constraint accumulation

(relaxation) algorithm and the iterative optimization assignment method, which are an

exact algorithm and heuristic respectively, are used to solve the problem. The iterative

optimization assignment method is very sensitive to the choice of the starting solution. In

both cases, the network design problem remains computationally prohibitive.

In LeBlanc and Abdulaal (1984), it is suggested to substitute the user equilibrium

problem with the more easily solved system optimal problem. This is based on test

results indicating that the system optimal model produces solutions as good as those from

the user equilibrium model. The reason is that although the network design problem with

user equilibrium constraints is much more realistic, normally it can't be solved optimally.

However, the network design problem with system optimal constraints can be solved

optimally, provided that linear investment cost functions are used. Hence, for realistic-

sized networks, the distinction between the quality of the solutions obtained is vague.
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LeBlanc and Boyce (1986) present a bilevel programming approach which can

give an exact solution for a moderate-sized network design problem. In this method, the

link travel cost functions are approximated by piecewise linear functions, and then the

grid search algorithm (Bard 1983) for solving linear bilevel programs could be applied to

obtain the exact solution for networks with fewer than 200 nodes. For larger networks,

near-optimal solutions can be obtained by solving an approximating nonlinear program

that is very similar to a user equilibrium model. The objective function is made convex to

ensure a global optimal solution. However, it is shown in Ben-Ayed and Blair (1989)

that the above algorithm for solving the linear bilevel program may not always give

optimal solutions.

Suwansirikul et al. (1987) propose another heuristic for finding an approximate

solution to the continuous equilibrium network design problem. Numerical tests indicate

that this heuristic is much more efficient than the Hook-Jeeves method, when applied on

networks with significant congestion. This efficiency results from the decomposition of

the original problem into a set of interacting optimization subproblems. And at each

iteration, only one user equilibrium needs to be solved to update the improvement

variables of all links of the network, since all decomposed subproblems are solved

simultaneously. In addition, it is also noted that the use of the iterative optimization

assignment method for solving the network design problem is not appropriate. The

reason is that the iterative optimization assignment method is for a Cournot-Nash game,

while the network design problem is in fact a Stackelberg game.

Friesz et al. (1992) present a simulated annealing method for solving the network

design problem with variational inequality constraints. By not always rejecting the
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intermediate solutions worsening the objective value, this method, rooted from the

physical annealing of solids, is expected to be able to reach the global optimal solution

for such nonconvex problems. However, the computation effort involved with the

simulated annealing method is highly excessive due to the large number of equilibrium

assignment problems to be solved, even though it yields better a solution compared to

those calculated with other well know methods.

Waller et al. (1998) introduce a linear formulation of the network design problem

based on a dynamic traffic assignment model. This model presumes the system optimal

traffic assignment and time-dependent demand. Then the complicated network design

problem can just be solved using classic linear programming algorithms. However, this

method is limited to single destination networks.

The concept of the deterministic equilibrium is based on certain behavior

assumption that travelers are fully aware of the travel cost over the entire network, and

they always choose the least cost route connecting their origin and destination pairs.

While many argue that this deterministic route behavior representation is more accurate

when travelers have perfect information on travel cost, it ignores the fact that people may

have intermediate stopping places on their trip, such as dropping children off at the

daycare center on the way to work and then picking them up on the way home, as well as

seeing a doctor, stopping by at supermarket, etc. In reality, a traveler's decision on which

route to choose is more likely based on these intermediate points. Even when there isn't

any intermediate stopping points, travelers may not always choose the least cost routes.

Thus the stochastic route choice model was established to describe this choice behavior.
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2.3 Toll Design Problem with Stochastic Route Choice

A stochastic route choice model has been established based on the discrete choice models

that describe individuals' choices between competing alternatives (for example, see

Sheffi and Daganzo 1978). The underlying assumption of the discrete choice models is

that when faced with a choice situation, an individual's preferences toward each

alternative can be described by an "attractiveness" or "utility" measure associated with

each alternative. This utility is a function of the attributes of the alternatives as well as

the decision-maker's characteristics. It is presumed that the decision-maker chooses the

alternative that yields the highest utility. However, because of the randomness associated

with the utility (i.e., the uncertainty of the attributes that influence an individual's utility),

the discrete choice model can give only the probability with which alternatives are

chosen, not the choice itself. Therefore, different from the deterministic route choice

model, the stochastic route choice model determines the probability of a particular route,

connecting a particular O-D pair, being chosen by a decision-maker who is randomly

selected from a given population. Use the most widely employed logit model, and let Pp

denote the probability of choosing route p 	 connecting O-D pair w E W being

chosen, and O p denote the utility of this route, then

in which µ is the cost scaling constant that represents users' sensitivity to the cost

differences among alternative routes. Furthermore, this probability should be understood

as the fraction of individuals in this large population. Given the utility function of



can be found as

Hence, the set of equilibrium route flows, Er , can be given by

and the set of equilibrium link flow, e„ can be given by

This actually defines the stochastic user equilibrium problem, which is to find the

the stochastic route choice model can be formulated as a mathematical program with flow

conservation constraint to obtain the set of equilibrium link flows, er (Sheffi and Powell

1978). Powell and Sheffi (1982) suggest the use of the method of successive average by

providing a convergence proof of this method. This method involves a predetermined

move size on the basis of some characteristics of the current solution, and thus it is very

slow in convergence.

Consequently, under this formulation, routes with lower costs are more likely to

27
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be chosen and vice versa. More importantly, every route in the network will have a

nonzero probability of being chosen, provided that µ < ∞ . Furthermore, the formulation

of (2.15) also implicitly satisfies the flow conservation constraints. Another very

important feature of this stochastic equilibrium problem is the uniqueness of its solution.

This uniqueness will affect the solution of the toll design problem with stochastic route

choice, and this will be addressed in Chapter 4.

Based upon the above discussion of the stochastic route choice model, the toll

design problem can be written as

Problem (2.17) is a bilevel program, similar to the case of the deterministic based

toll design problem, in the sense that (2.17b) can be alternatively formulated as a

mathematical program, even though in this case it is written as a fixed point problem

involving a series of nonlinear equations as shown in (2.15). Again, this problem is very

similar to the network design problem with stochastic equilibrium constraints.

2.3.1 Continuous Network Design Problem with Stochastic Equilibrium
Constraints

If equation (2.11) is replaced with (2.15) and (2.16), then the network design problem

(2.10) becomes a network design problem with stochastic route choice. This is still a
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bilevel problem, in the sense that the lower level stochastic equilibrium can be formulated

as a mathematical programming problem.

Davis (1994) finds that if the continuous network design problem is formulated

based on the logit-based stochastic user equilibrium (SUE), the constraints will become

differentiable, and at the same time, the number of constraints will be manageable.

Compared to the deterministic network design problem, which has nonconvex and

nondifferentiable constraints, this problem should be much easier to solve.

otherwise. Then in the multinomial Logit-based stochastic user equilibrium, the

Under the above conditions, Daganzo (1982) shows that the stochastic user
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which is a set of nonlinear equations.

Hence Davis (1994) concludes that the bilevel network design problem can be

converted to (2.21), which is a standard nonlinear programming problem with a nonlinear

objective function and nonlinear constraints (both equalities and inequalities).

Particularly, the number of the nonlinear equality constraints of problem (2.21) equals to

the number of links of the network, while that of the problem (2.10) with constraints

(2.15) and (2.16) equals to the number of routes of the network. Since it is commonly

acknowledged that the number of routes would be much larger than the number of links

in a real network, it is believed that problem (2.21) should be easier to solve than problem

(2.10) with the fixed point constraints (2.15) and (2.16).

subject to

Note that (2.21) can actually be considered as a single level problem, with a more

manageable number of nonlinear equality constraints. This single level problem can be

solved relatively easier than the bilevel formulation.
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2.3.2 Algorithms for Stochastic Network Design Problems

In order to solve the above network design problem with stochastic equilibrium

constraint, a procedure for calculating the derivatives is given by Davis (1994). It

involves applying the Dial's algorithm, in which the very time consuming process for

computing route choice probabilities is eliminated. By using the gradient information,

two algorithms for solving the constrained nonlinear programming problem, the

generalized reduced gradient method and the sequential quadratic programming method,

are tested on several networks with various sizes, which shows the SUE-constrained

version of the network design problem can be solved within an acceptable time frame.

2.4 Shortcomings of the Existing Research

All the above work, both the toll design problem and the continuous network design

problem with either deterministic or stochastic equilibrium constraints, consider all the

road users as one group with identical characteristics. This is certainly unrealistic

because road users are indeed different (for example, cars and trucks have different

acceleration features, and their effects on each other are also different). Hence, in order

to design a politically viable congestion toll scheme, the different features of road users

should be taken into consideration. It is common practice in road pricing that trucks are

charged more than cars. Therefore, it is more realistic to accommodate various user

groups into the toll design models.

Unlike the stochastic based network design problem, the deterministic based toll

design problem (or the continuous network design problem) has been formulated as a

bilevel program, which is very difficult to solve because of the nondifferentiability and
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nonconvexity of the equilibrium constraint. Solving this problem would involve the

iterative solution of both the upper level and the lower level optimization problems. This

could involve extremely intensive computation for real-sized networks.

In the next chapter, the toll design problem will be formulated to deal with

multiple user groups, based on both deterministic and stochastic route choices. In

addition, both formulations will be converted into single level programs, which can be

solved using standard nonlinear programming algorithms. This conversion, particularly

for the deterministic based toll design problem, which is on the basis of a simplifying

assumption, will greatly reduce the computation difficulty for solving these problems.



CHAPTER 3

TOLL DESIGN PROBLEM WITH DETERMINISTIC ROUTE CHOICE

3.1 Introduction

In this chapter, the toll design problem with multiple user groups assuming deterministic

route choice will be discussed. In this case, the toll design problem will first be

formulated as a bilevel program. The BPR function is used to represent the link travel

cost. Hence, the bilevel toll design problem has a nonlinear objective function and

nonconvex constraint, which is the solution set of equilibrium traffic assignment.

Because of the difficulty in solving the toll design problem under bilevel formulation, it

is later converted into a single level problem, under certain conditions. This simplified

problem is a standard nonlinear programming problem, thus can be solved relatively

easily. In addition, the single level toll design problem can be further simplified by using

a linear cost function instead of the nonlinear BPR function.

3.2 Assumptions

The toll design problem with multiple user groups is defined as: given the characteristics

of a network, the set of links that can be tolled, the travel demand for each user group

between each O-D pair, and the link performance functions, find the optimal link toll

pattern of the network that would induce the lowest total travel cost (exclusive of tolls).

Similar to that with single user group discussed by Chen et al. (forthcoming), the toll

design problem with multiple user groups has equilibrium constraints. In this case, a user

33
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chooses his/her route based on the route choices of other users in the same group as well

as users of different groups. The equilibrium with multiple user groups can be defined as

follows: at equilibrium, no user from any group will be able to further decrease his/her

travel cost (inclusive of tolls) by unilaterally changing routes. The following general

assumptions are made in the toll design problem:

(1) The set of links in the network that can be tolled is known;

(2) Travel demand for each user group between each origin-destination pair is

fixed and known;

(3) Travelers have multiple route choices available to them; and

(4) All route travel times and costs are additive.

Particularly for the toll design problem based on deterministic equilibrium, the

underlying assumption is that road users choose the routes that minimize their individual

cost of traveling (inclusive of tolls). It is also assumed that travelers have perfect

information on travel times and costs on all alternative routes.

3.3 Bilevel Toll Design Problem with Deterministic Route Choice

The toll design problem with multiple user groups can be formulated as a bilevel

programming problem, similar to the toll design model for single user group presented by

Tan (1997). Specifically, the toll design problem is formulated as a mathematical

program with another optimization problem embedded in it as a constraint.

Consider a transportation network comprised of a finite set of links, A , (with



denotes the flow of type u user on link A . Let F denote a vector of route flows, thus
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Associated with each link and route is a travel time function and a travel cost

function for each user group. The vector of link travel times is denoted by



Then the set of equilibrium route flows is given by

which is simply the set of solutions to the variational inequality formulation of the

equilibrium problem. So, the set the equilibrium link flows can be given by

Hence, a route-based bilevel toll design problem can be formulated as following:

36

In this problem, there are basically two classes of decision-makers, the

transportation planner chooses the toll that minimizes the total travel cost (exclusive of

tolls), while each individual driver chooses the route that minimizes his or her travel cost

(inclusive of tolls), given the behavior of other drivers. The upper level of this bilevel toll

design problem can be viewed as the "transportation planner's problem", in which the
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transportation planner tries to find a toll pattern that minimizes the total travel cost. It has

a nonlinear objective function, which is the total travel cost. When the BPR function is

used to describe the link travel cost, the objective function is then differentiable while its

convexity would depend on the parameters chosen in the BPR function. The lower level

of the toll design problem can be viewed as the "road users' problem", in which each

road user tries to minimize his or her travel cost under the influence of congestion tolls.

There is no equivalent mathematical optimization problem for the equilibrium with

multiple user groups. The diagonalization method has to be used to solve the lower level

problem because of the asymmetric interaction between the cost functions of various user

groups. This results in solving a series of diagonalized subproblems with nonlinear

objective functions that is the total individual travel time, and linear constraints that are

the flow conservation constraint and nonnegativity constraints.

By incorporating multiple user groups into the toll design problem, this model is

capable of dealing with the characteristics of various user groups. For example, in terms

of the travel time, charging group-varying tolls would help modeling the different

operating features of different types of vehicles. In such cases, road users are divided

into groups like cars and trucks. In terms of the travel cost, charging congestion tolls

would result in different route choice behaviors among different income groups. It is

likely that low-income travelers tend to switch to toll-free alternatives or change the

travel schedule if they could, while high-income travelers may be more willing to pay for

a less congested trip. The effect of congestion tolls on the route choice behavior can be

evaluated through grouping road users according to their income levels. This method is

crucial for the study of the effects of congestion tolls on various income groups, and for
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the design of a convincing revenue distribution package, which could ease the arguments

on the social equity consequences of the congestion pricing plan.

Solving this deterministic based toll design problem with multiple user groups is

very difficult because of the nondifferentiability and nonconvexity of the equilibrium

constraint. Moreover, the solution procedure of the lower level problem is further

complicated by the asymmetric interactions among multiple user groups.

3.4 Single Level Toll Design Problem with Deterministic Route Choice

In order to simplify the toll design problem, we consider a slightly different, but closely

related formulation of the equilibrium subproblem. In particular, we will assume that,

based on the pre-toll equilibrium, a set of "reasonable" routes that will be used after the

tolls are put in place can be found. There are many different ways to define "reasonable"

routes in this context. Perhaps the simplest definition is

Alternatively, one could define the "reasonable" route set as either the set of

minimum-cost routes associated with the most probable route flow pattern (Larsson et al.

1998) that is consistent with f* .
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Similarly, one could also define R as the largest (in terms of its cardinality) set of

used or minimum-cost routes that in consistent with f * .

In any event, we assume that there is some way, given the pre-toll equilibrium, to

determine the set of routes that will be used after the tolls are put in place. While this is a

somewhat strong assumption from a theoretical standpoint, we do not think that it is at all

unreasonable in practice. Indeed, in practice it seems unlikely that policy-makers would

be interested in charging tolls that would change the set used routes dramatically.

Instead, it seems like they would be most interested in tolls that would shift people from

some congested routes to other routes.

With the above assumption, the equilibrium constraint in the toll design problem

can be dramatically simplified. In particular, observe that a route flow pattern, F , is now

an equilibrium if and only if

That is, F is an equilibrium if and only if the costs on all routes connecting a particular

O-D pair are equal. Hence, the toll design problem can be written as follows.
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Note that this is a single level problem. In fact, when C is linear, this is a convex

quadratic minimization problem with linear equality and nonnegativity constraints.

When the BPR function is used to represent the link travel cost, this problem is a

nonlinear optimization problem with nonlinear and linear equality constraints, as well as

nonnegativity constraints. Particularly, both the objective function and the constraints are

differentiable. In such cases, this problem can be solved using a variety of algorithms for

solving standard nonlinear programming problems. However, constraint (3.10b) is likely

Therefore, the single level toll design problem is usually nonconvex. For this kind of

problem, a global optimal solution is not guaranteed.

Nevertheless, if we modify the formulation (3.10b) somewhat, as shown in (3.11),

total route cost (inclusive of tolls), i.e.,

subject to



variable, which is independent of all other variables. Since R., is defined as the set of

each 0-D pair, which is the minimum possible route cost under the equilibrium flow.

of each other. Constraint (3.12b) is still a nonlinear equality. However, if we relax this

constraint to

41
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Even though they are both standard nonlinear programming problems, (3.14) may

be easier to solve than (3.12), since most algorithms for nonlinear programming problems

require a feasible solution to start with, and it is rather easy to find a feasible point that

satisfies inequality constraint (3.14b) instead of equality constraint (3.12b). Furthermore,

many algorithms require that this starting point lie strictly inside rather than on the

boundary of the feasible region. Here, we prove that problem (3.14) and problem (3.12)

have the same solution set. Note that besides the aforementioned two constraints, all

other constraints are the same for the two problems. Therefore, it is just necessary to

compare constraints (3.14b) and (3.12b).

Theorem Problem (3.14) and problem (3.12) have the same solution set.

Proof

satisfies constraint (3.14b) since (3.12b) is a special case of (3.14b). Thus, any solution

to problem (3.12) must be a solution of (3.14).

On the other hand, if there exists an optimal solution (F * ,r * ,e * ) to the problem

(3.14), which only satisfies



The right-hand side of (3.17) is equivalent to the original objective of the toll

larger objective value than the original minimization formulation (3.10). Thus the

objective function can be further minimized, which contradicts the assumption that

not exist. In other words, all optimal solutions of problem (3.14) have to satisfy (3.12b),

which means that they are also solutions to the problem (3.12).

Hence we can conclude that problems (3.14) and (3.12) have the same solution

set, and we can solve (3.14) instead of (3.12). ■

Note that we can not relax (3.12b) to

problem would have no lower bound and would reach infinity.

Since (3.12) is equivalent to (3.10) and (3.14), it follows that (3.14) and (3.10) are

also equivalent. However, the numbers of decision variables in these two problems are

43
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3.5 Equivalence of the Two Deterministic Toll Design Problems

The single level toll design problem with deterministic route choice is based on a revised

formulation of the deterministic user equilibrium, in which we assume that we are able to

find the route set which will be used after placing the toll. In this section, the relationship

between this single level problem and the bilevel toll design problem is discussed.

The toll design problem has an equilibrium constraint that can be formulated as a

variational inequality, as shown in equation (3.3). Alternatively, the equilibrium

constraint can also be formulated as a complementarity problem as follows, where, as

In addition, all nonnegativity constraints should be satisfied.

Looking at the bilevel toll design problem (3.5) and the single level toll design

problem (3.10), one can see that they have the same objective function but different

equilibrium constraints. Therefore, it is sufficient to compare their feasible regions only.



The feasible region of (3.5) consists of the solutions of the user equilibrium problem.

These solutions should satisfy the complementarity condition specified in equation

system (3.19).

the feasible region of (3.5), it belongs to the feasible region of (3.10).

Proof

condition (3.19) should be satisfied. According to the definition of the deterministic

equilibrium, the complementarity condition (3.19) can be expanded as system (3.20) as

follows.

45

Equation (3.20a) is equivalent to (3.10b) if variable CO is disregarded, and

equations (3.20d) and (3.20e) imply (3.10c). Equations (3.20c) is contained in (3.10d).

Since (3.10b), (3.10c) and (3.10d) constitute the feasible region for flows of problem

(3.10), we can conclude that for any F that belongs to the feasible region of (3.5), it also

belongs to the feasible region of (3.10). ■



the feasible region of (3.10), it belongs to the feasible region of (3.5

Proof

following equations hold.

46

route p would have a lower cost than those used routes. Based on the equilibrium

principles, the following holds.
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which is contradictory to equation (3.25). Thus, (3.31) is false and equation (3.33) holds.

Equations (3.20a) and (3.33) can be combined into (3.19b), equations (3.29) and

(3.30) can be combined into (3.19a), and equations (3.25) and (3.27) imply (3.19c). At

the same time, all nonnegativity constraints are satisfied. Since equation system (3.19) is

the complementary formulation of the equilibrium constraint of (3.5), any F which is

from the feasible region of (3.10) should be also in the feasible region of (3.5). ■

Based on Lemma 1 and Lemma 2, we can conclude that the single level toll

design problem (3.10) is equivalent to the bilevel toll design problem (3.5).

3.6 The Special Case of Linear Cost Functions

Usually, the BPR function is used to represent the dependence of the link travel cost on

the link flow. Because this function is nonlinear, the constraint (3.12b) of the single level

formulation of the toll design problem with deteiiiiinistic route choice is a nonlinear

equality. This causes the feasible region of the problem (3.12) remains to be nonconvex.

Even though it can be relaxed to problem (3.14), this relaxation would only help in

locating an internal starting point. Therefore, the simplified toll design problem (3.12) is

still rather difficult to solve.

The nonconvexity of the feasible region is a major factor of preventing the

algorithm from converging to the global optimum. Even though one can use various

starting points and get different solutions, so as to obtain the best one, it is still unlikely to

be the global optimum. Alternatively, one can also use the iterative linearization method
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to convert the toll design problem into a series of linearly constrained optimization

problems, as will be discussed in the next chapter. However, the convergence of this

method depends on the convexity of every constraint function. For the toll design

problem with multiple user groups, this condition is not met except for problem (3.14).

Even though sometimes this algorithm would converge when the constraint convexity

condition is not met, there is no guarantee that this solution is even a local optimum.

Hence, it can be generally concluded that the nonlinear link cost function brings

about the major difficulty in solving the deterministic based toll design problem.

However, if a linear link cost function is used, the complexity of the single level,

deterministic based toll design problem will be largely reduced. In particular, if the link

functions of (3.10b), (3.12b), as well as (3.14b) will become linear. Moreover, because

of the independence among decision variables, these functions should be convex also.

Therefore, the feasible regions of toll design problems (3.10), (3.12), and (3.14) become

convex. Furthermore, the objective function (3.10a) becomes quadratic. According to

the characteristics of the link cost function (i.e., the travel cost increases while the link

flow increases), this quadratic objective function will certainly be convex. Therefore, the

single level toll design problem could be converted to a standard quadratic programming

problem, which is a rather easy problem to solve. The following example shows how

simple the deterministic toll design problem could become if the linear cost function is

used. In this example, the simple two-link network shown in Figure 3-1 is considered. In

this particular case, each route between the origin and destination contains only one link.

Therefore, F1 f , and F2 = 12 so link flow variables can be replaced with route flow
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variables in the formulation. The link cost function is in the linear format, as specified in

the figure, and the total demand is 5.

Figure 3-1 Two-Link Network

The user equilibrium solution to this problem is F1= 2 and F2 =3 with total

travel time 25, while the system optimum solution is F1=1.83 and F2= 3.17 with total

travel time 24.92. From the no-toll equilibrium, one can see that both routes are used in

the equilibrium, and therefore they will also be used after tolls are in place. If only Link

1 can be tolled, i.e., I = {11 , the toll design problem can be formulated as follows. For

simplicity, only the single user group case is considered.
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This problem has linear constraints and quadratic objective function, and can be

solved analytically. The result is that F1 .1.83 , F2 = 3.17 , and r 1 = 0.5 . The objective

value at the optimum is 24.92. Note that in this case, the solution is unique, and it is the

global optimum. In addition, charging a toll valued 0.5 on Link 1 will yield the system

optimal flow pattern on this network.

From the mathematical programming perspective, using linear cost function in the

toll design problem would greatly simplify the solution process. Furthermore, this

guarantees global optimum. One method to obtain linear cost function is through the

linearization of the original nonlinear function, such as the BPR-type cost function.

When solving the toll design problem, one can use a first-order approximation of the

nonlinear function at the equilibrium solution as the linear cost function. It should be

noted that this linearization might cause odd solutions to be obtained, such as negative

flows, when minimizing the total cost. For example, in Figure 3-2, at the user

Figure 3-2 Problem with Linear Cost Function
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nonlinear cost function and then obtain the linear function line, indicated in Figure 3-2 as

line ABCDE . Within the feasible region of nonnegative flows, negative cost (from D to

E , for example) may arise, which is obviously an unrealistic representation of practice.

Considering that there is always a lower bound of the travel cost on the link,

defined as the free-flow travel cost (denoted by t o in Figure 3-2), which can be found at

the intersection of the nonlinear cost function with the cost axis, one should only use the

portion ABC of this linear function to represent the link cost. In addition, piecewise

linear approximation is recommended, if possible, in order to provide a more realistic

representation of link travel cost.



CHAPTER 4

TOLL DESIGN PROBLEM WITH STOCHASTIC ROUTE CHOICE

4.1 Introduction

The deterministic route choice model is based on the assumptions that all travelers have

perfect information regarding travel cost on every route of the network and that they

always choose the route with least cost. However, this deterministic route choice rule

overlooks the fact that some other factors may affect travelers' route choice behavior.

Since there are so many factors that would affect travelers' decision, it can be assumed

that there is a random component in travelers' route choice behavior. In this chapter, we

consider toll design problems with logit route choice, and discuss the relationship

between the deterministic and the logit toll design problem.

4.2 Bilevel Toll Design Problem with Logit Stochastic Route Choice

The stochastic route choice model is based on discrete choice models, which usually

assume that an individual's preferences toward each alternative is described by a "utility"

measure associated with it, and the decision-maker will always choose the alternative that

yields the highest utility. However, this utility function is a random variable since there

are many factors that would affect this function, so it can not be modeled precisely. If the

random terms of each utility function are independent, identical and Gumbel distributed

variables, the choice probability can be given by the logit model. If F denotes the set of

alternatives to be chosen, ,u denotes a positive scaling factor, and V denotes the vector

52
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travel cost (inclusive of tolls) C is usually thought of as the deterministic component of

the utility function. For example, in the case of binary choice, this probability equals to

derivation for the most widely used multinomial logit model.

Figure 4-1 Binary Logit Model

Considering the stochastic equilibrium under tolls as an optimization problem, the

toll design problem can be intuitively formulated as a bilevel program. However, for the

stochastic equilibrium problem with multiple user groups, there is no equivalent

mathematical program. Therefore, the stochastic equilibrium can be formulated as a

E, the set of equilibrium route flows, is given by
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It should be noted that this formulation implicitly contains the flow conservation

constraints. Furthermore, it should also be understood that the equilibrium route flow

pattern determined from (4.1) is unique, which is different from the deterministic

equilibrium. Therefore, the resulting equilibrium link flow is also unique.

The bilevel stochastic toll design problem with multiple user groups can thus be

formulated as follows.

subject to

The upper level problem, viewed as a "transportation planner's problem",

describes the planner's objective to find an optimal toll pattern that minimizes the total

travel cost. When the BPR function is used to describe the link travel cost, the objective

function is differentiable while its convexity depends on the parameters chosen in the

BPR functions. The equilibrium constraint is in the format of a fixed point problem that

is a set of nonlinear equalities. Thus the feasible region of the toll design problem is most

likely nonconvex.
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The lower level problem, viewed as a "road users' problem", is different from that

in the deterministic toll design model. In the stochastic equilibrium, users make route

choices according to the probability of each route being chosen. This probability is based

on the relative magnitude of the cost associated with a route compared with other

available routes connecting the same origin-destination pair.

Similar to the deterministic toll design problem, this bilevel stochastic toll design

problem is very difficult to solve. One reason is that the toll vector is not included in the

objective function, and the gradient of the objective function with respect to the toll

vector can not even be explicitly obtained. Besides, the equilibrium constraint is most

likely nonconvex. Moreover, the number of equilibrium constraints in problem (4.2)

equals to the number of routes in the network, which is usually very large for real-sized

networks.

4.3 Single Level Toll Design Problem with Logit Stochastic Route Choice

In order to simplify the solution process, the method presented by Davis (1994) is applied

here to convert this bilevel stochastic toll design problem into a single level problem.

This link-based procedure is introduced in the following.



In the multinomial Logit-based stochastic user equilibrium, the probability for a
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Under the above conditions, the result in Daganzo (1982) should also apply. That

Using this result, the stochastic toll design problem with multiple user groups can

be formulated as follows.
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This single level problem is actually in the standard nonlinear program format. It

has a nonlinear objective function, and nonlinear and linear equality constraints, as well

as nonnegativity constraints. Moreover, the number of the flow constraints in the system

(4.5b) equals to the number of links of the network, which makes the number of

constraints of this problem more manageable, since the number of routes are usually

much more than the number of links in a network. This problem can be solved using

various algorithms developed for constrained nonlinear programs. However, because of

the nonconvexity of nonlinear equality constraints, the global optimal solution is still not

guaranteed.

4.4 Relationship between Deterministic and Logit Toll Design Problems

The toll design problem involves two decision-making processes, as discussed earlier.

The difference between the toll design problem based on deterministic route choice and

stochastic route choice is in the lower level decision-making process. In the deterministic

toll design problem, travelers make their route choices decision based on deterministic

equilibrium rules, i.e., they always choose the route which minimizes their individual

travel cost (inclusive of tolls). This route choice behavior results in the equilibrium

condition that all the used routes have the same travel cost, which is the minimum travel

cost between a particular 0-D pair, while those unused routes have higher travel cost than

the minimum cost. The existence of these unused routes is the main reason for the

nondifferentiability of the equilibrium constraint in the bilevel deterministic toll design
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problem. Therefore, in order to simplify the deterministic toll design problem, we

assume that we can find a set of used routes after the tolls are put in place, and equalize

the travel costs on these routes. Then the toll design problem with deterministic route

choice can be converted into a single level mathematical program.

However, it should be noted that this effort of finding used routes is only

necessary in simplifying the deterministic based toll design problem. In the stochastic

toll design problem, travelers choose their routes based on certain stochastic equilibrium

rules. More specifically, each route connecting a particular 0-D pair has associated with

it a nonzero probability of being chosen. In another words, travelers between an 0-D

pair will assign themselves on these routes according to the probability associated with

each of them. If the multinomial logit model is used to describe this stochastic route

choice behavior, then

routes connecting a particular 0-D pair will be used. It is this feature of stochastic

equilibrium that enables us to simplify the stochastic toll design problem.

In the above logit based model, the choice probability of a route can be expressed

as a function of the difference between the costs of this route and all other alternatives.

This parameter p is a positive constant that scales the route travel cost. The route choice

probability would have depended on the units of measurement of travel cost without

proper scaling. In a logit model formulation like (4.6), the scaling parameter p actually

measures the sensitivity of users to the route travel cost. A small value of p indicates
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that users are relatively insensitive to the cost, and thus the route choice probability tends

to be very close among all alternatives. When µ  approaches zero, the extreme case

would arise, in which all routes connecting a particular 0-D pair have the same

probability of being chosen. At this moment, the cost is actually not a factor of the route

choice, since users are completely indifferent to the cost. On the other hand, a large

value of µ means the high sensitivity of users toward the cost, and thus the route choice

probability is very closely related to the cost difference among all alternatives. When

approaches infinity, the extreme case can be reached, in which the users will all choose

the route with minimum cost. At this moment, the stochastic route choice behavior

actually converges to the deterministic route choice behavior. The following analysis

proves this assertion.

Consider a particular 0-D pair w E W connected by N routes. Ignore the factor

of multiple user groups for now, since the following rule will be applicable to any

number of user groups. Also, let's incorporate the tolls into the travel cost function (i.e.,



chosen, and then the flows on all these routes should be the same.
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This implies that if there is only one route with minimum cost, then the probability of this

on this route and there will be no flows on other routes.

which implies that only those minimum cost routes will carry flows and their flows will

be equal.
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which implies that the nonminimum-cost route will never be chosen when p =09 .

Therefore, combining the above two cases together results in the description of

the stochastic equilibrium under the circumstance of p = co , namely all used routes will

have the same costs, and those unused routes will have costs higher than the minimum

cost. Note that this is exactly the same description for the deterministic user equilibrium.

Hence, it can be concluded that the toll design problem with deterministic route choice is

actually a special case of that with stochastic route choice.

Realizing this relationship between the deterministic and stochastic equilibrium,

one may conclude that the deterministic and stochastic toll design problems are very

tightly related. The deterministic toll design problem is essentially a particular case of

the stochastic toll design problem.

4.5 Special Treatment for Stochastic Based Toll Design Problem

From the formulation (4.6) of the stochastic equilibrium with logit route choice, one can

see that the probability of a route being chosen is unique, given parameter µ . In other

words, the route flow pattern of the logit equilibrium is unique, and so is the link flow

pattern, which implies that the lower level equilibrium problem of the toll design problem

has a single solution. This means that the feasible region of the stochastic based toll

design problem is a single point, and there is no interior for this feasible region. Hence

those algorithms that require a feasible interior starting point to initialize can not be

applied directly to solve the stochastic toll design problem with logit route choice.
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Alternatively, we consider enlarging the feasible region of this toll design

problem. Specifically, the equality constraint (4.6) can be converted into the following

This way, the feasible region of the toll design problem is enlarged after constraint (4.6)

replaces constraint (4.13).

The value of s can be selected to be extremely small, which is essentially not

changing the optimality from the engineering perspective, while making the calculation

feasible.



CHAPTER 5

NUMERICAL EXAMPLES

In previous chapters, toll design models based on both deterministic and stochastic route

choices were developed. The issue of how different types of link cost functions affect the

solution of the single level problem was also discussed. In this chapter, several small

examples are presented to illustrate the behavior of the toll design problem.

5.1 Two-Link Network

The simplest network, shown in Figure 5-1, is used first. This two-link network has only

one 0-D pair with demand of 5, and the linear link cost function.

Figure 5-1 Two-Link Network

5.1.1 Deterministic Toll Design Problem

In Section 3.6, this example was discussed assuming that only Link 1 can be tolled. If

both links are tollable there will be multiple solutions. For example, if the tolls are set to

r, =1 and z-2 = 0.5 , then at equilibrium, the following has to be satisfied.

1+2F, +1 ,---F2 +2+0.5
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F1 + F2 = 5

The solution to these equations yields F1 =1.83 , F2 = 3.17. The results for system

optimum and user equilibrium are listed in Table 5-1. Similarly, other combinations of

pattern.

Table 5-1 Two-Link Deterministic Toll Design
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This observation leads one to conclude that in this particular two-link network, as

long as the difference in the tolls between the two routes is 0.5, regardless of the actual

values of the tolls, the same network flow pattern will arise. This example also implies

that in general the solution to the toll design problem might not be unique.

5.1.2 Stochastic Toll Design Problem

Based on the same set of parameters given earlier, the toll design problem can also be

formulated based on logit route choice. In this case, there is no need to identify the

routes used after the tolls are in place, since under the logit route choice behavior, all

routes will be used. When p = 1 , as stated in Chapter 4, and I = , the problem

becomes
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Unlike the previous problem, this one can not be solved analytically since the

stochastic equilibrium constraint is a fix-point problem itself. A simple AMPL program

was written to solve this problem using LOQO, a solver employing the interior point

travel cost of 24.92. Table 5-2 lists the results as well as the user equilibrium and system

optimal flows. Again, if both links are tollable, many combinations of link tolls would

could reach maximum system efficiency, as shown in Table 5-2.

Table 5-2 Two-Link Stochastic Toll Design
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The user equilibrium solution of this network is F 1 2.11, F2 = 2.89 , and the

total travel cost is 25.14. This cost is a little higher than that of the deterministic

equilibrium. This is a reasonable result because of the difference in route choice

behavior. Another observation is that under the logit-based stochastic route choice, it is

actually possible to reach the system optimal flow pattern, which produces the lowest

possible total travel cost. It is believed that this will only happen when all routes are

used.

5.2 Braess Network

A slightly more complicated example is shown in Figure 5-2. There are five links, and

one origin-destination pair in this network (from 0 to D) with the demand of 6. There are

three routes in this network, route 1 consists of links 1 and 4, route 2 consists of links 3

and 2, and route 3 consists of links 3, 5 and 4. This is the classic Braess example, which

is often used to explain the paradox in network design issue. It is used here to illustrate

how to reduce the total travel cost by charging tolls after the new link (Link 5) is in place.

Figure 5-2 Braess Network

The cost functions for the five links are given by:
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5.2.1 Deterministic Toll Design Problem

It is well known that the no-toll equilibrium for this problem has a solution

f1 = f2 = f5 = 2 , f3 = f4 = 4 with a total cost of 552, and that the system optimum for

this problem (in the absence of a toll) has a solution f t = f2 f3 = f4 = 3 and f5 = Q,

with a total cost of 498. Thus, it is known that all routes are used in the no-toll

equilibrium, and it is assumed that they will be used after tolls are in place. Assume that

I = {5} , then for convenience, the toll design problem in this case can be formulated on

link flow basis as follows.
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Note that all constraints of this problem are linear, they form a convex feasible

region. The objective function is quadratic, which ensures global optimality of the

solution. The results of this problem are f 1, = f2 = f3 = f4 = 3 , f5 = 0 , and τ5 =13,

with a total cost of 498. These are identical with the system optimal flow pattern and

total travel cost, respectively.

If there is more than one link that can be tolled, it is also possible to reach the

system optimal flow pattern as indicated above. For example, when I = {1, 2, 5}, the toll

pattern of T i = 1 , r2 =1, and r5 = 14 will still yield the same flow pattern as in the case

of I = {5} . Again, as long as the difference of tolls among alternate routes remains the

identical. The results are listed in Table 5-3.
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5.2.2 Stochastic Toll Design Problem

If the logit model is used to describe the route choice behavior of travelers, the stochastic

toll design problem for the Braess network can be formulated as following:



70

This problem is more complicated than the previous ones since there exist

nonlinear equality constraints here, which make the feasible region nonconvex. Using

LOQO, we found the solution to the problem is that f = f2 = f3  = f4 = 3 , f5 = 0 , and .

τ 5 = 28.70 , with a total cost of 498, which is also the system optimal.

If the set of links that can be tolled is I = 2, 51 , one can also obtain the system

of such combinations of toll values, all of which can produce a flow pattern that is system

optimal. However, the differences among route tolls are not fixed, as in previous cases,

because of the effect of the exponential term in this particular network. Nevertheless, it

is still possible to get the system optimal flows by charging tolls under the stochastic

route choice. Table 5-4 shows the results of different tolling schemes as well as the

comparison with equilibrium and optimum.
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5.3 Seven-Link Network with Single User Group

Previously, only examples with linear link cost functions were discussed, because it

would greatly simplify the solution process of the toll design problem. However, the

widely used BPR cost function is nonlinear. In this section, the toll design problem is

illustrated by using a seven-link network with the BPR cost function. This network is

shown in Figure 5-3.

Figure 5-3 Seven-Link Network

There are four origin-destination pairs in this network, ( 0 1 , D1 ), ( 0, D2 ),

(02 , D1 ), and (02 , D2 ). The demands for these four O-D pairs are 500, 400, 400, and
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600, respectively. There are seven links and six routes in this network. Route 1 only

consists of link 1, route 2 consists links 2, 3, and 4, route 3 consists of links 2, 3, and 6,

route 4 consists of links 5, 3, and 4, route 5 consists links 5, 3, and 6, and route 6 consists

of link 7 only. The link cost functions are given by

5.3.1 Deterministic Toll Design Problem

Based on the given data, the solution of the user equilibrium is f , = 327.56 , f2 = 572.45 ,

f3 =1210.11, f4 =572.45, f5 = 637.67 , f6 = 637.67 , and ft = 362.33 , with a total

travel cost (exclusive of tolls) of 4487.13, while the system optimal solution is

f, =336.48, f2 = 563.52, f3 =1194.59 , f4 = 563.52, f5 =631.08, f6 = 631.08, and

= 368.92, with a total travel cost (exclusive of tolls) of 4479.34. In the no-toll

equilibrium, all routes connecting each O-D pair are used, since one possible route flow



73

pattern is F1 =327.56 , F2 172.46 , F3 = 400 , F4 400 , F5 = 237.67 , and

F6 = 362.33 .

The toll design problem is tested for two scenarios, I = {3} and I = {1,2,3,4,5,6,7}.

The formulations for these cases are similar to the previous examples. The only

difference is that the link cost functions for this network are nonlinear. Because of the

nonlinear equality constraints, a global optimum is not guaranteed in this case. The

solution of the deterministic toll design problem when I = {3} is f = 336.48 ,

f2 = 563.52, f3 .1194.59 , f4 = 563.52, f5 = 631.08, f6 = 631.08, f7 = 368.92,

r3 = 0.2 , with a total travel cost (exclusive of tolls) of 4479.34. Note that these are

identical with the system optimal flow pattern and the total travel cost respectively. With

r7 = 0.74 , the flow pattern resulting from these tolls when I = {l,2,3,4,5,6,7} is the same

as that of the system optimum, and therefore the resulting total travel cost reaches the

system optimum too. Table 5-5 lists the solutions of toll design problem as well as the

user equilibrium and the system optimum. Note that even though this problem has a

nonconvex feasible region, the global optimum solution is found in both scenarios.

Again, there exist multiple toll patterns that can result in the system optimal flows on the
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5.3.2 Stochastic Toll Design Problem

The stochastic toll design problem can be formulated in a similar fashion to the previous

examples. For the purpose of comparison, the stochastic equilibrium without tolls is first

solved. The solution is f1 =305.93 , f, = 594.08 , f3 .1243.10 , f4 = 594.08 ,

f5 = 649.02 , f6 = 649.02 , and f7 =350.98 , with a total travel cost of 4554.80. The

stochastic toll design problems are formulated in two scenarios, one with I = {3} and the

other with I = {1,2,3,4,5,6,7}. The solutions of both scenarios, as well as those from

stochastic user equilibrium and system optimum, are listed in Table 5-6. The table shows

that when all links of the network can be tolled, the system optimal flows can be reached.

However, when only Link 3 can be tolled, the resulting total travel cost could be very

close to that of the system optimum. In the case, charging a toll of 0.8 on Link 3 counts

for 97.5% maximum possible improvement on total travel cost. This shows that if tolls

can only be placed on a very limited number of links in the network, a flow pattern that is
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very close to the system optimal flow could be reached. From the perspective of

congestion toll policy design, it is preferred to select few links to charge and thus reduce

the toll collection system cost, while maintaining very good congestion relieving effects.

Table 5-6 Seven-Link Stochastic Toll Design

5.4 Seven-Link Network with Two User Groups

It is clear that the existence of multiple user groups may complicate user equilibrium

assignment, thus making the toll design problem more difficult to solve. In this section, a

seven-link network with two user groups, cars and trucks, is considered. In this example,

trucks on link a respectively, N denote the average passenger car equivalent of a truck,

and K denote the vector of link capacity. The following link cost functions are used in

this example.
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There are some variations of these functions from the traditional BPR function. The

reason why these particular cost functions are used will be addressed in Chapter 7.

Assume that the free-flow travel time of trucks is 1.2 times of that of car, and one

car and truck become the following:
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Same as in the one user group case, there are four origin-destination pairs in this

network, (01 , D E ), ( 0 1 , D2 ), ( 02 , D 1 ), and ( D2 , D2 ). The passenger car demands for

these four O-D pairs are 475, 380, 380, and 570, respectively, and the truck demands for

these four O-D pairs are 25, 20, 20, and 30, respectively. There are also six routes in this

network. Route 1 only consists of link 1, route 2 consists of links 2, 3, and 4, route 3

consists of links 2, 3, and 6, route 4 consists of links 5, 3, and 4, route 5 consists of links

5, 3, and 6, and route 6 consists of link 7 only. In addition, it is assumed that trucks are

charged more than passenger cars.

5.4.1 Deterministic Toll Design Problem

In order to evaluate the toll design results, the system optimum problem was solved first

followed by the user equilibrium problem. For the latter, it is well known that no



78

equivalent mathematical programming exists, so a diagonalization algorithm was used to

get the equilibrium flows. The results of both problems are listed in Table 5-7.

Table 5-7 Seven-Link, Two User Groups, SO and UE

Two instances of toll design problems were solved in this example, one with

I {3} , and the other with I = {l,2,3,4,5,6,7} . Table 5-8 lists resulting link flows and

tolls. For comparison, the system optimal flows and no-toll user equilibrium flows are

also listed. The table shows that both tolling schemes resulted in the flow pattern that is

system optimal. Even though the feasible regions of both toll design problems are

nonconvex, solutions that are globally optimal were still found, and there are a number of

these optimal solutions. Again, it should be noticed that the optimal flows could be

reached by only placing tolls on Link 3 of this network.



Table 5-8 Seven-Link, Two User Groups, Deterministic Toll Design

79

5.4.2 Stochastic Toll Design Problem

The stochastic toll design problem is also formulated for the same two scenarios, I = {3} ,

and I —.{1,2,3,4,5,6,7} . In both cases, there exist nonlinear equality constraints, which

make the feasible regions nonconvex. Therefore, the global optimal solution is not

guaranteed. Table 5-9 lists the solutions of both scenarios, as well as those from

stochastic user equilibrium and system optimum. The table shows that when all links of

the network can be tolled, the system optimal flows can be reached. However, when only

Link 3 can be tolled, the resulting total travel cost could be very close to that of the

system optimum. In the case, charging the tolls of 0.79 to cars and 1.34 to trucks on Link

3 counts for 97.7% maximum possible improvement on total travel cost.
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Similarly, there are multiple toll patterns that could result in a flow that is system

optimal.

5.5 Summary

In this chapter, several numerical examples are used to illustrate the behavior of the toll

design problem under both deterministic and stochastic route choices. Results show that

there are often multiple toll patterns that will generate the system optimal flow level,

even when only a few links can be tolled. For the deterministic toll design problem with

linear cost functions, the feasible region is convex, hence the global optimal solution is

guaranteed. When nonlinear cost functions such as BPR functions are used, or in the

case of the stochastic route choice model, where the nonlinear equality constraints exist,
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the feasible region becomes convex. Even though in some examples, such as that in the

Subsection 5.4.1, a global optimal solution can be reached, there is no guarantee.

Multiple user groups could certainly complicate the problem by providing additional

nonconvexity.

The purpose of charging tolls is to alleviate traffic congestion. In a deterministic

equilibrium, users choose the routes that minimize their individual travel costs. In

contrast, the system optimization problem describes the scenario in which all users

behave cooperatively in choosing routes in order to minimize the total travel cost. It is

well known that this total travel time is the minimum that can be obtained on this

particular network. Of course, this is just the ideal situation that is not a realistic

representation of practice. The difference between the user equilibrium and system

optimum is that road users are not experiencing the full costs of traveling. If they are

made to pay the full costs through congestion tolls, the most efficient use of the network

can be obtained. That is, the total travel cost (exclusive of tolls) could reach the system-

optimized value. This is the idea behind marginal social cost pricing, which presumes

that all links of the network are tollable. However, when only a subset of links can be

tolled, the system optimal total travel cost may not be achieved. Nevertheless, the total

travel cost under the tolls should always be no more than that in the user equilibrium. In

other words, the system optimal and user equilibrium travel costs are the lower and upper

bounds, respectively, of the total travel cost when tolls are in place. Let Zso denote the

system optimal total travel cost, Z UE denote the user equilibrium total travel cost, and

Z110, denote the total travel cost of the toll design problem, then
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In some examples introduced earlier in this chapter, the system optimal flows are

actually reached by only tolling certain links of the network. However, for more

complicated networks, this most likely would not be the case because of the

nonconvexity of the constraint set. Instead some local optima may be found if different

starting points are used. Fortunately, the total travel cost from system optimum can serve

as the lower bound. So the quality of these solutions can be evaluated.

For the stochastic toll design problem, the same rule applies. However, in the

cases that all routes connecting an O-D pair are used, equation (5.3) holds. This is

demonstrated in all stochastic based examples in this chapter. Otherwise,

i.e., it is impossible to reach the system optimum by charging tolls on a network with

stochastic route choice when not all routes are used.

It is also observed in these numerical examples that there exist multiple toll

patterns that would generate the same flow patterns. In this case, one could choose

different solutions for different purposes. For example, one may choose the solution with

the fewest tolled links in order to achieve the minimum system investment costs, or

choose the solution with smallest total toll amount to favor the road users while having

the same traffic management effect, or choose the solution with largest total toll amount

to reach the goal of maximizing the total toll revenue. This certainly gives transportation

planner more flexibility in choosing the appropriate tolling scheme.



CHAPTER 6

ALGORITHMS

6.1 Introduction

In previous chapters, we formulated the toll design problems, both deterministic and

stochastic, as single level optimization problems with nonlinear objective functions and

nonlinear equality constraints. For toll design problems with deterministic route choice,

the convexity of the objective function depends on the form of the link cost function. By

carefully choosing those parameters of the cost function, one can obtain a convex

objective function for the toll design problem. In the special case when the cost functions

are linear, the toll design problem reduces to a quadratic program with linear constraints.

However, when nonlinear cost functions (such as the popular BPR function) are used, the

resulting nonlinear equality constraints will greatly increase the complexity of the toll

design problem. This is because the nonlinear equalities define a feasible region that is

nonconvex. This is also true for toll design problems with stochastic route choice, since

the exponential term of the logit-based route choice probability function has deter	 mined

the nonconvexity of the feasible region.

Tests on some small numerical examples in Chapter 5 show that there may be

multiple toll patterns that would incur the same flow pattern. This suggests that the toll

design problem may have multiple solutions, as well as very "deep valleys" on its

objective function. In order to solve the toll design problem with such complexity, either

83
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deterministic based or stochastic based, one has to use an algorithm that is capable of

handling the nonlinear constraints, particularly the nonconvex feasible region.

Many algorithms have been developed for solving constrained nonlinear

optimization problems. In general, these algorithms can be categorized into types such as

feasible direction methods and interior point algorithms. There have been various

software packages developed using these algorithms, which are capable of solving the

constrained nonlinear programming problems. Such products include MINOS, a

projected Lagrangian method combined with a reduced-space approach, LANCELOT, a

trust region method performed on an augmented Lagrangian, SNOPT, a sequential

quadratic programming method, and LOQO, an interior point method for nonconvex

nonlinear programs. Among these packages, MINOS, LANCELOT, and SNOPT use

algorithms in the category of feasible direction method, and LOQO uses an interior point

method. In this chapter, these algorithms and their applicability to the toll design

problem is discussed.

Observing that the nonconvexity of the toll design problem arises from its

nonlinear constraints, we will make an attempt to linearize these nonlinear functions

using the iterative linearization method introduced by Rosen (1966). By solving a series

of linearly constrained optimization problems, such effort will greatly reduce the

complexity of the solution procedure.

In the next section, we first outline the procedures for solving both deterministic

and stochastic toll design problems.
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6.2 Procedures for Solving Toll Design Problems

6.2.1 Deterministic Toll Design Problem

As discussed in Chapter 3, the single level deterministic toll design problem (3.14) is

much easier to solve than the bilevel problem (3.5), however, in order to convert the

bilevel problem into the single level one, the set of routes that will be used after tolls are

in place has to be identified. It is common knowledge that at equilibrium, there may exist

multiple route flow patterns that would generate the same link flow pattern on the

network. For example, consider the network shown in Figure 6-1, in which there are four

links and four routes. Route 1 consists of links 1 and 3, route 2 consists of links 1 and 4,

route 3 consists of links 2 and 3, and route 4 consists of links 2 and 4.

Figure 6-1 Demo of Multiple Route Flows

Let Fi , i = 1,2,3,4 denote the flow on route i , and f1 , j =1,2,3,4 denote the flow

on link j . Then

If the equilibrium link flow pattern is f1 = f2 = f3 = f4 = 2 , then one possible

route flow pattern is F1 = F2 = F3 = F4 = 2 , another possible route flow pattern is

Fl = 2 , F2 = F3 = 0 , and F4 = 2 . So, the set of used routes is not unique.
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In order to identify this set, we use the method introduced by Larsson et al (1998),

which can uniquely find the most likely route flows given the equilibrium link flows. In

this method, the equilibrium link flow solution is defined as a macro state, which arises

as the result of the route choices of the individual travelers. The travelers' route choices

between minimum and equal cost routes of a particular O-D pair define a set of micro

states. All micro states consistent with the macro state is argued to be equally probable,

since the travelers are indifferent to which route they use, as long as it is the minimum

cost route (Smith 1987 and Smith 1983). Based on well-known principles from

information theory, it is argued that the most likely route flow solution is the one which

corresponds to the largest number of micro states among those which are consistent with

the observed macro state.

Even though this method is designed for the single user group case, it also applies

Then, after applying Stirling's approximation, the most likely route flows can be found

by solving the maximum entropy problem (6.2).



This is a standard nonlinear programming problem with linear constraints. A

variety of algorithms could be applied to this problem. However, it should be mentioned

problem, since the objective function becomes extremely flat when approaching the

optimum. However, for the purpose of identifying the most likely routes that carry flow,

a near-optimum solution is good enough. In this near-optimum solution, although none

of the route flows would be zero exactly, some of them could be very close to zero.

Theoretically, these routes are used, while from an engineering point of view, these

routes certainly should not be included in the set of used routes. A tolerance e > 0 will

be specified to exclude these routes, i.e., the set of "reasonable" routes between 0-D pair
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It is possible that some routes that were not in the "no-toll" route set will be

attractive after the tolls are in place (i.e., if the tolls are placed on links that are not in that

route). Such routes should, of course, be included. While it is difficult to identify such

routes a priori, one can discover them ex post. Hence, one could apply an iterative
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procedure in which the initial route set is based on the "no-toll" equilibrium and, after the

"with-toll" equilibrium is found for this route set, new routes could be generated by

solving a sequence of shortest route problems. Then the toll design problem could be re-

solved. As it turns out, this issue did not arise in those examples presented in this

pair W E W after the tolls are in place, and R' denote the set of all equilibrium routes

after the tolls are in place, then

and then restart solving the most likely route flow problem (6.2). Then one can compare

necessary to identify the used routes. For example, if one more link is added to the

network shown in Figure 5-1, with the cost function indicated in Figure 6-2, one can

obtain the user equilibrium flows as F, = 2 , F2 3 , and F3 = 0 , with a total travel cost

of 25. In this case, the used route set R = {1,2} . If only link 1 can be tolled, the toll

design problem is then solved based on this route set. The solution is F 1 = 1.83,

F2 = 3.17 , F3 = 0 , and r, = 0.5 , with a total travel cost (exclusive of tolls) 24.917.
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Figure 6-2 Demo Network of the Most Probable Route Procedure

At this time, however, the travel cost (inclusive of tolls) on these three routes are

5.17, 5.17, and 5.1, respectively (i.e., because of the toll on link 1, travel cost on route 3

becomes lower than the cost on those used routes). Therefore, route 3 should be added

into the used route set, i.e., R = {1,2,3} , and then the toll design problem is solved again,

based on this new set. The results are F1 =1.510 , F2 = 3.295 , F, = 0.195 , and

T 1 =1.275 , with a total travel cost (exclusive of tolls) of 24.550. At this time, equal route

travel costs (inclusive of tolls) will arise on all routes.

Based on the above procedure of identifying the used-route set, we can develop a

flowchart, as shown in Figure 6-3, for solving deterministic toll design problem.

6.2.2 Stochastic Toll Design Problem

The solution process is much easier for the stochastic toll design problem, since there is

no need to identify the set of used routes. Therefore, the toll design problem can be

solved right after the stochastic user equilibrium problem. Note that, as indicated in

Chapter 4, we have to enlarge the feasible region of the toll design problem in order to

apply those algorithms that need a feasible starting point.



Figure 6-3 Flowchart of Solving Deterministic Toll Design Problem

6.3 Feasible Direction Methods

The feasible direction methods include those algorithms that solve a nonlinear

programming problem by moving from a feasible point to an improved feasible point.

90
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The optimization strategy in the feasible direction methods is usually the following

(Bazaraa et al 1993):

(1) At a feasible point x k , find the descent direction, dk , of the objective

function, such that for 2 that is greater than zero and sufficiently small,

xk + λdk is feasible and the objective value at xk + λdk is better than the

objective value at xk ;

(2) On this descent direction, find 2k > 0 by doing a line search, which is the

maximum step size on dk ;

(3) Update the solution by letting xk+1=xk+λkdk,and go back to step (1) until

two successive points are close enough.

Among those software packages implementing the feasible direction method,

LANCELOT, MINOS, and SNOPT, as well as their applicability to the toll design

problems is discussed.

6.3.1 LANCELOT

LANCELOT, Large And Nonlinear Constrained Extended Lagrangian Optimization

Techniques, is a package for solving large-scale nonlinearly constrained optimization

problems (Conn et al. 1992). When dealing with the toll design problem, the method

actually solves a series of subproblems with augmented Lagrangian functions and

nonnegativity constraints. Let g represent all except the simple bound (nonnegativity)

constraints in the toll design problem. Then for the deterministic based toll design

problem (3.14), g (F , v) = 0 represents the equation system (3.14b), (3.14c), and (3.14f).
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For this route-based formulation of the deterministic toll design problem, the number of

seven-link network shown in Figure 5-3, which carries two user groups with Link 3

tollable only, there are 32 constraints in this system.

system (4.5b) and (4.5e). For this link-based formulation of the toll design problem, the

network discussed above, there are 26 constraints in this system.

Let 2 denote the vector of Lagrangians, ,u denote the penalty parameter, and S

represent a diagonal matrix of scaling factor. Note that these parameters may vary in

dimension and value between deterministic and the stochastic based toll design problems.

Then using the trust-region method, the subproblems (6.5) and (6.6) are solved for

deterministic and stochastic toll design problems respectively.
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The basic idea of the trust-region method is to model the objective function about

the current point. That is, one "trust" the approximation of the objective function in the

neighborhood (called "trust-region") of this point. First, the approximation of the

generalized Cauchy point is obtained. This ensures the convergence of the algorithm,

since the projected gradient will reach zero provided the value of the quadratic

approximation of the above objective function at the final iteration is no larger than that

at the generalized Cauchy point. Then, a new point that could further reduce the

quadratic objective value within the intersection of the feasible region and the trust region

is obtained. This can be done by fixing those variables that lie on their bounds at the

approximation to the generalized Cauchy point. Then one tests to see if there is general

agreement between the values of this quadratic model and the true objective function at

this new point. If a good agreement is obtained, the trust region is expanded, while if the

agreement is moderate, the trust region is unchanged. If the agreement is poor, the new

point is discarded and the trust region is contracted.

In general, LANCELOT is recommended for large problems with many degrees

of freedom (Bongartz et al. 1997). Test runs show that LANCELOT works well for those

examples introduced in Chapter 5.

6.3.2 SNOPT

SNOPT, Sparse Nonlinear Optimizer, is a software package designed for solving general

nonlinear programming problems using sequential quadratic programming (SQP)
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method, which has been proved highly effective for solving constrained optimization

problems with smooth nonlinear functions in the objective and constraints (Gill et al.

1997).

Let s denote the system of decision variables of the toll design problem, Z(s)

denote the objective function of the toll design problem, which is the total travel cost

(exclusive of tolls), g(s) denote the system of all constraints. For the deterministic toll

Then for the deterministic based toll design problem, g(s) represents (3.14b) to (3.14g),

equations in the system. Let gL (s,s k ) denote the first-order approximation of g(s) at

the solution s = sk , and J(sk ) denote the Jacobian of constraints system g(s) . Then

SNOPT is based on the augmented Lagrangian associated with the problem. At

the k th iteration, the augmented Lagrangian can be written as
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a 34 x 34 matrix for deterministic problem and a matrix of 28 x 28 for stochastic

problem. The subproblem (6.9) is then solved, the solution of which actually defines the

optimal searching direction.

It should be noted that only constraint (3.14b) is linearized for the deterministic

toll design problem, and constraint (4.5b) for the stochastic based toll design problem.

Besides, all constraints should keep their original equality or inequality. Once the

descent direction is obtained, a line search is performed to get the step size along this

descent direction.

SNOPT is designed for problems with many thousands of constraints and

variables but a moderate number of degrees of freedom (up to 2000). Test runs of

SNOPT on the toll design problem indicated some difficulties. In some cases, such as the

example of the seven-link network with two user groups in Subsection 5.4.1, the

solutions to the toll design problem obtained from SNOPT are not as good as those from

the other solver. In this particular case, SNOPT gave a solution with total travel cost

(exclusive of tolls) of 4982.52, compared to the solution of 4976.29 from LOQO and

LANCELOT.
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6.3.3 MINOS

MINOS is a program designed for solving large-scale nonlinear programs whose

objective and constraint functions are smooth and continuously differentiable. The

algorithm behind MINOS is based on the augmented Lagrangian, as well as a series of

linearized subproblems (Murtagh and Saunders 1982).

For the toll design problem, all inequality constraints should be first converted to

equality constraints by adding slack variables. As before, let s denote the system of

decision variables of the toll design problem, Z(s) denote the objective function of the

toll design problem, which is the total travel cost (exclusive of tolls), g(s) denote the

system of all constraints, which are all equality constraints after the conversion. Then for

the deterministic toll design problem, g(s) represents (3.14b) to (3.14g), with a total of

design problem, it represents (4.5b) to (4.5e), with a total of 31U x AI equations in the

system. Let g L (s,sk ) denote the first-order approximation of g(s) at solution s = s k ,

and J(sk )) denote the Jacobian of constraints system g(s), then

earlier, J(sk ) is 54 x 34 for the deterministic problem and 52 x 28 for the stochastic
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becomes identical with the iterative linearization method proposed by Rosen (1966).

This method will be introduced later.

In MINOS, this linearized subproblem is solved using the reduced gradient

method proposed by Wolfe (1967), which is an algorithm designed for solving linearly

constrained nonlinear optimization problems. In the projected Lagragian (6.10a), the

within an appropriate subspace. It also inhibits large discrepancies between h(x) and

nonlinearities are such that the linearized constraints have little meaning far from the

point of linearization. However, this method depends rather heavily on making a good

choice for p . Heuristically, p is increased whenever it seems necessary to prevent

nonconvergence. At the same time, a mechanism for deciding when to reduce p to zero

is developed to benefit from the quadratic convergence introduced in Robinson (1972).

Due to the unavailability of the solver MINOS, we were unable to conduct the test

of this solver on the toll design problem.
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6.3.4 Application to the Toll Design Problems

Feasible direction methods are basically applicable to almost all nonlinear programming

problems. These algorithms will always give feasible solutions even for the case where

they terminate before reaching the solutions. And, the optimal solutions given by the

feasible direction methods will be at least local minimum. Furthermore, these methods

do not rely on convexity, thus are applicable to general nonlinear programming problems.

However, the feasible direction methods require an additional procedure to obtain the

initial feasible points. And most importantly, excessive computational difficulty will

arise when nonlinear constraints are included due to the necessity to remain within the

feasible region as the method progress. Even if the convergence rate of the feasible

direction methods are competitive with those of other methods, they may fail to converge

for certain problems.

When applied to the toll design problem, the most appealing feature of these

algorithms is that they will always provide feasible solutions. This is vital to the design

of a practical policy. Although these algorithms may terminate at a saddle point instead

of a local optimum, one can overcome this by solving the problem from various starting

points. Furthermore, the initial feasible point needed in these algorithms can be easily

obtained by designating the user equilibrium flow vector and the zero toll vector as the

starting points for flow and toll variables, respectively.

Among the feasible direction methods, LANCELOT and SNOPT were tested on

those examples in Chapter 5. Results show that these algorithms work well in terms of

providing feasible solutions. However, their capability of dealing with "very nonconvex"

problems is limited. They may just terminate at a nearby local optimum because of the
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extremely steep "cliff'. In addition, these algorithms tend to have longer running time

(particularly LANCELOT).

6.4 Interior Point Algorithm

The basic idea of an interior point algorithm is to approximate constrained optimization

problems by unconstrained problems. By using this type of method, the constraints are

placed into the objective function via either a penalty or barrier parameter, to either

penalize the violation of constraints by imposing a high cost for it, or prevent the

intermediate solutions from leaving the feasible region.

Vanderbei and Shanno (1998) propose an interior point algorithm for solving

nonconvex nonlinear programming problems. This is an extension of the interior point

algorithm for quadratic programming problems (Vanderbei 1994). The basic idea of this

algorithm is to use Newton's method to find the feasible search direction. In the case of

toll design problems, the nonlinear constraints are all equalities, and the only inequalities

are the nonnegativity constraints. (If one adds the constraint that the toll on trucks should

be higher than the toll on cars, it can be converted into an equality constraint by adding

slack variables.) The inequalities is then eliminated if they are added to the objective

function as barrier terms. A Lagrangian is then formulated to incorporate those equality

constraints.

Let g denote the system of all constraints in the toll design problem except those

with simple bounds on variables. That is, g represents equation system of (3.14b),

(3.14c) and (3.14f) for the deterministic toll design problem, and equation system of

(4.5b) and (4.5e) for the stochastic toll design problem. Note that these constraints
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should already be converted to equality constraints by adding slack variables. Let h

represent the system of simple bounds as well as bounds on those added slack variables.

Let id denote the barrier parameter, 2 denote the vector of Lagrangian

multiplier, and Y denote the vector with all components being 1, then the Lagrangian L

can be written as

for the stochastic problem. By solving the Newton system of the first-order KKT

condition of the Lagrangian, one can find the descent direction from the current solution,

provided that a feasible starting point is used.

In order to find the step size, merit function (6.13) for the deterministic problem

and (6.14) for the stochastic problem are used, in which p denotes the penalty

parameter. Specifically, these merit functions can prevent the selection of a step length

that will lead to the infeasibility of the subsequent solution point.

Tests on those examples in Chapter 5 show that this algorithm gives at least the

same solution, if not better, to toll design problems, compared with LANCELOT and

SNOPT.



6.5 Iterative Linearization Method

The iterative linearization method, proposed by Rosen (1966), essentially consists of

Newton's method with a convex or linear programming subproblem solved at each

iteration. In this method, the nonlinear constraints are linearized using a first-order

approximation. For the deterministic based toll design problem, the only nonlinear

constraint is (314b), and the only nonlinear constraint for the stochastic toll design

problem is (4.5b).
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deterministic toll design problem (3.14), the following subproblem is solved.

constraint (4.5b). Then the following subproblem is solved:
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In this algorithm, the next iteration uses the linearized cost function at current

solution, until the convergence criteria are met. It was proved by Rosen (1966) that the

above method is guaranteed to converge to a local optimum (global optimum if the

objective is also convex), provided that every constraint function in the original toll

design problem is convex. For the deterministic toll design problem (6.15), the constraint

function of (6.15b) is convex since F , 	 , and 0 are all decision variables of the

problem and are independent of each other. Hence, in the case of the deterministic

problem, convergence of this iterative linearization method is ensured. Chen et al

(forthcoming) shows that this method works well in several test problems including the

Sioux Falls network with single user group. However, for the stochastic toll design

problem (6.16), the constraint (6.16b) is the difference between two related terms that is

not always convex. Therefore, the convergence of this method is not guaranteed

(although Rosen (1966) also points out that this procedure will often converge even when

the convexity condition of constraints is not satisfied). However, tests of this method on

both deterministic and stochastic cases show that it often fails to converge.
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6.6 Summary

In this chapter, several algorithms for nonlinearly constrained optimization problems, as

well as their applicability to the toll design problem are discussed. Among those

algorithms that could be directly applied to the toll design problem, both feasible

direction methods and interior point method will always generate a feasible solution even

if it terminates at points other than local optimum. The iterative linearization method can

greatly simplify the solution process by approximating the nonlinearly constrained

problem using linearly constrained problems repeatedly. However, all these methods

require additional effort to searching for a feasible starting point except for the interior

point algorithm, which requires only that the inequality constraints be satisfied.

Fortunately, for the toll design problem, the user equilibrium flow and zero tolls can be

used as the starting point in these algorithms.

It should be noted that all these algorithms only provide local optimal solutions,

no global optimum is guaranteed when nonconvex constraint exists. Various starting

points can be alternatively used to obtain multiple optima. Also, as discussed earlier, the

bounds of the toll design problem are known. Thus one can evaluate the performance of

a particular algorithm by comparing the objective value it generates to the bounds of the

problem.

Tests show that among those algorithms introduced earlier in this chapter, LOQO

has a superior performance over both LANCELOT and SNOPT, in terms of both

computation speed and results' closeness to the system optimum. In the next chapter,

these algorithms will be tested on a much larger-sized network.



CHAPTER 7

CASE STUDY

7.1 Introduction

In this chapter, the toll design problem with two user groups is solved on a realistic-sized

network, under both deterministic and stochastic route choices. The results can be used

to evaluate the performance of various algorithms, and explore the practical use of the

toll design model developed in previous chapters.

7.2 Network

The network chosen to test the toll design methodology developed in this dissertation is

the road network of the Sioux Falls City, South Dakota. This network has been used for

traffic assignment tests in many studies. The roadway map of Sioux Falls City is shown

in Figure 7-1. Based on this map, the roadway network has been abstracted as shown in

Figure 7-2.

There are 76 links, 1118 routes, and 552 0-D pairs on this network. The original

data on travel demand between these O-D pairs are for the case of a single user group. In

this dissertation, travelers are divided into two groups, cars and truck, according to their

different operating features. We assume that there are 5% trucks in the total demand.

The demand, capacity and other parameters of this network are listed in the Appendix A.

A BPR-type link cost function is used. However, as described in the next section, a slight

change of its parameters was made to ensure that a unique solution could be obtained.
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Figure 7-1 Sioux Falls City, South Dakota

7.2.1 Cost Functions

As stated before, the road users are categorized as cars and trucks. A modified BPR-type

link cost function was used in Mouskos et al. (1989) and Mahmassani et al (1987) to

represent the interaction of passenger cars and trucks sharing the same link. The major

modification is on the enrollment of the passenger car equivalent factor of truck, as
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Figure 7 -2 Roadway Network of Sioux Falls City
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Even though this modification was not calibrated with any real data, it is

consistent with the concept of passenger car equivalents for heavy vehicles as in the

Highway Capacity Manual (1985 and later Edition).

Considering that in most highways, there exist lanes that are basically passenger

cars only, Zeng (1998) points out that the above link cost functions tend to overestimate

the impact of trucks on passenger cars, since a high percentage of passenger cars utilize

the truck free lanes to avoid interaction with trucks. Due to the lack of studies to quantify

this indirect impact, Zeng (1998) suggests the link cost functions, shown in (7.2), which

halve the direct impact.

a positive definite Jacobian matrix of link cost functions, which ensures the uniqueness of

the user equilibrium solution. In this dissertation, the modified BPR-type cost function

(7.2) is used.

7.2.2 Deterministic Equilibrium

The deterministic user equilibrium link flows as well as the V/C ratio on the Sioux Falls

City network are shown in Table 7-1.



Table 7-1 Sioux Falls Network Deterministic Equilibrium Flows
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Table 7-1 (Continued)
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Statistics show that among all 76 links in the network, 2 links carry flows that are

over three times their capacities, 38 links carry flows that are more than twice their

capacities, and 26 links carry flows that are larger than their capacities. Figure 7-3

illustrates the distribution of the V/C ratio at equilibrium, which indicates that most links

in the Sioux Falls City network are extremely overloaded. The most crowded arterials

include 16→22→22 	 →49→53→59→61→58→52→47→19 , and 39→75 , 66→74 .

All these links have V/C ratios higher than 2.0. The average WC at equilibrium is 1.84.

The total travel cost at equilibrium is 111.011, compared to that at the system optimum of

108.863.

Figure 7-3 V/C Distribution at Deterministic Equilibrium

7.2.3 Stochastic User Equilibrium

The stochastic user equilibrium link flows as well as the V/C ratio on the Sioux Falls City

network are shown in Table 7-2.



Table 7-2 Sioux Falls Network Stochastic Equilibrium Flows
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Table 7-2 (Continued)
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In stochastic equilibrium, as indicated in Table 7-2, of all 76 links one carries a

flow that is over four times over its capacity, 4 links carry flows that are over three times

their capacities, 39 links carry flows that are over two times their capacities, while only

10 links carry flows that are lower than their capacities. The average V/C ratio is 2.0035

for the stochastic equilibrium. The most crowed links include 16, 19, 49, 51, 52, etc.

Figure 7-4 shows the distribution of V/C ratios at stochastic equilibrium.

Figure 7-4 V/C Distribution at Stochastic Equilibrium

One critical assumption of the toll design problem is that the set of links that can

be tolled is already known. For the purpose of illustration, several links with V/C ratios

higher than certain value are selected as the tollable links. The issue of how to select the

links to be tolled will be discussed later. For now, it is assumed the set of links that can

be tolled is {16, 19, 22, 47, 49, 52, 53, 58, 59, 61} for both deterministic and stochastic

toll design problems.
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7.3 Deterministic Toll Design Problem

7.3.1 Results

Table 7-3 shows the link flows from the toll design results based on the given set of links

that can be tolled. From this table, one can see that there are still 2 links with V/C higher

than 3.0, 41 links with V/C between 2.0 and 3.0, 23 links with V/C between 1.0 and 2.0,

and 10 links with V/C lower than 1.0. Compared to the situation in the pre-toll

equilibrium, even though the number of links that fall in the higher V/C category

increased, the average V/C decreased, from 1.8393 to 1.8372. Furthermore, total travel

cost (exclusive of tolls), the most important criterion, decreased from 111.01 before tolls

to 110.72 after tolls are placed, as indicated in Table 7-4. This is a 0.3% decrease based

on the pre-toll total travel time, and this decrease accounts for 13.5% of the maximum

possible decrease (from 111.01 to 108.86). For specific user groups, after placing the

tolls as indicated in Table 7-4, the total cost decrease varies. For passenger cars, the

decrease accounts for 12% of the maximum possible decrease, and for trucks, the total

cost after the tolls is actually lower than that in the system optimum as well as

equilibrium without tolls. This shows that heavy trucks have forced passenger cars to

take routes with higher cost from a society point of view.



Table 7-3 Sioux Falls Network Deterministic Toll Design
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Table 7-3 (Continued)
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Table 7-4 Deterministic Total Travel Costs (5% Trucks)

7.3.2 Sensitivity Analysis

In this section, the sensitivity analysis of the results from the toll design problem with

respect to the change of the percentage of trucks, as well as the network demand level is

conducted.

When the percentage of trucks on the network increases, it is expected that the

total travel cost may rapidly increase. On the Sioux Falls City network, if the percentage

of trucks is increased from 5% to 10%, then the total cost is shown in Table 7-5.

Table 7-5 Deterministic Total Travel Costs (10% Trucks)

It is shown in this table that total travel cost (exclusive of tolls), the most

important criterion, decreased from 123.70 before tolls to 123.42 after tolls are placed.

This is a 0.2% decrease based on the pre-toll total travel time, and this decrease accounts

for 14.1% of the maximum possible decrease (from 123.70 to 121.72). For specific user

groups, placing the tolls on the arterial specified earlier would cause various changes on

the total cost. For passenger cars, the decrease accounts for 14.1% of the maximum
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possible decrease, and for trucks, the decrease accounts for 67% of the maximum

possible decrease.

Another aspect to look at is the influence of various demand levels on the

effectiveness of the tolls. Here, the toll design model is tested on less congested

networks, which carry 70% and 50% of original demands. Table 7-6 and Table 7-7 show

the total travel costs for both cases.

Table 7-6 Deterministic Total Travel Costs (70% Demand)

Table 7-7 Deterministic Total Travel Costs (50% Demand)

In the 70% demand case, 0.5% of cost decrease accounts for 12% of maximum

possible decrease, while in the 50% original demand case, 0.6% of cost decrease accounts

for 32.4% of maximum possible decrease. It may be concluded that even though the

absolute value of the total cost decrease remains small, the percentage of this decrease in

the maximum possible decrease is increasing with lower demand levels. One reason for

this to happen is that the test network with the original demand level is very congested,

which can be seen from Table 7-1. When the network-wide congestion level increases,

the travel cost (exclusive of tolls) increases very quick, which may outweigh the factor of
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tolls, so there will be fewer routes with less cost that a traveler can switch to after tolls

are in place. However, for less congested network, travelers could be much more

sensitive to the tolls, and charging tolls can effectively reroute traffic, and thus more

effectively reduce the total travel cost.

It is also observed that in less congested networks, the system optimum costs for

heavy trucks are higher than those of equilibrium as well as the toll design model. It is

well known that trucks have more substantial effects on cars than the effects of cars on

trucks, and the number of trucks is much smaller than the number of cars in the traffic

stream. Therefore, it would be reasonable to increase the travel cost of trucks in order to

decrease the travel cost of cars. This would explain the above observation.

7.4 Stochastic Toll Design Problem

7.4.1 Results

Table 7-8 shows the results on link flows and tolls from the stochastic toll design

problem. It is observed that trucks are usually charged much higher than cars, similar to

the results of the deterministic toll design problem. The average V/C ratio after placing

the tolls shown in Table 7-8 is 1.9668, compared to 2.0035 before the tolls. Hence,

charging tolls on Links 16, 19, 22, 47, 49, 52, 53, 58, 59, and 61 can certainly reduce the

total travel time on the network.



Table 7-8 Sioux Falls Network Stochastic Toll Design
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Table 7-8 (Continued)

121



122

Table 7-9 shows the total travel cost of the stochastic toll design problem,

compared with those of system optimum and stochastic equilibrium. There is a 6.2%

decrease in the total travel cost, and it accounts for 17.3% of the maximum possible

decrease.

Table 7-9 Stochastic Total Travel Costs (5% Trucks)

7.4.2 Sensitivity Analysis

When the percentage of trucks in the total demand is increased, the toll design model

gives a total travel cost of 176.73, which is a 6.1% decrease from the total cost of

stochastic equilibrium, which is 188.17, as shown in Table 7-10. This decrease also

accounts for 17.2% of the maximum possible decrease, from 188.17 to 121.72.

Table 7-10 Stochastic Total Travel Costs (10% Trucks)

Similar to the deterministic toll design problem, the stochastic toll design model is

tested on less congested networks, which carry 70% and 50% of the original demands

respectively. The total travel costs for both cases are listed in Table 7-11 and Table 7-12.

In the 70% demand case, a 4.7% cost decrease accounts for 16.0% of maximum possible
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cost decrease, from 56.39 to 39.76. In the 50% demand case, a 2.1% cost decrease

accounts for 10.7% of maximum possible cost decrease, from 27.04 to 21.82.

Table 7-11 Stochastic Total Travel Costs (70% Demand)

Table 7-12 Stochastic Total Travel Costs (50% Demand)

7.5 Special Case of Linear Cost Functions

As discussed in Chapter 3, the solution procedure of the deterministic based toll design

problem can be greatly simplified if linear instead of nonlinear cost function is applied.

In this section, the nonlinear BPR-type cost function is replaced with its first-order

approximation at the pre-toll equilibrium point. The following general steps are taken:

(1) Solve the pre-toll user equilibrium with nonlinear BPR-type cost function;

(2) Linearize the cost function at the equilibrium point;

(3) Solve for system optimum, user equilibrium, and then the toll design problem.

Assume the set of links that can be tolled remains {16, 19, 22, 47, 49, 52, 53, 58,

59, 61 }, the results of the toll design problem after applying linearized cost function are

listed in Table 7-13.



Table 7-13 Deterministic Toll Design with Linear Cost Function
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Table 7-13 (Continued)
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Similar to the case with nonlinear cost function, the total travel cost (exclusive of

tolls) of the toll design problem lies between those of the system optimum and user

equilibrium, as indicated in Table 7-14.

Table 7-14 Deterministic Total Travel Costs with Linear Cost Function

As discussed earlier the deterministic based toll design problem with linear cost

function can be solved exactly, since it can be converted into a quadratic programming

problem with linear constraints. The solution obtained from such a problem is

guaranteed to be the global optimum. Comparing the results obtained from the toll

design problems with nonlinear as well as linear cost functions, one can find they are

quite close to each other. This provides a side-proof that the results of the toll design

problem with nonlinear cost function is a reasonably good solution among all the local

optima.

7.6 Determining the Tollable Links

Usually the set of links that can be tolled is preset by policy-makers. The selection of

such links can be based on multiple criteria, including the category of the link (e.g.

whether it is a bridge, or tunnel, or freeway, etc., or just a local road segment), as well as

the congestion level of the link. In practice, the congestion level usually is the critical

factor in determining whether to place tolls on the link. In many cases, bridges, tunnels,

and certain freeways are very congested during the peak hours. Such examples include
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the Holland Tunnel, the Lincoln Tunnel, and the George Washington Bridge connecting

New York and New Jersey. The toll design methodology developed in this dissertation

can also help decision-makers to select the links to be tolled, among those that are most

congested.

Based on the network of Sioux Falls City, various tolling schemes are tested

based on the V/C on each link of the network. Specifically, those most congested links

are tolled. These links are selected according to their V/C values at the pre-toll

equilibrium. Table 7-15 shows the comparison of results from various sets of tollable

links.

Table 7-15 Total Costs of Different Tolling Schemes

The results in the above table confirmed the general rule that the more links are

tolled, the lower the total travel cost (exclusive of tolls).

7.7 Performance of Algorithms

Three algorithms, LANCELOT, SNOPT and LOQO, are tested on this Sioux Falls City

network, respectively. LOQO is the only one that would give solutions for both
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deterministic and stochastic toll design problems. LANCELOT failed to converge when

solving the deterministic user equilibrium using diagonalization algorithm. While

solving the toll design problem, LANCELOT stopped without giving a solution. SNOPT

did well when solving the stochastic toll design problem, but terminated at a point that is

even not a local optimum. With the iterative linearization method, it worked well in

solving deterministic toll design problem, but failed to converge in the case of stochastic

toll design problem.



CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

8.1 Conclusions

Expanding infrastructure capacity has become impractical in many urban areas. As a

result, congestion pricing has been widely suggested as a viable alternative to reduce

congestion. In this dissertation, a methodology for toll design was developed to provide

policy-makers with suggestions on both where to charge tolls and how much the tolls

should be. This methodology is capable of dealing with situations in which only a very

small number of links can be tolled. Furthermore, this methodology can accommodate

multiple user groups.

The toll design problem is to minimize or maximize some objective subject to

constraints on the tolls and constraints that ensure that the resulting flow pattern is in

equilibrium. An important underlying assumption of this problem is that the set of links

in the network on which tolls could be placed is already known. This is a political issue

rather than an engineering issue.

The intuitive way of formulating the toll design problem is through bilevel

programming, in which the upper level problem is the "transportation planner's problem"

and the lower level problem is the "road users' problem". However, the bilevel

formulation of the toll design problem is rather difficult to solve. Intuitively for each

iteration of the upper level problem, an equilibrium traffic assignment problem (either

deterministic or stochastic) must be solved at the lower level. This process is extremely
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time-consuming. Moreover, the feasible region of the upper level problem is the solution

set of an equilibrium problem, which is most likely nonconvex. In the deterministic toll

design problem the constraints are nondifferentiable, which prevents us from using

gradient information to facilitate the solution process. Even though many attempts have

been made, the bilevel problem remains difficult to solve. In this dissertation, the bilevel

toll design problem is converted into a single level optimization problem by making

certain simplifying assumption.

In the case of deterministic equilibrium, it is presumed that a traveler would

choose the route that minimizes his or her individual travel cost, which could result in

unused routes in the network. It is these unused routes that bring about the noncovexity

of the equilibrium constraint. By identifying the set of routes that will be used after tolls

are in place, all unused routes can be eliminated and only the used ones are kept. Hence,

the equilibrium constraint can be converted into a series of equality constraints that only

describe the costs and flows for the used routes, which makes the deterministic toll

design problem become a single level, standard nonlinear optimization problem.

For the stochastic toll design problem, the equilibrium constraint is in the form of

a fixed-point problem. Even though the constraint functions are differentiable, the

derivative can not be obtained explicitly. In addition, the number of equilibrium

constraints equals to the total number of routes (which is rather large for a real-sized

network). So, based on a previous study, the toll design problem with stochastic route

choice is reformulated on a link basis. This reduces the number of equilibrium

constraints to the number of links of the network, which is much less than the number of

routes.
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The mathematical properties of these problems, as well as the interrelationships

between them were also discussed. As was shown, the simplified toll design problem can

be solved using many well-developed algorithms. However, when nonlinear cost

functions are used, the constraints would still be nonconvex, which results in an

"extremely nonconvex" feasible region. Some variations were made to ensure the

convergence of algorithm. Among those packages tested, LOQO had the best

performance on both the deterministic and stochastic toll design problems.

Tests of the toll design methodology were conducted on simple as well as real-

world networks. Some obvious conclusions can be drawn from the results. It is well

known that charging tolls can usually reduce the total travel cost. In addition, there could

be multiple toll patterns that give the same flow pattern, as indicated in the results of the

Braess network. It can be observed that tolls do not work as well on very congested

networks as on less congested networks, as shown in the Sioux Falls City network.

Furthermore, some less obvious conclusions can be drawn from the test results. It

can be concluded from the Braess network that it is possible to reach the system optimum

by only tolling some links. For realistic networks such as the Sioux Fall City network, it

is also possible to reduce the total travel cost by only tolling some links. In addition, the

single level formulation appears to be a good approximation to the bilevel formulation of

the toll design problem. Particularly in the deterministic toll design problem, the single

level formulation with linear cost approximation appears to work well and is very easy to

solve exactly. With this conclusion, the "real-world" toll design application can be

greatly simplified.
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8.2 Contributions of the Research

The toll design methodology developed in this dissertation is a contribution in the fields

of congestion modeling and congestion pricing policy design.

This dissertation contributes to the field of traffic congestion modeling by

developing a methodology that fills a void in the literature on network toll design.

Compared to the conventional marginal social cost pricing, this method is more realistic

because it deals with the case where only very few links of a network can be tolled.

Furthermore, based on certain assumptions, the bilevel program is simplified to a single

level program, which is a standard nonlinear optimization problem. Hence, there is no

need to develop some special algorithm for solving this simplified version of the toll

design problem. It also turns out that the simplifying assumption is quite easy to satisfy

by determining the most probable routes. In addition, the relationships between different

versions of the toll design problem have been explored, including the relationship

between the deterministic bilevel and single level problems, and the relationship between

the deterministic and stochastic toll design problems.

Multiple user groups have also been incorporated into the toll design model to

ensure a more realistic representation of "real-world" network. It is well known that a

pricing policy could face substantial objection if it fails to consider the variety of road

users. In this dissertation, road users are grouped according to their operating

characteristics, and it is possible to apply different tolls to them. Of course, users could

also be grouped according to other criteria, such as income, which would provide

quantified information when evaluating the impact of congestion pricing policy on
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various income groups, and help deal with the social equity issue, which may be one of

the main hurdle of implementing congestion pricing policy.

In the aspect of congestion pricing policy design, this dissertation shows that in

realistic network, only tolling some links could reduce total cost effectively. This

provides transportation planners with a helpful decision support when designing network

tolls. It is also shown that multiple user groups can have unexpected interactions from

the Sioux Falls City case, where a much higher toll is put on trucks than cars. In

addition, it is suggested that congestion level could affect the benefits of toll policies, as

indicated in the Sioux Falls City case.

8.3 Direction of Future Research

The toll design methodology established in this dissertation falls into the category of a

route choice behavior impact study, as discussed in Chapter 1. It focused on the fixed

demand case. However it is well known that when the price increases, the demand will

generally decrease. Similarly, when congestion tolls are in place, some people who do

not have to travel during that tolling period may choose not to travel. Thus the travel

demand may decrease. In order to make the toll design methodology more powerful, we

will improve this model in the future to accommodate elastic demand.

would vary with tolls. Then the set of feasible route flow patterns, , can be given by
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The set of equilibrium route flows, Er , is then given by (8.2) for deterministic toll

design problem.

For stochastic toll design problem, this set can be given as follows.

Therefore, the toll design problem with elastic demand can be formulated as (8.4

subject to

where Er can be given by (8.2) or (8.3) for deterministic or stochastic toll design

problem respectively. In the future, we will further explore the properties of the toll

design problem with elastic demand, for both deterministic and stochastic toll design

problems, as well as search for appropriate algorithms to solve them.

In addition, we will look into other capabilities of this toll design methodology,

such as incorporating the parking fee design issue. In this case, we need to incorporate

destination choice capability into the model, since each parking lot will be considered as

a destination.



APPENDIX A

INPUT DATA OF THE SIOUX FALLS NETWORK

There are two user groups in the test network of Sioux Falls City, are cars and trucks.

The travel demand for cars between the 552 O-D pairs is listed in Table A-1, and the

travel demand for trucks is listed in Table A-2. The link cost function is of the format in
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Table A-1 Demand of Passenger Cars on the Sioux Falls Network



Table A-2 Demand of Trucks on the Sioux Falls Network



Table A-3 Free-Flow Link Travel Cost on the Sioux Falls Network

138



Table A-3 (Continued)
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