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ABSTRACT

A NOVEL READOUT METHOD FOR FOCAL PLANE ARRAY IMAGING
IN THE PRESENCE OF LARGE DARK CURRENT

by
Changqing Qiu

This research was an investigation of a novel readout method for focal plane array (FPA)

optical imaging, especially for very sensitive detectors with large dark current. The

readout method is based on periodically blocking the optical input enabling the removal

of the dark current integration from the output. The research demonstrated that it is

feasible to modulate the optical input with the designed readout circuit and thus achieve

longer signal integration time to enhance the signal-to-noise ratio.

Study of a proposed circuit model showed that in theory the correlated readout

method could increase the output voltage swing and reduce the noise level by attenuating

low frequency noise, thereby effectively improving the FPA dynamic range. Circuits

based on standard CMOS circuitry were designed, simulated by PSpice, fabricated using

Orbit 2 µm n-well technology, and tested with a PI-4000 system. In the circuit evaluation,

the output noise due to the clock switching phenomena, the gate signal feedthrough and

the charge relaxation, was considered to be the critical problem. The most promising

design for minimizing this problem had a CMOS current steering circuit at the input of a

high CMRR operational amplifier. Simulation and test results showed that a modified

capacitive transimpedance amplifier (CTIA) could subtract dark current output and

reduce the output signal due to any difference between the frequencies of the optical input

modulation signal and the switch modulation signal. In conclusion, the correlated readout

circuit was shown to be a promising approach for advancing FPA technology.
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CHAPTER 1

INTRODUCTION

Infrared sensors are used to detect, measure and image the thermal radiation emitted by

all objects. The possibility of mass fabrication of two-dimensional arrays, based on

advances in photolithography, increased the possible application areas and performance

of infrared focal plane array (FPA) [1]. Further advances will be accelerated by higher

pixel density, the capability to do on-chip processing, improved materials with lower

cooling requirements, and higher sensitivity. However, some FPA performance

limitations can be traced to the readout electronics rather than the detectors [2], [3].

This research investigated the feasibility of a novel readout concept recently

proposed for FPA optical imaging. The method discriminates against background noise

due to various dark current sources and is especially useful for very sensitive detectors

with large dark current. Named correlated readout, the method is based on periodically

blocking the optical input enabling the subtraction of the output component of the current

integration due to dark current sources such as large background photon noise that

irradiates the detector circuitry and electron motion fluctuations inherent in the FPA

components. State-of-the-art readout circuits developed from mature hybrid readout

circuits were selected and redesigned for this research. The modified circuits were both

simulated and experimentally tested. The results showed that it is feasible to modulate an

optical input with the designed readout electronics and thus achieve longer signal

integration time to enhance the FPA signal-to-noise ratio. The results of the thesis will be

useful for long wavelength infrared (LWIR) sensing applications and particularly for

1
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special scientific measurements, such as solar magnetography where large background is

present.

Since the 1940's, photon detectors have been extensively developed. Because of

their fast response time, high sensitivity and the ease of fabricating the required large 2D

arrays in semiconductors, photon detectors, especially photovoltaic (PV) detectors, are

expected to be used in almost all advanced infrared FPA systems. Many materials and

detector structures are being developed to cover all the spectral bands, such as extrinsic

silicon and germanium, Schottky-barrier photoemissive junctions, Hg l-xCdxTe, IV-

IV and multi-quantum well detector arrays [4]. The applications of the monolithic,

hybrid, and monolithic heterostructure FPAs using these materials can be found in

astronomy, military, environmental monitoring, law enforcement, and many other

scientific research and surveillance purposes [5]. Unfortunately, photon and thermal noise

sources limit the applications of infrared photon detectors. For long wavelength detection,

such as the wavelength window 8 to 14µm (LWIR) and 14 to 30µm (VLWIR),

background flux may become much stronger than signal flux because of black body

radiation from the ambient. In detection at relatively high temperatures, such as 77°K

(maintained by liquid nitrogen), 105°K (obtained in space by passive radiation cooling),

and even room temperature, a detector's R oA will be decreased drastically for all the

materials mentioned above [6]. In addition, the large background problem exists in other

imaging applications where wavelength and temperature are not particularly important.

For example, in the measurements for solar magnetograph, the signal is the difference of

two circularly polarized light sources and the background is one of the primary sources.

Due to the effect of Zeeman splitting this primary source can be 4 orders as high as the
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real signal [7]. All these detection conditions pose an important question: How does one

read out the image signal in the presence of large background noise.

To design a FPA for working in the presence of large background noise which

results in a large dark current, saturation of the image storage capacitors must be given

primary consideration. Saturation would limit the signal integration time so that the

array's signal-to-noise ratio will not be enough to reveal the image. This is because a FPA

has very limited charge handling capacity [8], especially in 2D arrays. A large capacitor in

each pixel is not only restricted by available real estate; it will also contribute a large reset

noise that should be eliminated in the design. At the FPA level, the dynamic range, which

is defined as the ratio of the maximum achievable output voltage swing to the output

noise level of the imager, can be the most important device characteristic [9]. An ideal

readout method would be one that both can increase the signal output voltage swing and

reduce the noise level. This was the major goal of this research.

If there is not a breakthrough in detector materials or FPA architecture,

conventional imaging methods will not solve the problem in the applications mentioned

above, although second-generation FPA with hybridized readout electronics promise

significantly higher performance and design flexibility [10-13]. Imaging an object in the

presence of large dark current with a modulated source has been proposed recently [14].

The readout method developed in this thesis is the first to realize this new imaging

approach [15]. The basic principle of this method is to demodulate the photon signal by

charging the signal integration capacitor in one modulation phase and discharging the

capacitor in the following phase to remove dark current signal. By processing the current

from the detector in this way, it was shown that the correlated readout approach could
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significantly subtract dark current integration and attenuate its associated noise. This

results in an increase in the dynamic range and signal-to-noise ratio of the FPA.

In the next chapter, the hybrid readout method, which represents the state-of-the-

art of readout electronics, will be reviewed. Some newly proposed research will also be

discussed. In chapter 3, the correlated readout method is presented, including the

methodology, signal processing model and circuit implementation. The principle of phase

sensitive detection is described to illustrate the noise reduction capability of the method.

The possible application to the measurement of solar magnetograph and other imaging

applications are also presented in this chapter. Chapter 4 discusses the design of

correlated readout circuits using the standard CMOS process. Switching signal

feedthrough is addressed as a serious problem in the correlated readout circuit design. For

developing readout circuits based on the capacitive transimpedance amplifier concept a

higher than normal common-mode rejection ratio of the operational amplifier is required.

Finally, the design of a 16 by 16 silicon imager for the experimental study of this thesis is

presented. The test chip was designed and fabricated by using Orbit 2µm n-well

technology through MOSIS. Chapter 5 presents test results for the chip. The experimental

methodology is discussed first, followed by a description of the test equipment. The

experiments tested the correlated function, the frequency response and the switching

feedthrough. The conclusions for the thesis are given in chapter 6. It was concluded that

the correlated readout circuit is a promising approach for advancing FPA technology.



CHAPTER 2

A REVIEW OF INFRARED READOUT ELECTRONICS

2.1 Introduction

Historically, the development of infrared sensors has concentrated on the growth,

fabrication, measurement and optimization of IR materials and detectors. First-generation

devices are fundamentally a monolithic FPA, which consists of a detector array, and the

readout multiplexer integrated on the same substrate. Most of the readout techniques and

device architectures were originally introduced from visible silicon imagers, such as

charge coupled device (CCD) and charge injection device (CID) [16].

With the advancement in microlithography feature size reduction and the

requirements of increased array size and performances, hybrid IR FPAs have developed

rapidly in recent years. These second-generation FPA typically consists of a detector

array chip bump-bonded on a silicon readout multiplexer. Because it allows independent

optimization of the detector array and the readout, hybridized readout electronics that

perform the function of detector interface, signal processing, and video multiplexing,

represents the state-of-the-art for IR FPA readout technology.

Early hybrid readouts were still either CDs or CCDs because of their success in

visible imaging applications. With the Active Pixel Sensor (APS) technology stepping

into the stage of scientific image acquisition [17], [18], x-y arrays addressed MOSFET

switches, or direct readout (DRO) FET arrays, start to dominate today's infrared readout

electronics for reasons of yield, design flexibility, and simplified interface. The APS

concept is expressed as: One or more active transistors are integrated into the pixel of an

5
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imaging detector array, and buffer the photo signal as well as drive the readout lines. The

DRO architecture consists of an array of FET switches. The basic multiplexer has several

source follower stages that are separated at the cell, row, and column levels by MOSFET

switches which are enable and disable to perform pixel access, reset, and multiplexing

(Figure 2.1).

Figure 2.1 Direct readout (DRO) architecture consists of an array of switches and
detector interface circuits.

This review will concentrate on various readout methods with DRO schematic,

which represent today's IR readout technology. It is well know that currently matured

circuits are source follower per detector (SFD) [19], buffered direct injection (BDI) [20],

gate modulation [21], and capacitive transimpedance amplifier (CTIA) [22], while many

other methods are still in the conceptual stages. New proposed research on background

suppression will be described in a separate section. The noise process is specially

discussed, since noise figure is an important issue of focal plane array and signal-to-

noise-ratio (SNR) is the prime design driver in most sensor systems. The important
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conclusion is that it is the time to trade circuitry complexity with other performance

characteristics. However, the existing readout methods will have difficulties to succeed

for the detection conditions considered by this thesis research.

2.2 Matured Hybrid Readout Circuits

The general requirements of infrared FPAs fall into broad categories of array size, pixel

pitch, charge handling capacity, integration time, noise, dynamic range, readout rate,

operating temperature, power dissipation, radiation hardness, and detector bias control.

Although many circuits can be used for interfacing discrete photon detectors, only a few

have been successfully applied in FPA readout circuits, and the following four methods

are matured so far.

2.2.1 Self-Integration Readout

To integrate charges on detector itself is a most commonly used design where the charge

accumulation element is a capacitor or a CCD. Usually, this method is referred as direct

detector integration (DDI), or source follower per detector (SFD) in active pixel sensor

technology. The simple unit cell electronics still makes self-integration readout attractive

because of the achievable small cell area and low power dissipation, although it can only

be applied in low background detection.

Figure 2.2 is a most simple photodiode DDI/SFD circuit with the illustration of

detection principle. When the reset MOSFET is pulsed on, the photodiode capacitor,

along with the sense node stray capacitor, will be charged from reset voltage (VRST)

through its drain-to-source channel resistance, to approach the voltage level of VRST VT,
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where VT is the MOSFET threshold voltage for channel formation. Photo-generated

minority carriers, together with the thermally generated minority carriers, will diffuse and

drift across the PN junction to result in a current flow of 'photo + Lark which acts to

discharge the capacitor C. If the MOSFET is kept off for a time tot, the change of the

stored charge ΔQ at the end of this time period will be given by the time integral of the

combination of the photocurret 'photo, the dark current Lark, and the MOSFET leakage

current IDS(OFF) :

The corresponding change in the voltage across the sense node will be 

voltage is buffered by the source-follower MOSFET and then multiplexed to a common

bus prior to the video output amplifier.

Figure 2.2 Topology of direct detector integration (DDI) and source follower per
detector (SFD): (a) simplest circuit schematic, and (b) principle of signal detection.

DDI/SFD topology is particularly susceptible to 1/f noise. This is due to the fact

that the time period for which the source-follower transistor turns on during multiplexing

is longer than the response time of the source-follower. This effect enhances the low

frequency noise contribution, and limits the utilization of an integration capacitor for long
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time integration applications. For noise figure consideration, it was concluded that the

optimum sense node capacitance other than the detector capacitance occurs at the point

where it is equal to the detector capacitance [3].

2.2.2 Injection Circuits

Instead of resetting the detector node directly, injection circuits accumulate charges on a

separate integration capacitor C int, and periodically reset the capacitor. Two popular

injection circuits, direct injection (DI) and buffered direct injection (BDI), are shown in

Figure 2.3. The direct injection circuit typically consists of an integration capacitor, an

injection transistor, a reset transistor, and an output selection transistor (not shown in the

figure). It is a widely used interface circuit because of its simplicity and high

performance. The detector directly modulates the source of a MOSFET, and the photo-

generated current directly couples into the storage capacitor for charge integration. This

requires that detectors with N-on-P polarity interface N-type FETs (and vice versa) for

carrier collection in the capacitor.

Figure 23 Schematic of injection circuits.

An important issue of using an integration capacitor is injection efficiency

which represents the percentage of detector generated current that can be stored. It may
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vary across an FPA due to FET threshold, detector bias, and detector resistance non-

uniformity. For DI circuit, the injection efficiency is calculated as [1]

where Rdet and Cdet are the detectors' dynamic resistance and capacitance, respectively,

and gm is the transconductance of the injection PET.

The advantage of using the integration capacitor is to increase the integration time

so that the signal-to-noise ratio will be improved. However, poor injection efficiency

makes the MOSFET noise a serious problem. One approach to improve the direct

injection current is to use buffered direct injection (BDI) configuration as shown in

Figure 2.3b. The detector is connected to both the input diffusion and the input of a

feedback amplifier with open-loop gain -A,. The effective gm  is increased by a factor of

(1+A„) and the injection efficiency becomes

where Camp is the Miller capacitance of the amplifier. Apart from an improvement in the

injection efficiency, the inverting gain in BDI also yields better control over the detector

bias at different photocurrent levels and helps to reduce the saturation frequency

compared with DI circuit, thereby allowing longer integration time. In spite of these

improvements, BDI still shares the same limitation with DI in terms of low background

applications. Another common drawback of injection circuits is a frame-to-frame

crosstalk, since the detector is not directly reset; residual photon-induced charge from one

frame time can be integrated into the next frame time.
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2.2.3 Gate Modulation

Gate modulation circuits utilize photon current to modulate the gate voltage of an input

MOSFET and then induce an output current in the transistor. The principle of gate

modulation input (GMI) structure is shown in Figure 2.4. The detector current, including

photon current and dark current, flows through the load device. A gain-proportioned

current flows into the integration capacitor from the input MOSFET (Ml). The gain and

dc level are adjusted by varying the source voltage VIN of the input MOSFET and setting

the detector bias via VDET, so that the output is in proportion to the ac component of the

signal. Good injection efficiency of the ac signal requires a high value of detector

resistance with a greater load resistance value. Thereby, active load gate modulation, with

a current mirror configuration, is often used in modem GMI design.

Figure 2.4 Gate modulation input structure.

In GMI circuits, the differential gate voltage applied to the input FET varies for a

The current injected into the integration capacitor is
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The current gain, expressed by equation 2.6, can self-adjust depending upon the

background flux by orders of magnitude. It also allows GMI to operate with a large

integration capacitor compared to injection circuits, and still obtains low noise

performance and high charge sensitivity. These features indicate its capability of

background suppression, which leads to higher dynamic range. Unfortunately, gate

modulation is only successfully applied to the detection condition when signal radiation

is stronger than the background. The major problem comes from the requirement of

detector bias reset as scene-induced current changes. To stabilize detector bias by using

large reverse bias causes large 1/f noise and dark current non-uniformity. In addition,

since the MOSFETs in gate modulation are normally operation in weak inversion, the

threshold variations of the transistors become a more serious problem than injection

circuits. Also from the current gain expression, GMI has a potential shortcoming for

imaging application because the transfer characteristic is nonlinear, particularly when the

current in the load and input FETs differ drastically.

2.2.4 Capacitive Transimpedance Amplifier

Capacitive transimpedance amplifier (CTIA) is a near ideal circuit for coupling an ER

detector to a multiplexer. It consists of an inverting amplifier with a gain of A, an

integration capacitor Cint placed in a feedback loop, and a reset transistor in parallel with

the integration capacitor, as shown in Figure 2.5. The amplifier in the circuit can be a
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simple CMOS inverter as feedback amplification (Figure 2.5a), or a more elaborated

differential amplifier (Figure 2.5b). The choice of the approach depends on the

requirement of open-loop gain, bandwidth, power dissipation, and cell real estate.

Figure 2.5 Circuit schematic of CTIA.

In interfacing by the CTIA, when photon charge causes a slight change in voltage

on the inverting input node of the amplifier, the amplifier, with open-loop gain in the

hundreds to tens of thousands, responds with a sharp reduction in output voltage. This

change in output is coupled back to the input node through the feedback capacitor,

causing photon-induced charge to flow onto the feedback capacitor and oppose the initial

effects of charge on the input node. At the end of integration process, the output voltage

is sampled and multiplexed to the output video drivers, and the switch across the

feedback capacitor is pulsed to reset. The CTIA gain, assuming a large open loop

amplifier gain, is
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where Cth is the feedback capacitor and the CTIA transimpedance is often expressed over

a single frame of data as

The CTIA allows extremely small current to be integrated with high injection

efficiency. It also can provide a highly stable detector bias, high gain and low noise, and

ensure that the detector with low resistance can function as a current source if a well-

designed differential amplifier is used. A recent report showed that the CTIA had the best

overall performance characteristics compared to other readout methods at low

backgrounds by state-of-the-art CMOS submicron technology [22]. Its attractiveness will

continue to increase in the future.

2.3 Noise in Hybrid Infrared FPA

Like all the other imaging systems, the noise sources in infrared FPAs have two general

forms: temporal and spatial (or pattern) noise. Temporal noise is characterized by

collecting sequential samples for each detector channel and calculating standard

deviations and power spectral densities. Typical mechanisms found in FPA technology

literature includes detector thermal noise, shot noise, readout noise, and flicker (1/f)

noise. The measurement of pattern noise is more difficult. It requires accurate and

uniform calibration sources, and often needs very long laboratory time. Therefore pattern

noise has received much less attention in the literature. In most time this issue has been

left to post image processing. In this section, the noise sources inside the array are

reviewed in detail since large dark current is considered as the major problem for this

thesis research, while many other noise sources are considered as trivial.
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2.3.1 System Characterization

An imaging system can be considered as ideal elements with the noise introduced at

appropriate locations. Figure 2.6 illustrates the noise transfer diagram. The total FPA

noise consists of unit cell detector and electronic noise, and downstream noise

contributed by the multiplexer and the driver.

Figure 2.6 Noise transfer diagram for an imaging system.

For single detector, specific detectivity (D*) and noise equivalent power (NEP)

offer the noise figure. D* is the signal-to-noise ratio normalized to the electrical

bandwidth and detector area. It is simply the reciprocal of the normalized NEP and has

units cm-Hz/W (or Jones):

D* and NEP are useful specifications for finding detection limitation. At the FPA

level, however, they are difficult to relate to system performance. The best description for

temporal noise of a photovoltaic hybrid FPA is in terms of noise equivalent irradiance

(NEI) in photons/cm 2-s, which is described as FPA output noise normalized to

responsivity:
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where Vn  is FPA total noise at operating background (in volts) and Rv is the responsivity

in V/(photons/cm2-s):

where ηinj is the mean quantum efficiency, Aopt the detector optical area, e the electronic

charge, ηinj the circuit injection efficiency, Tint the integration time, C s the effective sense

node capacitance, Gel, electronic gain past the sense node, and NTDI is the number of time

delay integration (TDI) stages.

For thermal imaging of the object temperature distribution, NEI is related to noise

equivalent temperature difference (NEAT) by the relation

where tops is optical system transmission, Ω t is the projected solid angle of the telescope

clear aperture with respect to the detector array, and is the temperature

derivative of the in-band source radiance, projected to the sensor aperture for a source

temperature T. The detailed calculation can be found in reference [23].

NEI, along with NEAT, can give a good point of view for the consideration of

temporal noise of the FPA. However, since the final output is an image, the ultimate

figure of merit for an infrared imaging system should be how well the objects of varying

size are resolved in the displayed image. The minimum resolvable temperature (MRT),

which is a function of spatial resolution and is defined as the signal-to-noise ratio

required for an observer to resolve a series of standard four-bar targets, is thus considered

as a key specification for infrared FPA [1]. The inconvenience to follow MRT is that it

can not be applied until the imaging system is really developed.
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2.3.2 The Dark Current Noise

Among the three types of noise in the photodetector, the dark current induced shot noise

usually gives its limit of detection sensitivity. In most literature, the dark current is only

used to describe the detector current in the dark. However, from a technical point of view,

the dark current should be considered as the current inside a detector before it is exposed

to a scene. Thus, the response to background radiation on the detector site should be

counted as an important part of the dark current. As is well known, environment

illumination can be very strong for LWIR because black body radiation peaks at 10 p.m

for room temperature. Therefore, the following definition is used in this thesis:

The dark current = The detector dark current + The background photo current.

The detector dark current is the superposition of current contributions from three

diode regions: bulk, depletion region and surface. The physical mechanisms include [5]:

1. Thermally generated current in the bulk and depletion region

• diffusion current in the bulk P and N region,

• generation-recombination current in the depletion region,

• band-to-band tunneling,

• intertrap and trap-to-band tunneling,

• anomalous avalanche current,

• ohmic leakage across the depletion region.

2. Surface leakage current

• surface generation current from surface states,

• generation current in a field-induced surface depletion region,]

• tunneling induced near the surface,
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• ohmic or nonohmic shunt leakage,

• avalanche multiplication in a field-induced surface region.

For an ideal diode exposed to background flux density Φ b, the dark current is the

combination of thermal and shot noise, and can be expressed by [4]

where k is Boltzmann constant, T absolute temperature, q the charge of electron, V bias

voltage, Of electronics bandwidth, B quantum efficiency, A the area of the diode, and R 0

the dark resistance which is defined as

where I is the dark current and V is the diode's bias voltage. Background photo flux Φ b

can be expressed by

where C2 is the field of view in radians of the detector and λ c  is the cutoff wavelength.

For the FPA working at short (1 to 3 µm) and medium (3 to 5 µm) wavelengths,

the dark current noise is generally small compared to readout electronic noise, and

usually is not considered in the readout circuit design. However, for the detection at

LWIR and high temperature, the detection may reach two important limitations:
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The dark current results in fixed pattern noise (FPN). The fixed pattern noise is

the variation from pixel to pixel in the camera display, but does not vary from frame to

frame. It is primarily due to the dark current differences, which is caused by the

differences in detector size, doping density, and foreign matter getting trapped during

fabrication. Usually, it can be compensated by post imaging processing. But it may arise

again because the calibration and equalization models cannot adequately model actual

response, or the drift of the channels is beyond the capability of practical recalibration

schemes.

The 1/f (flicker) noise level in photovoltaic detector is believed to be proportional

to dark current [23], although it is also alias with biasing provided by input circuit or

come from readout circuits. Whatever the source of 1/f noise in a detector or readout

channel, the result is time varying offset drift. It is very nonuniform within a single chip

for some narrow-bandgap detector materials. The issues in 1/f noise tend to be difficult

because little theoretical basis exists for its rigorous definition. The dependency of 1/f

noise with dark current indicates a background-driven 1/f drift, a less tractable process.

2.3.3 Readout Noise

Readout noise is usually referred as noise floor. It may include multiplexer and timing

effects, reset noise, amplifier 1/f noise, and circuits nonlinearities. With the same readout

architecture, the main difference for different readout method will be the noise of the

interface circuit, while the reset noise may only related with storage capacitance no

matter what kind of methods is used.
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Reset noise (commonly referred as KTC noise) is thermal noise stored on the

capacitor at the moment the switch is closed. The same as in any resistor-capacitor circuit

with a resistance Ron and capacitance C, the rms noise on the capacitor can be calculated

by integrating the thermal noise of the resistor over all frequencies through the transfer

function of the RC circuit, and expressed as

Equation 2.18 can be rewritten as

The expression in terms of the noise charge stored on the capacitor is

The reset noise, along with some of 1/f noise and fixed pattern noise, can be

reduced via correlated double sampling (CDS). CDS may be performed by a clamping

circuit with a delay line processor (Figure 2.7a), or by a differential sampling circuit

illustrated in Figure 2.7b. The principle of CDS is based on correlation technique. The

assumption is that the same voltage fluctuations will present on both video and reset

levels. That is, the reset and video signals are correlated in that both have the same

fluctuation. The performance of the CDS circuit depends on the product of the correlation

time which is defined as the time interval between the two data samples, and the output

amplifier cut-off frequency. Therefore, the 1/f noise reduction potential is somewhat

limited, especially when the integration time is long, while the data rate is high.
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Figure 2.7 Correlated double sampling circuitry: (a) clamping and delay line processor;
(b) differential sampling approach.

To improve the 1/f noise reduction, a modified CDS is often used. In the modified

CDS circuit [24], two sets of closely spaced double samples are collected as shown in

Figure 2.8. Prior to photocurrent integration, the reset noise and the offset is measured by

computing the difference between the reset level before and after the reset transistor is

shut off. The signal is measured at the end of the integration period by computing the

difference between the data level before and after the unit cell is reset:

As can be seen from Figure 2.8, the conventional CDS simply samples V2 and V3, and

has the output of (V2 - V3).

Figure 2.8 Schematic showing modified CDS readout data construction.
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After the sense node is reset to a fixed level, photocurrent is integrated on the

capacitor. The voltage generated is expected to be linear with time under constant

illumination. However, due to the circuit transimpedance and charge injection efficiency,

combined with the integration capacitor and detector parameters, a voltage deviation will

appear at the sense node. This circuit noise may be modeled by Laplace-domain small

signal analysis, in which electrical transfer functions are determined for each component

in the signal chain. Noise sources can be described by power spectral densities, and its

propagation is described by transfer functions [25]. A more widely used technique of

circuit noise analysis is to study input-referred circuit noise. The results for various

readout circuits can be found in reference [1], and some of them are listed in Table 2.1.

Table 2.1 Input-referred circuit noise in mature readout circuits

The amplifiers exhibit 1/f noise because they are formed from MOSFETs. If an

operational amplifier is designed as the amplifier, the input offset voltage due primarily

to device and bias mismatches in the input stage would be another noise source. To
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enlarge MOSFET gate area by using MOS input transistors in the lateral bipolar mode is

one approach to reduce 1/f noise. The mismatch will also be reduced by increasing the

input stage device geometry and size. If circuit real estate is available, chopper

stabilization can be applied to reduce amplifier 1/f noise and correct the input offset

voltage [26]. A simplified schematic of a chopper stabilized buffered direct injection

design is shown in Figure 2.9 [27]. The chopping process shifts the amplifier's operating

frequency to higher frequencies where the amplifier's noise is governed by white noise,

not 1/f noise. Since the amplifier becomes ac coupled, the dc-offset components are

removed and the amplifier is zero referenced. After amplification of the chopped or

modulated signal, synchronous demodulation is applied to return the signal of interest to

its original spectrum.

Figure 2.9 Buffered direct injection circuit using chopper stabilization to reduce detector
bias offsets and amplifier 1/f noise.

The chopper stabilized unit cell circuits offer two significant improvements over

conventional linear amplifiers: An effect of MOSFET threshold mismatch is vastly

reduced and 1/f noise performance of the amplifier is improved. Disadvantages include

high circuit complexity and the possibility of generating excess detector noise via clock

feedthrough induced excitation, particularly with narrow band-gap photovoltaic detectors.
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2.4 The Research on Background Subtraction

To image a scene in the presence of large dark current is usually referred as background

suppression in the field of infrared FPA. It is an important future direction in both

scientific and defense applications. Generally, to suppress background by interface

circuits, two techniques, named charge domain background suppression circuit [28] and

current memory based background suppression circuit [29], can be employed. However,

the charge domain circuit cannot alleviate the charge handling capacity problem because

it integrates both signal and background charges prior to the background suppression. On

the other hand, the current memory circuit needs complicated unit cell circuit, therefore it

is difficult to use in a 2D array.

2.4.1 A Unique Current Memory Circuit

A unique current memory circuit was proposed by NASA Jet Propulsion Laboratory. It

utilizes a high accuracy current memory in the feedback loop of a BDI circuit enabling

the measurement of small signals below the dark current level. Recently, a 2x130 array

with 50µmx400µm unit cell size was designed for an imaging system operating in very

long wavelength (VLWIR) region (12-18µm). The circuit measurements indicated an

effective charge handling capacity of over 5x10 9 charges/pixel with less than 10$

electrons of input referred noise.

Figure 2.10a shows the circuit schematic of the unit cell. The circuit performs

automatic dark current suppression by first sampling and holding the dark current during

the calibration cycle, and then subtracting the same during the imaging phase. A BDI

input circuit is used to provide both the required bias stability for the detector and a high
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input impedance enabling operation with high injection efficiency. The current mode

pedestal subtracting is comprised of a cascode current memory, as shown in Figure 2.10b,

with switch-feedthrough reduction and an isolation FET(M read). A double-sampled

differential readout (DSDR) is employed to readout the differential infrared signal (Isig),

while virtually eliminate the background. The reset noise from the current memory and

integration capacitance are removed by the correlated double sampling (CDS) operation

inherent in the DSDR.

Figure 2.10 (a) Circuit implementation of current mode background subtraction and (b)
Circuit schematic of current memory with feedback suppression.
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The dark current memorization includes two steps. During the calibration cycle,

the current memory is firstly enabled to memorize the dark current Ibak, which consists of

the detector dark current as well as the current due to the background

After the memorization is over, the current flowing through the current memory

) is nearly the dark current (Ibak), except for a small error current

flows into the integration node. The pedestal due to the error current is then estimated in

the voltage mode by integrating the error current on the integration capacitor (Cint), and

sampling the resultant voltage onto one of the capacitors CR of the DSDR. In imaging

phase, signal current (Isig) plus the offset current (Imem) are integrated in integration node.

After the exposure is over, the resultant voltage is sampled on the other capacitor (Cs) in

the DSDR. The difference between the potential of the two capacitors then proportional

to the differential infrared signal (Is i g), while background is virtually eliminated.

2.4.2 Dynamic Current Mirror Buffered Direct Injection

To develop a readout multiplexer for liquid nitrogen operated LWIR HgCdTe FPA, an

offset-calibration current readout method was proposed [30]. The core of this readout

method is a dynamic current mirror buffered direct injection (DCM-BDI). The principle

of DCM-BDI can be described through Figure 2.11. When switch SI is in closing, the

circuit self biases the photodiode in background (point A in Figure 2.11b) by charging the

capacitor C to make the reference current Iref equal to the current flowing inside the

detector. During integration time with the switch is open, only the photon current (dl ph in

Figure 2.11b) will output to an integration capacitor. The background current is cancelled

by 'ref since the gate voltage of the input FET is fixed by capacitor C.
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Figure 2.11 Detection principle of dynamic current mirror buffered direct injection

A practical DCM-BDI circuit (not shown in the figure) had a buffer to keep the

injection linear, and a capacitor to integrate the output current. A 100µmx100µm pixel

had been laid out for 3-4 p.m p-well CMOS process. The simulations showed that the

circuit had good IR background and dark current suppression capability. The integration

time, if compared with conventional BDI or CTIA, was increased by 25 times. However,

this method needs forward bias of the detector to cancel out the dark current. For very

high background, it was concluded that the optimum reference was about one half of the

background current. Therefore, the injection efficiency became 50%.

To consider DCM-BDI as a current memory type of circuit, one can see that a

forward bias on the detector offers a negative current to cancel out the background

current, so that it is not integrated by the integration capacitor and the signal integration

time is extended. However, when another dc current is flowing through the detector, extra

shot noise will be introduced and the total noise level will be increased by square of 2,

since the bias current is not correlated with the shot noise generated by the background

radiation. Therefore, the improvement in FPA dynamic range and signal-to-noise ratio is

limited.
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2.4.3 Buffered Gate Modulation

Buffered gate modulation input (BGDI) is developed from the gate modulation input

(GMI) which was discussed in chapter 2.2.3 [31]. An experimental 128x128 chip with

50µmx50µm pixel size was designed and fabricated in 0.8 µm double-poly-double-metal

n-well CMOS technology. Figure 2.12 is the circuit schematic and the chip architecture

of BGDI. To suppress the background on chip using a shared current-mode background

suppression circuit, this proposed BGDI method was concentrate on solving the problems

of GMI unit cell, such as detector bias uniformity, injection efficiency and current gain

stability, so that a 2D array with large FPA format could be realized.

Figure 2.12 Input circuit and chip architecture of buffered gate modulation.

As shown in Figure 2.12, the BGMI circuits integrates the buffered direct

injection (BDI) technique with a GMI-like current gain configuration to form the unit cell

input stage. The current gain is realized by a new unbalanced current mirror

configuration. A current-mode background suppression circuit is implemented with

shared integration capacitor unit to suppress the background current before integration.
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Moreover, the dynamic charging output stage with CDS circuit can be included to

decrease the power dissipation of the output stage and reduce noise.

Through the BDI input stage and the current mirror, the output current is sent to

the shared integration cell through the row select switch. The effective current gain

AI.BGMIof the BGMI circuit becomes

and the injection efficiency is changed from η inj,DIto η inj,BDI .Thus, the current gain in the

BGMI can be stable without the difficulties in adjusting and stabilizing the external bias

voltage while keeping the circuit in low noise. The injection efficiency becomes stable

because of a stable detector bias can be achieved. These improvements result in the

feasibility of using the shared current-mode background suppression.

2.5 Conclusions

Today's infrared FPA readout technology is still dominated by the matured readout

methods. They are direct detector integration (DI) or source follower per detector (SFD),

direct injection (DI) and buffered direct injection (BDI), gate modulation, and capacitive

transimpedance amplifier (CTIA). The choice of the readout circuit is determined by

system parameter, in which detector's characteristics play the most important role. The

detector R0A so that the thermal noise, cutoff wavelength so that the background photon

shot noise, and detector bias so that 1/f noise give the bottom line of the readout circuit

design. A good design is expected to reduce these noise sources without introduce

additional noise problems. The real difficulty of the readout circuit design is to complete
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the interfacing task with minimum circuit nonlinearity, threshold voltage variation, 1/f

noise, and power dissipation.

The existing literature reveals that, in lower and mid wavelength applications, it is

readout circuits that limited the FPA performance. This is because matured readout

methods are based on dc measurement technique, and this kind of circuit is susceptible to

1/f noise, drift, and the dark current. When the detector is near perfect, the device will be

dominated by readout noise, which is usually referred as noise floor. However, for high

background applications, or more generally, for the detection in the presence of large

dark current, matured readout circuits will not success because the charge handling

capacity is a serious problem. Simply increasing storage capacitor is not only impractical

because of limited real estate, it will also cause large reset noise shown by equation 2.20

and reduce the transimpedance as equation 2.8 states. A new readout technology must be

developed if there is no breakthrough in detector materials.

The research of on-chip background subtraction has been initiated recently. The

common technique is to source or drain a reference current which is equal to the dark

current, so that only the signal photocurrent will be accumulated in the storage capacitor.

Although it is too early to predict which method may success, two conclusions can be

drawn from current research. First, the circuitry complexity was drastically increased.

This demonstrated that with the advancement of VLSI technology it is the time to trade

circuitry complexity with other characteristic performances. The second trait was that all

the new circuits were developed from matured readout methods. This is because infrared

FPA is still a very expensive device, and any new technology must be integrated with the

existing systems finally. A whole new circuit is in danger of not intimate by the field.
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The performance of a FPA with the large dark current can be best characterized

by dynamic range. The signal-to-noise ratio actually is the instantaneous dynamic range

when all the noise sources are included. The definition of dynamic range DR is the ratio

of output voltage swing to the noise level [32], and can be written in decibels as

where Nmax  is the maximum number of electrons that a unit cell can handle; N dark the

number of electrons generated by the dark current; 11,0 the number of electrons

representing readout noise; n d ark the number of electrons representing the noise due to the

dark current. An ideal readout method should be able to increase the output voltage swing

and decrease the noise level at the same time. To keep this standard in mind, the existing

readout methods, which are based on dc measurement technique, will not succeed in

principle.



CHAPTER 3

THE PRINCIPLE OF CORRELATED READOUT

3.1 Correlated Readout Methodology

Circuit theory indicates that it is often convenient to work with an alternating current (ac)

signal instead of a dc signal: Amplifier stability is easier to maintain and both amplifier

noise and detector noise are lower. More importantly, the dark current will be filtered out

simply because it is a de signal. However, to use an ac amplifier in a passive system, the

constant optical incidence must be converted into an alternating source. The process so

called the source modulation is available in several ways. Many circuit schematics can be

used in the detection of this modulation signal for discrete detector [33]. Usually, lock-in

amplifier is a most widely used instrument in modulated measurement, and is considered

as the best equipment to measure the small signal from large noises. Unfortunately, all the

circuits used for discrete detector are not ready to be applied in focal plane arrays because

of limited real estate and high demand of uniformity in readout circuit design.

To take advantage of optical modulation without violating readout circuit design

constraints, especially the unit cell area, a method of correlated readout has been

proposed [15]. This thesis investigated the feasibility of this concept. The principle of

imaging with modulated source by the correlated readout can be shown by Figure 3.1. An

optical modulator is placed in front of the detector to modulate the photon flux from the

scene. When the modulator is on in one phase (01 in the Figure), the current generated by

the detector will be the photocurrent corresponding to the target photo flux and the dark

current that include detector dark current and the radiation not being modulated

32
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(deductible background). When the modulator blocks target flux in another phase (02),

only the dark current is in the detector. By controlling the correlated readout circuit

synchronically with the modulation control signal, the interface buffer charges the

integration capacitor with the signal current and the dark current in 01 and discharges it

with the dark current only in 02. The modulation frequency is selected so that in each

cycle of modulation, the integration capacitor is charged only to a part of the saturation

level. Since the dark current integration on the capacitor is subtracted by the discharging

process, more signal charges will be collected. The signal-to-noise ratio and dynamic

range can be improved.

Figure 3.1 The principle of correlated readout method.

The capability of correlated interface circuitry on subtraction of the dark current

can be illustrated by Figure 3.2 for the ideal case. In this first order model, the input is

considered as a dark current Lark plus a target photocurrent Iph; the readout capability is

described as a capacitor Cint with a saturation voltage Vsat (charge handling capacity Q =

Vsat Cint). The maximum signal integration time Tint and output voltage swing V ovs can be

estimated through V•C = IT. By assuming 100% charge injection efficiency, direct
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current coupling readout methods, such as the buffered direct injection (BDI) and the

transimpedance amplifier (CTIA) described in chapter 2.2, simply integrate Nark and 'ph

and have results as

Figure 3.2 DC model for the process of correlated interface circuits.

Instead of directly charging the capacitor to the saturation level, the correlated

readout circuit discharges C11  by the dark current in a mid-level before saturation, and

charges it again to achieve more signal charge collection. This process can be controlled

by signal modulation and synchronized readout. The maximum integration time and

output voltage swing by the correlated readout method, VOVS_M and Tin t_M, will be in terms

of the period of the control signal tm (tm , = 1/f,,, where fm is the modulation frequency),

and can be calculated by
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The ratio of the output voltage swing or the signal integration time of the correlated

method to the dc-coupled method can be expressed as

3.2 Signal Processing by Correlated Readout

3.2.1 Basic Techniques

From a circuitry point of view, signal processing of a FPA first occurs at signal

integration for achieving better signal-to-noise ratio (S/N) before multiplexing the image

signal, although this process is usually considered as signal detection in the research of

sensors. Basically, there are three such techniques for optical sensing. They are photon

counting, dc measurement and phase sensitive detection [34]. The applications are

dependent on detection conditions.

Photon counting is a technique that has been employed for many years with

photomultpliers when the light intensity is low. Its analysis methodology based on

Poisson statistics has been inherited by EPA technology to represent S/N and dynamic

range although photodetection processed by photogate and photodiode are more

complicated. When photon flux is low, the light incident on the detector is considered as

the form of individual photon events. Photon counting simply counts all the pulses of the

signal and the dark current in a time period. The S/N is calculated by a number of signal

counts N s , dark current counts Nd, and integration time Tint as
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Equation 3.4 shows that S/N can be improved to an acceptable level by extending the

integration time, no matter how small the signal counts are compared to the dark current

counts. However, the integration time is limited by the charge handling capacity in the

FPA technology.

When a photo diode works in current mode [35], the photo current plus the dark

current become essentially large, therefore, dc measurement technique should be applied.

In dc measurement technique, current from the detector is considered as a dc signal with

noise superimposed on it. To integrate the signal is similar to improve S/N by passing the

signal through a low pass filter. To achieve longer integration time is equivalent to having

a large RC constant that narrows the output bandwidth. More accurately, a reset integrator

can be modeled to give the scenario of dc measurement technique in the application of

readout circuitry, which is illustrated in Figure 3.3.

Figure 3.3 The reset integrator action can be modeled as a continuous integrator that is
sampled and subtracted as discrete time increment.
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The voltage on the input node, shown as a continuous ramp, is the integral of the

detector current i(t). The resulting output voltage v(t) can be expressed in terms of the

convolution of the input current and the impulse response h(t):

The impulse response of the reset integrator h(t) over the integration period Tint is

which is a step to amplitude of 1/Cint at the beginning of the integration, and returns to

zero after sampling and resetting at Tint. The frequency response of the reset integrator

can be determined by evaluating the Laplace transform:

where the Laplace transform of h(t) of equation (3.7) is

The derivation of above expression is strictly valid for an ideal reset integrator. In

practice, however, some dead time exists between the reset and the onset of integration

(due to switching time). Equation 3.8 provides a good approximation in case where the

dead time is a small fraction of the integration time.

The sinc function, which is defined as

in equation 3.8 indicates the fact of attenuating at frequency higher than Nyquist limit,

while passing the dc and low frequency signal. The high frequency ac component could
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be signal, noise, or interference picked up on the input node. In signal accumulation, high

frequency components tend to cancel out its own excursions above and below the dc

signal, thus resulting in a significant reduction in amplitude. Since the integration time is

assumed to be nearly equal to the time between frames, the only unaliased frequencies

that can pass through the reset integrator are those less than half the frame rate, if

sampling is performed just before reset.

When the detection is dominated by low frequency noise, such as noise and dc

drift, the reset integrator is in principle not feasible. In fact, if the signal-to-noise ratio is

very low, such as the detection condition considered by this thesis research, other

methods must be resorted. The phase sensitive detection is one such approach [36], [37].

3.2.2 The Phase Sensitive Detection

The phase sensitive detection (PSD) is the core of lock-in amplifier that has been widely

used to detect the weak signal from large noise. The principle of PSD is shown in Figure

3.4. The key to the operation is a commutating switch that is controlled from a reference

voltage. As the reference changes polarity, the switch changes position between A and B

to give a change of gain between +1 and -1 in the signal path. The output of the switch is

then applied to a low pass filter to deliver a dc voltage output. If the input signal has the

same frequency and phase as the reference voltage, there will have a dc output that is

proportional to the input signal amplitude. Otherwise, due to the combination of

switching operation and low pass filtering, the input signals tend to cancel out by

themselves and can not establish a dc output.



39

Figure 3.4 The principle of phase sensitive detection.

To determine the exact relationship between signal and reference, the switching

operation can be modeled as a multiplication of the signal by a square wave that has the

Fourier series representation of

Thus, the output of the switches V p(t), which is the product of signal input s(t) and

reference r(t), will be

The result of the derivation can be expressed as

For the signal that has the same frequency as reference, a de component will be obtained:

If the signal and reference have different frequencies, then, the output is the form of
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By passing these outputs through a low pass filter, only the signals have the frequency of

0)R, and close of it, will build up a de output, while the signals away from ω R will be

filtered out. In other words, the PSD is in effect a band pass filter whose bandwidth is

dependent on the output low pass filter. If in the detection the signal is modulated to

produce a dc output, and the noise is unmodulated to produce only ac voltage that could

be attenuated on passing through the low pass filter, the signal-to-noise ratio of a input

signal can be improved.

The further complication of PSD is harmonic transmission windows. If the signal

frequency contains an odd multiple of the reference frequency, a dc output will be

obtained from the PSD. This can be seen from the other term of equation (3.11). When

there will have dc output of

In practical instrumentation, such as lock-in amplifier that is shown in Figure 3.5, the

harmonic transmission is avoided by putting a band pass filter before PSD and an ac-

coupled preamplifier can be applied at the input to reject dc component. To eliminate all

the signals with the frequency other than modulation frequency, lock-in amplifier can

achieve significant improvement of SNR. Unfortunately, lock-in amplifier can not be

applied for focal plane array technology because of circuitry complexity. The proposed

correlated readout method is an approach to realize PSD function with simple circuits.



Figure 3.5 A basic lock-in amplifier.

3.2.3 A Correlated Reset Integrator (CRI)

As in the case of the reset integrator where the theory of low pass filter is applied, the

idea of the correlated readout is based on the phase sensitive detection. However, to apply

the principle of PSD for focal plane array technology, a conventional multiplier is

restricted by the readout circuit design constraints because there is no simple circuit that

can change the polarity of the signal. In addition, any signal conditioning circuit (such as

a band pass filter and ac-coupled preamplifier) before demodulation process is almost not

possible with today's IC technology. Therefore, the correlated readout method was

proposed and a different detection model must be established.

Since the correlated readout circuits perform demodulation by switching 'raw'

current from the detector, the assumption of time invariant system behind the derivation

of PSD will not be strictly applicable. The principle of correlation technique [38], which

has been applied in correlated double sampling (CDS), should be used to justify the

following analysis (The correlation is the internal relationship between two measurements

for the mean value). In the case of the correlated readout method, the current from the

detector at different times will be correlated because they are generated from the same

41
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source. As described at the beginning of this chapter, dc component of the dark current

can be canceled out by discharging since the de level does not change in two modulation

phases. In other words, two current signals are one hundred percent correlated. For the ac

fluctuation, one may expect that slowly changed signals (low frequency noise) will be

reduced to a factor because their correlation coefficient can be enlarged to cause

cancellation, if the modulation frequency is relatively high (shorter correlation time).

A derivation of low frequency noise reduction based on correlation technique can

be found at reference [39]. Here an approach for the signal processing of the correlated

readout using system theorem is presented. The transfer function of the reset integrator is

inherited to model the correlated readout method as a correlated reset integrator (CRI).

Figure 3.6 illustrates this proposed model in time and frequency domains. In the model of

the CRI, the process of each modulation phase is considered as a reset integrator with

integration time of tp (2tp = tin where tm is the period of the modulation signal). To refer to

the first charging phase, the other processes are delayed time of kt p . Therefore, the

correlated reset integrator can be modeled as a set of parallel delay processors followed

by a reset integrator, as Figure 3.6b shown. According to the time shift theorem (pure

delay by t seconds has the transfer function of e -jωt) each delay processor has the transfer

function of e-jkωtp. In addition, the negative sign due to discharging at the summing

junction can be absorbed as a gain of —1. Figure 3.6c shows such a model in the

frequency domain. For the convenience of analysis, the total integration time Tint is

assumed to be an integer N multiplied by the modulation period (Tint = Ntm=2Ntp), as

shown in Figure 3.6a.
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Figure 3.6 The correlated reset integrator is modeled as a parallel delay processor
followed by a reset integrator with integration time of tp. (a) Timing. (b) Simulation
diagram. (c) Frequency domain block diagram
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By applying the rule of parallel and cascade systems [40], the transfer function of

modeled system Hcri(ω) can be found as

The summation of the delay system can be calculated by

To multiply sinc function of the reset integrator for finding system's amplitude ratio, the

frequency response of the CRI can be expressed by

Reorganizing the above expression, there is

Correspondence to the sinc function that is used to express the frequency response of the

reset integrator, a function that has the similar form as sinc function is obtained to express

the frequency response for the correlated reset integrator. This function f(x) can be called

as correlated sinc function and can be written as
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The above expression is simple in form, however, since the Ti nt is determined by

both the modulation frequency fm and the number of switching times N (Tint = Ntm

N/fm), to demonstrate the characterizations of this correlated sinc function, the f(x) should

be written as

where x = f/fm and fm is the modulation frequency. Figure 3.7(a) shows the plots of the

f(x) for N equal to 5, 10 and 15, and Figure 3.7(b) shows the plots of the regular sinc(x)

with the same processing time (the same N). By comparing the plots of sinc function that

represents the reset integrator, one can see that the primary peak of the correlated sinc

function has about the same shape as sinc function, but is shifted to center at the

modulation frequency fm (x = 1). For a certain fm, each peak in the f(x) plots becomes

narrower if the number of switching times is increased (large N). Actually, this is because

the total signal integration time is extended so that a better signal-to-noise ratio is

achieved. However, with longer integration time, the peaks of the regular sinc function

are also narrowed. If two processors have the same integration time and the noise input is

a pure white noise, the total noise power transmission will remain the same. An important

issue here is that the increase of N, so that the total processing time, must be limited by

the saturation of the capacitor, otherwise, all the derivations are not valid. When large

dark current is present, the CRI can subtract the dc component of the dark current to

achieve longer integration time. This means the CRI has better noise reduction capability

due to the extension of the integration time. More importantly, low frequency noise such

as dc drift and 1/f noise will be reduced in the process.
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Figure 3.7(a) The plots of the correlated sinc function f(x) against f/fm, with N equal to 5,
10 and 15. To compare with the Figure 3.7(b) one can see that f(x) has about the same
shape with the sinc(x), but the primary transmission window is shifted to the modulation
frequency fm , and additional odd harmonic transmission windows are opened.



47

Figure 3.7(b) The plots of the sinc function with the correspondence processing time
with the plots in Figure 3.7(a). N equal to 5, 10 and 15 means the integration times are
5/fm , 10/ fm and 15/ fm where fm is the modulation frequency if a CRI is used to process
the same input signal.
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Figure 3.7(a) also shows that the CRI has odd harmonic transmission windows as

the case of phase sensitive detection, because tangent function goes to infinity at half π

and once again after each π. In addition, the negative primary peak for an even number of

N demonstrates that the signal transmission can also be affected by the phases that

correspondence with the modulation signal. All these symptoms show that the correlated

reset integrator is behaved like a PSD processor. If the noise input is a pure white noise,

the output noise level will not improved referred to the reset integrator. However, if the

features in the lock-in amplifier can be added on the CRI, a very high signal-to-noise ratio

can be expected.

3.3 Correlated Interface Circuits

As mentioned in last chapter, the readout circuit design is constrained by unit cell area,

power dissipation, threshold sensitivity, operation temperature, and fabrication yield. The

majority of transistors in the circuit will perform low noise analog function rather than

high-speed digital logic, memory and computing functions. To realize a new readout

method early and economically, the interface circuit should be developed from that

mature readout methods, so that in a practical device design all the readout architectures

and even unit cell design may be inherited. Many performance characteristics, such as the

power dissipation and nonnuiformity, may reach the same level as those original circuits.

This section would be a presentation of the correlated interface circuits developed from

the mature methods reviewed in chapter 2.2. The circuits developed from capacitive

transimpedance amplifier were discussed first and followed by the circuits developed

from direct detector injection, buffered direct injection and gate modulation.



49

3.3.1 Circuits Developed from CTIA

Because a differential amplifier can integrate current in two directions, the capacitive

transimpedance amplifier (CTIA) is the most ideal circuit to develop a correlated readout

circuit. The recent report also showed that the CTIA has the best overall performance

characteristics compared to other IR detector interface circuits at low backgrounds [40].

For the applications of large dark current, a well-designed differential amplifier will be

able to ensure that the detector with low resistance still functions as a current source. The

problems remaining are charge handling capacity, dc drift and 1/f noise.

At this point, it appears that the best circuit developed from the CTIA is a

correlated CTIA. From Figure 3.8 one can see that four switches and two control lines are

added to a conventional CTIA circuit for it to be become the correlated CTIA.

Synchronized with a modulation signal, MI and M3 turn on while M2 and M4 stay off in

01 when the detector is responding to the source signal and backgrounds so that all the

current will be integrated in the integration capacitor. When the optical modulator blocks

the source radiation in 02, M2 and M4 turn on while M1 and M3 become off, the

capacitor will be discharged this time by the dark current only. This process can be

repeated until the operation amplifier saturation level is reached. By using an optimized

modulation strategy, large dynamic range is expected. The additional advantage of this

circuit is that conventional readout architecture can be used to design a 2D array and the

correlated double sampling (CDS) can still be applied to eliminate reset noise. However,

it will introduce new engineering difficulties. First, it requires that the detectors be

processed in isolated well so that discharging can be performed symmetrically as charging
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process. Secondly, one more bonding pad is needed for each pixel of hybrid FPA. This

means doubling the difficulty of indium bonding if a 2D-hybrid array is fabricated.

Figure 3.8 Circuit schematic of (a) Conventional CTIA and (b) Correlated CTIA.

The second approach, named twin CTIA, is a standard synchronizing detector as

shown in Figure 3.9. Only two switches are needed if the CTIA design is done. One

channel will be used to integrate the signal and the dark current while the other channel

will integrate the dark current only. A shared differential amplifier will perform the dark

current subtraction after differential readout. This circuit does not need any modification

on detector array and bonding technology, and a simple amplifier like an inverter

mentioned in chapter 2.2.4, may be feasible when the detection conditions are not very

critical. The main drawbacks of this approach include the limitation on dynamic range

and the difficult to use correlated double sampling. The first problem is because the

integration capacitors will not be discharged and reused again. The second problem is

because two capacitors can not establish the correlation relationship; the reset noise in

each capacitor will add up in rms at the output of the differential amplifier. In addition,

even without any other circuits, two amplifiers and two capacitors will make this

approach very difficult to design a 2D array.
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Figure. 3.9 Circuit schematic of twin CTIA.

To save the unit cell area in the twin CTIA and process the dark current

subtraction within the pixel, especially when sophisticated operational amplifier becomes

necessary, a differential integrator can be applied (Figure 3.10). Besides the same

disadvantages of dynamic range and reset noise as in the twin CTIA, this circuit will have

the difficulty of bias adjustment (Vref in Figure 3.10). However, like the gate modulation

(which is described in chapter 2.2.3) when this problem is solved, it may benefit to fixed

pattern noise reduction.

Figure. 3.10 The circuit schematic of the differential integrator.
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3.3.2 Circuits Developed from Other Methods

A practical FPA finally must be integrated into existing equipment. This means that in

most of the time a designer must use the previous design architecture. If detection

conditions allowed, to develop a correlated interface circuit from an existing method

instead of designing an unfamiliar readout circuit will be the best approach for solving the

problems. The ideas for developing the correlated readout circuit from other readout

methods are discussed below.

It is well known that the other readout methods (which have been reviewed in

chapter 2.2) are inherited from charge coupled devices (CCD). Although active pixel has

more design flexibility, the principle of on-chip signal processing in charge domain is still

applied -- there is only one charge polarity for processing! This means that to charge and

discharge (by change the charge polarity) the integration capacitor as the correlated CTIA

is not possible in principle. The only way of performing correlated subtraction is to use

the structure like the twin CTIA. To compare with many other approaches in CCD

technology, such as dark pixel technology, the correlated readout approach will achieve

better signal-to-noise ratio because low frequency noise, such as dc drift and 1/f noise,

can be reduced significantly.

Following the same idea in developing the twin CTIA, direct detector integration

(DDI) can be developed to a twin DDI and buffered direct injection (BDI) can be

developed to a twin BDI, as shown in Figure 3.11. The same as the twin CTIA, a

differential readout technique must be used for these circuits and the CDS becomes not

necessary. For the hybrid FPA architecture, bonding strategy will keep the same as the

conventional methods. By reducing 1/f noise, large capacitors can be used in twin DDI
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for long integration time applications. With only two switches are added in each unit cell,

the circuitry is still very simple compared with other methods. However, in practical

design, there will have some other issues that need to be solved, since DDI usually works

in voltage mode. Compared with the twin CTIA and DDI, the advantage of the twin BDI

can be seen from the pixel area concern since only one buffer amplifier is added to the

BDI for it to become the twin BDI.

Figure 3.11 Correlated readout circuits developed from the direct detector integration
(DDI) and the buffer direct injection (BDI).

Gate modulation does not integrate photocurrent directly. Therefore, it should

have more design flexibility to become a correlated interface circuit by adjusting current

gain and bias. Unfortunately, since the gate modulation is very difficult to control itself,
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to develop a correlated gate modulation in standard CMOS technology becomes

extremely difficult. It is not hard to imagine how to make up a correlated gate modulation

using two storage capacitors like the twin CTIA. The question is that is it possible to

realize the circuit as shown in Figure 3.12. By modulating the gate of two switches, the

integration capacitor is charged by one source VIN and discharged by another source

VOUT. The price is one more power supply. The benefit will be a large dynamic range

with simple circuitry.

Figure 3.12 An ideal circuit for a correlated gate modulation topology.

Analog switches had been used in new proposed methods to select calibration and

integration modes, such as current memory and DMI-BDI described in chapter 2.4. The

calibration mode is the same as one phase when signal flux is blocked by the modulator.

If these kinds of methods succeed, they may be transferred into the correlated readout

method quickly. The best approach might be the combination of these two methods such

as a current memory — twin BDI. The current memory can be used to drain the dc

component of the dark current. The twin BDI is then applied to minimize the ac

fluctuation due to dc drift and 1/f noise. A better dynamic range characteristic may be

expected.
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3.4 The Applications

3.4.1 Passive Imaging

A direct application of the correlated readout on passive infrared imaging is to recover the

image when large dark current is present. For the detector dark current due to low R 0A,

the position of the optical modulator will not affect the result. However, when this

method is used to subtract the background due ambient radiation, the location of the

modulator must be considered and it may result in redesigning the optical system. In

principle, only the radiation behind the modulator can be considered as deductible

background. For instance for a ground based system, the modulator at most can be placed

in front of the telescope; it is impossible to eliminate the background due to the radiation

of atmosphere, except that the disturbance can be distinguished (modulated) from the

image signal.

If a mechanical chopper is to be used as the modulator, the effect of the chopper

configuration on the image signal must be studied. The further question will be how to

integrate the chopper into an imaging system. It is known that there are five basic chopper

configurations for discrete detectors, as shown in Figure 3.13. The most important

concern for these chopper designs is the modulation factor MF, which is defined as

Some published results show that the MF varies with the configurations. From existing

data one can see that a practical mechanical chopper, such as Case III of Figure 3.13, may

bring some noise due to the two-dimensional effect.
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Figure 3.13 Basic mechanical chopper configurations.

Other approaches besides the mechanical chopper are acousto-optical (AO)

modulator [41] and electro-optical (EO) modulator [42]. The AO devices are based on the

phenomenon of AO diffraction. When an acoustic wave propagates in an optically

transparent medium, it produces a periodic modulation of the index of refraction via the

elasto-optical effect. This provides a moving phase grating that may diffract portions of

an incident light into one or more directions. To apply the AO modulator for linear array

with a scanning system, the image can be made stationary by directing the image through

a deflector that scans with equal and opposite velocity. However, further study is required
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for applying it to the correlated readout since in each frame time the image needs to be

modulated.

The EO modulator is a device with operation based on an electrically induced

change in the index of refraction or change in nature birefringence. The basic idea behind

the EO devices is to alter the optical properties of a material with an applied voltage in a

controlled way. The changes in the optical properties, particularly the permittivity tensor,

translate into a modification of some parameter of a light wave carrier, such as phase,

amplitude, frequency, polarization, or position as it propagates through the device.

Comparing two modulators, the AO modulator has many advantages on intensity

modulation that include low drive power, high extinction ratio, insensitivity to

temperature change, simple drive electronics, and high safety factors. However, the EO

modulator can give some other information, such as phase and polarization. With the

property of phase and polarization modulation, many scientific measurements become

possible, such as solar magnetography described below.

3.4.2 Solar Magnetography

The measurement of solar magnetography is a good example to demonstrate how the

correlated readout method can be used to some special passive imaging for improving the

image quality. To image solar magnetic field by measuring its Zeeman effect, current

imaging technology of solar magnetography (as shown in Figure 3.14) is to take

thousands of frames by a general-purposed focal plane array, and then reveal the image by

off-chip signal processing. An electro-optical modulator is used to select the polarization

of the light for detection.
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Figure 3.14 Scenario of solar magnetography.

A particular difficulty of this measurement is that the useful image signal (a-13),

which is the difference of two circularly polarized light signals (a and [3) due to Zeeman

splitting, is orders weaker than primary intensities: (α-β) << α or β . In addition, since this

measurement is performed by using a ground-based telescope, an atmospheric turbulence

may cause a transmittance fluctuation so that all the light signals may vary as large as 10

percent in magnitude with the frequency as high as 1 Khz. As can be seen, this detection

condition is equivalent to a very large background with a large low frequency noise

superimposed on it, although the detector dark current is very small because the

wavelength is near infrared or visible.

In existing imaging strategy, small SNR problem is approached by taking the

average of a large amount of frames, and the atmospheric transmittance problem is solved

by consecutively switching different circularly polarized light signals (a and (3) for
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detection. A better signal-to-noise ratio is expected by this strategy since the atmospheric

fluctuation fundamentally causes low frequency noise, and it will not change significantly

in two frame times. In other words, the noise in two frame times is correlated; therefore, it

will be attenuated in a factor.

Although signal and background are from the Sun, since the EO modulator can

separate them, this background 03) will be subtracted more effectively if the correlated

readout method is used for the measurement. By synchronizing polarization selection

with switching control of the readout circuit by a signal generator, the image can be

acquired by charging the capacitor with the current due to right circularly polarized light

(a) in one phase, and discharging with left circularly polarized light (p) in another phase.

The image of a - 13 can be read out from a correlated focal plane array. The principle of

this approach is shown in Figure 3.15.

Figure 3.15 Solar magnetography by correlated readout method.

Comparing with the off-chip imaging processing methodology currently used in

the measurement of solar magnetograph, main advantages of the correlated method are
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threefold. First, it does not need to suffer from the readout noise each time when signal is

read out. For a high sensitive detector, readout noise can be very large. Second, an

optimized frequency can be used to reduce some particular low frequency noise. For

example here, the noise due to atmospheric turbulence which have the frequency up to 1

KHz can be effectively reduced by using 10 KHz of modulation frequency. Last, low bit

ADC can be used due to the increasing of output voltage swing. This not only means that

the quantization noise is avoided, but also means that on chip ADC may become feasible.

3.4.3 Active Imaging

The capability of on-focal plane array processing by correlated readout method indicates

the potential applications of active imaging using external excitation, such as laser radar

and microwave radar. The optical modulator becomes not necessary if the excitation light

source is modulated. The correlated readout circuit can directly synchronize with the

source so that all the radiation not related with the source will be treated as background.

A very high sensitivity can be expected.

An evidence detector currently studied for law enforcement can be a good

example to illustrate the application of the correlated readout for active imaging. The

objective of the evidence detector is to image the illumination of organic material, such as

fingerprints, at the crime scene based on most organic molecules absorb light and then

emit some of the light as fluorescence. Unfortunately, these fluorescent emissions are

normally difficult to detect because various light sources are surrounded. If a FPA with

the correlated readout method is used in this detection, an investigator can illuminate the

crime scene with a modulated lamp; the background lights will be subtracted if they are
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not flash as the same frequency as the light source. With the same idea, one can see that

the correlated readout method can found many applications in other field, such as medical

research where the image usually is static and is performed in the laboratory.

The capability of on-focal plane array processing by the correlated readout method

may also find the applications on information technology. As well known, today's

imaging processors demand complex communication input/output networks that are

expensive and often unable to handle the required data load. However, on-focal plane

array processing applications do not need to process all of the available raw pixel data. To

work within the limitations of existing communication system, sensor output bandwidths

can be reduced by several orders of magnitude, or more information can be packed into

each byte.

In summary, on-chip processing is one of the important future trends in the

development of focal plane arrays. The correlated readout method is an approach to

process optical information within the pixel. It will not only alleviate the load of off-chip

imaging processing but also achieve higher detection sensitivity. Therefore, there will

have more applications on scientific research, and commercial product as well.



CHAPTER 4

CORRELATED READOUT CIRCUIT DESIGN IN STANDARD CMOS

4.1 CMOS Design Through MOSIS Service

As the minimum feature size scales down into the submicron regime, the definition of

`standard' CMOS becomes less clear. Usually, the CMOS processes provided by the

MOS Implementation System through the Information Sciences Institute at the University

of Southern California (MOSIS) are considered as the standard CMOS process [43].

MOSIS is a low cost prototyping and small-volume production service for VLSI circuit

development. Several CMOS processes are offered through the access of different

foundries, as shown in Table 4.1.

Table 4.1 Current CMOS processes in MOSIS

MOSIS can support a variety of CAD tools and libraries, both foundry-specific

and vendor-independent. Unfortunately, there is no special tool for readout circuit design.

SPICE is still the best tool for simulation of circuit performance. Table 4.2 lists some

major SPICE model parameters provided by MOSIS for Orbit 2µm n-well process. The
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values in the table are average results from 10 most recent runs. All the model parameters

can be found in the simulation program, which is attached in Appendix A.

Since in this research the first correlated readout demo chip was designed using

the Orbit SCNA20 process, all the SPICE simulations are based on the MOSFET

parameters listed in Table 4.2. The possible advantages to design the correlated readout

circuits using other processes will be discussed in chapter 6. As will be shown, the design

of readout circuits can not fully take advantage of submicron technology, since each pixel

in the array performs mainly analog signal processing rather than simple flip-flop

operations as in logic and memory chips. Recent research also showed that standard

CMOS technology could not be used for imaging in the deep sub-micron regime without

some process modification [44]. Actually, no matter what kind of process is used, the

fundamental design issues will remain the same, although HSPICE is believed to be more

accurate for predicting the chip performance. Decisions with respect to transimpedance,

power dissipation, threshold voltage uniformity, and switching feedthrough will have to

be made. As will be shown in later sections, the switching feedthrough is the most

important design issue for the correlated readout circuit and it will not be solved by using

the submicro process. Other design decisions, such as pixel size, may strongly depend on

the minimum feature size of the technology available.

By using the parameters listed in Table 4.2, the basic building blocks (N and P

MOSFETs) can be characterized by SPICE simulation. Figure 4.1 gives the results for a

N-channel and a P-channel transistor, with L = 4µm and W = 4µm, along with the

characterization circuits. In following sections, the most important design issues are

studied and the design of the first correlated demo chip is described.



Table 4.2 Major SPICE Model Parameters
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Figure 4.1 Characteristics of MOSFET from Orbit 2µm n-well process with L = 4µm and

W= 4µm.
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4.2 Switching System Design

The analog signal switch is a basic building block for analog circuits, and plays an

important role in CMOS readout circuits for sense node resetting and x-y addressing. In

the correlated readout circuit, the switching system formed by analog switches is the heart

of the signal demodulation. The success of the correlated readout method strongly

depends on the performance of each analog switch. Unfortunately, even with today's

state-of-the-art submicron process technology, the MOS switch is still far from ideal

because most sub-micron processes are designed for digital circuits. The most important

design issues of the switching system will be studied in this section.

4.2.1 Basic MOS Switch Model

Figure 4.2 shows a model for a MOS switch. RON is a resistor that represents the small

but finite resistance between the switch terminals A and B when the switch is on. R OFF

represents the large but not infinite resistance when the switch is off. Vos is an

independent voltage source to model the offset voltage when the switch is on while the

current through it is zero. IOFF is an independent current source to model the offset current

when the switch is off while the voltage across the terminal is zero. CA, CB and CAB are

the parasitic capacitors associated with the switch terminals A and B and ground. CAC and

CBC  are parasitic capacitances that may exist between the voltage-control terminal C and

the switch terminals A and B. Note that in this model some other non-ideal characteristics

of the switch such as linearity, commutation time, noise, etc. are not included although

they may become the most important issues in practical readout circuit design.
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Figure 4.2 A model of a MOS switch.

For readout circuit applications, RON , and offset sources as well, are desired to be

as small as possible to benefit injection efficiency, while ROFF is as large as possible to

reduce leakage current. For example, for a reset MOS switch, small RON will make it

possible to dump charge quickly; large R0 may improve the saturation level of the

integrator, especially in a long integration time application where the problem of leakage

from the reset switch is much more serious than usual. However, when design

requirements are set and the process is chosen, an optimized switch size can be easily

found by simulation if only RON and R0 are the considerations. Actually, in most

conventional readout circuit designs, the minimum available feature size is usually used

for reset and x-y selection simply because of consideration of chip area minimization.

Unfortunately, in the correlated readout circuits designed for this thesis research, a

problem of switching feedthrough, which can be due to charge injection and capacitive

feedthrough, was found to be a serious problem. Since an integration capacitor is always

followed by the switching system, injected charges and feedthrough signals will
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accumulate and be presented on the sense node as a noise output. Therefore, a particular

challenge in the design of the readout circuitry switching system is the minimization of

these noise signals.

4.2.2 Charge Injection and Capacitive Feedthrough

Figure 4.3 shows the basic charge injection effect. When the MOSFET is on and Vim is

small, some charges are present under the gate oxide resulting from the inverted channel.

When the switch turns off, these charges will be injected into the capacitor and added to

Vin . For a NMOSFET the charge under the gate can be estimated by

and for a PMOSFET the channel charge is

where Cox is oxide capacitance and W*L the gate area.

Figure 4.3 Simple configuration using an NMOS to show charge injection.

For the Orbit n-well 2µm process, C ox is given by
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By using the other process parameters listed in Table 4.2: VTHN = 0.7905V, VTHP = -

0.9003V, VDD = 5V, and VSS = OV, so that VGSN=5V and VGSP= -5V, the channel

charges can be calculated by Equations 4.1 and 4.2. Figure 4.4 gives the calculation

results by converting the charge into the number of electrons. The summation of QIN+QIP

is also plotted in the figure for later reference.

Figure 4.4 The channel charge is calculated with the size of WxL and converted into
number of electrons.

It has been shown that if the clock signal turns off fast and the charge distributions

are fairly uniform between the adjacent nodes, half of the channel charge will be injected

onto Cint [45]. If this is true, the injected charge will be in the range of 105 electrons, as

shown in Figure 4.4. For a readout circuit, this is a very large noise. For example, by

applying the principle of random walk, the total noise collected in the integration

capacitor will be equal to the square root of the total current integration. This theory can

be expressed as (by converting the charge into a number of electrons)
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where I can be the total current from the detector, which includes the dark current Id and

the signal current Is , Tint the integration time, and q the electron charge. For the detection

condition of I a Id ≈ lnA, and the integration time of 0.2ms, which is the period of a

5KHz modulation frequency, the number of noise electron becomes

This noise will increase as the square root of the total integration time, while the charge

injection is only a matter of the number of switching times. Therefore, the charge

injection is a relatively large noise for the correlated readout circuits.

A simplified model using NMOSFET for the study of capacitive feedthrough is

shown in Figure 4.5. During the rising edge of the 4)1 phase, the gate starts at 0 volts and

heads toward 5 volts. In the transition from 0 to V i n+VT, Ml is off. Consequently, this

part of the clock waveform can couple to C int via Cis. As a result, a portion of the clock

signal, 0, appears across Chu as

The remainder of the rising clock waveform is not coupled to C int because Ml turns on

and connects C int to the low-impedance voltage source Vin. If we assume that Cis =

Cox*W*L/2, Cin t >> CGS when a relatively large integration capacitor is realized, and Vin

« VT for the current mode detection, the capacitive feedthrough can also be expressed by

the charge collected in the integration capacitor, which is given by
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As can be seen by comparison with Equation 4.1, the capacitive feedthrough has a smaller

effect than charge injection, but is in about the same range.

Figure 4.5 Illustration of capacitive feedthrough and the clock waveform.

When M1 turns off, the feedthrough occurs once again as the clock goes from

Vin+VT  to zero volts. If the voltage change due to the on transition still remains on the

integrator, ideally the feedthrough due to the off transition will cancel it out if the

switching process is completely symmetric. However, if the feedthrough effect due to the

on transition is discharged through the low impedance voltage source Vin, the feedthrough

result in a complete clock period will be the voltage change expressed by equation 4.3.

4.2.3 SPICE Simulation of the Switching Feedthrough

Although the switching feedthrough had been extensively studied for sample and hold

circuits [46], only the effect due to the off transition was considered because the low

impedance voltage source Vin makes the switching feedthrough during the on transition

have a negligible effect on the capacitor. However, in the correlated readout circuits, the

feedthrough events will happen many times during one frame integration. In the SPICE
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simulation, the switching feedthrough is observed twice in each clock phase, and the

accumulation of charge on the integration capacitor is seem to contribute to the voltage

output. Figure 4.6 shows the conventional CTIA, circuit schematics used to study the

effect of switching feedthrough. The feedthrough from the positive Op Amp input is also

considered because in the correlated CTIA configuration the switches are also connected

to the positive input node.

Figure 4.6 Circuit model used to simulate switching feedthrough on CTIA.

Figure 4.7 shows the basic effect of the switching feedthrough on conventional

CTIA. In this simulation, the switch sizes were W = L = 4.1,m for all N and P transistors,

the integration capacitor was 5pF, the amplifier for the CTIA was an ideal operational

amplifier, and the rise and fall times of the clock signals were 200ps. Additional

simulations showed that the factors that can significantly affect the influence of the

switching feedthrough include:

• Switch configuration -- transistor channel and size;
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• Clock frequency — number of cycles in the total integration period and rise/fall

times of the clock signal;

• CTIA — amplifier open loop gain and total feedback capacitance;

• Detector characteristics — junction capacitance and dynamic resistance.

Figure 4.7 PSpice simulation of the effect of switching feedthrough on CTIA.

From Figure 4.7, one can see that the P channel transistor feedthrough has the

opposite effect on the output than the N channel transistor feedthrough, as can be

expected because the gate-drain voltages have opposite polarities. It also has a somewhat

smaller effect than the N channel transistor most probably because the PMOS has a

smaller CGS since the lateral diffusion during the P+ doping step for the source and drain

is larger. However, this can not lead to the conclusion that the PMOS switch will be the

better choice for correlated readout circuits, since in n-well process for the PMOS

transistors will consume more layout area, which is often the dominant factor in readout

design. Another straightforward simulation result was that smaller WxL fundamentally
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had smaller feedthrough simply because of smaller CGS and CGD. However, the effect of

transistor size is not shown in Figure 4.7 although it is easy to demonstrate.

In the simulation by changing the switching strategy, two effects were observed.

First, for a fixed integration time, a high modulation frequency would result in large total

feedthrough accumulation because of the larger number of feedthrough cycles. This

means that to use high modulation frequency for resolving small signal from large dark

currents will be also limited by the switching feedthrough. However, if the detection

condition is not very critical, it is still possible to use high modulation frequency if a large

low frequency noise is the problem. The second important result is that the rise and fall

time of the clock signal could affect the feedthrough significantly. Theoretically, this is

because charge injection will decrease with decreasing dV/dt when the switch transition

time becomes long.

The effect of CTIA on the switching feedthrough is complicated because it

involves many CTIA specifications and the strategy for canceling charge injection and

capacitive feedthrough, which will be discussed later in the next section. The capacitance

and resistance of the detector also affect the result significantly, which could be shown by

changing their values and examining the simulation results. However, since the

simulation is not based on the specifications of real photon detector, those results would

be only helpful for comprehension of the effect but not for selecting the design approach.

Finally, the simulations, as well as the calculation of the charge injection and

capacitive feedthrough, showed that the switching feedthrough could be reduced through

circuit design. Although the theory of switching feedthrough on the correlated readout
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circuits was not well established, the SPICE simulation results should be accurate enough

for starting the circuit design.

4.2.4 Methods for Canceling the Switching Feedthrough

Classical methods for reducing switching feedthrough, a dummy transistor and a CMOS

current steering circuit, are shown in Figure 4.8 [46], [47]. The dummy transistor is a

MOS transistor that is the same as the switch transistor with source and drain both

attached to the signal line and the gate connected to the inverse clock. The CMOS current

steering circuit, also known as a CMOS transmission switch, is constructed by paralleling

P and N channel transistors.

Figure. 4.8 Classical methods for canceling out the switching feedthrough.

The theoretical optimum size of the dummy transistor is one-half of the size of the

prime transistor for canceling the charge injection. As shown in Figure 4.8a, when Ml

turns off, half the channel charge is injected toward the dummy switch, which is

essentially matched by the charge induced by M2, and the overall charge injection is

canceled. Unfortunately, the simulation showed that this technique could not be applied

to the correlated readout method because the effect of capacitive feedthrough was
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increased due to the presence of the dummy transistor. The reason is that the difference of

the rise and fall times is accumulated during the integration process, while the dummy

transistor is only good for canceling the feedthrough from a single edge of the clock.

The CMOS current steering circuit can diminish both the charge injection and the

capacitive feedthrough through cancellation because the two transistors have opposite

channel charges and clock signal couplings, as can be seen from Figure 4.4 and 4.7,

especially when the transistor areas are carefully chosen. Therefore, the CMOS current

steering circuit is the best choice for implementing a switching system if chip area is

available. More sophisticated design of CMOS current steering circuit involves three

other transistors to control the substrate connection. However, this needs a twin well

process that is usually not considered available for FPA technology.

Fully differential circuit topologies can be used to cancel the switching

feedthrough effect to the first order, as shown in Figure 4.9. Since the non-ideal charge

injection and capacitive feedthrough effects appear as a common-mode signal to the

amplifier, they will be reduced by the common mode rejection ratio (CMRR) of the

amplifier. The correlated readout circuits fundamentally are in the differential topology.

For the twin CTIA, the switching feedthrough is collected in two integration capacitors

and they can be cancelled by a differential amplifier after being multiplexed out. The

correlated CTIA is a compact circuit. Besides the functions of demodulation and signal

integration, it will also perform switching feedthrough reduction if the common-mode

rejection ratio of the differential amplifier is high enough, because the switches are

connected both to inverting and noninverting inputs.
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Figure 4.9 Minimization of switching feedthrough by a fully differential circuit.

From the analysis above one can see that using complex switch configurations to

cancel switching feedthrough consumes design real estate. However, the sacrifice of chip

area can be worthwhile for the twin CTIA because achieving high dynamic range is an

important goal. On the other hand, designing an off-array differential amplifier is not very

difficult. For the correlated CTIA, minimizing feedthrough inputs will ease the design of

the operational amplifier. It may finally result in saving total pixel area.

4.2.5 Noise in the Switches

In addition to unwanted switching feedthrough, switches also generate thermal and flicker

noise by themselves. The rms thermal noise current generated by the parasitic drain (RD),

source (Rs), gate (RG), and substrate (RB) resistance is given by [43]

The thermal noise due to the channel effective resistance, modeled by a resistor of 2/(3g m )

in the saturation region [43], is given by



The 1/f noise can be modeled by a rms noise source, which is given by [43]

where KF is the flicker noise coefficient with a typical value of 10 -25V2F, ID is the DC

drain current, AF is the flicker noise exponent which has a value ranging from 0.5 to 2,

and f is the frequency variable to integrate over. A complete noise model for the

MOSFET is shown in Figure 4.10. All noise sources are rms.
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Figure 4.10 Noise model for MOSFET.

Usually, the thermal noise effects due to the parasitic resistance are negligible for

CMOS circuit design. If this is the case, we can estimate the switch noise by calculating

the channel thermal and flicker noise contributions. Figure 4.11a shows the calculated

values of thermal noise for N and P channel switches on drain current ID, varying from

lnA to 20nA; the transistor size is W = L = 4µm, temperature T = 300°K, and the



79

The figure shows that the thermal noise is of the order of 100fA, which is relatively small

compared to the ID. Figure 4.11b shows the calculated value of 1/f noise for I D = 10nA,

and f from 1 to 60 Hz. Low frequency noise can reach 10pA.

These results show that the major noise sources due to the switches themselves are still in

low frequency range. However, these noise sources can not be reduced by the correlated

readout method because they are generated in different switches.

Figure 4.11 Calculation of (a) RMS thermal noise due to the channel effective resistance
and (b) RMS 1/f noise in MOS switches.
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4.3 The CTIA Design

If the unit cell area is limited, a simple inverting amplifier as shown in Figure 2.7a can be

used for a conventional CTIA. However, for the correlated CTIA described in chapter

3.3.1, a differential amplifier is required to realize charging and discharging the same

capacitor. In the design of the amplifier, besides the most common specifications such as

open-loop gain and frequency response, the common-mode rejection ratio (CMRR)

becomes more important than usual due to the requirement for canceling the switching

feedthrough. Thus the problems associated with designing a CTIA for the application of

the correlated readout method, especially the correlated CTIA, must be studied.

4.3.1 The Transimpedance Amplifier (TIA)

CTIA is a special case of a transimpedance (shunt-shunt feedback) amplifier. Figure 4.12

is an ideal configuration of transimpedance amplifier (TIA) with open-loop gain A OL,

feedback factor 13, input resistance R i , and output resistance Ro . In this ideal case, the

input resistance of the feedback loop R βi is infinite and the output resistance R ao is zero.

The 13 network shunts the basic amplifier; therefore, the input variable is a current.

Looking into the output of the amplifier, the feedback path is in parallel with or shunts

the output signal. Therefore, the output signal is a voltage. The close-loop gain is

The input and output impedance of the transimpedance amplifier can be calculated by

applying a test current source to the input of the amplifier. Assuming that the 13 network

does not load the basic amplifier, the close-loop input impedance Rif becomes



and output impedance R of is

The ideal transimpedance amplifier should have zero input resistance and zero output

resistance. The above equations show that feedback helps to make the basic amplifier

appear to be close to ideal.
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Figure 4.12 An ideal transimpedance (shunt-shunt feedback) amplifier.

The most common application of TIA in sensor preamplifier circuits is to a

resistor transimpedance amplifier (RTIA), which is shown in Figure 4.13. The output

response of the RTIA to a photon-generated current, or to any input current including

noise, is [3]

The low-frequency transimpedance Zt is set by Rfb , which is selected to provide sufficient

gain to the system and to optimize the signal-to-noise ratio.
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Figure 4.13 Resistor transimpedance amplifier (RTIA).

The CTIA is constructed by replacing Rfb with an integration capacitor C int and a

reset switch. By applying the theory of switched capacitor, charging the capacitor with a

time of T int is equivalent to a resistor with the resistance of

if Cint is reset before saturation occurs. The transimpedance of such a capacitive TIA

becomes

To ensure that the CTIA possesses the transimpedance expressed by equation

4.10, an amplifier with large enough open-loop gain must be used. This amplifier will

determine most of the specifications of the CTIA, since only a capacitor and a reset

switch are in the feedback loop. As mentioned at the beginning of this section, an

operational amplifier (Op Amp) must be used as the amplifier for the correlated CTIA.

The following sections discussed basic design rules for the CMOS Op Amp, which was

used in the demo chip design.
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4.3.2 Important Specifications of a CMOS Op Amp

A basic CMOS Op Amp that can be fabricated by the n-well process is shown in Figure

4.14. Generally, an Op Amp consists of a differential amplifier with gain A1, a common

source stage with a large gain A2, and an output buffer [48]. Other configurations are

available for various applications, but are considered to be not suitable for the readout

circuit design.

Figure 4.14 A basic CMOS operational amplifier for n-well process.

The general requirements for a CMOS Op Amp include: Open-loop gain,

frequency response, settling time, slew rate, common-mode input range (CMR), common

mode rejection ratio (CMRR), power dissipation, output voltage swing, output

impedance, offset, noise, and layout area. In readout circuit applications, layout area,

noise, and power dissipation are much more important than usual. For the correlated
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CTIA design, high CMRR is particularly desirable for canceling out the charge injection

and the capacitive feedthrough as discussed previously. For the circuits using the twin

CTIA configuration, CMRR is only important for the off-array amplifier design.

The common-mode rejection ratio is defined as the magnitude of the ratio of the

differential-mode gain to the common-mode gain:

For a basic Op Amp as the one shown in Figure 4.14, the CMRR can be calculated by

multiplying the common-mode gain, A cm , of the input differential amplifier by the gain of

the second stage and dividing the result into the open-loop gain A OL. The CMRR of an

Op Amp in dB is given by

Equation 4.11 shows that the Op Amp CMRR is determined by the differential

stage. Figure 4.15 is the circuit to determine the first stage CMRR. The first stage consists

of a source coupled pair (M1 and M2) with current source load (M3 and M4). The current

source (M5 in Figure 4.14) at the source of M1 and M2 has been replaced with its small-

signal output resistance r05 . Since the circuit is symmetric and g,n3 = gm4 can be assumed,

the common-mode gain is
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Figure 4.15 A differential amplifier configuration for determining input CMRR.

Equation 4.12 and 4.13 show that the common-mode gain can be decreased,

therefore increasing the CMRR, by increasing the output resistance of the current source

that connected to the source coupled pair. Therefore, by using a cascode current source,

with high output impedance, the CMRR can be greatly increased. The tradeoff results in a

more complicated circuit with a larger layout area by at least a factor of 4. This result

probably is not feasible for readout circuit design.

4.3.3 The Design of a Two Stage CMOS Op Amp

Although an ideal Op Amp is expected to enhance the FPA performance, two is most

probably the largest number of stages that could be used with today's processing

technology for the readout circuit design. Figure 4.16 shows a two stage CMOS Op Amp

compatible with n-well processing (Orbit technology). The output stage of the Op Amp is

not necessary since the source follower in the direct readout architecture (Figure 2.1) will

be able to handle the output signal buss with some parasitic capacitance. If the differential

amplifier can achieve acceptable gain, the second stage should not be used to save area
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and ease the pixel design. Whatsoever, when the circuit configuration is chosen and the

Op Amp specifications set, the design of a CMOS Op Amp would involve the selection

of the bias current, a selection of device sizes, and the compensation of the amplifier.

SPICE simulation could be used to fine-tune the design.

Figure 4.16 A two stage CMOS Op Amp can be at most applied to pixel design because
of area and circuitry complexity considerations.

Figure 4.17 shows the small signal model of the Op Amp that was shown in

Figure 4.16. The value of RI, RE, CI, and CH in Figure 4.17b are give as
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Figure 4.17 (a) Small signal model of a two stage Op Amp, (b) Simplified model of (a).

Equations 4.18 through 4.20 reveal that the performance of the CMOS Op Amp is

dependent on the geometry of the devices. This gives more freedom to meet the

specifications of the design. However, the constraint is to ensure that all MOS devices

operate in saturation with wide variations in processing parameters. For matching and
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symmetry, there must have W1/L1 = W2/L2 and W3/L3 = W4/L4. By the following

relationship

The selection of the differential amplifier biasing current is determined by gain,

CMR, CMRR, power dissipation, noise, matching consideration and slew rate. It would

be an iterative process through adjusting Vb and the size of M5 for meeting those

characteristics. In general, the larger the W/L ratio of M1 and M2 in the differential pair

at a given biasing current, the higher the gain will be. The drawbacks are increased layout

area and parasitic capacitance.

The biasing current of an amplifier stage is determined by the same considerations

above. Open loop gain is the major driver of the design. As shown in equation 4.18, the

larger the W/L ratio of M6, the higher the open loop gain with fixed biasing current will

be. However, the gain of this stage is not helpful for the CMRR, which is particularly

important in the correlated readout circuit.

Compensation of the Op Amp by capacitor Cc is used for stability and phase

response by avoiding two poles at -1/(RICI) and -1/ (RIICII). The basic constraint is Cc >
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0.22CL where CL is the load capacitance [46]. As mentioned before, the load of each pixel

will be a common signal line with small parasitic capacitance. Because of two additional

considerations that correlated readout will be working in the low frequency range and that

there is a relatively large integration capacitor in the feedback loop, compensation for this

application is not a major concern.

4.4 A 16x16 Demo Chip Design

To experimentally study the correlated readout method, a 16x16 demo chip was designed

for fabrication by the Orbit 2µm n-well process. In this demo chip design, all the

transistor sizes were determined by PSpice simulation based on the theory described

previously. The layout of the chip was drawn using Mentor Graphic 8.2 and a Sun Work

Station.

4.4.1 General Description

The size of the designed demo chip is 2200µmx2000µm with 40 standard MOSIS pins.

The circuit schematic of the chip is shown in Figure 4.18. A four input decoder for

performing random access in the test was used as column and row shift register. Each

pixel of the 16x16 detector array contained a p on n diode and two switches for x and y

addressing. The diodes were placed in isolated wells for the correlated CTIA approach.

Four different correlated circuits, shown in Figure 4.18, were built in the chip. They were

the correlated CTIA (CC), the differential integrator (DI), the twin CTIA (TC), and the

correlated direct readout (CDR). The purpose of putting all four circuits on the same chip
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was to setup an identical process and test condition, so that the different correlated

readout circuits could be compared fairly. Transmission gates were used to connect these

circuits with the detector array. Another 3-input decoder was used to select the readout

circuit. The switching systems were constructed by CMOS current steering circuits to

reduce the switching feedthrough. The input pads were protected by a diode pair and the

output pads had no protection.

Figure 4.18 The first correlated readout test chip included a 16x16 diode array, four
kinds of interface circuits, two 4-input decoders for row and column access, and a
transmission gate switching system.
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4.4.2 PSpice Simulation

Following the design procedure described in chapter 4.3.3, two groups of device sizes

were finally selected from PSpice simulation; they are listed in Table 4.3. The first group

was good for performing good open-loop gain and the correlated signal processing

function. However, it could only be applied for pixel design if another video amplifier

were used on the chip. For driving a load without changing the Op Amp configuration,

the transistor sizes of the second stage had to be enlarged. The second group of transistor

sizes could be used for such an application.

Table 4.3 Device sizes for a two stage CMOS Op Amp

Figure 4.19 shows the simulation result for the Op Amp frequency response and

its dependency on bias voltage Vb. Both groups of device sizes listed in Table 4.3 could

have the same performance if they are not loaded. The open-loop gain reached 67dB

(2240) when Vb was 3.24V, and dropped quickly for further increase in the bias voltage.

The gain was obtained by calculating the ratio of output voltage to the input voltage. For

the simulation shown in Figure 4.19, 1 mV was used as the input voltage and the gain

was calculated as V(8)/V(6), which is plotted in the figure. The -3dB frequency was

located at 120KHz and was not affected by the change of Vb. As can be seen, this

frequency range is sufficient for the correlated readout circuits. In the simulation study of

the differential amplifier, the differential-mode gain was found to be about 40 while the

common-mode gain was only 10 -2 , corresponding to a CMRR of 4,000.
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Figure 4.19 The demonstration of Op Amp simulation for frequency response with the
change of bias voltage. The open-loop gain was 67dB and -3db frequency was 120KHz.

Figure 4.20a shows the simulation result of a correlated CTIA that is constructed

by the Op Amp described above, a 5pF feedback capacitor, and four CMOS switches.

The performance of conventional CTIA is also shown in the figure for comparison. In this

demonstration, the background was set at 10nA, and the signal was 1nA. The result is

near ideal because not only was the condition not critical but also noise was not

considered. However, from the result one can see that the conventional CTIA could not

be applied for such detection conditions because of its very low output voltage swing. To

demonstrate the low frequency noise reduction capability of the correlated CTIA, the

simulation was carried out by inputting a low frequency signal, and then studying the

output and comparing with conventional CTIA. From Figure 4.20b one can see that the

low frequency signal would not lead to a high voltage at the output node of the correlated

CTIA, while conventional CTIA might have a large voltage at the output.
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Figure 4.20(a) The increasing in the output voltage swing by the correlated CTIA can be
demonstrated by inputting the dark current that is 10 times as large as signal and
comparing the result with conventional CTIA. In this simulation, the dark current was
10nA and the signal was lnA.
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Figure 4.20(b) The noise reduction capability by the correlated CTIA can be
demonstrated by inputting ac signals and comparing the result with the conventional
CTIA. In this simulation, the input signal is the supposition of five relatively low
frequency signals (400 to 1200 Hz) and the modulation signal was set as 10 KHz.
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In the simulation of the correlated CTIA, the switching feedthrough was found to

be not significant. This was probably because of the CMOS current steering circuit for the

switching system and the 4,000 CMRR of the Op Amp minimized this effect, according

to the analysis in previous sections. On the other hand, 20nA of dark current is very large

compared with the switching feedthrough. However, we can not conclude that this design

will meet the requirement because the SPICE model on the effect of charge injection is

not clear, especially in the application of photon sensing.

Another important result from the simulation was that the correlated CTIA had a

fundamentally lower saturation level than the conventional CTIA. The study showed that

this problem might come from the leakage current due to the reset switch. This was

proved by increasing the length of the reset switch to improve the saturation level,

although it is not practical for the readout circuit design. The last important result was

that this correlated CTIA could resolve the signal from the dark current that was about

300 times stronger than the signal. As mentioned above, this result was obtained when

noise was not considered.

The chip performance by selecting the correlated CTIA as the signal processing

circuit is shown in Figure 4.21. The Pspice program is listed in appendix A. For studying

the timing for the correlated readout circuit, the integration results were sampled by a

sample-and-hold circuit that was not included in the chip. From the sampling output

shown in the Figure 4.21, one can see the expected video output from the correlated

CTIA. In addition, the 4-input decoder used for row and column access at the gate and

transistor level is shown in Figure 4.22. Since the ratio of the transconductance parameter

for N and P MOS is about 3 to 1 as shown in Table 4.2, about the same ratio of W/L for P
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Figure 4. 21 The performance of the first correlated demo chip simulated by Pspice.
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and N transistor was chosen to achieve symmetric rise and fall times for the waveforms in

this logic circuit.

Figure 4.22 (a) The circuit diagram of the 4-input decoder at the gate level and (b) The
AND gate in the 4-input decoder

4.4.3 Layout

Figure 4.23 shows the floor plane of the demo chip. The transmission gates that connect

the detector array to each interface circuits are not shown in the figure. The mask layout
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for fabrication by Orbit 2µm n-well process can be found in Appendix B, along with the

layouts for the switching system and the CTIA.

Figure 4.23 Floor plane of the first correlated readout demo chip.

For the layout of such a chip, there were some considerations that resulted in this

final version. First, to realize the correlated CTIA, the diode must be placed inside the

well. For a n-well process, the P on N diode must be used. If it is not for the correlated

CTIA, it is not necessary to fabricate the diode in isolated well. A shared well will not

only save the area, but also ease the layout. Next, because the size of the shift register

must be matched with the detector array, the automatic layout approach could not be

considered, although there were a number of standard unit cells of AND gate. Also, the

layout of this 4-input decoder could not be used to build a high input decoder by parallel

architecture. Thirdly, since it was too difficult to build a video amplifier on this chip, the

signal from the output of each interface circuit was designed to directly output to the test

system. Therefore, the first group of sizes listed in Table 4.3 was finally used for a low
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output impedance to drive the line capacitance and sampling circuit. Finally, separate

power supplies were used for the row and column registers, the digital circuits, and the

correlated interface circuits, the analog circuits.

4.5 Summary

In the study of the correlated readout circuits using standard CMOS, the switching

feedthrough was found to be the most important issue in the design. Theoretical analysis

and SPICE simulation showed that this effect could be very large for most of the

detection conditions and must be minimized through circuit design. A CMOS current

steering circuit was found to be a better approach than the dummy transistor for reducing

the charge injection and capacitive feedthrough at the same time. The price was, of

course, increased chip area and increased parasitic capacitance. The differential amplifier

topology could further cancel out switching feedthrough by its common-mode-rejection

ratio (CMRR). The penalty would be additional consideration of CMRR in the Op Amp

design. To balance those requirements with limited real estate and other constraints of the

focal plane array becomes the real challenge of the correlated readout circuit design.

The first correlated readout test chip designed was based on the Orbit 2µm n-well

process. Four different interface circuits, mainly developed from the conventional CTIA,

were built on the chip. The operational amplifier consisted of seven optimized transistors

in a two-stage configuration. The open loop gain reached 67dB and the -3 dB frequency

was 120 KHz. With the correlated CTIA built by this Op Amp, it was possible to resolve

a signal from the background that was 300 times stronger than the signal based on the

Pspice simulation, if the noise figure was not considered. The simulation also showed that
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with 20nA of dark current the switching feedthrough becomes insignificant. However, the

effect of charge injection remains unknown because it is not in the SPICE model. By

using the Orbit 2µm n-well technology, this correlated CTIA could at most be realized for

a linear array, because the required readout circuit area per pixel was about 200x300µm 2 .



CHAPTER 5

TESTING OF THE CORRELATED READOUT CIRCUITS

5.1 The Experiment Methodologies

Generally, there are two methods for testing the FPA readout circuitry. They are

electrical injection and optical injection. The electrical injection method requires a power

supply and a resistor network to generate a designed input signal for the readout circuit. It

has been employed by others for testing current memory chips [29] . To simulate the

multi-quantum well infrared detector by a resistor network, a pulse voltage source and a

resistor were used to generate a signal current and a DC bias and another resistor was

connected in parallel to generate a background current. The experimental results showed

that this method was very successful for testing the readout circuit that was designed for

large background subtraction. Most importantly, it could easily give the minimum

resolvable signal for a certain dark current level. Unfortunately, the grounding of the

power supply was a serious problem for applying this method to the test circuits for

correlated CTIA. Battery driven circuitry may solve the grounding problem; however, the

required synchronization would be troublesome. From the practical experience of this

research, it is believed that the optical injection method, that is using a photo detector as

the input circuitry, is the best way to test the correlated readout circuit. Because of optical

modulation, there are three ways to realize the optical injection method. They are the

passive imaging, active imaging and direct modulation methods. The following describes

the concepts for these methods.

Figure 5.1 shows the experimental setup based on passive imaging applications.

An optical modulator is placed in front of the focal plane array (FPA) with the correlated

101
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readout circuit, and both the modulator and the FPA are controlled by the same signal

generator. To use a visible FPA (which fundamentally has very small dark current) for

the study of a correlated readout circuit designed for large dark current applications, a

light source could be placed between the modulator and the FPA to simulate dark current.

As discussed in chapter 4.4, the mechanical chopper can be replaced by an acousto-

optical or an electro-optical modulator for simplifying optical design. However, from the

practical experience of this thesis research, such a system should not be used in the

beginning stage of the research unless the optical system has been well developed.

Figure 5.1 In passive imaging applications, the modulation signal will control the optical
modulator. Such an approach is not suggested in beginning of the research.

In active imaging applications, the modulation signal will directly control the light

source instead of controlling the modulator. The corresponding experimental setup is

shown in Figure 5.2. This approach does not need an optical modulator in the detection

system so that the optical system is drastically simplified. In addition, the dark current

and background simulation light can be placed anywhere around the FPA so that it will

ease the experiment operation. However, what kind of excitation source is appropriate for

this research remains not clear.
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Figure 5.2 In active imaging approach, the modulation signal controls a light source
instead of controlling the modulator in front of the FPA.

To test the correlated readout circuits in its beginning stage, the direct modulation

method was used and proposed for later research. Figure 5.3 shows the principle of this

approach. The control signal directly modulates the object that is a light emitting diode

(LED), so that the light from the object is a modulated signal. Any light from the

environment will be count as background. An extra light source to simulate the possible

background is still applied. With this setup, one can concentrate on the circuits by

excluding possible optical effects from any additional optical system.

Figure 5.3 A direct modulation method using light emitting diode (LED) as the object
was used in this research for the correlated readout circuit characterization.
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5.2 Measurement System

A Pulse Instruments product, the 4000 Series Low Noise Focal Plane Array Test System,

was used to characterize the correlated readout circuits by providing the important

modulation signal as well as the DC biases and timing signal. This system uses a

mainframe approach that separates the digital electronics from the bias and drive

circuitry, both optically and through the use of separate power sources, so that a very

high level of noise immunity can be achieved. It is the best equipment known for the

readout circuit test. However, this is the first time it was used for a correlated readout

circuit study.

The major output controls are 40460 dual channel driver PC cards and 40750 low

noise DC bias PC cards. The 40460 driver PC card consists of two channels of 10MHz

drivers. The output voltage capability is ±20V, and the input from the Data Generator is

optically isolated. The PC card also contains the circuitry for the programmable rise and

fall times, and voltage and current sensing. The 40750 low noise DC bias cards each

contain four channels of ±20V DC bias outputs. The bias supplies contain voltage and

current sensing, and are floating with respect to the ground of the Control Mainframe.

Figure 5.4 shows the block diagram of the test system based on the PI-4000. It

consists of one PI-5800A Data Generator, one PI-4001 Control Mainframe, two PI-4002

Instrument Mainframe, one PI-4007 Preamplifier and one PI-4005 Acquisition

Mainframe. All the components are controlled by a Compaq Computer. The PI-5800A

and PI-4001 are controlled through an IEEE-488 bus and the PI-4005 is controlled

through an EISAJVME bus for increased system speed. The other components are

controlled through an internal bus among the instrument. This system can be operated by
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programming in a computer or by the soft key on the instrument panel. It can be used to

test the focal plane array with a size from 1 x1 to 2048x2048 pixels. The data acquisition

speed can reach up to 40MHz with 10 bit accuracy, or 10 MHz with 12 bit accuracy, or 2

MHz with 16 bit accuracy. The timing pulses generated by PI-5800A and the video

output signal from the readout circuit can be monitored by a Type 454 Oscilloscope.

Figure 5.4 The measurement system for the correlated readout circuit is based on a Pulse
Instruments System 4000 Series Automated FPA Test System.

To connect the output connector of the PI-5800 Data Generator, the PI Company

recommends that all outputs should be wired with a 50ohm coaxial cable and shorter than

4 feet in length. Otherwise, serious signal degradation could occur at high frequencies. A

PI cable 88000050 is used in this test system to connect the pulses output from PI-5800A

to 40460 Clock Driver of PI-4002 Instrument Mainframe. Figure 5.5 shows its output

connections. The cable is a 16-Channel output, 4 feet in length, BNC terminated, and

50ohm coaxial ribbon cable. The same cable is also used as the output of the driver signal

to the tested devices with longer length.
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Figure 5.5 Output connector of PI-5800A data generator.

Figure 5.6 is the connection diagram of the input/output connectors of 40460

Clock Driver in PI-4002 Instrument Mainframe. All these input/output connectors are

BNCs. The input of the card must be a TTL level and the output polarity is either a

normal or inverted output that can be selected either by the front panel or IEEE-488 Bus.

Two rows of clock outputs of the card are connected to the other end of PI-88000050

cable.

Figure 5.6 Input/output connectors of 40460 clock driver.

Figure 5.7 shows the connection diagram of the output connectors of 40750 bias

supply card in PI-4002 Instrument Mainframe. All the output connectors are BNCs. The

output voltages of the card are selectable from the front panel control or programmable
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via IEEE-488 Bus. In this experimental setup, a PI-88000050 cable is also used to

connect these bias outputs to the tested devices.

Figure 5.7 The output connectors of 40750 bias supply card.

Figure 5.8 shows the pin diagram of the first correlated demo chip. It is packaged

as the MOSIS standard 40 pin configuration. To use PI 4000 for the test of such a

packaged-chip product by using PI-88000050 cable as the output connector, an interface

board that connects the cables and the chip must be implemented first. In this

experimental setup, a commercial PC board is used to construct the interface. The

diagram of this interface can be found in Appendix C.

Figure 5.8 The pin diagram of the first correlated readout demo chip.
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5.3 Circuit Biases and Timing

With the system software package provided by PI Company, it is convenient to supply

circuitry DC biases and timing through computer programming, instead of using the soft

keys in the equipment front panel. The system software allows the set up of all the

functions of the 4000 test system, and the PI-5800A Data Generator over the IEEE-488

Bus and the RS-232-C Interface. The programming of the biases and timing mainly

includes two parts: (1) Set DC biases and the amplitudes of the pulses using PI-STIM and

(2) Design subpattem of the pulses and compile the output through instructions

programming. This section presented how to program DC biases and timing for testing.

• The important steps for the operation of PI-STIM are listed below:

(1.1) To create a Mnemonic File: Select 'Mnemonic Table' from the main window 'File'

menu and in the Open file dialog box type in a file name with the extension 'NINE'.

Manually enter each channel definition by using Add, Type, Mainframe, Slot and

Channel from the menu. The Mnemonic Table is the link between each bias and driver

channel to the chip variable. Therefore, it must be exactly matched with interface board

and pin diagram. The following lists the example of the mnemonic table for testing the

demo chip:

Signal Name Type Address Loc/Chan.

PHrst 40460 20V Driver PI4000 MF: 2 Slot:1 Chan: 1

Vref 40750 20V LN Bias PI4000 MF: 3 Slot:2 Chan: 1

and the complete table can be found in Appendix C. After the Mnemonic Table is

completed, it should be set as default Mnemonic File that can be done by clicking on

`Default mne file' from the 'File' menu and select the file from the dialog box.
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(1.2) To create a data file for the 40750 bias card: Click on 'Bias Supplies' from the main

window 'File' menu and type in a file name with the extension `.BIA'. Select 'Append'

from the definition file window menu, and fill in the default data by clicking on the

`Mnemonic/type name' list box button to display the channels currently available for this

particular type of card and by selecting one from the list. Suitable DC operation voltages

for optimizing chip performance are signed in this application. However they can be

changed later by clicking 'modify' and cancelled by clicking 'delete'. An example of

Bias Supplies is shown below:

Signal Name	 Volt	 Loc.	 Type

Vref	 2.500000	 321	 40750 20V LN Bias

(1.3) To create a data file for the 40460 driver card: Click on 'Clock Driver' from the

main window 'File' menu and type in a file name with the extension `.clk'. The same as

the DC biases, the Type and Channel of the clock pulses can also be appended by

clicking 'Mnemonic/type name' and be modified and deleted with the same manner. The

amplitudes of the pulses should also be matched with DC biases. For example in this test,

5V as VDD and 0V as VSS are used for the bias of the operational amplifier, thus the

amplitudes for reset and modulation pulses should also be 5V. The rise and fall times of

the pulses are also set in this application. If not particularly chosen, they are

automatically set at up limit (10ns). However, in most time the equipment can only reach

20ns. An example of Clock Driver is shown below:

Signal Name	 Hlv	 Hlv	 Loc.	 Type

PHrst	 5.000	 0.000	 211	 40460 20V Driver

PH1	 5.000	 0.000	 212	 40460 20V Driver
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• The following are the important steps for the operation of PI-PAT:

(2.1) To set the length for each subpattern: Click on `subpatterns' from the main window

`Edit' menu and type in the starting unit and the length for each subpattern. The

minimum length of the subpattern is 12 unit. The real time length for each unit is

determined later by setting the system clock period. In total, 255 subpatterns and 4096

units can be defined. The upper limit for each subpattern is the available units to the

maximum length.

(2.2) To design the subpattern and program the instructions: After checking 'pattern'

from the main window 'Edit' menu, subpattern can be designed using left key of the

mouse. The next step is to program the instructions by clicking 'instructions' from the

`Edit' menu. The basic syntax for instruction programming is:

Begin i

Subpattern jxk

Repeat From L m to L n,

where i to n are all integers to represent the subpattern and instruction lines and the

repeating numbers.

(2.3) To run the program: No matter if the program is new, generated, or opened from

file, it should be written to PI-5800A by clicking 'write' from main window. After the

writing is done, the expected pulse output can be displayed on the front panel of PI-

5800A. It will not have any output from the cable until a Run i' is flashing on top of the

screen. To start running the program, one can simply click on 'Run' from the main

window, or click on 'system' and using 'run' and 'stop' in the menu. The clock time,

which determines the real frequency of the pulse, can be set from this menu.
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Figure 5.9 gives the simplest timing for the correlated readout circuit. Without

using an inverter on the chip, two clock signals, PH1 and PH2, must be used. The LED is

synchronized with one of the clock signal to become a modulated source. Note that here

one timing pattern can be implemented by different combination of the subpatterns and

the instructions program. The experience of this research shows that the best approach

should be started at the circuit design. A well-designed chip will result in simple timing.

However, no matter what kind of approach is used, the correct timing is unique and can

be tested by the oscilloscope before applying to the chip. This is an important step in the

circuit measurement, since sometimes the output from the 40750 driver may be not the

same as the pattern shown in the front panel. As shown in Figure 5.4, a Type 454

Oscilloscope was setup for this measurement and for the test of the circuit output as well.

Figure 5.9 The simplest subpatterns and instructions program for timing the correlated
readout circuit: (a) The subpatterns and the instruction program and (b) The clock output
and the expected signal integration and reset.
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5.4 The Correlated Readout Circuit Characterization

In this section we report the test results based on the setup described above. After the

interface board was completed, and each channel of the biases and timing were

examined, all the efforts on testing were focused on finding the expected function by

optimizing the timing. The modulation frequency was the most important parameter to

adjust in this test. However, the amplitudes of the LED pulse and the background light

must be matched with an available working frequency. The correlated function, which is

to charge the capacitor by the signal and the dark current and discharge by the dark

current only, became clear on the screen of the oscilloscope at a relatively low

modulation frequency (<3KHz). The frequency response and the effect of the switching

feedthrough were also studied under the same test conditions.

5.4.1 The Correlated Function

The correlated function, both by the correlated CTIA and twin CTIA, was found when

the modulation frequency was decreased to about 3KHz. It became clear on the Type 454

oscilloscope when the frequency was set at 500Hz and in each integration cycle there

were about 10 phase shifts. Figure 5.10 shows a photo taken from the screen of the

oscilloscope. When only the background was present, the integration on the capacitor was

cancelled and the output became zero. Note that in this photo, because the reset occurred

in the end of a charging phase, the output before reset was not zero; it was the result of

integration during one clock phase, as shown in Figure 5.10(a). Figure 5.10(b) and

5.10(c) show what occurred when the LED was synchronized with PH1 and PH2. Since

the reference voltage of the operational amplifier was set at 2.5V while Vdd was 5V, the
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Figure 5.10(b) The correlated function when the LED signal is synchronized with 01.

Figure 5.10(c) The correlated function when the LED signal is synchronized with 02.
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output could be made positive or negative by adjusting the phase between the LED and

the switches. These results demonstrated that the correlated CTIA and the twin CTIA

could charge and discharge a capacitor using switching system.

Under the test condition described above, the outputs of the correlated CTIA and

the twin CTIA were not different. However, for the twin CTIA, a differential amplifier

was used. Figure 5.11(a) shows the output for one of the CTIA under switching and

Figure 5.11(b) shows the result when the detector's polarity is changed. Note that here

the detector was zero biased because the detector bias was set the same as the Op Amp

reference voltage (2.5V); therefore, the switch of the polarity of the detector just change

the polarity of the output but with the same property. The process looked like a

`integration and hold' circuit. It integrated the current from the detector when the switch

was on and held it when the switch was off. This function matched the simulation result

very well, since the resolution of the oscilloscope prevented the observation of higher

order effects. For example, when the switching feedthrough was superimposed on these

outputs, but was relatively small under the test conditions, feedthrough effects were not

observed at the input of the differential amplifier.

The differential integrator and the correlated direct readout circuits did not

functioned as expected. For the differential integrator, the technical difficult was to find

an optimized reference voltage, since it was necessary to write the program to the Data

Generator every time the frequency or voltage was changed. The reference voltage

seemed more sensitive to the output than what the simulation indicated. However, it is

too early to conclude that the differential integrator will not function at all. For the
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Figure 5.12 The demonstration of the phase effect. (a) The timing sequence, (b) The
output for phase shift of 90°, and (c) The output for the phase shift of 270°.
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correlated direct readout, the test results demonstrated that it would not perform the

correlated function unless the design or the process was changed.

5.4.2 The Frequency Response

In the study of the frequency response of the correlated readout circuits, we tried to excite

the LED with a signal that had a different frequency and phase than the switching signal

and measure the results at the circuit output. To change the phase of a certain channel of

the P1-4000 is simple and can be done by changing the delay time for that channel. Figure

5.12 shows the outputs when the LED excitation signal was shifted 90° and 270° from

the switching signal when the background light was turned off. These results matched

with the simulation very well and confirmed that the correlated readout circuit can

behave similar to a phase sensitive detector.

To excite the LED with a signal that has a different frequency than the switching

signal using the P1-4000, it is relatively simple only for some special frequencies, such as

frequencies that are an integer times to the reference. For most cases, especially when the

frequency of this particular channel is close to the reference channel, it usually needs to

reset the length of the subpatterns and/or the system clock period, and rewrite the

instructions program again. As an example, Figure 5.13 shows the timing sequence for

the first three cycles when the switching signals are 500Hz (200011s) and the LED signal

is 502Hz (-1992p). After a half period time of the switching signal, which is 1000µs,

the difference of the LED to the PH1/PH2 is about 4µs. The pattern repeats itself with

200 cycles. A simple method to generate this timing sequence by P1-4000 has not been

found so far.
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Figure 5.11(a) The output for one of the twin CTIA was functioned as an 'integration
and hold' circuit. The clock feedthrough was superimposed on the outputs, but was not
significant compared to signal current under the test condition to get this photograph

Figure 5.11(b) When the photon detector polarity was changed, the polarity of the input
current was changed but the circuit still function as an 'integration and hold' circuit,
because the detector is zero biased and the reference voltage of the Op Amp was set at

the middle of the Vdd.
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Figure 5.13 The clock relationship when the switching signals are 500Hz and the LED
exciting signal is 502Hz. Only first three cycles are shown in the figure.

As shown in Figure 5.10, in the correlated function test the integration capacitor

was reset when the number of switching times was ten (N=10). Therefore, in the

quantitative measurement of frequency response an 'incomplete period' method for the

circuit timing was used. Instead of considering the whole 200 cycles, only first 10 cycles

were programmed. Although there are many other ways to program this first 10 cycles,

especially for the special frequencies, the basic subpatters as shown in Figure 5.14 for the

instructions programming were used. By setting the clock period as 200ns and the length

of the subpattern as 20 units, the instructions program used fog PH1 as 500Hz and LED

as 502Hz was the one shown in Table 5.1.

Figure 5.14 Basic subpatterns in Figure 5.13.
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Table 5.1 Instructions program for generating Figure 5.13 for 10 cycles
1: Begin 1	 15: Subpattern 2x243	 29: Subpattern 4x236
2: Subpattern 1x20	 16: Subpattern 3x7	 30: Subpattern 5x14
3: Subpattern 2x249	 17: Subpattern 4x242	 31: Subpattern 2x235
4: Subpattern 3x1	 18: Subpattern 5x8	 32: Subpattern 3x15
5: Subpattern 4x248	 19: Subpattern 2x241 	 33: Subpattern 4x234
6: Subpattern 5x2	 20: Subpattern 3x9	 34: Subpattern 5x16
7: Subpattern 2x247	 21: Subpattern 4x240 	 35: Subpattern 2x233
8: Subpattern 3x3	 22: Subpattern 5x10 	 36: Subpattern 3x17
9: Subpattern 4x246	 23: Subpattern 2x239 	 37: Subpattern 4x232
10: Subpattern 5x4	 24: Subpattern 3x11 	 38: Subpattern 5x18
11: Subpattern 2x245	 25: Subpattern 4x238	 39: Subpattern 2x231
12: Subpattern 3x5	 26: Subpattern 5x12 	 40: Subpattern 3x19
13: Subpattern 4x244	 27: Subpattern 2x237	 41: Subpattern 4x230
14: Subpattern 5x6	 28: Subpattern 3x13	 42: Subpattern 5x20

By using the timing strategy described above, the outputs of the circuits were

measured for particular frequencies. Some data are listed in Table 5.2 and the unified

values are plotted in Figure 5.15 with the correlated sinc function f(x). Since in these

measurements we did not change the 2.5V reference voltage of the Op Amp and the

maximum output voltage was 3.84V, the definition of unified value becomes

The coefficient of 0.637 is the maximum value of equation 3.17 when Tint/Cint is set as 1.

Table 5.2 Some measurement results for the frequency response
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Figure 5.15 The plot of frequency response from 450Hz to 550Hz when the modulation
frequency is 500Hz. The solid line is the absolute value of the correlated sinc function
when Tint is 2ms, N equal to 10, and Tint/Cint equal to 1. The box is the unified
measurement results listed in Table 5.2.

As shown in Figure 5.15, the measurement results agreed with the theoretical

calculation very well in the frequency range we studied. The higher order harmonic

windows were also observed but not plotted. The experimental results showed better

noise reduction capability than the theoretical calculations since the measured voltages

decreased faster when the frequency was shifted away from the modulation frequency.

This is because only the first 10 cycles in the time domain was used to study the

frequency response. Each time a measurement was made, the phase of the input signal

was adjusted to find the maximum output in that frequency. As shown in Figure 5.12,



121

even with the same frequency, the output could be zero if the phase was shifted. Actually,

to obtain a higher output was more difficult because the phase must be optimized.

Whatsoever, this result strongly indicates that the correlated readout circuit is capable of

reducing the output when the frequency is away from the modulation frequency. It

proved again that the correlated readout circuit has the same function as the phase

sensitive detector.

5.4.3 The Switching Feedthrough

Although this research was not designed for the study of the switching feedthrough, some

information from the circuit characterization was obtained because this issue is believed

to be critical in the design of correlated readout circuit. The result of switching

feedthrough was first observed at each output of the twin CTIA, when the detector was

completely shielded while the modulation signals were applied. The signal on the

oscilloscope was not clean but an output was clearly shown. By changing the system

clock period without changing the subpatterns and the program, the output would not

change for the frequency range studied, as shown in Figure 5.16 by SF1. This result

showed that the accumulation of the switching feedthrough is determined by the number

of switching times, since in this operation the total number of switching times between

two resets remained constant although the modulation frequency was changed. To set the

signal integration time as a constant by increasing the repeating line in the instructions

program, the output became higher simply because the high modulation frequency results

in a large number of switching times. At the frequency range studied, this result was also

linear and is shown in Figure 5.16 as SF2.
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Figure 5.16 The output voltages at each twin CTIA due to the switching feedthrough.
The cross (SF1) represents the results when number of switching time is fixed at 10 and
the box (SF2) represents the results when integration time is fixed at 20MS.

Another important factor that affects the switching feedthrough is the rise and fall

times of the clock signal. When these times were small, a high output was observed. But

there was no significant change when this time was greater than 20NS. Since the

limitation of this time is IONS for the PI-5800A Data Generator, not enough information

was obtained to model its effect.

At the output of the differential amplifier for the twin CTIA, the switching

feedthrough was cancelled out and the output became clean as shown in Figure 5.10.

Also, when the photon current was present, the switching feedthrough seemed to

disappear as shown in the Figure 5.11, although it was still existing as shown by the

saturation of the integration capacitor. Theoretically, the feedthrough would not vanish

when photocurrent is present. However, if only the switching feedthrough was the

concern, saturation seemed to happen too early according to the results measured from
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each twin CTIA. In other words, when the detector current is present, the effect of the

switching feedthrough is not clear so far.

For the correlated CTIA, this effect can not be studied separately like the twin

CTIA. Under the same conditions for the study of each twin CTIA, the voltage measured

at the output of the correlated CTIA was relatively small with increasing number of

switching cycles. However, when the signal and background were added up, the effort to

increase the number of switching cycles was not successful; however, the detection

conditions were not kept constant. The reason fo early saturation must be more

complicated than the switching feedthrough; however, the reason for this could not be

found from the test. Although complete quantitative results for the circuits studied were

not yet obtained, from the phenomena observed during this research it was concluded that

the correlated CTIA and the twin CTIA would have their own advantages in different

detection applications.

5.5 Summary

In this chapter, the methodology for the experimental study of the correlated readout

method was presented first. Since this research is in its initial stages, a direct modulation

method was proposed and used for the characterization of the correlated readout circuits.

In the direct modulation experimental setup, the signal generator controlled the object

and the circuit synchronously so that optical modulator was not necessary. By excluding

all the possible optical factors, one could concentrate on characterization of the circuits.

However, after the circuits are completely characterized, active and passive imaging

methods should be investigated.
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The test equipment was presented in chapter 5.2 and the method for creating the

bias and timing was discussed in chapter 5.3. The P1-4000 Low Noise Focal Plane Array

Test System was used for the circuit testing. The system can provide 16 channels of low

noise pulses and 16 channels of accurate DC biases. The heart of the system is a

programmable PI-5800A Data Generator. The choice of the timing sequence depends on

the length of the subpatterns, the system clock period, the particular shape of the

waveform of the subpatterns, and the instructions program.

The results for the correlated function, the frequency response, and the switching

feedthrough characterized the correlated readout circuit. The correlated function, both for

the correlated CTIA and the twin CTIA circuits, was observed clearly on the oscilloscope

when the modulation frequency was decreased below 500Hz and the proper LED and

background light intensity were set. However, the differential integrator and the

correlated direct readout did not function as expected. In the study of the frequency

response, an incomplete period timing method was used. The voltage measurement

results showed that the correlated readout circuits would reduce the output if the signal

had a different frequency than the modulation frequency. The switching feedthrough

effect was studied by turning off the optical input by shielding the detector, while

keeping the modulation signal on. The number of switching cycles and the rise/fall times

of the clock signal were two factors that had a strong influence on the switching

feedthrough effect. However, there are other factors, not yet studied experimentally that

are expected to be important. The results of these experiments strongly indicate that the

correlated readout circuit can behave as a phase sensitive detector.



CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

To solve the problem of focal plane array (FPA) imaging in the presence of large dark

current, imaging with a modulated source was proposed for this research. This thesis

research investigated the feasibility to realize this new imaging method using a novel

readout method — correlated readout. The following summarizes the thesis research:

• Review of recent publications in the field of FPA imaging revealed that hybrid infrared

electronics is the dominant readout approach. The large background subtraction circuit

approaches of this thesis were based on these previously developed hybrid readout

electronics: direct detector input (DDI), direct injection (DI), buffered direct injection

(BDI), gate modulation, and capacitive transimpedance amplifier (CTIA) [1-3]. In

principle all these readout circuits would have difficulty succeeding in applications

where large dark current is present since dc measurement techniques are susceptible to

dc drift and 1/f noise, although the current memory based readout methods showed

significant progress in subtracting the dc component of large background current [29,

34].

• This thesis implemented a correlated readout method [14] that involved charging an

integration capacitor with photo-detected signal and the dark current in one

modulation phase, and discharging the capacitor with the dark current only during the

following phase. A correlated reset integrator was developed to model the frequency

response based on the principle of the correlation technique and phase sensitive
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detection. The system theory and the transfer function for a reset integrator were

utilized to derive the transfer function of the correlated reset integrator.

• Correlated interface circuits based on presently commercially available hybrid readout

electronics were suggested. Using these circuits, the existing readout architecture can

be inherited and utilized to design effective correlated readout circuits. The circuits

thus designed from the capacitive transimpedance amplifier (CTIA) were studied

theoretically and experimentally. The correlated CTIA, which consisted of four

switches and one conventional CTIA, was considered the most promising circuit to

realize the correlated readout approach since it was possible to charge and discharge

the same integration capacitor. The other methods were based on integrating the

charge in separate capacitors whose dark current charge was cancelled by a differential

amplifier.

• The possible applications of the correlated readout method in passive and active

imaging, especially for the measurement of solar magnetograph [7], were studied. The

challenges in designing an optical system were considered and different optical

modulation schemes for passive imaging were discussed.

• The design of the correlated readout circuit in standard CMOS was studied and the

first demo chip, which consisted of a 16x16 isolated detector array and four interface

circuits, was designed and fabricated by the Orbit 2µm n-well process. PSpice was

used for the simulation of the operational amplifier, the correlated CTIA, and the

entire demo chip. The MOSFET parameters for the Orbit 2pm n-well process

provided by MOSIS were also used for all simulations of this thesis research and the
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values used in the SPICE program are the average results from recent 10 runs.

• The problems introduced by the switching system were studied through the dc model,

the switching feedthrough, and the noise model. The switching feedthrough, which

results from both charge injection and capacitive feedthrough, was addressed as the

key issue in the correlated readout circuit design. A method to study switching

feedthrough using PSpice was proposed and used in the research. The possible factors

that influence the result of switching feedthrough were simulated and the results were

reported. Classical methods for reducing the switching feedthrough effect by circuit

design, which included a dummy transistor, a CMOS current steering circuit and a

fully differential topology, were studied in theory and by PSpice simulation.

• The methodology for testing the correlated readout circuit was experimentally studied.

A direct modulation method, which used a light emitting diode (LED) as object and

synchronously controlled the LED and modulation signal, was suggested and used for

the circuit test. A Pulse Instrument 4000 Series Low Noise Focal Plane Array Test

System was used for the first time for biasing and timing the correlated readout

circuits.

• The correlated function, both by the correlated CTIA and the twin CTIA, was

experimentally demonstrated for the modulation frequency of 500Hz. An incomplete

timing period strategy, which used first N cycles (N = 10 in the test) to modulate the

LED and switches, was suggested and used to measure the frequency response of the

correlated readout circuits. The effect of the switching feedthrough was studied by

shielding the detector and keeping the modulation signal on.



128

6.2 Conclusions and Suggestions for Future Studies

The overall goal of this project was to develop a readout method that can read out a photo

detected image signal in the presence of a large detector dark current. The basic concept is

to discriminate against the dark current by modulating the optical flux and demodulating

the output signal with the interface circuit. This thesis research led to the following

conclusions:

1. Commercially available circuits for optical sensing with a modulated source, such as

the lock-in amplifier, can not be applied in focal plane array technology because of

their circuitry complexity relative to the limited chip area. The correlated readout

method was shown to be feasible both theoretically and technically for discriminating

against dark current. However, some relatively straightforward engineering design

problems remained to be addressed before FPA could be manufactured. Also it was

concluded that the principle of phase sensitive detection should be further investigated

to reveal other, even better, approaches for future FPA technology.

2. The signal processing for the correlated readout can be successfully done with a

correlated reset integrator. The transfer function of the correlated reset integrator

developed using system theory showed that the primary transmission window was

shifted to the modulation frequency so that the dc component of the dark current

would be rejected; the attenuation of low frequency noise, such as dc drift and 1/f

noise, was dependent on the modulation frequency and the number of switching

cycles. Therefore, an optimized modulation frequency, which depends on the
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background noise for particular detection conditions, could be designed to achieve a

high signal-to-noise ratio and large dynamic range.

3. The switching feedthrough was the most important problem in the circuit design. The

factors that can influence the feedthrough included the switch configuration,

modulation strategy, Op Amp characteristics, and the detector quality. A useful circuit

approach to minimize the feedthrough effect was a CMOS current steering circuit

(with four CMOS switches) driving a high common-mode rejection ratio Op Amp.

The dummy transistor circuit, a popular method for canceling the feedthrough in

sample and hold circuits, was found to be not applicable to the correlated readout

circuit design.

4. Direct modulation method, versus using an optical modulator, was preferred for the

circuit characterization since optical modulator effect could be neglected. The PI-4000

series was found to be suitable for testing the correlated readout circuit. To study the

frequency response, an incomplete period method was a good method since it eased

the timing programming. However, the equipment should have more features that can

be applied to the correlated readout circuit characterization.

5. Modified capacitive transimpedance amplifier (CTIA), correlated CTIA and twin

CTIA circuits, demonstrated promise for practical FPA. The correlated direct readout

circuit must be redesigned if the Orbit 21.1m n-well process is used for fabrication.

For future research, both theoretical and experimental works should be continued before a

practical FPA is designed. The suggestions are listed below.

a) The correlated reset integrator model should be improved by adding the effect of
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switching feedthrough. It is possible that understanding and control of the switching

feedthrough effect on readout circuits will require a major effort. This understanding is

necessary for applying the correlated readout method to the various possible detection

conditions.

b) Besides the pixel area minimization, other advantages and problems of using

submicron technology should be investigated. Possible limitations on the approaches

for canceling the switching feedthrough by circuit design should be given high priority.

c) The test architecture should be chosen before designing the circuits. The library for the

common cell, such as row and column shift registers, should be well established before

concentrating on the design of the interface circuits.

d) To effectively evaluate the various possible readout circuit designs, a standard

experimental condition should be selected. For characterization of the test chip using

the P1-4000 system, a standard interface board and timing program should be chosen

so that the designs can be compared experimentally.

e) Finally, how to best apply the correlated readout method to existing imaging systems

should be studied. Each system may require a different readout method to achieve

optimum performance. Such a study would lead to a more complete understanding of

the effectiveness of the proposed modulated source approach to FPA photon

detectors.



APPENDIX A

SPICE PROGRAM FOR DEMO CHIP SIMULATION

In this appendix, the PSpice program for demo chip simulation is listed. The source codes

for the simulation of the operational amplifier and the capacitive transimpedance

amplifier can be found in this program.
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APPENDIX B

CELL LAYOUTS IN DEMO CHIP

The mask layouts for switching system and capacitive transimpedance amplifier are

shown in this appendix.

Figure B.1 Mask layout for the switching system.
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Figure B.2 Mask layout for the CTIA.



Figure B.3 Layout of the first readout demo chip.



APPENDIX C

DOCUMENTS FOR DEMO CHIP TEST

Some important documents for testing the correlated readout demo chip using PI 4000

system are shown in this appendix.

Table C.1 Mnemonic list for the correlated readout demo chip testing 
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Table C.3 Pinout description for correlated readout demo chin
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Figure C.1 Timing sequence for the correlated demo chip test.



Table C.4 Measurement results for frequency response testing 
Period (p) Frequency (Hz) Output Voltage (V) Unified Value

10000 100 2.503 0.001
6000 167 2.594 0.045
4000 250 2.504 0.002
2200 455 2.607 0.051
2184 458 2.710 0.100
2168 461 2.801 0.143
2152 465 2.944 0.211
2136 468 3.125 0.297
2120 471 3.270 0.366
2104 475 3.274 0.368
2096 477 3.335 0.397
2088 479 3.434 0.444
2080 481 3.552 0.500
2072 483 3.621 0.533
2064 484 3.657 0.550
2056 486 3.695 0.568
2048 488 3.737 0.588
2040 490 3.756 0.597
2032 492 3.789 0.613
2024 494 3.802 0.619
2016 496 3.808 0.622
2008 498 3.840 0.637
2000 500 3.840 0.637
1992 502 3.829 0.632
1984 504 3.804 0.620
1976 506 3.785 0.611
1968 508 3.739 0.589
1960 510 3.699 0.570
1952 512 3.623 0.534
1944 514 3.617 0.531
1936 516 3.552 0.500

1928 519 3.482 0.467

1920 521 3.436 0.445

1912 523 3.440 0.401

1904 525 3.249 0.356

1888 530 3.133 0.301

1872 534 3.944 0.211

1856 539 2.780 0.133

1840 543 2.639 0.066

1824 548 2.542 0.020

667 1500 2.922 0.201

400 2500 2.750 0.119
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