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ABSTRACT

A THEORETICAL STUDY OF BUBBLE MOTION IN SURFACTANT
SOLUTIONS

by
Yanping Wang
We examine the effect of surfactants on a spherical gas bubble rising steadily in an
infinite fluid at low and order one Reynolds number with order one and larger Peclet
numbers. Our mathematical model is based on the Navier-Stokes equations coupled
with a convection-diffusion equation together with appropriate interfacial conditions.
The nonlinearity of the equations and boundary conditions, and the coupling between
hydrodynamics and surfactant transport make the problem very challenging.

When a bubble rises in a fluid containing surface-active agents, surfactant
adsorbs onto the bubble surface at the leading edge, convects to the trailing edge
by the surface flow and desorbs into the bulk along the interface. This adsorption
develops a surface concentration gradient on the interface that makes the surface
tension at the back end relatively lower than that at the front end, and thus
retards the bubble velocity. Because of surfactant impurities unavoidably present
in materials, this retardation can cause a problem in materials processing in space
and glass processing when bubbles are created during chemical reactions. Thus
the study of how to remobilize (remove the surfactant gradient on the surface) the
bubble surface becomes necessary. Many studies have been done on this retarding
effects of the surfactant on a moving bubble. However, most were focused on the
retarding effect due to a trace amount of surfactant, in which case the bubble velocity
monotonically decreases as the bulk concentration increases. The question of how

to remobilize the bubble surface remains unanswered. In this work, we will show



that the bubble velocity can be controlled by remobilizing the bubble interface using
the surfactant concentration. This technique not only can be used to maximize
the bubble velocity, but also can be used to maximize mass transfer on purifying
materials and extracting materials from mixtures.

In the first part of the work, we illustrate numerically that the bubble interface
can be remobilized by increasing the bulk concentration of surfactant, for any fixed
Peclet number, at low Reynolds number. For any fixed bulk concentration, the
bubble velocity decreases with increasing Peclet number. The larger the Peclet
number is the larger the required bulk concentration needed to bring the velocity
back to the clean surface value. In the second part of the work, we will show that
the remobilization still remains effective for order one Reynolds numbers. Moreover,
when the rate of convection on the surface is much larger than the rate of diffusion
at the back end, a stagnant cap develops near the back stagnation point that makes
the bubble surface there act like a solid boundary. Wakes form at higher Reynolds
numbers that drastically reduce the terminal velocity, and disappear as the bubble
interface remobilizes. Finally, we consider the problem analytically for asymptot-
ically large Peclet numbers. When the Peclet number is very large, a stagnant cap
forms at the back end which makes one part of the bubble surface clean of surfactant,
and the other part completely immobile. Also boundary layers develop along the
bubble surface with different thicknesses on the clean part of the surface and on the
stagnant cap. The asymptotic structures are obtained and the governing equations

posed and partly addressed numerically and analytically.
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CHAPTER 1

INTRODUCTION

The effect of soluble surface active agents on the motion of drops and bubbles has
attracted much interest for many years. It is motivated primarily by its relevance
to the understanding of the performance of dropwise and aeration processes (see,
for example, [Huang & Kintner (1969)] and [Beitel & Heideger (1971)]), where the
existence of surface active species reduces the mass transfer. The problem has appli-
cations in material processing in space for making superconductive materials, optical
fibers and better crystals for‘the semiconductor and bio-medical industry, and also
in pollution cleansing systems, purification of materials and extraction of materials
from mixtures, gap solidification, glass processing and composite preparation. An
interesting aspect of this problem is the significant retardation on the particle (bubble
or drop) motion due to the existence of surface active impurities in the fluid phases.
Since it is impractical to remove the impurities from the material, the study of how
the Marangoni force can be reduced (remobilization) becomes a question of techno-
logical significance.

Employing both numerical and asymptotic methods, we will investigate how
the bubble motion is affected by the bulk concentration in general, and show that the
retardation can be reduced by increasing the bulk concentration. Although we model
the problem for buoyancy driven motion, the technique applies to thermocapillary
migration as well.

In Section 1.1, a description of the Levich framework will be followed by a
discussion of some of the subsequent works and questions that remain open. In

Section 1.2 we will outline the results of our study.
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Figure 1.1 Retardation mechanism

In Chapter 2 we will derive the governing equations and thus set up the mathe-
matical model for the cases of this study. Chapters 3 and 4 will focus on small
Reynolds numbers with order one and higher Peclet numbers and the case of order one
Reynolds numbers with order one and higher Peclet numbers, respectively. Our work

on the asymptotic solution for high Peclet number will be described in Chapter 5.

1.1 Background
[Frumkin & Levich (1947)] first described the retardation mechanism on a particle
moving in a surfactant solution. Here we describe this mechanism for the case in
which surfactant is in the continuous phase only. As shown in Figure 1.1, when a
particle moves in a fluid phase containing surfactants, surfactant adsorbs onto the

surface of the particle at the leading edge, and is convected by the surface flow to the



particle’s trailing end. Accumulation at the back end causes kinetic desorption into
the bulk sublayer (fluid adjacent to the bubble surface), and the sublayer concen-
tration increases above the value far from the interface. This difference gives rise to a
diffusive flux away from the trailing end. Similarly at the front end kinetic adsorption
occurs from the sublayer since the front surface is swept clean of surfactant. The
sublayer concentration adjacent to the leading end of the particle decreases, creating
a diffusive flux from the bulk to the front end. Eventually a steady state develops: In
this state, the surface concentration at the back end has increased to the point where
the desorption rate, proportional to the difference between the surface and sublayer
concentration, balances the convective rate. In addition, the sublayer concentration
increases sufficiently so that the diffusive flux away from the particle surface, propor-
tional to the difference between the sublayer and far field concentration, balances the
kinetic desorption. At the front end, the surface concentration becomes reduced
enough so that kinetic adsorption balances convection, and the diffusion to the
surface balances adsorption. Consequently, in this steady state the surface concen-
tration is considerably higher at the rear than at the front of the particle. A gradient
of surface concentration develops on the surface. Since surfactant reduces the surface
tension, a surface tension gradient forms on the interface which opposes to the surface
concentration gradient, implying that the surface tension at the back end is relatively
lower than that at the front end. This interfacial tension gradient creates a surfactant
Marangoni stress along the surface as the front end tugs the interface towards it. The
direction of this surface stress is opposite to that of the surface flow, and thus the
adsorption of surfactant onto the particle interface acts to reduce the surface flow,

hence increases the drag on the particle and reduce the terminal velocity for rising



gas bubbles, for instance. Similar retardations are observed in thermocapillary flows
also (see [Kim & Subramanian (1989b)] and [Nadim & Borhan (1989)]).

The retardation is much more significant for thermocapillary flows. In this
case, the temperature at one side of the particle is relatively higher than the opposite
side. Since the surface tension decreases as temperature increases, the side with
the higher temperature has the lower surface tension, and vice versa. The low
temperature region tugs the surface towards it, effectively developing a surface
flow in the same direction and pulling the particle from the colder side to the
warmer side. The magnitudes of this thermocapillary migration and the retardation
caused by surfactant adsorption onto the particle surface are of the same order as
they are both produced by a surface tension gradient, but in opposite directions.
This makes the thermocapillary migration very sensitive to the presence of the
surfactant as [Kim & Subramanian (1989a)], [Kim & Subramanian (1989b)] and
[Nadim & Borhan (1989)] pointed out.

Using the Levich framework, several authors have studied, at steady state, the
increase in drag for a particle moving at constant velocity due to the Marangoni forces
created by the convective redistribution of surfactant along the surface. Roughly
speaking they fall into two categories: when the convection of the surfactant along
the surface is much greater than either the bulk diffusion or kinetic exchange, and,
when they are of the same order.

When the surface Peclet number is large and the bulk concentration is small
enough, the ratio of diffusion to convection is very small. This scenario belongs to the
first category. In this case surfactant accumulates at the back end of the bubble and
a stagnant cap develops there. This stagnant cap drastically increases the bubble

drag, and increases it more as the cap angle gets larger.



Various theoretical studies of the dependence of the drag on the cap angle
have been completed with the assumption that the Peclet number is infinite.
[Savic (1953)] first observed the stagnant cap phenomenon. He also began its
theoretical study, for the case of spherical drops (viscous and inertial forces
are small compared to capillary forces) moving in creeping flow, with negligibly
interior viscosity and bearing small stagnant cap, assuming that the surface
pressure reaches its upper bound for a given surfactant. The problem is generally
formulated in terms of an infinite set of algebraic equations for the coefficients
of a series. Savic truncated this series after six terms. [Davis & Acrivos (1966)]
improved his approximate numerical solution by retaining 150 terms for bubbles.
(Harper (1973)] and [Harper (1982)] worked on small cap angles and carried out an
asymptotic analysis. [Holbrook & Levan (1983a)], [Sadhal & Johnson (1983)] and
[He, Maldarelli & Dagan (1991a)] worked on droplets. While these studies are for
buoyancy driven motion, [Kim & Subramanian (1989b)] worked on thermocapillary
driven motion of drops. The cap angle is obtained by computing the surfactant
distribution in the cap region. [Griffith (1962)] first introduced the method, but
the study was incomplete since he did not have the proper hydrodynamic solution.
'Sadhal & Johnson (1983)] solved for the stream-function analytically for a given cap
angle of arbitrary size—the solution is an infinite series involving the Gegenbauer
polynomials whose coefficients are functions of the cap angle. They obtained the
cap angle by using a linear relation between the surface tension gradient and surface
concentration, and assuming that no diffusive boundary layer exists around the
particle, i.e. the concentration in the liquid adjacent to the interface equals to
the concentration at infinity. [He, Maldarelli & Dagan (1991a)] used a nonlinear

relation, but they also ignore the existence of a boundary layer along the surface.



The question of how the concentration distribution of surfactant in the flow and
on the surface affects the motion of the particle was not considered in these papers
and still remains to be answered. In the case when the continuous phase inertia is
not negligible (order one Reynolds number), [Bel Fdhila & Duineveld (1996)] (for a
spherical bubble shape) and [McLaughlin (1997)] (for a deformed shape) computed
the drag for buoyancy driven motion as a function of the cap angle, and the cap
angle as a function of concentration for kinetic control. They demonstrated that at
sufficiently large Reynolds number and cap angles, the immobility of the cap causes
a recirculation at the back.

For thermocapillary driven motion, the effect of surfactant has only recently
been studied by [Kim & Subramanian (1989a)], [Kim & Subramanian (1989b)] and
[Nadim & Borhan (1989)]. They found the retardation on the thermocapillary driven
is much greater than on the buoyancy driven motion. Since the magnitudes of
Marangoni force and thermocapillary force are at the same order, Marangoni stress
reduces the velocity to nearly zero.

Recent numerical results of [Cuenot, Magnaudet & Spennato (1997)] for the
buoyancy driven motion of a spherical bubble at order one Reynolds number illustrate
a cap by the collection of surfactant at the back end due to the high Peclet number
and confirm the formation of a wake at order one Reynolds number as noted by
[Bel Fdhila & Duineveld (1996)] and [McLaughlin (1997)].

In the second case when surfactant transport from the bulk to the surface
matches the convective transport, if the kinetic rate is fast relative to convection, the
surface and sublayer are in equilibrium. Bulk diffusion then governs the surfactant
transport. All studies in this regime considered the case of a slightly soluble

surfactant or a surfactant at low bulk concentration. Several studies examined



the case of large Peclet numbers, and used a boundary layer analysis to describe
the diffusive flux. (c.f. [Deryagin, Dukhin & Lisichenko (1959)], [Saville (1973)],
[Levich (1962)], [Harper (1974)] and [Harper (1982)] for negligible inertia and a
spherical particle, and [Andrews, Fike & Wong (1988)] for a deformed particle at
order one Reynolds number; all these studies are for buoyancy driven motion).
The first studies in the direction of solving the convective diffusion directly were by
[Levan & Newman (1976)] and [Holbrook & Levan (1983b)] for the case of buoyancy
driven motion of a spherical particle in the absence of inertia. Levan demonstrated
that the drag increases as the bulk concentration increases. This is because the
surface concentration gradient increases as the bulk concentration increases at low
concentration.

Most of the above studies for small bulk concentrations apply to the retarding
effects due to the surfactant impurities unavoidably present in the bulk phase (see
[Subramanian (1992)]), which is also the focus of many experimental studies. As
noted above, the bubble velocity monotonically decreases as the bulk concentration
increases. However, [Edge & Grant (1972)] and [Bel Fdhila & Duineveld (1996)]
demonstrated the retardation by the intentional addition of surfactant with high
Peclet number. They both found that there exists a critical concentration. The
bubble velocity rapidly decreases to that of a solid sphere when the concentration is
larger than the critical concentration. In addition the critical concentration increases
as the bubble radius increases. [Barton & Subramanian (1989)] carried out similar

experiments for the thermocapillary driven case.



1.2 Summary of Results
As described above, not much work has been done on the retarding effects of the
surfactant for thermocapillary driven motion. In both buoyancy driven motion
and thermocapillary driven motion, the general question of the effect of increasing
bulk concentration remains open. The question of how to remobilize (remove the
surfactant gradient on the surface) the particle has yet to be answered.

In this study we will show that the bubble surface can be remobilized by
increasing the bulk concentration. In Chapter 3, we will show that the bubble
surface can be remobilized by increasing the bulk concentration of surfactant at
low Reynolds number. We illustrate numerically that, for a fixed Peclet number, a
surface concentration gradient develops near the rear stagnation point at small bulk
concentration, it spreads to the whole surface as the bulk concentration increases
at the first, and then reduces to nearly zero as the bulk concentration gets large.
This uniform distribution of surfactant on the bubble surface at large bulk concen-
tration reduces the Marangoni force to nearly zero, hence decreases the drag and
increases the velocity to the clean surface values. For any fixed bulk concentration,
the bubble velocity decreases with increasing Peclet number. The larger the Peclet
number is the larger the required bulk concentration needed to bring the velocity
back to the clean surface value. Our numerical results in Chapter 4 show that, at
order one Reynolds numbers, the remobilization still remains effective. We demon-
strate that the drag monotonically decreases as a function of bulk concentration at
order one and large concentration. Wakes form at higher Reynolds numbers as a
rigid film develops near the rear stagnation point when the rate of convection on
the surface is much larger than the rate of bulk diffusion, which cause a negative

surface velocity in the stagnant cap region that drastically reduces the terminal



velocity. As we increase the bulk concentration for a fixed Peclet number, wakes
become smaller, and disappear at large bulk concentration as the surfactant distri-
bution on the bubble surface becomes more uniform. An asymptotical analysis for
large Peclet numbers is presented in Chapter 5. The asymptotic structures are given
along with the governing boundary layer equations. We found that in order to satisfy
the zero net flux condition, the size of the clean part of the surface is very small.
The boundary layer thickness along the stagnant cap region is found to be as the
same for a solid sphere, and the boundary layer thickness along the clean part of the
surface is found to be larger than that for a clean bubble sphere.

In industrial processes such as the environmental cleansing of poisonous gas, the
purification of materials and the extraction of materials from mixtures, a remobilizing
technique can be very useful. Other examples of potential applications include gap
solidification, glass processing and composite preparation, etc. The technique can
be especially valuable for material processing in microgravity environments. In such
environments, because of the absence of buoyancy, other methods are necessary to
induce the particles motion. Thermocapillary based driving forces are the most
promising because of their high sensitivity to the interfacial and bulk surfactant

concentration.



CHAPTER 2
DERIVATION OF EQUATIONS

We examine the motion of a spherical bubble rising steadily in an unbounded
Newtonian fluid. The fluid contains surfactant, and it is assumed to be incom-
pressible. We also assume the flow is axisymmetric and uniform at infinity, the
concentration of surfactant far from the interface is uniform, the bubble remains
spherical. The assumption of the bubble remaining spherical is reasonable if the
inertial force is small compared to the surface tension, i.e. the Weber number

_ pU% pU

(We - ) and the capillary number (Ca = T) are small.

2.1 Governing Equations
The mathematical model is based on a fixed coordinate system. The center of the
bubble is taken to be the origin.
The governing equations for the fluid field are the incompressible Navier-Stokes

equations

D1 ~ -
p% = —VP + V%, (2.1)

together with the equation of continuity
V-u=0, (2.2)

where p is the density of the fluid and p is the shear viscosity.
The governing equation for the surfactant transport in the bulk is the

convection-diffusion equation

%g- +V . (Cu) =DV (2.3)

10
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where €' is the surface-active surfactant concentration in the bulk and D is the
diffusion coefficient of the continuous surfactant concentration..
Applying the continuity equation (2.2) to equations (2.1) and (2.3), the Navier-

Stokes equations and the convection-diffusion equation become

p F—’t-‘ + - (vfa)} = —Vj + V24, (2.4)

%—f— +@-VC = DVC. (2.5)

By the nature of the problem, it is most convenient to express the equations
in spherical coordinates (r,#, ¢}, with § = O representing the upstream direction.
Since the flow is axisymmetric, the solution is independent of the azimuthal angle
¢. The velocity in the azimuthal direction is zero and the only non-zero vorticity
component is the azimuthal component, &,, which is independent of ¢. We examine
the Navier-Stokes equations in terms of vorticity and stream-function. To do so, we

write velocity in terms of stream-function 9 as

1 &) N 1 8

_— PO, oo —— 2.6
YT TFsngos’ T Fsinb or (2:6)
in which case the continuity equation (2.2) is automatically satisfied.
Taking the curl of equation (2.4), and using the identity
S S
-V = §V\ul + @ %, (2.7)
where @ = V X 4, the Navier-Stokes equations in vorticity form become
ow . - . 9~
— 44 (V)= (Vi) + vV, (2.8)

ot
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where v = y/p is the kinematic viscosity.
Since the flow is axisymmetric, the solution is independent of the azimuthal

angle ¢, and the velocity component in that direction is zero. i.e. @ = (@,(7,8),

g(7,8),0). By the definition of vorticity, we have

A%
_ (O,O,% [8(?:‘9) ~ 8;5}) | (2.9)

It follows that the vorticity has only one component in the azimuthal direction, @g,

which can be written in terms of the stream-function as

L1 {a(mg) aaq
= = |7 @mz— T a5
"’1" or of (2.10)
— 2,7
= E%).

The Navier-Stokes equations (2.8) in terms of vorticity and stream-function become,

then,

ows O, . . o .. . TV
e — = 11
5 8f(rurw¢,) + 89( og) = VE*(Fysin 4), (2.11)

where

"2__}__(22_ l_‘?_ __1___@_ 2
B _Sin98772+'i"289 sinf 98 ) (2.12)
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2.2 Mixed Boundary Conditions

2.2.1 Hydrodynamics

The boundary conditions at the axes of symmetry are

% = at  0=0,m, (2.13)

Wy =0 at 0=0,mr. (2.14)
The flow is uniform at infinity implying that the boundary conditions there are

1
w:EW%WH as 7 —oq, (2.15)

D=0 as T — 09, (2.16)

where U is the uniform flow velocity far from the interface.

Since there is no deformation on the bubble surface, the normal velocity at the

interface is zero. This leads to

]
fl
)

at

€
Il
o

(2.17)

It follows that the first and second derivatives of stream-function with respect
to 6 are zero and so we have from equation (2.10)

W =
® ™ 4sinf 0F2

at 7 =a. (2.18)

In the presence of surfactant, as explained in Chapter 1, the concentration, I'(6)
say, varies from point to point on the surface of the bubble; i.e. = f‘(H). Since an

increase in surfactant lowers the surface tension, the surface tension -y is a function of
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surface concentration I' and it also varies along the surface. The relation between the

surface tension and the surface concentration is expressed by the Langmuir equation

(see [Levich (1962)])

T
7=+ RITo In(1 - £-), (2.19)

where 7. is the surface tension on a clean bubble, I's, is the maximum packing density
of surfactant, R is the gas constant and 7" is the temperature.

This surface tension gradient causes a Marangoni force on the bubble surface
that must be compensated by a viscous tangential stress on the interface. This is

expressed as (see [Leal (1992)])

Trg = még—g at fF=a (2.20)
Differentiating equation (2.19) with respect to I', gives
T

6—? = - R . (2.21)

or e —T

If we rewrite equation (2.20) as

18y ar
=2 2.22
o a gl 0 (222)

and substitute equation (2.21) into equation (2.22), we obtain the shear stress in

terms of the surface concentration as follows,

N 1 RTT,, oT

= ——=—. 2.23
= aT, -1 00 (223)
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On the other hand, the shear stress on the surface in terms of the stream-function

can be expressed as

. B [ 209
™ sing (87’2 - 5—57;) ' (2.24)

From equations (2.23) and (2.24), we deduce the following form of the tangential

stress balance,

) _ 200 sind RTT, oF
072 adFf p T, —T00

(2.25)

Hence the balance of Marangoni force and shear stress on the surface, leads to a

boundary condition for the vorticity, namely

5 __ 2 0 1 RIT, ol
®~ 42sinf OF auly, — 108"

(2.26)

Tn order to solve for the flow field, the surface surfactant concentration, T'(6),
must be known. This couples the Navier-Stokes equations with the convection-

diffusion equation, as explained next.

2.2.2 Surfactant Transport
The amount of material adsorbed per unit area satisfies a mass conservation law,

which, in the case of a bubble, can be expressed as ([Levich (1962)])

(2.27)

where T'@iy is the flux of adsorbed material transferred along the surface by the

tangential velocity component of the flow, and V- (f‘ﬂg) is the surface divergence
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of that flux. The quantity 7, represents the flux of material removed into the bulk
of the medium (7, < 0) or conveyed (j, > 0) to a unit area of the bubble from the
solution; (—stsf) expresses the diffusion flux of adsorbed material on the surface
of the bubble. Here D; designates the surface diffusion coefficient of the surface-
active material. Thus, in the expression for the total flux of surface-active material,
the right side expresses the full divergence of the diffusional and convective fluxes
of material along the surface of the bubble. The left side gives the flux of material
to or from the bulk of the solution. The magnitude of the latter is evidently a
function of the velocity distribution near the surface of bubble, while the magnitude
of convective flux along the surface of the bubble is determined by the velocity on
the bubble surface.

The magnitude 7, of the flux of surface-active material from the surface of
the bubble into the bulk of the liquid, is determined by the rate of adsorption-
desorption or the rate of transfer of molecules of surface-active material from the
bulk of the liquid to the surface of the bubble. If the rate of adsorption-desorption is
small compared to the rate at which the material is transferred to the surface of the
bubble, the rate j, of surface-active molecules leaving (or arriving at) per unit area
of surface per unit time is determined by the total number of desorbed (or adsorbed)
molecules. If, on the other hand, the kinetics of adsorption and desorption are rapid
compared to the rate of transfer of surface-active molecules from the bulk of the
solution to the interface, the number of surface-active molecules leaving (or arriving
at) per unit area of surface per unit time is equal to the diffusional flux to the bulk.
Here we assume the later case (see [Levich (1962)]). i.e.

Jn=2D %g o (2.28)
r

=a
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Therefore in the case of rapid kinetics, j, in the surface concentration conser-
vation equation (2.27) has the form of expression (2.28). If we assume the surface
diffusion is negligible compared to the convection on the surface, the surfactant inter-

facial conservation without surface deformation is described by the equation

or, 1 o (ﬁgf‘sinﬂ) =D %g-

8t * asinf 80 (2:29)

f=a

The over-all rate of the exchange of surface-active material is determined by its
rate of transfer from the bulk of the medium to the surface of the bubble. i.e. by the
rate of convective-diffusion. The kinetics of the adsorption-desorption process in this
case, may be considered to be as rapid as desired, so that the concentration of the
solution near the surface has a value C(F = a) which is in equilibrium with T, but
differs from the concentration C in the bulk of the solution. The flux of surfactant

reaching the interface obeys Langmuir’s law ([Levich (1962)]; [Probstein (1994)])

D%g— =B[C(Te — 1) — k7T at

-
Il
)

(2.30)

where G and k, are the parameters of the adsorption and desorption rate of constants
respectively. For fast kinetic exchange, 8 > 1. That is the kinetics of adsorption and
desorption are rapid compared to diffusional flux to the bulk phase. This reduces
the equation (2.30) to a equilibrium dependence of T on the concentration near the

surface,

i = Fole (2.31)
1+k,C.
r=a
The boundary conditions are, due to axisymmetry,
?g— =0 at 6=0,m, (2.32)
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and the uniform concentration in the far field provides the boundary condition at

infinity

C=Cp as F—o0. (2.33)

2.3 Force on the Surface

2.3.1 Pressure on the Surface

The steady state Navier-Stokes equations for incompressible flow are
pii - (Vi) = —Vp + uV>3i. (2.34)

For axisymmetric flow, the Navier-Stokes equation in the tangential direction

() takes the form

o gl 18P o 200, g
p(u Vig + = )—— F89+M(V7«60+ . (2.35)

7200  72sin2@

Since the normal velocity on the surface is zero, the equation on the surface

reduces to
3,00 _ 05
PU 50 = o8

52?:‘,0 aﬂg 1 82ﬁ9 cot 6 aﬁg 2 3‘21,- ’ﬁg (2.36)

+“(aaf2+25f+aae2+ o 90 208 as1n29)'

Also, from the continuity equation (2.2), we have

1 9() 1 O(tgsind)
— jmnned . 2- 7
72 OF + Fsinf 06 0 (2.37)
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Differentiating equation (2.37) with respect to 7 and evaluating on the surface

yields

32’&,» Oty 82"&9 Olig Ug
“57a0 T 280 T a2 T %0 "z °

(2.38)

By combining equations (2.36) and (2.38), we find that the pressure gradient on the

surface can be expressed as

O _ (0 00 0\ 0
90 *\%Bm= T 9F " Braa) "5
(2.39)
_ Ow) - o
“Hh TR T %ag

2.3.2 Total Drag Acting on the Bubble

The resultant force, due to the stresses, exerted by the surrounding fluid on the

bubble is
F= /0' -ndS, (2.40)
where o is the stress tensor, which for an incompressible viscous fluid is given by
o= —pl +2ue, (2.41)

1
with e = —2-(Vﬂ + VaT) being the rate of strain tensor.
The stress vector acting across an element of surface area whose outer normal

is m is then of the form

Opn=0'7Nn

~ Otiy e,
=n (——p+ QM_B—??) +0u [rg?; (

i\ | 1ot (2.42)
) Fae )
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Owing to the symmetry of the flow, the cumulative effect of the stresses
acting over the entire surface of the bubble give rise to only one significant dynamic
parameter-a force acting parallel to the axis of revolution. Take the upstream

direction to be the positive direction; then, the force exerted on the bubble is given

by
z=/0 { ~p+ )cos@—-,u["% (%) -1;%%} smﬁ} fza-27ra7‘sin9d0
= (st egg — g-%%z- sinH) dé
:waQ/ sin? 0 d0—2 / #smﬁdﬁ
=7ra2/07rsm 9% do — /O (z?;f + Slzefjr gg) sin 6 df.
(2.43)

2.4 Nondimensionalization

2.4.1 Governing Equations and Mixed Boundary Conditions

We make the equations dimensionless by nondimensionalizing using the following

transformations:
F m " @y
L - __ = 2 2.44
=2 YTp YTue YT (244)
r C
F = — = — 2_4
Foo’ ¢ Coo (2.45)

Since we are interested in steady state solutions, the time scale does not play a

significant role. We keep the time derivative term for numerical convenience.
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The nondimensionalized governing equations become, then,

ow 0 0 1 2 .
N + a—r(rurw) + 5}9'(“9”) = EEE (rwsin 6) by (2.11), (2.46)
w= ;{.Em by (2.10),  (247)
oC 1,
where
B 1 Oy 1 oy
Ur = = 25in0 80 Yo = Tame or (2.49)
p_ 1 0% 106 /1 8
E = cnga T 296 \smdae ) (2:50)

U
from formula (2.6) and equation (2.12) respectively, Re = _V_a is the Reynolds
number, and Pe = QDE is the Peclet number.

The nondimensional boundary conditions for the hydrodynamics are

b = ot 0=0,, (2.51)
W=0 at  r=1, (2.52)
Y= %7‘2 sind  as 7 — oo, (2.53)
w=20 at 6 =0,m, (2.54)
w=0 as 1 — 00, (2.55)
and
we 2 00 Ma OO (2.56)

sinf or|._, 1-TL86°
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RIT o
uwU
concentration to be found from the concentration field.

where Ma = is the Marangoni number, and I' is the dimensionless surface

The nondimensional boundary conditions for the surfactant transport equations

are

oC
S5=0 a 6=0m (2.57)
C=1 as 7-—00, (2.58)

and the equation of interfacial surfactant conservation becomes

or 1 0 . xk oC
E -+ —s-—ii-égé(ugl“sm()) = =——

(2.59)

The equilibrium equation between the surface concentration I', and the sublayer

surfactant concentration is, in dimensionless form,

kC

(2.60)

In equations (2.59) and (2.60) above the parameters appearing are given by, x =

p C; and k£ = k,Cy which is a measure of the bulk concentration.

2.4.2 Drag on the Body

2.4.2.1 Creeping Flow

For small Reynolds number, we nondimensionalize pressure and drag using the

following scales

(2.61)
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Then, the nondimensional pressure gradient on the surface given by equation (2.39),

becomes

Op1 _ 9(rw)
80 — or ’

(2.62)

and consequently the dimensionless drag coefficient for small Reynolds number is

given by
T 92
C'D1=/ sin? Hapldé’——Q —a——sm0d9
0 39 0 6')"2 (2 63)
Op: o  Masinfor'\ . '
= —2 == :
/0 sin 969d9 fo (28r+ T_T 20 sin 6d6
2.4.2.2 Order One Reynolds Numbers
For order one Reynolds numbers, we rescale pressure and drag as
p F,
P2 = FoEk Cpy = gl (2.64)

Then, from equations (2.39) and (2.43), the dimensionless pressure gradient on the

surface and the drag coefficient are

Opy _ 1 0(rw)  Oug

3  Re or e’ (2.65)
and
2
C’m:/ sin 9%?(19-—2 %fsm@dﬁ
0 o o (2.66)

i Op oy  Masinf ol
—/Osm 960d0—2/0 (2—5;4— 1T 39) in #d6,

respectively.



CHAPTER 3

CONTROLLING BUBBLE VELOCITY IN SURFACTANT
SOLUTION AT LOW REYNOLDS NUMBER

3.1 Introduction

When a bubble rises in the fluid containing surfactant, the surfactant is adsorbed onto
the interface at the leading edge of the bubble, convects to the trailing edge by the
surface flow and diffuses into the bulk along the surface. Accumulation of surfactant
at the back end makes the surface concentration at the back end relatively higher
than that at the front end. This surface concentration gradient creates a surface
tension gradient on the bubble surface, since surfactant lower the surface tension. A
Marangoni force which is in the opposite direction of the surface velocity is created
as the surface has the higher surface tension (the front end) tugs the surface towards
it. It reduces the surface velocity, hence increases the drag. When the rate of surface
convection is large compared to the rate of bulk diffusion, a stagnant cap develops
near the rear stagnation point, as shown in Figure 3.1. The mechanism of this
retardation is presented in detail in Chapter 1.

Various studies have been concerned with the effects of surfactant on the motion
of particles rising in surfactant solution. As we described on Chapter 1, most of the
works were focused on trace amount of surfactant due to the material impurities,
in which the drag monotonically increases as a function of bulk concentration. The
retardation effects of intentional addition of surfactant are demonstrated experi-
mentally by [Edge & Grant (1972)] on drops and [Bel Fdhila & Duineveld (1996)]
on bubbles for buoyancy driven motion with high Peclet number. Edge & Grant
observed that the motion of drops in contaminated water is indistinguishable from

the motion of drops in pure water when the surfactant concentration is very small,

24
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Figure 3.1 Flow around bubble, where ¢ is the cap angle

and the drag increases as the bulk concentration increases. Wakes form at high
enough bulk concentration and are similar to the attached wakes behind solid spheres.
Duineveld found that the bubble velocity decreases with increasing bulk concen-
tration. For all bubble sizes there is a critical concentration, below which the velocity
is almost equal to the clean surface value, and above which the velocity decreases
rapidly to the solid sphere value. This critical concentration value increases as the
bubble size increases. [Barton & Subramanian (1989)] carried out similar exper-
iments for the thermocapillary driven case.

In this chapter, we demonstrate that the bubble interface can be remobilized by
increasing the bulk concentration of surfactant. The surfactant concentration distri-
bution on the surface for a fixed Peclet number and various bulk concentrations is
given in Section 3.3.1. Numerical results show that the amount of surfactant adsorbed
onto the surface increases as the bulk concentration increases. A surface concen-
tration gradient develops near the rear stagnation point when the bulk concentration

is very small. As the bulk concentration increases, the surface concentration gradient
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spreads onto the whole interface at first, and disappears at large concentration. The
removal of retardation of the surface velocity is shown in Section 3.3.2, where the
surface velocities for a fixed Peclet number with different bulk concentrations are
calculated. When the bulk concentration is very small, the surface velocity near the
front is almost the same as the clean surface value, but it is much smaller than the
clean surface value near the back end (corresponding to the surface concentration
gradient there). As the bulk concentration increases, the surface velocity decreases
at first, and then increases to the clean surface velocity as the surface concentration
distribution becomes more uniform at large bulk concentration. In Section 3.3.3, we
show that for a fixed Peclet number, the drag increases monotonically as a function
of bulk concentration when the bulk concentration is small, and, after it reaches a
maximum the drag decreases monotonically to the clean surface value. For fixed
concentration, the drag increases with increasing Peclet number. For larger Peclet
numbers, higher bulk concentration is required to reduce the drag to the clean surface
value. Numerical results also show the development of a cap near the rear stagnation

point when —IQC— < 1.
Pe

3.2 Mathematical Model and Numerical Algorithm
We examine the dynamics of a spherical, buoyancy driven gas bubble rising steadily
in an infinite Newtonian fluid containing surfactant. The Reynolds number of the
flow is small and we consider the case of bulk diffusion controlled surfactant transport
with order one and large Peclet number. In addition, we assume that the fluid is
incompressible, the flow is uniform at infinity, the surfactant concentration far from

the bubble surface is uniform, and there is no interfacial deformation thus keeping the
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bubble spherical (small Weber numbers). The mathematical model and the relevant
boundary conditions were given in Chapter 2. Since the governing equations are
nonlinear, and coupled by the nonlinear boundary conditions, it is unlikely that the
full problem can be solved analytically. We will examine the problem in nondimen-
sional form by addressing numerically equations (2.46)-(2.48) with the corresponding
boundary conditions (2.51)-(2.60). Since the problem considered in this chapter is

for small Reynolds number, the equation (2.46) is reduced to

0
a—{': = E*(rwsinf).
The numerical method is described below.

The problem is to solve simultaneously the differential equations (2.46)-(2.48)
subject to the boundary conditions (2.51)-(2.60). Since the equations are nonlinear
and coupled by the nonlinear boundary conditions, an appropriate approach we

found to be efficient and stable is to use a numerical method involving an iterative

procedure. The iterative procedure can be outlined as follows:

1. Choose initial conditions for the fluid field and concentration fields (usually

taken from a known analytical solution such as flow past a clean surface sphere).

2. Obtain an approximation to the stream-function subject to the boundary
conditions (2.51)-(2.53). Use the relation (2.49) to find the radial and tangential

velocities.

3. Substitute the tangential velocity found in (2) in equation (2.59), and solve for

I using an explicit method.
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4. Find the boundary condition on the surface for the vorticity by using the
results found in (2) and (3) on equation (2.56), and get an approximation for

the vorticity subject to boundary conditions (2.54)-(2.56).

5. Solve the convection-diffusion equation (2.48) subject to boundary conditions

(2.57)-(2.60) using the results found in (2) and (3).

6. Check the convergence criteria. If the criteria is not satisfied, upgrade the

initial conditions in (1) and repeat the steps (2)-(5).

3.2.1 A Finite Difference Method
A variety of finite-difference schemes exist which can be used to solve the coupled
nonlinear system (2.46)-(2.48), and it is not possible to compare them exhaus-
tively to ensure an optimal approach for each particular problem. The Alternating
Directions Implicity (ADI) method is used for the pseudo-unsteady system. We
make this choice because the ADI method are been widely used and tested in
fluid dynamics problems (see [Peyret & Taylor (1983)]), it is easy to implement and
has good stability properties. Generally, the method is unconditionally stable with
second order accuracy.

To illustrate this method, it is best to combine equations (2.46)-(2.48) into the

following general form:

e+ aLi(G) + 0la(G) = f G.1)

where G stands for the vorticity w, or the stream function 1, or the concentration

C, q1 and ¢y are functions of vorticity w, stream-function 1 and velocity u, f is the
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force term, and L, and L, are differential operators in the normal and transverse
directions, respectively.
With the ADI scheme, each time step is divided into two equal parts. Applying

the ADI scheme on equation (3.1) at each step provides the recursions

Gmr - G

S + LG + & L] = (StepT)  (3.2)
2

Gl —Gn+% n+i n+i n41 n n

@ L@ g T L@ = T (StepII) (3.3)
El

Applying the ADI scheme on equations (2.46), (2.47) and (2.48) yields three
systems of equations at each step, which can be written in three tridiagonal matrix

forms if we treat the boundary conditions (2.51)-(2.60) carefully.

3.2.2 Special Treatment for the Boundary Conditions
With the finite difference method, one has to limit the radial direction to some finite
radius r. Applying directly the boundary condition at infinity, (2.53), on r = 7
would introduce an error, and the proper way to minimize this error is to obtain
a correction term for the stream-function and use the corrected stream-function at
infinity.

For axisymmetric creeping flow, the stream-function satisfies the differential

equation (see [Happel & Brenner (1973)])

E* =0, (3.4)
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where F is given by equation (2.50) in Chapter 2. The general solution of equation

(3.4) is

o0

= Z(Anr‘”+3 + Bpr " 4 G + Dnr")C;% (cos ),

n=0

(3.5)

1 1
where Cy, ?(z) are Gegenbauer polynomials of degree ~3 Applying the boundary

conditions (2.51)-{2.53) to the above solution, one obtains

'@b — _;_(TZ _ ’I") sin20 + Z Bn(,r—n-i-l . 'r""‘+3)C;%(COS 0)’

n=2

where B,, are constants to be determined.

It follows from equation (2.63) that

RPN ) . 0%
_ 2 L _r
Cp1= /0 (sm 6 %0 23111037"2

:_/0”

= —4— 4By,

dé

r=1

35in?0 + 23 (3n — 5)(n + 1) BaCr * (cos 6) | sin 68

n=2

where we have used the relations

— 2 ifn=0,
/ Cr *(cosf)sinfdf = { 2 ifn=2,
0 0 otherwise.
This implies
Ch1
=——=—1
B2 4 I

and substituting this into equation (3.6), gives

@b———%rzsinQH—i-%rsin?H-l—m, as r — 00,

(3.6)

(3.8)

(3.9)
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Figure 3.2 Domain transformation schematic.

for creeping flow, where Cp; is the total drag on the particle non-dimensionalized by
mula, with p being the viscosity. We found that the drag on the particle is about
6% higher, if we apply the uniform stream condition directly at 7 = r.,, as opposed
to using the correction term.

Since the solutions are axisymmetric, we will solve the problem on half of
the domain. Discretizing the equations directly on the physical domain would give
an expanding mesh as r increases. To avoid this problem we use the following

transformation,

Inr )
= = — 3.10
* Inre’ =7 (3.10)

which transforms the physical domain (r,#) onto a unit square (z,y) as shown in

Figure 3.2.

3.2.3 Accuracy - Code Validation
To check the code, we consider special cases for which analytical solutions exist. We

found that there are two problems that can be solved analytically when there is no



32

flow—one takes the particle as an infinite sink (C' = 0 on the surface), while the
other is ¥ < 1 (small bulk concentration). The solutions are (see Appendix A for

more details)

for the former, and

e——ytPe d'y

czl-l;/wXmeh@U—UP+W-yhmwﬂr—n]

T (= v)* + x%y
for the latter.
We compared the numerical and analytical results for these two special cases
and found the agreement between solutions to be excellent for large t.
As an additional accuracy test of the numerics, we developed an analytical
solution for the drag Cp; for the full problem when k£ < 1 and Pe = O(k). We found

that the drag Cp, is given by (see Appendix B for details)

B 2QMak2 N 4QMa

Cpy = —4
D1 3X 3X

B4,

where Pe = Qk, with @ being a constant. We found that the difference between the
analytical and numerical solutions was less than 0.5%.
Finally, we also computed the nondimensional steady surfactant mass transfer,

the Nusselt number which is defined as

T oC
Nu—-/(; _é?

for a spherical bubble rising in creeping flow as an infinite sink (Cs = 0) with order

sin 0 df, (3.11)

r=1

one Peclet numbers (Pe = 3,10, 40, 70), and found excellent agreement with Masliyah
and Epstein’s [Masliyah & Epstein (1971)] numerical data for the Nusselt number

(their mean Nusselt number).
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3.3 Results

The results were computed on a 50 x 50 grid. The radial distance is truncated at
reo = 20, and the time steps were about 2 x 1072 for most calculations. However,
for high surfactant concentration, since the diffusion is much faster than surfactant
convection along the surface, equation (2.59) becomes stiff and the time step has to
be reduced accordingly (see [Peyret & Taylor (1983)] for more details). The criterion
of convergence for the results is Max|tn1100 — ¥n| < 107%, with n being nth time
step. We checked a few results on a 100 x 100 grid and found that the difference of
the results between the two grids is less than 0.3%. A few results are calculated for
Feo = 30 and roo = 40, the difference on drags for different 7o, (20, 30, 40) is less
than 0.05%.

To illustrate remobilization, we consider results from a computation which
varies the bulk concentration k£ and Peclet number Pe about a reference case having
Ma = 5 and ¥ = 1, with § = 0 being the leading edge and § = 7 being the
trailing edge. We will present plots of the drag, surface concentration distribution
and surface velocity profile, as well as contours of bulk concentration to show that
the bubble motion can be controlled by bulk concentration. All results shown below

are in dimensionless form as outlined in Section 2.4.

3.3.1 Surface Concentration Distribution

Surfactant adsorbs onto the particle surface at the leading edge, is convected to the
trailing edge by the surface flow, and then diffuses into the bulk as the particle
migrates in the fluid. The adsorption of surfactant onto the liquid interface develops
a gradient of surfactant on the surface. In Figure 3.3, we plot the surface concen-

tration distribution as a function of 8 for Pe = 10 and various bulk concentration
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Figure 3.3 The surface concentration distribution, for Pe = 10, Ma =5 and x = 1,
and k = k,C is the measurement of bulk concentration.

values, k. The Figure shows that for any & (bulk concentration), the surface concen-
tration at the trailing edge is higher than that at the leading edge. It is evident
that, when the bulk concentration is very small (k¥ = 0.01), not only is the amount of
surfactant absorbed onto the surface very small, but also the surface concentration
gradient is only in a very small region near the rear stagnation point. When the
bulk concentration increases to about k = 1, the amount of surfactant absorbed onto
the surface increases and a surface concentration gradient develops on the entire
sphere. And as we increase the bulk concentration further to & = 100, the amount of
surfactant adsorbed onto the surface is much larger, but more importantly, the distri-
bution of surfactant on the surface is almost uniform (the bubble surface has been
remobilized). This argument readily follows from the surface concentration conser-
vation equation (2.59) and equation of equilibrium between the surface concentration

k
and the sublayer (2.60). When k is small, the ratio % is small, so the diffusional flux
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to the bulk is small compared to the convection on the surface, which is clear from
equation (2.59). Surfactant accumulate at the back end. On the other hand, from
equation (2.60), the amount of surfactant adsorbed onto the surface is small when %
is small. Hence a surface concentration gradient develops only in a small region at the
back end. As k increases, although the ratio 2;—% increases, the amount of surfactant
adsorbed onto the surface increases and a surface concentration gradient develops
on a larger region at the back end. As k increases further, the amount of surfactant
adsorbed onto the surface is large. But the diffusional flux is large compared to the
convection on the surface and surfactant does not accumulate at the back end. The
surface concentration gradient disappears.

We now observe some implications of our numerical results for the existence
of the stagnant cap at the rear stagnation point as first observed by [Savic (1953)].
For large Peclet numbers, when the ratio % is small, the convection on the
surface is much larger than the diffusion to the bulk, (this is clear from equation
(2.59)), and surfactant accumulate at the back end to form a stagnant cap. This
phenomenon is supported in the surface concentration distributions given above
for £ = 0.01; the front end is free of surfactant, while a sharp surface concen-
tration gradient develops in a small region near the rear stagnation point. When
Pe > 1, the cap size increases as k increases, and eventually the cap covers
the entire surface as [Edge & Grant (1972)], [Barton & Subramanian (1989)] and
[Bel Fdhila & Duineveld (1996)] observed. Since the stagnant cap acts like a solid
boundary, the flow may separate at the back end at order one Reynolds number.
Flow separation and its effect on terminal velocities for different bulk concentrations

and order one Reynolds numbers is considered in Chapter 4.
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Figure 3.4 Surface velocity, for Pe = 10, Ma = 5 and x = 1, and k = k,Cw is the
measurement of bulk concentration.

3.3.2 Surface Velocity

As a surface concentration gradient develops, a surface tension gradient is set up that
creates a Marangoni force opposing the surface flow and hence reduces the surface
velocity. But, as shown in Figure 3.3, the surface concentration becomes uniform
as k increases for a fixed Peclet number. The increase of surface velocity as the
bubble surface remobilizes is evident in Figure 3.4 which plots the surface velocity
as a function of tangential angle # and bulk concentration & with the same values of
Marangoni number Ma, Peclet number pe and x as in Figure 3.3. Note that for a
clean interface, the surface velocity is equal to _s_'1~121_€, so at any point on the surface
the velocity cannot be larger than §I—I2I—Q for any &£. That is exactly what is shown in
Figure 3.4. When the bulk concentration is small, the surface velocity is the same
as that for the clean surface near the leading edge (f = 0), but it is smaller near the

rear stagnant point (6 = ) which corresponds to the surface concentration gradient
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Figure 3.5 The effect of concentration on the drag, for Ma = 5 and x = 1, and
k = k,Cy is the measurement of bulk concentration. The dots are the actual points
calculated

. . . . sin @
in Figure 3.3. As k increases, the surface velocity decreases from the clean value —

at first. This is the retardation, that as we noted in the Introduction, has been well
documented in the literature. However as k increases further, the velocity increases
and at k£ = 100 the velocity profile is very close to that for clean surfaces. This is
b ecause for k£ = 100, the surfactant diffusion at the back end is large compared to
the surfactant convection along the surface, and the surface concentration gradient
tends to zero. Hence, the surface tension gradient disappears, and the Marangoni

force tends to zero. The bubble interface has been remobilized.

3.3.3 Total Drag on the Bubble
T he effect of bulk concentration on the terminal velocity is examined in Figure 3.5 by
inspecting the way in which the drag on the bubble is affected by the bulk surfactant

concentration. The dots on the drag profile are the actual points calculated. Three
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different Peclet numbers are used (Pe = 0.1, 1.0, and 10.0). We found that, for
a fixed Peclet number, as we vary the bulk concentration ¥ from 0.01 to 100,
the drag increases monotonically as a function of concentration when the concen-
tration is small (corresponding to the decrease in the interfacial mobility observed
in Figure 3.3), but decreases to the clean surface case when the concentration gets
large as the interface remobilizes. With concentration fixed, the drag increases as the
Peclet number increases. The larger the Peclet number, the larger the concentration
needed to bring the drag down to the clean surface case, as shown in Figure 3.5. Note
that the drag always lies between the values Drag = 4 (drag for a clean bubble) and

Drag = 6 (drag for a solid sphere).

3.3.4 Bulk Concentration Distribution

As the bulk surfactant concentration increases and the surface surfactant concen-
tration becomes more uniform, the sublayer concentration (in equilibrium with the
surface concentration) also becomes more uniform. In Figure 3.6, we give contours
of bulk surfactant concentration for Pe = 10 with varying k. For & = 0.1, the
concentration near the leading edge is much smaller than that near the trailing edge,
and the sublayer concentration at the front end is almost uniform. As k increase
to 1, although the difference in concentration near the back end and the front end
is smaller than that for k¥ = 0.1, the sublayer concentration varies along the whole
surface. The tendency towards a more uniform concentration with increasing k is
clearly evidenced. At k = 100, the concentration in the bulk approaches unity as
the diffusion driving force disappears; the sublayer concentration also approaches
one. It is clear that as the interface remobilizes and the bulk concentration becomes

uniform.



39

Figure 3.6 Contour of concentration for Pe = 10, Ma =5 and x = 1. k = k,Cy is
the measurement of bulk concentration and U is the terminal velocity
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3.4 Conclusion and Discussion
In the previous section, we have given numerical solutions which show that the bubble
interface can be remobilized by controlling the bulk concentration. The ratio of bulk
diffusion to convection % plays a very important role in this problem. For a fixed
Peclet number, when the ratio % < 1, the total amount of surfactant adsorbed onto
the surface is very small according to equation (2.60) since the bulk concentration
k is small. Although a stagnant cap may develop near the rear stagnation point
(6@ = ), the cap size should be very small. The Marangoni force is small and so is
the retardation on the bubble motion. When -]—% = O(1), a surface concentration

gradient develops on the entire surface, the Marangoni force reaches a maximum and

kx
Pe
amount of surfactant adsorbed onto the surface is large, the surface concentration

the bubble terminal velocity reduces to a minimum. At > 1, although the total
becomes uniform (we say the bubble interface remobilizes). Since the diffusion to
the bulk is much larger than the convection on the surface (as can be seen from
equation (2.59)), surfactant will not accumulate at the back end as we showed in
Figure 3.3. Hence the Marangoni force disappears and the bubble regains the velocity
it would have with a clean surface. The larger the Peclet number is the larger the
bulk concentration needed to remobilize the bubble interface as shown in Figure 3.5.
For fixed bulk surfactant concentration, the drag increases as the Peclet number
increases.

Thus, we have shown numerically, how to control the motion of a bubble rising
in a fluid containing surfactant, for low Reynolds numbers and buoyancy driven
motion. Similar results are expected for fluid-fluid particles, order one Reynolds
numbers and thermocapillary migration. The case of order one Reynolds numbers is

considered next.



CHAPTER 4

SURFACTANT EFFECTS ON BUBBLE MOTION AT ORDER
ONE REYNOLDS NUMBERS

4.1 Introduction

A numerical study of the flow around a spherical bubble rising steadily in a surfactant
solution at order one Reynolds numbers (0.5 ~ 50) with relatively large Peclet
numbers (100, 200) is presented, where the Reynolds number and Peclet number
are defined in Section 2.4 in Chapter 2. When a bubble rises through a fluid phase
containing surfactant, the fluid motion near its surface can be slowed down or even
stopped. At large Peclet number, surfactant accumulate near the back end of the
bubble and make the surface there act like rigid boundary. Wakes can form at
order one Reynolds number as shown schematically in Figure 4.1, which drastically
decrease the surface velocity and hence increases the drag. The mechanism of this
retardation is discussed in detail in Chapter 1.

Various studies have been carried out concerning the effect of surfactant on
bubble motion. As we described in Section 1.1 of Chapter 1, most of the works
are focused on trace amounts of surfactant (small concentration) or slightly soluble
surfactant, and in addition, low Reynolds numbers. [Edge & Grant (1972)] and
[Bel Fdhila & Duineveld (1996)] demonstrated experimentally the retardation by
the intentional addition of surfactant for buoyancy driven motion at order one
Reynolds numbers. Edge & Grant observed that the velocity of drops falling
through contaminated water decreases with increasing bulk concentration. They
found that wakes form at larger concentration, similar to the wakes behind solid
spheres, the fluid inside the drops being stagnant. Duineveld examined the retar-

dation effect on rising bubbles. He found that there exists a critical concentration
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Figure 4.1 Flow around bubble at order one Reynolds number

above which the bubble velocity rapidly decreases to that of a solid sphere. It is
also found that the critical concentration increases as the bubble radius increases.
[Barton & Subramanian (1989)] carried out similar experiments for thermocapillary
driven motion. [Bel Fdhila & Duineveld (1996)] have extended the approach of
[Sadhal & Johnson (1983)] to finite Reynolds numbers by solving the Navier-Stokes
equations numerically subject to the stagnant cap boundary condition described
in Section 5.2 in the next chapter. Leppinen, Renksizbulut & Haywood (1996a,b)
investigated the effect of an insoluble surfactant on the flow around and inside
a deforming drop surrounded by air. For that purpose they couple the Navier-
Stokes equations in both phases to the surface concentration balance, assuming a
high surface diffusivity and a linear dependence of surface tension on surfactant

concentration. When the droplet is maintained spherical, they find a weak overall
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effect of the contamination on the drag because the tangential velocity at the
droplet surface is small even in the absence of surfactant, owing to the low viscosity
of the surrounding fluid. In contrast, when the droplet is allowed to deform, a
significant increase of the amplitude of shape oscillations is observed when contam-
ination is present. The work of [McLaughlin (1997)] considers the effect of an
insoluble surfactant on the flow around a deforming bubble rising steadily in water
at high Reynolds number. In that work the Navier-Stokes equation are solved
around the bubble under the assumptions of the stagnant cap model. By successive
adjustments of the cap angle the computations are able to reproduce properly
the rise velocities measured by [Haberman & Morton (1954)] in tap water and by
[Bel Fdhila & Duineveld (1996)] in a dilute solution of Triton-X100. The most
recent study to date is by [Cuenot, Magnaudet & Spennato (1997)] of the buoyancy
driven motion of a spherical bubble at order one Reynolds number. They solved
the Navier-Stokes equations together with the convection-diffusion equation for
nonlinear interfacial boundary conditions at large Peclet number (~ 10°) and small
bulk concentration (large surface convection compared to the bulk diffusion). Their
numerical results illustrate a cap at the back end, and confirm the formation of a
wake at order one Reynolds numbers as noted by [Bel Fdhila & Duineveld (1996)]
and [McLaughlin (1997)].

The aim of this chapter is to illustrate that the retardation of the bubble
velocity can be reduced by using bulk concentration for order one Reynolds numbers.
In Section 4.3 we present numerical results by plotting surface velocities, surface
surfactant concentrations, drag and stream lines for different Peclet numbers (100,
200), and various Reynolds numbers and bulk concentration. The surface concen-

tration distributions for fixed Peclet numbers and different values of bulk concen-
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tration given in Section 4.3.1, illustrate that a stagnant cap develops near the rear
stagnation point when the bulk concentration is very small, and the bubble surface
remobilizes at large bulk concentration. The formation of wakes in the stagnant
cap regime for order one Reynolds numbers is discussed in Section 4.3.3 where it
is also show that wakes disappear as the bubble remobilizes. The larger the Peclet
number is, the larger the concentration needed to remove the wake. Surface velocity
profiles show that the surface velocity becomes negative at the stagnant cap region
when there are wakes behind the bubble. The velocity increases with increasing bulk
concentration for larger concentration, and the drag decreases with increasing bulk

concentration.

4.2 Mathematical Model and Algorithm

Consider a spherical, buoyancy driven gas bubble rising steadily in an infinite
Newtonian fluid containing surface active surfactant, at order one Reynolds numbers
with bulk diffusion controlled surfactant transport characterized by order one or large
Peclet number. We assume that the fluid is incompressible, the flow is uniform at
infinity, the surfactant concentration far from the bubble surface is uniform, and there
is no interfacial deformation thus keeping the bubble spherical. The mathematical
model and the relevant boundary conditions were given in Chapter 2. We examine
the problem in nondimensional form by addressing numerically equations (2.46)-
(2.48) with the corresponding boundary conditions (2.51)-(2.60). The numerical
method and algorithm are described in Section 3.2.

The results were computed on a 50x 50 grid and the radial distance is truncated
at 7o = 20. The time steps were about 2 x 1072 for most calculations. However,

for high surfactant concentration, since the diffusion is much faster than surfactant
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convection along the surface, equation (2.59) becomes stiff and the time step has to
be reduced accordingly (see [Peyret & Taylor (1983)] for more details). The criteria
of convergence for the results is Max|¥ny100 — %¥n| < 107%, with n being nth time
step.

The corrected boundary condition (3.9) is no longer valid for order one Reynolds
numbers. The boundary condition (2.53) is applied directly on 7 = r.,. We calculated
a few results for ro, = 30 with Re = 50. Compare the drag coefficient Cpy (nondi-
mensionalized by ma?pU?) to the value for ro, = 20, we found the drag coefficient is
1.5% higher. We also checked a few results on a 100 x 100 grid and found that the

difference of the results between the two grids is less than 2%.

4.3 Numerical Results
To illustrate remobilization, we consider results from a computation which varies the
concentration k£ and Reynolds number Re about a reference case having Ma = 5,
x = 1 and Pe = 100, 200, with # = 0 being the leading edge and # = 7 being the
trailing edge. We will present plots of the drag, surface concentration distribution
and surface velocity, as well as steam lines to show that the bubble motion can be
controlled by bulk concentration. All results shown below are in dimensionless form

as outlined in Section 2.4.

4.3.1 Surface Concentration Distributions

Surfactant adsorbs onto the particle surface at the leading edge, is convected to
the trailing edge by the surface flow, and then diffuses into the bulk as the particle
migrates in the fluid. The adsorption of surfactant onto the liquid interface develops a

gradient of surfactant on the surface. In Figure 4.2, we plot the surface concentration
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Figure 4.2 The surface concentration distribution, for Re = 50, Ma = 5 and x = 1,
and k£ = k,Cy is the measurement of bulk concentration.

distribution as a function of # at various bulk concentration values, &, with Re = 50
and different Peclet numbers, Pe = 100 and Pe = 200. The Figure shows that for
any k (bulk concentration), the surface concentration at the trailing edge is higher
than that at the leading edge. It is evident that, when the bulk concentration is
small (k = 5), the surface concentration near the front stagnation point is small
and the surfactant distribution is almost uniform in that region, a sharp surface
concentration gradient develops in the region near the rear stagnation point and
the surface concentration is high in that region. This is the so called stagnant
cap regime owing to the fact that the surface convection is much larger than the
bulk diffusion when the ratio %]:j is small (this is easily seen from equation (2.59)).
Surfactant adsorb onto the surface at the front, and are quickly swept to the back by
strong surface convection. Since the surface concentration is always in equilibrium
with the sublayer concentration, which is expressed in equation (2.60), small bulk
diffusion (compared to surface convection) means slow surfactant desorption at the
back end. Surfactant accumulate at the back end, and this makes the interface

act like rigid boundary there. As k increases, the amount of surfactant adsorbed
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onto the surface increases, which follows from the equilibrium relation (2.60). But
the surface concentration gradient decreases as k increases. When we increase & to
200, the surface concentration gradient almost disappears (the bubble surface has
been remobilized). This is because the ratio —912—:— increases as k increases, hence the
diffusion at the back end balances the surface convection at large k. Comparing the
surface concentration distributions for Pe = 100 and Pe = 200, one observes that the
larger the Peclet number, the larger the bulk concentration needed to remobilize the
interface. Another interesting feature to notice, is the slight decrease in value of the

surface concentration near the rear stagnation point, which is caused by a negative

surface velocity at the back end as discussed in detail in next Section.

4.3.2 Surface Velocity Distributions

Since surfactant lower the surface tension, a surface concentration gradient causes
a surface tension gradient that in turn creates a Marangoni force opposing the
surface flow and hence reducing the surface velocity. This retardation is evidenced in
Figure 4.3. In figure(A) and figure(B), we plot the surface velocity, v, as a function
of 6, for the same value of Reynolds number Re, Marangoni number Ma and x
as shown in Figure 4.2, and various bulk concentration values k, for different Peclet
numbers (Pe = 100, 200). In both graphs, there are negative velocities when the bulk
concentration k is small, which are shown in figure(C) and figure(D), the magnifi-
cations near the rear stagnation point of figure(A) and figure(B) respectively. This
is because when %Z— <« 1, a stagnant cap develops near the rear stagnation point
that makes the interface at the back end act like rigid boundary. Reverse flow occurs
at order one Reynolds number, which causes a negative velocity near the surface in

the vicinity of the stagnant cap region. This negative velocity pushes surfactant on
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Figure 4.3 Surface velocity, for Re = 50, Ma =5 and x = 1, and k& = k,Cy is the
measurement of bulk concentration.
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the surface away from the back stagnation point and so causes a negative velocity
on the surface near the back end. This negative velocity also causes a decrease in
surface concentration near the rear stagnation point as we observed in Figure 4.2.
It is evident from Figure 4.3, that as k increases the velocity increases for a fixed
Peclet number, and the velocity profile becomes more symmetric about 8 = —72[, corre-
sponding to the remobilization in Figure 4.2. Note that, when k increases from the
value k£ = 5, the surface velocity near the front stagnation point decreases at the
first. The reason is that in the stagnant cap regime, surfactant convect to the back
end after adsorbing onto the surface at the front end and very little material is left
at the front making the surface concentration gradient there small. As k increases, a
larger surface concentration gradient develops near the front end at first as the ratio

%e_ becomes larger (but not large enough for remobilization).

4.3.3 The Flow Field in the Bulk

When the rate of surface convection is much larger compared to the bulk diffusion
(ig—l:} < 1), surfactant accumulate near the back and the interface there becomes
immobile. Wakes form at order one Reynolds numbers (Re = Ua/v) as shown in
Figure 4.4. The Figure shows the flow around the bubble by plotting the stream lines
at steady state for different Reynolds numbers, with Peclet number Pe = 100, k = 5
(k = k,Cs is a measure of bulk concentration), Marangoni number Ma = 5 and
x = 1. Wakes first form between Reynolds numbers Re = 15 and Re = 20, which is
larger than the value for a solid sphere (Re ~ 12.5), and as expected the recirculation
zone expands as the Reynolds number increases. In Figures 4.5 and 4.6, we plot the

stream lines around the bubble for Reynolds number Re = 50, Marangoni number

Ma = 5 and x = 1, and Peclet numbers Pe = 100 and 200 respectively. It is evident
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Figure 4.4 Flow around the bubble for Pe = 100, Ma =5, x = 1 and k = 5.
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Figure 4.5 Flow around the bubble for Pe = 100, Ma = 5, x = 1 and Re = 50.
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Figure 4.6 Flow around the bubble for Pe = 200, Ma = 5, x = 1 and Re = 50.
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Figure 4.7 The effect of concentration on the drag, for Re = 50, Ma =5 and x = 1,
and k = k,Cu 1s the measurement of bulk concentration.

that for a fixed Reynolds number, the recirculating eddies shrink as &k increases and
disappear altogether at large k. In addition the stream lines become more symmetric
about 6 = g as the surface remobolizes. For the same value of k, the wake is bigger
for Pe = 200 than that corresponding to Pe = 100. Wakes disappear between the
values of k = 25 and 30 for Pe = 100, and between k = 45 and 50 for Pe = 200. These
results confirm that higher bulk surfactant concentrations are required to remobilize

the bubble surface for larger Peclet number.

4.3.4 Total Drag on the Bubble
The effect of bulk concentration k on drag is examined in Figure 4.7. Here we
plot the drag coefficient Cp, (nondimensionalized by wa?pU?) as a function of bulk

concentration (k ranges from 5 to 200), for two different Peclet numbers (Pe =
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100, and 200), with Reynolds number Re = 50, Marangoni number Ma = 5 and
x = 1. We found that, for a fixed Peclet number, the drag decreases as the bulk
concentration k increases corresponding to the increase of the interfacial mobility
observed in Figure 4.2. Since the smallest bulk concentration & we examined in this
chapter is 5, the drag is not seen to increase monotonically at first as observed for
the zero Reynolds number case in Chapter 3; the monotonic increase takes place
as bulk concentrations increase from small values. With the concentration fixed,
however, the drag increases as the Peclet number increases in agreement with our

low Reynolds number results.

4.4 Conclusion and Discussion
The numerical results we presented in the previous section show that control of
bubble migration velocity by using surfactant concentration, is still effective for
order one Reynolds numbers. As in the low Reynolds number case, the ratio of
bulk diffusion to convection %z:— plays a very important role for order one Reynolds
numbers. For any order one Peclet number, when the ratio ?lg—lz & 1, surfactant
collect near the rear stagnation point (f = m) making the interface there immobile
and allowing wakes to form at order one Reynolds numbers. The reverse flow near
the surface pushes surfactant away from the rear stagnation point towards front
stagnation point, and causes a negative surface velocity near the back end which
drastically reduces the migration velocity. As k increases, although the amount of
surfactant adsorbed onto the surface increases, the surface concentration gradient
decreases since the ratio %’ei increases. In turn wakes disappear as the interface
xk

near the rear stagnation point becomes more mobile. At Po > 1, although the

total amount of surfactant adsorbed onto the surface is large, the surface concen-
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tration becomes uniform (we say the bubble interface remobilizes) as shown in
Figure 4.2. Hence the Marangoni force disappears and the bubble velocity increases
with increasing bulk concentration. The larger the Peclet number is the larger the
bulk concentration needed to remobilize the bubble interface as shown in Figure 4.7.
For fixed bulk surfactant concentration, the drag increases as the Peclet number
increases.

We have shown numerically, how to control the motion of a bubble rising in
a fluid containing surfactant, for order one Reynolds numbers and buoyancy driven

motion. Similar results are expected for fluid-fluid particles and thermocapillary

migration.



CHAPTER 5

DIFFUSIVE BOUNDARY LAYER ANALYSIS (Pe > 1)

5.1 Introduction
When Pe > 1, diffusion into the bulk is very weak and consequently surfactant
which adsorbs onto the surface at the leading edge is swept quickly to the rear where
it builds up and makes the surface immobile, it acts like a solid. This implies that
part of the bubble acts like a liquid surface and part like a solid. [Savic (1953)]
was the first to observe this phenomenon. It has since been confirmed exper-
imentally by many researchers: see [Huang & Kintner (1969)), [Griffith (1962)],
[Bel Fdhila & Duineveld (1996)], and [McLaughlin (1997)]. Savic also began a
theoretical study for the case of spherical drops moving in creeping flow, with
negligible interior viscosity and small caps. His numerical results were improved by
[Davis & Acrivos (1966)]. By requiring the net flux of surfactant to the surface to
be zero at steady state, [Harper (1973)] obtained an asymptotic solution for small
cap angles. [Holbrook & Levan (1983a)] assumed a uniformly retarded velocity
and obtained an asymptotic solution while [Sadhal & Johnson (1983)] solved the
velocity field analytically in terms of an infinite series of Gegenbauer polynomials
with constant coefficients as a function of a given cap angle of arbitrary size.
The mass transfer rates on the surface and cap were obtained by assuming a
linear relation between surface tension variation and surface concentration (this
assumption is valid for very low surfactant concentration), resulting in under-
predictions. [He, Dagan & Maldarelli (1991b)] obtained a more realistic value for
the cap angle by connecting the surface tension variation and surface concen-

tration with a nonlinear equation. However, the convection-diffusion equation
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was not solved and the cap angle was connected to the bulk concentration by
assuming that no diffusive boundary layer exists around the bubble, i.e. the
bulk concentration adjacent to the surface equals the concentration at infinity.
[Cuenot, Magnaudet & Spennato (1997)] solved the bulk concentration numerically
for a spherical bubble at order one Reynolds number with large surface and bulk
Peclet number (~ 10%) and low bulk concentration. Their numerical results illustrate
a cap at the back end, and confirm the formation of a wake at order one Reynolds
number as noted by [Edge & Grant (1972)] and [McLaughlin (1997)].

In this chapter, we consider a spherical bubble rising steadily in creeping flow
for strong convective surfactant transport (Pe > 1). A boundary layer analysis
for the bulk concentration is presented. As we described in Chapter 1, a boundary
layer develops along the bubble surface when Pe > 1. The boundary layer thickness
for a solid sphere is of O(Pe~3), and for a clean gas bubble is of O(Pe“%) (see
[Leal (1992)]). In the stagnant cap regime, part of the bubble surface is covered
with surfactant and acts as rigid boundary, while the other part is free of surfactant
and is completely mobile. When the Peclet number is asymptotically large, a
boundary layer develops along the bubble surface, but with different thickness along
the stagnation cap region and along the clean part surface as shown in Figure 5.1.
The governing equations and the stagnant cap boundary conditions are given in
Section 5.2. The leading order solution for the velocity field is given in Section 5.3.
In Section 5.4.2.1 we derive the leading order boundary layer equation valid in the
stagnant cap region, and show that the boundary layer thickness is of O(Pe‘%),
which is the same as for a solid sphere. In Section 5.4.2.2 we derive the leading
order boundary layer equation along the clean part of the surface, and show that

the boundary layer thickness is of O(Pe‘{ﬁ), which is larger than that for a clean
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surface bubble. The size of the clean part surface is found to be of O(Pe‘%). A

boundary layer analysis is given in Section 5.4.3.

5.2 Stagnant Cap Model
We examine the problem in dimensionless form with the scaling groups given in

. ) 1
Section 2.4 in Chapter 2. For simplicity, we write ¢ = Pe through this chapter.

The stream-function for axisymmetric creeping flow satisfies the partial differential

equation
E* =0, (5.1)
and the steady state convection-diffusion equation is given by
u - VC = eV3C, (5.2)

subject to the boundary conditions (2.51) - (2.60), where E is given by equation
(2.50) in Section 2.4 and € < 1.

When Pe > 1, the boundary condition (2.59) reduces to, at the leading order,
d .
%(uﬂ‘ sinf) = 0. (5.3)

Integrating the above equation gives (see [Sadhal & Johnson (1983)] for more detail)
ugl' = 0. (5.4)

This implies that to leading order the interface at the stagnant cap acts as solid

surface and the interface elsewhere on the bubble is clean of surfactant. i.e.

I'=0 0<f<7—o, (5.5)

u=0 T-—p<f<m. (5.6)
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The relation (2.23) between shear stress and Marangoni force on the surface in

dimensionless form is given by

- Ma oI
ré — 1_1—\89) (5'7)
: : o pU T :
where 7,4 is nondimensionalized by — It follows, by substitution of equation (5.5)
into equation (5.7), that the interface on the clean part of the bubble surface is stress
free. This together with the zero tangential velocity condition on the stagnant cap

leads to the mixed boundary conditions for the stream-function on the surface

0% 0y
IY ¥ = — .
52 ar | _, 0, O<l<m—op (5.8)
o
B . =0, T— <8<, (5.9)

Note that the cap angle ¢ is unknown and must be determined as part of the solution.

5.3 Fluid Field

We assume an asymptotic expansion for the stream function v in the form

Y =1+ ZFn(G)"pm (5.10)
n=1

where F,11(e) < Fyp(e) for all n. Then the first order stream function obeys the
partial differential equation (5.1), and satisfies the boundary conditions (2.51)-(2.53),
(5.8) and (5.9). As we showed in Section 3.2.2 in Chapter 3, a general solution which
satisfies the boundary conditions (2.51)-(2.53) is of the form

1

Yo = %(rz —7)sin? 0+ ) By (r " — ") Cn (cosb), (5.11)

n=2
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—L 1

where Cp, ?(z) are the Gegenbauer polynomials of degree -3
Applying the boundary conditions (5.8) and (5.9) to the solution (5.11), we
have the following dual series equations (there arise due to the mixed boundary

conditions),

S (20 — 1)B,Cr # (cos §) = 0 0<f<m—0p,

i~ 1 ) (5.12)
ZBanﬁ(cosﬁ)-—-Zsinzﬁ T—p<<T.

n=2

_i
Using the properties of C, 2 we express above dual series in terms of P! as follows,

2(27% + 3)Bnta Pyl (cos6) =0 0<l<m—o,
=0 . (5.13)
ZBn+2P,;}1(COSQ)=—Z sin , T—p<f<m

=0

where P *(z) are the Associated Legendre polynomials with order —1 and their
relation to the Gegenbauer polynomials Cp %(93) is given in equation (C.11} in
Appendix C.

[Sadhal & Johnson (1983)] solved the dual series by using the method introduced
by [Collins (1961)], by expressing the velocities in terms of infinite series of
Gegenbauer polynomials with constant coefficients as a function of given cap angle.
The convection-diffusion equation was not solved and the cap angle was connected to
the bulk concentration by assuming that no diffusive boundary layer exists around
the bubble. Here, we will solve the convection-diffusion equation by carrying out a
proper boundary layer analysis. To do so, we need to find both the velocity and the

shear stress in closed form on the whole surface.
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5.3.1 Shear Stress on the Surface

To find the shear stress on the surface, we define
o0
Z 2n + 3)Bny2 Pl (cos ) T—p<f<m. (5.14)
n=0

This is the value of the first series in (5.13) extended to the whole surface. Then,

0 0< B <m— 1,

(2n + 3)Bp 2P} ) = 5.15
; n+ +2 n+1(COS ) {h(g) 7T“‘§0<9<7T ( )

Applying the relation C.15 and the orthogonal property C.19 to equation (5.15), it

follows that

Buo==3 [ hOPhalcos)sing o, (5.16)
T—gp

where P’ (z) are the associated Legendre polynomials with order 1. Substituting this

expression into the second part of dual series equations (5.13), we have

Z l:Pnjrll(cosO) /W h{¢)Pryi(cos{) sinCdC] = %Sinﬂ (m—p <8 <m).
T—p

n=0

If we now interchange the order of summation and integration of the above equation

we obtain

/W MOS,Q)sinCdC = Zsind  (m—p <0 <) (5.17)

where

S(8,¢) Z . (cos ) Pr 1 (cos ). (5.18)

n=0
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To sum S(6,¢) we use the following theorem for Legendre polynomials:

Py(cosw) = Py{cos 0)P;(cos )

(5.19)
+ZZ ™cos(mz) P ™ (cos@) P (cos (), 1=1,2,3,... ,

where
cosw = cos f cos ¢ + sin @ sin ( cos z.

First, multiply both sides of the equation (5.19) by cos z, and integrate from 0 to 27

with respect to z to obtain

1 2w
Pl (cos@) P, (cosf) = —— +1(cos w) cos z dz. 5.20
n-+1 n+1 o J,
Thus we can write
1 [ e]
S(6,¢) = —%2/ P, 1(cosw)coszdz
0
. o (5.21)
= —— Z P,{cosw) coszdz,
2m n:o/O
since
2

Py(cosw) coszdz = 0.
0

On interchanging the order of summation and integration in equation (5.21), and by

noting that

= 1
HZ:DPn(fC) - V2 =2z
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we obtain
S(6,¢) = 1 (% coszdz
’ 21 Jy V2 —=2cosw
1 cos z dz

2n J, \/s%+s§—2slsgcosz’
where

6

51:2sin§cos%, 32:25ingcos§,

and both s; and s, are positive for all # and ¢, since 0 < ,( < 7. Using a lemma of

[Copson (8)], it follows that

) min(sy,s2) 24
5(8,¢) = — /0 NE 5 &0 . (5.22)

TS187 2 - 8?)(s2 - &?)

Since 81 < 89 when 6 < (, and s; > sy when 8 > (, we split the integral in equation
(5.17) at ¢ = 6 and then substitute the summation (5.22) into the integrals, it follows

that

/ / \/(31—:2dss 2 —s?) dC+/ f \/(32—32201532—5)(1C

=—Zsm9 (r—p<b<m).

(5.23)

We next make the change of variable

0 ¢ U
=2sin=-sin = = = m
S 31n2sm2cot2 ( <6<,

it follows, then, from equation (5.23)

sin? £ cot? £ du
[waf «
\fosg——cosu )(cos @ — cosu)
+f h@)/ sin? § cot? ¥ du i
8 ¢ +/(cos¢ — cosu)(cosd — cosu)
T o0

=—gcos’y (t—p<@<m).
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By inverting the order of integrations in above equation, we obtain

[attan [t
0 2 n—o / (cos { — cosu)(cos b — cosu)

o U R(¢) sin® § d¢
+/9‘ cot du/ /(cos ¢ — cosu)(cos § — cosu)

0
=—~gcosz§ (r—p <8 <7).

Tt follows that

cot? 2 du v h(()sin® § d¢ _ T 29.
Vcos# — cosu Jr—yp /COS( — COSU 2

Let
7 h ia2 ¢
H(u) = / ©sin’3 4. (5.24)
n—p V/COS( — COSU
Then
" H t? %
/ (W) eot” 3 du=—2 cos2€ (r—p<b<m). (5.25)
g /cosf —cosu 2 2
. . . sin 6
To find H(u), we multiply both sides of equation (5.25) by and

vcosv — cosf

integrate both sides of the equation from v to 7w with respect to 6, then

sin 6 df ™ H(u)cot? $du _ _E ™ sinfcos® " (5.26)
v Vcosv—cosf Jp +/cosl — cosu \/cosv—cos

Invert the order of integrations in equation (5.26), we have

sinf do T T sinf cos?

H(u) cot? = 5 du / ds.
/ \/(cos @ — cosu)(cosv — cos 9) Vcosv — cos B
(5.27)
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Applying the integral formula (C.20) directly on the second integral on the left hand
side of equation (5.27) gives the value m. The integral on the right hand side of
equation (5.27) can be evaluated using integration by parts, which is given as (see
equation (C.1) in Appendix C for more details)

29

T sind 2
Sl W Z(1+ cosv)?.

v Vcosv —cosf 3

It follows, then,
7 U 1 3
/ H (u) cot? §du = —§(1+cosv)5. (5.28)
v
Differentiating equation (5.28) with respect to v gives,
1 1 . 2 v
Hv) = —--2—(1 + cosv)? sinv tan 7 (5.29)

Substituting (5.29) into equation (5.24), we have

v h(¢)sin®§
7—p V/COS{ — COS U

d¢ = —%(1+cosv)%sinutan2 g (5.30)

sin u
and
+/COS U — COS Y

then integrate with respect to u from 7 — ¢ to v. It follows that,

To find A(¢), we multiply both sides of equation (5.30) by

/” sin u du v h(()sin®$
71— VCOSU — COSV Jr_y, 4/COSC — COSU
1 /'” sin® u tan? /1 + cosu
r—p  V/COSU—cCOsV

(5.31)

du.
2
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Interchange the order of integrations on the left side of equation (5.31), we have

/ h(C) sin —dC/ sin udu
\[cosu——cosv (cos ¢ — cosu)

\/5/ sin? —smu
\/Ccosu — cosv

(5.32)

The second integral on the left hand side of equation (5.32) equals to 7, which can
be evaluated by directly applying the integral formula (C.1) in Appendix C. The
integral on the right hand side of the equation is not obvious, but integrable. With

a little effort, we found (see equation (C.2) in Appendix C for more details)

* sin®%sinu = gt ? Y s~ \/COS(’R' — ) — cosv
—p V/cosu — cosv \/— 1—cosv (5.33)
1
+ g cos 5(5 +2¢osp — 3 cosv)+/cos(m — ) — cos .

Substituting this into equation (5.32) and differentiating with respect to v, we obtain,

. a2
h(v) sin® % = 2Ry {—3— [sin2 '—gsin_l \/COS(’/T — ) — cosv + V/2cos § sin” § }

T |2 1—cosv 44/cos(m — ) — cosv

2cos 5+ 2 —
+\/—co 3 /cos(r = ) = oo + (54 2cosp — 3cosv) |
24/cos(m — @) — cosv

l.e.

h(@) _ _\_/_5 (3 sin 8 sin~1 \/cos(w - <p) —cosf

T 24/2 1 —cos@
cos £ sin @ cos¥ @ 5.34)
+ —2 cot —+/cos(m — @) — cos @ (5.
\/cos (m—¢@)—cosf 2 2\/ (=) )

(r—p<8<m).

With h(f) known, the velocity field can be found as shown next.
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5.3.2 Velocity Field
We use A(f) to find a closed form expression for the velocity on the clean part of the

interface. We assume

g(6) = ZBnJrgP,;"jl (cos @) 0<8<m—09). (5.35)
n=0
Then
= _ 9(0) 0<b<m—o,
ZBn+2Pn+11(COSH) = {__s_i_z_x_ﬂ T—p<f< (5.36)

Substituting equation (5.16) into the equation (5.35) and interchanging the

order of the summation and integration, we have,

3

|
|

a\?\ﬁ

|
A

g(0) = —-—;— Z/ h(g‘)Pn_H (cos () n+1(cos 6) sin ¢ d¢
0 J/m-p
- —% ¢)sin¢ Z L (cos ¢) Py (cos ) d¢ (5.37)
1
2

h)S(0,()sinCdC  (0<b <7 —y),

where S(6, ()} and A({) are given in equation (5.22) and equation (5.34) respectively.

We now make the change of variable

9 ¢ U
5—200s~2—cos§tan§ 0<bB<m—1p),

and note that s, > s; for all # and ¢, since 0 < 8 < 7~ @ and # —p < { < 7. Then,

/ $2 ds
— ) (2 — &
78182 \/31 s2)(s% — s?)
2 cos? —coszﬁtanzg

= — 2 2 du
7rsin6’sin§ /(cosu — cos 8) (cos u — cos ()

S(6,¢) =

_ 2cot cos2£ / tan? % du
msin ¢ /(cosu ~ cos@)(cosu — cos ()
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Substituting this into equation (5.37) and inverting the order of integrations, we

have,
é U T
oy =tz [’y hQeos’5dC
0 Veosu —cosf Jrp v/COSU — COS( (5.38)
_cotd (% G(u)tan®¥ 4 (0<6< '
T 1 )y Veosu—cosf " )
where
1r h 2¢
Glu) = L (5.39)

m—p V/COSU — €OS

Substitution equation (5.34) into equation (5.39), gives (see Appendix C for details),

Gu) = \/— cos® § 3sin¢ cos(m — @) — cos ¢
B r—p V/COSU — €0S { 2\/“ 1—cos(
cos £sin ¢ 1 o

DTy —
T Jeostr = g) —eesc | 202 Veos(m — ) — cos g} dc

V2 g _sine u sin®u — cosu — cosp . |cos %52
= ® cos ——— €08 — In + .
2 2 2 4 sin ¥ cos £

(5.40)

The function g(f) is obtained by combining equations (5.40) and (5.38) to give (see

Appendix C for details),

sin @ U
= —— t — — — —— (08 —
9(6) co / ( 7 oS
sinu — cosu — cos ¢, |cos “FE tan? ¥ T
4sin ¥ cos *3£2|/ \/cosu — cos
2 6
= —isint?%—isinftan—\/costp»kcosﬁ (5.41)
4w 2m 2 2
sin @ /91 cos X2 sinu du
—— [ In
Ar? Jo = jeos *52| /{1 + cosu)(cosu — cosh)

0<f<m—0).
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5.4 Surfactant Transport
The limit ¢ — 0 poses a singular perturbation problem as can be seen from equation
(5.2). In the main part of the flow field a solution can be found which needs to be
matched onto boundary layer solutions in the vicinity of the bubble surface. These

two solutions in their respective regions are considered next.

5.4.1 Leading Order Outer Solution

In the limit € — 0, equation (5.2) becomes

u-VC =0. (5.42)

That is, the directional derivative of C in the direction of w4 vanishes. i.e.

DC

—DE.—O.

It follows, from the definition of the stream-function, that the bulk surfactant concen-
tration C' is constant along stream lines. Since the concentration far from interface

is equal to one. This leads to the solution

C=1, (5.43)

everywhere in the fluid domain. This solution satisfies the boundary condition at
infinity (2.58), but it does not satisfy the boundary conditions on the surface (2.60),
(5.5) and (5.7).

The problem arises from neglecting the diffusion term on the right hand side of

equation (5.2) everywhere. When ¢ — 0, the problem becomes singular. Diffusion is
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negligible compared to convection away from the bubble surface, but is not negligible
near the interface as a boundary layer develops there. In fact, the solution (5.43)
is the first order outer solution of the problem. To find the inner solution, we need

to introduce appropriately stretched boundary layer variables on perform a local

analysis there.

5.4.2 Rescaling and Boundary Layer Equations
5.4.2.1 Stagnant Cap Region (7 —p <6 <)

We rescale the length in the inner region as

r—1
T

m = (544)

where §; < 1 depends on € and is to be found from orders-of-magnitude (or balance

of terms) arguments.

From equation (5.11), we have, the exact leading order velocities,

1 o0
L=(= = Bn -n+l _ —n-1 Pn,_ 4 ,
1 (T l)cosﬂ—}—z (r 77" *)Py—1(cos 6)

n=2
up = (1 — g;) sin 6 (5.45)
+ 511119 > Bul(n—3)rt — (n— l)r"”_l]C';%(cos 6).

n=2

We now substitute 7 = 1+ §;7; into equations (5.45), and linearize the velocities for
small é;. Note that
1 I+

1
m =1- 161')71 + “*—2—*)"5%77% -

W+ 1) +2),

3 A
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Then
Up ~ (=61m1 + 62n?) cos 6

[e'e]
+ Z Bp[261m — (2n + 1)82n2) P_1(cos 8) + O(83),

n=2
5.46
ue ., Sind (540
r 2
1 < -1 0
+— ;Bn[—z +2(2n — 1)6171]Cn 2 (cos 8) + O(82).

To evaluate the infinite sums in equations (5.46), we use the results in Section 5.3,

where we obtained that,

Z Byo Pl (cos8) = ~% sin ¢ (m— <8 <m), (5.47)
n=0
Y (2n+3)BuaBrli(cost) =h(0) (- <O<m) (5.48)
n=0

which is equivalent to writing

S BaCit (cos6) = %snﬁ o (r—p<f<m),  (5.49)
n=2
S (20 = 1)BaCr ¥ (cos 6) = —sin 6h(8) (r— < 6 < ). (5.50)
n=2

Differentiating both sides of the above equations, we have,

ZBnPn_l(cos 6) = %cos@ (r—p<b<m), (5.51)
n=2
2(271 —1)B,P,_1(cosf) = — cot Bh(6) — h'(6) (m—p<8<m). (5.52)
n=2

Applying these results to equations (5.46), we obtain,

U, ~ 82n%[cot BR(A) + B’ (6)] + O(83) (r—p <8 <m), (5.53)

%9- ~ =281 h(8) + O(62) (r—p <8 <m). (5.54)
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We now propose an asymptotic expansion for the concentration field in the

inner region of the stagnant cap region, of the form

C(m,0) = Ca(ns,0) + Y, Gu(€)CI (11, 0). (5.55)

n=1

Substituting equations (5.53), (5.54) and (5.55) into equation (5.2), yields,

0C1 0C, € 82Cl
Sumlcot OA(6) + H(6)) 5 — 26:mh(6) gt + O(5F) ~ 555 + O(&)

(p—m <@ <m).

It follows, by a balance of terms that,

€

5y~ —
1 6%’

i.e. the boundary layer thickness on the stagnant cap region is
3 (p—m<8<m). (5.56)

This scaling is expected since it is that of the boundary layer on a solid sphere (see

[Leal (1992)]). The boundary layer equation is

&G
an?

+ n[cot 6R(6) + h’(ﬁ)]%% - zmh(e)%%l (r—p<b<m). (557
1
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5.4.2.2 Clean Surface Region (0 <8 <7 — o)

We begin our analysis by assuming that the angle 7 — ¢ (the size of the clean part of
. . e 0 .

the interface) is of order one. This implies that 6 " 1 in the boundary layer and,

as we show later, it leads to physically inconsistent solutions. This analysis is useful

in deriving the correct asymptotic boundary layer structures. From Section 5.3, we

have,

> " BnyaPr}i(cosf) = g(0) 0<8<m—0p), (5.58)
n=0
Z(Qn +3)BpyaPl(cosf) =0  (0<8 <7 —0p), (5.59)
n=0

which are equivalent to

e}

S B,Cr(cost) = —sinbg()  (0<0<7—yp), (5.60)
n=2

S (20— 1)B.Crt(cosf) =0  (0<8<7— o). (5.61)

n=2

Differentiating both sides of the above equations, we have

f:BnPn_l(cos 8) = —cot 8g(8) — ¢'(6) 0<f<7T—1), (5.62)
i(Qn ~1)B,Py-1(cosf) =0 0< <7 —0). (5.63)

We introduce a boundary layer thickness d;(¢), and rescale the radial coordinate

near the surface as

= . 5.64
2 5 ( )
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The concentration concentration is also expanded as

(o0}

C(12,0) = Ca(m, 6) + Y H(e)CI (n2, 6). (5.65)

Substituting r = 1 + 6272 into equation (5.45), expanding for small §,, and using the

summations (5.60) - (5.63), we have, for the leading order velocities,

Up ~ —182]cos 8 — 2(cot 8g(6) + ¢'(8))] + O(62) 0< 8 <m— ), (5.66)
sin g
2

?Tﬁ ~ 29(8) + +0(6y) O<f<m—g). (567)

Substitution of equations (5.65) - (5.67) into equation (5.2), yields,

sin@) aC; ¢ 8%C, (5.68)

oC,
. ! JOR— NS o e
1a[cos 6 + 2 cot 8g () + 2g (9)]—“‘3772 + (29(9) v )8 T2

Balancing the diffusion with convection gives

1
62=:62,

which is the expected result for a clean surface (c.f. [Leal (1992)]). We indicate, next
that this structure is physically inconsistent. This is done by consideration of the
mass flux onto and off the interface. Using the boundary layer scalings just found,

the mass flux onto the clean part of the surface is

T— T—1p
/ 91 singdp =~ / oC:
0 or 0

2 2
On the other hand, on the rigid part of the surface, r = 1 4 6%771, so the mass flux

72=0

r=1

off this part of the surface is

/ oc sinﬁd@-———l—/ 9C,
negp OT

2L sin@df ~ O(e73). 5.70
5 ), am (€73) (5.70)

m=0

r=]1
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It is obvious that the order of the mass flux onto the clean part of the surface
1s asymptotically larger than that off the rigid part, and hence the mass flux off the
surface cannot balance the mass flux onto the surface as ¢ — 0. This contradicts
the fact that the total net diffusion flux to the surface vanishes at steady state. The
problem lies in the assumption we made that the tangential angle both in stagnant
cap region and clean part are of order one. In fact, when € — 0 (Pe — 00), surfactant
acts as if it is insoluble once it adsorbs onto the surface. As a result, surfactant
almost covers the entire surface (as [Bel Fdhila & Duineveld (1996)] observed) at
steady state. In what follows we provide the consistent asymptotic scalings in the
limit € — 0.

To get an appropriate boundary layer thickness along the clean part of the

surface, we assume

T — @ = Ae€)po, (56.71)

with A(epsilon) < 1 to be found and @q = O(1) being a constant that needs to be
determined by matching the boundary layer solution along the clean part with the
solution along the stagnant cap.

We next rescale the variable 6 as

7
= — 5.72
which implies that
0C, 10Cy (5.73)

88 N ot
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The velocity field near the clean part of the surface now depends on both d, and
Aepsilon). To find the boundary layer thickness there, we need to expand the
function g(#) and its derivative ¢'(#), in asymptotic series.

We substitute § = A€ and ¢ = 7 — Ay into equation (5.41), and change to the

variable 4 = Av in the integral of that equation. Then,

g(Aé) = “*Z;% sin(A¢) + ——\@ sin 2 tan -—\/cos @ + cos(AE)

2T 2
_sin(A§) /f i e Asin(Aw) dv
ar? sin (112‘@—}5 \/[1 + cos(Av)][cos(Av) — cos(AE)]
= _E_—;?(Po& sin(A€) + \—/——f cos ——2—tan —~\/cos()\§) — cos{Apo)
B & 51 v+  vdy
4r? U~ @o| /&2 — 02
— oA AE A
_{m= %ol 4;_00 Dre+ 5/_ 25 \/_ iy (5.74)
2 € 3 2 2
’\f(\/g?—‘l l 0| o [ du)+0(,\3)
—Pollo o $o—U

EN | pobN N o Lo’ /5 £ — 2 3
82 Sy N d
LT TR VA e | T W OW)
A A2 N A2
~ —-i— + (’O‘f;r + %—-\/w% - & —% (wo — /¥ —52) +0(X)

)\2
~ -0 a0 (0 <€ <),

and

O ~ g+ - P v 2’5;A L0 (0<£<w) (5.75)

Substitute § = A¢ into equations (5.66) and (5.67), expand the velocities for

small ) and use the results (5.74) and (5.75), to obtain,

U~ )\52772 2990 352

+ O(65A) (0 < &€ < o), (5.76)

\/___
ug _7_r§, [ 0(6,0%) (0 < € < o). (5.77)
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Substitution of these along with equations (5.72) and (5.73) into the convection

diffusion equation (5.2), yields

] 7’]22C,00 52 502 f 2802 9
u VC’Q )\( \/.(’_D__:E__z_a?h - f aé_ +O()\ ,)\52)
(0 < 6 < ‘700)7
and
20y o £5C2 € (100 3202) € b e
NV 5 (5 o e ) TOG

(0 <& < ).

(5.78)

(5.79)

In the boundary layer region, we have to keep both the diffusion term and the

convection term of equation (5.2). This means,

8’%’7
or

€

At steady state, the total net flux to surface is zero, that is
T—1p T
/ ?—q—m 9d9-/ lesin|9dt9
0 67" T 37‘

i.e.

éi ©o 802
82 Jo Ona

o:lr-‘

S-SdE=¢€

f ————sm9d0

(5.80)

(5.81)

(5.82)
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It follows that,

as e¢—0. (5.83)

If we combine equation (5.83) with equation (5.81), then A = €3 and 8, = ¢
which makes the diffusion term we keep (the second term in the right hand sides of
equation (5.79)) to be much smaller than the term we throw away (the first term in
the right hand sides of equation (5.79) as € — 0. Obviously, balance of convection
with the second term of equation (5.79) is not a right choice. The only possible
correct answer is balancing the convection with the diffusion in radial direction.
This could have been anticipated since we need the radial dependence in order to
apply boundary conditions at 1, = 0, co.

Combining equation (5.83) with equation (5.80), we obtain,

So=€B, A=l (0<E< ). (5.84)
That is the boundary layer thickness along the clean part of the surface is of O(e15)
and the size of the clean part surface is of O(eT).
The boundary layer equation along the clean part of the surface is

772(2(,0% - 352) 502 E 9 2802 6202
- + = — = = 0<é< . 5.85
A= om VAU Ty O<i<wl 68

5.4.3 Boundary Layer Analysis
In the previous section, we found that a boundary layer develops along the bubble

interface when ¢ < 1 (Pe > 1), with thicknesses §; = €5 in the stagnant cap region
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Figure 5.1 Boundary layer structure, where ¢ is the cap angle
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and §; = €15 in the clean surface region as illustrated in Figure 5.1. The size of the
clean part of the surface is of O(eil‘s). That is the stagnant cap almost covers the
entire bubble surface as € — 0 (Pe — 00).

To find the leading order solution for the concentration field, we need to solve
the boundary layer equations (5.57) and (5.85) subject to appropriate boundary
conditions. The stagnant cap boundary conditions on the bubble surface hold for
the equations. However, the boundary condition at infinity cannot be applied directly
since the boundary layer solutions are only valid in the inner region near the surface.

But the matching condition with the leading order outer solution (5.43) implies that

Ci=1 as m —¥ 00, (5.86)

Co=1 a8 1 — o0 (5.87)

It follows that the boundary layer problems are:

1. In stagnant cap region (7 — ¢ <8 < )

0°Cy, o v @G _ 0C,
~ g Tleot Oh(6) + K ()] 5 = 2mh(0) 5, (5.88)
r

01 = ———-—*k(l — F) at m = 0, (589)
aCy
- = b= .9
30 0 at T, (5.90)
Cr=1 as M — 00, (5.91)

where h(f) is given in equation (5.34), and I'(¢) is obtained by solving differ-
ential equation (5.7) subject to the boundary condition I'(m — ¢) = 0, which is

given by

I(6) =1-e®, (5.92)
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with

(@)= L {(3 cos® — 1+ 2cos @) sin~t \/COS(” — ) —cosd

mMa 1 —cosd

(5.93)
——3\/§cos(—§ cos(m — ) ~0059:l,
2. In clean surface region (0 < £ < ¢y)

772(2gp§ - 352) 502 6 2 2802 8202
/g om VT e T (5:94)
Cy=0 at M =0, (5.95)

0C,

72 at =0, 5.96
e : (5.90)
Co=1 as 7y — oo, (5.97)

At 8 = m— ¢, both boundary layer equations (5.88) and (5.94) become singular.
A double deck may need to be solved in a small region around 6 = 7 — ¢, as is
illustrated in Figure 5.1. Equation (5.94) is solved numerically by marching forward
in £ starting from an initial condition at & = 0. The solution is shown in Figure 5.2,
where the horizontal axis represents the dimensionless concentration, the vertical

axis represents 7' = @772 and £ = —§— Note that there is a singularity in the
V =

%o
solution as ¢’ — 1. Using the above rescalings, the equation can be written as

n'(2-3¢%0C, 500,  92C,
- =+ 1= = ——
V1—¢% On g On

5.5 Conclusions
Once the solutions for boundary layer equations (5.88) and (5.94) are found, the

solution for the bulk concentration C' can be determined by matching the solutions
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£’ =0.049995 &' =0.099990 & = 0499950
5| 5 5|
4 4 4
3 3 3
2 2 2
1 1 1

0.20.40.60.8 1 0.20.40.60.8 1 0.20.40.60.8 1
&' =0.899910 &' =0969903 &' =0.989901
5] 5 5
4 4 4
3] 3 3
2| 2 2|
1 1 1
0.20.40.60.8 1 0.20.40.60.8 1 0.20.40.60.8 1

Figure 5.2 Boundary layer solution in clean surface region
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near the singular point # = 7 — . The mass balance relation (5.82) can then be used
to obtain the constant . Subsequently, with ¢q known, we will be able to calculate
the correction term to the drag. To find the drag, we first calculate the coefficient
B, using the expression 5.16 and then substitute it into the relation 3.7. By using

T—p= 61—15900 and expanding the result for small ¢, we have the following expression

of drag:

5
Dmg:——ﬁ—l-e%—(é%-l—--- )

This expression of the drag is of ultimate use and can be used to check experiments.



APPENDIX A

ANALYTICAL SOLUTION FOR SMALL BULK CONCENTRATION
AND PECLET NUMBER

The objective of this Appendix is the asymptotic evaluation of the drag Cp;

experienced by the bubble in the limit of small bulk concentration k and small

Peclet number of O(k). It turns out that the O(k) correction is zero and the

asymptotic development is taken to O(k®) in order to provide an accurate enough

result to compare with the simulations.

A.1 Hydrodynamics and Surfactant Transport

The exact system to be solved is

Bt =0,
P =0 at
P = irisin®@ as

Yrr = 20|,y = II%%%% sin 6,

for the hydrodynamics and

u-VCzPleVZC’,
_ _kC

= %%

C=1

?
1 8 (e — xkaoc
57 59 (51 Ouel’) = K25 r=1"

r=1, #=0,m,
T — 00,

at r=1
as T — 00,

(A1)

for the convection-diffusion equation governing the concentration distribution in the

bulk. It can be seen from equation (A.2) that in the limit k¥ < 1 (here we also take

Pe = Qk with @ a constant) the hydrodynamics decouples from the concentration

dynamics. In addition, at higher order this remains the case and forced versions of

equation (A.2) need to be addressed.
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Y=o + kb + Ky + K+
I'=To+ k[ + k2T + kT3 -+,
0200+k01+k202+k'303+“',

u = ug + kuy + k*ug + Kug + -+

Formally, then, we expand dependent variables in powers of k&,
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and substitute into (A.1) and (A.2), to obtain a sequence of problems at successive

orders.

A.1.1 Leading Order Solution

The leading order problem is

and

E4‘l/)0 = O)
Yo=0 at r=1, 6=0,m,
o = 372sind as T — 00,
8%y _ B __ Masin8 8Tg
Or2 or lr=1" 1-To 08"
Vi, =0,
Pg = 0,
Co=1, as r — 00,

L0 (g = X9C
55 o6 (510 Buoslo) = 5% —t

become, respectively,

Py _O%| _, 9

or? orl_, or

r=1

= 0.

(A7)

(A.8)

From (A.8) we have Iy = 0, and the boundary conditions for (A.7) and (A.8)
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The hydrodynamics decouples leading to the well-known Hadamard-Rybezynski

solution

Yo = ~(r? — r) sin? 6. (A.9)

The general solution of (A.8) is
Co= Z anr " Py, (cos6),
n=0
and application of the boundary condition at infinity gives ag = 1, while the boundary

condition at the bubble surface implies a; = 0 for 4 = 1,2,---. Thus, the leading

order solution for the concentration is

Co=1. (A.10)

A.1.2 Second Order Solution

At the next order, O(k), the problem is

Etpy =0,
— 0 abr=1 =0
ii; - worh (A.11)
Q% - = = Masin 652,
and
V() =0,
i . om0

X 9C;
=2 (sin Gugel'y) = Qor|



where
1 6v,b0 i sin 4
sing or 2’

Uop |'r:l =
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follows from the leading order solutions. Since I'y = 1 the boundary conditions

involving I'; in (A.11) and (A.12) become

o o _,
or? i,
Q(—j—l =Q~c050.
or |, X

Thus, the solution for (A.11) is

and the general solution for (A.12) is of the form

C, = Z bpr "YU P, (cos 6).

n=0

Applying boundary condition (A.14) on equation (A.16) implies

by :—Q—, b, =10 for n#l
2x

It follows, then, that the solution for (A.12) is

Qcos@

01—’:—'2X 7”2 .

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
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A.1.3 Third Order Solution

At O(k?) the problem is

E4'¢)2 = O:
P =10 at r=1, 6=0,m,
Y = as - 00, (A.18)
82 ) _ Yia
7;% - Q—E;’br—2 = Masin %2,
and for the concentration
V0, = @ (uer 2 + 215
Cy = as r — 00,
(A.19)

1 9 (g — X9Cy
s 55 (Sin Bugel'y) = Q or

r=1 .

As we showed in Section 3.2.2 in Chapter 3, the general solution for s that

satisfies the first two boundary conditions of (A.18) is

Wy = Z An(r Tt — r‘”+3)C';% (cos b), (A.20)

n=2

-1 1
where Cy 2(z) are the Gegenbauer polynomials of order —5 Using this solution
along with the known expression for I'; (see (A.19) and (A.17)) provides the following

equation connecting the unknown constants A,

Qzl\;ia sin?f = 2 Z(Zn ~ 1)AnC’,;% (cosf),
n=2

from which it follows (using the properties of the Gegenbauer polynomials) that

_ QMa

A
2 6y

, A, =0 otherwise.



Hence,

QM& .9
Yo = 19x (r r) sin* 6.

Next, with vy and C; known, the concentration Cs, in (A.19) satisfies

2
20y~ L oo (L - 1) ramta (L~ L
VeCy = " [cos 9(1"4 Ta)-l-sm 9(2r3 Py

Seeking a solution of the form

z fn(r)Py(cos ),

n=0

we find that the unknown functions f,(r) satisfy

1 d 21N Q2
r2d_(r fo) = 6xr4’
1d

2 6
Leen-Sn-2(5-8).

rt  rd
1d n(n+ 1)
72 dr( )=

The general solutions are,

Q do

= —_—— b
fo 12xr2 T + b,
Q? 5 do
- b
fa= 6X o) + 3 T o2,

fo =bpr" +dor~ ™D for  n#0,2,

fan=0 for n#0,2.
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(A.21)

(A.22)

(A.23)

(A.24)
(A.25)

(A.26)

(A.27)
(A.28)

(A.29)

and since Cy — 0 as r — oo, we require b, = 0 for all n. Hence the general solution

for Cy assumes the form

*® 2 2 5
Cp = Z d,r~ Y P (cos §) + Q + Q ( Zﬁ) Py(cos9),

12xr2 = 6y

n=0

(A.30)
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and the constants d,, can be found by substitution into the surfactant concentration

boundary condition in equation (A.19). The result is

_ @ )
0 6X’ 1 2X:
2
dzzg—- 1+E , d,=0 for n>3.
12y X

This together with (A.30) determines C,, which is given by
Co(r,0) =

QM+QE(2+X1 3

2x 1 6x \ 2x r°  4r?

A.1.4 Fourth Order Solution

Finally we consider the O(k®) problems

E4¢3=07
’Lb3=0 at 'f'=]., 9‘—-—0,7T,
%’%zO as T — 00,

2 o _ Y Py __ o0y
Ys % = Masin 852 + I'1 ( 2%, ) d

=1

and

ViCs = Q@ (1 55 + 245

C;=0 as r — 00,
FS = 023 - Plcls - CO3F27

L5 2 [sin 0(ugsT's + ugel)] = 552

siné

r=1

The solution for 13 has the same form as that for y,. Writing

oo
s = Bp(r~ —rCp : (cos 6),

n=2

) Py(cosb).

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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the coefficients B,, are determined by substitution into the last boundary condition
of (A.34) and use of the solutions already found for I'y, Iy, C; and C; (note that

these determine I'; which enters into the boundary conditions). The solution, then,

is found to be

Ps(r,6) = — Qg\ia (% - r) Oz—%(cosﬁ)

Q*Ma 4 1 -1
~ 0y (1+X> (r2 1) C; ?(cos §).

Our interest is in computing the drag up to and including O(k?), so the solution for

(A.36)

(3 is not required.

A.2 Asymptotic Expression for the Drag
Letting the drag on the bubble be Cpi, the limit considered here implies the

expansion
Cp1 = Dy+ kD, 4+ k*Dy + k*Ds + -+ . (A.37)

The total drag on the bubble is found by integration of the forces acting on
the interface and since the flow is axisymmetric, the drag is the magnitude of the
total force acting along the axis of symmetry and opposing the motion. The drag is
(see Section 2.4.2.1) (in what follows p; is the dimensionless pressure at the bubble

surface)

. ap]_ . 62'1,b
— 29281 7
Cm /o (Sln ) 5 2sin 8 52 a0

. & . O sin®§ 6T
—fo (smﬁ?—gﬁ—»GsmG—a—;—QMal“F%)dé?.
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Substituting equation (A.37) into above equation and using the solutions o,

%1, Y2, 3, I'; and T's given above determines the coefficients in the expansion (A.37)

for the drag to be

Mo\ . _
- 6—8-9—) sin 8 df = —4,

3y o1\ .
a3 - 6—8—9— sin 6 df = 0,
7T aZwQ a’(pz . arz .
/0 (—3—;3— — 6~8—9— — 2Masin 9——55-) sin 8 df
_%f in®0.dp = — M2
2X 0 3X
" [ 8%, O3 X ory  oI's\] .
/(; {3;3* — 6——C,ﬁ — 2Masin8 (—55— + 759—)] sin 6 df
2QMa ! 1 4Q*Ma ( 4) ]1 _1
C, 2{z)dz + 1+ — C, %(2)d
¥ 1 2 ( ) 5X X -1 3 (Z) z
4QMa,
3x

The relation (3.8) in Chapter 3 has been used here. The asymptotic result for the

drag Cp; follows, then,

B 2QMa
3x

Cp1 = —4 K* + il—%/{—&ke’ 4. (A.38)



APPENDIX B
ANALYTICAL SOLUTIONS WITHOUT FLOW

Two time dependent analytic solutions are provided for checking the accuracy of our
numerical results. The problem is reduced to simple cases where it can be solved
analytically, by assuming that there is no flow around the bubble. The solutions are

obtained using Laplace transforms.

When there is no flow (u = 0), the convection-diffusion equation (2.48) and

equation (2.59) become

oCc 1

ot _ 1L
ot PeV ¢ (B-1)
ol X0 oC
ot Pe or|._,’ (B-2)

where yg = xk.

Without loss of generality we rescale time as ¢t = 7Pe to obtain

* =vie, (B.3)

or ocC

_a—; —X —5:’:- r=1 ' (B4)

The problem can be solved analytically, if the bulk concentration is very small

(k < 1) or the bubble is taken as an infinite sink (C' = 0 on the surface).

B.1 Small Bulk Concentration
When k < 1, a linear relation between surface concentration I' and sublayer concen-
tration C(r = 1) may be assumed, i.e. the boundary condition (2.60) can be written

as
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Without loss of generality, we assume initially

The initial boundary value problem reduces to

'%g=v20

or oC

’8‘;=X0'-37T=1
{ I =kC at  r=1 (B.5)
I'=0 at T=0

C=1 as r — 00

C=1 at T=0

Since there is no flow around the bubble, the solution only depends on the

radial distance r. The boundary condition at infinity suggests a solution of the form

C=1+ @(,;: 7 (B.6)
Substitution of equation (B.6) into system (B.5), gives
0% 0¥
= B.7
or  or?’ (B7)
subject to the boundary conditions
|®] < oo as T — 00, (B.8)
=k(1+®) at =1, (B.9)
o _ xo(® —®) at r=1, (B.10)

5 =
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and the initial conditions
d =0, ' =0. (B.11)

If we take the Laplace transform in time of the differential equation (B.7), we

obtain
5"—2_ - S(i) = O,

where ¢ is the Laplace transform of @ defined as

d=L[D) = / e~ dr. (B.12)
0

b = A(s)e™V. (B.13)

Here we choose the real part of \/s to be positive to give a bounded solution. Taking
the Laplace transform of both sides of equations (B.9) and (B.10), and using the

relation (B.13), we have,

sI' = —Axo(v5 + 1)e™5, (B.14)
[= k(-}si + Ae™V%), (B.15)

where I' = L[I']. It follows that

Amo he” (B.16)
T kstx(vE+1) '
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Figure B.1 Contour for integral of Eq. (B.18)

Substituting equation (B.16) into equation (B.13), gives

ke“‘\/g(r"l)
ks +x(Vs+1)

&(r, s) = (B.17)

Now we use the contour L which is shown in Figure B.1 to find the inverse
Laplace transform of ®. Since Re(+/s) > 0, the function & has no singularity in the

region that is bounded by the curve L, hence

/ $e’ds = 0. (B.18)
L
This leads to
1 YHioo
(D = -2——/ @ESTdS
T Jy—ioo (B.19)

1 = 2 2 X ST
= ( de’"ds + ®e’Tds +] Pe’"ds + de ds) .
2m \Jr, Lo C1+Ch Cr
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The last two terms of the above expression vanish as R — co and » — 0. Hence

P = ——1—, (/ des"ds + @es"'ds)
271 L Ls
1 Le—Vs(r-1) ke~ Vi(r-1)
= e (/ e*"ds —I-/ e”ds)
2mi \Jr, ks + xo(+v/s+1) L, ks + xo(v/s + 1)

1 (/0 __ke—i\/@(r—l)e—w' g oo __kei\/ﬂ(r-l)e—yT P
= " y+ / : y)
211 \Joo —ky + Xo(24/7 + 1) o —ky+xo(—iyy+1) (B.20)
k e~ ivF(r=1) eiVI(r=1) )

2 Jo ((Xo ~ky) +ixoyF (o —ky) = Z'ch/?) o
k /m Xov/¥ cos(y/F(r — 1)) + (xo — ky) sin(y/y(r — 1)) eV dy
0 (xo — ky)* + xty

i

1 /oo X/ cos(/g(r — 1)) + (x — y) sin(\/y(r — 1))e“y7dy

o (x —v)2+ X%

The solutions for system (B.5) follow by substitution of (B.20) into equations (B.6)

and (B.9), and are

oo L /oo xv/ycos(v/u(r — 1)) + (x — y) sin(\/y(r — 1))e_y7dy
T Jo (X — y)?, + XZy 3 (B21)
k[T xyer
bk 7T./0 -0 Y

These integrals are calculated numerically in carrying out code validation.

B.2 Infinite Sink

For the particle as an infinite sink, the initial boundary value problem becomes

oC

— 2

or vee,

C=0 at r=1, (B.22)
C=1 as r — 00,

Cc=1 at 7=0.

We seek the solution in the same form as in equation (B.6). Let

U(r, fr)'

L s
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Substitute this into system (B.22) to get

or 5
with
|l11| < 00, lI’lT:l = '—17 lPlv‘:O = 0. (B.25)

Taking Laplace transforms as discussed in the previous Section, the solution for the

Laplace transform of ¥ is
¥ = B(s)e™ V™. (B.26)

Applying boundary conditions (B.25) on equation (B.26) gives,

B2~
S

It follows, then, from equation (B.26), that

~

T(r,s) = —}ge-ﬁ(f—n. (B.27)

To find the solution for ¥, we first find the solution for ¥,. To do so, we

differentiate the equation (B.27) with respect to r to obtain

or 1
_ 1 v B.28
or s (B.28)
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[t follows readily by inversion of (B.28), that

U 1 r-1y2
_.a_.. = —_—__6~L4?1)__ (B29)
ar /7T
Integrating equation (B.29) with respect to r, and using the boundary conditions

(B.25), we have

L v
U=— T dr -1
rﬁ/}e .

r—1
2 /2\/? a2
= —= eVdy—1
VT Jo
r—1
—erf(z\/,’l:)—l.

Substituting this into equation (B.23) gives the solution for system (B.22),

Clr,7) =1— % + %erf (;;) . (B.30)



APPENDIX C
FORMULAE AND CALCULATION DETAILS

In this Appendix, we provide evaluation of two integrals that were required in
Chapter 5. Calculation details of the functions G (u) on page 68 and g(f) on page 68
are presented. A list of relations of Legendre polynomials, associated Legendre
polynomials and Gegenbauer polynomials that we used in Chapter 5 and Appendix A

is given at the end, followed by some useful integral formulae.

C.1 Calculation Details
C.1.1 Evaluation of Integrals
1. This integral is used for calculating H(v) in equation (5.29) on page 65 in
Chapter 5.

T : 28
sin @ cos* £

/——-———i—dﬂ
v 4/CoSU— cosf

1 [Tsinf(1 + cos8)

3 v \cosv —cosH

de.

We make the change of variable z = cos 8, it follows then,

™ sinfcos? Y

v Vcosv — cosf

A
- ——dx

2 Jeosw VCOSU— T

-1
= / (14 z)dycosv —z
cosv . 1 (Cl)

= (1+z)Veosv—z|__ - Veosv — zdx

cosv

dg

-1

2 3

= —(cosv —z)?
3 cosv
2

= §(1 +cosv)?,

100
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2. In what follows, we provide the calculation of the result (5.33) on page 66 in
Chapter 5.
v sin’%sinu
U
_p V/cosu — cosu

v U
= -2 sin® = dv/cos u — cos v
. 2

g U v ! U . oU
= —2 sin E\/cosu——cosv +3 cos-z—sm é—\/cosumcosvdu.
T T~

v p . U
= 2cos® f\/cos(vr — @) —cosv+3 / cos = sin® =/c0s & — cos ¥ du.
2 e 22

We now make the change of variable z = coswu, substitute this into the above

expression to find

v 3 u

sin? $sinu
» /COSU — COS v
cos v
= 2cos® £+/cos(r — )—cosv—-—- V(1 ~z)(z — cosv) dz
2 cos{m—p)
=2cos® 2

cos(m — ) — cosv

3 2x — 1 —cosv
v, { 1 V(1 - z)(z ~ cosv)

+(1 —cosv)? /“’S” dz }
8 cos(r—g) 1/ (1 — z) (% — cosv)

= 2 cos® g\/cos('/r — ) — Ccosv

2
- ng [—\C cos £(1 + 2 cos @ + cos v)+/cos(m — ) — cosu

(1—cosv)? . _, [z—cosu|”"
+ ————sn —_—
4 L — €08V | o5y

4V ., [cos(m—¢) —cosu
= ——~sm s in
12 \/ 1 — cosv

1
+ g cos —2—(5 +2cos p — 3cosv)y/cos(m — ) — cosv.

COoS v

cos(m—¢)

(C.2)
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C.1.2 Calculation for G(u)

Here we show the result (5.40) for G(u) on page 68 in Chapter 5. The expression of
G(u) in integral form is given by

Glu) = f cos® § 3sin¢ sin-1 cos(m — @) — cos(
W= o Veosu —cosC | 2v/2 1 —cos¢
cos £ sin C

1 ¢ (C.3)
2 cos Lot 2 —
\/cos P e t5c085 cot 2\/cos(w ) — Cos C] d¢.

We make the change of variable z = cos {. Also, we write a = cosu and b

= cos(T—¢)
for simplicity. Multiply both sides of the above equation by —Z. It follows that

—1 ___ 0 @ -1 1
T Gl = - 3 l+z . o b Z . 8% (1+1)dz
V2 442 )y Va-u l-z 2 Sy Jla—=z)(b—12)
_cos%/“ll—i—a: b——az:dCc
4 J, l1—zVa-=z
-3 (1 +2)va—~zsin™" b= _1\/a—msin‘l b_mdx
22 I-z| 11—z
+\/1—-b/“11+x fa—:vdw
2 y l—zxzVb—2
_cosf 71 (L+az)ds _cos%”—f‘ﬂ—%—x /b—:cdx
2 S la-z)(b-x) 4 Jy l-zVa-z
3 (77 .4 bz 3 tp/"ll-t-x a—1
=——_ [ Va= 2 cos Y d
o5 ), VerEsn g dr sy | TV @
_cos¥ 1+z _cos%/“ll—i—x b—xdm
2 U ﬂ——m)b—x) 4 Jy l1l-zVa-z
V2

. PR |
=3 [(a )7 sin l—m ,—-——b =

3 w/‘11+x a——md cos-;ﬁ-/‘1 (1+1z)dz
T3 ), T-aVi-

v/ (a—z)(b— 1)
e p-1 —
_c052/ 142 /b T g
4 U

l—zVa—=x

\/1_:»_/ am:c)% da:]

(continued on next page)
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+§COS£/“11+:U a—:cdx_cosg- 1 (l+z)ds
13 ), 1-zVr—2 2 )y Je-nb-2
_cos%f/'ll—i-sc b—x

4 Jy l-zVa-—zx

—2(1 4+ x)

V2 s cos? 2(a—-2) 3(1+z)(a— 1)
ﬂT(1+a)Z+T/b [ l1-z T l—=z

(1+:v)(b-—:c)] dz
-z Via—z)(b—z)

_ V2 g, cos¥ 19z —(a+b+2)z+2a2+3a—b—2
K d+a)+ 4 /b (1—z)y/(a—z)(b—z) dx
_ V2 g cos¥ 2z —a-b)(l-z)+2{(a*+a—-b-1) .
=g Grarr Ty /b (1-2)\/(a-12)0b— 1) ;
:[;Z—(p(l%—a)%

cosg [t a+b—2z 2(a* +a—b—1) iz
i e R <a~w><b—m>}
:—\[z—()o(l-i-a)'gl

cos £ -1 . B -1 dz

2 —2\/(a——:c)(b—-:c)|b +2(a*+a—b 1)/b = (a——x)(b—m)]
:—‘fzﬂ(ua)%—cosg DD

|

cos ¥ (a* +a—b—1)
2 V1-a)1-0Y)
=1§f(1+a)%-c°;§ T+ oI+

! V(1 =a?)(1—-0%) +ab—1
n a—b .

In \/(a*:r:)(b~—x)+\f(l—a)(1~b)+ a+b—2
1-z 2¢/(1 —a)(1 —b)

cos€ (a®+a—b—1)

T ety

(C.4)
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Substitute a = cosu, b = cos(m — ¢) back into equation, we obtain

(1+a)? — V(1 4 cosu)(1 — cos )

cos £ (cos? u + cosu + cos p — 1)
2 /(1 —cosu)(l+ cosp)

= gocoss—g—— ~—\/———31ngo\/1+cosu

v/2 (1 — cosu — cos? u — cos )

+-4— \/1—cosu

_ V2 s cos¥
4 2

sinusing — cosucosp — 1
cos U — cos(m — )

1+ cosucosy + sinusin

lnl

cosu +cose
_ 3 E _ Slngﬁ u
=peos’ 5 = 5= cos 5
sin®u — cosu — cosp, cos *5%
4sin ¥ cos £ |’
(C.5)
The result (5.40) follows by multiplying equation (C.5) by -
C.1.3 Calculation for g(#)
The calculation of result (5.41) on page 68 in Chapter & is given below.
cot? r? G(u)tan®%
9(6) = —2 ) du
s v/cosu — cosf
————cot / ( 3u Slgwcosg
2
i cos *52| sin® u—cc?su——cosw tan® & "
cos “¢ 4sin % V/cosu — cosf
(C.6)

cotg[ \/—cp o S“tan—;ﬁ s1n<p/ T+ cosutan® §

72 vcosu — cosf /cosu — cos§
__1_/9 (1-—cosu—coszu—coscp)tan 2 Jcos*5%
2Jy /(1 — cosu)(cosu — cos 6) cos 452

tﬂ
-—-ch <\/_I+SWII~31H)
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where the integrals I, IT and II1 are given by

[ coS Sutan2u

2du

I=
Vcos u — cosf

9\/1 cosutan? ¥
II —~/ + 2 du,
v/ cosu — cosf
1 —cosu — cos®u — cos @) tan? & b—p
111 = f( p)tan®s | |oos®3
/(1 — cosu)(cosu — cos §) cos L1

and are evaluated next.

1. Calculation for integral I.

4 3u
coSs tan
I= 2 du
\/ cos % — cos @

9 sinu 1 ~ COS U
d
2\/— v/cosu — cos@

11—z _
2\/— cosg ¥ T — COS 9 (z = cos) (C.7)

1
— — _ , [z —cosh
2\/_[\/(1 z)(z — cosf) + (1 — cosf) sin™ l—cosﬁ]
cos @
:\/_Wsinzg.
4 2

2. Calculation for integral IT.

du

7= / /1 + cos u tan? %
- cosu—cos@
1 —cosu

o /(L +cosu)(cosu — cosf)
= fl vi-z dx (z = cosu) (C.3)

du

coso (1 +z)v/T — cosf
1
6 . ;| (B+cosb)z—1—3cosh . _, [z —cosf
= sec 5 —2
seegsn { (14 2)(1 —cosf) VT cosd e
0

= 2 - 1).
7r(sec2 )
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3. Calculation for integral IIT.

6 _ _ 2, 9 -
11 :/ (1 — cosu — cos?u — cos ) tan %ln cos ¢
o +/(1—cosu)(cosu— cos ) cos 42

1+ cosucosy + sinusing
COSU -+ COS ¢

8 .
_[7 sinu(l —cosu — cos® u — cos )
= /. du.

In
(1 4+ cosu)i/cosw — cos@ l

We make the change of variable z = cosu, then the integral 77 becomes

1 e 2 . )
III:/ l-z—1 coscpln,1+:ccosgo+81n(p\/1 al
Ci

05 6 (1+3§)%\/$-—C089 T +cosgp
_/1 1—cosg 2z +(1—cos)f
cost | (14 2)3/T — cosf 2¢/(1 + z)(z — cosb)

4 1 —cosf }lnll—{—xcoscp-&—singp\/i——*m—? i
2¢/(1 + ) (z — cosb) T +cosp

:/1 (1 —cosg) 1nl1+xcosqa+sin<,o\/f:—x—2 p
cos (14 2)3+/2 — cos b T+ Ccosy

_/1 (2z+1—cosf)dz . |1+zcosp+sinpy/1—z? J
cos8 24/ (1 +z)(z — cos ) T+ COS
(1 - cosf) n‘l+mcos<p+singo\/i——:nf J
24/(1+ z)(z — cos ) T+ Cosp
_ 2(1—cosy) :r;—cos(}ln 1+ z cos @ + sin /1 — 22 '
1+ cosf 1+1z T + cos @ ot

——COS(p fz —cosf —sm(pd:c
1+cos@ cos 8 1+z as—i—cosgo 1—122

1
14 zcosp+sinpy/1— 122

—+/(1+ z){(z — cosf) In

T+ cosyp cos 0
V(A +2)(z —-cosﬂ)d
smy cosd (:c—}-cosap)m
1 —cos@ 1+£ECOS(,D+SHH,D\/1_:—!E§ dz
2 cos " T +Cosp V(1 +z)(z — cosb)

(continued on next page)
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231ncp1~cosga/ [z — cosf
1+ cosf cos 0 1-z (14z)( m+cos<p)
: / T — cosf
—singp \/
cos 0 l1-z x+coscp

+1—cost9/ I ll—}-:z:cosc,a+s1n<,0\/1——:z:2 dz
2 cos 6 T +cosy 1+$)£IJ-COSG

— tan? sm/ |z — cosf ZSmtp/ z —cosf dz
v cos 6 1—x :c+cosgo C 14c080 S l—-z 14z

N 1—cos9/ ln'l—l—mcoscp—i—smcp\/l~:v2
cos b

2 T+ cos

= tan® Qsin 2sin™! A/ z — cost
- g S 1 —cosf
1
cos ¢ + cos @ e (1+ 2cosp + cosf)z — (cos ¢ + cos g cosf + 2 cosb)
1+cosg (z + cos ) (1 — cos §) )
Cco8

1
2singp . _, |z —cosf o8 . _; (34 cosf)z— (14 3cosb)
1+cosf {%m 1_cosg > g™ (1+z)(1—cosb) et

V(1 +3:)(:c — cos f)

1 —cosf 1n|1+xcos<p+sin<p\/l——:c2 dz
2 cos 0 T +Cos vV +z)(z — cosb)
) ) 0
= —msing (1 —I—tanga/% — sec 5)
1 —cosf [* . 1 4 x cos ¢ + sin pv/1 — 22 dx
2 cos T +cos p V(1 +z)(z — cosb)

0 |/ f 0
= —7sine (1—%—1:&1125 %— -sec—i)

_'_1—0050/01 cos 432 sin u du
—_—_— n .
2 o |cos®f2| /(1 + cosu)(cosu — cosf)

(C.9)

Substitute equations (C.7), (C.8) and (C.9) into equation (C.6), to obtain the

expression for g(6).

2
g(6) = vzf’gr- sin § + [;;E—Ztang\/coscp—f—cosé)

C.10
siné’f"ln cos 2 sinu du (C.10)
472 fo " |cos ®E2| /(1 + cosu)(cosu — cosf)



C.2 Some Useful Formulae

C.2.1 Relations between Gegenbauer and Legendre Polynomials

cpt (cosf) = —sin P, (cos f)

1

C’;%(cosé’) =5—7

[Pr_2(cos 8) — P,(cos 8)]

dP,_1(cos6)
dé

o (cos 6)

=-n(n—1) sin 6

_1
2
dCn * (cos §) = sin 8P, _;(cos §)

ae
Pl(cos9)
-1 . _n
P (cost) = YAy
2
C’;%(cos 6) = SH; 6

P;(cos8) = cosf

Py(cosf) =1 - gsin2 6

/ P (cos0)P"(cos 0) sin 8 = {gn(n +1)
o 2n(nt1)

2n-4-1
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(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)
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C.2.2 Integral Formulae

/ sin 6 df _ 9gip-! [cosf — cosu (C.20)
v/ (cos @ — cos u)(cosv — cos6) COSU — COS U

vaxr:+br+c++/c b
( - +2\/E) (e>0) (C.21)

/ dz __ 1
wvar® +br +c¢ /¢

dz 1 . 4 b+2
= sin c<0 C.22
/ zvari+brx+c —C zvb? — 4ac ( ) ( )

/ \/%%_—I-— = % In[2az + b+ 2+/a(az? + bz +¢c)] (a > 0) (C.23)
azr® +br+c

4ac — b? d
/Vax2+bx+cdx= 2a$+b\/ax2+bx+c+ = / - a (C.24)
4q 8a vaz?+4br+c

1 . 4 —2azx—0b

dz
= sin a<0 C.25
varl+br+c V—a Vb —4dac ( ) ( )
/ VT — im\/q =z 2sin” Z:p (G.26)

f p;za’m=x/(p—x)(fc+q)+(p+Q)sin’1\/%§ (C.27)
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