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ABSTRACT

A THEORETICAL STUDY OF BUBBLE MOTION IN SURFACTANT
SOLUTIONS

by
Yanping Wang

We examine the effect of surfactants on a spherical gas bubble rising steadily in an

infinite fluid at low and order one Reynolds number with order one and larger Peclet

numbers. Our mathematical model is based on the Navier-Stokes equations coupled

with a convection-diffusion equation together with appropriate interfacial conditions.

The nonlinearity of the equations and boundary conditions, and the coupling between

hydrodynamics and surfactant transport make the problem very challenging.

When a bubble rises in a fluid containing surface-active agents, surfactant

adsorbs onto the bubble surface at the leading edge, convects to the trailing edge

by the surface flow and desorbs into the bulk along the interface. This adsorption

develops a surface concentration gradient on the interface that makes the surface

tension at the back end relatively lower than that at the front end, and thus

retards the bubble velocity. Because of surfactant impurities unavoidably present

in materials, this retardation can cause a problem in materials processing in space

and glass processing when bubbles are created during chemical reactions. Thus

the study of how to remobilize (remove the surfactant gradient on the surface) the

bubble surface becomes necessary. Many studies have been done on this retarding

effects of the surfactant on a moving bubble. However, most were focused on the

retarding effect due to a trace amount of surfactant, in which case the bubble velocity

monotonically decreases as the bulk concentration increases. The question of how

to remobilize the bubble surface remains unanswered. In this work, we will show



that the bubble velocity can be controlled by remobilizing the bubble interface using

the surfactant concentration. This technique not only can be used to maximize

the bubble velocity, but also can be used to maximize mass transfer on purifying

materials and extracting materials from mixtures.

In the first part of the work, we illustrate numerically that the bubble interface

can be remobilized by increasing the bulk concentration of surfactant, for any fixed

Peclet number, at low Reynolds number. For any fixed bulk concentration, the

bubble velocity decreases with increasing Peclet number. The larger the Peclet

number is the larger the required bulk concentration needed to bring the velocity

back to the clean surface value. In the second part of the work, we will show that

the remobilization still remains effective for order one Reynolds numbers. Moreover,

when the rate of convection on the surface is much larger than the rate of diffusion

at the back end, a stagnant cap develops near the back stagnation point that makes

the bubble surface there act like a solid boundary. Wakes form at higher Reynolds

numbers that drastically reduce the terminal velocity, and disappear as the bubble

interface remobilizes. Finally, we consider the problem analytically for asymptot-

ically large Peclet numbers. When the Peclet number is very large, a stagnant cap

forms at the back end which makes one part of the bubble surface clean of surfactant,

and the other part completely immobile. Also boundary layers develop along the

bubble surface with different thicknesses on the clean part of the surface and on the

stagnant cap. The asymptotic structures are obtained and the governing equations

posed and partly addressed numerically and analytically.
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CHAPTER 1

INTRODUCTION

The effect of soluble surface active agents on the motion of drops and bubbles has

attracted much interest for many years. It is motivated primarily by its relevance

to the understanding of the performance of dropwise and aeration processes (see,

for example, [Huang & Kintner (1969)] and [Beitel & Heideger (1971)]), where the

existence of surface active species reduces the mass transfer. The problem has appli-

cations in material processing in space for making superconductive materials, optical

fibers and better crystals for the semiconductor and biomedical industry, and also

in pollution cleansing systems, purification of materials and extraction of materials

from mixtures, gap solidification, glass processing and composite preparation. An

interesting aspect of this problem is the significant retardation on the particle (bubble

or drop) motion due to the existence of surface active impurities in the fluid phases.

Since it is impractical to remove the impurities from the material, the study of how

the Marangoni force can be reduced (remobilization) becomes a question of techno-

logical significance.

Employing both numerical and asymptotic methods, we will investigate how

the bubble motion is affected by the bulk concentration in general, and show that the

retardation can be reduced by increasing the bulk concentration. Although we model

the problem for buoyancy driven motion, the technique applies to thermocapillary

migration as well.

In Section 1.1, a description of the Levich framework will be followed by a

discussion of some of the subsequent works and questions that remain open. In

Section 1.2 we will outline the results of our study.

1
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Figure 1.1 Retardation mechanism

In Chapter 2 we will derive the governing equations and thus set up the mathe-

matical model for the cases of this study. Chapters 3 and 4 will focus on small

Reynolds numbers with order one and higher Peclet numbers and the case of order one

Reynolds numbers with order one and higher Peclet numbers, respectively. Our work

on the asymptotic solution for high Peclet number will be described in Chapter 5.

1.1 Background

[Frumkin Levich (1947)] first described the retardation mechanism on a particle

moving in a surfactant solution. Here we describe this mechanism for the case in

which surfactant is in the continuous phase only. As shown in Figure 1.1, when a

particle moves in a fluid phase containing surfactants, surfactant adsorbs onto the

surface of the particle at the leading edge, and is convected by the surface flow to the
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particle's trailing end. Accumulation at the back end causes kinetic desorption into

the bulk sublayer (fluid adjacent to the bubble surface), and the sublayer concen-

tration increases above the value far from the interface. This difference gives rise to a

diffusive flux away from the trailing end. Similarly at the front end kinetic adsorption

occurs from the sublayer since the front surface is swept clean of surfactant. The

sublayer concentration adjacent to the leading end of the particle decreases, creating

a diffusive flux from the bulk to the front end. Eventually a steady state develops: In

this state, the surface concentration at the back end has increased to the point where

the desorption rate, proportional to the difference between the surface and sublayer

concentration, balances the convective rate. In addition, the sublayer concentration

increases sufficiently so that the diffusive flux away from the particle surface, propor-

tional to the difference between the sublayer and far field concentration, balances the

kinetic desorption. At the front end, the surface concentration becomes reduced

enough so that kinetic adsorption balances convection, and the diffusion to the

surface balances adsorption. Consequently, in this steady state the surface concen-

tration is considerably higher at the rear than at the front of the particle. A gradient

of surface concentration develops on the surface. Since surfactant reduces the surface

tension, a surface tension gradient forms on the interface which opposes to the surface

concentration gradient, implying that the surface tension at the back end is relatively

lower than that at the front end. This interfacial tension gradient creates a surfactant

Marangoni stress along the surface as the front end tugs the interface towards it. The

direction of this surface stress is opposite to that of the surface flow, and thus the

adsorption of surfactant onto the particle interface acts to reduce the surface flow,

hence increases the drag on the particle and reduce the terminal velocity for rising
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gas bubbles, for instance. Similar retardations are observed in thermocapillary flows

also (see [Kim & Subramanian (1989b)] and [Nadim & Borhan (1989)]).

The retardation is much more significant for thermocapillary flows. In this

case, the temperature at one side of the particle is relatively higher than the opposite

side. Since the surface tension decreases as temperature increases, the side with

the higher temperature has the lower surface tension, and vice versa. The low

temperature region tugs the surface towards it, effectively developing a surface

flow in the same direction and pulling the particle from the colder side to the

warmer side. The magnitudes of this thermocapillary migration and the retardation

caused by surfactant adsorption onto the particle surface are of the same order as

they are both produced by a surface tension gradient, but in opposite directions.

This makes the thermocapillary migration very sensitive to the presence of the

surfactant as [Kim & Subramanian (1989a)], [Kim & Subramanian (1989b)] and

[Nadim & Borhan (1989)] pointed out.

Using the Levich framework, several authors have studied, at steady state, the

increase in drag for a particle moving at constant velocity due to the Marangoni forces

created by the convective redistribution of surfactant along the surface. Roughly

speaking they fall into two categories: when the convection of the surfactant along

the surface is much greater than either the bulk diffusion or kinetic exchange, and,

when they are of the same order.

When the surface Peclet number is large and the bulk concentration is small

enough, the ratio of diffusion to convection is very small. This scenario belongs to the

first category. In this case surfactant accumulates at the back end of the bubble and

a stagnant cap develops there. This stagnant cap drastically increases the bubble

drag, and increases it more as the cap angle gets larger.



5

Various theoretical studies of the dependence of the drag on the cap angle

have been completed with the assumption that the Peclet number is infinite.

[Savic (1953)] first observed the stagnant cap phenomenon. He also began its

theoretical study, for the case of spherical drops (viscous and inertial forces

are small compared to capillary forces) moving in creeping flow, with negligibly

interior viscosity and bearing small stagnant cap, assuming that the surface

pressure reaches its upper bound for a given surfactant. The problem is generally

formulated in terms of an infinite set of algebraic equations for the coefficients

of a series. Savic truncated this series after six terms. [Davis & Acrivos (1966)]

improved his approximate numerical solution by retaining 150 terms for bubbles.

[Harper (1973)] and [Harper (1982)] worked on small cap angles and carried out an

asymptotic analysis. [Holbrook & Levan (1983a)], [Sadhal & Johnson (1983)] and

[He, Maldarelli Dagan (1991a)] worked on droplets. While these studies are for

buoyancy driven motion, [Kim & Subramanian (1989b)] worked on thermocapillary

driven motion of drops. The cap angle is obtained by computing the surfactant

distribution in the cap region. [Griffith (1962)] first introduced the method, but

the study was incomplete since he did not have the proper hydrodynamic solution.

[Sadhal & Johnson (1983)] solved for the stream-function analytically for a given cap

angle of arbitrary size—the solution is an infinite series involving the Gegenbauer

polynomials whose coefficients are functions of the cap angle. They obtained the

cap angle by using a linear relation between the surface tension gradient and surface

concentration, and assuming that no diffusive boundary layer exists around the

particle, i.e. the concentration in the liquid adjacent to the interface equals to

the concentration at infinity. [He, Maldarelli Dagan (1991a)] used a nonlinear

relation, but they also ignore the existence of a boundary layer along the surface.
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The question of how the concentration distribution of surfactant in the flow and

on the surface affects the motion of the particle was not considered in these papers

and still remains to be answered. In the case when the continuous phase inertia is

not negligible (order one Reynolds number), [Bel Fdhila Duineveld (1996)] (for a

spherical bubble shape) and [McLaughlin (1997)] (for a deformed shape) computed

the drag for buoyancy driven motion as a function of the cap angle, and the cap

angle as a function of concentration for kinetic control. They demonstrated that at

sufficiently large Reynolds number and cap angles, the immobility of the cap causes

a recirculation at the back.

For thermocapillary driven motion, the effect of surfactant has only recently

been studied by [Kim & Subramanian (1989a)], [Kim Subramanian (1989b)] and

[Nadim Borhan (1989)]. They found the retardation on the thermocapillary driven

is much greater than on the buoyancy driven motion. Since the magnitudes of

Marangoni force and thermocapillary force are at the same order, Marangoni stress

reduces the velocity to nearly zero.

Recent numerical results of [Cuenot, Magnaudet Spennato (1997)] for the

buoyancy driven motion of a spherical bubble at order one Reynolds number illustrate

a cap by the collection of surfactant at the back end due to the high Peclet number

and confirm the formation of a wake at order one Reynolds number as noted by

[Bel Fdhila Duineveld (1996)] and [McLaughlin (1997)].

In the second case when surfactant transport from the bulk to the surface

matches the convective transport, if the kinetic rate is fast relative to convection, the

surface and sublayer are in equilibrium. Bulk diffusion then governs the surfactant

transport. All studies in this regime considered the case of a slightly soluble

surfactant or a surfactant at low bulk concentration. Several studies examined
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the case of large Peclet numbers, and used a boundary layer analysis to describe

the diffusive flux. (c.f. [Deryagin, Dukhin & Lisichenko (1959)], [Saville (1973)],

[Levich (1962)], [Harper (1974)] and [Harper (1982)] for negligible inertia and a

spherical particle, and [Andrews, Fike & Wong (1988)] for a deformed particle at

order one Reynolds number; all these studies are for buoyancy driven motion).

The first studies in the direction of solving the convective diffusion directly were by

[Levan & Newman (1976)] and [Holbrook & Levan (1983b)] for the case of buoyancy

driven motion of a spherical particle in the absence of inertia. Levan demonstrated

that the drag increases as the bulk concentration increases. This is because the

surface concentration gradient increases as the bulk concentration increases at low

concentration.

Most of the above studies for small bulk concentrations apply to the retarding

effects due to the surfactant impurities unavoidably present in the bulk phase (see

[Subramanian (1992)]), which is also the focus of many experimental studies. As

noted above, the bubble velocity monotonically decreases as the bulk concentration

increases. However, [Edge & Grant (1972)] and [Bel Fdhila & Duineveld (1996)]

demonstrated the retardation by the intentional addition of surfactant with high

Peclet number. They both found that there exists a critical concentration. The

bubble velocity rapidly decreases to that of a solid sphere when the concentration is

larger than the critical concentration. In addition the critical concentration increases

as the bubble radius increases. [Barton & Subramanian (1989)] carried out similar

experiments for the thermocapillary driven case.
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1.2 Summary of Results

As described above, not much work has been done on the retarding effects of the

surfactant for thermocapillary driven motion. In both buoyancy driven motion

and thermocapillary driven motion, the general question of the effect of increasing

bulk concentration remains open. The question of how to remobilize (remove the

surfactant gradient on the surface) the particle has yet to be answered.

In this study we will show that the bubble surface can be remobilized by

increasing the bulk concentration. In Chapter 3, we will show that the bubble

surface can be remobilized by increasing the bulk concentration of surfactant at

low Reynolds number. We illustrate numerically that, for a fixed Peclet number, a

surface concentration gradient develops near the rear stagnation point at small bulk

concentration, it spreads to the whole surface as the bulk concentration increases

at the first, and then reduces to nearly zero as the bulk concentration gets large.

This uniform distribution of surfactant on the bubble surface at large bulk concen-

tration reduces the Marangoni force to nearly zero, hence decreases the drag and

increases the velocity to the clean surface values. For any fixed bulk concentration,

the bubble velocity decreases with increasing Peclet number. The larger the Peclet

number is the larger the required bulk concentration needed to bring the velocity

back to the clean surface value. Our numerical results in Chapter 4 show that, at

order one Reynolds numbers, the remobilization still remains effective. We demon-

strate that the drag monotonically decreases as a function of bulk concentration at

order one and large concentration. Wakes form at higher Reynolds numbers as a

rigid film develops near the rear stagnation point when the rate of convection on

the surface is much larger than the rate of bulk diffusion, which cause a negative

surface velocity in the stagnant cap region that drastically reduces the terminal
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velocity. As we increase the bulk concentration for a fixed Peclet number, wakes

become smaller, and disappear at large bulk concentration as the surfactant distri-

bution on the bubble surface becomes more uniform. An asymptotical analysis for

large Peclet numbers is presented in Chapter 5. The asymptotic structures are given

along with the governing boundary layer equations. We found that in order to satisfy

the zero net flux condition, the size of the clean part of the surface is very small.

The boundary layer thickness along the stagnant cap region is found to be as the

same for a solid sphere, and the boundary layer thickness along the clean part of the

surface is found to be larger than that for a clean bubble sphere.

In industrial processes such as the environmental cleansing of poisonous gas, the

purification of materials and the extraction of materials from mixtures, a remobilizing

technique can be very useful. Other examples of potential applications include gap

solidification, glass processing and composite preparation, etc. The technique can

be especially valuable for material processing in microgravity environments. In such

environments, because of the absence of buoyancy, other methods are necessary to

induce the particles motion. Thermocapillary based driving forces are the most

promising because of their high sensitivity to the interfacial and bulk surfactant

concentration.



CHAPTER 2

DERIVATION OF EQUATIONS

We examine the motion of a spherical bubble rising steadily in an unbounded

Newtonian fluid. The fluid contains surfactant, and it is assumed to be incom-

pressible. We also assume the flow is axisymmetric and uniform at infinity, the

concentration of surfactant far from the interface is uniform, the bubble remains

spherical. The assumption of the bubble remaining spherical is reasonable if the

inertial force is small compared to the surface tension, i.e. the Weber number

p/U
(We = 

pU a
) and the capillary number (Ca —) are small.

2.1 Governing Equations

The mathematical model is based on a fixed coordinate system. The center of the

bubble is taken to be the origin.

The governing equations for the fluid field are the incompressible Navier-Stokes

equations



where ci.) = V x ii, the Navier-Stokes equations in vorticitv form become
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where v=plp is the kinematic viscosity.

Since the flow is axisymmetric, the solution is independent of the azimuthal

angle 0, and the velocity component in that direction is zero. i.e. u = 0),

ico ( , 0), 0). By the definition of vorticity, we have

' =Vx ic
(2.9)

(

0, 0, I 1- avi,-.0 	 aftr i
f 	 af 	 ao ) •

It follows that the vorticity has only one component in the azimuthal direction, 6:4,

which can be written in terms of the stream-function as

[a(fra o ) 
af 	 a& (2.10)

1= 7 E2 17).

The Navier-Stokes equations (2.8) in terms of vorticity and stream-function become,

then,

(IDa 	 a
(turd) 	 —(zzo cp,/,) 	 vE2 (7.c.74 sin 6) ,	 (2.11)at 	 a7--- 	 ae

= r

where

= 1 321a (  1  a
sin o are 

+ 
;72 199 sin o ao ) • (2.12)
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2.2 Mixed Boundary Conditions

2.2.1 Hydrodynamics

The boundary conditions at the axes of symmetry are

	

= 0	 at	 0 = 0,7r,	 (2.13)

	

Coo = 0	 at	 0 = 0,7r.	 (2.14)

The flow is uniform at infinity implying that the boundary conditions there are

-	 1
(//) = —

2
UF2 sin2 0	 as	 00 , (2.15)

c7.) 0 = 0	 as	 —+ oc), 	 (2.16)

where U is the uniform flow velocity far from the interface.

Since there is no deformation on the bubble surface, the normal velocity at the

interface is zero. This leads to

= 0	 at	 = a.	 (2.17)

It follows that the first and second derivatives of stream-function with respect

to 0 are zero and so we have from equation (2.10)

a2 5cD 	 . 	 at	 = a.	 (2.18)
a sin 0 3r2

InIn the presence of surfactant, as explained in Chapter 1, the concentration, I'M

say, varies from point to point on the surface of the bubble; i.e. r = (0). Since an

increase in surfactant lowers the surface tension, the surface tension is a function of



1 a'y
= 	 at	 a.	 (2.20)

a ao

and substitute equation (2.21) into equation (2.22), we obtain the shear stress in

terms of the surface concentration as follows,



In order to solve for the flow field, the surface surfactant concentration, NO),

must be known. This couples the Navier-Stokes equations with the convection-

diffusion equation, as explained next.

2.2.2 Surfactant Transport

The amount of material adsorbed per unit area satisfies a mass conservation law,

which, in the case of a bubble, can be expressed as ([Levich (1962)])

aff
.in= vs • 00) — • (Dsv,r)+	 (2.27)
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of that flux. The quantity j, represents the flux of material removed into the bulk

of the medium (j„ < 0) or conveyed (jn, > 0) to a unit area of the bubble from the

solution; (—D3 V 5 F) expresses the diffusion flux of adsorbed material on the surface

of the bubble. Here D, designates the surface diffusion coefficient of the surface-

active material. Thus, in the expression for the total flux of surface-active material,

the right side expresses the full divergence of the diffusional and convective fluxes

of material along the surface of the bubble. The left side gives the flux of material

to or from the bulk of the solution. The magnitude of the latter is evidentlv a

function of the velocity distribution near the surface of bubble, while the magnitude

of convective flux along the surface of the bubble is determined by the velocitv on

the bubble surface.

The magnitude j, of the flux of surface-active material from the surface of

the bubble into the bulk of the liquid, is determined by the rate of adsorption-

desorption or the rate of transfer of molecules of surface-active material from the

bulk of the liquid to the surface of the bubble. If the rate of adsorption-desorption is

small compared to the rate at which the material is transferred to the surface of the

bubble, the rate j, of surface-active molecules leaving (or arriving at) per unit area

of surface per unit time is determined by the total number of desorbed (or adsorbed)

molecules. If, on the other hand, the kinetics of adsorption and desorption are rapid

compared to the rate of transfer of surface-active molecules from the bulk of the

solution to the interface, the number of surface-active molecules leaving (or arriving

at) per unit area of surface per unit time is equal to the diffusional flux to the bulk.

Here we assume the later case (see [Levich (1962)]). i.e.

(2.28)
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Therefore in the case of rapid kinetics, j,2 in the surface concentration conser-

vation equation (2.27) has the form of expression (2.28). If we assume the surface

diffusion is negligible compared to the convection on the surface, the surfactant inter-

facial conservation without surface deformation is described by the equation

(2.29)
=a

The over-all rate of the exchange of surface-active material is determined by its

rate of transfer from the bulk of the medium to the surface of the bubble. i.e. by the

rate of convective-diffusion. The kinetics of the adsorption-desorption process in this

case, may be considered to be as rapid as desired, so that the concentration of the

solution near the surface has a value 0(f- = a) which is in equilibrium with F, but

differs from the concentration C in the bulk of the solution. The flux of surfactant

reaching the interface obeys Langmuir's law ([Levich (1962)]; [Probstein (1994)])

D
aO = 13[O(n c,,,— t) —	 at	 a	 (2.30)ar

where /3 and k a are the parameters of the adsorption and desorption rate of constants

respectively. For fast kinetic exchange, >> 1. That is the kinetics of adsorption and

desorption are rapid compared to diffusional flux to the bulk phase. This reduces

the equation (2.30) to a equilibrium dependence of F on the concentration near the

surface,

The boundary conditions are, aue to axisymmeury,
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and the uniform concentration in the far field provides the boundarv condition at

infinity

C =Coo 	as	 —+ oc. 	 (2,33)

2.3 Force on the Surface

2.3.1 Pressure on the Surface

The steady state Navier-Stokes equations for incompressible flow are

pit (Vu) = —V + 	 (2.34)

For axisymmetric flow, the Navier-Stokes equation in the tangential direction

(8) takes the form



2.3.2 Total Drag Acting on the Bubble

The resultant force, due to the stresses, exerted bv the surrounding fluid on the

bubble is

	F = I cr n dS,	 (2.40)

where o- is the stress tensor, which for an incompressible viscous fluid is given by

	= —pi ± 2,ue,	 (2.41)

with e = —
2 
(Vit VT) being the rate of strain tensor.

The stress vector acting across an element of surface area whose outer normal

is n is then of the form

= n
(2.42)

n (_ .73 2i_tafir) + 9,u f
	(do 	iafir+-

De
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Owing to the symmetry of the flow, the cumulative effect of the stresses

acting over the entire surface of the bubble give rise to only one significant dynamic

parameter-a force acting parallel to the axis of revolution. Take the upstream

direction to be the positive direction; then, the force exerted on the bubble is given

by

.6.410)

2.4 Nondimensionalization

2.4.1 Governing Equations and Mixed Boundary Conditions

We make the equations dimensionless by nondimensionalizing using the following

transformations:

Since we are interested in steadv state solutions, the time scale does not play a

significant role. We keep the time derivative term for numerical convenience.



(2.49)

(2.50)

is the Reynolds

The nondimensionalized governing equations become, then,

aw 	 a , 	 a , 	 ,at- + xyurw + yo ,ttow ) = Re E2 (rw sin 0)	 by (2.11),	 (2.46)

1
w 	 by (2.10), 	 (2.47)

r
aC 	1

+ u • VC = Pe 
V2 C 	 by (2.5), 	 (2.48)8 +U

where

	o 	 ao
	Ur = 

r2 s in 
a 	 uo =n 9 ao 	 r sin 9 ar

	132 	 i3i 3\E2= 	
sin 0 ar2 + r 2 ao sin o ao I

Ua
from formula (2.6) and equation (2.12) respectively, Re = —v
number, and Pe = —

Ua is the Peclet number.

The nondimensional boundary conditions for the hydrodynamics are

0 	 at 	 0 = 0,7r, 	 (2.51)

7,b = 0 	 at 	 r = 1, 	 (2.52)

= —1 r2 sin2 0	 as	 r	 oo,	 (2.53)
2

w = 0 	 at 	 0 = 0, 71", 	 (2.54)

w =0 	 as	 r ---+ co,	 (2.55)

and

2 asow = 	
sin 0 ar

Ma ar
+ 1—r ao'r=-- 1

(2.56)
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where Ma = 
RTroo 

is the Marangoni number, and F is the dimensionless surface
1.1U

concentration to be found from the concentration field.

The nondimensional boundary conditions for the surfactant transport equations

are

OC r,

	

u	 at	 0 = 0, 7F, 	 (2.57)
DO

	C = 1 	 as 	 r ---+ 00, 	 (2.58)

and the equation of interfacial surfactant conservation becomes

The equilibrium equation between the surface concentration F, and the sublayer

surfactant concentration is, in dimensionless form,

In equations (2.59) and (2.60) above the parameters appearing are given by, x =

and k = k a,C,, which is a measure of the bulk concentration.
kayo°

2.4.2 Drag on the Body

2.4.2.1 Creeping Flow

For small Revnolds number, we nondimensionalize pressure and drag using the

following scales

a



Then, from equations (2.39) and (2.43), the dimensionless pressure gradient on the

surface and the drag coefficient are



CHAPTER 3

CONTROLLING BUBBLE VELOCITY IN SURFACTANT
SOLUTION AT LOW REYNOLDS NUMBER

3.1 Introduction

When a bubble rises in the fluid containing surfactant, the surfactant is adsorbed onto

the interface at the leading edge of the bubble, convects to the trailing edge by the

surface flow and diffuses into the bulk along the surface. Accumulation of surfactant

at the back end makes the surface concentration at the back end relatively higher

than that at the front end. This surface concentration gradient creates a surface

tension gradient on the bubble surface, since surfactant lower the surface tension. A

Marangoni force which is in the opposite direction of the surface velocity is created

as the surface has the higher surface tension (the front end) tugs the surface towards

it. It reduces the surface velocity, hence increases the drag. When the rate of surface

convection is large compared to the rate of bulk diffusion, a stagnant cap develops

near the rear stagnation point, as shown in Figure 3.1. The mechanism of this

retardation is presented in detail in Chapter 1.

Various studies have been concerned with the effects of surfactant on the motion

of particles rising in surfactant solution. As we described on Chapter 1, most of the

works were focused on trace amount of surfactant due to the material impurities,

in which the drag monotonically increases as a function of bulk concentration. The

retardation effects of intentional addition of surfactant are demonstrated experi-

mentally by [Edge & Grant (1972)] on drops and [Bel Fdhila & Duineveld (1996)]

on bubbles for buoyancy driven motion with high Peclet number. Edge & Grant

observed that the motion of drops in contaminated water is indistinguishable from

the motion of drops in pure water when the surfactant concentration is verv small,

24
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Figure 3.1 Flow around bubble, where co is the cap angle

and the drag increases as the bulk concentration increases. Wakes form at high

enough bulk concentration and are similar to the attached wakes behind solid spheres.

Duineveld found that the bubble velocity decreases with increasing bulk concen-

tration. For all bubble sizes there is a critical concentration, below which the velocity

is almost equal to the clean surface value, and above which the velocity decreases

rapidly to the solid sphere value. This critical concentration value increases as the

bubble size increases. [Barton Sz Subramanian (1989)] carried out similar exper-

iments for the thermocapillary driven case.

In this chapter, we demonstrate that the bubble interface can be remobilized bv

increasing the bulk concentration of surfactant. The surfactant concentration distri-

bution on the surface for a fixed Peclet number and various bulk concentrations is

given in Section 3.3.1. Numerical results show that the amount of surfactant adsorbed

onto the surface increases as the bulk concentration increases. A surface concen-

tration gradient develops near the rear stagnation point when the bulk concentration

is very small. As the bulk concentration increases, the surface concentration gradient
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spreads onto the whole interface at first, and disappears at large concentration. The

removal of retardation of the surface velocity is shown in Section 3.3.2, where the

surface velocities for a fixed Peclet number with different bulk concentrations are

calculated. When the bulk concentration is very small, the surface velocity near the

front is almost the same as the clean surface value, but it is much smaller than the

clean surface value near the back end (corresponding to the surface concentration

gradient there). As the bulk concentration increases, the surface velocity decreases

at first, and then increases to the clean surface velocity as the surface concentration

distribution becomes more uniform at large bulk concentration. In Section 3.3.3, we

show that for a fixed Peclet number, the drag increases monotonically as a function

of bulk concentration when the bulk concentration is small, and, after it reaches a

maximum the drag decreases monotonically to the clean surface value. For fixed

concentration, the drag increases with increasing Peclet number. For larger Peclet

numbers, higher bulk concentration is required to reduce the drag to the clean surface

value. Numerical results also show the development of a cap near the rear stagnation
kxpoint when fre < 1.

3.2 Mathematical Model and Numerical Algorithm

We examine the dynamics of a spherical, buoyancy driven gas bubble rising steadily

in an infinite Newtonian fluid containing surfactant. The Revnolds number of the

flow is small and we consider the case of bulk diffusion controlled surfactant transport

with order one and large Peclet number. In addition, we assume that the fluid is

incompressible, the flow is uniform at infinity, the surfactant concentration far from

the bubble surface is uniform, and there is no interfacial deformation thus keeping the
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bubble spherical (small Weber numbers). The mathematical model and the relevant

boundary conditions were given in Chapter 2. Since the governing equations are

nonlinear, and coupled by the nonlinear boundary conditions, it is unlikely that the

full problem can be solved analytically. We will examine the problem in nondimen-

sional form by addressing numerically equations (2.46)-(2.48) with the corresponding

boundary conditions (2.51)-(2.60). Since the problem considered in this chapter is

for small Reynolds number, the equation (2.46) is reduced to

au)
at E2 (n.,.; sin 6) .

The numerical method is described below.

The problem is to solve simultaneously the differential equations (2.46)-(2.48)

subject to the boundary conditions (2.51)-(2.60). Since the equations are nonlinear

and coupled by the nonlinear boundary conditions, an appropriate approach we

found to be efficient and stable is to use a numerical method involving an iterative

procedure. The iterative procedure can be outlined as follows:

1. Choose initial conditions for the fluid field and concentration fields (usually

taken from a known analytical solution such as flow past a clean surface sphere).

2. Obtain an approximation to the stream-function subject to the boundarv

conditions (2.51)-(2.53). Use the relation (2.49) to find the radial and tangential

velocities.

3. Substitute the tangential velocity found in (2) in equation (2.59), and solve for

r using an explicit method.
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4. Find the boundary condition on the surface for the vorticity by using the

results found in (2) and (3) on equation (2.56), and get an approximation for

the vorticity subject to boundary conditions (2.54)-(2.56).

5. Solve the convection-diffusion equation (2.48) subject to boundary conditions

(2.57)-(2.60) using the results found in (2) and (3).

6. Check the convergence criteria. If the criteria is not satisfied, upgrade the

initial conditions in (1) and repeat the steps (2)-(5).

3.2.1 A Finite Difference Method

A variety of finite-difference schemes exist which can be used to solve the coupled

nonlinear system (2.46)-(2.48), and it is not possible to compare them exhaus-

tively to ensure an optimal approach for each particular problem. The Alternating

Directions Implicity (ADI) method is used for the pseudo-unsteady system. We

make this choice because the ADI method are been widely used and tested in

fluid dynamics problems (see [Peyret & Taylor (1983)]), it is easy to implement and

has good stability properties. Generally, the method is unconditionally stable with

second order accuracy.

To illustrate this method, it is best to combine equations (2.46)-(2.48) into the

following general form:
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force term, and L 1 and L2 are differential operators in the normal and transverse

directions, respectively.

With the ADI scheme, each time step is divided into two equal parts. Applying

the ADI scheme on equation (3.1) at each step provides the recursions

s:

fc

3

V

a

it

e,



dO
r=1

= -	 13 sin2 0 + 2 	 (3
0 I 	 n=2

- 5 )(m+ 1)B,G, 2 (COS 0)] sin OdO
0000

(3.7)

{
2 if n = 0,

cos 0) sin 0 dO = -2-r if n = 2,3
0 otherwise.

fo 7 Cn (3.8)
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where E is given bv equation (2.50) in Chapter 2. The general solution of equation

(3.4) is

q,b = E(Anr—n+3 Bnr-n+ 1 Cnrn+2 D,r')G, 2 (COS 0),	 (3.5)
n=0

1
where Gin ' (x) are Gegenbauer polynomials of degree --

2
. Applying the boundarv

conditions (2.51)-(2.53) to the above solution, one obtains

1 	
00

2 	 1
	= 7,-(r 	 r) sin2 0 	 Bn(r-n+1 r-n+3 )C, 2 (COS 0), (3.6)

n=2

where B, are constants to be determined.

It follows from equation (2.63) that

a20
• 2 	 2sin0 	

J o
sm 0 6131aoCD1= 	 ar2

= -4 - 4B2 ,

where we have used the relations

This implies

B2 ----- 4

and substituting this into equation (3.6), gives

• 2= -1 r2 sin2 0 + Cm  r sm 0 + • • • ,
2 	 8

CD1

as r 	 oo, 	 (3.9)



Figure 3.2 Domain transformation schematic.

for creeping flow, where Cm is the total drag on the particle non-dimensionalized by

7rptia, with ,u being the viscosity. We found that the drag on the particle is about

6% higher, if we apply the uniform stream condition directly at r = r oo , as opposed

to using the correction term.

Since the solutions are axisvmmetric, we will solve the problem on half of

the domain. Discretizing the equations directly on the physical domain would give

an expanding mesh as r increases. To avoid this problem we use the following

transformation,

which transforms the physical domain (r, 0) onto a unit square (x, y) as shown in

Figure 3.2.

3.2.3 Accuracy - Code Validation

To check the code, we consider special cases for which analytical solutions exist. We

found that there are two problems that can be solved analytically when there is no
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flow—one takes the particle as an infinite sink (C = 0 on the surface), while the

other is k << 1 (small bulk concentration). The solutions are (see Appendix A for

more details)

C 
1 	r — 1+ _1 erf

r r 	 2VtPe)

for the former, and

c = 1 	1 r xy/Tcos[Ar — 1)] (x — y) sun[/(r — 1)] 
e

_ytPe dy
71T j0	 (x y)2 x2 y

for the latter.

We compared the numerical and analytical results for these two special cases

and found the agreement between solutions to be excellent for large t.

As an additional accuracv test of the numerics, we developed an analytical

solution for the drag CD1 for the full problem when k << 1 and Pe = 0(k). We found

that the drag CD1 is given by (see Appendix B for details)

C D1 = -4 	
A 2QMa 

k
2 4QMa 

k
3 
+...

3X	 3X

where Pe = Qk, with Q being a constant. We found that the difference between the

analytical and numerical solutions was less than 0.5%.

Finally, we also computed the nondimensional steady surfactant mass transfer,

the Nusselt number which is defined as

Nu = Iliac
	 sin 9 dO, 	 (3.11)

j0 or r=1

for a spherical bubble rising in creeping flow as an infinite sink (C, 0) with order

one Peclet numbers (Pe = 3, 10, 40, 70), and found excellent agreement with Masliyah

and Epstein's [Masliyah & Epstein (1971)] numerical data for the Nusselt number

(their mean Nusselt number).
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3.3 Results

The results were computed on a 50 x 50 grid. The radial distance is truncated at

ro„ = 20, and the time steps were about 2 x 10 -2 for most calculations. However,

for high surfactant concentration, since the diffusion is much faster than surfactant

convection along the surface, equation (2.59) becomes stiff and the time step has to

be reduced accordingly (see [Peyret & Taylor (1983)] for more details). The criterion

of convergence for the results is MaxiOn-1-100 — n I < 10-6 , with n being nth time

step. We checked a few results on a 100 x 100 grid and found that the difference of

the results between the two grids is less than 0.3%. A few results are calculated for

roc, = 30 and roc = 40, the difference on drags for different r o. (20, 30, 40) is less

than 0.05%.

To illustrate remobilization, we consider results from a computation which

varies the bulk concentration k and Peclet number Pe about a reference case having

Ma = 5 and x = 1, with 0 = 0 being the leading edge and 0 = ir being the

trailing edge. We will present plots of the drag, surface concentration distribution

and surface velocity profile, as well as contours of bulk concentration to show that

the bubble motion can be controlled bv bulk concentration. All results shown below

are in dimensionless form as outlined in Section 2.4.

3.3.1 Surface Concentration Distribution

Surfactant adsorbs onto the particle surface at the leading edge, is convected to the

trailing edge by the surface flow, and then diffuses into the bulk as the particle

migrates in the fluid. The adsorption of surfactant onto the liquid interface develops

a gradient of surfactant on the surface. In Figure 3.3, we plot the surface concen-

tration distribution as a function of B for Pe = 10 and various bulk concentration
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0

Figure 3.3 The surface concentration distribution, for Pe = 10, Ma = 5 and x = 1,
and k = kaCco is the measurement of bulk concentration.

values, k. The Figure shows that for any k (bulk concentration), the surface concen-

tration at the trailing edge is higher than that at the leading edge. It is evident

that, when the bulk concentration is very small (k = 0.01), not only is the amount of

surfactant absorbed onto the surface very small, but also the surface concentration

gradient is only in a very small region near the rear stagnation point. When the

bulk concentration increases to about k = 1, the amount of surfactant absorbed onto

the surface increases and a surface concentration gradient develops on the entire

sphere. And as we increase the bulk concentration further to k = 100, the amount of

surfactant adsorbed onto the surface is much larger, but more importantlv, the distri-

bution of surfactant on the surface is almost uniform (the bubble surface has been

remobilized). This argument readilv follows from the surface concentration conser-

vation equation (2.59) and equation of equilibrium between the surface concentration
xk i

and the sublayer (2.60). When k is small, the ratio —Pe
 is small, so the diffusional flux
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to the bulk is small compared to the convection on the surface, which is clear from

equation (2.59). Surfactant accumulate at the back end. On the other hand, from

equation (2.60), the amount of surfactant adsorbed onto the surface is small when k

is small. Hence a surface concentration gradient develops only in a small region at the

back end. As k increases, although the ratio Xk—
Pe 

increases, the amount of surfactant

adsorbed onto the surface increases and a surface concentration gradient develops

on a larger region at the back end. As k increases further, the amount of surfactant

adsorbed onto the surface is large. But the diffusional flux is large compared to the

convection on the surface and surfactant does not accumulate at the back end. The

surface concentration gradient disappears.

We now observe some implications of our numerical results for the existence

of the stagnant cap at the rear stagnation point as first observed by [Savic (1953)].

For large Peclet numbers, when the ratio —
kx 

is small, the convection on the
Pe

surface is much larger than the diffusion to the bulk, (this is clear from equation

(2.59)), and surfactant accumulate at the back end to form a stagnant cap. This

phenomenon is supported in the surface concentration distributions given above

for k = 0.01; the front end is free of surfactant, while a sharp surface concen-

tration gradient develops in a small region near the rear stagnation point. When

Pe >> 1, the cap size increases as k increases, and eventually the cap covers

the entire surface as [Edge & Grant (1972)], [Barton & Subramanian (1989)] and

[Bel Fdhila Duineveld (1996)] observed. Since the stagnant cap acts like a solid

boundary, the flow may separate at the back end at order one Reynolds number.

Flow separation and its effect on terminal velocities for different bulk concentrations

and order one Reynolds numbers is considered in Chapter 4.



Figure 3.4 Surface velocitv, for Pe 10, Ma = 5 and x = 1, and k = kaCco is the
measurement of bulk concentration.

3.3.2 Surface Velocity

As a surface concentration gradient develops, a surface tension gradient is set up that

creates a Marangoni force opposing the surface flow and hence reduces the surface

velocity. But, as shown in Figure 3.3, the surface concentration becomes uniform

as k increases for a fixed Peclet number. The increase of surface velocity as the

bubble surface remobilizes is evident in Figure 3.4 which plots the surface velocity

as a function of tangential angle 0 and bulk concentration k with the same values of

Marangoni number Ma, Peclet number pe and x as in Figure 3.3. Note that for a
sin 0

clean interface, the surface velocity is equal to 	
2
 so at any point on the surface

sin
the velocity cannot be larger than 

2
 for any k. That is exactly what is shown in

Figure 3.4. When the bulk concentration is small, the surface velocitv is the same

as that for the clean surface near the leading edge (9 = 0), but it is smaller near the

rear stagnant point (6 = 7r) which corresponds to the surface concentration gradient



Figure 3.5 The effect of concentration on the drag, for Ma = 5 and x = 1, and
= ko,C„,, is the measurement of bulk concentration. The dots are the actual points

calculated

sin
in Figure 3.3. As k increases, the surface velocity decreases from the clean value 	 2
at first. This is the retardation, that as we noted in the Introduction, has been well

documented in the literature. However as k increases further, the velocity increases

and at k = 100 the velocity profile is very close to that for clean surfaces. This is

because for k = 100, the surfactant diffusion at the back end is large compared to

the surfactant convection along the surface, and the surface concentration gradient

tends to zero. Hence, the surface tension gradient disappears, and the Marangoni

force tends to zero. The bubble interface has been remobilized.

3.3.3 Total Drag on the Bubble

The effect of bulk concentration on the terminal velocity is examined in Figure 3.5 bv

inspecting the way in which the drag on the bubble is affected by the bulk surfactant

concentration. The dots on the drag profile are the actual points calculated. Three
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different Peclet numbers are used (Pe = 0.1, 1.0, and 10.0). We found that, for

a fixed Peclet number, as we vary the bulk concentration k from 0.01 to 100,

the drag increases monotonically as a function of concentration when the concen-

tration is small (corresponding to the decrease in the interfacial mobility observed

in Figure 3.3), but decreases to the clean surface case when the concentration gets

large as the interface remobilizes. With concentration fixed, the drag increases as the

Peclet number increases. The larger the Peclet number, the larger the concentration

needed to bring the drag down to the clean surface case, as shown in Figure 3.5. Note

that the drag always lies between the values Drag = 4 (drag for a clean bubble) and

Drag = 6 (drag for a solid sphere).

3.3.4 Bulk Concentration Distribution

As the bulk surfactant concentration increases and the surface surfactant concen-

tration becomes more uniform, the sublayer concentration (in equilibrium with the

surface concentration) also becomes more uniform. In Figure 3.6, we give contours

of bulk surfactant concentration for Pe = 10 with varying k. For k = 0.1, the

concentration near the leading edge is much smaller than that near the trailing edge,

and the sublayer concentration at the front end is almost uniform. As k increase

to 1, although the difference in concentration near the back end and the front end

is smaller than that for k = 0.1, the sublayer concentration varies along the whole

surface. The tendency towards a more uniform concentration with increasing k is

clearly evidenced. At k = 100, the concentration in the bulk approaches unity as

the diffusion driving force disappears; the sublayer concentration also approaches

one. It is clear that as the interface remobilizes and the bulk concentration becomes

uniform.



Figure 3.6 Contour of concentration for Pe = 10, Ma = 5 and x = 1. k = ka C„,, is
the measurement of bulk concentration and U is the terminal velocity
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3.4 Conclusion and Discussion

In the previous section, we have given numerical solutions which show that the bubble

interface can be remobilized by controlling the bulk concentration. The ratio of bulk
kx

diffusion to convection —
Pe 

plays a very important role in this problem. For a fixed

Peclet number, when the ratio .13kx–
e 

< 1, the total amount of surfactant adsorbed onto

the surface is very small according to equation (2.60) since the bulk concentration

k is small. Although a stagnant cap may develop near the rear stagnation point

(0 = 71), the cap size should be verv small. The Marangoni force is small and so is

the retardation on the bubble motion. When
kx = 0(1), a surface concentration
Pe

gradient develops on the entire surface, the Marangoni force reaches a maximum and

the bubble terminal velocity reduces to a minimum. At 
kx
F–
Te 

1, although the total

amount of surfactant adsorbed onto the surface is large, the surface concentration

becomes uniform (we say the bubble interface remobilizes). Since the diffusion to

the bulk is much larger than the convection on the surface (as can be seen from

equation (2.59)), surfactant will not accumulate at the back end as we showed in

Figure 3.3. Hence the Marangoni force disappears and the bubble regains the velocitv

it would have with a clean surface. The larger the Peclet number is the larger the

bulk concentration needed to remobilize the bubble interface as shown in Figure 3.5.

For fixed bulk surfactant concentration, the drag increases as the Peclet number

increases.

Thus, we have shown numerically, how to control the motion of a bubble rising

in a fluid containing surfactant, for low Reynolds numbers and buoyancy driven

motion. Similar results are expected for fluid-fluid particles, order one Reynolds

numbers and thermocapillary migration. The case of order one Revnolds numbers is

considered next.



CHAPTER 4

SURFACTANT EFFECTS ON BUBBLE MOTION AT ORDER
ONE REYNOLDS NUMBERS

4.1 Introduction

A numerical study of the flow around a spherical bubble rising steadily in a surfactant

solution at order one Revnolds numbers (0.5 50) with relatively large Peclet

numbers (100, 200) is presented, where the Reynolds number and Peclet number

are defined in Section 2.4 in Chapter 2. When a bubble rises through a fluid phase

containing surfactant, the fluid motion near its surface can be slowed down or even

stopped. At large Peclet number, surfactant accumulate near the back end of the

bubble and make the surface there act like rigid boundary. Wakes can form at

order one Reynolds number as shown schematically in Figure 4.1, which drastically

decrease the surface velocity and hence increases the drag. The mechanism of this

retardation is discussed in detail in Chapter 1.

Various studies have been carried out concerning the effect of surfactant on

bubble motion. As we described in Section 1.1 of Chapter 1, most of the works

are focused on trace amounts of surfactant (small concentration) or slightly soluble

surfactant, and in addition, low Reynolds numbers. [Edge & Grant (1972)] and

[Bel Fdhila Duineveld (1996)] demonstrated experimentally the retardation by

the intentional addition of surfactant for buoyancy driven motion at order one

Reynolds numbers. Edge & Grant observed that the velocity of drops falling

through contaminated water decreases with increasing bulk concentration. They

found that wakes form at larger concentration, similar to the wakes behind solid

spheres, the fluid inside the drops being stagnant. Duineveld examined the retar-

dation effect on rising bubbles. He found that there exists a critical concentration
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Figure 4.1 Flow around bubble at order one Reynolds number

above which the bubble velocity rapidly decreases to that of a solid sphere. It is

also found that the critical concentration increases as the bubble radius increases.

[Barton & Subramanian (1989)] carried out similar experiments for thermocapillary

driven motion. [Bel Fdhila & Duineveld (1996)] have extended the approach of

[Sadhal & Johnson (1983)] to finite Reynolds numbers bv solving the Navier-Stokes

equations numerically subject to the stagnant cap boundarv condition described

in Section 5.2 in the next chapter. Leppinen, Renksizbulut & Haywood (1996a,b)

investigated the effect of an insoluble surfactant on the flow around and inside

a deforming drop surrounded by air. For that purpose they couple the Navier-

Stokes equations in both phases to the surface concentration balance, assuming a

high surface diffusivity and a linear dependence of surface tension on surfactant

concentration. When the droplet is maintained spherical, they find a weak overall
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effect of the contamination on the drag because the tangential velocity at the

droplet surface is small even in the absence of surfactant, owing to the low viscosity

of the surrounding fluid. In contrast, when the droplet is allowed to deform, a

significant increase of the amplitude of shape oscillations is observed when contam-

ination is present. The work of [McLaughlin (1997)] considers the effect of an

insoluble surfactant on the flow around a deforming bubble rising steadily in water

at high Reynolds number. In that work the Navier-Stokes equation are solved

around the bubble under the assumptions of the stagnant cap model. Bv successive

adjustments of the cap angle the computations are able to reproduce properly

the rise velocities measured by [Haberman & Morton (1954)] in tap water and by

[Bel Fdhila & Duineveld (1996)] in a dilute solution of Triton-X100. The most

recent study to date is bv [Cuenot, Magnaudet Spennato (1997)] of the buoyancy

driven motion of a spherical bubble at order one Reynolds number. They solved

the Navier-Stokes equations together with the convection-diffusion equation for

nonlinear interfacial boundary conditions at large Peclet number 10 5 ) and small

bulk concentration (large surface convection compared to the bulk diffusion). Their

numerical results illustrate a cap at the back end, and confirm the formation of a

wake at order one Reynolds numbers as noted by [Bel Fdhila Duineveld (1996)]

and [McLaughlin (1997)].

The aim of this chapter is to illustrate that the retardation of the bubble

velocitv can be reduced by using bulk concentration for order one Reynolds numbers.

In Section 4.3 we present numerical results by plotting surface velocities, surface

surfactant concentrations, drag and stream lines for different Peclet numbers (100,

200), and various Reynolds numbers and bulk concentration. The surface concen-

tration distributions for fixed Peclet numbers and different values of bulk concen-
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tration given in Section 4.3.1, illustrate that a stagnant cap develops near the rear

stagnation point when the bulk concentration is verv small, and the bubble surface

remobilizes at large bulk concentration. The formation of wakes in the stagnant

cap regime for order one Reynolds numbers is discussed in Section 4.3.3 where it

is also show that wakes disappear as the bubble remobilizes. The larger the Peclet

number is, the larger the concentration needed to remove the wake. Surface velocity

profiles show that the surface velocity becomes negative at the stagnant cap region

when there are wakes behind the bubble. The velocitv increases with increasing bulk

concentration for larger concentration, and the drag decreases with increasing bulk

concentration.

4.2 Mathematical Model and Algorithm

Consider a spherical, buoyancy driven gas bubble rising steadily in an infinite

Newtonian fluid containing surface active surfactant, at order one Revnolds numbers

with bulk diffusion controlled surfactant transport characterized by order one or large

Peclet number. We assume that the fluid is incompressible, the flow is uniform at

infinity, the surfactant concentration far from the bubble surface is uniform, and there

is no interfacial deformation thus keeping the bubble spherical. The mathematical

model and the relevant boundary conditions were given in Chapter 2. We examine

the problem in nondimensional form by addressing numerically equations (2.46)-

(2.48) with the corresponding boundary conditions (2.51)-(2.60). The numerical

method and algorithm are described in Section 3.2.

The results were computed on a 50 x 50 grid and the radial distance is truncated

at reo = 20. The time steps were about 2 x 10 -2 for most calculations. However,

for high surfactant concentration, since the diffusion is much faster than surfactant
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convection along the surface, equation (2.59) becomes stiff and the time step has to

be reduced accordingly (see [Peyret & Taylor (1983)] for more details). The criteria

of convergence for the results is Max 1032-1-100 - < 10-6 , with n being nth time

step.

The corrected boundary condition (3.9) is no longer valid for order one Reynolds

numbers. The boundary condition (2.53) is applied directly ou r = roo . We calculated

a few results for roc, = 30 with Re = 50. Compare the drag coefficient CD2 (nondi-

mensionalized by 7ra2 pU2 ) to the value for r„„ = 20, we found the drag coefficient is

1.5% higher. We also checked a few results on a 100 x 100 grid and found that the

difference of the results between the two grids is less than 2%.

4.3 Numerical Results

To illustrate remobilization, we consider results from a computation which varies the

concentration k and Reynolds number Re about a reference case having Ma = 5,

x = 1 and Pe = 100, 200, with 0 = 0 being the leading edge and 0 = 7r being the

trailing edge. We will present plots of the drag, surface concentration distribution

and surface velocity, as well as steam lines to show that the bubble motion can be

controlled by bulk concentration. All results shown below are in dimensionless form

as outlined in Section 2.4.

4.3.1 Surface Concentration Distributions

Surfactant adsorbs onto the particle surface at the leading edge, is convected to

the trailing edge by the surface flow, and then diffuses into the bulk as the particle

migrates in the fluid. The adsorption of surfactant onto the liquid interface develops a

gradient of surfactant on the surface. In Figure 4.2, we plot the surface concentration
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Figure 4.2 The surface concentration distribution, for Re = 50, Ma = 5 and x = 1,
and k kaC„„ is the measurement of bulk concentration.

distribution as a function of 9 at various bulk concentration values, k, with Re = 50

and different Peclet numbers, Pe = 100 and Pe = 200. The Figure shows that for

any k (bulk concentration), the surface concentration at the trailing edge is higher

than that at the leading edge. It is evident that, when the bulk concentration is

small (k = 5), the surface concentration near the front stagnation point is small

and the surfactant distribution is almost uniform in that region, a sharp surface

concentration gradient develops in the region near the rear stagnation point and

the surface concentration is high in that region. This is the so called stagnant

cap regime owing to the fact that the surface convection is much larger than the

Xkbulk diffusion when the ratio—
Pe 

is small (this is easily seen from equation (2.59)).

Surfactant adsorb onto the surface at the front, and are quicklv swept to the back by

strong surface convection. Since the surface concentration is always in equilibrium

with the sublayer concentration, which is expressed in equation (2.60), small bulk

diffusion (compared to surface convection) means slow surfactant desorption at the

back end. Surfactant accumulate at the back end, and this makes the interface

act like rigid boundary there. As k increases, the amount of surfactant adsorbed
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onto the surface increases, which follows from the equilibrium relation (2.60). But

the surface concentration gradient decreases as k increases. When we increase k to

200, the surface concentration gradient almost disappears (the bubble surface has

been remobilized). This is because the ratio Xk
—Pe 

increases as k increases, hence the

diffusion at the back end balances the surface convection at large k. Comparing the

surface concentration distributions for Pe = 100 and Pe = 200, one observes that the

larger the Peclet number, the larger the bulk concentration needed to remobilize the

interface. Another interesting feature to notice, is the slight decrease in value of the

surface concentration near the rear stagnation point, which is caused by a negative

surface velocity at the back end as discussed in detail in next Section.

4.3.2 Surface Velocity Distributions

Since surfactant lower the surface tension, a surface concentration gradient causes

a surface tension gradient that in turn creates a Marangoni force opposing the

surface flow and hence reducing the surface velocity. This retardation is evidenced in

Figure 4.3. In figure(A) and figure(B), we plot the surface velocity, v 8 , as a function

of 0, for the same value of Reynolds number Re, Marangoni number Ma and x

as shown in Figure 4.2, and various bulk concentration values k, for different Peclet

numbers (Pe = 100, 200). In both graphs, there are negative velocities when the bulk

concentration k is small, which are shown in figure(C) and figure(D), the magnifi-

cations near the rear stagnation point of figure(A) and figure(B) respectively. This

is because when Xk—
Pe 

<< 1, a stagnant cap develops near the rear stagnation point

that makes the interface at the back end act like rigid boundary. Reverse flow occurs

at order one Reynolds number, which causes a negative velocitv near the surface in

the vicinity of the stagnant cap region. This negative velocity pushes surfactant on
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Figure 4.3 Surface velocity, for Re = 50, Ma = 5 and x = 1, and k = kaC,, is the
measurement of bulk concentration.
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the surface away from the back stagnation point and so causes a negative velocity

on the surface near the back end. This negative velocitv also causes a decrease in

surface concentration near the rear stagnation point as we observed in Figure 4.2.

It is evident from Figure 4.3, that as k increases the velocitv increases for a fixed
7r

Peclet number, and the velocitv profile becomes more symmetric about 6 = —

2' 
corre-

sponding to the remobilization in Figure 4.2. Note that, when k increases from the

value k 5, the surface velocity near the front stagnation point decreases at the

first. The reason is that in the stagnant cap regime, surfactant convect to the back

end after adsorbing onto the surface at the front end and very little material is left

at the front making the surface concentration gradient there small. As k increases, a

larger surface concentration gradient develops near the front end at first as the ratio
xk
Pe 

becomes larger (but not large enough for remobilization).

4.3.3 The Flow Field in the Bulk

When the rate of surface convection is much larger compared to the bulk diffusion

Xk(—
Pe 

< 1), surfactant accumulate near the back and the interface there becomes

immobile. Wakes form at order one Reynolds numbers (Re = Ualv) as shown in

Figure 4.4. The Figure shows the flow around the bubble by plotting the stream lines

at steady state for different Reynolds numbers, with Peclet number Pe = 100, k = 5

(k = ka Coc is a measure of bulk concentration), Marangoni number Ma = 5 and

x = 1. Wakes first form between Reynolds numbers Re = 15 and Re = 20, which is

larger than the value for a solid sphere (Re 12.5), and as expected the recirculation

zone expands as the Reynolds number increases. In Figures 4.5 and 4.6, we plot the

stream lines around the bubble for Reynolds number Re = 50, Marangoni number

Ma = 5 and x = 1, and Peclet numbers Pe = 100 and 200 respectively. It is evident
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Re = 0.5 Re = 5

Re = 10 Re = 15

Re = 20 Re = 25

Re = 30 Re = 40

Re = 50 Re = 55

Figure 4.4 Flow around the bubble for Pe = 100, Ma 5, x = 1 and k = 5.
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k=5 k= 8

k= 15 k=20

k= 25 k=30

k= 45 k= 60

k=100 k= 200

Figure 4.5 Flow around the bubble for Pe = 100, Ma = 5, x = 1 and Re = 50.



Figure 4.6 Flow around the bubble for Pe = 200, Ma = 5, x = 1 and Re = 50.



Figure 4.7 The effect of concentration on the drag, for Re = 50, Ma = 5 and x = 1,
and k = ka Ce,,, is the measurement of bulk concentration.

that for a fixed Reynolds number, the recirculating eddies shrink as k increases and

disappear altogether at large k. In addition the stream lines become more symmetric

about 9 = 
2
—7r as the surface remobolizes. For the same value of k, the wake is bigger

for Pe = 200 than that corresponding to Pe = 100. Wakes disappear between the

values of k = 25 and 30 for Pe = 100, and between k = 45 and 50 for Pe = 200. These

results confirm that higher bulk surfactant concentrations are required to remobilize

the bubble surface for larger Peclet number.

4.3.4 Total Drag on the Bubble

The effect of bulk concentration k on drag is examined in Figure 4.7. Here we

plot the drag coefficient CD2 (nondimensionalized bv 7a2 pU2 ) as a function of bulk

concentration (k ranges from 5 to 200), for two different Peclet numbers (Pe =
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100, and 200), with Reynolds number Re = 50, Marangoni number Ma = 5 and

x = 1. We found that, for a fixed Peclet number, the drag decreases as the bulk

concentration k increases corresponding to the increase of the interfacial mobility

observed in Figure 4.2. Since the smallest bulk concentration k we examined in this

chapter is 5, the drag is not seen to increase monotonically at first as observed for

the zero Reynolds number case in Chapter 3; the monotonic increase takes place

as bulk concentrations increase from small values. With the concentration fixed,

however, the drag increases as the Peclet number increases in agreement with our

low Reynolds number results.

4.4 Conclusion and Discussion

The numerical results we presented in the previous section show that control of

bubble migration velocity bv using surfactant concentration, is still effective for

order one Reynolds numbers. As in the low Reynolds number case, the ratio of

bulk diffusion to convection 
xk
—Pe 

plays a verv important role for order one Reynolds

Xknumbers. For any order one Peclet number, when the ratio —
Pe 

< 1, surfactant

collect near the rear stagnation point (6) = 7r) making the interface there immobile

and allowing wakes to form at order one Reynolds numbers. The reverse flow near

the surface pushes surfactant away from the rear stagnation point towards front

stagnation point, and causes a negative surface velocitv near the back end which

drastically reduces the migration velocity. As k increases, although the amount of

surfactant adsorbed onto the surface increases, the surface concentration gradient

decreases since the ratio Xk1-3--
e 

increases. In turn wakes disappear as the interface

near the rear stagnation point becomes more mobile. At Xk—
Pe 	

1, although the

total amount of surfactant adsorbed onto the surface is large, the surface concen-
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tration becomes uniform (we say the bubble interface remobilizes) as shown in

Figure 4.2. Hence the Marangoni force disappears and the bubble velocity increases

with increasing bulk concentration. The larger the Peclet number is the larger the

bulk concentration needed to remobilize the bubble interface as shown in Figure 4.7.

For fixed bulk surfactant concentration, the drag increases as the Peclet number

increases.

We have shown numerically, how to control the motion of a bubble rising in

a fluid containing surfactant, for order one Reynolds numbers and buoyancy driven

motion. Similar results are expected for fluid-fluid particles and thermocapillary

migration.



CHAPTER 5

DIFFUSIVE BOUNDARY LAYER ANALYSIS (Pe 1)

5.1 Introduction

When Pe 	 1, diffusion into the bulk is very weak and consequently surfactant

which adsorbs onto the surface at the leading edge is swept quickly to the rear where

it builds up and makes the surface immobile, it acts like a solid. This implies that

part of the bubble acts like a liquid surface and part like a solid. [Savic (1953)]

was the first to observe this phenomenon. It has since been confirmed exper-

imentally by many researchers: see [Huang & Kintner (1969)], [Griffith (1962)],

[Bel Fdhila Duineveld (1996)], and [McLaughlin (1997)]. Savic also began a

theoretical study for the case of spherical drops moving in creeping flow, with

negligible interior viscosity and small caps. His numerical results were improved by

[Davis & Acrivos (1966)]. By requiring the net flux of surfactant to the surface to

be zero at steady state, [Harper (1973)] obtained an asvmptotic solution for small

cap angles. [Holbrook & Levan (1983a)] assumed a uniformly retarded velocity

and obtained an asymptotic solution while [Sadhal & Johnson (1983)] solved the

velocity field analytically in terms of an infinite series of Gegenbauer polynomials

with constant coefficients as a function of a given cap angle of arbitrary size.

The mass transfer rates on the surface and cap were obtained by assuming a

linear relation between surface tension variation and surface concentration (this

assumption is valid for very low surfactant concentration), resulting in under-

predictions. [He, Dagan Maldarelli (1991b)] obtained a more realistic value for

the cap angle by connecting the surface tension variation and surface concen-

tration with a nonlinear equation. However, the convection-diffusion equation

56
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was not solved and the cap angle was connected to the bulk concentration by

assuming that no diffusive boundarv layer exists around the bubble, i.e. the

bulk concentration adjacent to the surface equals the concentration at infinity.

[Cuenot, Magnaudet Spennato (1997)] solved the bulk concentration numericallv

for a spherical bubble at order one Reynolds number with large surface and bulk

Peclet number 10 5 ) and low bulk concentration. Their numerical results illustrate

a cap at the back end, and confirm the formation of a wake at order one Reynolds

number as noted bv [Edge & Grant (1972)] and [McLaughlin (1997)].

In this chapter, we consider a spherical bubble rising steadily in creeping flow

for strong convective surfactant transport (Pe >> 1). A boundary layer analysis

for the bulk concentration is presented. As we described in Chapter 1, a boundary

layer develops along the bubble surface when Pe > 1. The boundary layer thickness

for a solid sphere is of 0(PeA), and for a clean gas bubble is of 0(Pe - 1) (see

[Leal (1992)]). In the stagnant cap regime, part of the bubble surface is covered

with surfactant and acts as rigid boundary, while the other part is free of surfactant

and is completely mobile. When the Peclet number is asvmptotically large, a

boundary layer develops along the bubble surface, but with different thickness along

the stagnation cap region and along the clean part surface as shown in Figure 5.1.

The governing equations and the stagnant cap boundary conditions are given in

Section 5.2. The leading order solution for the velocity field is given in Section 5.3.

In Section 5.4.2.1 we derive the leading order boundary layer equation valid in the

stagnant cap region, and show that the boundary laver thickness is of 0(Pet,

which is the same as for a solid sphere. In Section 5.4.2.2 we derive the leading

order boundary layer equation along the clean part of the surface, and show that

the boundary laver thickness is of 0(Pe45), which is larger than that for a clean
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The relation (2.23) between shear stress and Marangoni force on the surface in

dimensionless form is given by

Ma ar
Tr° = (5.7)1 — r ao

where Tro is nondimensionalized by —
a 

. It follows, by substitution of equation (5.5)

into equation (5.7), that the interface on the clean part of the bubble surface is stress

free. This together with the zero tangential velocity condition on the stagnant cap

leads to the mixed boundary conditions for the stream-function on the surface

=0,	 0 < 0 < — cp.	 (5.8)

=0,	 — CO < 0 < 7. 	 (5.9)

Note that the cap angle c ia is unknown and must be determined as part of the solution.

5.3 Fluid Field

We assume an asymptotic expansion for the stream function V) in the form

rtk = o + E Fn(f)On,	 (5.10)
n=1

where F,4_ 1 (€) < Fn (E)for all n. Then the first order stream function obeys the

partial differential equation (5.1), and satisfies the boundary conditions (2.51)-(2.53),

(5.8) and (5.9). As we showed in Section 3.2.2 in Chapter 3, a general solution which

satisfies the boundary conditions (2.51)-(2.53) is of the form

n=2



Using the properties of Cm' we express above dual series in terms of P;:l as follows,
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5.3.1 Shear Stress on the Surface

To find the shear stress on the surface, we define

00
h(9) 	 E (2n ± 3).13,,+2P7413. (cos 9) 	 71- — cp < 0 < 7r. 	 (5.14)

n=0

This is the value of the first series in (5.13) extended to the whole surface. Then,

Applying the relation C.15 and the orthogonal property C.19 to equation (5.15), it

follows that

7r
Bn+2 = —	 h(C) Pril+1 (COS () sin ( d( ,	 (5.16)

2 7-- co

where Pnl(s) are the associated Legendre polynomials with order 1. Substituting this

expression into the second part of dual series equations (5.13), we have

7rE pin--+11 (cos 0)f h(() Pni ± i (cos () sin d( = sin 	 (7r --cp < < 7r).
n=0 	 7r —,,c)

If we now interchange the order of summation and integration of the above equation

we obtain
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To sum S(0, we use the following theorem for Legendre polynomials:

Pi (cos w) = Pi (cos 0).P1 (cos C)
(5.19)

+ 2 E(_1)- cos(mz)p,-- (cos 9)pri (cos a 	 1, 2, 3, . . ,
m=1

where

cos w = cos 9 cos + sin 9 sin cos z.

First, multiply both sides of the equation (5.19) by cos z, and integrate from 0 to 27r

with respect to z to obtain
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we obtain

	1jr2ir	 COS z dz
S (0 , () = —2

7r 0 	— 2 cos w
1 	 2z 	 COS Z dz

27r o Vs! + s2 — 2s1s2 cos z

where

	

( 	 (" 

	

S i = 2 sin 
0
—
2 

cos —
2

, 	 s2 = 2 sin —
2 

cos —
2

,

and both s i and s 2 are positive for all 9 and C, since 0 < 9 , ( < 7. Using a lemma of

[Copson (8)1, it follows that

2 	 r min(sl,s2)
S(9, C) = 	

'xsis2
s 2 ds

O s? s2) — s2 )

(5.22)

Since s 1 < s2 when 9 < (, and s i > s2 when 9 > C, we split the integral in equation

(5.17) at = 6 and then substitute the summation (5.22) into the integrals, it follows

that

Os? — 82)(4

=
4

 sine 0

We next make the change of variable

fo 1082
h(()

- co

ds	7r 	 j(
	d(	 h(C) 	

81

s2 ) 	 e 	 o
s2 ds 

	d(
V(s? — s2 ) 	 — s 2 ) 	 (5.23)

0 (	 u
s = 2 sin —

2 
sin 

2 
cot 2

(7r — co < 0 < 7r).

(7r — go < 0 < 7),

it follows, then, from equation (5.23)

I+
f

0

	

	 sine -(- cot e --i-k du
h(() r 	2	 2 	d(
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It follows that

Let

Then

By inverting the order of integrations in above equation, we obtain

7r

	2 u
h(() sine d(

cot du
9

2 fir— co -(cos ( — cos u) (cos 0 — cos u)
	7r 	

u	
u h(C) sin2 d( 

± i cot2 — du

	

e	 2 	 fo -\/(cos ( — cos u) (cos 0 — cos u)
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fo

	r  h(() sin2 2 d(	 2 9=	 cos 
2

.
vcos ® — cos u 	 -Vcos C — cos u

u 	 h(() sin2
H (u) 

=cos ( COS u 

dc

f7r	 cot.' Lk duC0t2 11 du

(5.24)

fIT

H(U) C0t2 	0
	 du = — cos 2

)9 NAOS — cos u 	 2 	 2
(7r — cp < < 7r) . (5.25)

sin 0
To find H(u), we multiply both sides of equation (5.25) bv   and

vfcos v — cos 0
integrate both sides of the equation from v to ir with respect to 6, then

(' 	 sin 0 d0 	 H (u) cot2 121 du

v 1/COS V — cos B Jo \/cos 6— cos u
sin 0 cost

2   d0
cos v — cos 0

(5.26)

Invert the order of integrations in equation (5.26), we have

fu sin 0 d0	 7 sin 0 cost
H(u) coo —

2 
du 	 d0

v	 (cos 0 — cos u) (cos v — cos 0)	 2 f, -Vcos v — cos 0

(5.27)
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Applying the integral formula (C.20) directly on the second integral on the left hand

side of equation (5.27) gives the value 7. The integral on the right hand side of

equation (5.27) can be evaluated using integration by parts, which is given as (see

equation (C.1) in Appendix C for more details)

r sin& cos 2	 dB = —

2
(1 + cos 

3

v/cos v — cos e 	 3

It follows, then,

H (u) cot2 11-- du = —
1

(1 + cos 	 (5.28)
2

Differentiating equation (5.28) with respect to v gives,

H(v) = —
1

(1 + cos v)1 sin v tang v
2

(5.29)

Substituting (5.29) into equation (5.24), we have

r 	h(() sin2 I1 	 .-, u
	d( = — 1 (1 + cos v) 2 sin u tang . 	 (5.30)

J.,,,p ti/cos C — cos u 	 2 	 2

sin u

	

To find h(() , we multiplv both sides of equation (5.30) by   and
vicos u — cos v

then integrate with respect to u from 7T — CO to v. It follows that,

sin u du	 uh(C) sine 2 	dc,
\ /cos U - cos V 	 90 COS 	 cos U

:=7 	V sine u tang 	+ cos u du.
	2

-
	Vcos u — cos v

(5.31)



Interchange the order of integrations on the left side of equation (5.31), we have

66

With h(0) known, the velocity field can be found as shown next.
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5.3.2 Velocity Field

We use h(9) to find a closed form expression for the velocity on the clean part of the

interface. We assume

g (0) E Bn+2p7,—+ii (cos 0)	 (0 < 0 < 7r — cp). 	 (5.35)
n=0
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Substituting this into equation (5.37) and inverting the order of integrations, we
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5.4 Surfactant Transport

The limit 6 --+ 0 poses a singular perturbation problem as can be seen from equation

(5.2). In the main part of the flow field a solution can be found which needs to be

matched onto boundary layer solutions in the vicinity of the bubble surface. These

two solutions in their respective regions are considered next.

5.4.1 Leading Order Outer Solution

In the limit E 	 0, equation (5.2) becomes

u • VC O.	 (5.42)

That is, the directional derivative of C in the direction of u vanishes. i.e.

DC f,

u.
Du

It follows, from the definition of the stream-function, that the bulk surfactant concen-

tration C is constant along stream lines. Since the concentration far from interface

is equal to one. This leads to the solution

C 	 I,	 (5.43)

everywhere in the fluid domain. This solution satisfies the boundarv condition at

infinitv (2.58), but it does not satisfy the boundary conditions on the surface (2.60),

(5.5) and (5.7).

The problem arises from neglecting the diffusion term on the right hand side of

equation (5.2) everywhere. When	 0, the problem becomes singular. Diffusion is
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negligible compared to convection away from the bubble surface, but is not negligible

near the interface as a boundary layer develops there. In fact, the solution (5.43)

is the first order outer solution of the problem. To find the inner solution, we need

to introduce appropriately stretched boundary layer variables on perform a local

analysis there.

5.4.2 Rescaling and Boundary Layer Equations

5.4.2.1 Stagnant Cap Region (7r — cp < 8 <

We rescale the length in the inner region as



To evaluate the infinite sums in equations (5.46), we use the results in Section 5.3,

where we obtained that,

00	
1E 	 (cos 0) = --21 sin 0	 (7r — < 6 < 7r),	 (5.47)

oaE (2n + 3)Bri+21);-i---1!]. (cos 0) = h(9) (7r — < a < 7r),	 (5.48)
n=o

which is equivalent to writing

BnC 2 (cos 0) = sine 0	 (71- — cp < 0 < 7r),	 (5.49)
n=2

	E (2n — 1)BnC7,7 (cos 0) = sin Oh,(0) (71 — cp < 9 < 7r).	 (5.50)
n=2

Differentiating both sides of the above equations, we have,

00
E Bnpn,_, (cos 0) = _1 cos 0	 — cp < 0 < 7), 	 (5.51)
n=2 	

2
oo

E(2n — 1)B,,Pn_i(cos 0)	 — cot 0h(0) h i (0)	 (7r — cp < 0 < 7r).	 (5.52)
n=2

Applying these results to equations (5.46), we obtain,

n=0
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We now propose an asymptotic expansion for the concentration field in the

inner region of the stagnant cap region, of the form

00
n\ — ci 	 m I 'C--" /-1 _\ ff(n) t 	 /J\	 (r r
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5.4.2.2 Clean Surface Region (0 < 0 < 7i - CO)

We begin our analysis by assuming that the angle 7 - cp (the size of the clean part of

the interface) is of order one. This implies that —N 1 in the boundary layer and,
00

as we show later, it leads to physically inconsistent solutions. This analysis is useful

in deriving the correct asymptotic boundary layer structures. From Section 5.3, we

have,



fo --P ac
ar

1 fr- `P OC2

r=1 	 S2
sin 0 d0

0 	 3772
sin 0 dB r- 0(6 -1 ).

712=-0

(5.69)

DC
Dr 51r= 1

1
sin 0 d0 =

act
721=0
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The concentration concentration is also expanded as

C(972, 0) = C2( 772, 0) + E H (e)dn') (772 , 0).	 (5.65)
n=1

Substituting r = 1 + 8 2 7i2 into equation (5.45), expanding for small (52, and using the

summations (5.60) - (5.63), we have, for the leading order velocities,

-r7262[cos 	 2(cot 0g(0) + g'(0))] + 0(53) 	 (0 < 0 < - co), 	 (5.66)

u® 
2g(0) + 

sin 0
	 + 0(62 )	 (0<0 <	 cp) . 	 (5.67)

2

Substitution of equations (5.65) - (5.67) into equation (5.2), yields,

ac2 	sin 0) ac2 	E a2 C2
— 772 [COS 0 + 2 cot 00) + 29' ( 0 )] 	  + ( 29(0) +

0772 	 2 	 ao (5.68)

Balancing the diffusion with convection gives

62 = E 2 ,

which is the expected result for a clean surface (c.f. [Leal (1992)]). We indicate, next

that this structure is physically inconsistent. This is done by consideration of the

mass flux onto and off the interface. Using the boundarv layer scalings just found,

the mass flux onto the clean part of the surface is

On the other hand, on the rigid part of the surface, r = 1 + Elm., so the mass flux

off this part of the surface is

sin 0 d0	 0(e -1).	 (5.70)
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It is obvious that the order of the mass flux onto the clean part of the surface

is asymptoticallv larger than that off the rigid part, and hence the mass flux off the

surface cannot balance the mass flux onto the surface as E —+ 0. This contradicts

the fact that the total net diffusion flux to the surface vanishes at steady state. The

problem lies in the assumption we made that the tangential angle both in stagnant

cap region and clean part are of order one. In fact, when E 0 (Pe --+ coo), surfactant

acts as if it is insoluble once it adsorbs onto the surface. As a result, surfactant

almost covers the entire surface (as [Bel Fdhila Duineveld (1996)] observed) at

steady state. In what follows we provide the consistent asymptotic scalings in the

limit E - 0.

To get an appropriate boundary layer thickness along the clean part of the

surface, we assume

- CP = A(E)(Po,	 (5.71)

with A(epsilon) 	 I. to be found and co o = 0(1) being a constant that needs to be

determined by matching the boundary layer solution along the clean part with the

solution along the stagnant cap.

We next rescale the variable 0 as
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The velocity field near the clean part of the surface now depends on both 6 2 and

)(epsilon). To find the boundary layer thickness there, we need to expand the

function g(e) and its derivative g' (0) , in asymptotic series.

We substitute 0 = g and (do = 7r — Ada into equation (5.41), and change to the

variable u = Av in the integral of that equation. Then,

g(A) = 4.7r sin( g) 
--12- 

sin —(P tan —
Ae 

\/cos 	 cos(Ae)
97r 	 9. 	 7
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Substitution of these along with equations (5.72) and (5.73) into the convection

diffusion equation (5.2), vields



If we combine equation (5.83) with equation (5.81), then A = ei and 62 =

which makes the diffusion term we keep (the second term in the right hand sides of

equation (5.79)) to be much smaller than the term we throw away (the first term in

the right hand sides of equation (5.79) as € -4 0. Obviously, balance of convection

with the second term of equation (5.79) is not a right choice. The only possible

correct answer is balancing the convection with the diffusion in radial direction.

This could have been anticipated since we need the radial dependence in order to

apply boundary conditions at ri 2 = 0, oo.

Combining equation (5.83) with equation (5.80), we obtain,

	7 	 1
	(5  2 = E 	 = E 15 	 (0 < e < cp 0 ). 	 (5.84)

That is the boundary layer thickness along the clean part of the surface is of 0(€1 -6)

and the size of the clean part surface is of 0(E 5).

The boundary layer equation along the clean part of the surface is



Figure 5.1 Boundary laver structure, where cp is the cap angle
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11 ( 19 ) = 1 — ef(0), 	 (5.92)



2. In clean surface region (0 < 6 < (Po)

772 (24, – 3e2 ) ac2

-Y1 co?) — 2 ari2

C2 = 0

OC2
	= 0
0772

C2 = 1

at 	 /72

at 	 6

as 	 772

with
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3 cos 9 1 + 2 cos cp) sin -1
cos(7r – yo) – cos 0

1– cos 0f(9)= 	7rMa

– 312 cos -cf.:. -icos (7r
_ (5.93)

– cp) – cos 0 .

a2 C2=
19773 	 3

(5.94)

= 0, (5.95)

= 0, (5.96)

---Y 00. (5.97)

At 0= 7 – c,o, both boundary layer equations (5.88) and (5.94) become singular.

A double deck may need to be solved in a small region around 0 = it – co, as is

illustrated in Figure 5.1. Equation (5.94) is solved numerically bv marching forward

in e starting from an initial condition at 6 = 0. The solution is shown in Figure 5.2,

where the horizontal axis represents the dimensionless concentration, the vertical

axis represents 17' =	 —(Po 772 and e' = —C—. Note that there is a singularity in the
7 	 (Po

solution as e' -4 1. Using the above rescalings, the equation can be written as

77'( 2 – 36/2 ) ac2 ac2 	a2C2 
+ \11 V 2v i ____ 6,2 a77 '

,9,
	a77'2 •

5.5 Conclusions

Once the solutions for boundary layer equations (5.88) and (5.94) are found, the

solution for the bulk concentration C can be determined by matching the solutions



Figure 5.2 Boundary layer solution in clean surface region
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This expression of the drag is of ultimate use and can be used to check experiments.



APPENDIX A

ANALYTICAL SOLUTION FOR SMALL BULK CONCENTRATION
AND PECLET NUMBER

The objective of this Appendix is the asvmptotic evaluation of the drag CD1

experienced by the bubble in the limit of small bulk concentration k and small

Peclet number of 0(k). It turns out that the 0(k) correction is zero and the

asymptotic development is taken to 0(k 3) in order to provide an accurate enough

result to compare with the simulations.

A.1 Hydrodynamics and Surfactant Transport

The exact system to be solved is

for the convection-diffusion equation governing the concentration distribution in the

bulk. It can be seen from equation (A.2) that in the limit k <1 (here we also take

Pe = Qk with Q a constant) the hydrodynamics decouples from the concentration

dynamics. In addition, at higher order this remains the case and forced versions of

equation (A.2) need to be addressed.

84
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Formally, then, we expand dependent variables in powers of k,

=:- '1,bo + kith. + k 202 k3 03 + • • 	 (A.3)

r F0 + kr, + k2F 2 + k3r 3 + • • • , 	 (A.4)

c c0 +kc, + k2c2 + k3c3 + • • • , 	 (A.5)

u	 uo ku i k 2 u2 k3 u 3 + • • • ,	 (A.6)

and substitute into (A.1) and (A.2), to obtain a sequence of problems at successive

orders.

A.1.1 Leading Order Solution

The leading order problem is
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The hydrodynamics decouples leading to the well-known Hadamard-Rybczynski

solution



a27P 2 DIP
ar2	ar

ad,
or

=0,
r=1

= cos 0.
r=1 	 X

(A.1.3)

(A.14)

Thus, the solution for (A.11) is

= 0, (A.15)



E47p2 	o,

= 0
= 0r2 —

(92 '02 	 - a: 2

8r2 	 2 = Ma sin 0 81—Iaor=1

at 	 r = 1, 0 = 0,7r,
as 	 r 	 oo, (A.18)

as 	 r -4 00 ,
(A.19)

QMa	 sin 0 =
2x

(2n — 1)AnC,;1 (cos 0),
00

n=2

A.1.3 Third Order Solution

At 0(k2 ) the problem is

88

and for the concentration

{ v2 c2 = Q (uorvi: + uo, p,,
'	 r 60 l

Cl2 = o
F2 ------ cils — rico,
thi-9 (sin 01/001-2) ,.-_. xac2

Q Or r=1

As we showed in Section 3.2.2 in Chapter 3, the general solution for *2 that

satisfies the first two boundary conditions of (A.18) is

00
A (r 1 — r -7143)Cn- ' (cos 0), 	 (A.20)

n=2

_1 	 1
where Cn 2 (X) are the Gegenbauer polynomials of order --

2
. Using this solution

along with the known expression for r2 (see (A.19) and (A.17)) provides the following

equation connecting the unknown constants A n ,

from which it follows (using the properties of the Gegenbauer polynomials) that

A QMa
112 	 76x

An = 0 	 otherwise.



Hence,
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12x C2 = 
QMa
	  — r sin 2 O.	 (A.21)

Next, with 7P0 and C1 known, the concentration C2 in (A.19) satisfies

2V 2 C2 	- [eos2 0 (-1-71 	sin2 0 ( 1r3 — 
X 	 r 	 r 	

2 (A.22)

Seeking a solution of the form

00

C2 (r, 0) = E fn (r)Pn (cos 0), 	 (A.23)
n=0

we find that the unknown functions fn (r) satisfy

1 d 2 	Q2

2 cT, (r 	 = 6xr4 , 	 (A.24)

-- (r 2 	--f2 9-2- (- - —
2 	2 

- 
2 	4	 3 	

(A.25)
r dr	 r 	 6x r 	 r
1 d	 6 	 5 	 6

a d (r
2
 f,' ) 

n(n + 1)fn = 0 	 for 	 n 0,2. 	 (A.26)
r2 dr	 r

The general solutions are,

Q 	do
fo = 	 + boy (A.27)

	

12xr2 	r

	

f2 = 9- 2- ( 1 	5 	+ b2r ,2

	

6x r 	 4r2 	r3	
(A.28)

= bre + cinr-(n+1) 	for	 n 0 0,2, 	 (A.29)

and since C2 	 0 as r 	 oo, we require bn = 0 for all n. Hence the general solution

for C2 assumes the form

r --(n+ 1) Pri (cos 0) +
Q2 	 n2

+	 —
5 

P2 (cos 0),	 (A.30)
12Xr2 6x r 4r2

( oo
C2 -= E

n=0



Q2
do =	 ,

6x
d1 Q1 — (A.31)
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and the constants do can be found by substitution into the surfactant concentration

boundary condition in equation (A.19). The result is

d2 = Q2 (1 + —2 )	 = 0 for n > 3. 	 (A.32)
12x 	 X

This together with (A.30) determines C2, which is given by

G,2 (r, 9)	Q	
+

(cos 0) Q 2 (2 + x 	3
3 	2

 P2 (cos 0).	 (A.33)
6x 	 2x r 

1

 4r2x 	 r 2

A.1.4 Fourth Order Solution

Finally we consider the 0(k 3 ) problems

I E403 = 0,
'03 = 0 	 at 	 r = 1, 0 = 0,71,
4 = 0 	 as 	 r -÷ oo,r

821P3 2 43 	= Ma sin 0 W + F1Ore	 Or r=1

(A.34)

82 'P2 2 420r2 	 Or J

and

{

v2c3 =,__ Q (u0r OaCr2 ± u;g. 9)
C3 = 0 	 as 	 r -4 oo,
1' 3 = C2 8 — rici, — cosr2,
86 —a-1 [sin 0(uoeF3 + U2t9r1 )1 = t2 V

The solution for 03 has the same form as that for 02. Writing

00
03 = 	 Bn (r—n-F1 — r—n-F3) C; 2 (cos 8),

rb=2

r=1

(A.35)
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the coefficients B, are determined by substitution into the last boundary condition

of (A.34) and use of the solutions already found for F 1 , F2 , Ci and 02 (note that

these determine r3 which enters into the boundary conditions). The solution, then,

is found to be

(r, e) = QMa 1 -
 r 

— r C2 (cos 0)

Q2Ma (1 + 1) (12 —1) C; 4 (cos 0).
40x \ 	 Xi \r

(A.36)

Our interest is in computing the drag up to and including 0(k 3 ), so the solution for

C3 is not required.

A.2 Asymptotic Expression for the Drag

Letting the drag on the bubble be Cm ) the limit considered here implies the

expansion

= DO+ kpi±k2 D2+ k 3 D3+ • • • .	 (A.37)

The total drag on the bubble is found by integration of the forces acting on

the interface and since the flow is axisymmetric, the drag is the magnitude of the

total force acting along the axis of symmetry and opposing the motion. The drag is

(see Section 2.4.2.1) (in what follows p i is the dimensionless pressure at the bubble

surface)

	( 2 n 	 820
Cm= 	 sin 9—a — 2 sin 0 

 7-2
 de

	ao	 0
	 ,a3 ,0 	 „ailp 	 , 	 2 0 ar)— 6 Sill 	 — 2ivia 

sine f_ sin
	ar 3 	ar	 1 r ao
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Substituting equation (A.37) into above equation and using the solutions fcbo,

01, 02) 031 F2 and F3 given above determines the coefficients in the expansion (A.37)

for the drag to be

Do f C9200 6303
 s

in 	 —o 	ar3 	aa ) sin 0 dO = 4,

D i =	 (492  6 a:91 ) sin 8d8 0,

7r=
	

( (92 02 	,9 2 6 	01'22Ma sin t9) sin 0 aD2 	07-3	 00	 80

C2Ma
 ©

sin 3 0 dB 	 2QMa
2x	 3X

D3 = fo °3 2114a sin 0 ( 8112 ar3 )] sin 0 a[aar 3
3 6aa

e 	ao	 ao
	2C2Ma / 1 	4Q2Ma ( 4 )11 _1

(z) dz(z) dz + 	 1 + — 	 C3
X 	 --1	 5X	 x	 --1

4QMa
	 •3X

The relation (3.8) in Chapter 3 has been used here. The asymptotic result for the

drag Cm follows, then,

= —4 	
A 2QMa 

+ 
4C2Ma

 k3 ± • •3X 	 3X
(A.38)



APPENDIX B

ANALYTICAL SOLUTIONS WITHOUT FLOW

Two time dependent analytic solutions are provided for checking the accuracy of our

numerical results. The problem is reduced to simple cases where it can be solved

analytically, by assuming that there is no flow around the bubble. The solutions are

obtained using Laplace transforms.

When there is no flow (u = 0), the convection-diffusion equation (2.48) and

equation (2.59) become

ac_= v2 c,
at	 Pe
ar xo ac
at	 Pe Dr r=1

where xo = xk.

Without loss of generalitv we rescale time as t = -7-Pe to obtain

acay =v2c,

ar	 ac
ay = xo ar

The problem can be solved analytically, if the bulk concentration is very small

(k < 1) or the bubble is taken as an infinite sink (C = 0 on the surface).

B.1 Small Bulk Concentration

When k << 1, a linear relation between surface concentration r and sublayer concen-

tration C (r = 1) may be assumed, i.e. the boundary condition (2.60) can be written

as

r = kC	 at 	 r = 1.

(B.1)

(B.2)

(B.3)

(B.4)
r=1
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Since there is no flow around the bubble, the solution only depends on the

radial distance r. The boundary condition at infinity suggests a solution of the form

C = 1 + 
(1)(r

'
 T)

Substitution of equation (B.6) into system (B.5), gives

a2cD
ay 	 (39-2

subject to the boundary conditions

< 00 	as	 r	 oo,	 (B.8)

r k (1 +	 at	 r = 1,	 (B.9)

ar
— = x0(4), – (b) 	 at 	 r = 1,	 (B.10)
aT

(B.6)

(B.7)



If we take the Laplace transform in time of the differential equation (B.7), we

obtain
a2

 = 0,

where (I) is the Laplace transform of (I. defined as

= L[1] = f (De-"ciT. 	 (B.12)

The general solution for is

= A(s)e-vrir	 (B.13)

Here we choose the real part of 	 to be positive to give a bounded solution. Taking

the Laplace transform of both sides of equations (B.9) and (B.10), and using the

relation (B.13), we have,

sfl = —Axo ( \ii + 1)e-f-s, 	 (B.14)

k( 1 Ae-V"s), 	 (B.15)

where I' =L[r]. It follows that

keVi
A= ks 	 (B.16)

xo (vri-l- 1).



f c5e"ds =O. (B.18)

sie"ds+ 	 3e"ds+ 	 4sesTds)
27ri (fE, 1 	 L 2 	 Cl + C2 	 Cr

= - 1

Figure B.1 Contour for integral of Eq. (B.18)

Substituting equation (B.16) into equation (B.13), gives

ke-N179 (r-1 )s) = 	ks xo (li + 1) .
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(B.17)

Now we use the contour L which is shown in Figure B.1 to find the inverse

Laplace transform of ',I). Since Re( Ari)> 0, the function <i) has no singularity in the

region that is bounded bv the curve L, hence

This leads to

1 f
—

27i 	 • 
1.e"ds

7 -2.00 (B.19)



The last two terms of the above expression vanish as R - oo and r --+ 0. Hence
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We seek the solution in the same form as in equation (B.6). Let



Substitute this into system (B.22) to get
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It follows readily by inversion of (B.28), that
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APPENDIX C

FORMULAE AND CALCULATION DETAILS

In this Appendix, we provide evaluation of two integrals that were required in

Chapter 5. Calculation details of the functions G(ti) on page 68 and g(9) on page 68

are presented. A list of relations of Legendre polynomials, associated Legendre

polynomials and Gegenbauer polynomials that we used in Chapter 5 and Appendix A

is given at the end, followed by some useful integral formulae.

C.1 Calculation Details

C.1.1 Evaluation of Integrals

1. This integral is used for calculating H(v) in equation (5.29) on page 65 in

Chapter 5.

f Ir sin 0 cost
	dO

Ji, \Aim v — cos 9

— 1fr sin 9(1 + cos 0)
   d0.

2 v -V cos v — cos 0

We make the change of variable x = cos 0, it follows then,

r sin 0 cost e de
v v/cos v - cos 0

1 f -1 	 1 4_
	dx

2 /cosy -Vcos v x

(1 + d1/cos v - x
Los?,

cos V
= (1 + x)\/ cos v — 	 — 	 cos v — x dxcos u

2 ,
cos v 	

, 3
= —3 	

re) 2

= 
2
—
3

( 1 + cos iv)
3

0 S V (C.1)

cos V
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3
2.4

-V( 1 - x)(x — cosv) dx

COS V

cos(lr

(1 — cos v) 2 .
4

— cos V

— cos V
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2. In what follows, we provide the calculation of the result (5.33) on page 66 in

Chapter 5.

sin3 1-4 sin u2 	 du

v
+ 3

-	 U	 U
= —2 sin3 Li .VCOS U — cos v j 	 cos —2  sing —2 -Vcos u — cos v du.

2 71--(p 7 - Cp

= 2 cos3 N/cos(71- (p) — cos v + 3cos —u sine u-2 -Vcos u — cos v du.
7- 	 2

We now make the change of variable x = cos u, substitute this into the above

expression to find

f7r_ cp cos\ 	 72 — COS V
v

u
2

f
7

= —2 	 sin3 — d \/cos u — cos v
— co

sin3 Y- sin u2	 du
v

_,,,, v/cos u — cos vi7

= 2 cos3 5--°- cos(-V7 —
2 	

cp) — cos v 	

= 2 cos3 (-P-- cos(V7 — cp) — cos v
2

2x — 1 — cos v 
-V

1
(1 — x)(x — cos v)

4

2-4 os(ir—(p)

3 f cos V

	+ 
(1 — COS V) 	 cosv2 	dx

8 	 icos(r—cp) -01 — X) (X — COS V)

= 2 cos 3 . 42- Vcos (7 — cp) — cos v

	3  [ vrj . 	cp
cos — (1 + 2 cos co -1-- cos v) Vcos(7 — co) — cos v

2\12 4 	 2
cos ,t,

cos (7r—cp)

3 	 4 v . _ i . /cos(7r — cp) — cos v.

sin 	 sin
2V-2- 	

2 	
V 	 1 — cos v

1 	 co
+ —8 cos -i (5 ± 2 cos cio — 3 cos v) Vcos(7r — co) — cos v.

(C.2)



-1
3 b- x

(1 + x)-V a x sin- 1
1- x2-0 b

--1
/ a x sin-1

-1 1 + x
1 - x

b - xdx
a - x

fj.

2

-1 	 3
(a - x) 2 dx1

1 - xWb - x
(a -x) 22 sin -1
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C.1.2 Calculation for G(u)

Here we show the result (5.40) for G(u) on page 68 in Chapter 5. The expression of

G(u) in integral form is given by

-Vcos u - cos ( 2V-2-

cos2 &.	[3 sin ( 
sin-1

cos 2 sin ( 	 1	 (p2 	cos cot 2 1COS(7 — (12) — cos C
cos (7r — co) — cos

We make the change of variable x = cos (. Also, we write a = cos u and b = cos(x-(p)

for simplicity. Multiply both sides of the above equation by - 77-'1;5 . It follows that

E 	 (1+x)dX 3 r 1 + x
x dx 

COS 2
	 sin

2 ifb ,V(a - x)(b - x)
G(u) = 	 1 - x4'4 I b N/ct

cos 2- f -1 14-xjb-x2 	 dx
4 b 1-x .Va-x

G(u)
rr 	 7r—

CO* — CO) — cos

— cos C
(C.3)

d(.

-V1 - b ir -1 1 + x	 - x
	 dx

2 jb 1 - x b - x
cos 2 f -1 	(1 + x) dx	 COS 22 

2	 — X)(b — X) 	 4

3  ri 	
A/a - sin- 1 

ib-x dx+
3 cos(/' f

-1 1+x a-x
	 dx

2-N5 it,	 1 — x	 4 	 2 b 1 - x b - x

cos	 1 +x 	 dx 
cos (22- T- 1 1+3yb - x dx

2	 b V(a - x)(b - x)	 4 jb 	x a-x4 jb 	xV a - x

■•••

3 cos 1 
1+xia-xdx

 - 
cos 	 -1 (1 + x) dx 

	4 	 2 1- xV b x   2 lb v/ (a - x)(b -

cos
	 1

-1 1H-z .Vb-x

(continued on next page)

4 jb 1-xV a-x4 jh 1-x a-x
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z)

_2

)( 1 	b)

C.4)



sine u — cos u — cos cp
4 sin 2

COS u-2 C5i

-kCOS p 
2

fo

sine u — cos u — cos cp)

3 u 	 2 u 	 (C.6)
cos — tan -6 	sin co	 vi1 + cos u tang

2  du +	 I ° 	 2 du2 
NAOS u — cos 0	 2	 ,,/cos — cos 0

4 sin t4 /cos u — cos 8
tan2 2 du

- cos 

cos 	 2
n

Substitute a = cos u, b = cos(7r cp) back into equation, we obtain

—	 u) 	
v(Ip 

(1+ a) -f
3 cos 2 	

2
	 -01 + cos u) (1 — cos so)

4
cos 2 (cos2 u + cos u + cos y — 1)

 	 in

	

2	 \/(1 — cos u) (1 + cos co)

= y cos- u-
2 

— —
4 

sin so-V1 + cos u

(1 — cos u cos 2 u — cos cp)ln 1 + cos u cos cp + sin u sin cp
	4 	 -\/1 — cos u	 cos u + cos cp

3 U sin ce	 u
= cp COS 	 cos 

2	 2	 2
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sin u sin cp — cos 'u cos so — 1
cos u — cos(r — co)

(C.5)

The result (5.40) follows by multiplying equation (C.5) by
71

C.1.3 Calculation for g(9)

The calculation of result (5.41) on page 68 in Chapter 5 is given below.

	

cot	 r ° G (u) tan2 t.1
9(0) — 

	2 j 	 2 	  du
	it 	 0 v COS U — cos

-VI coscot	
( 	 3 U sin co

COS

	

--T7r	0	
(ID "S 	2	 2 

u–cocos 2 
u+cacos 2

+ In

cot

1 f ° (1 — cos u — cos 2 u — cos cp) tan2 2
2 Jo 	 — cos U) (cos U — cos 0)

Cot 2 ( 
VC191- + 

sin (p
H — —

2
/11

)7r2 	 2



9 (1 — cos u cos 2 u — cos go) tan2

— cos u) (cos u — cos 0)
cos 11-/L. -

2 

cos 'HP2

n du,IIII =

1
2 /2

x) (x cos 8) + (1 cos 0) sin-1

	// = 	 2
0 -V1 + cos u tang a
	 du

fo A/cos u — cos 0
e 1 — cos u

o01 + cos u) (cos u — cos 0)
	------ 	 du

fl 
	vfl — x
	 dx

cos o (1 + x) //x — cos 0

= sec —0 
sin-1 

(3 + cos 0)x — 1 — 3 cos 0 	1 \tx — cos 0
—

2 	 (1+ x) (1 — cos 0)	
2 sin— 	 1 — cos 0

0= 7r(sec —
2 

— 1).

(x = cos u) 	 (C.8)

cos 81

1

where the integrals I , II and III are given by

0 cos3 Y.- tan2 a

	

/ = 	2	 2  du,
1o V cos u — cos 0

	H = 	
0 V1 + cos u tang -1-6
	  du,

fa .i cos u — cos 0
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and are evaluated next.

1. Calculation for integral I.

0 cos3 a tan2 LI

i =	 2 	 2  du
dio VCOS U — cos 9

,---  1 f
° sin u//1 — cos u 

du
2 	 Vcos u — cos 0

1 	 i 1 4 7  1 — x
2 \/-2- 	

dx
cos o V x — cos 0x — cos 0

(x	 cos u)	 (C.7)

\/(--7F 	 2 9-- 	
4

= 	 sin 
2

2. Calculation for integral II.
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3. Calculation for integral III.

1: (1 — cos u — cos 2 u — cos cp) tan2 
2 	

in cos 14 2 95f

+v, du(1 — cos u) (cos u — cos 0) 	 cos u 
2= / 8 sin u(1 — cos u — cos2 u — cos (p) 

In 1 + cos u cos (p + sin u sin cp
3 	

	(1 + cos u) -f V cos u — cos 0 	 cos u + cos (p du.

We make the change of variable x = cos u, then the integral III becomes

1

II=
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1

cos 9

dx
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(continued on next page)
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2 sin cp(1 — cos co) f 1 	x — cos0 dx
1 + cos 0 rose 	 1 —x (1 + x) (x + cos cp)

dx
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2
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= — 71 sin y 1 + tan 2

92
1— cos0
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/

1 + cos cp,	
sec —1

2
cos co + cos0

1 + x cos y + sin cp-V1 — x2

x + cos co
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1(1 + x) (x — cos 0)

2 	 1 + cos y 	 2sec —9 )0 cos co + cos 0

cos '_ Su
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sin u du

-V(1 + cos u) (cos u cos 0)

(C.9)

Substitute equations (0.7), (C.8) and (0.9) into equation (0.6), to obtain the

expression for g (0) .

N/2 	 /	
g (0) = —47r sin 	

sin
+ 	 ." 	

0tan —
2 

v cos y + cos 0
27r (0.10)

sin 0 f 
in

472 0
sin u duu—ço cos 2 

cos 	 2 -V(1 + cos u) (cos u — cos 0)
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C.2 Some Useful Formulae

C.2.1 Relations between Gegenbauer and Legendre Polynomials

	C? (cos 9)	 — sin 0P 1 (cos 9)	 (C.11)

Cn (cos 9) = 
1

 2n —1 
[Pn-2(cos 0) — Pri (cos 0)] 	 (C.12)

dPn_ 1 (cos 0) =
  	 1) 

CrT 1 (cos 0)
dO 	 sin 0	

(C.13)

1
dC,;' (cos 0)

dO 	
= 

sin 0Pn_i (cos 0) 	 (C.14)

IV (cos 0) = P(cos 0) (C.15)
n(n + 1)

1

C2 (cos 0) 
= sin2 0

	2 	
(C.16)

Pi (cos 0) = cos 0	 (C.17)

P2(cos 0) = 1— sine 0	 (C.18)
2

/7 (cos 0) pr (cos 9) sin 0 = O
n	n k

	 2n(n+1) 	if	 n 	 k 	
(C.19)

Jo 2n+1



C.2.2 Integral Formulae
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