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ABSTRACT 

PNEUMATIC FRACTURE PROPAGATION AND PARTICULATE 
TRANSPORT IN GEOLOGIC FORMATIONS 

by 
Suresh Puppala 

Pneumatic fracturing is an in situ remediation enhancement technology developed 

to increase the permeability of contaminated geologic formations. This technology can 

also be used to deliver atomized liquid and particulate supplements to geologic 

formations, thereby enhancing in situ processes such as bioremediation and reactive 

dechlorination. 

The main objective of this study was the development of a mathematical model 

that simulates the propagation of pneumatic fractures in soil and rock formations. 

Pneumatic fracture propagation differs from other fluid fracturing phenomena in the 

propagation velocity (1-3m/sec) and the viscosity of the fracturing fluid (1.9E-05 Pa·sec). 

For the purposes of model development, the geologic formation was assumed to be 

homogenous with regard to composition, anisotropic with respect to pneumatic 

conductivity, and overconsolidated with respect to geostatic stress. 

The propagation model was formulated by coupling equations describing the three 

physical processes controlling propagation: (i) pressure loss due to frictional effects; (ii) 

leak-off into the surrounding formation; and (iii) deflection of the overburden. Pressure 

dissipation was modeled based on Poiseuille's law, and leak-off was modeled using two-

dimensional Darcian flow. The deflection of the overlying formation was modeled as a 

circular plate clamped at its edges and subjected to logarithmically varying load. 
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The model was solved numerically and the solution was expressed as an 

algorithm. The algorithm seeks an equilibrium fracture radius and aperture that 

simultaneously satisfies flow continuity and stress equilibrium criteria at the fracture tip. 

Different methods of solution convergence were examined and the Bisection Method was 

found to be the most efficient. 

Sensitivity analyses showed that model behavior was dominated by the pneumatic 

conductivity of the geologic formation since this parameter largely determines leak-off 

rate. The algorithm was calibrated with field data from six different pneumatic fracturing 

projects and regressed values of pneumatic conductivity and elastic modulus showed 

reasonable agreement with field measured values. The most important result of the 

calibration process was the coincidence between the regressed conductivity (l.lE-03 to 

1.8E-05) and the post-fracture conductivities measured in the field (3.1E-03 to 1.7E-05). 

This result supported the fundamental thesis that final fracture radius is determined with 

the geologic formation in a disturbed state. 

A separate pneumatic fracture propagation model was developed and solved based 

solely on the continuity criterion. The solution demonstrated reasonable correlation with 

field measured radii, although it tended to overestimate fracture radius in soil formations 

at shallow depths of injection (on an average 15% more than field measured radius). 

As a secondary objective of this study, a methodology to model the mechanism of 

particulate transport in a fluidized soil formation was proposed. The methodology was 

tested with field data from a recent case study. 
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CHAPTERl 

INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

When remediating sites containing contaminated soil and ground water, the "in situ" 

treatment approach is preferred, i.e., remove or treat the contaminants in place without 

excavation and disturbance of the site. In most cases, the in situ approach is the most 

economical alternative, and a number of these technologies have emerged over the last 

decade with varying degrees of success. The major obstacle to in situ remediation 

technologies such as vapor extraction, bioremediation, and pump and treat, is the low 

permeability of some geologic formations. If the site contains fine-grained soils such as silt 

or clay, or dense bedrock such as shale or siltstone, in situ technologies are generally not 

effective. The hydraulic conductivity limit below which current in situ technologies are not 

normally applicable is lxl0-4 em/sec. 

In order to overcome the retarding effect oflow formation permeability, a number of 

enhancement technologies are now under development. In situ enhancement approaches 

include fracturing, electrokinetics and ultrasound techniques. Of interest in the present 

study is enhancement by fracturing, which may be generally divided into three categories: 

pneumatic fracturing, hydraulic fracturing and explosive fracturing. The principal objective 

of all three techniques is similar, i.e., creation of an artificial fracture network in the 

geologic formation. 

The primary focus of the present study is the pneumatic fracturing technology, 

which is a patented process [U.S.Patent #5,032,042] developed at the Hazardous Substance 
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Management Research Center (HSMRC) at New Jersey Institute of Technology (NllT). 

The process involves injecting high pressure air or other gas into contaminated geologic 

formations at a pressure that exceeds the in situ stresses, and at a flow rate that exceeds the 

permeability of the formation. Figure 1.1 shows the major components of the current 

pneumatic fracturing system. 

The pneumatic fracturing process was first demonstrated in the field at a 

contaminated site in Richmond, Virginia in 1990 [Schuring et a/., 1991]. Since this first 

demonstration, the technology has been successfully applied in a number of projects. A 

partial list of the sites fractured to date and their site characteristics are given in Table 1.1. 

It is noted that two of these demonstrations (indicated with an asterisk) were conducted 

under the United States Environmental Protection Agency (US EPA) Superfund Innovative 

Technologies Evaluation (SITE) Program, including one at a contaminated industrial site in 

New Jersey to enhance soil vapor extraction [US EPA, 1993], and the other at a 

contaminated site in Pennsylvania to enhance in situ bioremediation [US EPA, 1995]. As 

indicated in the table, the in situ remediation technologies which have been integrated with 

pneumatic fracturing are vapor extraction, bioremediation, pump and treat, in situ 

vitrification, and reactive dechlorination. The projects have comprised a variety of geologic 

formations including three different rock formations and fourteen different soil formations. 

Although the principal application of pneumatic fracturing is to increase formation 

permeability, the process can also deliver gaseous, liquid and granular supplements into the 

subsurface. For example, when applied to bioremediation, pneumatic fracturing can seed 

the formation by injecting microbes and nutrients during fracture injection. 
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Table 1.1 Summary ofPnewnatically Fractured Sites 

Location Textural uses Fracture Estimated Integrated 
Injection Radius of Target In situ 

Description Depth Influence Contaminant Technology 
(ft) (ft) 

AL-l Sandy gravel GP 34-36.3 49 VOCs Pump & Treat 
Huntsville 

CA-l Silty Clay/ CH - - Chlorinated Soil Vapor 
Santa Clara Sandy Clay Solvents Extraction 

CAN-I Clayey Silt CL,ML - 11-56 VOCs Soil Vapor 
Toronto Extraction 

LA-I Clayey Silt CL,ML 9.1-11.6 - TCE Soil Vapor 
Shreveport Extraction 

NJ-1 Clayey Silt/ CL,ML 5-7 9 Clean Site Soil Vapor 
Frelinghuysen Sandy Silt Extraction 

NJ-2 Sandstone NA 9-1 1 >10 Clean Site Soil Vapor 
Newark-NJIT Extraction 

NJ-3 Clayey Sand/ SC,SM 4-6 9 Chlorinated Soil Vapor 
Roseland Silty Sand Solvents Extraction 

NJ-4 * Siltstone NA 9.1-11.1 >20 Chlorinated Soil Vapor 
Extraction I 

Hillsborough Solvents Hot Gas 
Injection 

NJ-5 Sandy Silt SM,ML: 5.3-7.3 - Miscellaneous Soil Vapor 
Newark- VOCs Extraction 

Chern Fleur 
NJ-6 Sand/Sandy Silt SM,ML - - Petroleum Soil Vapor 

East Orange Hydrocarbons Extraction 

NJ-7 Siltstone NA 14-16.5 35 Chlorinated Soil Vapor 

Highland Park with Carbonate Solvents Extraction 

NJ-8 Siltstone NA 14.5-16.7 40 Chlorinated Bioremediation 

Flemington Solvents 

OH-1 Silty Clay CH,MH 30-32.3 - Clean Site Pump& Treat 
Piketon 

OK-I Clayey Silt CL,ML 7-9 23 Chlorinated Soil Vapor 
Solvents & Extraction 

Oklahoma City Petroleum 
Hydrocarbons 

PA-l* Clayey Silt CL,ML 3-5 15 Petroleum Bioremediation 
Marcus Hook Hydrocarbons 

VA-l Silty Clay CH,MH 7.1-8.8 9 Chlorinated Soil Vapor 
Richmond Solvents Extraction 

WA-1 Sandy Gravel GP 14 10 Clean Site In Situ 
Richland Vitrification 

(*conducted under U.S.EPA SITE program) (VOCs Volatile Organ1c Compounds) (- Not Available) 
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Pneumatic fracturing is also being used with in situ vitrification (ISV) to create an 

electrically conductive starter path between the system electrodes, and with in situ reactive 

barriers for injection of iron powder to create a permeable reactive cell. 

Another approach to formation fracturing is hydraulic fracturing which uses water as 

the injection fluid instead of air. The hydraulic fracturing process has been studied and used 

extensively for enhancing the permeability of oil-bearing formations [e.g., Gidley et a/., 

1989; Howard and Fast, 1970], and more recently has been applied to the remediation of 

sites contaminated with hazardous waste [Murdoch, 1992]. One of the disadvantages of 

hydraulic fracturing is the large quantity of water used, which has the potential to mobilize 

and spread the contaminants when used in the vadose zone. Other advantages of pneumatic 

fracturing over hydraulic fracturing include beneficial aeration and air sparging occurring 

during fracture injection which enhance both stripping and biodegradation of volatile 

organic compounds (VOCs). Also, since pneumatic fracturing utilizes air as an injection 

fluid and is a relatively rapid process ( < 20 seconds), the risk of contaminant mobilization is 

greatly reduced. 

Explosive fracturing has also been used for permeability enhancement of petroleum 

and gas reservoirs [Druet and O'Connor, 1991] and its application to the remediation of 

contaminated sites is now being explored. Some obvious limitations of using explosives for 

in situ remediation are chemical residues, vibration during detonation, and permitting and 

perception problems. 

Although pneumatic fracturing is operationally quite different from either hydraulic 

fracturing or explosive fracturing, there are similarities in the way a geologic formation 

responds to all three technologies. Throughout the present study, available knowledge from 
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these related fracturing technologies will be used to analyze the pneumatic fracturing 

process. 

1.2 Research Objectives 

In order to improve the understanding of the pneumatic fracturing process and broaden its 

engineering applications, a number of fundamental questions must be addressed. These 

research needs are outlined in Figure 1.2. As indicated, the problems under study have been 

divided into two general groups: "Fracture Mechanism" and "Formation Response." 

Studies of fracture mechanism focus on the actual fracture event with the goal of controlling 

and optimizing the process. Studies of formation response deal with the behavior of the 

geologic formation after fracturing, on both a short-term and long-term basis. 

Some aspects of the pneumatic fracturing process have already been studied. For 

example, the mechanism of fracture initiation was investigated by King [1993] and post

fracturing gas flow in pneumatically-fractured formations was studied by Nautiyal [1994]. 

Ding [1995] developed and validated a convection-diffusion model describing contaminant 

transport out of a discrete fracture. A study of fracture behavior in clay by Hall [1995] 

identified key geologic and environmental factors related to fracture longevity. Canino 

[1997] studied the effects of fracturing on overlying structures and developed a model to 

predict ground deformation. Ongoing research activities include studying the effectiveness 

of ultrasound enhanced contaminant removal in pneumatically-fractured formations as well 

as the development of a comprehensive computer model to aid in site screening and 

preliminary remediation design [Sielski, in progress]. 
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A key aspect of the pneumatic fracturing mechanism which has not yet been studied 

is the propagation of pneumatic fractures in geologic media. Prediction of the geometry and 

extent of propagating fractures is important in the design of pneumatic fracturing projects. 

It will also be useful in assessing formation response. While some limited analyses of 

fracture propagation have been conducted, there is still no constitutive, theoretically-based 

model. The development of a mathematical model simulating fracture propagation and 

formation response for the pneumatic fracturing process is therefore the primary focus of 

this dissertation. It is noted that a considerable database of fracture propagation data has 

now accumulated from field tests, which will be used to calibrate and validate the 

propagation model. 

A problem which is auxiliary to the propagation phenomenon is injection of 

particulate media into the fracture network. Supplements in both a liquid and solid form are 

often injected into the fracture network to enhance remediation processes such as 

bioremediation and in situ vitrification. A secondary objective of this study, then, will be to 

investigate the transport of the supplemental solid media into fractured formations and 

predict its distribution. 

In summary, the objectives of this research study are: 

1. To formulate a mathematical model of pneumatic fracture propagation in geologic 

formations. Both soil and rock formations will be addressed, and the model will be 

related to geotechnical properties typically determined during the site evaluation phase 

of a project. 
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2. To solve the problem of pneumatic fracture propagation. Both analytical and numerical 

solutions will be investigated. The model will predict the equilibrium fracture geometry 

including radius and aperture. 

3. To validate and calibrate the developed model with field data from past projects 

involving pneumatic fracturing. 

4. To summarize the particulate media transport mechanisms that might occur in geologic 

formations during pneumatic injection. Also, a methodology will be developed to 

predict the extent of soil fluidization and media transport distance. 

This dissertation will begin with a review and summary of related literature on 

fracture propagation and particulate transport (Chapter 2). This is followed by a 

presentation of the assumptions and formulation of the propagation problem (Chapter 3). 

The solution to the propagation problem and the details of the model implementation are 

presented next (Chapter 4). The subsequent chapter calibrates the model and checks its 

validity using data collected during previous field investigations (Chapter 5). In the next 

chapter, the methodology for predicting the transport of injected particulate media is 

described and validated with data from a case study of the phenomena (Chapter 6). Finally, 

the study conclusions are presented along with recommendations for future study (Chapter 

7). 
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CHAPTER2 

LITERATURE REVIEW 

2.1 Fracture Propagation Models 

2.1.1 Overview 

The phenomenon of fracture propagation in geologic formations has been studied in a wide 

range of industrial applications. Most investigators have focused on intentionally creating 

new fractures in geologic media and maximizing their effects [e.g., Howard, & Fast, 1970; 

Wolff et al., 1975; Nemat-Nasser et a/.,1983]. However, some studies have addressed 

preventing rather than propagating fractures, as in earth dam failures [Vallejo, 1993]. 

Figure 2.1 is presented in an attempt to classify the fracture propagation phenomena 

studies which are available in the literature. The basic distinguishing characteristic of the 

various fracture phenomena is the rheology of the fracturing fluid, which ranges from 

molten solids to gases. The other important characteristic is the rate of pressurization and 

resultant fracture propagation velocity. As indicated, fracture tip velocities for the various 

phenomena range from low subsonic to supersonic velocities. 

At the low end of the velocity spectrum, fractures are propagated by magma during 

the natural emplacement of igneous sills, dikes and laccoliths. The fracturing fluid in this 

case is a molten solid, and the fracture tip velocity is relatively low at 0.5 rn!sec. This 

phenomenon has received a moderate amount of attention by investigators in the geological 

sciences [e.g., Pollard and Johnson, 1973; Spence and Turcotte, 1985]. 

10 
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Fracture tip velocities in the hydraulic fracturing process are comparable to those of 

magma-driven fracture propagation. Considerable work has been done on analysis of 

hydraulic fracture propagation because of its economic importance in the petroleum 

industry. A number of mathematical models have been developed over the last few decades 

for predicting the fracture dimensions [e.g., Perkins and Kern, 1961; Geertsma and de 

Klerk, 1969]. 

At the high end of the velocity spectrum, fractures have been propagated by 

explosives and deflagration (e.g., High Energy Gas Fracturing - HEGF). Such fractures 

propagate at approximately the velocity of sound (330m/sec) and are driven by expanding 

gases generated from extremely rapid chemical oxidation reactions. Explosive fracturing 

and deflagration have been applied to enhance permeabilities of oil, gas and geothermal 

wells [e.g., Nilson eta/., 1985]. 

The fracture phenomena which has received the least attention are fractures 

propagated by the rapid injection of a gas. Pneumatic fracturing, which is the focus of the 

present study, falls into this category. Data collected from field demonstrations over the last 

several years indicate the propagation velocity of pneumatic fractures is in the range of 2-5 

m/sec. This velocity is intermediate between the slower liquid-driven fractures and the 

more rapid explosive fracturing. Since investigations of fracture propagation phenomena 

have clearly shown that fracture behavior is strongly dependent on propagation velocity and 

fracturing fluid properties, there is a clear need for further investigation of pneumatic 

fracturing phenomena. 

The sections that follow are a review of the various propagation phenomena and 

associated models which are available in the literature. They are presented as background 
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for development of the pneumatic fracture propagation model presented in Chapters 3 and 

4. 

2.1.2 Magma Driven Fracture Propagation 

Geologic features such as sills and laccoliths are created by igneous intrusions into rock 

formations. The overlying geologic strata arch upwards as a result of these magmatic 

intrusions. Investigators have analyzed the response of the overlying strata assuming that 

the formation behaves like an elastic plate with a uniformly distributed load acting upon it. 

A.M. Johnson (1970) applied elasticity theory to determine the geometry of a concordant 

sill intrusion in two dimensions. The key assumptions of this model are that the overlying 

lithosphere behaves as a fixed elastic beam (Figure 2.2(a)), the pressure is constant 

throughout the intrusion, and the strata below the plane of injection do not deflect due to the 

magmatic over-pressure. The maximum displacement, bw, occurs at the center of the 

intrusion and is given by: 

(2.1) 

where Pd is the magmatic overpressure, R is the fracture radius, z is the fracture depth and G 

is the shear modulus. This equation assumes that the flexing overburden is very thin 

relative to the length of the intrusion, i.e. the ratio of the length to depth, R/z, is greater than 

10:1. 
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Laccoliths are concordant intrusions where the overburden is thick with respect to its 

length with Rlz < 10:1. For laccoliths, the relation for maximum displacement, bw, is given 

by: 

(2.2) 

An examination of the preceding two solutions reveals that they are of the same form as 

plate-bending analysis in structural engineering [Timoshenko and Goodier, 1951]. 

Johnson also studied the conditions conducive to emplacement of dikes. Figure 

2.2(b) shows the stresses developed by flexing an elastic plate and peripheral dike 

development. The mechanics of the rectilinear transfer from a sill to a dike would provide 

insight into conditions that might influence "daylighting" of pneumatic fractures. Fracture 

"daylighting" occurs when propagating fractures deviate from a horizontal plane of 

propagation and intersect the ground surface. 

D. D. Pollard and A. M. Johnson (1973) used the theory of elasticity, to analyze the 

deformation of sedimentary rocks in the Henry Mountains during a magma intrusion. They 

derived theoretical models for laccolithic and sill intrusions. 

The effect of the host rocks on the form and growth of the laccoliths was analyzed 

as the bending of a stack of thin elastic plates. They assumed that the area over which the 

magma was spread is elliptical in plan. By varying the axis length of the ellipse, plan 

shapes of intrusions varying from a rectangular strip (anticlinal plan) to circular were 
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examined. Three different load distributions, a point load, a uniform distribution and a 

triangular distribution of load, were considered. The following are the equations for 

overburden deflection with terms as previously defined: 

w = Pd{1 -~2 ){R 2 -2R2r 2 + R 4 )(anticlinal plan- uniform pressure distribution) (2.3) 
2Ez 

w = 
3

Pd (I-~2 
)(R 2 

- 2R 2r 2 + r 4 )C circular plan - uniform pressure distribution) (2.4) 
16Ez 

w = pAl- ~2 )[1 Or4 
-

2
1rls -ISR 2r2 + 7R 4 ) (circular plan- triangular load distribution) 

20Ez R 

(2.5) 

As seen from the above equations, the overburden deflection due to magma intrusion is 

affected more by the extent and the depth of the magma intrusion than any other parameters. 

The modeling of the overburden deflection above the sills was based on the 

assumption that the cross-section of the intrusion is elliptical and the pressure is uniform 

throughout the fracture. The following is the elastic solution for the deflection of the 

overburden, overlying a sill with an anticlinal plan: 

Pdf [(3 4 ) . l hJ: inhJ:) Isinh2l; + J sin 2TJ 1 Lcosh2l;0 ] 
W =- - V SlDTJ\COS ._, -S -., + +--=---=-=-

4G cosh2l; -cos2TJ K 2 + L2 (2.6) 
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where I = sinh1; sinTJ, J = cosh1; cosT), K = sinh~ cosT), L = cosh1; sinTJ, of the elliptical co

ordinate system (1;, TJ), f is the focal length of the ellipsoidal sill contact, and G is the Shear 

modulus. 

D. A. Spence and D. L Turcotte (1985) analyzed the behavior of magma-driven cracks 

using techniques developed to study the propagation behavior of hydraulically-induced 

fractures (see Section 2.1.3 "Hydraulic Fracturing"). They analyzed the crack geometry of 

an expanding two-dimensional crack in an impermeable elastic medium. Assuming a 

constant injection rate and laminar flow conditions, a similarity solution containing fracture 

toughness was derived. It was also assumed that the fracture was deep within the formation 

so that there was no interaction with the surface. The analytical solution for predicting the 

aperture of a propagating fracture was determined to be: 

(2.7) 

where Q is the flow rate, J.l is the dynamic viscosity, vis Poissons ratio, tis the time, Ao and 

k are coefficients. 

A significant finding of the study was the dependence of fracture aperture on fluid 

viscosity. It was also determined that the fracture toughness of the elastic medium can be 

neglected in magma-driven fracture propagation problems. 

It is noted that deflection of the geologic formation has been studied in the related 

phenomena of cover subsidence over sinkholes [Habibagahi, 1981]. The principal 
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difference is that the formation is analyzed as a uniformly loaded fixed beam which deflects 

downward over a subterranean cavity. 

2.1.3 Hydraulic Fracturing 

Because of its economic importance, hydraulic fracturing has received considerable study, 

particularly in the petroleum industry. The following is a summwy of the chronological 

development of hydraulic fracture propagation models as they increase in complexity. 

R. D. Carter (1957) was the first investigator to develop a solution for estimating the extent 

of hydraulic fracture propagation in geologic media. His model was the basis for design of 

a large number of fracturing treatment projects in the petroleum industry. Due 

to its simplicity, the model was widely used as it requires only fluid loss data which are 

easily obtainable from simple laboratory experiments. Figure 2.3(a) is a schematic of the 

fracture geometry assumed for the Carter model. It takes into consideration the strong 

dependence of fracture propagation on leak-off, as well as the time duration over which the 

fracture surface has been exposed to the fracturing fluid. Carter's model assumes that initial 

leak-off velocities are high (called the "spurt loss"), but decrease gradually with time due to 

the wall building effects of the fracturing fluid. Based on this work the equation for 

estimating the extent of the fractured area, A, as a function of time, t, in terms of the 

treatment conditions is: 

(2.8) 
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where C is the fracturing fluid coefficient. One limitation of the Carter model is that it does 

not take into account the effect of the fracturing fluid shear on filter cake buildup at the 

fracture surface (static fluid leak-oft). Additionally, it does not consider the effect of 

reservoir fluid pressure, or variations in fracture aperture and pressure along the length of 

the fracture. 

T. K. Perkins and L R. Kern (1961) presented a closed-form solution for estimating 

fracture aperture for varying conditions of fracturing fluid rheology and fracture orientation. 

The model was an improvement over the Carter model in that it used a more realistic 

elliptical geometry (shown in Figure 2.3(b)). Also, the pressure variation within the fracture 

was considered in calculating the aperture of the fracture. Some key assumptions made by 

Perkins and Kern include: (i) formation is homogeneous, isotropic, brittle and elastic; (ii) a 

pressure drop along the length of the fracture defined by Fanning's equation; and (iii) plane 

strain conditions. In development of the model, the authors acknowledged that the aperture 

of horizontal fractures results only from compression of surrounding rock when the 

fractures are deep (L < 4/3z, where L is extent of the fracture and z is the depth of the 

fracture), but included both compression and flexing/lifting of overburden when the 

fractures are shallow (L > 4/3z). 

The Perkins and Kern solution for fracture aperture, bw, of horizontally propagating 

fractures for Newtonian fluids with laminar flow takes the form: 

bw = 0.0765 

4 ~ 

o~[;+MH] 
E[_i_+_l (L)3

] 
37t 32 z 

(shallow fractures) (2.9) 
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(2.10) 

where E is the Young's modulus. An important result of the Perkins and Kern solution is 

that fracture aperture is not sensitive to the rock properties, since typical rock moduli do not 

vary more than 10 to 20 fold. However, aperture is sensitive to the pumping rate and 

viscosity of the fracturing fluid since these are much more variable. Therefore, operating 

conditions which cause a high pressure drop along the fractures (such as high injection rates 

and/or viscous fluids) will lead to relatively wide fractures, and vice versa. 

A severe limitation of the Perkins and Kern model is that it does not consider the 

effect of leak-off on fracture dimensions. Also, because of the assumed elliptical fracture 

shape, an anomaly of infinite stress exists at the fracture tip. 

J. Geertsma and F. de Klerk (1969) developed a model to predict the dimensions of both 

linear and radially propagating fractures around a well bore. This model was a significant 

improvement over previous models as it considered the effect of both the fluid leak-off and 

the pressure variation within the fracture, which had been addressed separately by Carter 

and 'Perkins and Kern,' respectively. 

The model was based on Barenblatt's [1962] treatment of an infinite homogeneous, 

isotropic and elastic solid containing a crack which was subjected to plane strain conditions 

in a plane perpendicular to the well bore. As indicated in Figure 2.3(c), the crack has a 
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smoothly closing tip so that a finite stress exists just beyond the crack tip (equilibrium 

crack). 

The solution for fracture aperture is obtained using Poisseuille's equations for the 

pressure drop within a fracture, Sneddon's equation of a radially propagating fracture 

[Sneddon, 1946] and the Barrenblatt's boundary condition [Barenblatt, 1962]. The leak-off 

model was the same as that developed by Carter [1957]. For calculating the extent of 

fracture propagation, a material balance equation was utilized. Laplace transforms and 

convolution theory were applied to the material balance equation to obtain a closed-form 

solution for the fracture extent. The resulting equations for the aperture, bw, and the extent, 

R, of a radially-propagating fracture are similar to those developed by Carter and 'Perkins 

and Kern,' are shown below: 

b =2vJ.!QL 
w G (2.11) 

(2.12) 

where, 
ISC..{;ct 

a = 
R 4b +ISS ' 

\Y p 

Sp is the spurt loss and bw is the fracture width near the well bore at the time the pump 

stops. It is noted that the effects of leak-off were considered only for calculation of fracture 

extent. The effect of leak-off on the fracture aperture was ignored as it had a negligible 

influence. 
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R. P. Nordgren (1972) analyzed hydraulic fractures of limited vertical extent and elliptical 

cross-section (Figure 2.3(d)), thus extending the 'Perkins and Kern' model to include fluid 

leak-off and the effect of change in fracture aperture with time. Assumptions include a 

homogeneous, isotropic, elastic and brittle formation. In addition, plane strain conditions 

and Newtonian behavior of the fracturing fluid were assumed. 

Nordgren established a continuity equation for fluid flow in the fracture and solved 

for the boundary conditions numerically. Approximate solutions were also obtained by 

neglecting the leak-off and fracture volume change for small and large times, respectively. 

The large and small times in the fracture propagation correspond to the no fluid loss and 

large fluid loss conditions. For the case oflarge fluid loss (large time approximation): 

Qt~ 
L(t)=-

1tCh 
(2.13) 

(2.14) 

where h is the height of the fracture. For the case of no fluid loss (small time 

approximation): 

[ 
GQ3 ]Ys 

L(t} = 0.68 (1- v)f.1h4 t4ts (2.15) 
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(2.16) 

This model, also known as the "PKN Model," is one of the two "first generation" two-

dimensional fracture propagation models currently in wide use within the petroleum 

industry [Mendelsohn, 1984]. The other model currently being used was developed by 

Geertsma and de K.lerk and modified by Daneshy [1973] to account for non-Newtonian 

fluids. It is referred to as the "CGDD Model," named after the principal developers. 

2.1.4 Other Hydraulic Fracturing Investigations 

Hydraulic fracture propagation is critical to the success of other subsurface processes and 

has been studied by a number of investigators. For example, hydraulic fractures caused by 

deep well injection of hazardous waste have been analyzed, since it is critical to avoid 

contact with nearby permeable formations [Wolff et al., 1975]. Hydraulic fracturing has 

also proven to be a useful tool for measuring in situ stress [Abou-Sayed et a!., 1978], 

recovering geo-thermal energy from hot, dry rock masses [Nemat-Nasser et al., 1983], 

fracture grouting [Zhang, 1989], constructing flow barriers [Huck et al., 1980], solution 

mining [Haimson and Stahl, 1970], in situ coal burning [Nilson, 1981], water well 

stimulation [e.g., Stewart, 1974; Hurlburt, 1989] and treatment of sites contaminated with 

hazardous wastes [Murdoch, 1992]. 

A voidance of hydraulic fracture propagation becomes important in processes such 

as permeation grouting [Wong and Farmer, 1973], permeability testing [Bjerrum et al., 

1972], enhanced oil and gas recovery by water flooding [Yuster and Calhoun, 1945], air 
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sparging of contaminated ground water [Johnson et al., 1993] and earth embankment failure 

[Vallejo, 1993]. 

Hydraulic fracturing has also been studied as a dominant process following an 

earthquake [Holzer et al., 1989] and during an asteroid/comet impact [Huntoon and 

Shoemaker, 1995]. In both of these situations, the excess pore fluid pressures created by the 

sudden terrestrial deformation leads to widespread propagation of hydraulic fractures. 

2.1.5 Gas-Driven Explosive Fracturing 

The propagation of explosively-driven fractures is important in a number of applications: 

containment of underground nuclear tests, explosive stimulation of oil, gas and geothermal 

wells, and permeability enhancement of oil shale and coal prior to in situ combustion. 

Subsonic gas-driven fractures and liquid-driven fractures have similar solid mechanics in 

that the induced fracture tip velocity is generally small compared to the velocity of stress 

waves, but do differ from a fluid mechanics perspective. In hydraulic fracturing, the driving 

pressure is only slightly greater than the confining tectonic stress, and the fluid pressure is 

nearly uniform along the fracture. In explosive fracturing, the driving pressure greatly 

exceeds the resisting compressive stress, and the fluid pressure varies considerably along 

the fracture. 

A comprehensive numerical solution of gas-driven explosive fractures was 

developed by Nilson [1981]. He assumed the formation to be elastic and impermeable, and 

the gas to behave ideally and isothermally. His approach to the problem was similar to that 

of Geertsma and de Klerk by assuming the fracture shape to be functionally related to 

pressure distribution by linear elasticity. The application of the boundary condition of a 
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smoothly closing fracture tip, as addressed by Barenblatt's theory of equilibrium fracture, is 

also similar to the above referenced liquid-driven fracture propagation investigations. 

The analysis was performed by establishing ordinary differential equations for 

fracture aperture using variable pressure distribution, elasticity theory, conservation of mass 

and momentum within the fracture, and viscous shear stress during laminar and turbulent 

flow conditions. The differential equations were solved using numerical techniques for 

laminar and turbulent flow regimes satisfying the Barrenblatt's boundary conditions, i.e., 

the stress is finite at the tip of a fracture which is in mobile equilibrium. 

Some interesting observations follow from Nilson's analysis. The flow experiences 

a diverging/converging channel because the fracture aperture increases with time and 

decreases with distance from the point of initiation. The injected gas accelerates through 

three different flow regimes: laminar, turbulent and inviscid. The flow at the tip of the 

fracture is always laminar and a vacuum exists at the tip of the fracture either in an 

impermeable medium or in a permeable medium at later times. The model also considered 

seepage interactions of the gas in a permeable formation and showed that the leak-off 

effects become less important as the fracture length increases. The physical explanation for 

this is that as aperture increases, the longitudinal through-flow is enhanced more rapidly 

than the corresponding increase in fracture length enhancing the leak-off. 

2.2 Particulate Transport 

2.2.1 Overview 

Study of particulate transport is of interest in a wide range of phenomena and processes. 

The aim of the present literature survey is to collect relevant work from the various fields in 
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preparation for fonnulation of the particulate flow problem in the pneumatic :fracturing 

process. The fundamental aspects of the particulate flow phenomena are dealt with in detail 

in a number of texts [e.g., Brodkey, 1967; Soo, 1967]. 

During the pneumatic fracturing injection process, the state of the injected dry media 

can best be described as a "polydispersed primary aerosols." Aerosols, by definition, are 

particulate suspensions in gases and are fonned either by disintegration of liquids/solids 

introduced into the transporting fluid (primary particulates), or by the gas-to-particle 

conversion (secondary particulates). The tenn "polydisperse" is used to describe a 

distribution of particle sizes, as opposed to "monodisperse" in which all particles are of the 

same size. 

Previous investigations by the HSMRC research group have tentatively identified 

three fundamental mechanisms by which particles can be transported in the subsurface 

during pneumatic :fracturing injection: 

(a) interstitial transport; 

(b) transport in a discrete fluidized zone; and 

(c) transport within an open, discrete fracture. 

These three transport mechanisms are shown conceptually in Figure 2.4. It is hypothesized 

that the particular mechanism which dominates is expected to be a function of the fonnation 

properties (e.g., penneability) and the injection system parameters (e.g., flow rate, rate of 

injection). Related background studies for each of these mechanisms are presented in the 

following sections. 
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2.2.2 Interstitial Transport of the Injected Solid Particles 

Transport of the suspended particulate matter through the interstices of a porous media is an 

established phenomenon [McDowell-Boyer et a/., 1986]. For particles whose grain size is 

close to that of the porous media, a cake or a surface mat will form preventing any particle 

penetration. This surface caking is associated with a significant decrease in the permeability 

of the media. Particles which are slightly smaller than the media grain size penetrate the 

soil for some distance, but are eventually halted by mechanical straining. Straining near the 

surface of the porous media aids in the build up of a surface mat Only particles which are 

substantially smaller than the media can penetrate substantial distances into the matrix. 

Whether or not particle caking or straining occurs is determined by the ratio of 

media diameter to particle diameter. Shakthivadivel [1969] found that finer particles would 

not penetrate coarser particles if the following condition is satisfied: 

(2.17) 

where dm is the diameter of the coarser media, and dp is the diameter of the finer media 

If the ratio of the media diameter to particle diameter is less than 10, severe caking 

can be expected. When the ratio falls in the range 1 0< dm/dp < 20, a permeability reduction 

of 7-15 times is typically observed, accompanied by an approximate 30% reduction in the 

pore volume occupied by the deposited particles. When the size of the injected media 

particles is small (dn/dp > 20), permeability reduction of 10-50% of the clean porous media 

value may be expected with particle deposition in only 2-5% of the pore volume. 

Shakthivadivel further observed that particles, once deposited, cannot be dislodged by an 
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increased flow rate. However, flow reversal can resuspend deposited particles. When there 

is a size distribution of particles both in the injected media and the coarser geological 

media, the criteria developed by Sherard et a/. [1984] for geotechnical filter materials can be 

applied as follows: 

(2.18) 

where dm,Is is the diameter at which 15% by weight of the coarser media had a smaller 

diameter, and dp,ss is the diameter at which 85% by weight of the finer media had a smaller 

diameter. This is a more simplified criteria and can be considered as the transition between 

caking and straining. Note that the value ratio of nine is almost the same as the previous 

criteria of ten for uniform particle sizes. 

2.2.3 Particulate Transport in a Discrete Fluidized Zone 

The mechanism of particulate transport through a fluidized aggregate zone or lens occurs 

when the treated formation is cohesionless and the injected gas velocities are sufficient to 

suspend the individual soil particles in the fluid. This situation is similar to the condition 

existing within a "fluidized bed reactor." 

The minimwn gas velocity for particle fluidization is a function of soil porosity, 

shape and size range of the particles, and the viscosity of the injection fluid. The pressure 

drop-velocity relation for a fluidized bed at the stage of incipient fluidization has the 

following form [Ergun, 1952]: 
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(2.19) 

where ~Ps is the pressure drop across the fluidized bed, Hmr is the bed height at incipient 

fluidization, Umr is the minimum fluidizing velocity, pr is the fluid density, dis the particle 

diameter, and Emris the bed voidage at incipient fluidization. Gas-solid systems (aggregate 

fluidization) in general exhibit characteristics that are significantly different than liquid-

solid systems (particulate fluidization) when fluidized. 

Particles in a fluidized bed tend to segregate. It is hypothesized that the particle 

transport during pneumatic injection of particles in a fluidized formation occurs through this 

mechanism. Mathematical models that describe patterns of segregation were first described 

by Gibiliaro and Rowe [1974]. 

Fluid-particle interactions in a fluidized bed are different from the fluidization 

which occurs during pneumatic injection. The direction of the fluid flow in the former is in 

the same plane as the gravitational forces, while in the latter the flow is perpendicular to 

gravity. The fluid-particle interactions of gas jets in fluidized beds, discharging in the 

horizontal direction, provide a close parallel to the fluidized state during a pneumatic 

injection. Penetration length studies of the gas jets and related correlations for horizontal 

discharges are available in the literature [Shakhova, 1968; Merry, 1971]. 
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2.2.4 Particulate Transport in a Discrete Open Fracture 

Particle dynamics differ depending on the size of the particulates. From the largest to the 

smallest, the following regimes will govern: continuum flow/Stoke's regime (> 1.3 J.Ull), 

slip flow/Cunningham regime (1.3-0.4 Jlffi), transition flow regime (0.01-0.4 Jlffi) and free 

molecule regime (<0.01 Jlffi). The particle size of the liquid/solid supplements injected by 

pneumatic fracturing are predominantly greater than 1 Jlffi· This is true since there is a 

lower physical limit beneath which liquid and solid particles can be broken down with the 

available equipment. This places particle transport in pneumatically fractured formations 

within the continuum flow regime, where the particle behavior is governed by Stoke's law. 

The transport of particulates in a discrete fracture can be described using basic 

sediment transport theory [Boggs, 1987]. All particles are transported either in suspension 

or by saltation/rolling along the boundary. Important properties of the sediment that affect 

its transport are individual grain properties such as size, shape (sphericity and shape factor) 

and specific gravity, as well as the bulk properties of the particles including grain size 

distribution, bulk unit weight and porosity. 

The problem of particulate transport in pneumatically fractured formations is similar 

to that of mobile boundary channels in hydraulics. Studies on conditions critical to the 

initiation of particle movement can be classified as: (1) methods based on drag; (2) methods 

based on shearing force; and (3) methods based on lift. 

According to the first method, particle movement occurs when the drag exerted on 

the particle by the moving water is sufficient to overcome the frictional resistance between 

the particle and the bed. According to Brahms and Airy [1936], who based their derivation 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

34 

on this principle, the critical velocity for initiation of particle movement, V cr, may be 

computed by: 

2 4 dg ( ) v =--- s-1 tane 
cr 3 aCo 

(2.20) 

where d is the particle diameter, g is the acceleration due to gravity, Co is the coefficient of 

drag, e is angle of friction, while s and a are coefficients. 

The shearing force method, also known as the tractive force method, is a second 

approach for describing the initiation of sediment motion. An important development in the 

tractive force approach was made by Shields [1936]. He stated that the critical condition for 

sediment motion is a function of the Reynolds number and developed a diagram to 

determine whether or not initiation of particle movement has occurred. This diagram is 

known as Shields diagram which is a plot of two dimensionless ratios: 't•, which is the 

dimensionless shear stress, and Reg, the grain Reynolds number. These are defined as 

follows: 

u·d 
Reg=-

Vkin 

where 'to is the boundary shear stress, 'YP is the specific gravity of the particles, yris the 

(2.21) 

(2.22) 
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specific weight of the fluid, u• is the friction velocity, and vis the kinematic viscosity of the 

fluid. By plotting these parameters for the particles under consideration on the diagram, it 

can be determined whether or not the particles would be set in motion. 

The third method considers the lift force caused by velocity shear. The critical 

condition is obtained from a balance of the lift force and particle weight. The lift forces are 

caused by the velocity gradients across the particles and the instantaneous velocity 

differences accompanying turbulent fluctuations. Thomas [ 1961] developed an equation for 

this mechanism by considering two different conditions depending upon whether or not a 

particle is inside the laminar sublayer. The equation for the case where the particle diameter 

is larger than the laminar sublayer is given by: 

V;o = 4.9(v* soPrd)(v* soPrD)(PP- Pr)
0

.

23 

V so !.I. !.I. Pr (2.23) 

where, vro is the terminal settling velocity, v \o is the friction velocity at infinite dilution, Pr 

is the density of the fluid, Pp is density of the particles, 1..1. is the dynamic viscosity, Dis pipe 

inner diameter and dis particle diameter. For the case when particle diameter is smaller 

than the laminar sublayer, it becomes 

V:o = Q.Ql(V•soPrd) 
V sO J.1 

(2.24) 
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Correlations also exist which address the problem of particle deposition from an air 

stream. The fraction of particles that are deposited under laminar flow conditions while 

being transported between parallel plates was given by Fuchs [1964]: 

v.l 
E-=
'uh p 

(2.25) 

where Ei is the deposition efficiency for a given particle size, v5 is the terminal settling 

velocity ofthe particles, lis the distance from the source, u is the velocity of the fluid and hp 

is the distance between the parallel plates. A similar relation for horizontal pipes was 

developed by Thomas [ 1958]: 

(2.26) 

where C2 = (3v5l)/(4Dtu) and D1 is the diameter of the tube. 

The deposition of particles is affected by the nature of the flow regime. In flow 

systems which contain considerable turbulent mixing, the rate of particle settling decreases. 

The concentration of particles at a distance from the source, NA, in a horizontal rectangular 

duct with turbulent flow is given by Davies [1966]: 

(2.27) 

where Np is airborne concentration of particles at source. 
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2.2.4.1 Proppant Transport in Hydraulic Fracturing Process: Additional insight into 

particulate transport mechanisms during pneumatic fracturing is available from studies of 

proppant transport during hydraulic fracturing. One of the factors influencing the success of 

a hydraulic fracturing operation is the proper placement of proppant within the created 

fractures. Methods for predicting behavior of particles in liquid systems are similar to those 

used for gases, and substitution of the proper physical constants is normally all that is 

required to switch from one fluid to the other. Hence, a review of the existing literature on 

proppant transport in hydraulic fractures is relevant. 

A number of laboratory investigations of proppant transport during hydraulic 

fracturing have been carried out [e.g., Kern eta/., 1958; Lowe and Huitt, 1965; Babcock et 

a/., 1967]. The following is a collective summary ofthe important observations from these 

studies: 

1. Sand injected during the early part of the treatment tended to deposit close to the well 

bore, while that injected during the later part was deposited farther from the well bore. 

2. Equilibrium velocity is relatively insensitive to fluid viscosity, particle size, particle 

injection rate and particle concentration. Density differences between particles and fluid 

were found to be an important parameter affecting the equilibrium velocity. 

3. In vertical fractures, a gradient of proppant concentration exists, which is a continuous 

function of height. Four distinct zones can be identified. These include a stationary 

bank of packed particles, a saltation zone, a zone of well-dispersed particles and a zone 

of zero particle concentration. 
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4. For horizontal fractures there are three different types of particle transport mechanisms 

that occur within the fracture as function of the distance from the well bore. These are 

illustrated in Figure 2.5 and can be described as follows: 

Region 1: Particles are transported individually in suspension. 

Region II: The particles aggregate and travel in bulk amounts. Particles roll and 

bounce along the surface of the fracture while being transported. 

Region ill: As the fluid velocity becomes too low or the concentration too high to keep 

the mutually interfering particles moving, particle deposition or dune 

formation begins. 

2.2.4.2 Proppant Transport Using Nitrogen Gas: Proppant transport using nitrogen gas 

is occasionally used in the petroleum industry to avoid problems with water and oil 

emulsions, clay swelling, clay migration and water sensitive shales. Gottschling et a/., 

[1985] performed a series of lab experiments to investigate the ability of nitrogen gas to 

transport the proppant. They constructed a physical model to demonstrate, qualitatively, the 

involved transport mechanisms (see Figure 2.6). 

The following is a summary of their experimental observations made over a wide 

range of gas and proppant flow rates: 

I. Proppant is initially deposited in the well, the proppant level in the well rises until it 

reaches the lower perforations connecting the well bore to the fracture. Only now does 

the proppant start to enter the fracture. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Dune Fonnation 
and 

Fluid Fingering 

··... 
0 oo • 

0 !ftl~~c§i··· ... 
0 0 • * l&~c§i_- •.. Outer 

0 • o Cli"O , 
Particle 
Group 

Movement 

~- ~-. _ 0 

8 
-!f8~ ~~Region 

o •·0 •• __ o o o8 o ~o at;;,._ 
0 ••• 0 0 .. 

Oooo
8

•• gJc 0 o, 
0 0 0 0 •• 0 0 8 ..Dd 
~ o o

8 
OOo C:, 0~, O 00 O !!aT ... 

lntennediate 
Region 

Individual Particle 
Movement 

Or:fJ ooo'. o ', 
o o0 ' o:: O'_ 

fJ o o o 8 ov oo ~ 
• 0 ~0 • 0 • 

0 0 0. -~ 0 0- 0 • 0 0 8:1f 
oOo'. oO goo o ~~ o~~o : 

o o oo \ oo CP oOo~ o o o : 

Rn Rm 

Figure 2.5 Different Regions of Proppant Transport in Hydraulic Fractures 

0 

a) fracture height greater than 
equilibrium height 

0 

c) high perforation velocity 

F 
I= 
I= ) 

b) fracture height less than 
equilibrium height 

0 

0 

d) probable shape for an actual case 

Figure 2.6 Proppant Banking for Different Treatment Conditions 

39 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

40 

2. When the fracture height was greater than the equilibrium bank height, proppant was 

deposited inside the fracture closer to the well bore until the bank height exceeded the 

equilibrium bank height (Figure 2.6b ). When the equilibrium bank height is exceeded, 

the velocity of the gas passing over the proppant bank is high enough to carry the 

particles in suspension. Just beyond the proppant bank, the velocity of the gas decreases 

because of the greater flow cross-sectional area, and the proppant is deposited here. 

3. When the fracture height was less than the equilibrium height of the proppant bank, the 

gas velocities were greater than the critical velocity required to carry the proppant in 

suspension. All the proppant was consequently transported to the fracture tip. 

4. When the gas velocities were much greater than the critical velocity for carrying the 

proppant in suspension, all the proppant in the fracture was carried away from around 

the well bore. This resulted in a reduced fracture conductivity closer to the well bore. 
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CHAPTER3 

MODEL APPROACH 

3.1 Introduction 

This chapter describes the approach taken to model the propagation of pneumatically 

induced fractures. The motivation for development of the current model is the 

uniqueness of the pneumatic fracture propagation phenomena. Pneumatic fracture 

propagation differs from other fracture propagation phenomena in both the rate of 

pressurization and the propagation velocity. Another important distinction is the low 

viscosity of the fracturing fluid (air or other gas), which results in a high rate of leak-off 

into the surrounding geologic formation. 

The chapter begins with a physical description of the mechanism of pneumatic 

fracture propagation based on field observations made over the last several years. Next, 

the assumptions with regard to the formation and fracture characteristics will be concisely 

stated. Finally, mathematical statements will be formulated describing the physical 

processes involved in the fracture propagation mechanism. 

3.2 Mechanism of Pneumatic Fracture Propagation 

For the past several years field observations of pneumatic fracture propagation have been 

well studied and documented [e.g. Schuring et al., 1992]. These studies have provided 

considerable insight into the mechanism of pneumatic fracturing, as well as the factors 

affecting initiation, orientation and extent of propagation. This section provides a 

summary of the current understanding of the pneumatic fracture propagation mechanism. 

41 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

42 

To initiate and propagate fractures in a geologic formation, there are two basic 

conditions that must be satisfied. First, gas must be injected into the formation at a rate 

that exceeds the natural permeability of the formation. Second, the injection pressure 

must exceed the minimum in-situ stresses present in the formation surrounding the 

injection point. When these two basic conditions are satisfied simultaneously, a 

pneumatic fracture will initiate and propagate from the point of injection. 

The direction of the fracture propagation is controlled by the magnitude and 

direction of the in situ stresses present at the depth of fracturing. In overconsolidated 

formations where the least principal stress is vertical, fractures tend to propagate 

horizontally. Conversely, in normally consolidated soils where the least principal stress is 

horizontal, fractures will propagate in the vertical direction. Since a majority of soil 

formations encountered near the earth's surface are overconsolidated, the predominant 

direction of pneumatic fracture propagation has been horizontal. Some vertical fracture 

propagation has been observed when fracturing in poorly consolidated fill soils, or at very 

shallow fracturing depths(< 2.4 meters I 8 feet). In these cases, fractures were observed 

to curve upwardly and intersect or "daylight" the ground surface. 

During a typical pneumatic injection event a two foot interval is sealed at the 

desired depth within an injection well, and this zone is then pressurized. Insight into the 

mechanism of pneumatic fracturing can be gained by examining the pressure variation in 

the sealed zone during injection. Pressure is recorded by an electronic pressure 

transducer connected to a data logging system. Figure 3.1 is typical of the numerous 

pressure data recorded during field applications of pneumatic fracturing. The pressure

time history reveals four distinct stages of the fracturing process: 
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• pressure build-up leading to fracture initiation or formation breakdown (A-B); 

• pressure drop during fracture extension (B-C); 

• fracture maintenance pressure after propagation has ceased (C-D); 

• pressure decline after termination of gas injection (D-F). 

Each of these stages will now be briefly discussed. 

The fracture event begins with a rapid build-up of pressure during the first two to 

three seconds of gas injection (segment AB in Figure 3.1). During this period the bore

hole expands elastically, until the breakdown pressure of the formation is reached (point 

B in Figure 3.1 ). At this point a fracture nucleates and begins to propagate away from the 

borehole. The magnitude of the breakdown pressure depends on both the overburden 

pressure (the minimum in situ stress in overconsolidated formations) and the natural 

cohesion of the formation [King, 1993]. As the fracture propagates away from the 

borehole, the effect of the natural cohesion (fracture toughness) becomes less significant 

and the fracture propagation pressure is dominated by the overburden [Spence & 

Turcotte, 1985]. 

Immediately following fracture initiation, gas rushes into the newly created 

fracture, resulting in a pressure drop at the borehole (segment BC). Gas now leaks off 

into the formation through the newly created fracture surfaces. After some time delay, 

points away from the borehole and at the tip of the propagating fracture will experience a 

pressure variation similar to that shown in Figure 3.1. 

At some point in time fracture propagation will cease even though injection of gas 

is continued. This is due to the equilibrium that has been established between the amount 

of injected gas and the gas lost to the formation as leak-off. The formation is now 
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literally "floating" on a cushion of gas which will continue until the injection of gas is 

stopped. This stage corresponds to the pressure plateau (segment CD) in Figure 3.1 and 

is referred to as the "maintenance pressure" [King, 1993]. It is noted that it is the 

equilibrium fracture dimension which is the focus of the proposed model. 

Once the gas injection is stopped, the pressure in the injection well decreases and 

the fractures begin to constrict. Closure is not complete, however, because of the self

propping nature of the fractures resulting from asperities and shifting of soil blocks along 

the fracture surfaces [Hall, 1995]. During this stage the pressure first decreases quickly 

(segment DE), and then more gradually (segment EF). 

During some field operations of pneumatic fracturing the outlying monitoring 

wells are sealed and outfitted with pressure gauges. The pressure gauges record the 

maximum pressure in the monitoring well which occurs when the fracture has reached its 

equilibrium radius. Figure 3.2 is a contour diagram generated from the pressures 

recorded at the monitoring wells during an injection. The contour diagram provides an 

indication of the extent of fracture propagation, and also shows that pressure within the 

fracture decreases as one moves away from the injection well. 

Additional insight into the pneumatic fracturing mechanism is provided by 

ground surface deformation. During injection, the ground surface heaves considerably, 

and at relatively shallow injection depths(< 3 meters I 10 feet) it may even be perceptible 

to the naked eye. Electronic tiltmeters are used to record the change in ground surface 

slope at various locations around the fracture well, and these recordings are used to 

generate contours of ground surface heave. Because the tiltmeters sample data several 

times a second for the entire duration of the injection, a time history of fracture 
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propagation can be generated. Figure 3.3 shows the temporal ground surface behavior 

during a typical pneumatic injection. A review of the heave contours at various times 

indicate that the fracture had reached its maximum extent somewhere between five to 

eight seconds after injection began, as there is no discernible difference between the 

contours at eight seconds and those at 14 seconds. 

In order to determine the typical range of pneumatic fracture propagation 

velocities, heave contours from a number of sites were analyzed and the results are 

summarized in Table 3.1. As indicated the average propagation velocities range from 

0.85 rnlsec (2.8 ftlsec) to 3.5 rnlsec (11.6 ftlsec). This velocity range, while faster than 

hydraulic fracturing, is clearly still in the low subsonic range. This has led to pneumatic 

fracturing being classified as a quasi-static rather than a dynamic phenomena. 

Table 3.1 Pneumatic Fracture Propagation Velocities 

Site Name Geology Average Time to Average 
Maximum Attain Propagation 

Radius Maximum Velocity 
meters (feet) Radius (sees) m/sec (ft/sec) 

Flemington, NJ Siltstone 7.5 (24.5) 5 1.5 (4.9) 

Highland Park, NJ Siltstone 6.4 (21.1) 5 1.3 (4.3) 

Hillsborough, NJ Siltstone 8.3 (27.2) 9 0.9 (3.0) 

Huntsville, AL Gravelly Clay 10.6 (34.8) 3 3.5 (11.6) 

Marcus Hook, PA Clayey Silt 3.6 (11.7) 4 0.9 (2.9) 

Tinker, OK Clayey Silt 5.0 (16.5) 6 0.9 (2.8) 
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3.3 Model Assumptions 

The modeling of pneumatic fracture propagation is a complex task as it involves the 

coupling of phenomena from the fields of fluid mechanics, solid mechanics, rheology and 

heat transfer. In order to solve a problem of this complexity, it is necessary to establish a 

basic set of assumptions. The assumptions have been chosen to reflect as closely as 

possible the physical phenomenon of pneumatic fracturing, yet permit enough simplicity 

so that a solution is possible. The following section summarizes the assumptions for the 

proposed propagation model. The assumptions have been grouped into "General 

Assumptions" and "Presumed Fracture Characteristics." 

3.3.1 General Assumptions 

1. The geologic media is elastic, and will undergo brittle failure. 

Justification: Bedrock formations and stiff soil formations have been shown to exhibit 

brittle, elastic behavior [Wuerker, 1956]. Even formations which are less stiff such as 

weathered bedrock or plastic soils will tend towards brittle, elastic behavior due to the 

dynamic nature of the load imparted by pneumatic fracturing. 

2. The geologic formation is homogeneous with regard to elastic properties. 

Justification: Due to the relatively local extent of the fracture network (typically< 10m 

radius), homogeneity will be assumed. This is a necessary simplifying assumption due 

to the complexity of the various interacting physical processes of the model. 

3. From a perspective of geostatic stress, the soil formations are considered to be 

anisotropic and overconsolidated. 
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Justification: Numerous geologic investigations have shown that near surface 

deposits of soil are overconsolidated due to desiccation, overburden erosion and other 

natural phenomena. In overconsolidated deposits the minimum principal stress is in 

the vertical direction. 

4. In rock formations, an analogous state of stress is assumed to exist, i.e. the 

minimum in situ stress is in vertical direction and the maximum stress in the 

horizontal direction. 

Justification: Numerous geologic investigations have shown that geostatic horizontal 

stresses exceed vertical stresses in near surface rock formations ( < 100 m depth) due 

to tectonic activity. 

5. The formation is stratified, which results in the presence of horizontal or nearly 

horizontal planes of weakness in the formation. 

Justification: Stratification is a common occurrence, as a majority of geologic 

formations at shallow depths are of sedimentary origin. 

6. The pneumatic conductivity of tl1e formation is anisotropic, i.e. the horizontal 

pneumatic conductivity (K,J is not the same as vertical pneumatic conductivity (Kv)· 

Justification: Most geologic formations have greater conductivity in the horizontal 

direction due to their stratified origin [Harr, 1962]. In rock formations, this anisotropy 

may also be related to fractures caused by exfoliation or tectonic movements. 

7. Leak-off of gas from the fracture into the formation will occur as Darcian flow, and 

can be defined by a two-dimensional flow function. 

Justification: This approach will permit due consideration of the effects of conductivity 

anisotropies and successive fracture injections. 
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8. The fracturing fluid behaves as an ideal gas. 

Justification: Since the pressures are relatively low and the temperature of the gas used 

in fracturing operations is well above its critical temperature, the fracturing fluid is 

considered to behave ideally. 

9. The thermodynamic state during pneumatic fracture propagation is considered to 

be adiabatic. 

Justification: The heat transfer is important when the temperature difference between the 

gas and the surrounding formation is high and the contact times are large [e.g., in 

explosive fracturing, Nilson,1981]. Pneumatic fracturing process is too rapid for any 

significant amount of heat transfer between the injected gas and the formation. 

3.3.2 Presumed Fracture Characteristics 

1. The fracture propagates radially from the injection well, and is approximately 

horizontal and circular in shape. 

Justification: In their work on hydraulic fracturing, Hubbert and Willis [1957] 

established the relationship between direction of fracture propagation and principal 

stress orientation. The presumed condition of overconsolidation (see General 

Assumption 3 above) leads to horizontal fracture orientation. Though individual 

fractures maybe asymmetric due to geologic heterogeneities, field observations made 

at numerous sites suggests that the shape can best be described as approximately 

circular. Also the circular shape is a consequence of the homogeneity assumption. 
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2. The fractures are created at shallow depths so the aperture is primarily a 

consequence of deflection of the overburden. Elastic compression of the 

surrounding formation is small and is ignored. 

Justification: This is consistent with analytical models and field observations by 

previous investigators in hydraulic fracturing [Perkins and Kern, 1961]. Data collected 

from numerous field demonstrations of pneumatic fracturing for this project show that 

significant surface heave is observed for shallow fractures (due to the deflection of the 

overburden) and little heave was observed for deeper injections. 

3. Early time phenomenon in the immediate vicinity of the borehole in conjunction 

with fracture initiation are ignored. 

Justification: The original state of geostatic stress is disturbed during the process of 

drilling a borehole. Studies have shown that this altered state of stress has little effect on 

the final orientation of the fractures [Murdoch, 1991]. Additionally, the high velocity of 

the injected gas (2: 91.5 m/sec or 300 ftlsec) effectively ''pre-notches" the geologic 

formation which de-emphasizes the importance of the fracture mechanism in the 

immediate vicinity of the borehole. 

4. Fracture propagation is dynamic but occurs at low subsonic speeds. Maximum 

radius is attained within several seconds and the process may be considered as 

"quasi-static." 

Justification: Observations of ground surface heave during shallow fracturing operations 

indicate typical :fracture tip velocities of 0.9-3.7 m/sec (3-12 ft!sec) which is well below 

fracture tip velocities in supersonic gas-driven (explosive) fracturing. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

52 

3.4 Mathematical Formulation of the Propagation Problem 

Once a fracture has been initiated it will continue to propagate as long as the 

injected flow rate exceeds the rate of gas leak-off into the formation, and the pressure at 

the fracture tip is greater than the propagation pressure. At the instant when the fracture 

attains maximum radius, the following two conditions are simultaneously satisfied: 

• fluid continuity 

• stress equilibrium at the fracture tip 

These two conditions will now be stated mathematically. 

The condition for fluid continuity begins with the overall mass-balance of flow 

within the fracture which is given by: 

(3.1) 

where Qin is the injected flow, Vteak is the volume of fluid lost to the formation as leak-

off, V res is the residual fluid volume and V frac is the volume of the fracture. If we ignore 

fracture volume, V rrac, which is negligible, and express the above equation in terms of 

flow, the following is obtained: 

(3.2) 

where Qres is the residual flow left to propagate the fracture and Q1eak is the flow lost as 

leak-off. Fracture propagation continues until the injected flow exactly equals the leak-
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off into the formation. The continuity criterion for the equilibrium fracture radius may 

therefore be stated as: 

Ores= 0 (3.3) 

The second simultaneous condition occurring at maximum radius is stress 

equilibrium at the fracture tip. During propagation the pressure at the tip, Ptip. exceeds the 

propagation pressure, Pprop· That is, 

Plip > Pprop (3.4) 

When the fracture reaches its equilibrium radius, the pressure at the tip must equal the 

propagation pressure. This is designated as the stress equilibrium criterion which may be 

expressed as: 

Ptip = Pprop (3.5) 

Now that the two basic criteria for final fracture radius have been defined, the 

processes that control propagation will be examined. The discussion in Section 3.2 has 

established that pneumatic fracturing involves three distinct physical processes: 

• pressure dissipation of injected gas as it flows through the fracture; 

• leak-off of injected gas into the surrounding formation; 
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• deflection of the over-burden causing a discrete open fracture. 

In the following sections the governing equations for each of these processes will be 

detailed. The final model solution presented in Chapter 4 will require that these 

equations be coupled and solved simultaneously to attain the required mass balance of the 

injected gas and stress equilibrium at the fracture tip 

3.4.1 Pressure Distribution Model 

The first physical process controlling the fracture propagation is pressure dissipation 

within the fracture. Pressure in the fracture decreases with increasing distance from the 

injection well on account of fluid friction, and this has in fact been observed in the field 

(Section 3.2; Figure 3.2). Previous investigators at NJIT [Nautiyal, 1994] have developed 

an analytical solution to account for the loss in the pressure head due to the frictional 

effects of the fracture wall. The model is based on Poiseuille flow between two infinite, 

smooth parallel plates. The flow equation is given by: 

d~ _ J.lgas ~( du) 
dx- gpgas dy dy 

(3.6) 

where ~ is the potential function and u is the velocity of the fluid in the radial direction. 

Taking gas compressibility effects into account and solving the above differential 

equation yields: 
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Pn+l = (3.7) 

where Pn and Pn+l are pressures at a distance rn and rn+I respectively, Q is the flow 

between rn and rn+J. b is the fracture aperture, Jlgas is the dynamic viscosity of the fluid, 

Pgas is the density of the injected gas, and g is the acceleration due to gravity. 

3.4.2 Leak-off Model 

The second of the three physical processes affecting fracture propagation is leak-off. 

Previous investigators in hydraulic and explosive fracturing modeled leak-off one-

dimensionally and assumed a uniform leak-off distribution along the fracture length. 

These models also ignored formation anisotropy with respect to conductivity, as well as 

fluid losses from the fracture tip. The leak-off model proposed in this section is an 

improvement over previous approaches since it models leak-off two dimensionally and 

considers a variable distribution of leak-off (varying with distance from injection well). 

In addition, the effects of formation anisotropy and fluid losses occurring from the 

fracture tip will be taken into account. 

As stated above, leak-off from the fracture varies as a function of radial distance, 

and it also differs between the top and the bottom fracture faces. The factors responsible 

for these variations are: 

• pressure variation with radial distance; 

• gradient variation due to differing flowpaths; and 
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• formation anisotropy with respect to conductivity. 

As illustrated in Figure 3.4b, the pressure within the fracture decreases with 

increasing radius. Since, leak-off is directly proportional to the pressure within the 

fracture, this results in a general trend of decreasing leak-off with increasing distance 

from the well. The effects of pressure on leak-off are the same for both the upper and 

lower faces of the fracture. 

The gradient driving the leak-off is also variable, as it depends on the length of the 

flow paths of exiting gas. The gradients along the top fracture face are higher since the 

flow path to atmospheric pressure boundary (ground surface) are shorter (see Figure 

3.4c). The gradients along the bottom fracture face are correspondingly lower, and the 

lowest gradient occurs on the bottom face closer to the well. 

Anisotropy also significantly influences the distribution ofleak-offfrom a fracture 

(Figure 3.4d). Close to the injection well where flow lines are predominantly 

perpendicular to the fracture face, leak-off is most influenced by the vertical conductivity 

of the formation. As the fracture tip is approached, however, the effect of the horizontal 

conductivity becomes more and more dominant. It is important to note that the 

percentage ofleak-off at the fracture tip increases with increasing anisotropy. 

If the cumulative effects of pressure variation, gradient and anisotropy are 

superimposed, the final distribution of leak-off from a pneumatic fracture can be 

determined. The pattern of leak-off which results is shown conceptually in Figure 3.4e 

which differs notably from a one-dimensional, constant leak-off pattern. This difference 

has been the main impetus for improving leak-off analysis in the present model. An 
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axisymmetric version of the leak-off surrounding a pneumatic fracture is shown 

conceptually in Figure 3.5. 

The best way to calculate leak-off is to construct a flownet with the appropriate 

boundary conditions. Figure 3.6 depicts the equipotential lines and streamlines for leak

off occurring from a fracture (two-dimensional) for isotropic conditions and for two cases 

of anisotropy. On comparing Figure 3.4e and Figure 3.6, the correlation between the 

pattern of leak-off distribution and the distribution of the streamlines is clearly evident. 

Therefore the model will utilize potential theory to account for the complex pattern of 

leak-off occurring form the fracture. 

Three different approaches for estimating the leak-off for a three-dimensional 

radial fracture were developed. The first two are based on the flownet approach, and the 

last method was purely analytical. All approaches begin initially utilizing a two

dimensional expression. Which is then extended to the three-dimensions by rotation 

about an axis passing through the center of the injection well. Since flownets were 

traditionally hand drawn in the past, the two flownet methods of leak-off estimation will 

be referred to in the remainder of the study as the "graphical methods." 

In the first flownet method, Darcy's law for a two-dimensional flownet is 

modified to account for the variation of leak-off with fracture radius. The Darcy's 

equation being given by: 

(3.8) 

where Oteak is total discharge across the entire fracture surface, H is the total head driving 
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Figure 3.6 Effect ofF ormation Anisotropy on Flow Pattern 
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the flow, Kgas is the effective pneumatic conductivity of the formation, Nris the number 

of flow tubes, and Nd is the number of potential drops. 

To calculate the variation in the leak-off with radial distance, the extent of fracture 

length must be discretized into 'n' segments. The number of flow tubes leaving each 

segment are counted, and the leak-off occurring through each segment is computed as 

follows: 

(3.9) 

where Hn is the total head driving the flow in the nth segment. 

Extending the discretized two-dimensional fracture into three dimensions requires 

that the radial fracture be segmented into concentric annular rings. The total leak-off is a 

summation of gas lost through each of the annular rings. The formula for total leak-off 

then becomes: 

(3.10) 

where r0 and rn+l are the inner and outer radial distances of the annular ring. 

It is apparent in the previous equation which will henceforth be referred to as 

"flownet method-!," the variation in leak-off is directly dependent on the variation in 

shape factor. Figure 3. 7 illustrates the effects of formation anisotropy and the fracture 
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size on the shape factors. As indicated, the higher values of the shape factor at the 

fracture tip are due to the increased number of flow tubes present at the tip of the fracture. 

An inspection of the figure suggests that anisotropy is more important early in the fracture 

propagation, at lower injection flow rates, and for deeper fractures. A more 

comprehensive compilation of variation in shape factors corresponding to different 

fracturing depths and fracture radii for isotropic and anisotropic formations are contained 

in Appendix G. 

A second method using flownets for estimating leak-off from a three dimensional 

fracture was also investigated, which will be referred to as the "flownet method- II." The 

main difference with respect to the previous method of leak-off estimation lies in the 

approach taken in deriving the formulae. In flownet method - II the leak-off is initially 

calculated over a plan area which is a square encompassing the fracture extent and then it 

is corrected for the differences in the plan surface areas. The equation for determining 

leak-off by this second method, which is also based on flownet theory, is given by: 

n=R/cli" (N ) 
Qleak = L ; RKgasHn Jf-

n=l d n 
(3.11) 

where R is the equilibrium fracture radius, and Br is the width of the annular ring. The 

complete derivation of the equation has been presented in Appendix C. 

The last method of leak-off estimation uses a purely analytical approach. The 

analytical method involves calculating leak-off from successive annular rings of the 

fracture surface, using the following flow function: 
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(3.12) 

where Kh.gas and Kv.gas are the horizontal and vertical pneumatic conductivities of the 

formation, respectively and lgrad is length of the flow path along which the pressure is 

dissipated. The length of the flow path is of course dependent on the depth of the 

fracture. 

3.4.3 Deflection Model 

The last of the three processes controlling fracture propagation to be modeled is 

deflection of the overburden. When a pneumatic fracture is created, the resulting fracture 

aperture is assumed to be a consequence of the overburden deflection. Therefore a model 

for overburden deflection effectively predicts the fracture form. 

The form of the deflecting overburden is a function of the pressure distribution 

within the fracture. Most previous investigators have used simplified uniform or linear 

pressure distributions (Chapter 2). The present model attempts to use a non-linear 

distribution which is clearly more realistic for a tapering fracture. 

The overburden can be modeled as the bending of a circular elastic plate clamped 

at the edges. This is consistent with numerous field observations of ground surface 

heave contours which were approximately circular, in shape. The overburden deflection 

for this case can be obtained by solving the following differential equation [Timoshenko 

and Woinowsky-Krieger, 1959]. 
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d3b 1 d 2b 1 db s 
-+-----=-
dr3 r dr2 r2 dr D 

(3.13) 

where r is the radial distance from the center of the plate, b is the deflection of the plate 

(fracture aperture), Sis the magnitude of the shear force, and Dis the flexural rigidity. 

If it is assumed that the over-pressure at the tip of the fracture is zero, the 

following approximate pressure distribution can be used which closely approximates the 

"cubic law" distribution of pressure believed to exist in pneumatic fractures: 

(3.14) 

such that P = Pw when r = rw 

and P=O when r=R 

The magnitude of the shearing force S can then be determined by the following equation: 

Pwr k ( r) k { ) S=---rln- +- r 2 -r 2 

2 2 rw 4r w 
(3.15) 

Substituting Sin equation 3.13, the following relation between pressure and aperture can 

be obtained: 
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The complete solution to the above equation has been presented in Appendix A. 

The resulting solution is given by: 

b = ~[2pd +3k-2kln(..E...)] 
128D rw 

+ 2;~D[ R2(8kp, -8p, -!Ok)+r.'( 8k+ 16p, -16k{:)) l 
kR4 

+--
640 

Pd 
where, k = ( R) , D ln-

rw 

(3.17) 

b is the fracture aperture at a distance r from the well, R is the radial extent of the 

fracture, rw is radius of the well, Pd is the driving pressure at the injection well, E being 

the Young's Modulus of the formation, v is Poisson's ratio and z is the depth of 

fracturing. 

It is noted that the above deflection equation (equation 3 .17) is a fourth degree 

polynomial which matches with a previous study [Canino, 1997] that the ground surface 

above a pneumatic fracture conforms to a fourth degree polynomial. 
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3.4.4 Coupling Interaction of Propagation Processes 

The final radius of a pneumatic fracture will depend on the coupling of the three 

processes just discussed and on their mutual interaction. For example, any change in the 

pressure distribution will affect leak-off since, by Darcy's law, leak-off is proportional to 

pressure within the fracture. This new leak-off distribution will necessitate a change in 

the extent of fracture surface area and radius. Based on the deflection model, a revised 

radius will correspond to a new fracture aperture. A change in the fracture aperture will 

in turn directly affect the pressure distribution. Thus, we have come a full circle, 

implying that a change in any one of these individual processes will affect the rest of the 

processes, as well as the process itself. 

In summary then, the physical processes goverining the propagation of a 

pneuamtic fracture expressed as a function of the formation and system parameters are: 

Pr = f(Qres, J.lgas, Pgas, r, b, Pw) (3.18) 

Qleak = f{R, Pr, Ktt-gas, Kv-gas, Z, NtiNd, t) (3.19) 

b = f(R, E, v, Pr, z, t) (3.20) 

The coupling of the above equations is apparent since each of the dependent 

variables on the left hand side of the equations appear within the list of independent 

variable parameters on the right hand side of the other equations. This level of coupling 

is severe, and will play a major role in the solution of the model. 
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CHAPTER4 

MODEL DEVELOPMENT 

4.1 Introduction 

This chapter develops an algorithm for modeling propagation of pneumatically induced 

fractures. The principal function of the algorithm is to couple the solutions presented in 

the previous chapter for pressure dissipation, leak-off and overburden deflection, and then 

solve them to obtain the dimensions of the fracture. The algorithm may be classified as a 

numerical solution since it performs tasks such as discretization, iteration and 

convergence. For the purposes of the current study the algorithm has been implemented 

in "Mathcad 7.0" to permit testing and calibration. It can be easily coded in any other 

computer language. 

The algorithm has some unique features compared with past fracture propagation 

models that are noteworthy. First, gas leak-off from the fracture into the formation is 

modeled using two-dimensional Darcian flow. This approach provides a higher degree of 

accuracy which is crucial in view of the low viscosity of air and consequent high potential 

for leak-off. A second unique feature of the algorithm is it considers formation 

anisotropy with regard to conductivity. This permits a more realistic representation of 

actual field conditions since most geologic formations tend to exhibit some amount of 

anisotropy. Finally, the algorithm is capable of utilizing a number of overburden 

deflection models. These include models for a linearly tapering fracture, fracture with an 

anticlinal plan subjected to uniform pressure, fractures with circular plan subjected to a 

68 
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uniform pressure, and fractures with a circular plan subjected to a logarithmically varying 

pressure. 

During the course of the study attempts were made to obtain a closed form 

solution incorporating the models of pressure dissipation, leak-off, and overburden 

deflection, while satisfying the residual flow and stress criteria. These attempts were not 

successful because of the severe coupling interaction among these processes. However, a 

limited analytical solution based solely on the principle of fluid continuity was 

successfully developed, and will be presented. The continuity solution is useful for 

obtaining rough estimates of the fracture radius as well as for checking the full algorithm. 

In the sections to follow, the conceptual framework of the algorithm will be 

presented first (Section 4.2). This is followed by a detailed step by step discussion of the 

routines and subroutines that make up the algorithm (Section 4.3). Finally, the closed 

form solution for fracture propagation based on the continuity principle will be given 

(Section 4.4). 

4.2 Conceptual Model Algorithm 

The algorithm is based on the presumption that for a given set of injection and formation 

parameters, there exists a unique fracture radius that satisfies the continuity and pressure 

conditions at the tip of the fracture simultaneously. A conceptual flow chart of the 

algorithm depicting its execution control and the component models is shown in Figure 

4.1. After the formation and injection parameters are entered, the algorithm starts with an 

assumed "equilibrium fracture radius." The algorithm has been structured to divide the 

assumed radius into small segments as shown in Figure 4.2. The size of the segments can 
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be chosen to be arbitrarily small. The accuracy of the algorithm improves with 

decreasing size of the segments, but this obviously lengthens execution time of the 

algorithm. 

For each of the segments, starting from the injection well, the deflection model 

computes the magnitude of the fracture aperture. The pressure distribution model, which 

is a function of the fracture aperture, computes pressure drop within the segment due to 

frictional effects. Next the leak-off model calculates the magnitude of fluid lost to the 

formation, which is a function of the back-pressure within the fracture. Finally the 

residual flow is calculated by conducting a mass balance of the fluid entering and exiting 

the segment. The pressure and flow at the end of the current segment are used as the 

input values for the next segment. 

The process (inner loop B, Fig 4.1) is repeated until one of the criteria (equation 

3.3 or 3.5) for termination of a propagating fracture is met. If both the propagation 

criteria are satisfied simultaneously in the same segment at the fracture tip, the assumed 

fracture radius is the true "equilibrium fracture radius." When both the criteria are not 

satisfied the fracture radius in the outer loop A is either increased or decreased to 

converge on the "equilibrium fracture radius." 

4.2.1 Convergence Methodology 

Three different methods, the incrementing method, decrementing method, and the 

Bisection Method were investigated to determine the most efficient method of converging 

to the solution, i.e., ''the equilibrium fracture radius." Computation times for each of the 
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methods to arrive at the "equilibrium radius" were compared, and the method with 

minimum execution time was selected for the algorithm. 

The incrementing method starts with an obviously undersized fracture radius. In 

this case the fracture surface area is too small to account for the loss of all the injected air. 

Thus, the fracture radius is incremented until the pressure and the continuity conditions 

for the termination of a propagating fracture are satisfied simultaneously at the fracture 

tip. The behavior of this convergence methodology is illustrated in Figure 4.3a. As 

indicated, the iterative process (inner loop B, Figure 4.1) initially terminates when the 

over-pressure in the fracture drops below the propagation pressure as the segmental 

fracture radius, "rn" increases. The continuity criterion is not satisfied, however, since the 

residual flow is not zero. Therefore, the current fracture radius is not the "equilibrium 

fracture radius." At this stage the algorithm increments the radius of the fracture and the 

process (loop A, Fig 4.1) is iterated until both the pressure and flow criteria are satisfied 

simultaneously in the same segment. A plot of the residual flow at the termination of the 

iterative process for increasing fracture radius is depicted in Figure 4.3b. The point of 

intersection of the curve with the x-axis represents the equilibrium fracture radius. 

In the decrementing method, the algorithm begins with an obviously 

overestimated fracture radius. As seen in Figure 4.4a, an overestimated fracture fails the 

criteria because residual flow reaches zero before the pressure criterion is satisfied. The 

dimensions of the fracture are successively reduced until the fracture dimensions that 

satisfy the conditions for a fracture in equilibrium are reached. A plot of the over

pressure for this convergence method is shown in Figure 4.4b. The point of intersection 

of the curve with the x-axis representing the equilibrium fracture radius. 
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a Case I - Pressure and Flow Behavior with Increasing Fracture Dimensions 
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P pup = fracture propagation pressure 
Q ... = residual flow in the fracture 
b = fracture aperture 
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Rn = fracture radius for nth iteration 
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Figure 4.3 Case I - Pressure and Flow Behavior in an Underestimated Fracture 
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a Pressure and Flow Behavior with Decreasing Fracture Dimensions 
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P pup= fracture propagation pressure 
Q.. = residual flow in the fracture 
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Figure 4.4 Case ll - Pressure and Flow Behavior in an Overestimated Fracture 
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Since it is clear from the plots in Figures 4.3b and 4.4b that the solution has only 

one root, a root finding convergence method known as the· Bisection Method was 

investigated. The Bisection Method is based on the fact that a curve will change sign in 

the neighborhood of its root. The method requires an initial estimate of the interval 

bracketing the root. The interval bounding the root is divided into half and the location of 

the root within these two intervals is determined. The interval bracketing the root is 

retained and the other half discarded. The process is repeated to obtain refined values of 

the root. Further details of the Bisection Method are discussed in Section 4.3.2. 

Converging towards the solution by fixed increments/decrements is tedious, and 

the process becomes more labored as the accuracy requirements increase. For example, it 

typically took about 4 minutes of the CPU time (100 MHz, Pentium processor) for the 

algorithm to converge to the solution to obtain a radius accuracy of 0.1 feet. Using the 

bisection method, CPU time was reduced to about 30 seconds for the same accuracy 

level. Eventually it was decided to implement the "bisection method" [Chapra and 

Canale, 1988] of convergence. 

4.3 Details of Algorithm Structure 

This section details the algorithm introduced in the previous section. Basically, the 

algorithm has two nested loops as shown in the conceptual flow chart in Figure 4.1. Loop 

A, which is the outer loop, invokes the convergence subroutine (incrementing radius 

method vs. decrementing radius method vs. Bisection Method, discussed in Section 

4.2.1 ). While the convergence subroutine is being implemented, the subroutine for 
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determining the flow and pressure variations within the fracture is "invoked 

dynamically." 

The detailed flow charts for the algorithm routines and subroutines are presented 

in Figures 4.5 through 4.7. The "Mathcad" version of the full algorithm is given in 

Appendix E. Each of the algorithm steps will now be described in more detail. 

4.3.1 Main Routine 

The Main Routine shown in Figure 4.5 handles the input and output of the algorithm, 

selects the deflection model to use, selects the method of leak-off estimation and invokes 

the convergence subroutine. 

Step 1 -Input. The parameters required by the algorithm as input are those related to the 

geology at the site and the injection system parameters for a given injection 

event. The formation characteristics that impact the extent of fracture 

propagation are site specific. The parameter values to be inputted with respect 

to the formation characteristics and the injection event can be gathered from the 

data collected during the preliminary site characterization studies. 

The following parameters are required by the algorithm: depth of 

fracturing, z, injection flow rate, Qin, pneumatic conductivity of the formation, 

Kh-gas, and Kv-gas, formation modulus, E, Poisson's ratio, v and formation 

density, y. 

Step 2 - Selecting Fracture Geometry. The selected deflection model has a significant 

effect on the predicted extent of fracture propagation. Fracture geometry is a 

function of the pressure distribution, plan shape of the fracture and assumed 
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fixity conditions. The algorithm has been designed with the following options: 

a) Constant aperture fracture, the fracture shape assumed by Carter [1957]. 

b) Varying aperture fractures including, 

• linearly tapering fractures; 

• anticlinal plan fracture subjected to uniform pressure; 

• circular plan fracture subjected to uniform pressure; 

• circular plan fracture subjected to logarithmically varying pressure. 

Based on earlier studies [Canino, 1997] the deflection model which appears 

to provide the best fit with field measured ground surface heave data is the 

bending of a circular plate fixed at its edges. This is considered the default choice 

for deflection model, although others may be applicable for special cases. 

Step 3 - Selecting the Method of Leak-off Estimation. Due to the relatively low 

viscosity of air, leak-off has a considerable influence on the dimensions of the 

predicted fracture. A precise estimation of the magnitude and distribution of 

leak-off along the length ofthe fracture is critical to an accurate prediction ofthe 

extent of fracture propagation. The algorithm provides the following two 

options for estimating the leak-off which are both based on Darcy's law: 

a) The first option is the graphical method (equation 3.10) that computes leak

off. It is based on obtaining the "shape factor" after constructing a flow net 

for the given boundary conditions of a propagating fracture. This method of 

estimating leak-off is believed to best represent the actual distribution of 

leak-off from the fracture. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

80 

b) The second option is an analytical method (equation 3.12) that calculates 

leak-off through the successive annular rings of the fracture surface. When 

calculating leak-off in anisotropic formations, an "effective" conductivity 

must be used. This method is less complicated than the graphical method, 

but is not considered as accurate since it does not account for variation in 

gradient and formation anisotropy. 

Step 4 - Determine Fracture Dimensions. The equilibrium fracture dimensions for the 

given Input Parameters and the selected deflection and leak-off models are 

computed. This is achieved by invoking two nested subroutines. The first is the 

"Bisection Subroutine" which corresponds to loop A in Figure 4.1. The other is 

the "Pressure and Flow Subroutine" corresponding to loop B of the conceptual 

flow chart shown in Figure 4.1. 

Steps 5-12 -Bisection Subroutine. The execution control passes onto the "Bisection 

Subroutine". Figure 4.6 is a flow chart of the Bisection Method algorithm. 

Usually the Bisection Method is used to determine the roots of an analytical 

function, but in the present case, the subroutine (Figure 4.7 Deflection, Pressure 

and Flow Subroutine) behaves as a virtual function. As shown in Figure 4.7 the 

fracture radius (input to the subroutine) is the independent variable and the 

subroutine returns the magnitude of the residual flow/over-pressure (output of the 

subroutine) which are dependent variables. More details of the Bisection 

Subroutine Loop are presented in the next section 4.3.2 "Bisection Method 

Subroutine." 
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Steps t5A-liN- Pressure and Flow Subroutine. This subroutine discretizes the extent of 

fracture radius and determines the pressure and flow variation within the fracture. 

Details of this subroutine are presented in Section 4.3.3 

Step 13- Output In this final step, the fracture dimensions that satisfy the pressure and 

flow conditions for a fracture in equilibrium are outputted. The pressure and 

residual flow distribution within the fracture as a function of the radial distance 

from the well are plotted. 

4.3.2 Bisection Method Subroutine. 

The Bisection Method, also known as binary chopping, interval halving, or Bolzano's 

method, is a root finding method based on the fact that a curve will change sign in the 

neighborhood of its root. The method requires an initial estimate of the interval 

bracketing the root, which are designated as a lower boundary, x~o and an upper boundary, 

xu. This can be accomplished by plotting the curve and noticing where it intercepts the x

axis. If the curve is continuous in the interval (x~o xu), and f(Xt) and f(xu) have opposite 

signs, then there is at least one real root between Xt and xu. The interval bounding the 

root is divided into half at Xr (where Xr =(xt +xu)/2) and the location of the root within 

these two intervals is determined. The interval bracketing the root is retained and the 

other half discarded. The process is repeated to obtain refined values of the root. The 

iterations are terminated when the error with respect to the true root reaches a pre

specified value. Since the true root is not known, an approximate relative error will be 

used as the termination criterion. The approximate relative error is calculated as: 
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(4.1) 

• new (xu + X1) Since X r = ~'--~ 
2 

(4.2) 

where Xrnew is the estimate of the root for the present iteration and Xrold is the estimate of 

the root from the previous iteration. 

Step 5 - The initial estimates of the upper and the lower bounds for the root (i.e., 

dimensions of the fracture) used by the Bisection Method are chosen such that 

the function changes sign within the interval. From experience, the lower limit 

for fracture dimensions are chosen as l.SE-01 m (0.5 ft) and 3.0E-04 m (0.001 

ft) for the radius and aperture, respectively. For upper limits, a radius and 

aperture of 6.1E+01 m (200 ft) and 6.0E-02 m (0.2 ft) are adequate to bracket 

the solution. 

Step 6 - Next an approximation of the root is computed, which is the mid-point of the 

interval bracketing the root. This is given by: 

x1 +Xu 
X =--'---=-

r 2 (4.3) 
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Two new intervals are now created, (Xt. Xr) and (xr, Xu), and the root lies within 

one of them. 

Step 7, 8 & 9 - The location of the root within the two intervals created in the previous 

step is determined, the interval bracketing the root is retained while the other 

discarded. 

lff(xi)f(xr)< 0, root lies in the lower subinterval, set Xu= Xr; (4.4) 

if f(xi)f(xr)> 0, root lies in the upper subinterval, set XI = Xr; and ( 4.5) 

if f(xi)f(xr) = 0, root equals Xr, terminate the computation. ( 4.6) 

The function f(x) is not an analytical function, but a subroutine behaving as a 

virtual function (shown in Figure 4.7, detailed in Section 4.3.3). Given the 

fracture radius, the subroutine returns the residual flow/over-pressure within the 

fracture, at the end of an iterative loop when one of the conditions for 

terminating a propagating fracture are met. 

Step 10 - The estimated error between the real root and the current estimate of the root is 

computed. The error calculated depends on the interval boundaries for the 

current iteration, as given in equation 4.1. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

85 

Step 11 - The algorithm enters a loop to converge towards the solution. The loop is not 

exited as long as the estimated percent error is greater than the specified 

termination criterion given by the following equation: 

(4.7) 

Step 12- The root of the function is outputted and the execution control of the algorithm 

is returned to the main routine. The root outputted is the fracture aperture when 

a constant aperture fracture geometry is being analyzed, and fracture radius when 

a varying aperture fracture geometry is being analyzed. 

4.3.3 Subroutine to Determine Flow and Pressure Variation in the Fracture. 

This subroutine is invoked by the "Bisection Method Subroutine" in Steps 7, 8 and 9. It 

returns the values of residual-flow/over-pressure for a given fracture radius when the 

conditions for the termination of a propagating fracture are met. For a given fracture 

radius passed on by the "Bisection Method Subroutine," the fracture extent is discretized 

into small segments, and a computation of pressure and residual flow within the first 

segment is made. The segmental radius is incremented and new calculations performed 

using the flow and pressure conditions at the boundary of the previous segment (Figure 

4.2). This process is repeated until the residual flow reaches zero or the over pressure is 

less than the propagation pressure. Since this subroutine can be invoked in three different 

steps of the "Bisection Method Subroutine," a common prefix '8' has been assigned to 

the algorithm steps where 8 = 7, 8 and 9. 
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Step 84 -Input. The fracture radius 'R' is the input to the subroutine passed on by the 

"Bisection Method Subroutine." This value is the upper or lower bound of an 

interval being investigated for the presence of the root by the Bisection Method. 

Step t5B - Determining fracture maintenance and propagation pressures. A semi

empirical relation is available for estimating the fracture maintenance pressure 

[King, 1993]. Fracture maintenance pressure is a function of the geology of the 

formation, depth of fracturing and location of the water table. The fracture 

maintenance pressure, Pm, in the saturated zone is given by: 

(4.8) 

where z is the depth of the fracture, zw is the piezometric level of the ground 

water above the zone of consideration, y is bulk weight of the formation, Yw is 

specific weight of water and A.1 is a coefficient. The above equation for the case 

of fracturing in the vadose zone reduces to 

(4.9) 

which is the method of maintenance pressure determination currently being used 

in the "Mathcad" version of the Algorithm. 

In order for the fracture to propagate, the pressure at the tip of the fracture 

must exceed the weight of the overburden. Fracture propagation pressure may 
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also be affected by the fracture toughness of the material. The amount of 

pressure, Pk required to overcome the fracture toughness of a circular crack was 

given by Sneddon [1946] as: 

(4.10) 

where Kic is the fracture toughness of the formation and r is the radius of the 

fracture. The pressure required to propagate a fracture, Pprop. will thus have two 

components, maintenance pressure, Pm and the pressure required to overcome 

fracture toughness, Pk which can be written as. 

(4.11) 

Some investigators [e.g., Spence and Turcotte, 1985] have suggested that 

fracture toughness can be ignored in most situations involving fracture 

propagation in geologic media. The effect of fracture toughness on propagation 

pressure, decreases with increasing fracture radius and depth of fracturing. For 

example, for a fracture propagating in a medium stiff clay to a radius of 15 ft, at 

a depth of 20 feet below the ground surface fracture toughness contributes only 

1 0 % to the total propagation pressure. 

Steps 8C to OF - Fracture Dimensions. At this stage the algorithm enters an iterative 

loop which is exited only when any one of the conditions for terminating a 
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propagating fracture are met. A fracture geometry corresponding to that selected 

in 'Step 2' of the 'Main Routine,' is used by the algorithm to calculate fracture 

aperture. 

The different fracture geometries that can be analyzed by the algorithm are 

summarized in Figure 4.8. Based upon experience to date with the model, it is 

believed that circular clamped plate subjected to a logarithmic variation in the 

pressure best represents the actual pressure distribution within the fracture. In 

all the relations in Figure 4.8, Pd is the driving pressure or over-pressure, and the 

other terms are as defined previously. It is noted that the plate bending 

equations only take into account the flexure of the overburden since calculations 

have shown that the elastic compression of the formation (both from downward 

compression and Poisson shortening of the flexed overburden) are negligible. 

Step liG and 811 - Pressure D~tribution. Once the magnitude of the fracture 

aperture has been determined, the pressure dissipation within each segment due 

to frictional wall effects is computed. The modified Poiseuille's relation 

[Nautiyal, 1994] for radial flow of compressible fluids between impermeable 

parallel plates as previously presented in Chapter 3 is: 

2 
Pn+l = Pn 

12pnQJlair In(~) 
7tgpairb3 (3.7) 

where Pn and Pn+I are pressures at a distance rn and rn+I, respectively, Q is the 

flow between rn arid rn+J. b is the fracture aperture, Jlair is the dynamic viscosity 
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of the fluid, Pair is the density of the injected gas, and g is the acceleration due to 

gravity. The magnitude of pressure at the exit end of the segment is used as the 

input pressure for the adjoining element during the next iteration (Figure 4.2). 

Steps 5I to OK- Estimating Leak-off. The leak-off from the fracture, which is a function 

of the pressure distribution, gradient and formation anisotropy, will be calculated 

next. Leak-off is calculated either analytically or graphically depending on the 

option chosen. Recalling the equations for estimating leak-off from Chapter 3: 

(3.10) 

(3.12) 

Once the amount of leak-off has been determined, an overall mass-

balance of flow in the fracture is undertaken and the residual flow computed. If 

fracture volume is ignored, the following is obtained: 

(4.12) 

where Qres is the residual flow left in the current segment after leak-off, Qres(n-l) 

is the flow entering the current segment being analyzed and Q1eak(n) is the leak-

off flow loss. 
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Step OL - Loop termination criteria. At this point the residual flow and pressure at the 

exit end of the segment are compared to the conditions of flow and pressure that 

would exist at the tip of a fracture in equilibrium. If none of the conditions are 

satisfied the execution control is handed to Step 13. On the other hand, if any 

one of the conditions is satisfied, the algorithm execution is passed onto Step14. 

Step 5M- The 'segmental fracture radius, rn,' is incremented and the residual flow and 

pressure at the exit end of the segment in the previous iteration are used as the 

input for the new segment (Figure 4.2) 

(4.13) 

where rn is the segmental radius for the current iteration, riner is the size of the 

fracture segment and fn+l is the segmental fracture radius for the next iteration. 

Step 8N- Output The values returned by this subroutine are the magnitude of residual

flow/over-pressure when the loop was terminated at step ~L. These values are 

returned to the Bisection Method subroutine. 

4.4 Closed Form Solution of Pneumatic Fracture Propagation 

This section outlines the approach taken to develop a closed form solution for predicting 

the extent of fracture propagation based on the principle of flow continuity. The reader is 

referred to Appendix D for the complete derivation. 

The problem begins by considering a region G of the fracture surface (see Figure 

4.9). The leak-off over this region can be readily determined using the Darcy's law. 
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Leak-off is not constant over the entire region, but is a function of the varying pressure 

head distribution within the region. If region G is divided into very small parts and the 

leak-off is assumed constant in each part, the total fluid leak-off for the region can be 

represented by the following integral expression: 

Q,cak = Jff(x,y)dxdy (4.14) 
G 

where f(x,y) is the intensity ofleak-offwhich varies over the surface G. 

Figure 4.9 Region ofLeak-offEstimation 'G' 

If it is now assumed that the pressure within the fracture decreases as the cube of 

the distance from the injection well, and leak-off is occurring through both fracture faces, 

the following equation is obtained: 
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(4.15) 

Integration of the above equation (see appendix B for full solution) yields the following 

expression for total leak-off: 

Qlcak = 3.53Kair Pw R 2 
z 

(4.16) 

Since the continuity criterion requires that total leak-off equal injected flow, the above 

equation can be solved for the maximum radius, R, to which the fracture has propagated: 

(4.17) 

Once the maximum radius, R, has been determined it can be used to ascertain the 

complete fracture geometry, since the fracture aperture depends on the extent of fracture 

propagation. The fracture aperture can be easily calculated using equation 3.13 which 

was previously developed in Chapter 3.4.3. This equation which is repeated here for 

convenience, models the deflection of a circular plate clamped at the edges and subjected 

to a logarithmically varying load. 
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(3.13) 

w is the width of the fracture at a distance r from the well, R is the radial extent of the 

fracture, rw is the radius of the well, Pw is the over-pressure at the injection well, E being 

the Young's Modulus of the formation, v is the Poisson's ratio and z is the depth of 

fracturing. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTERS 

VALIDATION AND CALIBRATION OF THE ALGORITHM 

5.1 Overview 

Before a mathematical model can be used to solve engineering problems, it must undergo 

two essential procedures. The first is validation, which confirms whether or not the 

model reasonably represents the target phenomena. The second procedure is calibration, 

which establishes the necessary coefficients for proper functioning of the model. 

The algorithm developed in the previous chapter was subjected to both 

procedures. Validation and calibration of the algorithm were greatly facilitated by the 

availability of field data from the more than 35 sites which have been pneumatically 

fractured to date. Although the quality of the data varies, it is believed to be sufficient for 

the first calibration of the algorithm. Calibration of the algorithm will of course continue 

for several more years as new data become available. 

The validation and calibration procedures were affected by formation 

heterogeneities, which are inevitably present in all natural geologic formations, and will 

limit the predictive ability of any subsurface model. In essence, heterogeneities present a 

two-fold problem. First, if heterogeneities are known to exist, a deviation from predicted 

behavior may be expected since the actual conditions do not coincide with the original 

assumptions of the algorithm. The second problem occurs when heterogeneities are 

present but not detected. Once again, actual field behavior will deviate from model 

predictions. In spite of these limitations, the current algorithm is expected to serve as a 

valuable tool for estimating the dimensions of pneumatic fractures. 

96 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

97 

Validation of the pneumatic fracturing propagation algorithm begins with a 

sensitivity analysis to check overall behavior of the algorithm, and also to identify the 

most critical input parameters. Model sensitivity to errors in parameter estimation are 

also assessed (Section 5.2). Following this, the algorithm is calibrated with data from 

actual field operations using regression methods (Section 5.3). The predictive ability of 

the closed form solution is similarly examined (Section 5.4). Next, recommendations are 

made for input parameters for various kinds of geologies (Section 5.5). Finally, the 

practical uses of the algorithm and its limitations are discussed (Section 5.6). 

5.2 Algorithm Sensitivity 

This section describes the sensitivity analysis employed to examine the overall behavior 

of the algorithm. The basic approach of the sensitivity analysis was to vary each 

parameter individually while holding the others constant. The first analysis varied the 

input parameters over a relatively large range of values to check overall model behavior. 

The sensitivity of the algorithm to errors in parameter estimation was also 

examined. The range of parameter variation for this second analysis was considerably 

smaller, and was intended to reflect the typical range of field error. 

5.2.1 Overall Behavior and Sensitivity of the Algorithm 

To assure realism, the constant parameters were selected from an actual pneumatic 

fracturing injection event in the field which was considered typical. Table 5.1 lists the 

constants as well as the range over which each parameter was varied. 
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The results of the this analysis are shown in Figure 5.1. In each case, both the 

fracture radius, R, and the maximum fracture aperture, b, were computed over the full 

parametric range. It is noted that all the graphs show a non-linear dependence of the 

fracture dimensions on the algorithm parameters. Overall, two different trends can be 

distinguished. The first is where the fracture radius and aperture increase or decrease 

together. In the second trend the fracture radius and aperture show an inverse 

relationship, one decreasing while the other is increasing. The results of the overall 

behavior analysis are discussed further in Section 5.2.3. 

Table 5.1 Range of Parameter Variation 

"Constant" 
Parameter Parameter Value Range of Variation 

E 688 psi 500 psi - 1 06 psi 

K 2.0 ft/day 28.4 ftlday- 28.4*10-6 ft/day 
(7.1 *104 em/sec) (10"2 em/sec- 10"8 em/sec) 

v 0.4 0.1-0.5 

z 8.3 ft 1 ft -100ft 

Q 1500 scfm 100 scfm - 3000 scfm 

Pw 18 psi 5 psi -100 psi 

y 105 lb/ft3 80 lb/W- 110 lb/ft3 

The sensitivity analysis with respect to field errors in parameter estimation was 

performed for two different geologic conditions, one for a soil formation, and the other 

for a rock formation. The test parameters and their assumed accuracies are summarized 
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in Table 5.2. As in the previous analysis, the "constant" parameters were taken from 

actual injection events. 

The results of the error sensitivity analysis are summarized in Figure 5.2, which 

shows the ratio of predicted fracture radius to actual fracture radius for the assumed 

variation of each input parameter. As seen in the figure, both the soil and rock formation 

exhibit a similar trend in terms of relative sensitivity. The algorithm is most sensitive to 

the pneumatic conductivity of the formation. The other parameters in the decreasing 

order of their relative importance are injection pressure, fracturing depth, injection flow 

rate, unit weight of the formation, formation modulus, and Poisson's ratio. 

a e • T bl 52 Accuracyo fP arameter D etermmat1on 
Accuracy with which 

Parameters can be 

Parameter Injection in Soil Injection in Rock Determined in the 
Field 

E 688 psi 27835 psi ±20% 

K 2.0 ftlday 0.228 ft/day one order of 
(7.1 *104 em/sec) (5.2*10"9 em/sec) magnitude 

v 0.4 0.25 ±0.1 

z 8.3 ft 10ft ±0.5 ft 

Q 1500 scfrn 1500 scfrn ±200 scfrn 

Pw 18 psi 21 psi ±2psi 

y 105lb/~ 140 lb/~ ±10 lb/ft3 

5.2.2 Discussion of Overall Behavior and Sensitivity Results 

Algorithm Sensitivity to Varying Formation Conductivity: A review of Figure 5.la 

and Figure 5.2 clearly shows that the algorithm is more sensitive to pneumatic 
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conductivity than any other parameter. The relation is one of inverse proportionality, 

with fracture dimensions decreasing as pneumatic conductivity increases. This behavior 

can be explained by Darcy's law, since pneumatic conductivity has a substantial effect on 

formation leak-off, which in turn controls final radius. 

Unfortunately, the determination of pneumatic conductivity is often difficult since 

laboratory tests are not representative of field values, and field tests are expensive. In 

most cases during preliminary design, pneumatic conductivity is only known to an 

accuracy of one order of magnitude. Thus, it is obvious from these results that the 

accuracy of this parameter will largely control the reliability of the algorithm predictions. 

Algorithm Sensitivity to Varying Formation Modulus: The algorithm is very sensitive 

to formation modulus if the entire possible range of this parameter variation is considered 

(Figure 5.1b). However, if the typical error range for modulus is examined (±20%), the 

model is much less sensitive (Figure 5.2). Thus, the potential error introduced by this 

parameter is considered to be low to moderate. 

The general trend is that when the modulus is increased, the fracture aperture 

decreases and the radius increases. This behavior can be explained by the fact that when 

the formation modulus is increased, its rigidity increases, thereby resulting in a reduced 

deflection and aperture. A smaller aperture will increase the rate of pressure loss within 

the fracture which in turn leads to a decrease in the leak-off. The surplus air left due to 

lower leak-off requires additional fracture surface area (and fracture radius) to satisfY the 

continuity criteria. 

Algorithm Sensitivity to Varying Injection Flow Rate: The algorithm is moderately 

sensitive to varying the injection flow rate. As expected, an increase in the rate of 
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injection flow causes a corresponding increase in fracture radius and aperture. This occurs 

simply because the additional volume of injected air needs a larger fracture surface area 

(and fracture radius) to satisfy the fluid continuity criteria of the algorithm. A larger 

radius thus produces a greater deflection and fracture aperture. Since the injection flow 

rates can be controlled reasonably well in the field, usually to within 200 scfm, the errors 

introduced by this parameter to the algorithm results are not expected to be significant. 

Algorithm Sensitivity to Varying Injection Pressure: The algorithm is moderately 

sensitive to varying the injection pressure. The fracture dimensions decrease for 

increasing injection pressures. An increase in the injection pressure leads to an increase 

in leak-off velocity based on Darcy's law. This increment in the leak-off velocity results 

in a smaller fracture surface area (and fracture radius), since fracture surface area is 

inversely proportional to leak-off velocity. Field methods of recording injection pressure 

are generally accurate to within a few 'psi.' It can be seen from Figure 5.2, that this 

degree of uncertainty does not produce a large variation in the predicted fracture 

dimensions. 

It is noted that in the field, injection pressure and the injection flow rate are 

coupled to some extent, since injection pressures have to be increased to attain higher 

injection flow rates and vice versa. The opposing effects increasing injection pressure 

and injection flow rate on the fracture dimensions are expected to cancel each other out to 

some degree. 

Algorithm Sensitivity to Varying Fracturing Depth: The algorithm is moderately 

sensitive to variations in the fracturing depth. When depth is increased, predicted fracture 

radius increases and fracture aperture decreases. This is attributed to increased flexural 
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rigidity of the overburden. Fortunately, the depth of fracturing can be accurately 

determined in the field, usually to within±0.5 ft. It is apparent from Figure S.le that this 

amount of depth variation will not produce a significant error when predicting fracture 

dimensions. 

Algorithm Sensitivity to Varying Formation Density: The algorithm is relatively 

insensitive to any change in the formation density. Fracture dimensions increase with 

increasing formation density. This formation index property does not vary significantly 

within a given geology, and can be usually be estimated with sufficient accuracy. 

Algorithm Sensitivity to Varying Poisson's Ratio: The algorithm is not sensitive to 

variation in Poisson's ratio. As shown in Figure 5.1 when the Poisson's ratio is 

increased, the algorithm predicts a slightly larger fracture radius and a slightly smaller 

fracture aperture. 

In summary, sensitivity of the algorithm to a particular parameter depends on the 

range of its variation. When the entire range through which the parameters can be varied 

are considered, in the decreasing order of sensitivity, the algorithm is most sensitive to, 

pneumatic conductivity, elastic modulus, injection flow rate, injection pressure, depth of 

fracturing, formation density and Poisson's ratio. When the typical range of field errors is 

considered, pneumatic conductivity singularly dominates model performance. 

5.3 Calibration of the Algorithm 

After establishing algorithm sensitivity, the next step was to calibrate the algorithm with 

data collected from past pneumatic fracturing operations. The objectives of the 

calibration step were two-fold: 
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i) to compare derived parameters with field measured and literature values. 

ii) to check the predictive ability of the algorithm; 

The model calibration also provided additional validation of the algorithm. 

5.3.1 Calibration Procedure 

106 

Data from 35 different sites were initially reviewed for algorithm calibration. A 

screening procedure was applied to assure that only data of acceptable quality were used 

in the calibration process. The following criteria were adhered to in the screening 

process: 

• Only sites with sufficient geologic reconnaissance data available were considered; 

• Sites with overlying fill materials were not used; 

• Injections with abnormal equipment operation were not considered; and 

• Only injections that produced a maximum surface heave of at least 0.003 meters 

(118 inch) at the injection point were considered. Injections with smaller surface 

heaves do not allow development of reliable ground surface heave contours. 

After evaluation of all available data, six different sites were chosen for 

calibration purposes including three sites involving fracturing of soil formations and three 

sites involving rock formations. The field data from each of these sites are listed in Table 

5.3 which will serve as input parameters for the algorithm calibration (shown shaded). 

The sensitivity analysis in the preceding section clearly established that the 

algorithm was most sensitive to the pneumatic conductivity. A low to moderate 

sensitivity was also exhibited for modulus of elasticity. Since these two parameters are 

among the more difficult to determine for a given field site, it was decided to calibrate the 
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algorithm in a "backward" mode to these two parameters. That is, the observed field 

radius was used to back calculate modulus and then pneumatic conductivity for a given 

site. This allowed a comparison of the regressed formation properties with both field 

measured values as well as those reported in the literature. It is important to note that in 

actual practice the algorithm will most often be used in a "forward" mode, i.e., input the 

operational and formation parameters in order to estimate the fracture radius and aperture. 

Figure 5.3 illustrates the procedure followed to calibrate the algorithm. First, 

those parameters which are either reliably known or exhibited low sensitivity were used 

to determine elastic modulus. This was achieved by a regressional form of equation 3.3 

which describes overburden deflection assuming it is a circular plate that is clamped at its 

edges and subjected to a logarithmically varying load distribution. Solving for elastic 

modulus, E, based on maximum radius, R, and maximum heave at the well, bw, the 

following is obtained: 

(5.1) 

Once the modulus was determined, the algorithm was used in a "backward" mode 

to determine pneumatic conductivity. In this mode it was necessary to use a trial and 

error procedure until there was agreement between the field measured and calculated 

values of fracture radius. 
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5.3.2 Calibration Results 

The first part of the calibration compared the five different methods ofleak-off estimation 

(Chapter 3.4.2). These results are presented in Figures 5.4 and 5.5 for soil and rock 

formations, respectively. For each site, the maximum, minimum, and average 

conductivity values are shown for the various methods of leak-off estimation. It can be 

seen that the variation of regressed conductivity values for a particular site ranged up to 

approximately one order of magnitude. The minimum variation in conductivity was 

observed at Newark and was attributed to the fact that fracturing at this site involved only 

two injections in a single well. Thus, the subsurface conditions were relatively 

homogeneous leading to a small variation in computed conductivity values. In contrast, 

the largest variation was observed at the Frelinghuysen site where the injections were 

carried out in three phases in different wells and at different locations. Thus, the 

propagating fractures likely encountered different geologic conditions, leading to a wider 

variation in the conductivity values. 

A review of the conductivity values in Figure 5.4 and 5.5 also shows that the 

flownet method-1 of leak-off estimation consistently yielded conductivity values which 

were lower than the analytical method. This appears to confirm the original hypothesis 

that the flownet method-I senses greater leak-off at the fracture tip and is therefore more 

realistic than the analytical method. It is further noted that the conductivity values 

obtained using the flownet method-11 were higher than those obtained by all the other 

methods. The reason for this lies in the approach taken in deriving the equation, which is 

more approximate with respect to fracture geometry (Appendix B). Based on these 
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results it can be concluded that the flownet method-! seems to be the most representative 

of actual leak-off and is therefore the preferred method of estimation. 

Figures 5.4 and 5.5 also compare the effective conductivity values obtained by 

assuming the formation is anisotropic. Conductivity ratios (Kh!Kv) of five and ten times 

were investigated, since such variations are typical of those encountered in the field. The 

plotted results suggest that effective conductivity of the formation increases or decreases 

by about half an order of magnitude for a conductivity ratio of ten (depending on whether 

horizontal conductivity is increased by ten times or vertical conductivity is decreased by 

ten times, respectively). 

The most important objective of the calibration process was to compare the back

calculated values of pneumatic conductivity with field measured values. This comparison 

is presented in Figure 5.6 which juxtaposes the derived conductivity values on the field 

permeability test results for each site. A majority of the field permeability tests were 

performed upon the entire well screen with the outlying monitoring well sealed (sealed 

inlet condition), although selected tests were performed with the outlying monitoring well 

open (passive inlet condition). Also, some tests were also conducted on a discrete 

interval of the well with the outlying monitoring wells sealed. For every field test, both 

pre-fracture and post-fracture permeabilities are shown. 

The first significant trend shown in Figure 5.6 is the close agreement between the 

conductivity values back-calculated by the algorithm and the post-fracture field test 

results. This is consistent with the fundamental thesis that final equilibrium fracture 

radius is determined with the geologic formation in a disturbed state. As discussed 

previously, the primary and secondary fractures caused by pneumatic injection increase 
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the conductivity of the formation which in turn increases leak-off. It is further observed 

that at some of the sites the derived conductivity values ranged even higher which 

probably reflects the dilated state of the formation during the injection event. 

As seen in the figure, the calibrated values of conductivity varied within about one 

order of magnitude irrespective of the geology, thus suggesting that there is an "upper 

limit" above which conductivity enhancement is not possible with pneumatic fracturing. 

The existence of an upper limiting conductivity was in fact hypothesized early in the 

research [Schuring and Chan, 1992], and the results of the current study are consistent 

with this concept. 

The calibration results in Figure 5.6 clearly indicate that it is not appropriate to 

input into the algorithm values of pneumatic conductivity taken directly from pre-fracture 

field permeability tests. Rather, the model requires post-fracture values which are 

typically one to three orders of magnitude higher. Similar caution should be exercised 

when using conductivity values directly from the literature. 

A review of the computed modulus values in Table 5.3 indicate reasonable 

agreement with literature values, although they tended towards the lower end of published 

ranges. The probable reason for this deviation is that the modulus values cited in the 

literature are often "intact modulli," and do not take into account the effect of secondary 

structures and discontinuities present in geologic formations. Pneumatic fracture 

injections flex a large portion of the formation, so the effects of discontinuities become 

quite significant. 

For relatively deep injections, modulus values were sometimes lower compared 

with shallow injections in the same well. This is attributed to the fact that the vertical 
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strain of the deeper fractures is masked to some degree by the loosened overburden 

above. Evidence of strain absorption has in fact been observed during packer 

permeability testing of fracture wells. Since strain absorption reduces surface heave 

which translates to an artificially lowered E value, it may be concluded that the model 

will be most applicable for the first injection in a given well. 

5.4 Validation of the Closed Form Solution 

The closed form solution presented in Chapter 4.4 was also validated with field data. The 

solution, expressed as equation 4.17, is solely a function of pneumatic conductivity of the 

formation. The solution was checked with conductivity values determined during the 

calibration procedure (Table 5.3). 

The results of the validation are presented in Figure 5.7 which shows the ratio of 

predicted radius to field measured radius for each site. As seen from the plot the 

agreement is reasonably good for all the sites except Frelinghuysen, where the closed 

form solution tended to overestimate the fracture dimensions. It is noted that the 

fracturing depth at this site was relatively shallow which increases the potential for 

fractures to intersect the ground surface. It is hypothesized that fracture "daylighting" 

may have reduced the actual fracture radius due to premature gas escape. 

In summary, it is believed that the closed form solution will be useful for 

obtaining rough estimates of fracture radius at sites. Validation will continue as more 

field data become available. 
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5.5 Recommended Parameters for the Algorithm 

This section contains guidelines for selecting formation parameters and operational 

parameters when using the algorithm. Recommended parameter values are summarized 

in Table 5.4, and are also discussed below. These are considered tentative, and will be 

refined as more field data becomes available. 

The calibration results established that the algorithm is more sensitive to 

pneumatic conductivity than any other parameter. Therefore, care must be exercised in 

selecting this parameter. The recommended conductivity values shown in Table 5.4 are 

based upon regressed values from actual field sites as well as data from other sources. It 

is noted that if conductivity values are obtained from either pre-fracture field tests or 

published estimates, the conductivity must be increased by one to three orders of 

magnitude to reflect the disturbance caused by fracturing. 

The values of elasticity modulli in Table 5.4 are also based upon regressed values 

from actual field sites and as well as data modified from other sources. It is cautioned 

that if modulus is selected from the literature, in situ values are preferred over results 

from intact laboratory specimens. 

The overall behavior of the algorithm has shown that it is relatively insensitive to 

variations in unit weight and Poisson's ratio. Table 5.4 gives typical ranges for these 

parameters for various generic geologic descriptions. 

The injection flow rate will depend on the injection pressure and the pneumatic 

conductivity of the formation. A injection flow rate in the range of 500 scfin - 3000 scfin 

is typically used during field injections. The pressure required to propagate and sustain a 

fracture is a function of unit weight of the formation and depth of fracturing. The depth 
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Table 5.4 Algorithm Input Parameters for Soil and Rock Formations (Tentative) 

SOD...S: 

Clayey Silt: Soft to Medium 4.0E-04 100-300 95- 120 0.3-0.35 

Medium to Stiff 2.0E-04 300- 1,000 95- 120 0.3-0.35 

Stiff to Hard 9.0E-05 I ,000 - 5,000 95- 120 0.3-0.35 

Sandy Clay I 
Stiff to very Stiff 7.0E-05 4,000 112- 137 0.3-0.4 Clayey Sand: 

Silty Sand: 
Extremely Dense (residual soil 

derived from (weathered rock) 1.5E-05 40,000 102- 121 0.2-0.4 
tine-textured 
Sandstone) 

SEDIMENTARY ROCK : 

Mudstone I slightly weathered, 
Siltstone: closely jointed 7.0E-05 5,000 - I 0,000 120- 150 0.1-0.15 

Fine Sandstone I unweathered, 
Coarse Siltstone medium jointed 2.0E-05 20,000- 30,000 165 0.05-0.45 

Depth of Fracturing must be accurate to within 0.5 feet 

Injection Pressure Use Equation 4.16 

Injection Flow rate I 000 - 3000 scfin (typically -2000 scfin) 

* Values of'K' and 'E' regressed from actual field data of Pneumatic Fracturing. 

t Parameter values obtained from the literature, formation conductivity being corrected for presence of 
heterogeneities and effects of Pneumatic Fracturing. 

**Conversion: Khydraulicxcm/sec = 15.24xKpneuamticxcm/sec (@ 20 °C or 68 °F) = 9.80E+04xkinbinsicx cm2 
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of fracturing depends on the distribution of the contamination and the remediation 

technology being employed. Injection pressure can be estimated using equation 4.9. 

5.6 Applications of the Algorithm 

It is envisioned that the algorithm will be applied in two different modes. The first is 

when it is necessary to estimate the dimensions of a pneumatic fracture for preliminary 

design purposes, i.e. radius and aperture. In this mode the user will input basic geologic 

data as well as operational parameters. When the algorithm is operated in this fashion, it 

is referred to as the "forward mode." 

The second mode of application will be as a part of a field pilot test, when actual 

fracture dimensions have been measured at a particular site for a known set of operational 

parameters. In this application the algorithm is essentially a calibration tool which will be 

extended to design production fracturing for the remainder of the site. This is referred to 

as the "backward mode" of algorithm operation, and is quite similar to the calibration 

procedure described in the previous section. In the backward mode, the algorithm will 

yield values of formation modulus and pneumatic conductivity which can then be used to 

design future fracture injections in the forward mode. 

Regarding the expected accuracy of predictions by the algorithm, it is clear that it 

will be most accurate when used in the backward mode since it will be simulating the 

behavior of a specific geologic formation. The accuracy in this mode is expected to fall 

within an accuracy range of ± 10%. Larger deviations may be expected for sites which 

have a high degree of heterogeneity. 
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In the forward mode of application, the algorithm is expected to provide less 

accurate predictions, due mainly to the difficulty in obtaining reliable values for 

pneumatic conductivity and elastic modulus for a particular geologic formation. In this 

mode, the accuracy of the algorithm predictions are expected to decline to an estimated 

range of ±25 %. In general, accuracy of the algorithm in the forward mode will be 

directly related to the accuracy with which the formation properties are known. 

To illustrate algorithm usage, an example of both modes of operation will now be 

presented. In both examples, the following options were selected: 

• flownet method-! to estimate leak-off; 

• isotropic formation with respect to conductivity; and 

• overburden deflection modeled as a circular plate fixed at the edges 

subjected to a logarithmically varying load. 

Figure 5.8 presents the input parameters and resulting output in the "forward 

mode." Formation parameters such as E, K, y, and v were selected based on 

recommendations in Section 5.5 (Table 5.4). Alternatively, values can be selected from 

the literature. When the conductivity values are obtained from the literature they should 

be adjusted to account for heterogeneities and the effects of pneumatic fracturing. The 

depth of injection and injection flow rates are selected next. Based on the depth of 

injection, the injection pressure is calculated using equation 4.8. Once these parameters 

are entered into the algorithm, the algorithm can be executed to obtain the fracture 

dimensions. 

Figure 5.9 shows an example of the "backward mode" usage of the algorithm. 

The input data for the "backward mode" should be obtained from a pilot test of 
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ALGORITHM EXAMPLE IN THE "FORWARD MODE" 

Applicabilitv: In the "forward mode" the algorithm is used to predict fracture 
dimensions (radius and aperture) for a site by inputting geologic and operational 
parameters. It is useful for preliminary design purposes, and the accuracy of the 
predictions will largely depend on the accuracy to which the formation properties are 
known, especially K and E. 

Hints for Input: 
• Care must be exercised when selecting the values of gas conductivity. The values 

in Section 5.5 (Table 5.4) are recommended unless post-fracture field 
permeability test results are available. 

• The remaining formation properties should be selected from site characterization 
results when available. Formation parameters may also be selected from values in 
section 5.5 (Table 5.4), or alternatively from the literature. 

• The traditional range of operational parameters for Pneumatic Fracturing are 
given in Table 5.4. In lieu of other information, use 2000 scfm for flow rate and 
the pressure as determined by equation 4.8. 

Problem* 

Input Parameters 

Formation 
E - formation modulus 10,000 

Kgas - gas conductivity 0.0001 em/sec 

y - unit weight 105 lb/tP 

v- Poisson's ratio 0.4 

0Rerational 
8 ft. 

Qin - injection flow rate 2000 scfm 

Pinj - injection pressure 31 psi 

• Calculations done using the flownet method-1 of leak-off estimation for isotropic conditions. The overburden deflection w 
modeled as a circular plate clamped at the edges and subjected to a logarithmic pressure distribution. 

Figure 5.8 Algorithm Example in the "Forward Mode" 
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ALGORITHM EXAMPLE IN THE "BACKWARD MODE" 

Applicabilitv: The "backward mode" of the algorithm is used to support field 
production operations of Pneumatic Fracturing. The model is calibrated using field 
test results to determine the actual formation properties. Once calibrated to a site, the 
algorithm is used in the forward mode to design fracture well spacing and to help 
predict ground surface heave. 

Hints tor Input: 
• When using equation 3.17 in Step 1, use the maximum heave at the well for 

fracture aperture, b. 
• When back calculating the formation conductivity by trial and error (Figure 5.3), 

start with a conductivity value selected from Section 5.5 (Table 5.4). 
• Optional parameters in Step 3 are varied to attain a desired radius. 
• The traditional range of operational parameters for Pneumatic Fracturing are 

given in Table 5.4. In lieu of other information, use 2000 scfm for flow rate and 
the pressure as determined by equation 4.8. 

Example Problem * 
Step 1: Back calculate E by substituting the aperture 'b' and fracture radius 'R' in 

. 3.17. 
Step 2: Use back calculated E 
along with the algorithm to find Kgas. 

Input Parameters 

E 2000 psi 

1200 scfm 

12 psi 

z 6 ft 

105 lb/ft3 

v 0.4 

Step 3: Use back calculated E and Kgas 
along with the algorithm in the ''forward 
mode" to predict fracture dimensions for 
new 

Input Parameters 

105 lb/ft3 

v 0.4 

• Calculations done using the flownet method-I of leak-off estimation for isotropic conditions. The overburden deflection 
modeled as a circular plate clamped at the edges and subjected to a logarithmic pressure distribution. 

Figure 5.9 Algorithm Example in the "Backward Mode" 
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pneumatic fracturing at a site. All the input parameters except formation modulus and 

conductivity are generally known or can be estimated fairly accurately. The formation 

modulus is back calculated first using the surface heave data and equation 3.17. Next, the 

formation conductivity is obtained in a manner similar to the calibration procedure 

previously described in Section 5.3. At this point all parameters are known and can be 

used to run the algorithm in the "forward mode," to design other injections at the site (see 

Figure 5.8). It is noted that the conductivity value obtained in Step 2 becomes a constant 

input parameter, while the injection pressure, injection flow rate, and depth of fracturing 

are varied to obtain the desired fracture radius and injection well spacing. 
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CHAPTER6 

A METHODOLOGY TO MODEL PARTICULATE TRANSPORT 

6.1 Overview 

A secondary objective of the study was to develop a methodology for analyzing transport 

of dry particulate media in pneumatic fractures. Such media are introduced after a 

pneumatic fracture has been propagated, and can supplement a variety of in situ processes 

such as bioremediation and reactive dechlorination, as well as serving as a fracture 

proppant. The three fundamental mechanisms of particulate transport in the geologic 

formations during pneumatic fracture injections are interstitial transport, transport within 

a discrete fracture and transport in a fluidized lens (Figure 2.4), and these have been 

previously discussed in Section 2.2.1. 

From the perspective of field operations, interstitial transport is not expected to be 

an important mechanism for introducing media into pneumatic fractures since the mean 

diameter of the injected particles is typically larger than the effective pore spaces of the 

geologic formation. Interstitial transport may be an important secondary transport 

mechanism, however, as the injected media penetrates and/or cakes on the surface 

boundaries of the fracture. Under these conditions, it can have a significant effect on gas 

leak-off into the formation, and therefore can affect both particle transport and fracture 

propagation. 

The mechanics of the second fundamental mechanism, particulate transport in a 

discrete fracture, has been studied by investigators in the field of hydraulic fracturing. 

These studies have focused on proppant transport by both liquids and gases, and a 

124 
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moderate amount of guidance is available in the literature for modeling this mode of 

transport (see Section 2.2.4). 

It was decided to focus the current study on the third mechanism, transport within 

a fluidized lens, since this has received the least attention in past investigations. The 

importance and relevance of this transport mechanism was confirmed by exploratory 

excavations made at two sites where solid media were pneumatically injected. The first 

project was at the Hanford site and involved injections of graphite/glass frit to enhance in 

situ vitrification. The second project was performed in Kansas City and consisted of 

injecting iron powder into an aquifer for the purposes of reactive dechlorination. At both 

of these sites the excavations showed that fluidization of cohesionless sands present was 

the principal transport mechanism. 

6.2 Outline of a Methodology for Modeling Particulate Transport 
in a Fluidized Soil Formation 

The methodology for modeling particulate transport through fluidized soil (Figure 2.4b) 

is based upon the following assumptions with regard to the properties of the formation 

and the injected media: 

i) the formation is cohesionless; 

ii) the density of the formation is less than the maximum density for the soil 

medium; 

iii) the injected gas pressures exceed the in situ stresses of the formation; 

iv) the formation surrounding the fluidized zone experiences a minimal amount of 

dilation and deformation; 
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v) the particles carried in the injection air stream are in a dilute suspension; 

vi) the pore fluid velocities exceed the critical entrainment velocity for the media 

particles being transported in the formation; and 

vii) the particles are not transported beyond the zone of fluidization. 

Based on these assumptions, a general methodology for modeling this transport 

phenomena will now be outlined: 

Determination of Pressure Distribution in the Formation 

The first step in modeling particulate transport through a fluidized bed of soil is to 

determine the pressure distribution in the formation during the injection event. The 

approach for determining the pressure regime has been adopted from a model developed 

for soil-vapor extraction by Shan et a/ [1992]. The continuity equation for gas flow in a 

homogenous, isotropic soil formation is given by: 

(6.1) 

where cj) is the gas-filled porosity, p is the gas pressure in the formation and k is the 

permeability tensor. For steady state conditions, the above equation reduces to: 

(6.2) 
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This equation can be solved to obtain the pressure distribution around the injection well. 

Equation 6.2 can be written in terms of the variable 'u' defined as 

U = Pa2 -p2 (6.3) 

V·(kvu)= o (6.4) 

When the above relation is solved for the case of a point source in an infinite anisotropic 

medium [Shan eta/, 1992], the following equation is obtained: 

2paRTM 
where q = cjiMwt , ( ) ~ r = ~: r, 

(6.5) 

q is the source strength located at a radial distance r = 0 and depth z = z', M is the mass 

removal rate, Mwt is the average gas molecular weight, Pa is the ambient air pressure, R is 

the universal gas constant, T is the temperature in degrees Rankine. Substituting equation 

6.5 in 6.3 results in: 

-q 
(6.6) 
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which gives the pressure distribution around the well at steady state conditions for a gas 

injection. 

Determination of Gas Velocities 

Once the pressure distribution in the formation has been established, the pore fluid 

velocities may be calculated by applying Darcy's law: 

~Py 
v =Ki =K-

Y y 1 
y 

v = ~v 2 +v 2 
X y 

(6.7) 

(6.8) 

(6.9) 

where Vx and Vy are the components of the air velocities in x and y directions, 

respectively, Vis the resultant velocity, ~Px and ~Py are the differences in pore pressures 

of two points located along the direction of the reference axes and separated by distances 

lx and ly respectively. 

Criteria for Fluidization and Entrainment 

In order for the soil to become fluidized, fluid velocities be high enough to overcome the 

weight of the soil particles. The 'Shield's' criteria for entrainment of particles which are 

at rest, into a moving fluid, will be used to calculate the critical velocities for the soil 
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fluidization. The Shield's method is also known as the shearing force method, or the 

tractive force method, is an approach for describing the initiation of sediment motion. He 

stated that the critical condition for sediment motion is a function of the Reynolds number 

and developed a diagram to determine whether or not initiation of particle movement has 

occurred. 

The Shield's method requires determination of the dimensionless shear stress, t • 

and the dimensionless grain Reynold's number, Reg at different velocities of air through 

the soil. These values are then plotted on the Shield's diagram, the air velocity 

corresponding to the intersection of the plotted curve and the Shield's curve is the critical 

entrainment velocity for the given conditions. The dimensionless shear stress is given by: 

• 'to 

't = ( Y p -Yair )dp 
(6.10) 

where to, is the boundary shear stress, YP is the specific weight of the particles, Yair is the 

specific weight of air and dp is the diameter ofthe particles. The grain Reynold's number 

is given by: 

u·d 
R =--P 

eg V air 
(6.11) 

where u· is the friction velocity of the fluid, defined as 
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• ~0 u =-
Pair 

(6.12) 

The boundary shear stress term occurring in the above equations is defmed as 

(6.13) 

where Jlair is the dynamic viscosity of air and V air is the velocity of air in the soil. 

Separating the variables, integrating and applying the limits 

at y=O 

y= dporel2 V air = V (6.14) 

b/2 v 

J't 0dy = JJ.ldV (6.15) 
0 0 

where dpore is the diameter of the soil pores through which air is flowing. The above 

equation reduces to: 

(6.16) 

The boundary shear stress 'to can now be substituted in equation 6.12 to determine the 

friction velocity of the fluid, which in turn is used in equation 6.11 to find out the grain 
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Reynolds number Reg. The value of the boundary shear stress is also used in equation 6.10 

to determine the boundary shear stress -r •. As described previously the grain Reynolds 

number and the boundary shear stress can now be plotted on the Shield's diagram to find 

the critical entrainment velocity. 

The most critical input parameters when applying the methodology are the 

formation porosity, mean pore diameter, anisotropy of formation conductivity and the 

grain size of the injected supplements for which the critical entrainment velocities are 

computed. These parameters generally vary over a range and the selection of a particular 

value critically influences the predictions of the extent of particulate transport within the 

formation. 

6.3 Application of the Particulate Transport Methodology - A Case Study 

The particulate transport methodology outlined in the previous section was used to 

analyze field data collected at a recent project at the Hanford Site as a first test of the 

concept. The Hanford site seemed ideal since field observations confirmed that the 

primary transport mechanism was by fluidization of the formation. Interstitial transport 

of the injected particles beyond the zone of fluidization was minimal as indicated by the 

tests in the laboratory. The sections to follow present the site background, the general 

results of the field demonstration and finally the calculated results with the proposed 

methodology. 
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6.3.1 Hanford Site Background 

The Hanford Site located in Richland, W A was the former production facility of 

Plutonium for fission based atomic weapons throughout World War II and the Cold War. 

During operation ofthese facilities by the Department of Energy (DOE) large amounts of 

liquid radioactive waste was generated which subsequently contaminated the soil and 

groundwater beneath portions of the Hanford Site. 

In situ Vitrification (ISV) was developed by the DOE initially to treat soil 

contaminated with radioactive wastes like those occurring at the Hanford Site. More 

recently, it has been used to treat other difficult mixed wastes like those occurring in 

industrial landfills. ISV is a thermal treatment process that converts contaminated soil to 

a chemically inert substance that is physically and compositionally close to Obsidian. 

The process utilizes "Joule" resistance heating of the soil between two electrodes 

connected to a power source. A conductive starter path of graphite and glass-frit must be 

placed between the electrodes to initiate the melt due to the low conductance of the 

natural soil. The ISV process has a limitation with respect to the depth to which it can 

vitrify soil. The maximum effective depth varies from 5 to 6 meters at present. 

The purpose of integrating pneumatic fracturing with ISV is to overcome this 

depth limitation. With pneumatic fracturing, the starter path can be placed at any selected 

depth which greatly improves the versatility of ISV. The first field demonstration of 

pneumatic fracturing integrated with ISV was performed at the Hanford Site. Figure 6.1 

is a conceptual schematic of pneumatic fracturing integrated with ISV. 

The Hanford Site is underlain by coarse gravel sediments of Pleistocene age 

deposited by the cataclysmic Missoula floods. The Hanford formation extends to an 
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Figure 6.1 Conceptual Diagram of Integrated PF /ISV Process 
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average depth of 40-50 ft and consists of predominantly sand with some gravel and 

occasional cobbles. On account of the rapid deposition and relatively young geologic age 

of the formation, the hydraulic conductivity of the Hanford formation is very high (1,000 

- 10,000 ft/day) and it has a low bulk density (100 lb!ft\ The depth to the water table at 

the location of the pilot scale test was 33-49 ft below the ground surface. A summary of 

the soil index properties of the Hanford soils is presented in Table 6.1. 

Table 6.1 Summary of Soil Index Properties-Hanford Soils 

Index Property Results Remarks 

Moisture 1 wt%-5 wt% Bjomstad(1994) 

Bulk Density 103lb/~ Last and Rohay(1993) 

Hydraulic Conductivity 1,000-10,000 ftlday 

Liquid and Plastic Limits Non-plastic ASTM D 2217-85 
ASTM D 4318-84 

Organic Content 0.12 wt% ASTM D 854-92 

Specific Gravity 2.82 ASTM D 854-92 

USCS Classification GP ASTM D 2487-93 

Color Batch 1--1 OYR 5/6: Munsell® Soil 
Yellowish Brown Color Charts 
Batch 2--IOYR 4/2: (air dry soil) 
Dark Grayish Brown 

Two different injection nozzle configurations were evaluated to inject the starter 

path with pneumatic fracturing and are henceforth referred to as the '360 Nozzle' and 

'Quad Nozzle' reflecting the geometry of the injections. These two configurations were 

tested at different locations on the site, and were removed far enough from each other to 

discount any interference between each other. Four electrodes were placed inside wells 
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around each of the injection nozzles, extending to the depth of the injection nozzle. At 

each of the locations the injection nozzle was at the center of a square with the four 

electrodes as its vertices. The distance between any two electrodes (discounting the 

diagonal distances), was one meter. An array of monitoring points were located in the 

vicinity of the injections to measure any variations in resistance and ambient temperatures 

of the soil. 

The injections of the starter path material were carried out at a depth of 14 ft. 

During injection, air pressure at the well head, injection air flow rate, mass flow rate of 

the graphite/glass-frit powder and resistance variations within the subsurface were 

monitored. The site was subsequently excavated and the extent and thickness of the 

starter paths around the injection wells were mapped. 

6.3.2 Results 

Following the injection of the starter path, electrical resistance was measured between the 

electrode casings and the outlying instrument conduits. The resistance results, which are 

shown in Figure 6.2, showed that the injections were effective since the resistance of the 

path between the electrodes was reduced from> 500,000 ohms (natural soil resistance) to 

50-1 04 ohms, thus satisfying the criteria for initiating a successful melt. An initial 

attempt was made to vitrify the soil, but was unsuccessful. The failure was attributed to 

insufficient power and the poor contact between the electrodes and injected starter path 

[Luey eta/., 1995b]. It was therefore decided to excavate both settings to delineate and 

map the starter path. 
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The results of the excavations are shown in Figure 6.3 and 6.4 which depicts the 

extent and the orientation of the injected graphite/glass frit mixture. In both the settings, 

a lens of well mixed soil/starter path material (graphite/glass-frit) was observed 

suggesting that a local fluidization of soil occurred during injection. 

A review of Figures 6.3 and 6.4 reveals that the maximum distance traveled by the 

injected particles was greater for the quad nozzle setting (12ft) compared with the 360° 

nozzle setting (10ft). This was attributed to the flow concentration into a 90° sector at the 

well instead of a 360° sweep for the other setting. The preferential southerly orientation 

of the 360° nozzle setting was due to obstructions (instrument probe and lost tool inside 

the well) on the north side of the injection well. 

Subsequently, a second attempt to initiate the melt was made after backfilling the 

site. The melt was successfully initiated and sustained for a nine hour duration. 

Subsequent excavation revealed a coherent vitrified soil mass weighing two tons. A 

significant result of the test was the power requirement of 0.7 kW/kg, which was 30% 

less than that required for surface melts. This was attributed to the insulating effect of the 

surrounding soil. Since the power represents a significant portion of the cost of ISV 

technology, it appears that subsurface initiation may have cost advantages over surface 

initiated melts. 

6.3.3 Computational Results 

This section describes the application of the methodology developed in Section 4.2. The 

general approach was to calculate the critical fluidization velocities, estimate the extent of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

140 

fluidization and then compare the calculated results with the field observations made 

during the Hanford Site test. 

The calculations were performed in Mathcad 6.0 and are contained in Appendix F. 

The input parameters were based on a combination of field measurements during 

previous site investigations and values extracted from the literature. The results of the 

computations using the proposed methodology are summarized in Table 6.2 which 

compares the predicted and measured values of the fluidized lens. It is noted that, for the 

quad-nozzle setting, since the flow was concentrated in a 90° sector, the flow values used 

in the calculations have been increased four fold. As seen in the table some nozzle 

settings show relatively good agreement between the measured and predicted extent of 

fluidization, while others vary by as much as a factor of two. The computational results 

are of course greatly influenced by certain formation parameters which were estimated 

and vary over a range. Nevertheless, the results in Table 6.2 are encouraging and the 

general modeling approach of the methodology seems to have some merit. Continued 

development of the general approach is recommended, and calibration with new field data 

as it becomes available should be accomplished. 

Table 6.2 Calculated and Measured Values of Extent of Fluidization 

Nozzle Setting Measured Extent of Calculated Extent of 
Fluidization Fluidization 

Kb/Kv= 10 Kb/Kv= 100 
360° 10 feet 4.5 feet 10.5 feet 

quad- North 12.2 feet 7 feet 22 feet 

quad- South 7 feet 7 feet 21 feet 

quad- East 5 feet 8 feet 24 feet 
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CHAPTER7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

Pneumatic fracturing is an in situ technology that can enhance the permeability of 

geologic formations by creating an artificial network of fractures. Although the principal 

application is to increase permeability, the process can also deliver gaseous, liquid, and 

granular supplements into the subsurface. In order to improve the understanding of the 

pneumatic fracturing process and broaden its engineering applications, a number of 

fundamental questions are under study. 

The current study has focused on the mechanism and propagation of pneumatic 

fractures in geologic formations. Prediction of the geometry and extent of propagating 

fractures is important in the design of pneumatic fracturing projects. While some limited 

analyses of pneumatic fracture propagation had been previously reported in the literature, 

a constitutive, theoretically-based model was not available. Therefore, the overall 

objective of this study was to develop a pneumatic fracture propagation model and 

validate it with field data. 

The following has been concluded from the current study: 

1. Pneumatic fracture propagation differs from other fracturing phenomena in geologic 

formations with respect to rheology of the fracturing fluid and rate of pressurization. 

This gives rise to some peculiarities that are characteristic of pneumatic fracture 

propagation, including a high rate of gas leak-off owing to the low viscosity of the 

141 
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fracturing fluid (1.9E-05 Pa.sec), and an intermediary propagation velocity (- 3 

m/sec). 

2. A basic set of model assumptions were established to reflect as closely as possible the 

physical phenomenon of pneumatic fracturing. First, the formation was assumed to 

be homogenous with regard to composition and anisotropic with respect to pneumatic 

conductivity. Also, since most geologic formations are overconsolidated with respect 

to geostatic stress, the pneumatic fractures were assumed to propagate radially in a 

horizontal direction. Leak-off of gas from a fracture into the surrounding geologic 

formation was assumed to be Darcian and gradient driven. Finally, owing to the 

intermediate propagation velocity, the overall phenomena was categorized as quasi

static. 

3. There are two fundamental criteria for the propagation of a pneumatic fracture. First, 

the injected flow rate must exceed the rate of gas leak-off into the formation 

(continuity criterion). Second, the pressure at the fracture tip must be greater than the 

minimum propagation pressure (stress equilibrium criterion). The "equilibrium 

radius" for a pneumatic fracture is achieved when these two propagation criteria are 

simultaneously satisfied, i.e. injected flow equals leak-off and fracture tip pressure 

equals propagation pressure. 

4. The propagation model was formulated by mathematically expressing the three 

physical processes controlling fracture propagation: i) pressure loss due to frictional 

wall effects and the resulting pressure distribution within the fracture; ii) the leak-off 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

143 

distribution from the fracture; and iii) the deflection of the overburden which creates 

the fracture aperture. 

Pressure loss within the fracture was modeled as Poiseuille flow between two 

radial, parallel plates taking into account the compressibility effects of the injected 

gas. The rate of pressure dissipation within the fracture was influenced significantly 

by the fracture aperture, as pressure drop is inversely proportional to the cube of the 

aperture. 

Leak-off had a significant influence on fracture propagation owing to the low 

viscosity of gases used in pneumatic fracturing. It varied with radial distance from 

the injection well, and also between the top and the bottom fracture faces. This is due 

to the decreasing pressure, varying gradient along the fracture length and anisotropy 

of the formation. Different methods of leak -off estimation were developed using both 

potential theory (flownets) and analytical approaches, all of which were based on 

Darcy's law. 

Deflection of the overburden, which is the last of the three processes controlling 

fracture propagation, was modeled as the bending of a circular elastic plate clamped at 

the edges. A logarithmic pressure distribution was assumed for overburden loading 

which approximates the actual cubic pressure distribution. 

5. A numerical solution for fracture propagation problem was developed which couples 

processes of pressure dissipation, leak-off and overburden deflection, and then solves 

them to obtain the dimensions of the fracture. The solution (developed algorithm) is 

based on the presumption that for a given set of injection and formation parameters, 
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there exists a unique fracture radius that satisfies the continuity and stress equilibrium 

criteria at the tip of the fracture simultaneously. 

6. The algorithm requires an input of geologic and operational parameters and is 

structured in two loops. The outer loop varies the fracture dimensions until they 

satisfy the continuity and stress equilibrium criteria at the fracture tip. The inner loop 

discretizes the extent of the fracture into small segments, and analyzes each segment 

to determine size of the fracture aperture, pressure drop and fluid losses into the 

formation. Pressure and flow at the end of the current segment are used as the input 

for the next segment, and the inner loop is exited when the criteria for the termination 

of a propagating fracture are met. 

7. Three different methods of converging to the solution, i.e. ''the equilibrium fracture 

radius," were examined. The first two methods start with a grossly underestimated or 

overestimated radius which is incremented or decremented, respectively, until the 

pressure and the continuity conditions are satisfied simultaneously at the fracture tip. 

The third method is the Bisection Method which converges to the solution by halving 

the interval bounding the solution and then retaining the half that contains the 

solution. The process is repeated to converge to the solution. The Bisection Method 

proved to be more efficient than the aforementioned methods. 

8. The algorithm was validated and calibrated with field data from actual pneumatic 

fracturing sites. Data from 35 different sites were evaluated and six sites were 

selected for calibration purposes. The first part of the validation procedure examined 
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the sensitivity of the algorithm to the various input parameters. Also, the algorithm 

was calibrated with respect to pneumatic conductivity and elastic modulus of the 

formation, since these two parameters are among the more difficult to determine in 

the field. This allowed a comparison of the regressed formation properties with both 

field measured values, as well as those reported in the literature. 

9. The sensitivity analysis showed that the most critical input parameter was the 

pneumatic conductivity of the formation. There was also a low to moderate algorithm 

sensitivity to formation modulus if the entire range of parameter variation was 

considered. If the field errors that occur during parameter determination are 

considered, then the relative importance of the parameters in decreasing order are 

injection pressure, fracturing depth, injection flow rate, unit weight of the formation, 

formation modulus, and Poisson's ratio. 

10. The most important result of the calibration process was the close agreement between 

the conductivity values back-calculated with the algorithm and the post-fracture field 

conductivities. This is consistent with the fundamental thesis that the final 

equilibrium fracture radius is determined with the geologic formation in a disturbed 

state. In other words, the primary and secondary fractures caused by the pneumatic 

injection increase the conductivity of the formation which in turn increases leak-off. 

11. A comparison of the different methods of leak-off estimation showed that the flownet 

method-1 of leak-off estimation consistently yielded lower conductivity values than 

the other methods. This appears to confirm the original hypothesis that the flownet 
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method-1 senses greater leak-off at the fracture tip, and is therefore the preferred 

method of estimation. 

12. The results of the calibration emphasize the sensitivity of the algorithm to 

conductivity, and care must be exercised in selecting this parameter. The calibration 

results also indicate that it is not appropriate to input values of pneumatic 

conductivity into the algorithm which are taken directly from' pre-fracture field 

permeability tests. The model requires post-fracture values which are typically one to 

three orders of magnitude higher. Similar caution should be exercised when using 

conductivity values directly from the literature. 

13. A closed form solution to predict the extent of fracture propagation was developed 

based solely on the principle of fluid continuity. The closed form solution appears 

useful for obtaining rough estimates of fracture radius at sites, as well as for checking 

the algorithm. The solution demonstrated reasonable correlation with field measured 

radii. 

14. Three possible mechanisms of dry particulate transport during pneumatic injections 

were identified including i) interstitial transport, ii) transport with an open discrete 

fracture; and iii) transport in a discrete fluidized lens. A methodology was proposed 

to predict the transport radius of the injected particulate media within the fluidized 

zone. 

15. The developed methodology for particulate transport was applied to field data from a 

recent project at the Hanford Site involving injection of powdered graphite in support 
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of the in situ vitrification (ISV) process. Methodology predictions in general 

compared well with the field measurements, though this involved a critical judgement 

of some input parameters with respect to the formation properties. 

7.2 Recommendations 

Algorithm Proofing: The algorithm should be used in support of actual field operations 

for pneumatic fracturing so that predictions can be compared with field measurements of 

the fracture dimensions. Field data can also be used to calibrate the algorithm with 

respect to formation conductivity and modulus. Every opportunity should be taken to 

calibrate the model for new and different geologic formations. 

Algorithm Refinement: The algorithm developed in this study can be further refined by 

implementing the following suggestions: 

• The propagation model developed in this study predicts the "equilibrium fracture 

dimensions" and is not capable of predicting the variation in fracture dimensions 

with time after its initiation. Therefore there is a clear need for a model that 

predicts the temporal variation of fracture dimensions. 

• The present algorithm is based on overburden bending and is therefore capable of 

handling shallow fracturing injections only. It should be extended to model deep 

fractures as well, where the elastic compression of the formation will be the 

principal source of the deflection. 
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• The pressure at which the formation fractures not only depends on the depth of 

fracturing and in situ stresses present, but also on fluctuations in the gas-reservoir 

pressure in the fracturing equipment. The propagation algorithm could be 

improved by incorporating a predictive model that simulates this behavior. 

• In the current algorithm injection flow rate and injection pressure are independent 

input variables. A relation that correlates these two parameters based on the pipe 

flow analysis of the fracturing system and reservoir pressure would be desirable 

since field experience has suggested that these two variables are coupled to some 

extent. 

• When the algorithm is executed using the flownet method-I to estimate leak-off, it 

depends upon a database of shape factors for its computations. This part of the 

algorithm can be made more eloquent by developing a closed form expression to 

estimate the shape factors for the various boundary conditions. 

• A root fmding method that converges faster than the Bisection Method should be 

sought to improve the overall efficiency of the algorithm. 

Theoretical Investigations: 

• During the course of this study it has been firmly established that pneumatic 

fracture propagation is a complex phenomena involving the coupling of various 

physical processes. Work should continue to investigate the feasibility of 

developing a comprehensive closed form solution incorporating all the physical 

processes. The partial closed form solution based on continuity developed during 

this study can serve as a first step in this search. 
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• When air is injected into the formation one of the following three phenomena 

occurs, aeration of the subsurface, fluidization of the soil surrounding the 

injection well, or initiation and propagation of a discrete fracture. At present there 

are no criteria based on which one can predict the particular mechanism that might 

occur. A closed form solution that can determine for the given set of operational 

and formation parameters which one of these phenomenon occurs is therefore 

desirable. 

Field Instrumentation: 

• Continued calibration of the algorithm will require surface heave monitoring to 

determine fracture radius and aperture. Electronic tiltmeters are preferred but, 

then cost is usually not justified on production projects. Some minimal amount of 

monitoring using optical levels or LVDT's would still be valuable for continued 

calibration and validation of the algorithm. 

• Alternative methods of monitoring ground surface heave such as using the Global 

Positioning System (GPS) should be investigated. 

• During pneumatic fracture injections the flow rate is assumed constant, although 

in reality it fluctuates. It is difficult to record this behavior since flow measuring 

devices in the required range are either inaccurate or cause disturbance to the gas 

flow. It is recommended that this problem be revisited periodically so that any 

improvements in flow measuring technology can be accessed. 
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• Connection of the pressure transducers, tiltmeters and flow measuring devices to a 

common timer will permit better study of the transient propagation behavior of 

pneumatic fractures. 

Field Tests: 

• More field tests involving injection of a traceable dye or particulate supplements 

should be performed. This could be followed by excavation of the site to map 

fracture dimensions. Such direct evidence greatly supplements surface heave 

measurements which are only an indirect indication of fracture propagation. 

• The algorithm has not been validated with respect to formation anisotropy. This 

could be accomplished by running both horizontal and vertical permeability tests 

during site characterization to determine the direction and magnitude of any major 

anisotropies. 

Final Comment: As the production use of pneumatic fracturing continues to expand, 

there is an increasing tendency to minimize the amount of field monitoring for field 

projects. While this is complimentary in the respect that process enhancements no longer 

have to be proven, the disadvantage is that there is less usable data for research. If the 

technology is to reach full maturity, a continued effort of field monitoring coupled with 

mathematical modeling will be essential. 
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APPENDIX A 

DEFLECTION OF A CmCULAR PLATE CLAMPED AT THE EDGES AND 
SUBJECTED TO A LOGARITHMICALLY VARYING LOAD 

The formation overlying the fracture can be modeled as the bending of an elastic plate. 

The expression for the deflection of circular plate clamped at the edges, can be obtained 

by solving the following differential equation [Timoshenk.o and Woinowsky-Krieger, 

1959]. 

d3b 1 d2b 1 db s 
dr3 + -; dr2 - i dr = D ......................................................... (1) 

which can be written as 

![~ !(r :) ] = ~ ....................................................... (2) 

where r is the radial distance from the center of the plate, b is the deflection of the plate 

(fracture aperture), S is the magnitude of the shear force, and D is the flexural rigidity. 

The particular solution can be determined by applying the boundary conditions to the 

general solution and finding the integration constants. 

The deflection of the plate is a function of the magnitude and distribution of the 

load it is subjected to. Existing propagation models assume that the pressure within the 

fracture to be either constant throughout the fracture [Carter, 1957], linear pressure 

gradient [Pollard and Johnson, 1973], or an average of the existing pressure distribution 

[Perkins and Kern, 1961]. 
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The pressure distribution within the fracture is given by: 

12PwQin~ln(t) 
7tgpb3 

p = p 2 
w 

where P w is the over-pressure at the well, Qin is the air injection flow rate, Jl is dynamic 

viscosity ofthe air, r is radial distance from the well, rw is the radius of the well, P and b 

are the pressure and fracture aperture at a radial distance r from the well respectively. 

As can be seen from the above equation the pressure distribution is a function of 

fracture aperture. Therefore the equation for the deflection of the plate and the pressure 

distribution are coupled. Assuming that the over-pressure at the tip of the fracture is zero, 

an approximate pressure distribution that could be used is given by: 

such that 

and 

pw 
where k= (R) 

ln-
rw 

P=Pw when r=rw 

P=O when r=R 

for a fracture with constant fracture aperture and flow without leak-off. 

In the figure A.l, the circular plate of radius R is subjected to a load of intensity 

P w at the center that is decreasing exponentially with radius. The magnitude of the shear 

force at a radial distance 'r,' is equal to the total load within this circle of radius 'r' 

divided by its circumference. The total load within the circle is equal to the sum of the 

volumes of the cylinder and the volume of revolution of the curve above the cylinder, as 

shown in the figure A.l. 
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z 

X 
r 

R 

Figure A.l Circular Plate Subjected to an Exponentially Varying Pressure 

Volume of the cylinder 

Volume generated by the revolution of the curve 

Pw 

J7tr2 dz 

[P.-ki{:J] 
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= 

(Pw -z) 

:. g(z) = rwe k 

k k ln.!.. 

[ 
( )2] = 1tr 2 --+-e r,. 

w 2 2 

total load = volume of the cylinder + volume of revolution of the curve 
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The magnitude of the shearing force Q is determined by the equation 

2mQ = total load within the circle described by radius r 

2mQ ~''+·-kit) ]+k~(r' -r.') 

Q ~ f[P.- kin(:.)]+! (r'- r.') 

Pwr k ( r) k { 2 2) Q=---rln- +- r -r 
2 2 rw 4r w 

Substituting Q in equation (2) 

Integrating 

L!(r db)= Pwr
2 

_ _!_[.Cln(~) _.C]+_!_[~-r 21n(~)]+C 
r dr dr 4D 2D 2 rw 4 4D 2 w rw I 

d ( db) ( P w k ) 3 k 3 ( r ) krw 
2 

( r ) - r- = -+- r --r In- --rln- +Cr 
dr dr 4D 4D 4D rw 4D rw 1 
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Integrating 

r db = (~ + _!__)~-_!__[~In(...:..) -~]- krw 
2 [.C In(...:..) -.C] + C .C + C 

dr 4D 4D 4 4D 4 rw 16 4D 2 rw 4 1 2 2 

Integrating 

applying the following boundary conditions to equation (3) 

and 

at radial distances 

the slope of the plate 

r=O,R 

db 
-=0 
dr 

( P 5k ) R
3 

k ( R) kr 
2 

( R) kr 
2 

R ~+- ----R3 ln- __ w_Rln- +-w-R+C -=0 
4 D 16D 4 16D rw 80 rw 16D I 2 
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substituting the values of constants cl and c2 in equation (4) 

applying the following boundary conditions to equation (5) 

at a radial distance r = R 

the displacement b = 0 

substituting the value ofC3 in equation (5) 

_ (~+ 3k)~-~ 4ln(~) krw2 2 (~) krw2 2 
b- 40 8D 16 64D r rw - 160 r In rw + 160 r 

+~[krw2 (ln(R) _ _!_) _ R2 (~+~) +~R2ln(R)] 
4 40 rw 2 2 4D 16D 80 rw 
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b = ~[2Pw + 3k- 2kln(_!_)] 
1280 rw 

+ 2;:0 [s~a.' -sP.R' -tokR' -I6kr.' m(:.) + I6kr.' ~~) +SkR'~~)] 
+~[p +k-kln(R)] 

640 w rw 

- krw2 R2 
320 

b = 1;;0[2P. +3k-2km(:.)] 

+ 2;;o[ -IOkR' + r.'( 8k+ !6P. -16kt~:.))] 
kR4 

+--
64D 
krw2 2 

-32DR 
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APPENDIXB 

CLOSED FORM SOLUTION FOR CALCULATING 
EXTENT OF FRACTURE PROPAGATION 

(Cubic Pressure Distribution Pressure within the Fracture) 

An equation for estimating the extent of fracture propagation based on the principle of 

fluid continuity for a non linear (cubic) variation of pressure distribution within the 

fracture has been presented in this section. 

The total amount of air being lost to the formation as leak-off over a region of the 

fracture surface G is given by 

Qleak = fJ f( x, y )dxdy 
G 

f(x,y)- intensity ofleak-off= Ki = K p(r) 
z 

P(r)- pressure head = p (~-~) w R3 

R JRz-yz 

= 8kp; f f (R3-(~x2+y2r)dxdy .................................................... (l) 
zR 0 0 

Integrating 
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and applying the limits 

substituting (2) in equation (I) 
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Integrating 

~(~y~R2 -y2 +~R2 sin-{~))R 3 

8kpw 
-i( -±y{R2 -y2)i +iR2 (y~R2 -y2 +R2 sin-{ 1~1)))R 

= zRJ +[(:o Ys ln{lyl))- 2~0 Ys ]-tn(~R2 -y2 +R{:o Ys) 

Applying the limits 

( 1
3
6 R

51r) -(~ R5 sin-•C~1)) 
= 

8
::;· -[(:0 R

5 In(IRI)) -(- 3~0 R5 sin-• (
1
:

1
)- 2~0 R5

)] 

+(- 2~0 Rs + :o Rs In(IRI)) 
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Qlcak = 3528k & R 2 

z 
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APPENDIXC 

LEAK-OFF ESTIMATION BY FLOWNET METHOD- II 

The derivation presented in this section calculates the leak-off occurring from a radial 

fracture based on potential theory. The leak-off equation derived here forms the basis for 

one of the methods by which the algorithm calculates leak-off, which will be referred to 

as "flownet method-H." 

According to Darcy's law 

Q=KiA 

M 
llQ= K-(w * dL) 

I 

Hw 
llQ=K--dL 

Nd I 

for a rectangular plan area 

(·: w =I) 
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Approximating the leak-off for a fracture with circular plan area 

(
area of a square = (2R)2

) 

area of the circle = trR 2 
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APPENDIXD 

CLOSED FORM SOLUTION FOR CALCULATING 
EXTENT OF FRACTURE PROPAGATION 

(Linearly Varying Pressure within the Fracture) 

A complete solution for estimating the extent of fracture propagation based on the 

principle of fluid continuity for a simple case of linearly decreasing pressure distribution 

within the fracture has been presented in this section. 

The total amount of air being lost to the formation as leak-off over a region of the 

fracture surface G is given by 

Q1ea~c = fJr(x,y)dxdy ............................................... (1) 
G 

where f(x,y) is the intensity ofleak-offwhich according to Darcy's law is given by 

f(x,y) = Ki = K p{r) 
z 

where P(r) is the driving pressure head, which is decreasing linearly within the fracture 

=pw(l- ;) 

-p.(l ,/x';y' J 

-p.( R-,/~ +Y
2 

J ............................................... (2) 

substituting equation (2) in equation (1) we obtain 

(R-~x2+y2) 
Qleak = JJ K p; R dxdy 

G 

=K~w fJ(R-~x2+y2)dxdy 
G 

R JRz-yz 

=4 K!; f J(R-~x2 +y2 )dxdy ............................. (3) 
0 0 
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substituting the above equation (4) in (3) 

R[y_~R2 -y2 +~sin-•(J...)]R 
2 2 2 R 

0 

R(~•1r) 
2 2 2 

1ZR3 
-8- ....................................................................... (6) 

substituting 
y= Rsine 
dy = Rcos(O)de 
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J 

{Rsin4 o) 
--;::::::::==:==~,.--,:.=:===::=:::=\1 R cos B)dB 
~ R 2 

- R 2 sin 2 o( R + ~ R 2 
- R 2 sin 2 B) 

J 
R5 sin 4 BcosB dB 

(RcosB)R(I +cosO) 

R3 J sin
4 

BcosB dB 
cosO( I +cosO) 

J(sin2 oVsin 2 o) 
R3 }\ dB 

{I +cosO) 

3 J{I- cos
2 

oXsin
2 e) 

R dB 
(I +cosO) 

J
(I- cosO)( I+ coso)(sin2 e) 

R3 dB 
(I+ cosO) 

R3 J(sin2 B- sin 2 BcosB~B 

R3 JC- c;s
2

B sin 2 BcosB )do 

~
3 

j(I-cos2B)dB-R3 J(sin2BcosB)dB 

~
3 

(o- sin
2
20

)- R3 J(sin2 BcosB)dB 

~
3 

(o 
2 sin~cosB)- J(R2 sin2 o)RcosB)dB 

~
3 

(o-sinB~I-sin2 B)- J(R2 sin2 oXRcosB)dB 

B = sin-11. 
R 

substituting (RcosB)dB = dy 

R2 sin2 B= y2 

3 2 

~ (B)-~ sinB~R2 -R2 sin2 B- J(R2 sin2 o)RcosB)dB 

~
3 

0- ~ RsinB~R2 - R2 sin2 B- J(R2 sin2 o)RcosB)dB 

~sin -11_- R y~R 2 - Y2 - Jy2dy 
2 R 2 
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~3 sin-1 ~- ~y~R2 -y2- Y: ........................................................ (8) 

substituting in equations 8 in equation 7 and applying the limits 

[ 
3 3]R I R . -1 y R 2 2 Y - -sm ---y~R -y --

6 2 R 2 3 
0 
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l[1tR3 R3
] -----

6 2 2 3 
~[ ~3- ~;] ••••.••.••.•••••.•••••.••..•••••.•.••.••.••.. (9) 

Integrating by parts 

R 2 v2 ln(y)dy 
0 

[ ]

R 
y3 I y3 

In(y)-- J--
6 y 6 0 

[ ]

R y3 y3 
In(y)---

6 18 0 

[tn(R) ~3 - ~;] •••••••••••••••••••••••••••••••••••••••• (10) 

substituting equation 6, 9, and 10 in equation 5 

: • Qleak-off 
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APPENDIX E-1 
INPUT PARAMETERS FOR THE MODEL 

SYSTEM PARAMETERS 

Injected Flow: (L3/T) 

Maintenance Pressure : (M/L T2) 

Well Radius : (L} 

Depth of fracturing: (L} 

Density of air: (M/L3) 

Viscosity of air: (MT) 

FORMATION PARAMETERS 

Horizontal Pneumatic Conductivity : (LIT) 

Vertical Pneumatic Conductivity: (LIT) 

Poisson's Ratio 

Young's Modulus : (M/L T2} 

Distance over which head is lost: (L) 

Formation density : (MfL3) 

Formation Fracture Toughness: (M/Ll/2T2) 

Fracture Geometry 

Case I. Linearly Tapering 

K h_air = 5.19_1!_ 
day 

ft 
Kv_air - 5.19-

day 

Case 2. Anticlinal plan and constant pressure distribution 
Case 3. Circular plan and constant pressure distribution 
Case 4 Circular plan and a log pressure distribution 

169 

ft3 
Q =857·-

min 

r w "0.25ft 

lbf 
y air _c 0.08-----

ft3 

_ 
4

_
1 0 

7_Ibf.sec 
J.l air 

ft2 

-3 
K h_air = 1.831·10 

em 

sec 

em -3 
K v_air = 1.8·10 

sec 

v := 0.4 

E 
lbf :51·-----
in2 

~I 1.8-z·ft 

y - := 105-lbf 

fl? 

lbf -
K · = 0·--- ··ht 

IC • 2 m 
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APPENDIX E-2 
THREE DIFFERENT APPROACHES INVESTIGATED TO SOLVE FOR 

THE ROOTS OF THE MODEL 

Bisection( low, up) 

Incrementing_ Radius 

~for Ne 0 .. 1000 

~ I (' up .. low\ i 
· error---

1 

·--- ·JI·IOO 
, 

1 
,up -t·IOW; 

middle-- ( 10\.\'__!__1:!~! 
2 

up--· middle if Varying_Width(Iow, I)·Varying_Width(middle, 1)<0 

low .. middle if Varying__ Width (middle, I)· Varying__ Width (up, I) <0 otherwise 

I 
break if Varying__Width(low, l)·Varying__Width(middle, 1)=0 

break if error<O.OI 

middle 

I. Bisection Method Subroutine 

R- l·ft 

R incr-· 0. Ht 

Qtip- 1 

for Ne 1..106 

R 
'

R.- R 1 Riner 

I 
Q tip· Varying__ Width(R, 1) 

break if Q tip <0 

II. Incrementing the fracture radius to arrive at the solution 

Decrementing_ Radius = R- 3()-ft 

Rdecr·--- O.l·ft 

ptip- 1 

[, 6 
lforNei..IO 

~ ~ R·-- R Rdecr 

I : P tip· Varying__Width(R,6) 
~ l break if P tip <0 

~R 

Ill. Decreasing the fracture radius to obtain the solution 
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APPENDIX E-3 
PREDICTING THE STEADY STATE 

FRACTURE DIMENSIONS (Analytical Method) 
VARYING WIDTH FRACTURE GEOMETRY (Mathcad Version) 

Varying_ Width ( Rad, Call) " i r incr·- 0.1 

R--Rad-ft 

for N e 1 .. 10
6 

r
1
-- 0.25 

i 
I . 
t ~ 

I I 

rincr·-0.001 if (R- rN·ft)<J.ft 

p d- p m · Y ·z 

Pm 
P.-- ------

y air 

rN+ I t- rN 
x-- -----· ft 

2 

p d·(l- l) 8 ,----------
biN·--E----·;· JR2- (rN·ft )2 

3·P d·(l --l)·R4 

--------------- if Case= l 
16-E·i 

bw 
b2N- b w - --·r ·ft if Case= I 

R N 

P d·(t--l).(x4
- 2·R2·i t R4

) 
b2N- - - -- - --- if Case=2 

2·E·i 

3·P d·(l -l).(x4
- 2·R2·i t R4

) 
b2N- -------- -- if Case=3 

16-E·z3 

b2N-- 1f~0 · ( 2·P d + 3·k- 2·k·In( I~ :1)) ... 
i r 2 2( ('xi\1 +- ------· __ - 10-k·R -t-rw· S·k + 16-P d- 16·k·ln -- _) 

1 
••• 

256-D 
1 

• r w 1 
I I I I 

4 k 2 
k·R ·r w 2 

+-- -- ·R 
64-D 32·0 
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(continued from previous page - same loop ) 
II 6 
jj' for N e 1.. 1 0 

II 'I bN·- b2N I 

11 I ft3 , r J 
lj ;j 12·Q ·- -- .... ·P ·ft·ln(-l'l_r.! :, ~ N r a1r N 
'II !i , 2 2 sec , rN I 
. !Jif (P ) ·ft < - --------
!1 'I - N ~t·y . ·(b )3.ft3 
I ~ arr _ N 
It 

I' 
! I!N·-(N- I) 

~ break 

QN -t-1 ~ QN - 2· ( Q'-N) 

break if P N i 1 <P prop 
N-t--1 

break if QN 
1
_ 

1 
~:::o 

~ _ break if rN _1_ 
1
·ft :~R 

il output· QN + 1 if Call= 1 

jli output· Q if Call=2 

i output·- 2·QL if Call=3 

II output·- P if Call=4 

!I output- P prop if Cali=S 

i] output · -P N _ 
1 

P prop if Call=6 
~I ' Nt-1 

I output- b if Cal1=7 

I output- r if Call=8 

I

, output· -- N if Call=9 

, output 
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APPENDIX E-4 
PREDICTING THE STEADY STATE 

FRACTURE DIMENSIONS (Fiownet Method) 
VARYING WIDTH FRACTURE GEOMETRY (Mathcad Version) 

Varying_ Width ( Rad, Call) r incr- 0.1 

R--- Rad-ft 

for N e I .. 106 

l r1- 0.25 

)riner" 0.001 if 1,R- rN·fti<Hl 
~ 

Pd---Pm-y·z 

Pm 
P,----

y air 

3·P d.( 1 i!-R4 

16-E·z3 
if Case=l 

bw 
b2 ·-- b - --·r ·ft if Case= I 

N W R N 

I
. R, 

Ill - i 
:rwi 
, I 
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II for Ne 1..10
6 

bN·- b2N 

p . Y·Z1 
propN·t 1 j' 

x ·r ·ft . N 

p propN+I 
p -

propN ·t- I y air 

~. (2.t).to.riner·ft if r!'ft<x<O.l·R 
,24! R 

~-- 2.!~.!~.riner·ft if O.l·R<x<0.2·R 
24 R 

~ ·- ~._l_!,_I:.Q.riner·ft if 0.2·R<x<0.3·R 
24 R 

I 2.32_lO.r· .ft if o.3·R<x<0.4R j~. 24 R mer 

!1 ~. 2.32_I~·r·ner·ft if 0.4R<x<0.5-R 
24 R I 

i 

A 2.61 10·r. .ft if 0.5-R<x<O.&R ... -24· R mer 

! ~ ·-- 2.57,_1Q.r iner·ft 
~ ~ 24 R 

if 0.6-R<x<0.7·R 

• 'I 3.34 10 ft if 0.7·R<x<0.8·R 

1

1 

; : _ 3

2

: •. ~::::::. ;r m<x<MR 
24 R 

~ j A 8.57.!0.r· .ft if 0.9-R<x<R 
;'~'. 24 R mer 
I 

~Q~· K·PN·~·!t· rN, 1 1 rN 

!
i': ~Q . QN IQ~t 

; N t-1 ' 

I 
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il 6 
:

1 

for N e 1.. I 0 
1,! 

li break if PN •,- 1 <P prop 
!I Nt I 

fi break if QN 1 1-:0 

II break if rN i-l·fL:R 

output ·-- QN i- 1 if Call= I 

1 output -- Q if Call=2 

I' output-- QL if Call=3 

output · P if Call=4 

output·- P prop if Call=5 

output -- P N + 1 - P prop if Call=6 
Ntl 

!/output· b if Call=7 

il output . r if Call=8 
,[ 

li output 
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APPENDIX E-5 
PREDICTING THE STEADY STATE FRACTURE DIMENSIONS 

(Constant Width Fractures) 

Constant_ Width (Width, Call) - r incr··- 0.5 

b·- Width 

J for N e 1.. Hf 

~ rt" 0.25 
~ 

rN -t- t"-- rN t- r incr 

rN t-t t- rN 
X·--- - ----•ft 

2 

p 
propN • t 

p 
propN t t 

Kic 
y ·Z+- r·--··· 

,jlt ·rN·ft 

p 
propN-• t 

Y air 

PN t l' PN I 
Q~- (Kh_air'-Kv_air)· ~--~-~-~-~ j·llt·[\rNt-t)

2 

QN+ t" -QN- 2·(Q~) 

break if P N . 1 <P prop 
-r- Nt-l 

break if QN t- l :':0 

~output. QNt l if Call=l 

,I -- Q if Call=2 ~output· 
I, 
j, 

2·QL if Call=3 ~output-

~output- P if Call=4 

~output- pprop if Call=5 

'.output·- PN t t p if Call=6 
propN' t 
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!! output. b if Call=7 

!! output. - r if Call=8 

il output 

Bisection(low,up) I for Ne 0 .. 1000 

l l('up-low)l ! error-- ------- ·100 
I I up t-low 

middle-- ~~~ i up) 
2 

UP·- middle if Constant_ Width (low,I)·Constant_Width (middle,I)<O 

!tow- middle if Constant_Width (middle,I)·Constant_Width (up,I)<O otherwise 

.. ~ break if Constant_ Width (low,! )·Constant_ Width (up, 1)=0 

j ~ break if error< I 

lmiddle 
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APPENDIX F 
PARTICliLATES TRANSPORT IN A FLUIDIZED SOIL FORMATION 

INPUT PARAMETERS FOR THE MODEL 

HANFORD SITE 

gas filled porosity (volumetric gas content) 

pneumatic conductivity 

radial gas permeability (intrinsic) 

vertical gas permeability (intrinsic) 

universal gas constant 

injection gas temperature 

injection mass flow rate 

unit weight of air 

dynamic viscosity of air 

ambient air pressure 

average gas molecular weight 

critical entrainment air velocity 

depth of injection 

depth and radius at which pressures 
and velocities are being determined 

q 
2·P a·Rair·T·M 

~·Mwt 

K =O.I06·cm 
sec 

k R = 1.003- 10--6 ·cm2 

z
0 

O·ft 

Z incr l·ft 

z 0, 1..30 

zz+ I = zz -t- z incr 

Calculating the pressure distribution around the injection well: 

u(z.r) 
q 

z 
z 

z 2: 
s 

178 

~ ~ 0.3.!{uniform sand; Harr] 

K -'-30().-~-
day 

kR '1.08-J0-9.ft2 

k z = I.O&I o- 11 -ft2 

ft·lbf 
Rair '49709-

slug·R 
T · 518.67R 

M 0.5--~~-

Yair 

sec 

0.08-lbf 
ft3 

P a = 14.7·lbf 
• 2 
In 

M wt --30 

ft 
v cr c 5·---

sec 
Zs =14ft 

1\ 0.25ft 

Riner ·I·ft 

r - 0, 1.. 30 

Rr+ 1 " Rr t- R incr 
I 

Rk = (~~\ 2·R 
r :kR) r 
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Calculating air velocities in the direction of the co-ordinate axes with the well as the origin 

X- direction (radially outward from the well) 
P xi submatrb(P,0,30,0,29) 

P x2 submatrb( P, 0, 30, I, 30) 

air_ vel x 

' 

'P p ·_Ib 
, xi x~ ~ 

K ft-

Calculating the resultant velocity vectors around the well 

air_vel i for J e 0, L 29 
i 

for Ke 0, 1..29 

Y - direction 
Pyl =submatrh(P,0,29,0,30) 

P y2 = submatrh(P, 1,30,0,30) 

lp P 
,· lb 

I, yJ 2 . 
K y : ft2 

air_vel y 

' Y air" Z incr 

resultant(J,K)·- Jr~ir_v:; ~-;~K){-,~[ai~~v:I·;~J.~j~ 
I 

i! resultant 

Considering only the velocity vectors whose magnitude is greater then the fluidization velocity 

fluidization_ vel = for J e 0, L 29 

for Ke 0, 1..29 

i1 
• I , m·· a1r_ve (J,K) 

I 

[ air_vei(J,K)·--air_vei(J,K)J if (m-J!..>v cr) 
sec . 

[. air_vei(J,K)- 0 J otherwise 

air_vel 
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29': 

28 : 

27 i 
I 
I 

26 ! 
i 

25 j 
! 

24- j 

23 i 
I 

22-i 

I 
21 l 

: 
20 i 
19 I 

18 . 

17 : 

16 . 

15 

14 
I 

13 : 

12 : 

II 
I 

JO·j 
! 

9; 
8 . 

7 . 

6 . 

5 . 

3 . 

2: 

I. 

APPENDIX F-1 
EXTENT OF PARTICULATE TRANSPORT 

(360 Nozzle Setting) 

0; : i - ;- I 1 ·-1--l--T--:--r-r T ·:---:- i ! . 
0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

contour 
depth -(feet) 

* injection mass flow rate= 0.5 lb/sec 
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29 

28 

27 

26 

25 

24 ' 

23 . 

22 ~ 

21 

20 

19 

18 

17 

16 

15 

13 

12 . 

II 

10 : 
i 

9: 

8] 

7 . 

6 . 

I 

5 i 
: 

4· I 

2 

APPENDIX F-2 
EXTENT OF PARTICULATE TRANSPORT 

(North- Quad Nozzle Setting) 

i 

o ' i i r r r r T- -T -r T T - 1 ! r : ·i 
0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

contour 
depth- (feet) 

* injection mass flow rate = 8 lb/sec 
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29 I 

23-l 
i 

27 j 

26 : 

25 ' 

24 ' 

23 

22 

21 

20 

19 

18 

17 

16 

IS-

14 

13 

12 

II 

10 i 

9' 

8 I 

5 i 
4 ' 

3 : 

o· 
0 I 2 

contour 

APPENDIX F-3 
EXTENT OF PARTICULATE TRANSPORT 

(South - Quad No:1..zle Setting) 

I 

I 

I 
-r--1-T--1-1-T--l~T i -- ;--T-l 

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

depth- (feet) 
* injection mass flow rate = 7.5 lb/sec 
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APPENDIX F -4 
EXTENT OF PARTICULATE TRANSPORT 

(East- Quad Nozzle Setting) 

29" - - -- -------~- ---- -------

28 

27 

26 . 

25 

24" 

23 

22 : 
I 

21 i 
I 

20 I 

191 

17 

16 i 
15 i 

14 j 
I 

13 i 

II 

10 

9 

s-

7 

6; 

5 

4 

3 

I 
21 

0 . 
01234567 

contour 

Extent of Fluidization- Quad (South) 

II 12 14 5 16 17 
: I i 1 I i 
19 20 21 22 23 24 25 26 21 :is 29 

depth- (feet) 
* injection mass flow rate = 1 0.4 lb/sec 
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27 I 

26 I 

25 ; 

24-i 

23-1 
I 
I 

n' 
-- I 

21 ; 

20 . 

19 . 
I 

18 i 

17 ; 

16 

15 

14 

12 

II 

10 

9 . 

7 . 

6 . 

5 . 

4 . 

2 ; 

I. 

0 : 
0 I 2 

contour 

APPENDIX F-5 
EXTENT OF PARTICULATE TRANSPORT 

(West- Quad No7..zlc Setting) 

0. 2 

I. 4 i 
I . i T. 'i -T-11 ---rl ___ J'_l~l--T-T-·l·-~ i- ·J 

3 4 5 6 7 8 9 1'0 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

depth- (feet) 
* injection mass flow rate = 10.4 lb/sec 
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Rlz r/R 

0.14 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.29 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.43 0.1 
0.2 
0.3 
0.4 

APPENDIXG 

SHAPE FACTORS OF FLOWNETS FOR DIFFERENT FRACTURE GEOMETRIES 

Kh=K. ~=SK. Kh=lOKv 

Nr % Q-injected ~N.tENd Nr % Q-injected ~N.tENd Nr % Q-injected ~N.tENd 

1.48 9.3 0.98 1.16 9.9 0.79 1.06 10.9 0.69 
1.59 10.0 1.35 11.5 0.92 9.5 
1.5 9.4 1.12 9.6 0.91 9.4 
1.64 10.3 1.2 10.2 1.01 10.4 
1.6 10.1 1.13 9.6 1.01 10.4 

1.74 11.0 1.22 10.4 1.04 10.7 
1.8 11.3 1.32 11.3 1.06 10.9 

1.91 12.0 1.44 12.3 1.23 12.7 
2.63 16.6 1.77 15.1 1.45 15.0 
7.69 48.4 7.28 62.2 7.06 72.9 

1.9 6.0 1.32 1.35 6.3 0.89 1.23 6.6 0.77 
1.9 6.0 1.69 7.8 1.08 5.8 
1.91 6.0 1.43 6.6 1.2 6.5 
2.02 6.4 1.4 6.5 1.21 6.5 
1.95 6.1 1.42 6.6 1.26 6.8 
2.21 7.0 1.62 7.5 1.3 7.0 
2.53 8.0 1.69 7.8 1.39 7.5 
5.47 17.3 1.64 7.6 1.4 7.5 
3.18 10.0 2.18 10.1 1.85 10.0 
8.64 27.2 7.17 33.2 6.63 35.7 

1.89 5.8 1.37 1.49 6.3 0.98 1.32 6.6 0.83 
2.07 6.3 1.5 6.3 1.27 6.3 
2.21 6.7 1.55 6.6 1.37 6.8 
2.41 7.3 1.63 6.9 1.24 6.2 

-

Remarks 

No of head 
drops for 
aJI these 

flownets is 
24.0 

..... 
00 
Vl 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

Kh=K. 

Rlz r/R Nr % Q-injected ~N.n:Nd 

0.43 0.5 2.38 7.3 
0.6 2.68 8.2 

0.7 2.76 8.4 
0.8 3.11 9.5 

0.9 3.84 11.7 
1 9.45 28.8 

0.57 0.1 2.53 6.7 1.56 
0.2 2.55 6.8 

0.3 2.46 6.6 
0.4 2.76 7.4 

0.5 2.64 7.0 
0.6 2.98 7.9 
0.7 3.15 8.4 
0.8 3.68 9.8 

0.9 4.57 I2.2 
1 10.18 27.1 

0.7I 0.1 2.98 7.2 1.72 
0.2 2.55 6.I 
0.3 3.05 7.3 
0.4 2.9 7.0 
0.5 3.07 7.4 

0.6 3.36 8.I 
0.7 3.41 8.2 
0.8 4.3I I0.4 
0.9 4.77 11.5 
I 

-
_ II_._!__ 

-
26.7 

- ----

APPENDIX G (Cont.) 

Kh=SK. 

Nr % Q-injected ~N.n:Nd 

1.84 7.8 
1.66 7.0 
1.89 8.0 
2.2 9.3 

2.47 10.4 
7.43 31.4 

1.78 7.0 1.06 
1.6 6.3 
1.63 6.4 
1.74 6.8 
1.86 7.3 
1.89 7.4 
2.16 8.4 
2.34 9.1 
2.9 11.3 
7.68 30.0 

1.87 6.8 1.14 
1:73 6.3 
1.73 6.3 
1.99 7.3 
1.92 7.0 
2.22 8.1 
2.19 8.0 
2.7I 9.9 
3.1 11.3 

7.98 29.I 

Nr 

1.43 
1.52 

1.57 
1.76 
1.89 
6.73 

1.35 
1.37 
1.42 
1.58 
1.32 
1.67 
1.88 
1.9 

2.21 
6.79 

1.62 
1.44 

1.53 
1.69 
1.42 

1.8 
1.74 
2.33 
2.17 
6.9I 

Kh=lOK. 

% Q-injected 

7.1 
7.6 

7.8 
8.8 
9.4 
33.5 

6.3 
6.4 
6.6 
7.4 
6.1 
7.8 
8.7 
8.8 
10.3 
31.6 

7.2 
6.4 
6.8 
7.5 
6.3 
7.9 
7.7 
I0.3 
9.6 

30.5 

~N.n:Nd 

0.89 

0.94 

Remarks 

I 

-00 
0\ 
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APPENDIX G (Cont.) 

Kh=Kv Kh=5Kv Kh=lOKv Remarks 
R/z r/R Nr % Q-injected l:N~Nd Nr % Q-injected l:N(l:Nd Nr % Q-injected l:N~Nd 

0.86 0.1 3.06 6.8 1.86 1.95 6.8 1.20 1.42 6.1 0.97 
0.2 2.99 6.7 1.98 6.9 1.45 6.2 
0.3 3.17 7.1 1.95 6.8 1.57 6.7 
0.4 3.05 6.8 1.98 6.9 1.58 6.8 
0.5 3.61 8.1 2.18 7.6 1.73 7.4 
0.6 3.23 7.2 2.29 7.9 1.76 7.6 
0.7 4.16 9.3 2.48 8.6 2 8.6 
0.8 4.18 9.3 2.59 9.0 2.29 9.8 
0.9 5.7 12.7 3.53 12.3 2.76 ll.8 
1 11.6 25.9 7.88 27.4 6.75 29.0 

I 0.1 3.39 7.0 2.01 2.05 6.7 1.27 1.47 6.0 1.01 
0.2 3.46 7.2 2.02 6.6 1.49 6.1 ! 

0.3 3.32 6.9 2.01 6.6 1.58 6.5 
0.4 3.74 7.7 2.13 7.0 1.65 6.8 
0.5 3.5 7.2 2.19 7.2 1.79 7.3 
0.6 3.94 8.2 2.42 7.9 1.92 7.9 
0.7 4.01 8.3 2.68 8.8 2.13 8.7 
0.8 4.65 9.6 2.93 9.6 2.38 9.8 
0.9 5.72 ll.8 3.66 12.0 2.87 ll.S 
1 12.59 26.1 8.43 27.6 7.08 29.1 

1.14 0.1 3.56 6.8 2.17 2.1 6.5 1.33 1.39 5.5 1.05 
0.2 3.81 7.3 2.16 6.7 1.73 6.8 
0.3 3.57 6.8 2.11 6.6 1.55 6.1 
0.4 3.9 7.5 2.32 7.2 1.84 7.3 
0.5 3.94 7.6 2.32 7.2 1.75 6.9 
0.6 4.08 7.8 2.61 8.1 2.08 8.2 -- 00 

'I 
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Kh=Kv 

Rlz r/R Nr % Q-injected ~N,Il:Nd 

0.7 4.59 8.8 
0.8 4.92 9.4 
0.9 6.46 12.4 

1 13.32 25.5 

2 0.1 5.8 7.6 3.17 
0.2 5.77 7.6 
0.3 5.97 7.8 
0.4 6.02 7.9 
0.5 6.11 8.0 
0.6 6.31 8.3 
0.7 6.75 8.9 
0.8 7.3 9.6 
0.9 8.7 11.4 
1 17.47 22.9 

L______ 

APPENDIX G (Cont.) 

Kh=SKv 

Nr % Q-injected ~N,Il:Nd 

2.57 8.0 
3.34 10.4 
3.98 12.4 
8.57 26.7 

2.89 7.0 1.72 
2.89 7.0 
3.09 7.5 
3.15 7.6 
3.22 7.8 
3.32 8.0 
3.55 8.6 
4.06 9.8 
5.11 12.4 
10 24.2 

--L_ --

Kh=lOKv 

Nr 

2.23 
2.55 
3.06 
7.11 

1.9 
1.99 
2.1 
2.06 
2.2 

2.45 
2.66 
3.16 
3.5 
8.06 

---

% Q-injected 

8.8 
10.1 
12.1 
28.1 

6.4 
6.6 
7.0 
6.8 
7.3 
8.1 
8.8 
10.5 
11.6 
26.8 

- -

Remarks 

~N,Il:Nd 

1.25 

I 

...... 
00 
00 
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APPENDIX HI 

FLUID CONDUCTIVITIES OF ROCKS AND SOILS 

Material Intrinsic Permeability Hydraulic Pneumatic Ref 
k Conductivity Conductivity 

Kwater K.;, 
ROCK S.I.(cm1

) S.I.(cm/sec) S.I.(cm/sec) 
Anhydrite 4.08E-16- 2.04E-11 4E-11 -2E-6 2.6E-12- 1.3E-7 T 

Basalt 1.93E-14 -4.81E-10 1.89E-9- 4.72E-5 1.2E-10- 3.1E-6 A 

Basalt l.ISE-12 1.16E-7 7.6E-9 B 

Basalt 2.04E-14- 4.34E-10 2.00E-9- 4.25E-5 1.3E-1 0- 2.8E-6 c 
Basalt, penneable 4.85E-I 0 - 4.85E-05 4.75E-5- 4.75 3.1E-6-3.1 E-1 B 

Basaltic lava and 1.84E-06 - 1.84E-04 l.SOE-1 - 18.0 1.2E-2 -1.2 Q 
sediments 
Basalt 2.04E-14- 4.28E-IO 2.0E-9 - 4.2E-5 1.3E-I 0- 2.8E-6 T 

Basalt - penneable 4.08E-1 0 - 2.04E-05 4.0E-5 - 2.00 2.6E-6- 1.3E-I T 

Carbonate rocks 4.86E-13- 1.16E-06 4.76E-8- 1.14E-I 3.1E-9- 7.5E-3 F 
(augmented by tubes 
tunnels and cavities) 
Chalk 3.67E-07 3.6E-2 2.4E-3 p 

Chalk (fractured) 2.24E-07 2.2E-2 1.4E-3 p 

Dolomite 4.34E-14- 9.62E-14 4.25E-9 - 9.43E-9 2.8E-1 0 - 6.2E-9 A 

Dolomite l.ISE-11 1.16E-6 7.6E-8 B 

Dolomite and 3.06E-06- 7.14E-06 3.00E-1- 7.00E-I 2.0E-2 - 4.6E-2 H 
limestone - fractured 
Dolomite - fractured 5.10E-07- 2.55E-06 5.0E-2 - 2.5E-1 3.3E-3 - 1.6E-2 I 

Dolomite - fractured 1.16E-IO 1.14E-5 7.5E-7 J 

Gabbro - weathered 2.36E-09 2.31E-4 I.SE-5 B 

Gabbro - weathered 5.10E-10- 3.88E-09 5.0E-5 - 3.8E-4 3.3E-6 - 2.5E-5 c 
Gabbro - weathered 5.61E-10- 3.88E-09 5.5E-5 - 3.8E-4 3.6E-6- 2.5E-5 T 

Gneiss 2.41E-13- 2.41E-11 2.36E-8 - 2.36E-6 l.SE_-9 - 1.5E-7 A 

Gneiss 4.79E-13- 2.65E-08 4.70E-8- 2.60E-3 3.1E-9 -1.7E-4 G 

Granite 4.34E-16- 2.41E-15 4.25E-ll- 2.36E-10 2.8E-12- 1.5E-11 A 

Granite, weathered 1.65E-08 1.62E-3 l.OE-4 B 

Granite, weathered 3.37E-09 - 5.30E-08 3.3E-4- 5.2E-3 2.2E-5 - 3.4E-4 D 

Granite, weathered 3.37E-09 - 5.30E-08 3.3E-4- 5.2E-3 2.2E-5 - 3.4E-4 T 
Granite, fractured 3.06E-07- 9.18E-07 3E-2- 9E-2 2.0E-3 - 6.0E-3 0 
Granite, fractured 1.02E-IO- 1.02E-08 l.OE-5 - l.OE-3 6.6E-7 - 6.6E-5 0 
Greenstone 5.81E-11 - 1.02E-07 5.7E-6- IE-2 3.7E-7- 6.6E-4 G 
Hematite 9.62E-16- 4.28E-12 9.43E-ll-4.2E-7 6.2E-12- 2.7E-8 A 
Igneous and 9.59E-13- 1.94E-09 9.4E-8- 19.0E-5 6.2E-9- 1.2E-5 G 
Metamorphic Rocks 
Igneous and 3.06E-17- 2.04E-13 3E-12 -2E-8 2.0E-13- 1.3E-9 T 
Metamorphic Rocks -
unfractured 

192 
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Material Intrinsic Permeability Hydraulic Pneumatic Ref 
k Conductivity Conductivity 

Kwater K.;. 
ROCK S.I.(cm2

) S.I.( em/sec) S.I.( em/sec) 

Igneous and 8.16E-12- 3.06E-07 SE-7- 3E-2 5.2xlO·a- 2.0x1o·J T 
Metamorphic Rocks-
Fractured 
Igneous- coarse 4.28E-12- 4.28E-08 4.2E-7 - 4.2E-3 2.8xl0"8

- 2.8xl0-4 G 
grained rock 
(granite, diorite, 
gabbro) 
Igneous, tight, fine 6.22E-IO- 1.33E-06 6.1E-5- 1.3E-l 4.0xl0-6- 8.5xl0·3 G 
grained rock 
(rhyolite, trachite, 
basalt) 
Igneous, fine grained, 1.18E-06 - 8.28E-05 1.16E-l- 8.12 7.6xl0"3

- 5.3 xiO·' F 
cavernous rock 
Limestone, karst and 1.02E-09 - 1.02E-05 l.OE-4- 1.0 6.6xl0-6- 6.6xlO·l c 
reef 
Limestone 4.81E-15- 9.62E-13 4.72E-10- 9.43E-8 3.1xl0"' 1 

- 6.2xlo·Y A 

Limestone l.llE-08 1.09E-3 7.2xlo-~ 8 

Limestone (0.16 1.39E-09 1.36E-4 8.9xl0..., c 
porosity) 
Limestone, karst 2.36E-09- 4.85E-05 2.31E-4- 4.75 1.52E-05- 3.12E-01 8 

Limestone, 9.87E-13 9.68E-8 6.35E-09 c 
argillaceous 
Limestone and 5.91E-13- 4.85E-09 5.79E-8- 4.75E-4 3.80E-09- 3.12E-05 8 
Dolomite 
Limestone 1.33E-ll- 1.73E-ll 1.3E-6- 1.7E-6 8.53E-08- 1.12E-07 K 

Limestone 4.79E-09 4.7E-4 3.08E-05 L 

Limestone 1.12E-09 l.IE-4 7.22E-06 I 
Limestone, fractured 1.84E-07 - 4.85E-06 1.8E-2 -4.75E-l l.lSE-03- 3.12E-02 M 

Limestone fractured I.SOE-07 1.47E-2 9.64E-04 N 
and calcareous 
sandstone 
Limestone - karst and 1.02E-09- 2.04E-05 l.OE-4- 2.0 6.56E-06- 1.31E-01 T 
reef 
Limestone and 1.02E-12- 6.12E-09 l.OE-7 - 6.0E-4 6.56E-09- 3.94E-05 T 
dolomite 
Quartzite 1.94E-l2- 2.65E-08 1.9E-7 - 2.6E-3 1.25E-08- 1.71E-04 G 

Rock Salt 1.02E-15- 1.02E-13 l.OE-10- l.OE-8 6.56E-12- 6.56E-10 T 
Sandstone 3.37E-l2- 5.51E-08 3.3E-7- 5.4E-3 2.16E-08- 3.54E-04 G 

Sandstone 1.45E-12 - 1.45E-08 1.42E-7- 1.42E-3 9.32E-09- 9.32E-05 A 
Sandstone 4.85E-11 4.75E-6 3.12E-07 8 

Sandstone - 0.29 2.37E-08 2.32E-3 1.52E-04 c 
porosity 
Sandstone 3.47E-10 3.4E-5 2.23E-06 E 

Sandstone - fine 2.36E-09 2.31E-4 1.51E-05 8 
grained 
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Material Intrinsic Permeability Hydraulic Pneumatic Ref 
k Conductivity Conductivity 

K..., •• K.,. 
ROCK S.I.(cm2

) S.I.(cm/sec) S.I.( em/sec) 

Sandstone - fme 5.10E-12- 2.32E-08 SE-7 - 2.27E-3 3.28E-08 - 1.49E-04 D 

Sandstone - medium 3.66E-08 3.59E-3 2.36E-04 B 
I grained 
Sandstone - silty 2.57E-11 2.52E-6 1.65E-07 c 
Sandstone - coarse 1.09E-08 1.07E-3 7.02E-05 c 
Sandstone (arkosic), 4.79E-13 -7.24E-08 4.7E-8- 7.1E-3 3.08E-09 - 4.66E-04 G 
siltstone and shale 
Sandstone 2.45E-09- 1.43E-07 2.4E-4 - 1.4E-2 1.57E-05- 9.18E-04 R 

Sandstone 3.06E-13- 6.12E-09 3E-8- 6E-4 1.97E-09 - 3.94E-05 T 

Schist 2.36E-09 2.31E-4 1.52E-05 B 

Schist 2.04E-14- l.ISE-08 2.0E-9- 1.13E-3 1.31E-10 -7.41E-05 D 

Schist 4.79E-12- 1.22E-07 4.7E-7- 1.2E-2 3.08E-08 -7.87E-04 G 

Schist and Gneiss - 3.67E-10 3.6E-5 2.36E-06 s 
fractured and 
crystalline 
Shale 2.45E-09 - 2.65E-08 2.4E-4 - 2.6E-3 1.57E-05 - 1. 71 E-04 G 

Shale 1.18E-16- 4.85E-11 1.16E-11 - 4.75E-6 7.61E-13- 3.12E-07 B 

Shale 2.04E-11 2.0E-6 1.31E-07 E 

Shale 1.02E-16- 2.04E-12 l.OE-11 - 2.0E-7 6.56E-13 - 1.31 E-08 T 

Siltstone 1.02E-14- 1.45E-11 l.OE-9 - 1.42E-6 6.56E-11 - 9.32E-08 D 

Siltstone - Shale 2.04E-11 2.0E-6 1.31E-07 E 

Siltstone - Shale 2.86E-12 2.8E-7 1.84E-08 E 

Siltstone 1.02E-14- 1.43E-ll l.OE-9 - 1.4E-6 6.56E-11 - 9.18E-08 T 

Slate 4.81E-10- 1.45E-09 4. 72E-5 -1.42E-4 3.10E-06- 9.32E-06 A 
Slate 9.45E-l3 9.26E-8 6.07E-09 B 
Tuff 1.45E-13- 4.81E-09 1.42E-8 - 4. 72E-4 9.32E-10- 3.10E-05 A 
Tuff 2.36E-09 2.31E-4 1.52E-05 B 

Material Intrinsic Permeability Hydraulic Pneumatic Ref 
k Conductivity Conductivity 

Kw••- K.;. 
SOILS S.l.(cm2

) S.L(cm/sec) S.I.(cm/sec) Ref 
Calcium kaolinite 2.12E-11- l.ISE-10 2.08xlO.(j- 1.16xlo-s 1.36E-07- 7.61E-07 B,V 
Caliche (compacted) S.OSE-14- 1.01E-12 4.98xl0"9

- 9.95xl0-s 3.27E-10- 6.53E-09 B 
Caliche (compacted) 2.04E-13- 1.02E-12 2x10"8

- 1.0x1o· 1.31 E-09 - 6.56E-09 v 
Caliche (compacted) S.IOE-14- 1.84E-13 5.0x10"9

- 1.8xl0'8 3.28E-10- l.lSE-09 v 
Clay 4.81E-13 -4.81E-10 4.72xl0-ll- 4.72xl0-s 3.10E-09- 3.10E-06 A 
Clay 1.01E-12 9.95xlo-s 6.53E-09 B 
Clay 1.02E-14- 4.79E-12 1.00x10"9

- 4.70xl0· 6.56E-11 - 3.08E-08 D 
Clay 1.02E-16- 4.79E-12 1x10" - 4.7xto·7 6.56E-13- 3.08E-08 T 

Clay < 1.02E-11 < l.Oxto-~> < 6.56E-08 u 
Clay < 1.02E-12 < l.Oxto·7 <6.56E-09 v 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

195 

Material Intrinsic Permeability Hydraulic Pneumatic Ref 
k Conductivity Conductivity 

Kwotor K.;. 
SOILS S.I.(cm1

) S.I.(cm/sec) S.I.(cm/sec) Ref 
Clay- 1.04E-20 l.OOE-10 6.56E-12 c 
montmorillonite 
Clay - kaolinite 1.04E-18 l.OOE-8 6.56E-10 c 
Clay - unweathered 5.18E-21 -1.33E-17 4.98E-11 - 1.27E-7 3.27E-12- 8.33E-09 B 
marine 
Clay - unweathered 8.32E-21 - 2.08E-17 8.0E-11 - 2.0E-7 5.25E-12- 1.31 E-08 T 
marine 
Clay- silty 4.95E-18- 9.76E-15 4.75E-8- 9.38E-5 3.J2E-09- 6.J5E-06 B 
Clay- sandy 2.65E-20- 2.65E-15 2.55E-10- 2.55E-5 1.67E-ll - 1.67E-06 B 
Clay- sandy 2.70E-20- 3.64E-20 2.6E-10- 3.5E-IO 1.7IE-ll- 2.30E-Il v 
Clay- sandy 7.28E-15- 2.92E-14 7.0E-5- 2.8E-4 4.59E-06 - 1.84E-05 v 
Clay-lean 2.05E-19 - 2.90E-18 1.97E-9- 2.78E-8 1.29E-l 0 - 1.82E-09 B,V 
Clay - sodium Boston 1.68E-20- 1.03E-l7 1.62E-l0- 9.95E-8 1.06E-ll - 6.53E-09 B,V 
blue 
Clay - Vicksburg 3.13E-20- l.l4E-l9 3.01E-10- l.IOE-9 1.97E-ll -7.22E-Il B,V 
buckshot 
Clay - compacted 3.73E-19- 3.l3E-18 3.59E-9- 3.01E-8 2.36E-l0- l.97E-09 B,V 
Boston blue 
Clay - London l.04E-18 I.OE-8 6.56E-10 w 
Clay - Boston blue 1.04E-18 l.OE-8 6.56E-10 w 
Clay -loess 4.21E-19- 5.18E-19 4.05E-9 - 4.98E-9 2.66E-l 0- 3.27E-l 0 B 

Sodium 1.90E-18 1.82E-8 1.19E-09 B,V 
montmorillonite 
Sodium 1.04E-18- 1.04E-19 l.OE-8 - l.OE-9 6.56E-10- 6.56E-ll w 
montmorillonite 
Clay -silty (CL-ML) 6.14E-18 -2.01E-17 5.9E-8- 1.93E-7 3.87E-09- 1.27E-08 T 

Clay- lean (CL) 5.00E-18- l.lOE-17 4.8E-8 - l.06E-7 3.15E-09- 6.95E-09 T 

Clay - fat (CH) 1.04E-18- 9.99E-18 l.OE-8 - 9.6E-8 6.56E-10- 6.29E09 T 

Clay- quick 2.08E-18 2.0E-8 1.31E-09 Wt 
Clay - Bootlegger 2.08E-17 20E-8 1.31E-08 w2 
Cove clay 
Clay -silty, West 1.24E-l8- 6.76E-l8 1.2E-8 - 6.5E-8 7 .87E-l 0 - 4.26E-09 w3 
Branch Dam 
Cobbles > l.97E-10 > 1.89 > 1.24E-01 A 
Glacial till 1.03E-20- 1.20E-14 9.95E-11- 1.16E-4 6.53E-12- 7.61E-06 B 
Glacial till- NE Ohio 3 .98E-18 - 4.46E-16 3.82E-8- 4.28E-6 2.51 E-09 - 2.81 E-07 B 
Glacial till surficial, 3.98E-18 -4.46E-15 3.82E-8 - 4.28E-5 2.51E-09- 2.81E-06 B 
Montgomery Co., 
Ohio 
G Jacial till, buried, 1.45E-16 - 6.63E-16 1.39E-6 - 6.37E-6 9.12E-08 -4.18E-07 B 
Rohrers Island, Ohio 
Glacial Till, S.IIIinois 4.01E-16- 3.01E-15 3.85E-6- 2.89E-5 2.53E-07- l.90E-06 B 
Glacial Till, S. l.45E-18- 2.41E-15 l.39E-8 - 2.31 E-5 9.12E-10-l.52E-06 B 
Dakota 
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Material Intrinsic Permeability Hydraulic Pneumatic Ref 
k Conductivity Conductivity 

K... •••• K.,. 
SOILS S.I.(cm2

) S.I.(cm/sec) S.I.( em/sec) Ref 

Glacial deposit, 5.18E-12 4.98E-2 3.27E-03 B 
outwash 
Glacial deposit, 5.20E-12- 2.08E-IO 5.0E-2- 2.0 3 .28E-03 - 1.31 E-0 I v 
outwash plains 
Glacial deposit, 1.03E-12- 1.33E-JJ 9.95E-3 to 1.27E-1 6.53E-04 - 8.33E-03 B,V 
esker, Westfield, 
Massachusetts 
Glacial deposit, delta, 1.03E-12- 1.56E-IO 9.95E-3 - 1.50 6.53E-04 - 9.84E-02 B,V 
Chicopee. 
Massachusetts 
Glacial till < 1.04E-14 < I.OE-4 <6.56E-06 v 
Glacial till- mostly 5.90E-14 5.67E-4 3.72E-05 B 
sand 
Glacial till- mostly 3.61E-12 3.47E-2 2.28E-03 B 
gravel 
Gravel 4.95E-12- 1.03E-08 4.75E-2- 99.5 3.12E-03 - 6.53E+OO B 

Gravel 3.12E-12 - 3.24E-l 0 3.0E-2- 3.12 1.97E-03 - 2.05E-O I D 

Gravel - very well 4.32E-09 41.6 2.73E+OO c 
sorted 
Gravel - very fine 3.93E-ll - 5.40E-II 3.77E-l- 5.19E-l 2.47E-02 - 3.40E-02 A 

Gravel - fine 5.40E-11 -7.85E-11 5.19E-1- 7.55E-1 3.40E-02 - 4.95E-02 A 

Gravel - fine 5.42E·ll 5.21E-l 3.42E-02 B 

Gravel - medium 7.85E-ll - l.OSE-10 7.55E-l- 1.04 4.95E-02- 6.82E-02 A 

Gravel - medium 3.25E-11 3.13E-I 2.05E-02 B 

Gravel - coarse I.OSE-10 - 1.48E-1 0 1.04-1.42 6.82E-02 - 9.32E-02 A 

Gravel - coarse l.SIE-11 1.74E-1 1.14E-02 B 

Gravel - very coarse 1.48E-IO- l.97E-IO 1.42- 1.89 9.32E-02- l.24E-Ol A 

Gravel 3.12E-14- 3.12E-12 3E-4 -3E-2 1.97E-05 - 1.97E-03 T 

Gravel - well graded 1.41E-12 -4.01E-12 1.35E-2- 3.85E-2 8.86E-04 - 2.53E-03 T 
ltGW) 

Gravel - poorly 3.02E-12- 9.88E-12 2.9E-2- 9.5E-2 1.90E-03 - 6.23E-03 T 
!graded (GP) 
Gravel - clean > l.04E-10 > 1.0 >6.56E-02 u 
Kaolin 1.04E-17 I.OE-7 6.56E-09 w 
Loess 4.91E-15- 1.48E-l3 4.72E-5 - 1.42E-3 3.10E-06- 9.32E-05 A 

Loess 1.04E-l3 l.OE-3 6.56E-05 v 
Loess 4.16E-19- 5.41E-19 4E-9- 5.2E-9 2.62E-10- 3.41E-10 v 
Loess loam 1.04E-14 l.OE-4 6.56E-06 v 
Mica powder 1.04E-15 I.OE-5 6.56E-07 w 
Peat 6.86E-13 6.6E-3 4.33E-04 B 

Quartz powder 1.04E-14 l.OE-4 6.56E-06 w 
Rock flour 1.04E-17 l.OE-7 6.56E-09 w 
Sand (Beach) 4.91E-l3- 1.97E-12 4.72E-3 - 1.89E-2 3.10E-04- 1.24E-03 A 
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Material Intrinsic Permeability Hydraulic Pneumatic Ref 
k Conductivity Conductivity 

K.. •••• _K,.ir_ 
SOILS S.I.(cm2

) S.I.(cmlsec) S.I.(cm/sec) Ref 

Sand (Beach) 8.26E-07- 2.01E-06 S.IOE-2 -1.97E-1 5.31E-03- 1.29E-02 B 
Sand (Beach) 8.16E-07- 2.04E-06 S.OE-2 - 2.0E-1 5.25E-03 - 1.31 E-02 v 
Sand (Dune) 9.62E-08- 2.89E-07 9.43E-3 - 2.83E-2 6.19E-04 - 1.86E-03 A 

Sand(Dune) 2.36E-07 - 3.07E-06 2.31E-2- 3.01E-l 1.52E-03 - 1.97E-02 B 
Sand (Dune) 1.02E-06- 3.06E-06 0.1 - 0.3 6.56E-03 - 1.97E-02 v 
Sand 4.85E-09- l.OlE-05 4.75E-4- 9.95E-1 3.l2E-05- 6.53E-02 B 
Sand - very fine 4.81E-09- 4.81E-08 4.72E-4- 4.72E-3 3.10E-05- 3.10E-04 A 

Sand - very fine 4.85E-09- 1.42E-08 4.75E-4- 1.39E-3 3.12E-05- 9.12E-05 B 
Sand - very fine 9.77E-08 9.58E-3 6.28E-04 c 
Sand - very fine and 9.57E-09- 2.84E-08 9.38E-4- 2.78E-3 6.15E-05 - l.82E-04 B 
fine 
Sand - very fine and 1.02E-09 - 6.53E-08 l.OE-4- 6.4E-3 6.56E-06 - 4.20E-04 v 
uniform, uniformity 
coefficient = 5-2 
Sand - very fine and 1.02E-09 - 5.1 OE-08 l.OE-4 - S.OE-3 6.56E-06- 3.28E-04 v 
uniform, uniformity 
coefficient = 5-2, 
Bulls liver, Sixth 
Ave., N.Y. 
Sand - very fine and 1.02E-1 0 - 1.02E-09 l.OE-5 - 1.0E-4 6.56E-07 - 6.56E-06 v 
uniform, Uniformity 
coefficient= 5 Bull's 
liver, Brooklyn, N.Y. 
Sand- fine 4.81E-08- 4.81E-07 4.72E-3- 4.72E-2 3.10E-04- 3.10E-03 A 
Sand- fine 2.36E-08- 6.73E-08 2.31E-3 - 6.6E-3 1.52E-04- 4.33E-04 B 
Sand- fine 2.04E-10- 1.93E-07 2.0E-5 - 1.89E-2 1.31E-06- 1.24E-03 c 
Sand- fine 1.02E-08 - 5.1 OE-07 l.OE-3 - S.OE-2 6.56E-05- 3.28E-03 u 
Sand- fine 1.02E-09 l.OE-4 6.56E-06 w 
Sand - fine and 4.85E-08 - l.l8E-07 4.75E-3- l.l6E-2 3.12E-04 -7.61E-04 B 
medium 
Sand - medium 4.81E-07- 2.16E-06 4.72E-2 -2.12E-1 3.10E-03- 1.39E-02 A 
Sand - medium 9.57E-08- 2.36E-07 9.38E-3 - 2.31E-2 6.15E-04 - 1.52E-03 B 
Sand - medium 9.18E-l0- 5.78E-07 9.0E-5 - 5.67E-2 5.90E-06- 3.72E-03 D 
Sand - medium, well 2.57E-06 2.52E-1 1.65E-02 c 
sorted 
Sand - medium and 1.89E-07 - 4.85E-07 1.85E-2- 4.75E-2 1.21E-03- 3.12E-03 B 
coarse 
Sand - coarse 2.16E-06 - 3.13 E-06 2.12E-1-3.07E-1 1.39E-02- 2.01E-02 A 
Sand - coarse 3.90E-07- 9.57E-07 3.82E-2- 9.38E-2 2.51E-03- 6.15E-03 B 
Sand - coarse 9.18E-10- 6.74E-06 9E-5- 6.61E-1 5.90E-06 - 4.34E-02 c 
Sand - coarse, well 3.06E-05 3.00 1.97E-Ol c 
sorted 
Sand - clean, coarse 1.02E-07 - 1.02E-05 l.OE-2- 1.0 6.56E-04 - 6.56E-02 u 
Sand (mixture) S.IOE-08- 1.02E-07 S.OE-3 - 1.0E-2 3.28E-04- 6.56E-04 u 
Sand - coarse and 7 .20E-07 - 1.89E-06 7.06E-2- 1.85E-1 4.63E-03- 1.21E-02 B 
very coarse 
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Material Intrinsic Permeability Hydraulic Pneumatic Ref 
k Conductivity Conductivity 

K •• , •• Kolr 
SOILS S.I.(cm1

) S.I.(cm/sec) S.I.(cm/sec) Ref 

Sand - very coarse 3. 13E-06- 3.85E-06 3.07E-l - 3.77E-l 2.01E-02 -2.47E-02 A 
Sand - very coarse 1.42E-06- 4.37E-06 1.39E-l - 4.28E-1 9 .12E-03 - 2.81 E-02 8 
Sand and Gravel 9.57E-08- 2.36E-06 9.38E-3 -2.31E-1 6.15E-04 - 1.52E-02 8 
Sand - very coarse, 2.84E-06 -7.20E-06 2.78E-1 -7.06E-1 1.82E-02- 4.63E-02 8 
and Gravel, very fine 
Sand - Scituate, 4. 13E-08- 9.68E-08 4.05E-3 - 9.49E-3 2.66E-04 - 6.23E-04 8,V 
Massachusetts 
Sand - Plum Island 1.89E-07- 2.71E-07 l.85E-2 - 2.66E-2 1.21E-03- 1.74E-03 8,V 
Sand - Fort Peck 1.77E-08- 2.95E-08 l. 74E-3 - 2.89E-3 J.l4E-04- 1.90E-04 8,V 
Sand - Ottowa sand 5.76E-08- 8.62E-08 5.65E-3 - 8.45E-3 3.71E-04- 5.54E-04 8,V 
Sand - Union Falls 4.25E-07- 1.01E-06 4.17E-2 - 9.95E-2 2.74E-03- 6.53E-03 8,V 
Sand - Franklin Falls 9.21E-09- 1.53E-08 9.03E-4- 1.5E-3 5.92E-05 - 9.84E-05 8,V 
Sand - from dike 1.53E-09- l.84E-08 1.5E-4 - l.SE-3 9.84E-06- l.ISE-04 v 
Sand - dam filters l.53E-08- l.01E-06 1.5E-3 - 9.95E-2 9.84E-05 - 6.53E-03 8,V 
Sand- silty 7.08E-11- 7.08E-07 6.94E-6- 6.94E-2 4.55E-07 - 4.55E-03 8 
Sand- silty 1.02E-09 - 2.04E-08 1.0E-4 - 2.0E-3 6.56E-06- 1.31E-04 u 
Sand- silty 7.14E-14- 3.06E-13 7.0E-9- 3.0E-8 4.59E-10- 1.97E-09 v 
Sand - poorly graded > 4.08E-11 > 4E-6 >2.62E-07 T 
ltSP) 
Sand - coarse 9.18E-10- 6.12E-06 9E-5- 6E-1 5.90E-06- 3.94E-02 T 
Sand - medium 9.18E-10- 5.10E-07 9E-5- SE-2 5.90E-06- 3.28E-03 T 
Sand- fine 2.04E-1 0 - 2.04E-07 2E-5 -2E-2 1.31E-06- 1.31E-03 T 
Sand -silty (SM) 2.65E-11 - 1.20E-1 0 2.6E-6 - 1.18E-5 1.71E-07 -7.74E-07 T 
Sand - clayey (SC) 1.02E-12- 4.90E-12 l.OE-7 - 4.8E-7 6.56E-09- 3.15E-08 T 
Sand - silty and 1.94E-12- 1.38E-11 1.9E-7- 1.35E-6 1.25E-08 - 8.86E-08 T 
clayey (SC - SM) 
Silt 4.81E-10- 4.81E-09 4.72E-5- 4.72E-4 3.10E-06- 3.10E-05 A 
Silt 9.45E-10 9.26E-5 6.07E-06 8 
Silt 9.18E-14 -7.23E-09 9E-9 - 7.09E-4 5.90E-10- 4.65E-05 D 
Silt 1.02E-10- 5.10E-09 1.0E-5 - 5.0E-4 6.56E-07- 3.28E-05 u 
Silt- loess 1.01E-12- l.77E-08 9.95E-8- 1.74E-3 6.53E-09 - 1.14E-04 8 
Silt -loess 1.02E-12- 2.04E-08 l.OE-7 - 2.0E-3 6.56E-09 - 1.31 E-04 T 
Silt- sandy 7.08E-14- 3.07E-13 6.94E-9- 3.0JE-8 4.55E-10- 1.97E-09 8 
Silt - Boston l.OIE-13- 2.01E-11 9.95E-9- 1.97E-6 6.53E-1 0 - 1.29E-07 8,V 
Silt - North Carolina 5.67E-12- 1.30E-09 5.56E-7- 1.27E-4 3.65E-08 - 8.33E-06 8,V 
Silt (ML) 3.57E-12- 8.06E-12 3.5E-7 -7.9E-7 2.30E-08- 5.18E-08 T 
Silt - clayey 1.02E-ll l.OE-6 6.56E-08 w 
Silt - clayey, Little 2.04E-10 2.0E-5 1.3IE-06 w4 
Pic River, Ontario 
Silt - elastic (MH) 5.51E-I3- 2.5IE-12 5 .4E-8 - 2.46E-7 3.54E-09- 1.6IE-08 T 
Till 1.45E-I 2 - 2.4 IE-10 1.42E-7 - 2.36E-5 9.32E-09- 1.55E-06 A 
Till 1.02E-15 - 2.04E-09 l.OE-I 0 - 2.0E-4 6.56E-12- 1.31E-05 T 
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APPENDIXH2 

ANISOTROPIC FLUID CONDUCTIVITIES OF ROCKS AND SOILS 
Intrinsic Permeability Hydraulic Conductivity Pneumatic Conductivity Reference 

k Kwat•r Kalr 
S.I.(cm2) S.I.( em/sec) S.I.(cm/sec) 

Horizontal Vertical Horizontal Vertical Horizontal Vertical 
Conductivity Conductivity Conductivity Conductivity 

1.02E-17 • 1.02E-JS 1.02E-18 • 1.02E-16 I.OE-12 • I.OE-10 I.OE-13 - I.OE-11 6.56E-14- 6.56E-12 6.56E-JS • 6.56E-13 K 

1.02E-13 • 1.02E-11 5.10E-14- 1.02E-12 J.OE-08- I.OE-06 5.0E-09- I.OE-07 6.56E-1 0 • 6.56E-08 3.28E-1 0 - 6.56E-09 K 

1.02E-12 • 1.02E-IO 5.10E-13- 5.10E-11 J.OE-07 - I.OE-05 5.0E-08- 5.0E-06 6.56E-09 - 6.56E-07 3.28E-09- 3.28E-07 K 

1.02E-12- 1.02E-10 5.10E-13- S.10E-11 I.OE-07 - I.OE-05 S.OE-08 - S.OE-06 6.56E-09 - 6.56E-07 3.28E-09- 3.28E-07 K 

4.59E-06 9.18E-09 4.SE-Ol 9.0E-04 2.9SE-02 5.90E-OS L 
I 

1.02E-17 1.02E-17 I.OE-12 I.OE-12 6.56E-14 6.56E-14 K 

5.10E-16- 1.02E-13 2.5SE-16 • 5.10E-14 5 .OE-11 • I.OE-08 2.5E-11 • S.OE-09 3.28E-12 • 6.56E-10 1.64E-12 • 3.28E-10 K 

3.47E-10 3.47E-10 3.4E-OS 3.4E-05 2.23E-06 2.23E-06 J 

1.02E-17 -1.02E-15 5.JOE-18 • S.IOE-16 l.OE-12- I.OE-10 S.OE-13- 5.0E-11 6.56E-14- 6.56E-12 3.28E·14- 3.28E-12 K 

2.04E·II 1.02E-II 2.0E-06 J.OE-06 1.31E·07 6.56E·08 A 

2.14E-09 2.14E·IO 2.1E-04 2.1E-OS 1.38E-OS 1.38E-06 A 

2.86E-10 3.06E-11 2.8E-05 3.0E-06 1.84E-06 1.97E-07 A 

Intrinsic Permeability Hydraulic Conductivity Pneumatic Conductivity Reference 
k Kwat•r Kalr 

S.I.(cm1
) S.I.(cm/sec) S.I.(cm/sec) 

Horizontal Vertical Horizontal Vertical Horizontal Vertical 
Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity 

B 

c 
D 
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Clay- soft 0.66 E 
I 

Clay - varved 0.3-0.66 F 
! 

Clay - varved 0.66 G 

Clay - varved 0.025-0.25 H 

Clay - varved 0.066-0.3 I 

Sand, silt and clay 0.1 S.IOE-07 5.20E-08 S.OE-2 S.IE-3 3.28E-03 3.35E-04 M 

Silt - organic 0.6-0.8 A 

Varved soil- New 0.27-0.68 3.47E-I3 • 3.43E-I2 2.34E-13 • 9.64E-13 3.4E-8 ·3.36E-7 2.29E-8 • 9.45E-8 . 2.23E-09 • 6.20E-09 I .50E-09 • 6.20E-09 N 
Liskeard 

References for Formation Conductivity Values 
A) Golder Associates, Development of site suitability criteria for a high level waste repository. Lawrence Livermore Laboratory Report, UCRL • 13793, 1977 
B) Haley and Aldrich, Engineering properties of foundation soils at Long Creek-Fore River areas and back cover. Report No. I. Maine State Highway 

Commission, 1969. 
C) P. Lumb and J. K. Holt, Geotechnique, 18, 25-36, 1968. 
D) B. H. Subbaraju, T. K. Natarajan and R. K. Bhandari, Proc., 8th International Conference of Soil Mechanics and Foundation Engineers, Moscow, vo1.2.2, 

pp.217-220. 
E) D. J. Bazzet and A. F. Brodie, Ontario Hydro Research News 13 (4), 1-6, 1961. 
F) H. T. Chan and T. C. Kenny, Canadian Geotechnicaljouma110(3) 453-472, 1973. 
G) T. C. Kenny and H. T. Chan, Canadian Geotechnical Joumall0(3) 473-488, 1973. 
H) L. Casagrande and S. J. Poulos, Canadian Geotechnical Jouma16(3) 287-326, 1969. 
I} T. H. Wu, N.Y. Chan and E. M. Ali, J. Geotechnical Engineers Division, American Society of Civil Engineers, vol. 104 no. GT7. Pp. 899-905. 
J) S.l. Tsien, Stabilization of marsh deposit. Highway Research Board Bulletin, 115, 15-43, 1955. 
K) P. A. Domenico and F. W. Schwartz. Physical and Chemical Hydrogeology. New York: Wiley, p. 824, 1990. 
L} G. Segol and G. F. Pinder, Transient simulation of salt water intrusion in southeastern Florida. Water Resources Res. 12(1), 65-70, 1976. 
M) S. S. Papadopulos and S. P. Larson, Aquifer storage ofheated water: II. Numerical Simulation of field results, Groundwater 16(4), 242-248, 1978. 
N) H. R. Chan and T. C. Kenney, "Laboratory Investigation of Permeability Ratio ofNew Liskeard Varved Soil," Canadian Geotechnical Journal, Vol. 10, pp. 

453-472, 1973. 

N 

18 
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APPENDIXH3 

YOUNG'S MODULII OF ROCKS AND SOILS 

Material Young's Modulus Young's Modulus Reference 
ROCK U.S.(psi)*l06 S.I.(GPa) 

Amphibolite 13.6 - 17.6 93.8 - 121.4 '· Anhydrite 9.9 68.3 '· Basalt 5.0 - 14.6 34.9 - 100.6 A 

Basalt 7.1 - 16.2 49.0- 112.0 B 

Basalt 2.8 - 16.2 19.6 - 98.1 G3, G6, G1, G9 

Basalt 0.2 - 16.2 48.5 - 111.5 a. 
Basalt 8.5 - 14.2 58.6 - 98.0 N 

Chalk 0.01 - 1.7 0.1 - 12.0 H 

Coal 0.2 - 4.3 1.0 - 30.0 H 

Coal 1.4 - 2.8 9.7 - 19.3 N 

Coal 1.5 - 2.9 10.0 - 20.0 OJ 

Diabase 10.4 - 15.5 72.0 - 107.0 B 

Diabase 4.3 - 12.8 29.4 - 88.3 G4, G6 

Diabase 3.2 - 16.5 22.0 - 114.0 G1 

Diabase 11.6 - 15.6 80.0 - 107.5 a. 
Diabase 12.6 - 16.9 86.9 - 116.5 '· Diorite 7.9 - 12.6 55.0 - 87.0 B 

Diorite 10.9 - 15.6 75.2 - 107.6 II 
Diorite 9.9 - 14.2 68.2 - 98.0 N 

Dolerite 11.4 - 15.6 78.6 - 107.6 N 

Dolomite 7.1 - 13.5 49.0- 93.0 B 

Dolomite 8.0 - 13.0 55.2 - 89.6 c 
Dolomite 2.8 - 12.0 19.6 - 82.4 GJ,G6 

Dolomite 10.3 - 13.5 71.0 - 93.0 G1,G9 

Dolomite 16.0 110.3 - 121.3 '· Dolomite 5.7 - 11.9 39.3 - 82.0 N 

Dunite 21.6 - 26.5 148.9 - 182.7 •• 
Gabbro 8.5 - 15.7 58.8 - 107.8 G3, G6, G1 

Gabbro 8.4 - 12.6 58.4 - 87.1 G1 
Gabbro 12.9 - 18.4 88.9 - 126.9 •• 
Gabbro 9.9 - 15.6 68.2 - 107.6 N 

Gneiss 2.4 - 11.7 16.8 - 81.0 A 

Gneiss 2.8 - 8.6 19.6 - 58.8 GJ,G6 

Gneiss 3.6 - 8.6 24.5 - 58.8 G9, GIO 

Gneiss (Feldspathic) 12.0 - 17.3 82.7 - 118.6 •• 
Granite 3.8 - 10.9 26.2 - 75.5 A 

Granite 2.5 - 11.0 17.0 - 76.0 B 

203 
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Material Young's Modulus Young's Modulus Reference 
ROCK U.S.(psi)*l06 S.I.(GPa) 

Granite 3.7 - 10.0 25.5 - 68.6 G3,G, 

Granite 3.6 - 7.3 25.0 - 50.0 M 

Granite 2.8 - 8.5 19.3 - 58.6 N 

microGranite 4.3 - 11.4 29.6 - 78.6 N 

Granite (sound) 4.5 - 82.7 31.0 - 57.0 01 
Granite (partially decomposed) 1.0 - 2.0 7.0 - 14.0 01 
Ice 1.0 7.1 II 

Igneous Rock (Coarse grained) 1.2 - 18.1 8.0 - 125.0 H 

Igneous Rock (Fine grained) 1.0 - 17.0 7.0 - 117.0 H 

Igneous and Metamorphic (sound 8.3 - 13.9 57.0 - 96.0 03 
& intact) 
Limestone 1.1- 13.3 7.7 - 91.6 A 

Limestone 4.2 - 1 1.9 29.0 - 82.0 B 

Limestone 8.0 - 13.0 55.2 - 89.6 c 
Limestone 1.4 - I 1.4 9.8 - 78.5 G6,G9 
Limestone 1.2 - 11.4 8.0 - 78.5 G1 
Limestone (Crystalline) 2.5 - 14.5 17.0 - 100.0 H 

Limestone (Porous) 1.5 - 14.5 10.0 - 100.0 H 

Limestone 12.6 - 15.6 86.9 - 107.6 II 

Limestone 1.4 - 11.4 6.7 - 78.6 N 

Limestone 3.1 - 6.9 21.0 - 48.0 01 
Limestone (sound & intact) 5.5 - 11.0 38.0 - 76.0 03 
Marble 3.4 - 10.5 23.2 - 72.4 A 

Marble 4.1 - 12.6 28.0 - 87.0 B 

Marble 0.36 - 0.55 2.5 - 3.8 G7, GIO 
Marble 0.23 - 0.39 1.6 - 2.7 Gl 
Marble 0.16 - 0.3 1.1- 2.0 G, 
Marble 12.6 - 15.6 86.9 - 107.6 II 
Marlestone 0.6 - 4.8 4.1 - 33.0 B 

Mica Schist 11.5 - 14.7 79.3 - 101.4 II 
Mudstone 2.8 - 7.1 19.3 - 49.0 N 
Obsidian 9.4 - 11.6 64.8 - 80.0 II 
Oligoclasite 11.6 - 12.3 80.0 - 84.8 II 
Quartzite 6.1 - 14.5 42.4 - 100.0 A 

Quartzite 6.1 - 14.5 42.0 - 100.0 B 
Quartzite 3.7 - 12.6 25.5 - 87.0 GIO 
Quartzite 4.1 - 12.6 28.0 - 87.0 G6 
Quartzite 14.1 97.5 G1 
Quartzite 1.6 - 17.3 11.0 - 119.0 H 
Quartzite 11.9 - 14.0 82.1 - 96.5 II 
Rock Salt 5.1 35.4 II 
Salt 0.7- 6.4 5.0 - 44.ID H 
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Material Young's Modulus Young's Modulus Reference 
ROCK U.S.(psi)*l06 S.I.(GPa) 

Sandstone 0.3 - 5.7 1.9 - 39.2 A 

Sandstone 1.4 - 7.3 9.7 - 50.0 B 

Sandstone (medium hardness) 2.0 - 4.0 13.8 - 27.6 c 
Sandstone (hard, dense) 5.0 - 7.5 34.5 - 51.7 c 
Sandstone 7.1 - 12.2 49.0 - 84.3 GIO 

Sandstone 6.4 - 7.4 44.1 - 51.0 G6 

Sandstone 0.2 - I4.5 1.0 - IOO.O H 
Sandstone 1.0 - 2.9 7.0 - 20.0 M 

Sandstone 0.7 - I 1.4 4.8 - 78.6 N 

Schist 0.9 - I l.l 5.9 - 76.9 A 

Schist 5.8 - 10.2 40.0 - 70.5 GJ 

Schist 0.7 - I4.2 5.0 - 98.0 H 
Slate and high durability Shale 1.7 - 13.9 12.0 - 96.0 H 
Shale 1.1- 3.2 7.5 - 21.9 A 

Shale 1.7 - 7.5 12.0 - 52.0 B 

Shale 1.1- 4.3 7.8 - 29.4 G3,G1 

Shale 1.7 - 6.4 12.0 - 44.0 Gg 

Shale (low durability) 0.3 - 4.4 2.0 - 30.0 H 
Shale 0.02 - 2.1 0.2 - 5.0 L 
Shale 1.4 - 2.8 N 

Shale - weatherd (Bearpaw 0.01 69.0 NJ 
formation, Cretaceous period, 
Canada) 
Shale - unweatherd (Bearpaw 0.02 0.14 NJ 
formation, Cretaceous period, 
Canada) 
Shale - (Pierre formation, 0.02 - 0.14 0.14 - 1.0 N1 
Cretaceous period, So. Dakota) 
Shale - (Ft. Union formation, Tert. O.OI - 0.06 0.07 NJ 
period, No. Dakota)_ 
Shale - {Trinity formation, 0.002 - 0.03 O.oi - 0.21 NJ 
Cretaceous period, Texas) 
Shale - (Taylor formation, 0.006 - 0.02 0.04 - O.I4 NJ 
Cretaceous period, Texas) 
Shale- Silty Calyey (Composite 1.0 69 NJ 
Cyclothem of Pennsylvania) 
Shale - Sandy (Composite 0.5 3.4 NJ 
Cyclothem of Pennsylvania) 
Shale - (Mauv, calc. Shale 2.3 I5.9 NJ 
formation, Cambrian _period, Utah). 
Shale - (Quartzose Sh. formation, 2.3 15.9 NJ 
Cambrian period, Utah 
Shale (sound & intact) 1.5 - 5.8 IO.O - 40.0 03 
Siltstone 1.9 - 6.4 13.0 - 44.0 B 

Siltstone 0.007889 - 0.097750 0.05 - 0.67 E1 
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Material Young's Modulus Young's Modulus Reference 

ROCK U.S.(psi)*l06 S.I.(GPa) 

Siltstone 0.0 I 6430 - 0.498055 O.I I - 3.43 E2 

Slate I 1.5 - I6.3 79.3 - I I2.4 •• 
Syenite 8.5 - 11.4 58.8 - 78.5 G3 
Syenite 9.1 - 12.5 62.9- 86.3 o. 
Syenite 8.5 - I 1.4 58.6 - 78.6 N 

SOILS U.S.(psi) S.I.(Mpa) Reference 
Clay (soft) 250 - 500 I .4 - 3.5 F 
Clay (hard) 850 - 2000 5.9 - I.4 F 

London Clay 1450 - 21756 10.0 - 150.0 B 

Clay- soft 435 3.0 J 

Clay - medium 1015 7.0 J 

Clay- hard 2030 14.0 J 

Clay- sandy 5221 36.0 J 

Clay - very soft 76 - 764 0.5 - 52.7 K 
Clay- soft 764 - 3055 52.7 - 21.0 K 
Clay - medium 3055 - 7639 21.0 - 52.7 K 
Clay- stiff 7639 - 15278 52.7 - 10 5.3 K 
Clay- sandy 3820 - 30555 26.3 - 210.7 K 
Clay Shale 15278 - 30555 105.3 - 210.7 K 
Clay- Silty 7639 - 15278 52.7- 105.3 K 
Clay - very soft 350 - 1750 2.0 - 15.0 L 

Clay- soft 700 - 3500 5.0 - 25.0 L 

Clay - medium 2100 - 7000 15.0 - 50.0 L 
Clay -hard 7000 - 14000 50.0 - 100.0 L 
Clay- sandy 3500 - 35000 25.0 - 250.0 L 
Clay- soft (undrained) 208 - 1389 1.5 - 10.0 M 
Clay- medium (undrained) 694 - 6944 5.0 - 50.0 M 
Clay- stiff(undrained) 2083 - 10417 15.0 - 75.0 M 
Clay - soft (drained) 35 - 208 0.3 - 1.5 M 
Clay- medium (drained) 69 - 486 0.5 - 3.5 M 
Clay- stiff(drained) 174 - 2778 1.2 - 20.0 M 
Clay - very soft 50 - 400 0.34- 2.8 N 
Clay- soft 250 - 600 1.7 - 4.1 N 
Clay - medium 600 - 1200 4.1 - 8.3 N 
Clay- hard 1000 - 2500 6.9 - 17.2 N 
Clay- sandy 4000 - 6000 27.6- 41.4 N 
Clay - weak plastic 203 - 580 1.4 - 4.0 o. 
Clay- stiff plastic 609 - 1160 4.2- 8.0 o. 
Clay - semi solid 1000 - 2030 6.9 - 14.0 o. 
Clay- soft 145 - 435 1.0 - 3.0 02 
Clay- stiff 362 - 725 2.5 - 5.0 02 
Clay - semi firm 725 - 1450 5.0 - 10.0 02 
Clay - solid, boulder clay 4351 - 14504 30.0 - 100.0 02 
Clay- soft 290 - 580 2.0- 4.0 03 
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SOILS U.S.(psi) S.I.(Mpa) Reference 
Clay- stiff 1160 - 2756 8.0 - 19.0 03 
Clay- hard 1160 - 2756 8.0 - 19.0 03 
Clayey Silt 422 - 3364 2.9 - 23.2 D 
Clay- soft 72 - 725 0.5 - 5.0 p 

Clay - medium 580 - 1450 4.0 - 10.0 p 

Clay- firm 1015 - 2901 7.0 - 20.0 p 

Clay- sandy 3626 - 5801 25.0 - 40.0 p 

Glacial till {loose) 1400 - 22400 10.0 - 150.0 L 

Glacial till {dense) 2100 - 105000 150.0 - 720.0 L 

Glacial till (very dense) 70000 - 210000 500.0 - 1440.0 L 

Gravel (dense) 14794 - 15084 102.0 - 104.0 o, 
Gravel (loose) 4206 - 11168 29.0 - 77.0 03 
Gravel (dense) 13923 - 27847 96.0 - 192.0 03 
Gravel (without sand) 14504 - 29008 l 00.0 - 200.0 02 
Gravel (coarse and sharp edged) 21756 - 43512 150.0 - 300.0 02 
Loess 2100 - 8400 15.0 - 60.0 L 

Loess 2030 - 8412 14.0 - 58.0 03 
Loess 2176 - 7252 15.0 - 50.0 p 

Muck 73 - 507 0.5 - 3.5 o, 
Peat 58 - 290 0.4 - 2.0 02 
Sand (unconsolidated to lightly 5000 - 15000 34.5 - 24.3 c 
consolidated) 
Sand (loose) 1500 - 4000 10.4 - 27.6 F 
Sand (dense) 5000 - 10000 34.5 - 69.0 F 
Sand (screened crushed 14.9 103.0 h 
quartz, coarse, angular and loose) 
Sand (screened crushed quartz, 28.0 193.0 h 
coarse, an_gular and dens~ 
Sand (screened crushed 18.0 124.0 h 
quartz, medium, angular and loose) 
Sand (screened crushed 27.0 186.0 h 
quartz, medium, angular and 
dense) 
Sand (screened crushed 17.0 117.0 h 
lguartz, fine, ang_ular and loose) 

Sand (screened crushed 30.0 207.0 h 
iquartz, fine angular and dense) 
Sand (screened, medium, 20.0 138.0 12 
suban_gular and loose) 
Sand (screened, medium, 35.0 241.0 h 
subangular and dense) 
Sand (Ottawa standard sand, 30.0 207.0 12 
medium, rounded and loose) 
Sand (Ottawa standard sand, 97.0 669.0 h 
medium, rounded and dense) 
Sand (screened Ottawa sand, fine, 26.0 179.0 lz 
rounded and loose) 
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SOILS U.S.(psi) S.I.(Mpa) Reference 
Sand (screened Ottawa sand, fine, 45.0 310.0 h 
rounded and dense) 
Sand (loose) 2.1 15.0 J 
Sand (dense) 11.6 80.0 J 
Sand and Gravel (loose) 14.5 100.0 J 
Sand and Gravel (dense) 21.8 150.0 J 
Sand (loose) 1528 - 3819 10.5 - 26.3 K 
Sand (dense) 3819 - 15278 26.3 - 105.3 K 
Sand and Gravel (dense) 15278 - 30556 105.3 - 210.7 K 
Sand- Silty 3819 - 30556 26.3 - 210.7 K 
Sand (loose) 1400 - 3500 10.0 - 25.0 L 
Sand (dense) 7000 - 11900 50.0 - 81.0 L 
Sand- Silty 1050 - 3150 5.0 - 20.0 L 
Sand and Gmvel (loose) 7000 - 21000 50.0 - 150.0 L 
Sand and Gmvel (dense) 14000 - 28000 I 00.0 - 200.0 L 
Sand (loose) 1389 - 3472 10.0 - 25.0 M 
Sand (medium dense) 2778 - 8333 20.0 - 60.0 M 
Sand (dense) 6944 - 13889 50.0 -100.0 M 
Sand (loose) 1500 - 3500 10.3 - 24.1 N 
Sand (dense) 7000 - 12000 48.3 - 82.7 N 
Sand (Silty) 1000 - 3000 6.9 - 20.7 N 
Sand and Gmvel (loose) 14000 - 28000 96.5 - 193.0 N 
Sand (loose) 1450 - 3046 10.0 - 21.0 o, 
Sand (dense) 7542 - 12038 52.0 - 83.0 o, 
Sand (loose) 2900 - 11603 20.0 - 80.0 Oz 
Sand (medium) 7252 - 21756 50.0 - 150.0 Oz 
Sand (dense) 7107 - 11313 49.0- 78.0 Oz 
Sand (loose) 1450 - 4206 10.0 - 29.0 03 
Sand (medium) 4206 - 6962 29.0 - 48.0 03 
Sand (dense) 6962- 11168 48.0- 77.0 03 
Sand (loose) 1305 - 3626 9.0 - 25.0 p 

Sand (dense) 6527 - 11603 45.0 - 80.0 p 

Sand (Silty) 1015 - 3045 7.0 - 21.0 p 

Sand and Gmvel (loose) 6527 - 21031 45.0 - 145.0 p 

Sand and Gmvel (dense) 13053 - 26107 90.0 - 180.0 p 

Silt 280 - 2800 2.0- 20.0 L 
Silt 435 - 1450 3.0 - 10.0 Oz 
Silt (soft, silghtly clayey sea silt) 290 - 725 2.0 - 5.0 Oz 
Silt (soft, strongly clayey silt) 73 - 435 0.5 - 3.0 Oz 
Silt (soft) 580 - 1160 4.0- 8.0 Oz 
Silt (semi-firm) 725 - 2900 5.0 - 20.0 Oz 
Silt 725 - 2756 2.0 - 19.0 03 
Silt 348 - 2901 2.4 - 20.0 p 

Miscellaneous Materials U.S.(psi)*lOb S.I.(Gpa) Reference 
Concrete 2.8 - 4.0 0.02 - 0.04 N 
Steel 30.0 0.2 N 
Wood 1.2 - 1.5 0.008 N 
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