
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Summer 8-31-1998

A graph based process model measurement framework using A graph based process model measurement framework using

scheduling theory scheduling theory

Gary Guang-li Mou
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mou, Gary Guang-li, "A graph based process model measurement framework using scheduling theory"
(1998). Dissertations. 951.
https://digitalcommons.njit.edu/dissertations/951

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/951?utm_source=digitalcommons.njit.edu%2Fdissertations%2F951&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A GRAPH BASED PROCESS MODEL MEASUREMENT FRAMEWORK
USING SCHEDULING THEORY

by
Gary Guang-li Mou

Software development processes, as a means of ensuring software quality and

productivity, have been widely accepted within the software development community;

software process modeling, on the other hand, continues to be a subject of interest in the

research community. Even with organizations that have achieved higher SEI maturity

levels, processes are by and large described in documents and reinforced as guidelines or

laws governing software development activities. The lack of industry-wide adaptation of

software process modeling as part of development activities can be attributed to two

major reasons: lack of forecast power in the (software) process modeling and lack of

integration mechanism for the described process to seamlessly interact with daily

development activities.

This dissertation describes a research through which a framework has been

established where processes can be manipulated, measured, and dynamically modified by

interacting with project management techniques and activities in an integrated process

modeling environment, thus closing the gap between process modeling and software

development.

In this research, processes are described using directed graphs, similar to the

techniques with CPM. This way, the graphs can be manipulated visually while the

properties of the graphs-can be used to check their validity. The partial ordering and the

precedence relationship of the tasks in the graphs are similar to the one studied in other

researches [Delcambre94] [Mills96]. Measurements of the effectiveness of the processes

are added in this research. These measurements provide bases for the judgment when

manipulating the graphs to produce or modify a process.

Software development can be considered as activities related to three sets: a set of

tasks (t), a set of resources (p), and a set of constraints (y). The process, P, is then a

function of all the sets interacting with each other: P = {ti, p, y). The interactions of these

sets can be described in terms of different machine models using scheduling theory. While

trying to produce an optimal solution satisfying a set of prescribed conditions using the

analytical method would lead to a practically non-feasible formulation, many heuristic

algorithms in scheduling theory combined with manual manipulation of the tasks can help

to produce a reasonable good process, the effectiveness of which is reflected through a set

of measurement criteria, in particular, the make-span, the float, and the bottlenecks.

Through an integrated process modeling environment, these measurements can be

obtained in real time, thus providing a feedback loop during the process execution. This

feedback loop is essential for risk management and control.

A GRAPH BASED PROCESS MODEL MEASUREMENT FRAMEWORK
USING SCHEDULING THEORY

by
Gary Guang-li Mott

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

August 1998

Copyright © 1998 by Gary Guang-li Mou

ALL RIGHTS RESERVED

APPROVAL PAGE

A GRAPH BASED PROCESS MODEL MEASUREMENT FRAMEWORK
USING SCHEDULING THEORY

Gary Guang-li Mou

Dr. Murat M. Tanik, Dissertation Advisor 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Peter A. Ng, Committee Member 	 Date
Professor of Comput and Information Science, NJIT

Dr. Douglas D. C. Hung, Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Franz J. Kufess, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

13r. Ajaz R. Rana, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr Ali H. Dogru, Committee Member 	 Date
Associate Professor of Computer Engineering Department,
Middle East Technical University

BIOGRAPHICAL SKETCH

Author: 	 Gary Guang-li Mou

Degree: 	 Doctor of Philosophy

Major: 	 Computer Science

Date: 	 August 1998

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science
New Jersey Institute of Technology, Newark, NJ, August 1998

• Master of Science in Computer Science
Florida Institute of Technology, Melbourne, FL, December 1985

• Bachelor of Science in Mathematics and Computer Science
University of Illinois at Chicago, Chicago, IL, August 1984

• Bachelor of Arts in English Language
Anhui University, Anhui, People's Republic of China, January 1982

Presentations and Publications:

Gary G. Mou, Murat M. Tanik and Franz Kurfess
"From Project Management to Process Modeling", Proceedings of the Third World
Conference on Integrated Design and Process Technology, July 1998.

Gary G. Mou and Murat M. Tanik
"A Graph Based Process Representation for Process Modeling", Journal of System
Integration, Vol. 8, No.2 1998.

Gary G. Mou
"On Road to Process Maturity - Current Research on Software Process Modeling",
Proceedings of the First World Conference on Integrated Design and Process
Technology, Dec. 1995.

iv

Gary G. Mou, Murat Tanik, Sang Suh, and Suzanne Delcambre
"Adding Intelligence to Software Process Modeling", Proceedings of the 7th Annual
International Conference on Expert Systems Applications & Artificial Intelligence, Nov.
1995.

Gary G. Mou and Sang Suh
"A Firsthand Experience with Expert System Shell, Xi Plus", Proceedings of the 6th
Annual International Conference on Expert Systems Applications & Artificial
Intelligence, Nov. 1994.

Gary G. Mou
Speaker, on the subject of Software Reverse Engineering at the North Texas Federation's
annual conference on software engineering, 1992.

To my daughter, Adela.

vi

AC KNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Murat Tanik, who throughout the

years has been my teacher, advisor and mentor. His guidance has helped to keep my

research on the right track and his critiques have ensured the quality of my work. Without

his encouragement and reassurance this research would have been impossible.

I am grateful to Dr. Raymond Yeh, whose insights, vision and commitment to the

excellence of software engineering have become the basic principle and ground stone for

my research.

My appreciation also goes to the other members of my supervisory committee, Dr.

Peter Ng, Dr. Douglas Hung, Dr. Franz Kurfess, Dr. Ajaz Rana and Dr. Ali Dogru, for

their participation of the committee and their willingness in spending time reviewing my

dissertation.

The process of research is a process of building on top of each other. In this

respect, I would like to thank Dr. Suzanne Delcambre for her excellent work on process

modeling framework using tasks systems templates, and Dr. Steven Mills for his extension

of this research. Both of their efforts have provided a solid foundation for my continuation

in process modeling.

My special thanks to Mr. Mike Tress for helping me go through the administrative

process on campus, so that I could concentrate on my research.

And, finally, I would like to thank my parents who have been giving me love

throughout my life and have been praying for me in their own way wishing that one day

their son would receive the highest academic degree. My daughter, Adela, has always been

an inspiration star in her daddy's heart. To her this dissertation is dedicated.

vii

TABLE OF CONTENTS

Chapter 	 Page

1. INTRODUCTION 	 1

1.1 Research Rationale and Significance of the Research 	 3

1.2 Problem Statement and Research Objectives 	 4

1.2.1 Process Outcome Prediction 	 5

1.2.2 Process Model Integration 	 6

1.3 Research Approach 	 7

1.4 Dissertation Organization 	 8

2. RESEARCH ON SOFTWARE DEVELOPMENT PROCESS MODELING 	10

2.1 In Search of a "Silver Bullet" 	 10

2.2 Terminology 	 11

2.3 Process Centered Software Development 	 14

2.4 Software Development Paradigms 	 19

2.5 Mathematical Foundation 	 22

2.6 Process Modeling 	 23

2.6.1 Process Models 	 24

2.6.2 Process Model Formalisms 	 25

2.6.3 Process Model Construction Approach 	 30

2.6.4 Process Model Requirements 	 32

2.6.5 Software Process Modeling Issues and Outlook 	 33

2.7 Task System Templates and Resource Models 	 35

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

2.7.1 Task System Templates 	 35

2.7.2 Resource Models 	 38

2.7.3 Process Execution in Task System 	 39

3. SCHEDULING, PROJECT MANAGEMENT, AND PROCESS MODELING 	41

3.1 From Project Management to Process Modeling 	 42

3.2 Scheduling and Project Management 	 43

3.3 An Information Processing Engine 	 46

3.4 Project Tasks and Process Tasks 	 48

3.5 Differences of Project Management and Process Modeling 	 49

3.6 Interactions of Process Modeling and Project Management 	 51

3.7 Integration of Project Management and Process Modeling 	 53

3.7.1 Process Model Setup 	 54

3.7.2 Project Work Breakdown 	 59

3.7.3 Project Tasks to Process Tasks Mapping 	 62

3.7.4 Project Tasks Refinement 	 63

3.7.5 Process Execution and Analysis 	 64

3.7.6 Process Modification Based on Environmental Changes 	 65

4. MEASUREMENT OF DETERMINISTIC MODELS 	 67

4.1 Scheduling 	 67

4.1.1 Static Scheduling and Dynamic Scheduling 	 68

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.L2 Deterministic Scheduling Models and Stochastic Scheduling Models 	69

4.1.3 Single Resource Models 	 70

4.L4 Parallel Resource Models 	 70

4.1.5 Queuing Model and Simulation Approach 	 71

4.2 Scheduling Measurements for Deterministic Models 	 71

4.2.1 Parameters Associated with Tasks 	 72

4.2.2 Scheduling Problem Descriptions 	 72

4.2.3 Parameters Associated with Environment and Resources 	 73

4.2.4 Parameters Associated with Constraints 	 74

4.2.5 Parameters Associated with Objectives 	 75

4.2.6 Characteristics of Schedules 	 76

4.2.7 The Measurements for Single Resource Models 	 77

4.2.8 The Measurements for Parallel Resource Models 	 78

4.2.9 The Measurements for Flexible Flow Shops 	 81

4.3 An Overview of Scheduling in Industrial Engineering 	 82

4.3.1 Shop Floor Control Problem 	 82

4.3.2 Process Control in Industrial Engineering 	 84

4.3.3 Sequencing Rules 	 85

4.3.4 Labor Limited Systems 	 87

4.4 Application of Scheduling to Process Modeling 	 87

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.4.1 A Sample CPM Network 	 87

4.4.2 Properties of the Graph 	 90

4.4.3 Early-start Schedule and Forward Pass Calculation 	 91

4.4.4 Late-start Schedule and Backward Pass Calculation 	 93

4.4.5 Float Time 	 94

4.4.6 Critical Path and Critical Task 	 97

4.5 Scheduling with Resource Constraints 	 98

4.5.1 Resources Limitation and Float 	 99

4.5.2 Scheduling for More Than One Project 	 102

4.5.3 Resource Loading Diagrams 	 103

4.5.4 Resource Planning Using Cumulative Curves 	 106

4.5.5 Criticality Index 	 107

4.6 Resource Constrained Scheduling Algorithms 	 108

4.6.1 Resource Leveling 	 109

4.6.2 Scheduling for Fixed Resource Constraints 	 109

4.6.3 Heuristic Algorithms 	 110

4.6.4 Efficiency of Task Scheduling and Resource Usage 	 111

5. MEASUREMENT OF STOCHASTIC MODELS 	 113

5.1 Scheduling Theory for Stochastic Models 	 113

5.2 PERT Statistics Analysis 	 118

xi

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.2.1 Normal Distribution and Central Limit Theorem 	 119

5.2.2 Estimation of the Mean and Variance of the Task Performance Times 	 120

6. AN INTEGRATED PROCESS MODELING ENVIRONMENT 	 123

6.1 An Integrated Process Modeling Environment 	 123

6.2 Users' Interaction with IPME 	 127

6.3 Graphs in the Process Modeling Engine 	 130

6.3.1 Task Representation 	 130

6.3.2 Task Representation With Layered Graphs 	 133

6.3.3 A Process Instance Example 	 134

6.4 Process Measurement and Improvement Through Graph Analysis 	 136

6.4.1 Ordering of Tasks by Topological Sort 	 136

6.4.2 Resource Assignment Using Maximum Bipartite Matching 	 139

6.4.3 Determine Process Capacity Using Flow Network 	 140

7. CONCLUSION AND FUTURE RESEARCH 	 142

7.1 Conclusion 	 143

7.2 Research Contributions 	 145

7.3 Research Results and Impact 	 148

7.4 Direction for Future Research 	 149

APPENDIX A EMPIRICAL STUDY OF A SOFTWARE PROCESS MODEL 	151

xii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

A.1 Business Practice 	 151

A.2 Process Execution Challenge 	 154

A.3 Process Centered Project Management Setup 	 156

A.4 Process Execution, Measurement and Analysis 	 157

REFERENCES 	 159

LIST OF FIGURES

Figure 	 Page

1 Task system template structure. 	 37

2 Engineering personnel resource type model. 	 39

3 Task state transition mapping. 	 40

4 The three functions of software development activities. 	 43

5 A Gantt Chart 	 44

6 A CPM Network 	 45

7 A process modeling engine. 	 47

8 A process modeling engine with feedback loop. 	 52

9 Inside a process modeling engine. 	 54

10 Overlapping components and component cross-dependency 	 57

11 "Product Development" process tasks. 	 58

12 Project tasks mapped to "Product Development" process tasks 	 61

13 An example tasks execution sequence. 	 89

14 Symbol used in the network. 	 91

15 Early-start and late-start activities. 	 93

16 Float time in the graph. 	 96

17 Sample graph with estimated duration 	 99

18 All early start schedule with unlimited resources. 	 100

19 All early start schedule with restricted resources 	 100

20 Multi-project scheduling interactions. 	 102

xiv

LIST OF FIGURES
(Continued)

Figure 	 Page

21 Sample graph with resource requirement 	 104

22 Sample graph with resource requirement 	 104

23 Cumulative resource requirements. 	 106

24 Basic graph with t, and Vt for each activity. 	 121

25 PERT statistical computations. 	 122

26 An integrated process modeling environment. 	 123

27 Functional dependencies of tasks. 	 131

28 Layered graphs for the task set. 	 133

29 A process instance example. 	 134

30 A resource dependency graph. 	 138

31 Maximum bipartite matching 	 139

32 Process modeling dimensions 	 142

33 A simplified process example. 	 153

xv

NOMENCLATURE

Parameters associated with a process:

τ 	a set of tasks

ρ 	 a set of resources

γ 	 a set of constraints

P 	 a process instance

Parameters associated with tasks and machine models:

Pij 	processing time of task j by resource i

Cij 	completion time of task j b resource i

rj 	release date of task j

d j 	due date of task j

w j 	weight of task j

1 	 single resource

Pm 	 identical resources in parallel

Qm 	resources in parallel with different speed

FFs 	flexible flow shop

α | β | γ 	a scheduling problem triplet

∞ 	a reduction relationship

>*< 	preemption constraint

<* 	precedence constraint

NOMENCLATURE
(Continued)

Symbols for graphical representation of tasks:

SE 	activity early-start time

FE 	 activity early-finish time

SL 	 activity late-start time

FL 	activity late-finish time

T 	 activity time

Ts 	activity total slack time

Measurements:
T 	 net process time

Cr 	 resource capacity usage

make-span

w C

	

J 	 weighted make-span of task j

Lj 	 lateness of task j

tardiness of task j

F1 	 float time of task j

Fp 	float of a particular path

CI 	 criticality index (resource tightness)

Stochastic models:

	

Xi; 	 the random processing time of task j by resource i

the mean or expected value of the random variable Xij

	

Ri 	the random release date of task j

NOMENCLATURE
(Continued)

Dj 	 the random due date of task

the weight of task j

Stochastic dominance

xviii

GLOSSARY OF TERMS

The following is a list of the abbreviations used in this dissertation.

BDC 	 Basic Development Cycle

CASE 	 Computer Aided Software Engineering

CCS 	 Calculus of Communicating System

CMM 	 Capability Maturity Model

CODE 	 Coding

CPM 	 Critical Path Method

CRC 	 Classes, Responsibilities, and Collaborators

CSP 	 Communicating Sequential Processes

DAA 	 Design Activity Agent

DAG 	 Directed Acyclic Graph

DFD 	 Data Flow Diagram

DODAN 	 Design Objects Descriptive Attribute Notation

DoD 	 Department of Defense

FSA 	 Finite State Automation

FTD 	 Feature Test Design

FTP 	 Feature Test Plan

FTX 	 Feature Test Execution

GUI 	 Graphical User Interface

HLD 	 High Level Design

GLOSSARY OF TERMS
(Continued)

ICD 	 Interface control Design

I/F 	 Interface

IPME 	 Integrated Process Modeling Environment

IPSE 	 Integrated Project Support Environment.

ISO 	 International Standards Organization

KPA 	 Key Practice Area

LLD 	 Low Level Design

LPT 	 Longest Processing Time

NJIT 	 New Jersey Institute of Technology

PAC 	 Process Analysis Component

PDC 	 Process Description Component

PDCC 	 Process Data Collection Component

PERT 	 Project Evaluation and Review Technique

PI 	 Process Improvement

PIS 	 Process Interaction Structure

PMI 	 Project Management Institute

PML 	 Process Modeling Language

PSE 	 Process Support Environment

PTD 	 Process Test Design

PTP 	 Process Test Plan

PTX 	 Process Test Execution

GLOSSARY OF TERMS
(Continued)

SDL 	 Specification and Description Language

SEI 	 Software Engineering Institute

SMD 	 State Machine Design

SPT 	 Shortest Processing Time

SRS 	 Software Requirement Specification

TCS 	 Total Customer Satisfaction

WBS 	 Work Breakdown Structure

WFM 	 Work Flow Management

WSPT 	 Weighted Shortest Processing Time

CHAPTER 1

INTRODUCTION

The software research and development community has come a long way trying to find a

"silver bullet" for improving software quality and productivity [Tanik88]. Given the state

of research in the current software development environments the "silver bullet" is unlikely

to exist in all practical sense. However, improving the software process in producing

software products has been widely recognized as the best bullet at hand. Software process

modeling is a means to formally capture and describe the process, simulate the process,

and improve the process through study and manipulation of data gathered during

execution of the process. Software process modeling has gained as much attention in the

academic world as software development processes in the software industry [Yeh94].

Process modeling is not a new invention. Process modeling in other disciplines,

especially in industrial engineering, has achieved significant results [Hatono92]. However,

process modeling in the field of software engineering is yet to be matured. Furthermore,

software process modeling by and large remains the topic of interest in the academic

world, it has not become part of the development activities in the software development

industry. This is, in part, due to the fact that up until now software process modeling

research has mainly concentrated on process representation formalisms [Kellner93].

Many of the process representation formalisms can accurately and succinctly capture

the existing or proposed software processes, allowing these processes to be studied. These

formal process descriptions provide a good foundation for process analysis and

improvement. However, describing a process is just a first step in process modeling. The

1

2

purpose of describing a process is to study the process in order to derive a better process.

A better process can be identified through comparison of a set of process parameters.

Some of these parameters can be measured quantitatively, in which case direct

comparisons are sufficient. However, most of these parameters are neither quantitatively

measurable nor qualitatively comparable. Very often, these parameters can be studied in

terms of functions, where an increase in one parameter would cause a decrease on the

other.

The lack of an industry-wide adaptation of process modeling can also be attributed

to the lack of an integrated process modeling environment where process modeling

activities can be seamlessly combined with software development activities to create a

process centered software development environment. While it is easier to see the output of

software development activities than to appreciate the benefit of software process

modeling activities, an integrated environment would give the development community the

benefit of both.

A process modeling environment should provide the following capabilities

[Kellner93]:

• capability of analyzing the described process and identifying deficiency in the

process through process simulation;

• capability of identifying alternative processes as a base for comparison and selection

based on the constraints and other relevant parameters;

• capability of identifying potential risks through process monitoring and data

collections and making corrective recommendations.

3

The key to these capabilities is process measurement, without which process

comparison would have no base for judgment. Thus, establishing a process measurement

framework within a process modeling environment as described above is the concentration

of this research.

1.1 Research Rationale and Significance of the Research

In addition to satisfying the requirements in pursuing a Ph.D. degree at NET, this research

intends to address a practical problem from a software development division of a major

telecommunications company. This division' engages in the development of a satellite

based personal communications system for commercial use. Software development of

different components of the network is a major part of this endeavor.

This software development organization rigorously follows a collection of

development processes established through years of experience in the software

development of wireless telecommunications systems. Due to its software development

maturity, this division has received an SEI CMM Level 5 certificate (see Chapter 2), one

of the three organizations in the U.S. who have achieved this recognition as of the time of

this writing. (The other two organizations achieving the SEI Level 5 certificate are Boeing

Space & Defense and Lockheed Martin Federal Systems.)

Such an achievement, of course, does not come for free. In order to improve

software development quality and to reduce software maintenance cost, the company has

' Under this company's proprietary information policy, the company name and the real data being used

are not to be disclosed. Instead, some assumed data and procedures are being used in this dissertation.

4

dedicated enormous efforts in solving the fundamental problems faced by the whole

software development industry, especially large software development organizations :-

process improvement is its number one priority.

Being an SEI Level 5 organization, how can it base its software development

activities, including its project management activities, on a process driven environment?

How can it effectively utilize data collected through the execution of the process and

systematically apply these data back to the process? How can it effectively predict the

outcome of its process and, especially, the impact to the outcome due to the volatility and

dynamics of the operating environment? A search for a solution to these problems has

inspired the work of this research.

This research is an example of research "from the real world and back to the real

world". The problem to be resolved is an urgent problem from the software development

activities that the author engages in on a daily basis; the result has become a proposal to

be submitted as part of the organization's Process Improvement initiative in preparation

for the 1998 TCS (Total Customer Satisfaction) regional competition.

1.2 Problem Statement and Research Objectives

Software processes, as Kellner put it, "comprise the technical and managerial framework

established for applying people, methods, tools, and practices to the development and

evolution of software." [Kellner93] A good managerial framework has been established in

many organizations and this managerial framework is reflected in their processes.

However, as mentioned before, while software development processes have gained much

popularity in the software industry, process modeling, as a tool for the technical

5

framework, remains a topic of interest mainly in the academic world. This separation of

the technical framework from its application base diminishes the usefulness of process

modeling and hinders research progress in process modeling as well.

The lack of an industry-wide adaptation of process modeling can be attributed to

two major reasons: lack of forecasting power in the current software process modeling

research and lack of an integration mechanism for the described process to seamlessly

interact with daily development activities. Therefore, this research intends to address these

two problems: process outcome prediction and process model integration.

1.2.1 Process Outcome Prediction

Process models can be described in a variety of ways, from natural language

documentation to syntax sensitive description language to symbolic mathematical

formulae. A formal process description mechanism allows the described process to be

studied formally. However, the objective of process modeling is not to describe the

process, rather, it is to study and manipulate the described process in order to obtain a

better process or be able to predict the outcome of the process. Research of process

modeling in the past tends to concentrate more on the process description side (see

Chapter 2) limiting its application in the real world.

Through the described process, we need to obtain answers to a lot of questions. For

example, how are the resources being utilized? Are we over-staffed or under-staffed?

Which part of the projects can be done in parallel? Whether or not those parallel activities

are necessary or make the most economic sense? Is the deadline realistic? Would adding

more resources reduce the task duration? How do the delays affect the project? Where is

6

the bottleneck? Where is the slack time? Where is the critical path? How do we achieve a

better resource utilization and reduce the development duration at the same time? Without

answers to these questions, project planning and executions are ad hoc.

Answers to the above questions can be quantified and can be obtained through a set

of process effectiveness measurements. These measurements are the results from

execution of the described processes.

1.2.2 Process Model Integration

Although software development process modeling has achieved significant results, the

software development activities in the whole industry, even in the organizations with

higher SEI maturity levels, are still not integrated in the process models. Many of these

organizations have documented processes in place, but these documented processes

mostly serve as policies or guided practice of the software development within the

organization, with implementation of these processes supervised by managers or project

management personnel.

Software project management, on the other hand, are being emphasized throughout

the software development industry. Due to its maturity and simple implementation, most

development organizations feel comfortable using project management techniques in

managing their daily activities. With the help of project management tools, such as

Microsoft Project, or AutoPlan and AutoTeam, project managers are able to keep track of

software development activities and produce reports.

After a careful review, though, one can realize that project management tools serve

as nothing more than an electronic shorthand for paper and pencil method in using project

7

management techniques: Work breakdown structures (WBS) are recorded in a computer,

and different views of the project, such as a Gantt chart, are produced. Schedule

modification and progress updates are done by hand.

What seems to be missing is a mechanism which combines project management and

process modeling in a cohesive environment where project activities can be manipulated

and studied in terms of the established process and processes can be carried out in daily

project activities. This research intends to close the gap between project management and

process modeling by pulling them together using scheduling as an underlying vehicle.

1.3 Research Approach

The ingredient of software development activities is being considered as consisting of

three sets: a set of tasks (τ), a set of resources (p), such as development personnel, and a

set of constraints (y). This description of the software activities is analogous to the

description of a flexible flow shop (FFs) in the industrial engineering, where a set of jobs

have to be assigned to a set of machines with certain constraints.

Scheduling for flexible flow shop situation has been studied in previous works

[Pinedo95] in terms of various scheduling models. This research is an attempt to describe

software development activities using similar deterministic or stochastic models, and thus

provides a basis for theoretical analysis and study of the impact of process to projects and

vise versa. The impact can be quantitatively translated to and interpreted with a set of

measurements, against which the effectiveness of the process is judged.

8

The close interaction of software development activities and process modeling calls

for an integrated environment where the process is described and simulated, the results are

compared, and the execution data are collected.

A sample real world software development and maintenance process is put at test

with the framework established in this research.

1.4 Dissertation Organization

After the introduction in this chapter, Chapter 2, Research on Software Development

Process Modeling, provides a survey of the current research activities and issues on

software process modeling.

One of the concentration of this research is to bring the project management and

process modeling together. Chapter 3 (Scheduling, Project Management, and Process

Modeling) discusses how these two areas are merged and how the scheduling theory and

algorithms are used in a process based project management environment.

Detailed discussions on measurement in scheduling of tasks for a project within a

process modeling framework are provided in Chapter 4 and 5. Chapter 4, Measurement of

Deterministic Models, deals with static resource allocation and measurements, while

Chapter 5, Measurement of Stochastic Models, deals with dynamic resource allocation

and measurements.

Process modeling activities cannot be carried out in isolation. Processes have to be

described, simulated, measured, modified, and process execution data have to be

collected. Chapter 6, An Integrated Process Modeling Environment, introduces such a

9

process modeling environment in which the measurement framework set forth by this

research can be carried out.

Chapter 7 provides a conclusion and a list of future research opportunities along the

line of this research. Finally, the solution to the practical problem encountered in the

telecommunications company mentioned earlier is provided as a case study and is attached

as Appendix A.

CHAPTER 2

RESEARCH ON SOFTWARE DEVELOPMENT PROCESS MODELING .

In recent years, improving process maturity level of an organization has become a

dominant approach for improving software quality and productivity. The technical aspect

of the software process improvement calls for the software development process

modeling, an effort to drive software development in a process driven environment. This

chapter provides a survey of the current software process modeling research. After

introducing some terms used in software process modeling and a discussion of the

software development focus of the 1990s, the mathematical foundation supporting

software process modeling is discussed, followed by a few representative process models

and process modeling approaches. Finally, a process modeling framework using task

systems is looked in detail.

2.1 In Search of a "Silver Bullet"

The need for establishing a software development life cycle was recognized in late 1960's.

As the software systems became larger and more complicated, the software development

industry started to realize the need for a process to control the software development. The

Waterfall model [Royce70], still in use today, is one of the earliest software development

process models.

Since then, the software industry has come a long way on the road of research in the

hope of finding a "silver bullet" [Brooks87, Tanik88] to improve software quality, to

reduce development cycle time and to reduce costs associated with software development

10

11

and maintenance. Different approaches have been tried, programming languages have

gone through several generations of changes, with each generation at a higher level of

abstraction, and a variety of CASE tools are now part of the software development

environment that software developers are depending on. While achievements in these

areas have helped to improve software quality and productivity dramatically in the past, a

level has been reached that further software development improvement cannot solely

depend upon further achievement in these areas alone.

Today, still in search of the "silver bullet", the need for another look at the software

development process came back - with more stringent requirements, more accurate

measurements, and more industry wide practice recommendations. The SEI Capability

Maturity Models [Humphrey89] and the ISO 9001 recommendations marked the era of

software process development rather than the software product development. It is a

widely accepted belief that a mature software development process is an ultimate warranty

for a sound software product [Dsn93] [Heim91]. Thus, the software life cycle research has

reached a theoretical height - software process modeling.

2.2 Terminology

As in any research area, a multitude of terms emerge as soon as people start the activities

in this area, some of which describe the same concept and some misused. Inconsistencies

in the use of the terms result in difficulties in communications. This section provides some

definitions that are widely used in software process modeling research papers. The terms

when used in the context of this dissertation follow these definitions.

12

Software Process: A software process is the ''total set of software engineering

activities needed to transform user requirements into operative software and to evolve it".

[Jacc93]. It is an instance of a software process model. A process differs from a procedure

in the sense that procedure is defined as a particular way of accomplishing a task while a

process is an interdependent set of activities directed towards a particular goal [Singh92].

Some researchers [Ost87] consider a process as consisting of two main components:

a software production process by which software production activities are carried out, and

a software meta-process (see below) used to improve and evolve the whole software

process.

Software Process Model: A software process model is a descriptive representation

of the structure of a software process that is general enough to represent a range of

particular processes and specific enough to allow reasoning about them [Jacc93]. It is an

instance of a software process framework. A software process model can also be

considered as consisting of a production process model and a mew-process model.

Software Process Modeling: Software process modeling is the discipline of

describing and manipulating software process models. The activities of process modeling

include process description, process simulation and process analysis.

Process Description: Process description is the activity of capturing a target process,

whether an existing process or a proposed one, using some formal or informal

mechanisms. An informal process description usually uses a context free natural

languages; examples of formal process description mechanisms can be a mathematical

formula, a context sensitive process modeling language, or a set of directed graphs, and so

on.

13

Process Simulation: Process simulation is an activity of process manipulation. By

interacting with the described process through a user interface, the data associated with

the process (e.g. task duration, resource assignments, constraints, etc.) can be modified so

that a new process is derived. The process modeling engine provides mechanism to

guarantee that the properties of the underlying process description formalism are

maintained throughout the process simulation.

Process Analysis: Process analysis is part of the process simulation. With process

analysis, the described process is validated and theories and algorithms are applied to the

process description formalism to obtain results. These results are measured by data. The

data can then be sent back to the process modeling engine for further processing.

Process Enactment: Process enactment in many research articles [Kellner93]

[Lehman87] refers to the actual carrying out of the described process. In order to avoid

confusion with process execution, usage of the term, process enactment, is avoided in this

dissertation. Instead, the term process simulation is used.

Process Execution: Process execution in this dissertation means the actual carrying

out of the described process.

Software Process Framework: A software process framework is a general outline

that defines the fundamental elements, relationships, limits and constraints of a process and

the paradigms and protocols for constructing a valid process [Frailey93].

Generic Process: A generic process is something that can be used to generate

processes consistent with a software process framework [Frailey93]. Its principal use is in

tailoring the process framework.

14

Production Process: A production process is a process for developing a product.

Meta-process: A meta-process is a process for developing or defining a process

[Ost87].

Process Modeling Language: A process modeling language (PML) is a commonly

used way of describing engineering activities in the software process.

Process Schema: A process schema provides a template description of a group of

process elements, e.g., software production activities, products (artifacts), tools, human

roles, projects, organizations, etc. The schema may consist of related sub-schema.

Process Support Environment: A process support environment (PSE), also known

as process modeling environment, is a human-oriented, integrated system, intended to

allow human beings to interact with computerized tools. It may consist of a process

description mechanism, such as graphs or a process modeling language (PML), possibly a

library of process schema, and various process tools to support definition, instantiation,

evolution, and execution of process models.

2.3 Process Centered Software Development

The focus of the software development industry and the research community has shifted

from its concentration on product of software process in the past to the process itself in

recent years.

During the 1960s, the focus of the software community was on the coding phase of

the development. Most software projects were small, and their success depended on the

effective, informal cooperation of small groups of clever programmers. During the 1970s,

software projects increased in size, requiring more organized team approaches to the

15

development. The advent of higher level programming languages and the maturity of

operating systems freed software developers from implementation details of the software

applications and allowed them to concentrate on product development. Software

development support tools became available to support the life cycle of requirements,

design, integration and test phases. The 1980s elevated the software development from

localized activities to a "globally distributed" effort. Information access and information

sharing assumed greater importance, and cooperation of multi-site development efforts of

large software systems became the topic of the industry. Furthermore, project size

continued to increase and the importance of adopting formal, company-wide standards and

procedures, and professional management approaches, was increasingly recognized.

To meet the new requirements presented by today's software systems, the software

industry in the 1990s is looking into new ways of software development. The search is

based on the past software improvement efforts, as outlined in the following four areas.

Each of the four areas is typically supported by other existing techniques such as expert

systems.

• Computer Aided Software Engineering (CASE)

• Integrated Project Support Environment (IPSE)

16

• Software development management and control

• New software development paradigms

These efforts provide the working basis for the software process modeling and in

turn benefit from the progress in the software process modeling.

CASE tools have long been available to the software development community. The

past success in CASE tools development has encouraged continued interest in this area.

Along with stand-alone software development tools such as compilers, CASE tools are

now available and being used in every phase of the software development life cycle,

including requirement specification tools, detailed design tools, automatic test and

verification tools, project management tools and configuration management tools.

Availability of CASE tools sparked the idea of integrating the tools into a

harmonious software development environment tied together by a software development

process. The idea is to automatically manufacture software just like an assembly line

would do in an automobile manufacturing company. Thus, "software factories" [Tajima90,

Matsu90] became the buzzwords of the software community. In fact, the concept of

"software factories" is nothing more than an Integrated Project Support Environment

(IPSE), where CASE tools and software development processes are married. Although

few of these systems are actually being commercially used [Dsn93], development in this

area is likely to revolutionize the software development in the future.

While tools are being developed, management aspect in the software development

cannot be overlooked. The guidelines for software development management has been

formulated in terms of software development process recommendations as in the Software

Engineering Institute (SEI) Capabilities Maturity Model (CMM) and the ISO 9001 CMM.

17

Specific verifications and checkpoints along with Key Practice Areas (KPA) have been

provided in order to help a software development organization achieve a higher process

maturity level. The checkpoints are further reinforced by formal inspection processes, such

as Fagan Inspections [Fagan86, Hooczko94].

Humphrey has identified and discussed five levels of software process capability

maturity [Humphrey88

1. Initial - This is an ad hoc process level. At this level, there is no or very little

process in place. The operations are chaotic at times and the organization typically

operates without formalized procedures, cost estimates, and project plans.

2. Repeatable - At this level, the organization has achieved a stable process by

initiating rigorous project management of commitments, costs, schedules, and changes.

Because this stability stems from prior experience with similar work, an organization at

this level faces significant risk when confronted with changes to product type, tools,

methods, organizational structures, etc.

3. Defined - The organization at this level has defined the process as a basis for

consistent implementation and better understanding. The process definitions at this level

mainly focus on qualitative matters.

4. Managed - Compared to level 3, the organization at level 4 has initiated

comprehensive process measurements and analysis, beyond those of cost and schedule

performance. Achievement of the managed process level requires a framework for process

examination and analysis. Organizations need a means of examining their processes for

improvement opportunities in areas such as task workflow, communication mechanisms,

task responsibilities, and technology insertion. In addition, this level entails comprehensive

18

process measurement efforts and their use in process improvements. It is through software

process modeling that assistance is provided in identifying and defining such

measurements.

5. Optimizing - This is the highest maturity level. At this level, the organization has a

foundation for continuing improvement and optimization of the process. At this point,

management's focus turns from product improvement to process optimization as a means

of ensuring productivity and product quality. At this stage, quantitative data is used to

fine-tune the process. Achieving this level requires a mechanism for forecasting the impact

of potential process changes in quantitative terms, such as time needed for completion,

manpower requirements, or quality. In addition, this level requires a mechanism for

recording and analyzing quantitative outcomes of previous process executions and

modifications.

As can be seen from the above requirements, a process description mechanism is

needed starting from SEI Level 3. It becomes crucial when moving into Level 4, where

comprehensive process measurements and analysis are needed. As an organization moves

into Level 5, process manipulation becomes an integral part of the software development

activities and a vehicle for improvement of productivity and quality. Therefore, a good

software process model and process modeling environment is essential to move the

organization to a higher SEI level.

One approach to define and execute a software development process is through the

work flow management technique. Work flow management is a formal approach to

process design, operation, and evolution. A work flow is simply an ordered sequence of

activities and decision points. Each step and decision in a work flow typically has a single

19

owner, which may be a specific individual assigned some responsibility for an instance of a

process (for example, the assigned engineer for a defect report, or the assigned person for

an inspection moderator) or a functional role within the project, such as the project

manager. Execution can continue from one step to the next only when the owner of a

process step has satisfied all of the step's exit criteria.

A process defined through work flow management is easier to be incorporated into a

process model for further studies, because the work flow has already been captured,

documented, and hopefully, followed. However, the work flow management itself is still a

management aspect, unless a technical framework has been established to reinforce the

process thus defined. In this case, the technical framework becomes a process modeling

environment for a specific process on a limited scope. This is a very good start for a

comprehensive process modeling environment.

2.4 Software Development Paradigms

Much debate has been going on in the software development community as to what type

of process or life cycle is the best for software development. The Waterfall model is one of

the earliest proposed software development life cycle and is still in wide use today. The

Waterfall model has the assumption, and requirements, that the exit criteria of a previous

phase are completely satisfied before the next phase can start. As such it has received lots

of criticism, because the process does not have risk factors built in - a non-perfect exit

from a previous phase imposes threat to the quality of the software and/or the schedule of

the deliveries.

20

While the Waterfall model might still be a good process for small systems or certain

business applications, such as a payroll system or accounting system, especially when the

software development organization has experiences and resources of developing similar

systems in the past, it fails to meet the need of large software development.

A large software system development is typically an evolving activity. Many of these

systems are developed for the first time and over several years. After the system is

completely developed, the phase of enhancement starts. Usually, people (the developers or

the customers) have a better understanding of the system only after it has been developed.

Software development is a process of creation and experiments. It is a process through

which the developers learn by doing. While it is reasonable to expect the developers (and

the customers) to know the product as a whole as the system is evolved, it is unrealistic to

expect them to know every detail before the system is fully developed. For example, it is

almost impossible for the customers to know exactly what they want at the start of the

development life cycle, or for the developers to come up with a perfect design

(documents, code, etc.) before getting somewhat involved in the next phase of the

development. Furthermore, development organizations can't afford to miss the market

window in today's highly competitive society a system has to be introduced to the market

as soon as possible. After introduction of the system to the marketplace, enhancement to

the system can be done based on the use of the system, customers' feedback and

developers' experiences with the system.

Therefore, a number of alternative software development paradigms have been

advocated, among them the rapid prototyping, the interactive and incremental "stepwise

refinement" [Yeh90], and the Spiral Model [Boehm86].

21

These new paradigms are motivated by a desire to manage the uncertainty in

developing the system [Luqi92]. There are at least two different kinds of uncertainty in

software development. The first type has to do with the uncertainty as to whether or not a

given description is truly a specification of the software to be developed. It has been

observed in many software projects that the validation of software specifications is

typically completed during maintenance [Luqi92]. The second type of uncertainty has to

do with the lifetime of a valid specification. There are three types of changes made to the

software: the corrective change (which is 20% of the total number of changes to the

delivered software), the adaptive change (25%) and perfective changes (55%) [Dun90].

The purpose of an adaptive change is to adapt the system to a changing environment.

Adaptive changes are responses to requirements changes which can be planned or

unplanned. Unplanned changes are the most expensive kinds of changes.

To promote the concept of rapid prototyping and stepwise refinement, a research

team at Southern Methodist University calls for a four stage system design environment

which includes requirements specification, hardware software separation, module

specification and system integration [Tanik91, Dogru92, Chris92, Demi92]. To test the

concept, a requirements specification environment, DAA (Design Activity Agent), is built

supported by a requirements specification language, DODAN (Design Object Description

Attribute Notation). The purpose is to provide the designer with the ability to exercise the

prototype at a higher level of abstraction, allowing the designer to explore the system

behavior in order to gain insights into the original requirements specification and to

uncover any new, unforeseen requirements specifications.

22

2.5 Mathematical Foundation

It is important to build a framework in which processes could be understood, compared,

modeled, and improved. We need a systematic basis and a theoretical foundation for

performing these activities. In fact, process modeling is deeply rooted from mathematics

modeling and is strongly supported by theories and development in mathematics.

Activities in processes, by nature, are like events in a concurrent system and can be

abstracted by a dependency graph representing the partial ordering. The dynamic behavior

and the non deterministic nature of the processes can be studied in terms of concurrency

control. Milner's Calculus of Communicating Systems (CCS) [Milner80] and Hoare's

Communicating Sequential Processes (CSP) [Hoare85] are two widely used calculi for

modeling concurrent systems and for extracting the semantics of concurrent systems

[Tanik91].

The Petri Net model [Petri87] is also a ready host for defining the behavior of

various kinds of concurrent systems. The theory of the Petri Net model is derived from the

abstraction of a system as a set of casual relationships between events where asynchrony

between two concurrent events is a nontrivial relationship. A model similar to the Petri

Net model and the CSP is constructed for the system of interacting processes, known as

the Process Interaction Structured (PIS) model [Ziegler76]. This model is described as a

generalization of the activity-scanning discrete event simulation environment.

Representation of open systems by communicating processes can also be modeled in

mathematics. The PIS model can be used to describe the behavior of an object as it is

brought to interact with other objects in the open system. The PIS model is thus a system

description where all observable behavior of an object is projected as an external behavior

23

of that object. Using the PIS model an observer process can be defined to interact with the

system to observe the system behavior from the pattern of events occurring at the

interface between the objects and their environment.

Even development in quantum physics sheds lights in software process modeling.

Bohm in his book Wholeness and the Implicate Order [Bohm80] describes a holistic view

of the universe in which the observers are constantly aware of a system of explicit "world

lines" representing the perception of the motion of "real" world entities, which, by the

perception, are manifest within the implicit order that is the harmonious nature of the

whole. The world lines represent a trace of events in a process. A theory formulated by

axioms and inference rules can be used to compute the pattern of events of a model and to

predict the outcome whenever possible. In classical physics the time-dependent dynamic

behavior of a system is specified by differential equations. In quantum physics the time-

dependent dynamic behavior of the processes is specified by Schrodinger equations

[Sakurai85].

2.6 Process Modeling

Regardless what software process we need to model, process modeling activities typically

involve the following three stages:

• Process capturing and description

• Process simulation and measurement

• Process study and analysis

First of all, we need to understand the process. In order to do this, we need to have

ways to represent the process abstractions and to set up a process model (process

24

capturing and description). We then need to simulate the process and collect data from

simulation of the process (process simulation and measurement). In order to collect data,

we need to resolve process measurement issues. The objective is to analyze the process

(process study and analysis) by studying the data, comparing different alternatives,

simulating different events, etc. These three stages are interactive and recurring, in the

sense that after the final stage, the process is modified, re-described, and re-captured, thus

the first stage starts again.

It is important to note that a process, as part of software development, will exist

regardless of our ability to model it. It is through the modeling that we hope to gain

insights into the process itself, and therefore make improvements to it.

The process description research attempts to use mathematics formalisms and formal

1anguages to describe process tasks. The process simulation and measurement research

attempts to derive a set of measurements from the task representations to record data

collected from process simulation and execution, and to provide feedback to the model for

process improvement in the final stage.

2.6.1 Process Models

Processes are normally captured and described in a process model. There are three basic

types of process models in terms of their functional concentrations [Kellner93]:

• Descriptive models

• Analytical models

• Prescriptive models

25

Descriptive models are used to record how some process or class of processes

actually were performed, or to characterize hypothetical processes that might be

performed. Analytical models are constructed for the purpose of analyzing processes for

particular properties such as concurrency or robustness, abstracting only the features

relevant to determining those properties. Prescriptive (or normative) models are used to

guide, support or enforce the performance of a process, providing advice or instructions

on the steps needed to develop a software system. Of course, it would be ideal if a process

model can encompass all three functions as described above.

2.6.2 Process Model Formalisms

A software process modeling environment must include some process definition simulation

mechanism, or "process engine", and be supplied with process definitions written in some

appropriate language or formalism. The following formalisms are often used to describe

processes:

Data Flow Diagrams: Using Data Flow Diagrams (DFD) to describe a process may

be the oldest and the most straightforward way of representing a process. A directed

graph is used with the vertices describing the source or destination of data, or the

activities performed on the data, and the directed edges depicting information flow. With

DI-D, modeling at different levels of abstraction takes place by describing an activity with

subsequently more detailed data flow diagrams.

DI-Ds have been used extensively as a representation technique of functional system

models [DeMarco79]. DFDs are good candidates for modeling sequential processes. One

of the advantages of using DFDs is that it graphically and intuitively represents data and

26

activities on the data. It is highly data oriented. The limitation of DFD approach is its

dependency on the sequential nature of the process being modeled. Its view of processing

is static, and therefore not well suited to support process control mechanisms such as

iteration and decision making.

Finite State Automation: The Finite State Automation approach is a network-based

modeling technique using graphs. A process is described by means of vertices serving as

states and edges serving as transitions between states.

There are a number of models described using Finite State Automation approach.

The work of Humphrey and Kellner [Humphrey89] puts emphasis on the description of

entities, so does the Jackson System Design [Jackson83]. The objective is to describe the

behavioral activity of the software process by means of state transitions on persistent

entities. By allowing for states to be repeatedly visited, the entity process model accounts

for the natural evolution of the software product components. The SP-Machine concept

[Armenise89] also uses a finite state machine formalism to describe the software process.

The model is augmented with the ability to change the configuration of the machine based

on assessments and unforeseen events.

An advantage of using a finite state automata representation as a process model is

that its theory is well understood [Hoperoft79]. A deterministic finite state automata,

however, is limited in the type of processes that can be described. While any non-

deterministic finite state automata can be rewritten, the proliferation of nodes is

undesirable for automata of reasonable size and complexity.

Programmatic: Programmatic models are based on the paradigm of high level

programming languages and techniques. Process programming represents a non-traditional

27

application domain [Ost87]. The inputs and outputs of the process program are

deliverables on the software development life cycle, such as design documentation or

integration test cases. The algorithm of a process program specifies the type and order of

operations performed by machine or human. Techniques for process program development

are similar to software program development and may include steps such as requirements

analysis, coding and verification.

This approach stresses the similarities between process definitions and programs,

and between process definition simulation mechanisms and program

interpretation/execution mechanisms. The potential advantages of this approach include

the ability to exploit our existing understanding of how to design programming language-

like formalisms and simulation mechanisms for them; and the possibility of adapting

existing approaches to program specification, design, and implementation to the

specification, design and implementation of process definitions written in a process

programming languages. While programming languages may not fully satisfy requirements

for process descriptions, they form a basis from which process languages can be

researched. Software engineers are comfortable with concepts related to high level

programming. Critics of programmatic approach argue that programming 1anguages

artificially map a deterministic model to a non-deterministic process [Tully88].

Petri Nets: Petri Nets provide another example of a network-based process modeling

formalism [Peterson81, Reisig92]. A most basic form of Petri Net, referred to as "channel-

agency nets", provide the ability to describe active components as agencies and passive

entities as channels. The notation uses boxes for agencies, circles as channels, and arrows

to indicate a relationship. Basic to the construction of any type of Petri Nets is the

28

requirement that two active components or two passive components are not described in

sequence. That is, the order of events will always alternate between passive and active

component descriptions.

There are a number of process models using Petri Nets. FUNSOFT [Gruhn91] is a

process modeling language which allows for the modeling of control and data flow based

on extended Petri Nets. WEAVER [Fernstrom93] uses an extension of Petri Net based

formalism to describe activities within a hierarchy of activity types.

Petri Nets are well known formalisms that are used to describe the dynamic behavior

of real time processes. Proven algorithms can be used to establish properties of a Petri Net

representation. Petri Nets, however, can become unmanageable and incomprehensible for

large process descriptions.

Rule-based: In a Rule-based model, a set of expert system rules represents the

activities of the process to take place. The ordering of rule enactment is based on

conditions previously satisfied. Rule-based process models include SPM [Williams88],

MARVEL [Kaiser88] and Prism [Madhavji90].

Rule-based models allow for the non-deterministic description of a process. The

ordering of activities is not explicitly stated. Preconditions allow for parallelism to be

exploited. The disadvantage of rule-based models is that it may not be a simple task to

determine a complete picture of the software process.

Task System Representation: In this approach, a process is represented as a task

system [Delcambre94]. A task system is defined as a set of tasks and a precedence

relation, denoted by the symbol., <* between tasks which define a partial ordering on the

tasks. The precedence relation T<* T' indicates that the operation of task T will complete

29

before the operation of the task, T' begins. More formally the set of tasks describing the

process is represented as t=[T1, 	Tn 1, and task system is defined as the pair, C=(t, <*).

Section 2.7 below provides a more detailed description of the task system.

Table 1 provides a summary of the advantages of the process representation

formalisms discussed above. There are also a number of other process representations.

Grapple [HL88] uses a set of goal operators and a planning mechanism to represent

software processes. They are used to demonstrate goal-directed reasoning about software

processes. The Articulator [MS90] describes software processes in terms of object classes

and relations, such as task decomposition hierarchies. The defined process classes and

relations form formal models of software processes, organizations, and resources, which

are used to store process knowledge and simulate process execution [MLS92].

Table 1 Comparison of process representation formalisms.

Process
Representation

Formalism

Basic
Representation

Mechanism
Advantages

DFD
Network-based,
directed graph

Process 	can 	be 	graphically 	and
intuitively represented.

FSA Network-based, finite
state automation

Well established theories and algorithms
can be applied.

Programmatic High 	1evel
programming
 language

Sophisticated programming logic can be
applied.

Petri Nets Network-based,
graphs

Dynamic behavior of real time process
can be described.

Rule Based Expert system rules Sophisticated expert system rules can be
applied.

Task System Network 	based,
combination of DFD

 and FSA

Process 	can 	be 	graphically 	and
intuitively represented; well established
theories and algorithms can be applied.

30

2.6.3 Process Model Construction Approach

In addition to using different formalisms to describe processes. the process models

themselves are often constructed using different approaches:

Role-Based: The basic abstraction in this model is a "role" played by an agent

[CaCo93]. Instead of modeling execution steps, this approach models roles. Managers,

designers, and testers are examples of common roles. Each role is listed on a CRC

(Classes, Responsibilities, and Collaborators) card. Class is the object class of the role;

responsibilities define what a role offers to its community; collaborators enumerate stake-

holding relationships between roles. The CRC cards are input to a process evaluation

framework in which CRC cards are browsed, clustered (classified, grouped) and animated.

Object-oriented: One extension to the role-based approach is the object-based

approach. This approach is based on the view that a development process consists of a

number of distinct, concurrent activities, corresponding to the many contributing "roles".

These roles and the interactions between them are thus objects that must be modeled. A

representative process model using object oriented approach is called IPSE 2.5

[Lonch90].

Force-Based: Another interesting extension to the role-based approach is a force-

based approach [Caco93]. Each role is modeled as a charged particle, such that al1 roles

repel each other with a certain strength. This repulsion is balanced by attraction

proportional to the strength of collaboration between given pairs of roles.

Expert System. Support: Expert systems are used in software process modeling in

several ways. As discussed above, software processes can be represented using rule-based

31

approach, as demonstrated in SPM [Williams88], MARVEL [Kaiser88] and Prism

[Madhavji90].

Other use of expert systems is to treat models as reusable and sharable resources

[KoDo88]. These resources are building blocks that can be used to dynamically build a

larger and more complex models under the control of an expert system. A collection of

software process descriptions and interdependencies among them are put into knowledge-

based process library that supports the organization, access and reuse of software

processes [MLS92].

Expert systems are also used to represent knowledge needed to perform a software

process, to offer an active assistance to that process [AkMe92]. Thus it is possible to

generate process models according to project needs and dynamic modification of the

models during the software process.

Hybrid approach: A model developed at Texas Instruments, Inc., named "Tornado

Model" [Frailey93] intends to bridge the gap between the Waterfall model phases with the

Spiral Model's spiral development activities. The model was inspired by the Spiral Model,

but was extended to incorporate more specific milestones and to support concurrent

engineering.

The Tornado mode1 encapsulates a Spiral model within a traditional development life

cycle. It consists of three levels, the Life cycle, the Phase, and the Basic Development

Cycle (BDC). On the top level is the Life cycle, which is the software development life

cycle used currently by the company, such as the Waterfall model 1ife cycle or the DOD

System Procurement Life cycle, etc. Milestones mark the end of a phase in the life cycle.

Within each phase of the life cycle, the Tornado Model calls for a series of basic

32

development cycles, each of which is similar to a single cycle in the Spiral Model. BDCs

can recursively generate other BDCs as well. This concept of multiple concurrent parent

and child BDCs led to the "Tornado" nomenclature. Within each BDC is a sequence of

four stages: Requirements definition and analysis; Design; Implementation; Evaluation and

integration.

2.6.4 Process Model Requirements

In order to fulfill the requirements of SET Levels 4 and S (Section 2.3), a process model

should have the following capabilities:

• Capability of describing a process formally so that the process can be analyzed

mathematically.

• Capability of doing process analysis based on the process description. This includes

validation of the process consistency, completeness, and correctness.

• Capability of doing process diagnosis to systematically identify bottlenecks,

anomalies, problem areas, and area of opportunities for improvement.

• Capability of doing process comparison based on the input parameters and

operational constraints so that a better process can be identified.

• Capability of forecasting the process behavior based on the past performance

statistics, current performance data, as well as the process itself, thus risks can be

identified and dealt with in a timely manner.

• Capability of adapting to changes quickly so that a new (either modified or

improved) process can be put into use as soon as the operationa1 environment has

changed.

33

A process model with these capabilities enables us to produce an improved process

with all the constraints of the operational environment. It also enables us to continue

monitoring the process for changes.

2.6.5 Software Process Modeling Issues and Outlook

Although research on software process modeling has achieved significant results in recent

years, there are still issues that need to be resolved [Dsn93]:

• Most existing process models are based on the Waterfall model 1ife cycle. They lack

of capabilities of supporting interactive and incremental development.

• Most existing process models have poor capabilities of adapting to development

environment changes. It would be unrealistic to expect that the software

development would go exactly as planned. The software process model should have

a risk management scheme built in and should be made easier to adapt to the

changes.

• Most existing process models only provide recommendations to the software

developers. There are no systematic way of enforcing the processes without

compromising flexibility.

• Most work today has concentrated on development and experimenting with process

modeling notations, and little attention has been paid to the problem of developing

systematic methods for capturing processes in those notations.

• Few of the recently developed notation have yet been used to try to define improved

processes; rather, they have been used to capture and formalize existing processes or

simply to experiment with process definition. There have been attempts to define

34

better software processes, including processes that emphasize risk reduction. So far,

however, these attempts have tended to use informal means of process definition

(natural language description or diagrams with informal semantics) and this has

made them hard to analyze, improve or follow systematically [Dsn93].

• All software process work is ultimately directed at "software process assessment and

improvement", but the term has come to be most closely associated with pragmatic

efforts, such as those initiated by the SEI.

• Process enforcement could create inflexibility and data gathering could create

operational overhead on the software developers. Inappropriate enforcement of

process could slow down software development to the point that the gain would be

diminished.

The software industry has come a long way trying to find the "silver bullet" for

improving software quality and productivity. While the "silver bullet" is unlikely to exist in

all practica1 sense, improving the software process in producing the software has widely

been recognized as the best bullet at hand in the 1990s given the current software

development environments. Software process modeling provides means to formally

describe and capture the process, simulate the process, and improve the process through

study and manipulation of the data gathered during the execution of the process. The

process, the model, and the supporting environment form an essential vehicle to carry us

forward on our road to process maturity.

35

2.7 Task System Templates and Resource Models

One of the process modeling frameworks is seen in [Delcambre94]. In this framework,

tasks are considered to be un-interpreted units of activity. Resources are accounted for in

the model by associating a domain and range with each task. Each task system is described

within a generic task system template. The unique aspect of this approach is in its ability to

handle the evolution of a process representation as the design of the artifact unfolds by

allowing tasks systems to be added or deleted as the artifact structure changes. This allows

for the incomplete specification of resources. The process wil1 change as resources are

added to and deleted from the project. The product specification will evolve over time as

experience is gained and requirements are better understood. The research using tasks

systems has been carried forward by Mills in the direction of process reliability and

process efficiency [Mills96].

In [Delcambre94], process description is seen at two abstraction levels,

corresponding to generic description and dynamic representation. The generic description

describes what the process should look like; the dynamic representation of the process

evolves as time elapses. The generic description is tailored into a dynamic form allowing

specific resources to be allocated to the types defined in the generic description. This is the

idea behind the task system templates and the resource models to be described in this

section.

2.7.1 Task System Templates

A software process can be represented as a task system. A task system is defined as a set

of tasks and a precedence relation, denoted by the symbol, <*, between tasks which define

36

a partial ordering on the tasks. More formally the set of tasks describing the process is

represented as:

τ= {T1 , ..,TN,)

and the task system is defined as the pair,

C = (τ, <*)

where T1, ..., TN represent the set of tasks.

The task system model concept originally came from the operating systems theory

[Coffman73]. Applying the task system model to represent a software process provides

basis for analysis of determinacy, deadlock, mutual exclusion, and synchronization

between concurrent tasks.

The task system is further expanded into a task system template by incorporating

other components, such as input, output and measurement. The structure of a task system

template [Delcambre94] is shown in Figure 1.

37

Task System
♦ Template

Task (T) 	 'Synchronization

Measurement 	Precedence

Input (I) 	Output (0) 	Definition 	(F) 	 	 Relation

	

Resource Type 	Metric 	 Timing

Figure 1 Task system template structure.

A task system template describes a set of tasks and synchronization between

sequentia1 tasks. A task, T, is defined by the triple (I, O, F) where I is the set of resource

types used as input to the task T, 0 is the set of output resource types updated by the

task, and F is the set of measurement definitions for the task.

In terms of implementation, the precedence relationship of the task systems can be

represented with matrix, called precedence matrix. This allows convenient study of the

task systems by manipulation of the precedence matrix.

The task system model is further enhanced by a generic measurement framework,

which allows for metrics to be collected without dictating the specific measurement.

38

2.7.2 Resource Models

A resource type model can be described as a hierarchy of resource type specifications and

includes a set of resource types and the inheritance relationship between resource types.

More formally, the set of resource types, p, is represented as,

ρ={RT1,...RTN}

and the resource type model, Z, is defined as the pair,

Z = (ρ, <*)

The relation <e is a partial order showing the inheritance of characteristics from one

resource type to another from the set p. Thus, RTy <· RTx indicates that the resource

type RTx possesses the characteristics of RTy in addition to its own characteristics.

Viewing the inheritance relationship between resource types as a partial order allows

analysis of the reflexive, symmetric and transitive properties with respect to the relation,

<G.

A resource type model may be used to represent any resource required to execute

the process including personnel, software products and infrastructure elements. One

example [Delcambre94] is shown in Figure 2.

39

Engineers

System Analysis Software Staff Hardware Staff

Developers Testers

Figure 2 Engineering personnel resource type model.

2.7.3 Process Execution in Task System

In [Delcambre94], the process execution is a process of allocating resources to resource

types in the resource model for particular tasks in the task system template.

The execution of tasks in the task system template can be seen as execution of a

finite state machine (Figure 3). Each task can be in a particular state, such as waiting on

predecessor, waiting on execution, waiting on resources, etc. depending on whether the

required resources are allocated to the task and/or whether the task's predecessor(s) have

been executed. The set of task states, σ, is defined as:

= { Dormant, Waiting on Resources, Waiting on Predecessor, Waiting on

execution, Executing, Suspended, Terminated-Complete, Terminated-Abort }

Fulfillment of a certain task and/or required resources being satisfied trigger a

transition of a task from one state to another. Process measurements are taken at

particular collection points.

40

Allocate Resource
Precedence - Precedence

Allocate Resource
Initiate

Start

Precedence

Terminate - ALA

Deallocate

Allocate Last Resourc

Last
Precedence - Precedence

Deallocate

Allocate Last Resource.

_ast
Precedence -

Terminate - Abort

Terminate -

Resume

'Terminate - Abort

Suspend

Figure 3 Task state transition mapping.

During task execution, tasks can be further refined by process tailoring operations.

As additional activities, alternative processing, or rework of previously executed tasks

become necessary during the task execution, either vertica1 decomposition of tasks or

horizontal combination of tasks in the task systems can be performed.

CHAPTER 3

SCHEDULING, PROJECT MANAGEMENT, AND PROCESS MODELING

Scheduling techniques and algorithms were developed half a century ago and are still in

wide use today. Example usage of scheduling theories and techniques can be found in

manufacturing shop-floor control, in airport gate assignment, and so on, A simple version

of scheduling can also be found in an operating system where tasks have to be scheduled.

Books and literature on project management [Moder 83] [PMI96] often cite

scheduling techniques in dealing with tasks assignment. Yet these have limited practical

significance for two reasons: 1. For a project with a large number of tasks the calculation

and maintenance of schedules using elaborated scheduling techniques, such as CPM or

PERT, are difficult and time consuming. Therefore, not too many project managers would

want to do it by hand. 2. For a project with relative simple set of tasks, the trial and error

approach plus some common sense reasoning would be much more effective. Project

management software packages, such as Microsoft Project and AutoPlan/AutoTeam,

attempt to use scheduling techniques to help the project manager to analyze the tasks and

resources assignment, but the application of these techniques is limited to the user

interface where the scheduler can visualize the tasks, for example, by looking at the Gantt

Chart view of the tasks.

Usage of scheduling techniques in process modeling has been by and large ignored.

One reason of this lack of recognition might be due to the fear of labeling process

modeling with project management and thus diminishing the work and significance of

process modeling. In this research, the cal1 is made and the concept is tested in combining

41

42

project management with process modeling in a cohesive modeling environment using

scheduling theory as an underlying vehicle. This process model based project management

environment will push project management to a new and higher abstract level, thus setting

the base for process modeling at different organization levels. This chapter discusses a six

step approach in integrating process modeling into daily software development activities,

including project management and software engineering activities.

3.1 From Project Management to Process Modeling

One of the major trends shaping tomorrow's marketplace is the trend of focusing on

process-based management [Tank 96]. In the software development world, a process-

based project management has emerged. Garg has summarized the software development

activities into three functions [Garg 96]: process engineering, software engineering and

project management.

• Process engineering: Define and maintain software process models.

• Software engineering: Develop and maintain a software product, following a

software process.

• Project management: Coordinate and monitor the activities of software engineering.

Process engineering is concerned with the development of process models, which

are, in general, independent of particular projects or products. These models are used by

project management to create a particular process for a particular project. Software

engineering then follows this specific process to produce a product. Figure 4. shows that

these three functions are an integrated whole entity.

43

Software
Engineering

(An Integrated
Process Modeling Environment

Figure 4 The three functions of software development activities.

Individual tasks in software engineering, which are managed in project management,

may have different meaning and play different roles in process engineering, but defining

and management of these tasks follow the same principles, which are reflected in the

scheduling algorithms. Thus, the underlying principles in scheduling can be readily applied

to process modeling.

3.2 Scheduling and Project Management

A project is a temporary endeavor undertaken to create a unique product or service [PMI

96]. A project is carried out through various activities and these project activities are

managed by project management and conducted through software engineering.

In order to schedule and coordinate project activities, the activities are typically laid

out on a scaled time 1ine, with one bar for each task stretching from the starting time for

the task to the ending time [Moder 83]. This is called a bar chart. It is based on the

44

technique used by Gantt as early as during the First World War, and it is therefore also

referred to as Gantt chart (Figure 5).

The primary advantage of the Gantt chart is that the plan, schedule and progress of

the project can al1 be portrayed graphically together. However, it does not explicitly show

the dependency relationships among the activities, making it difficult to see the impact on

the whole project due to schedule slippage of certain tasks. It does not show resource

assignment on the same chart either. Even with the help of a computer, the Gantt chart is

essentially a manual-graphical procedure, precluding its usage on a large scaled project

with hundreds and thousands of tasks.

Determining a critical path in a project is essential in order to accurately estimate

the project duration, fine-tune resource assignment and understand the risks involved

during the project implementation. This is accomplished with another project management

scheduling technique, called Critical Path Method (CPM). CPM is a network based

Activities
A 	

B 	

C

Scheduled
project
completion
time

D 	

E 	time now 	

i Time in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 weeks

Figure 5 A Gantt Chart

45

scheduling scheme. The set of tasks for the project are organized in a directed graph, with

each node representing an event and each edge representing an activity (or task). The

duration of the task is also shown on the graph. Thus, by calculating the longest path from

the source to the sink of the graph, the critica1 path can be identified (see Figure 6).

A-1 , 4

A-1
B-1,4 	B-2,3 E- , E-2,

5

C3 Dummy
 D-3,8

Dummy

(6)
	

D-2,3

Figure 6 A CPM Network

Critical Path Method facilitates the application of the principle of management by

exception by identifying the most critical elements in the plan, focusing management

attention on the 10 to 20 percent of the project activities that are most constraining on the

schedule. It continually defines new schedules, and illustrates the effects of technical and

procedural changes on the overall schedule. Unfortunately, not all the activity duration can

be estimated accurately, especially when the past data for this type of activities are not

available or the tasks are ill-defined as in many research oriented activities.

PERT (Project Evaluation and Review Technique) overcomes this inefficiency by

adding a probabilistic estimate to the activity duration. PERT time estimates are based on

pessimistic, most likely, and optimistic time estimates for each activity. Thus the overall

project can also be planned using the three different estimates.

46

Introduced and used by the Navy during the 1950's, PERT is most often used when

provisions for measuring uncertainty are important, because of its capability to locate and

calculate available slack time using the three time estimates.

Both CPM and PERT provide a systematic and objective approach to planning,

scheduling, and controlling projects. They share the following network properties:

• The network diagram can be either "node based" (activity on node) or "arrow

based" (activity on arrow). In activity on node diagrams, each node is an activity (or

task); in activity on arrow diagrams, the nodes are events while the activities are

marked on the edges (arrows). (See Figure 6.)

• The network has only one start event and one finish event. (For activity on node

diagrams, the starting and ending activities may be dummy activities.)

• Both networks are described using directed acyclic graphs (DAG) and share the

principles of precedence diagrams.

• If an activity on arrow diagram is being used, a network event (node) stands for the

completion of all tasks leading to it and no activity may begin at any event until all

activities 1eading into that event have been completed.

33 An Information Processing Engine

Process modeling can be described in terms of an information processing engine which

produces output based on the input (Figure 7). The input to this processing engine

[Kellner 93] is as follows:

47

effort estimate

estimated outcomes A Process Modeling required work
Engine

resource constraints staffing profile

Figure 7 A process modeling engine.

• effort estimate for primitive tasks

• estimated decision point outcomes

• resource constraints

The input to the modeling engine is a set of raw data for the particular project.

These data may also include current employee profiles, hardware and software resources,

schedules of past projects, etc. These input may have to be normalized, i.e. translated into

quantitative entities according to certain rules and formulas so that direct comparison and

calculation are possible. With these raw data as input, the engine applies different

modeling algorithms and techniques on the data, and produces the following output:

• schedules

• required work effort

• required staffing profiles

The efficiency of the process modeling engine relies on the modeling techniques

within the processing engine. To achieve efficient results, the modeling engine should have

capabilities of manipulating input data with or without constraints imposed on the data and

48

to produce possible different results based on the constraints. It should also be able to

manipulate data that exhibit stochastic properties as well as deterministic characteristics. It

should not only be used as a planning tool, most importantly it should also be used as a

control tool to control and monitor the process execution, and take corrective action

recommendations if necessary.

3.4 Project Tasks and Process Tasks

When integrating project management into the framework of a process modeling

environment, it is necessary to distinguish two types of tasks: project tasks and process

tasks. One aspect of the project management is to manage execution of the specific project

related tasks, referred here as project tasks. These tasks are obtained by analyzing the

specific project and applying Work Breakdown Structure to the project and its sub-tasks.

Similarly, work breakdown structure is also used in process modeling. Tasks in the

process, referred here as process tasks, are also broken down to smaller tasks, and these

smaller tasks are further broken down to even smaller tasks as needed. Process tasks are

often process execution steps, such as development phases in a software development

cycle. These process tasks, along with other data such as constraints, resources, etc., are

then used as input to the modeling engine. The modeling engine applies scheduling

algorithms and techniques, among other things, to these data and produces results.

49

3.5 Differences of Project Management and Process Modeling

One may ask, since both project management and process modeling go through the

process of work breakdown and both apply scheduling algorithms on the tasks, how does

the process modeling differ from project management?

The answer to this question lies in their objectives: The objective of project

management using scheduling techniques is to align the project tasks and resources

appropriately according to the specified constraints. Execution of these tasks is monitored

by the project manager. If needed, a new schedule is worked out and a new execution

starts. Even with use of a computer, the practice is essentially a manual application of the

scheduling techniques to the tasks obtained from the work breakdown structure. The role

of the computer is simply a short hand and convenient way of documenting the tasks

arrangement and execution status.

The objective of process modeling, on the other hand, is to map the project tasks to

the process tasks in the context of a process model (Section 3.7.3), and let the modeling

engine apply the scheduling techniques to these project tasks automatically, coupled with

external intervention by twisting the parameters, such as constraints, resource

assignments, and so on during the planning and execution stages, in order to put the

project under complete control. The process modeling engine is like a vehicle carrying a

specific project. The objective is to carry the passenger (project) to the destination

according to the passenger's direction. The role of the vehicle is to monitor the road

condition and other environmental constraints, and provide feedback to the driver so that

appropriate actions can be taken. Without this process modeling vehicle, the passengers

would have to be on their own. They may be given directions on how to get to the

50

destination, as in project management where the schedules and milestones have been laid

out, but that's as far as the project management can go.

Kellner points out four differences of project management and quantitative process

models as follows [Kellner 93]:

1. Process models are more general and provide enhanced visibility into behavior.

2. Process models highlight importance of feedback loops.

3. Process models are amenable to resource constraints.

4. Process models are amenable to full Monte Carlo simulation.

There are two major characteristics which distinguish a project from a process, and

therefore, project management from process modeling - repetitiveness and abstractness.

Repetitiveness: A project is unique or non-repetitive, while a process is continuous

or repetitive. Therefore, project management deals with specific, "one-shot" nature of the

project. Project A may be different from Project B. Even though the same techniques and

experiences from Project A may be used directly or indirectly on Project B, Project A and

Project B are different projects and need to be managed separately. On the other hand, a

process modeling deals with repeatable types of activities, regardless of the underlying

projects those activities are geared towards.

Abstractness: A project deals with specific activities, while a process deals with

types of activities. Their work breakdown structures reflect these differences. For

example, writing high level document is a type of activity while writhing high level

document for Project A is a specific task for Project A.

Let's take a look at two examples: producing a software subsystem for a

communications network and producing an automatic speed control software system.

51

They are two totally separate projects. Breaking down these projects to individual tasks

(project tasks) and arranging those tasks in appropriate execution orders require different

domain knowledge. Planning and controlling of these projects are the area of interest of

project management. However, both projects require a set of execution steps that are

common to both, such as designing, coding and testing. These steps, or process tasks, can

represent software development phases, such as a high level design phase, or can be

broken down further to form more refined tasks, such as writing high level design

documents, designing process interfaces, writing interface documents, etc. Planning and

controlling of these repetitive and abstract execution steps is the subject of interest for

process modeling.

3.6 Interactions of Process Modeling and Project Management

Although project tasks and process tasks are different in terms of their characteristics,

management of these tasks shares the same underlying principle and can both benefit from

the scheduling techniques. In this sense, the theory and methodology in project

management research can be applied, with modifications, to the research in process

modeling. It is the intention of this research to bring the two together.

Project tasks can be mapped to process tasks. For example, coding is a process task.

Coding of module A and coding of module B are two project tasks that can be mapped to

the process task, coding. Manipulation of this process task effects the outcome of the

project tasks, and scheduling of the project tasks are done though scheduling of the

process task. Thus, scheduling techniques and algorithms, which have served in project

52

management, now serve to push the project management to a higher abstract level, and

become an integral part of process modeling.

After tasks in process modeling have been defined and refined, a process model has

been setup. Tasks in a project can then be mapped to tasks in the process model.

Execution of this process model produces execution orders of the project tasks. The

collection of data after execution of this process model is fed back to the processing

e on
 estimate 	 schedules schedules

estimated outcomes 	A Process Modeling 	required work --->

Engine

constraints 	

profile

resource constraints 	Planning

Implementation

Data 	 Environmental
Collection 	Changes

Figure 8 A process modeling engine with feedback loop.

engine. If there are any problems occurring during the project tasks execution, these

would be revealed after a re-execution of this process model. Figure 8 shows this feedback

loop, where environmental changes and data collected during the process execution phase

are sent back to the processing engine for further processing.

This process based project management methodology offers a number of

advantages:

53

I. With process modeling, project management becomes guided and systematic. In

order to map project tasks to process tasks, a process has to he in place to guide the

activities. The work breakdown structure and the specific activities as documented in

project management can then be carried on the process modeling vehicle for their

execution. Process modeling thus provides a foundation and framework for project

management.

2. Due to the uniqueness and the "one time deal" nature of each project,

measurement data obtained in the past cannot be readily applied to project tasks, but can

be easily applied to process tasks. Thus, process based project management can be more

predictable. Historical data can help accurately estimate the duration of each activity as

long as the activity scope, resource assignment, performance history, etc. are known.

3. Due to the interactive nature of the process modeling tool, feedback on project

tasks execution can be obtained on a timely basis. New task execution schedule can be

obtained interactively. Thus the planning phase and the implementation phase are closely

tied together.

3.7 Integration of Project Management and Process Modeling

A process modeling engine provides a framework for project management. It is a vehicle

carrying the specific projects to their destination. To better take the advantage of this

vehicle, project management and process modeling have to go together.

Figure 9 provides an inside view of a process modeling engine. It includes the

following steps:

Tasks
mapping

Tasks
refinement

Process model
Setup

Project work
breakdown

Data
Collection

Environmental
Changes

Process
Modeling
Engine

Process simulation
and analysis

54

1. Process model setup.

2. Project work breakdown.

3. Project tasks to process tasks mapping.

4. Project tasks refinement.

5. Process execution and analysis.

6. Process modification based on environmental changes.

Figure 9 Inside a process modeling engine.

3.7.1 Process Model Setup

Since a process model is the framework for the project management in the process

modeling based project management methodology, setting up a process model is the first

thing that needs to be done. This process model is a description of the process currently in

use or a new process to be followed by the organization. This is a process of obtaining

55

process tasks by decomposing software development phases or product development

phases and setting up dependency relationships.

A process model should use formal process representation mechanism, such as a

task system [Delcambre 94] [Mills 96], to describe the process tasks in order to conduct

theoretic analysis of the process [Tanik 91]. A process model should also allow processes

at different abstract levels to be modeled. For example, an organization may want to

model the following processes:

A: product concept formulation

B: marketing research

C: product description

D: product specification

E: product development

F: product verification

G: product support and enhancement

These corporate-wide process steps can be further broken down to smaller process

steps, or sub-components. For example task E, product development, can be decomposed

to component requirements, software requirements, high level design, low level design,

coding/unit tests. Coding/unit tests can be further broken down into coding, code

inspections, writing process test cases, process test execution, writing feature test cases,

feature test execution, writing integration test cases, integration test, etc. Similarly, the

product verification task, F, can be broken down to: writing system test plan, system test

plan inspection, identifying test tools needed, tools development, equipment ordering,

56

setting up test environment, writing test scripts, test scripts inspections, system tests, test

results review, etc.

The level of decomposition depends on which level the process is to be modeled. On

a higher organizational level, the decomposition may stop when higher level tasks such as

"product design", "product test" are identified. On an implementation level, the tasks may

be decomposed into such small tasks that each task is almost 1ike an operational

procedure.

When components are decomposed, the dependency relationships have to be

updated. This decomposition of components may cause component overlapping or cross-

dependency among components.

As seen in the previous list, tasks E and F form a partial order. F cannot be executed

until E is finished. If E and F are taken as two sub-components, they can each be further

decomposed to form smaller tasks. After the decomposition, there may be tasks common

to both E and F, thus the components E and F overlap each other (Figure 10). On the

other hand, tasks within E or F may not only depend on tasks in its own component, they

may depend on tasks from the other component. This is defined here as Component

Cross-dependency.

57

Figure 10 Overlapping components and component cross-
dependency.

E12 designer integration test

E13 build load

E22 test equipment setup

F2 	system test plan review

F3 	prepare system test scripts

F4 	system test execution

In Figure 10 the task, test equipment set up, may be common to both component E

and component F. In this case, the tasks are merged into one task, E22. Task F4, system

test execution, however, not only depends on task F3 (prepare system test scripts) it also

depends on task E13 (build load).

The following list shows the decomposition of Product Development task into sub-

tasks. This Product Development task (or phase) consists of the following sub-tasks

(Figure 11).

58

• high level design and documentation (HLD)

• interface design and documentation (I/F)

• state machine design using SDL (SDL)

• process low level design (LLD)

• writing coding (CODE)

• process test plan (PTP)

• process test execution (PTX)

• feature test plan (FTP)

• feature test execution (FTX)

SDL

I/F

LLD 	Code

	

PTP
P I X

Start

FTX

HLD FTP

Finish

Figure 11 "Product Development" process tasks.

These are process execution steps, not project execution steps. For example, the

LLD step describes low level design activities in the process, not low level design

activities for a particular component or a particular module. The low level design for a

59

particular module has to rely on the work breakdown structure as shown in the next

section.

Note, in Figure 11 the task SDL is marked with an empty circle instead of a solid

one. This means that this step may not be applicable to every situation and therefore is

optional.

3.7.2 Project Work Breakdown

Through the application of a work breakdown structure, a specific project can be divided

into a number of components. This is a standard practice in software engineering and

execution of this step requires domain knowledge of the subject matter and familiarity

with the project.

Tasks obtained here are project tasks. Through analysis of the components, a

functional dependency relationship, i.e. precedence relationship, for each pair of

components is formed. Some components can be developed in parallel with others while

other components have to be developed in certain orders. These tasks and precedence

relationships, along with their execution duration estimates, are the basic ingredients of a

project database.

As an example, a feature in a communications network may involve development

work in the following four processes: local connection state machine, transit connection

state machine, transcoder resource manager and database manager. Both the local

connection state machines require SDL work while the other two processes can start LLD

right after the I/F task. Thus, the tasks for this particular feature are defined as follows

(see Figure 12):

60

• HLD for the feature

• I/F for the feature

• SDL for local connection state machine (SDL-L)

• SDL for transit connection state machine (SDL-T)

• LLD for local connection state machine (LLD-L)

• LLD for transit connection state machine (LLD-T)

• LLD for transcoder resource manager (LLD-X)

• Coding for loca1 connection state machine (Code-L)

• Coding for transit connection state machine (Code-T)

• Coding for transcoder resource manager (Code-X)

• PTP for loca1 connection state machine (PTP-L)

• PTP for transit connection state machine (PTP-T)

• PIP for transcoder resource manager (P 	IPA)

• PTX for local connection state machine (PTX-L)

• PTX for transit connection state machine (PTX-T)

• PTX for transcoder resource manager (PTX-X)

• FTP for the feature

• FTX for the feature

These tasks are specific project tasks for this particular feature. With traditional

project management scheme, these tasks would be linked together with one of the project

management tools in the form of Gantt Chart, CPM or PERT. Execution of these tasks

would be monitored and tracked manually by the project manager.

61

I/F

SRS

HLD

SDL-L

SDL-T

SDL

LLD-L

LLD-T
LLD-X

LLD

Code-L

Code-T
Code-X

CODE

PTP-L PTX--L

PTP-T PTX-T

PTP-X PTP-X

PTP
PTX

Finish

Figure 12 Project tasks mapped to "Product Development" process tasks.

Two important problems need to be considered in breaking down project tasks. One

of the problems in defining the project tasks is to determine the scope of each activity.

Decisions regarding the scope of the individual activities depend on the level of detail

required to plan and control the project, and the resources to be utilized in executing an

activity.

Concurrency is another problem. The extent to which the project activities can be

performed concurrently, instead of sequentially, will have an important impact on

determining the overall length of the project. In one extreme, all the tasks can be executed

concurrently if there are no precedence relationships set up, in which case the overall

1ength of the project is the length of time required to complete the longest task. (This

"concurrent" execution, of course, assumes that unlimited resources are available to be

assigned to the tasks at the same time. Otherwise, the tasks cannot be executed

concurrently anyway due to resource dependency.) In the other extreme, all tasks have to

62

be executed in a serial fashion, no concurrency is possible. The overall length of the

project is then the sum of the length of all the tasks. In most practices, such extremes are

rare, and therefore the length of the overall project is somewhere in between these two

extremes.

In a process model based environment, project tasks breakdown is guided by the

process tasks breakdown.

3.7.3 Project Tasks to Process Tasks Mapping

Now that both the process tasks and project tasks have been identified in Sections 3.7.1

and 3.7.2, we can map the project tasks to the process tasks, so that project tasks can be

executed in the process model.

Figure 12 shows the project tasks being mapped to the process tasks. The original

process tasks have been replaced with project tasks, but the precedence relationship of

Figure 11 is maintained. In a process modeling environment, these mappings should be

done with the help of an interactive graphical user interface, such as GUI.

Two or more project tasks can be mapped to the same process task. For example,

SDL-L and SDL-T are both mapped to the same process task, SDL. Both SDL-L and

SDL-T need to follow I/F, which is the same precedence relationship as the previous one.

Note that SDL is substituted by SDL-L and SDL-T. SDL-X does not apply and

therefore is omitted.

63

3.7.4 Project Tasks Refinement

After individual project tasks have been identified, duration of execution for each can be

estimated, and resources are assigned to each. For a software development process

modeling, the resources are either hardware, tools, or people. Assuming that hardware

equipment and tools are all (unlimitedly) available, the only type of resources that need to

be considered is people. (Availability of hardware and tools is the responsibility of the

manager; cost / benefit study of hardware and tools is the interest of project management.

Both of which are beyond the scope of study here.) See Wills 96] for more theoretical

treatment of resource assignment.

Constraints are one of the major factors affecting the outcome of the network

obtained through this process modeling approach. There are different types of constraints,

such as maximum time requirement for the whole project, resource experience level for a

particular task. Some of these constraints can be quantified and entered into the system,

while others, such as putting people's experience level when assigning resources, can only

be used as guidance when manipulating the process model for a project schedule.

Note, at this stage, task refinement is performed without regard to the network

outcome which will be discussed in the next section. This initial refinement may lead to a

project schedule totally unacceptable at first. Modification of the process occurs at the

next stage. The whole modeling process is an on-going and interactive process until a

satisfied project schedule has been produced.

64

3.7.5 Process Execution and Analysis

This is the heart of the process modeling activities. The objective of this modeling stage is

to study the graph obtained through the previous stages and calculate such things as

overlapping, slack time, critical paths, and so on. The graph is judged against the

constraints and measured according to the measurement criteria, net process time and

resource capacity usage [Mou 96]. Further improvement is achieved by manipulating the

graph interactively. The process modeling engine ensures that the precedence relationship

and the constraints input to the system are not compromised. Further discussions on

process measurements are provided in Chapter 4 and 5. An integrated process modeling

environment where this process execution can be carried out is discussed in Chapter 6.

There are several types of dependencies: activity dependency, functional

dependency, and resource dependency. Activity dependency is inherited from the

underlying process model, which is laid out at the beginning (see Section 3.7.1).

Functional dependency is laid out at the project work breakdown stage as described in

Section 3.7.2. Resource dependency is calculated automatically based on the resource

assignment in Section 3.7.4.

Note that activity dependency and resource dependency may conflict with each

other. Resolution of these conflicts is one of the primary concerns during this execution

and analysis stage.

65

3.7.6 Process Modification Based on Environmental Changes

Process modeling is an on-going activity. It is because of the dynamic and volatile nature

of the project execution environment that makes process modeling based project

management a necessity.

During the project planning stage, the project schedule is created interactively in this

process modeling environment. A traditional project management scheme would have to

stop here as there are no means built-in for systematically monitoring the project

execution. However, producing a workable project schedule is just half a story. The

biggest difference of the task scheduling in software development compared to that in

manufacturing floor control system is that the operating environment in the former keeps

changing. People's availability is not written in the stone; estimated tasks duration may be

off. All these can lead to either delay or slack time in the schedule. These execution data

need to be returned to the process modeling engine for further processing, as shown with

the feedback loop in Figure 8.

Recognizing that change is the norm rather than an exception, software project

management can no longer rely on the traditional project management techniques alone.

Project management tools can record project status and execution steps for a particular

project, but they cannot effectively adapt to the rapidly changing environment, in which

the software project is carried out. Software management has to go beyond the planning

stage automation. A process model based software project management methodology

fulfills this requirement.

Scheduling techniques and algorithms, such as CPM and PERT, have played

important roles both in project management of software development and in shop-floor

66

control of industrial engineering. They will continue to be the key techniques in process

modeling, especially when project tasks and process tasks are integrated in a process drive

project management environment.

A process model based project management environment places greater emphasis on

the feedback loop during the project execution and promotes the concept of managing by

exception. It is more realistic and more adaptive to external changes. It is in this

environment that project management is pushed to a higher and repetitive abstract level.

CHAPTER 4

MEASUREMENT OF DETERMINISTIC MODELS

One of the steps in integrating project management and software development activities

into a process modeling environment as described in Chapter 3 is process execution and

analysis through simulation. This is the time when the parameters (such as resource

assignment, duration of tasks, inter-dependencies, constraints) are twisted in order to

come up with a better process.

How do we tell that one process is better than the other? In order to do process

comparisons, a set of measurements have to be defined. The goal of the process simulation

is to experiment with the process parameters and observe the impact to the process as

indicated by the measurements.

This chapter discusses measurements resulted from manipulating tasks and resources

using scheduling theory and algorithms.

4.1 Scheduling

Scheduling concerns allocation of limited resources to tasks over time. It is a decision

making process that has a goal of optimizing or fine-tuning one or more objectives. The

resources in a software process modeling environment may be software development

personnel, the development machines or test equipment. But here, we only concentrate on

resources being personnel, assuming unlimited availability of development machines and

test equipment at all times. (Taking machines and test equipment into consideration may

be of interest when doing cost analysis, which is beyond the scope of this research.)

67

68

The objectives to be achieved may vary. One possible objective could be

minimization of the completion time of the last task, and another could be minimization of

the number of tasks completed after the committed due dates. Many of these objectives

could be in conflict also. Thus, there is no single "best solution" to satisfy all objectives. A

satisfied process is therefore a process that closely matches user's objectives; and a better-

process is a process that has an improvement in achieving one or more of these objectives.

The sense of "satisfied" or "better" can be quantified in terms of process measurements.

4.1.1 Static Scheduling and Dynamic Scheduling

Scheduling problems can be roughly classified into static scheduling problems and

dynamic scheduling problems. A static scheduling problem consists of a fixed set of tasks

to be performed and a fixed set of resources with which the tasks can be scheduled. A

dynamic scheduling problem deals with an ongoing situation with new tasks continually

being added to the system. The resources in a dynamic scheduling problem also keeps

changing.

To optimize the solution of a static problem, optimization methods can be used. In

general, however, optimization methods are only applicable to relatively small problems.

The computational difficulty tends to increase exponentially with problem size. Large and

complex problems are usually treated with heuristic procedures, such as dispatching rules

or sequencing rules. These are logical rules for choosing which available task to process

and by which resource. In using dispatching rules, the scheduling decisions are made

sequentially, rather than all at once. This is especially useful when processing times are

uncertain, since the rule can decide which task to process next based on those tasks that

69

are actually available to process, rather than those that are supposed to be available. The

measurement of efficiency for a static scheduling problem often uses -make-span", i.e., the

total time to process all the tasks.

With dynamic scheduling problems new tasks are continually being added to the

system. The processing times for these tasks can exhibit either deterministic behavior (see

Section 4.1.2) or stochastic behavior. Analytical approaches dealing with stochastic

behaviors are often used. These are based on queuing models which provide expected

steady state conditions for certain kinds of situations and time distributions. For

measurement of efficiency for a dynamic scheduling problem, the emphasis is often on the

long-term performance of the scheduling algorithms. The measure is typically on average

flow time, the average work-in-process or number of tasks in the system, and resource

utilization. The sequencing rules can be used very effectively for dynamic scheduling

problems. As the size of the system increases, however, simulation is the most frequently

used research methodology.

4.1.2 Deterministic Scheduling Models and Stochastic Scheduling Models

Scheduling is often driven by the nature of the tasks and resources. It is often based on

whether the processing time of the tasks and the availability of the resources exhibit

deterministic behavior or stochastic behavior. Therefore, scheduling models can be

classified into deterministic scheduling models and stochastic scheduling models. In

deterministic scheduling models, it is assumed that the processing time and size of

resources are relatively stable. In stochastic scheduling models, the task data, such as

70

processing times, release dates, and due dates, may not be exactly known in advance or

they are very changeable. In these models, objectives have to be achieved in expectation.

This chapter only deals with measurements of deterministic scheduling models.

Stochastic models are examined in Chapter 5.

4.1.3 Single Resource Models

A problem of single resource models consists of multiple tasks but only one resource. This

is the simplest case where all the tasks are assigned to the single resource. research on

single resource scheduling has been largely based on the static problem of how to best

schedule a fixed set of tasks assigned to the single resource, when all tasks are available at

the start of the scheduling period.

Since there are relatively few applied examples of single resource scheduling

problems, study of single resource models is more useful for gaining insights into the

behavior of scheduling rules under particular criteria than for direct scheduling

applications.

4.1.4 Parallel Resource Models

A problem of parallel resource models consists of multiple tasks and multiple resources.

The development of scheduling procedures for the parallel resources models is much more

complex than for single resource models. In the parallel resources models, all resources

have to be taken into account to best satisfy the selected criteria.

Both single resource models and parallel resource models apply analytical methods.

Due to their complexity the size of problems that can be treated with analytical methods is

71

small and of limited applicability in the "real world". The computer time required to solve

scheduling problems with analytical methods grows exponentially with the number of tasks

and/or resources to be scheduled. Therefore, a different modeling approach is needed.

4.1.5 Queuing Model and Simulation Approach

The application of queuing models to scheduling problems allows for a relaxation of some

of the limiting constraints that are associated with the analytical methods. in particular, the

queuing approaches dea1 with dynamic problems rather than static problems.

To examine realistic, multiple-resource, dynamic scheduling situations, simulation

models are most often used. With simulation, one can examine the performance of various

rules against several criteria. The size of the problems being studied can be expanded, the

effects of startup and ending conditions can be considered, and any kind of task arrival

time patterns, or resource capacity, can also be accommodated.

4.2 Scheduling Measurements for Deterministic Models

In all the scheduling problems considered, the number of tasks and the number of

resources are assumed to be finite. The number of tasks is denoted by n and the number of

resources by m. Let's use the subscript j to denote a task, and subscript i to denote a

resource. The pair (i, j) refers to the processing, or operation, of task j by resource i.

In order to understand measurements using different scheduling algorithms, some

notations frequently used in scheduling literature are introduced below.

72

4.2.1 Parameters Associated with Tasks

The following pieces of data are associated with task j.

Processing time (pi j): 	represents the processing of task j by resource i. The

subscript i is omitted if the processing time of task j does not depend on the resource or if

task j is only to be processed by one particular resource.

Release date (rj): The release date rj of task j may also be referred to as the ready

date. It is the time the task is ready to be executed, that is, the earliest time at which task j

can start its processing.

Due date (dj): The due date dj of task j represents the committed completion date

(the date the task is promised to be due). The completion of a task after its due date may

be allowed, but a penalty could be incurred. When the due date absolutely must be met, it

is referred to as a deadline.

Weight (wj): The weight wj of task j is basically a priority factor, denoting the

importance of task j relative to other tasks in the system.

4.2.2 Scheduling Problem Descriptions

A scheduling problem can be described by a triplet.

α | β | y

α: 	This field describes the operating environment and contains a single entry.

β: 	This field provides details of processing characteristics and constraints and

may contain no entries, a single entry, or multiple entries.

73

y 	This field contains the objective to be achieved and usually contains

• a single entry.

The following sections provide detailed information on what types of parameters can

be entered for each one of these fields.

4.2.3 Parameters Associated with Environment and Resources

The following examples are possible environments.

Single resource (1): The case of a single resource is the simplest of all possible

operating environments and is a specia1 case of all other more complicated operating

environments.

Identical resources in parallel (Pm): There are m identical resources in parallel.

Task j requires a single operation and may be performed by any one of the m resources or

by any one belonging to a given subset. If task j is not allowed to be performed by just any

one, but rather by any one belonging to a given subset, say subset Mj, then the entry Mj

appears in the 13

Resources in parallel with different speeds (Qm): Qm refers to resources in parallel

with different speeds; the speed of the resource i is denoted by vi. The time pij, task j

spends with resource i, is equal to pj/vi, assuming it is performed only by resource i. If all

resources have the same speed, that is, vi = 1 for al1 i and pij = pi, then the environment is

identica1 to the previous one.

Flexible flow shop (FFs): This is a term borrowed from industrial engineering used

for manufacturing process control. There are s stages in series with a number of resources

in parallel at each stage. Each task has to be performed first at stage 1, then at stage 2, and

74

so on. A stage functions as a bank of parallel resources; at each stage task j requires only

one resource and, usually, any resource can perform any task. The queues between the

various stages usually operate under the FIFO discipline.

Often, an algorithm for one scheduling problem can be applied to other scheduling

problems. For example, 1 | | ƩCj (see Section 4.2.5) is a special case of 1 | | Ʃwjcj and a

procedure for the problem 1 I 1 Ʃwjcj can, of course, be used also for 1 I I ECj. In

complexity terminology it is then said that 1 I I ƩCj reduces to 1 I I Ʃwjcj. This is usually

denoted by

1|| ƩCj α I I I Ʃwjcj

Based on this concept, a chain of reductions for the operating environments can be

established as follows:

1 α Pm α Qm

I α Pm α FFs

4.2.4 Parameters Associated with Constraints

The processing restrictions and constraints specified in the 3 field may include multiple

entries. Possible entries in the f3 field are:

Preemption (>*<): Preemption implies that it is not necessary to keep a task on a

resource until completion. The scheduler is allowed to interrupt the processing of a task

(preempt) at any time and put a different task on the resource. The amount of processing a

preempted task already has received is not lost. When a preempted task is put back on the

resource (or on another resource, in the case of resources in parallel), it only needs the

75

resource for its remaining processing time. When preemption is allowed, >*< is included

in the β field; when > *< is not included, preemption is not allowed.

Precedence constraints (<*): Precedence constraints may appear in single resource

or in parallel resource environments, requiring that one or more tasks may have to be

completed before another task is allowed to start its processing. There are several special

forms of precedence constraints. If each task has at most one predecessor and one

successor, the constraints are referred to as chains. If each task has at most one successor,

the constraints are referred to as intree. If each task has at most one predecessor, the

constraints are referred to as outtree. If no <* appears in the 13 field, the tasks are not

subject to precedence constraints.

4.2.5 Parameters Associated with Objectives

The objective to be minimized can be a function of the completion times of the tasks. The

completion time of the operation of task j by resource i is denoted by C. The time task j

exits the system (i.e., its completion time by the last resource) is denoted by Cj.

The objective may also be a function of the due dates. The lateness (Lj) of task j is

defined as:

Lj = Cj = dj,

which is positive when task j is completed late and negative when it is completed early.

The tardiness (Tj) of task j is defined as:

Tj = max (C j - dj , 0) = max (Lj, 0).

76

Make-span (Cmax): The make-span, defined as max(C1, 	Cn), is equivalent to the

completion time of the last task in the system. A minimum make-span usually implies a

high utilization of the resources.

In a single resource model, if the objective is to minimize make-span, (i.e. minimize

the total time to run the entire set of tasks), it does not make any difference in which order

the tasks are executed. In this case the make-span will be equal to the sum of all run times

under any sequence of tasks. This is now so in parallel resource models.

Total weighted completion time (EwiCj): The sum of the weighted completion times

of n tasks gives an indication of the total holding incurred by the schedule.

The following example shows the parameters discussed above are being used in

describing a process model:

FFs 1 rj I EwjCj

This notation denotes a flexible flow shop. The tasks have release dates and due

dates, and the objective is to minimize the sum of the weighted completion times.

4.2.6 Characteristics of Schedules

In scheduling terminology, a sequence usually refers to a permutation of the task set or the

order in which tasks are to be performed by a given resource. The sequence does not have

to be the same as the precedence relationship (<*), however, the precedence constraints

do determine, in part, what the sequence should be. A schedule refers to an allocation of

tasks within a more complicated setting of operations, which could allow for preemption

of tasks by other tasks that are released at later points in time.

77

A schedule is called non-delay if no resource is kept idle when there is an operation

available for processing. For most models, including all models allowing preemption, there

are optimal schedules that are non-delay. However, it can be shown that there are non-

preemptive models where non-delay can cause longer total completion time [Pinedo95]. In

this situation it pays to have periods of idleness.

4.2.7 The Measurements for Single Resource Models

The significance of single resource models leads us to the study of more complicated, and

more realistic, multiple resource models. The single resource environment is simple and a

special case of all other environments. The results that can be obtained for single resource

models not only provide insights into the single resource environment, they also provide a

basis for heuristics for more complicated resource environments. In practice, scheduling

problems in more complicated resource environments are often reduced to sub-problems

that deal with single resource. For example, a complicated resource environment with a

single bottleneck may give rise to a single resource model.

For the single resource environment, the following theorem has been proved

[Pinedo95]:

Theorem 4.2.7: For 1 || Ʃwjcj the WSPT rule is optimal,

where WSPT stands for Weighted Shortest Processing Time first. According to this

theorem, if tasks are ordered in decreasing order of wj/pj then the total processing time is

less.

This is also true for average time in the system. If the objective is to minimize the

average time that each task spends with the resource, then it can be shown that this will be

78

accomplished by WSPT. As an example, if three tasks with individual processing times of

one, five and eight days, respectively, are scheduled, the total time required to execute the

entire batch under any sequence is 14 days. If the tasks are processed in ascending order,

the average time that each task spends in the system is (1 + 6 + 14) / 3 = 7 days. However,

if the tasks are processed in reverse order, the average time in the system is (8 13 + 14) /

3 = 11.67 days. This means that the average time in the system will always be minimized

by selecting the next task for processing that has the shortest processing time at the

current operation.

Average number of tasks in the system: In order to do a better resource planning

sometimes it is necessary to know the average number of tasks in the system. The WSPT

algorithm also performs well if the objective is to minimize the average number of tasks in

the system.

Average task lateness: If the objective is to minimize average task 1ateness, it can be

shown that the Shortest Task First is the best rule for sequencing tasks for the single

resource model.

Maximum task lateness: If the objective is to minimize the maximum task lateness,

the best sequencing rule is to execute the tasks in due date order, from earliest due date to

latest due date.

4.2.8 The Measurements for Parallel Resource Models

A bank of resources in parallel is a setting that is important from both the theoretica1 and

practica1 points of view. From the theoretical viewpoint, it is a generalization of the single

resource model, and a special case of the flexible flow shop. From the practical point of

79

view, it is important because the occurrence of resources in parallel is common in the real-

world. Also, techniques for resources in parallel are often used in decomposition

procedures for multistage systems.

In this section, the make-span for parallel resource models without preemption is

considered. The objective is to minimize the make-span.

With single resource models, the make-span objective is usually only of interest

when there are sequence-dependent tasks; otherwise, the make-span is equa1 to the sum of

the processing times and is independent of the sequence. When dealing with resources in

parallel, the make-span becomes an objective of significant interest. In practice, we often

need to deal with the problem of balancing the load on resources in parallel, and by

minimizing the make-span the scheduler ensures a good balance.

We can consider scheduling parallel resources as a two-step process. First, we need

to determine which tasks are to be allocated to which resources; second, we need to

determine the sequence of the tasks allocated to each resource. With the make-span

objective, only the former is important.

Consider the model, Pm ||

 C

max

.

 This problem is of interest because minimizing the

make-span has the effect of balancing the 1oad over the various resources, which is

important in practice.

However, it can be shown that P2 || Cmax. is NP-hard [Pinedo95]. Instead, various

heuristic algorithms have been developed for Pm || Cmax. One such heuristic is the Longest

Processing Time first (LPT) rule. It assigns art t = 0 the m largest tasks to the m

resources. After that, whenever a resource is freed, the largest unscheduled task is put on

80

the resource. This heuristic tries to place the shorter tasks toward the end of the schedule

where they can be used for balancing the loads.

At any time, if a set of n jobs (tasks) is to be scheduled on m machines (resources),

there are (n!)m possible ways to schedule the tasks, and the schedule could change with the

addition of new tasks. For any problem that involves more than a few resources or a few

tasks, the computational complexity of finding the best schedule is beyond the capacity of

modern computers. Consider the model with the tasks subject to precedence constraints,

that is, Pm I <* I C., From the complexity point of view this problem has to be at least as

hard as the problem without precedence constraints. To obtain insights into the effects of

precedence constraints, a number of special cases may be considered. The special case

with a single resource is trivial. It is enough to keep the resource continuously busy and

the make-span will be equal to the sum of the processing times. Consider the special case

where there are an unlimited number of resources in parallel, or where the number of

resources is at least as large as the number of tasks, that is, m n. This problem may be

denoted by P.. I <* I Cmax. This problem has 1ed to the development of the Critical Path

Method (Section 4.4.1) and the PERT (Chapter 5). The optimal schedule and the

minimum make-span are determined through a very simple heuristic algorithm: Schedule

the tasks one at a time starting at time 0. Whenever a task has been completed, start all

tasks for which all predecessors have been completed (i.e., all tasks that can be

scheduled).

It turns out that in P∞ | <* | Cmax the start of the processing of some tasks usually

can be postponed without increasing the make-span. These tasks are referred to as the

slack tasks. The tasks that cannot be postponed are referred to as the critical tasks. The

81

set of critica1 tasks is referred to as the critical path(s). To determine the critical tasks,

perform the same procedure as discussed above backwards. Start at the make-span, which

is now known, and work toward time 0, while adhering to the precedence relationships.

By doing so, all tasks are completed at the latest possible completion times and, therefore,

started at their latest possible starting times as well. Those tasks whose earliest possible

starting times are equal to their latest possible stating times are the critical tasks.

In contrast with 1 | <* | Cmax. and P∞ | <* | Cmax, it can be shown that the problem Pm

| <* | Cmax with 2 < m < n is strongly NP-hard. However, constraining the problem further

and assuming that the precedence graph takes the form of a tree (either an intree or an

outtree) results in a problem, Pm | Pj = 1, tree 1 Cmax, is solvable. This particular problem

leads to the Critical Path rule, which gives the highest priority to the task at the head of

the longest string of tasks in the precedence graph.

4.2.9 The Measurements for Flexible Flow Shops

First, let's consider m resources in parallel and n tasks. It can be shown [Pinedo95] that

the shortest processing time first (SPT) algorithm is stil1 the best choice.

Theorem 4.2.9.1 The SPT rule is optimal for Pm || Ʃ Cj.

A somewhat more general modeling environment consists of a number of stages in

series with a number of resources in parallel at each stage. A task has to be performed at

each stage only by one of the resources. This model is analogous to the manufacturing

flexible flow shop environment. In this environment, there are s stages in series; at stage 1,

1 = 1,....., s, there are ml identical resources in parallel. Assume unlimited intermediate

storage between any two successive stages. Task j, j = 1, ..., n has to be processed at each

82

stage on any one resource. The processing times of task j at the various stages are pilj, pj2,

..., psj. Minimizing the make-span and total completion time are referred to as FFs I I Cmax

and FFs I I ECj, respectively. Because this model is rather complex only the special case

with proportionate processing times, that is pij = p2j = .. = psj = pj, is considered here. With

this restriction in place, it can be shown [Pinedo95] that the heuristic SPT rule still

produces optimal schedule.

Theorem 4.2.9.2 The SPT rule is optimal for FFs | pij = pj | ƩCj

if each stage has at least as many resources as the preceding stage.

It can be verified, however, that the SPT rule does not always lead to an optimal

schedule for arbitrary proportionate flexible flow shops [Pinedo95].

4.3 An Overview of Scheduling in Industrial Engineering

An important application of the scheduling techniques can be found in the field of

industrial engineering as applied in the shop floor control [Hodson 92]. Study of shop

floor control sheds light to software development process control.

4.3.1 Shop Floor Control Problem

Shop Floor Control is an information control system maintaining shop orders

(manufacturing orders) and work center flows based on the data feedback from the

manufacturing shop floor. Its major functions are assigning priority of each shop order;

maintaining work-in-process quantity information; conveying shop order status

information to the office; providing actual output data for capacity control purposes; and

providing measurement of efficiency, utilisation, and productivity of the work force and

83

machines. It encompasses the principles, approaches, and techniques needed to schedule,

control, measure, and evaluate the effectiveness of shop floor operations.

The efficiency of the shop floor operation is reflected in the following three primary

measurements:

• due dates - the assigned or contracted due date for the job;

• flow times - the time that a job spends in the system, from creation or opening of a

shop order until it is closed;

• work center utilization - capacity utilization of the expensive equipment and

personnel.

Obviously, the goals to optimize the three measurements are conflicting with each

other. Seeking a balance or an optimal point to satisfy all three goals becomes the primary

concern of the shop floor control system.

Several facets of a scheduling framework in the context of the manufacturing shop

floor contro1 need to be considered, for example, shop structure, product structure and

work center capacities. In a "flow shop" al1 the jobs tend to go through a fixed sequence

of the same routing steps. In a "job shop" each particular job tends to have a unique

routing, jobs go from one work center to another in a somewhat random pattern, and the

time required at a particular work center is also highly variable. Thus the scheduling

complexity and constraints in a flow shop can be quite different from those in a job shop.

Furthermore, not all the projects can be scheduled the same way. An analysis of the

project reveals different ways of organizing the work flow and therefore different

schedules. And finally, the work center capacity is another issue. The extent to which the

capacities are fixed or variable and the extent to which the capacity for a particular work

84

center can be increased or decreased and the time delay to achieve the change in capacity

both affect scheduling performance. If machines and labor are treated as separate

resources, the capacity of the work center can either be 1imited by the machines or by the

labor.

4.3.2 Process Control in Industrial Engineering

In comparison to the process modeling in software development the manufacturing

process control in industrial engineering has distinguished advantages: In industrial

engineering both the capacities of work centers and the time needed for each task are

relatively stable and, very often, are well specified or can be determined. While in software

process modeling the capacities of the targeted resources are assumed and the task

duration of each task is estimated based on some subjective factors. External interruptions,

such as absence of the resources can affect the schedule. Therefore, modeling of software

processes with human being as major resources are more challenging and the process

models tend to exhibit stochastic behavior.

Garg points out [Garg 96]: "What software development and business processes

have in common - and what distinguishes them from factory processes which have been

precisely defined and automated in assembly-line operations - is that some of the activities

in the process are carried out by humans and are intellectual and creative activities. This

fact implies that a software process cannot be a static prescription. First, it must be

adapted to the needs of the environment in which it is to be applied - for example, based

on the expertise level of the team and its experience, or based on resource availability.

85

Second, it must allow dynamic changes while the process is being executed, in response to

changes in the environment, such as the composition of the development team."

4.3.3 Sequencing Rules

A frequent problem for a manufacturing planning and contro1 system is to route the next

job to appropriate machine(s) for processing. For example, after processing at machine

center A, jobs may be sent for further processing to machine centers B, D, or F. This

requires a dispatching rule for choosing the next job in the queue for processing. The

question of interest is which sequencing rule will achieve good performance against some

scheduling criteria. The following are some well-known rules with their desirable

properties:

Random Pick: Pick any job in the queue with equal probability. This rule is often

used as a benchmark for other rules.

First Come First Served: This rule is sometimes deemed to be "fair", in that jobs are

processed in the order in which they arrived at the work center.

Short Processing Time First (SPT): This rule tends to reduce both work-in-process

inventory, the average job completion (flow) time, and average job lateness. There is a

concern in using this algorithm. In many studies, this rule has been found to have a higher

variance of time in system than other rules. In addition, it can allow some jobs with long

processing times to wait in queue for a substantia1 period of time, thereby causing severe

due-date problems for a few jobs.

Earliest Due Date: this rule seems to work well for criteria associated with job

lateness.

86

Critical Ratio: This rule is widely used in practice. The priority index is calculated

using (due date - now) / (lead time remaining).

Least Work Remaining: This rule is an extension of SPT in that it considers al1 of the

processing time remaining until the job is completed.

Float Time: A variant of Earliest Due Date algorithm which subtracts the sum of

setup and processing times from the time remaining until the due date. The resulting value

is called "float" or "slack". Jobs are run in order of the smallest amount of slack.

Float Time Per Operation: A variant of Float Time algorithm which divides the float

time by the number of remaining operations, again sequencing jobs in order of the smallest

value first.

Next Queue: A different kind of rule which is based on machine utilization. The idea

is to consider the queues at each of the succeeding work centers to which the jobs will go

and select the job for processing that is going to the smallest queue (measured either in

hours or perhaps in job). The sequencing rule at each work center doesn't have to be the

same.

One important practical result of the research on job shop scheduling has been to

clearly understand the combinatorial nature of the problem. The computational costs rise

rapidly as a function of problem complexity even when optimal solutions are not being

sought. As the number of jobs to be scheduled and the number of work centers increase,

the time to prepare a schedule increases much more rapidly. The computational costs of

completely simulating all job arrivals and all possible schedules for each machine and

worker can be prohibitively high for many actual applications.

87

4.3.4 Labor Limited Systems

The labor limited scheduling may be of particular interest to software engineering. In many

firms excess capacity exists in many machine centers. The controllable cost is 1abor and the

primary scheduling job is how to assign labor to machine centers. A comprehensive

framework for the control of work flow in labor-limited systems has been provided by

Nelson [Nelson89].

The decision rules suggested by Nelson for determining the availability of a person

for transfer utilize a central control parameter, d, that varies between 0 and 1. When d=1,

the person is always available for reassignment to another machine. When d=0, the person

cannot be reassigned as long as there are jobs waiting in the queue at the person's current

work center assignment. The proportion of scheduling decisions in which a person is

available for transfer can be controlled by adjusting the value of d between 0 and 1.

4.4 Application of Scheduling to Process Modeling

This section discusses how scheduling theory can be applied to the software development

process modeling.

4.4.1 A Sample CPM Network

Suppose we want to design a small feature in a communications network, which involves

three processes, the local state machine, the transit state machine and the configuration

management (database) process. The development is to follow the established software

development process of the company which has become the basis for this project tasks

scheduling in the process modeling engine. Project tasks have been defined and mapped to

88

process tasks as described in Chapter 3. Given the following list of project tasks, Figure

13. shows their execution sequence.

Task Task Description 	Duration (weeks)

A 	System Specification 	 3

B 	Interface Control Document 	2

C 	Software Requirement Specification 	1

D 	High Level Design 	 4

E 	Implementation on LCSM 	 3

F 	Implementation on TCSM 	 2

G 	Database Setup 	 1

H 	Test on State Machines 	 4

I 	Integration Test

89

Figure 13 An example tasks execution sequence.

This CPM network diagram for this project begins with the engineering activity,

system specification (A), and ends with the task, system integration (I). Once activity A

has been completed, the diagram indicates that activities B and C can be started and

performed concurrently. Similarly, the diagram indicates that both activities B and C must

be completed before activity D (high level design) can be started. Next, the diagram

indicates that the activities E, F, and G cannot begin until D is completed. Finally, the

project cannot be system tested (I) until both activities G and H have been completed.

The network diagram provides a picture of the sequence of activities required to

complete the project. As shown in Figure 13, six different paths (sequences of activities)

can be observed. One of these paths, for example, is A-C-D-F-H-I. Within a given

sequence, e.g., A-C-D-F-H-I, each activity must be completed in turn before the following

activity can be started. Note that each of these six activity sequences (paths) can be

performed concurrently. The minimum project duration (make-span) will, therefore, equal

the longest of the times required to complete the activity sequences.

9()

The six paths and their associated times are:

Path 	 Weeks

A-C-D-F-H-I 	16

A-C-D-E-H-I 	17

A-C-D-G-I 	11

A-B-D-G-I 	12

A-B-D-E-H-I 	18

A-B-D-F-H-I 	17

Since the activities on path A-B-D-E-H-I require the longest overall time of 18

weeks, this establishes the minimum project length.

4.4.2 Properties of the Graph

Analysis of the graph (Figure 13) obtained thus far reveals a number of properties which

are important to project scheduling.

Let's consider the questions of how long the project is expected to take and when

each activity may be scheduled. All basic scheduling computations first involves a forward

and then a backward pass through the network. Based on a specified project start time, the

forward pass computations proceed sequentially from the beginning to the end of the

project giving the earliest start and finish times for each activity.

By the specification of the latest allowable occurrence time for the completion of the

project, the backward pass computations also proceed sequentially from the end to the

beginning of the project. They give the latest allowable start and finish times for each

SE FE
Activity

SL
T=?

Ts

where:
SE = Activity early-start time
FE = Activity early-finish time
SL = Activity late-start time
FL = Activity late-finish time
T = Activity time
Ts = Activity total slack time

91

activity. After the forward and backward pass computations are completed, the float

(slack) can be computed for each activity, and the critica1 paths are then identified.

4.4.3 Early-start Schedule and Forward Pass Calculation

The early-start schedule is developed by making a forward pass calculation through the

network diagram, taking into account the required time for each project activity. The

early-start time (SE) and the early finish time (FE) are determined for each activity and

noted on the network diagram, using the conventions shown in Figure 14.

Figure 14 Symbol used in the network.

There are four rules for calculating the early start and finish times for each activity:

1. The early-start time for the initial activity in the network is set to zero, i.e., SE =

0 for the START activity.

92

An activity can begin as soon as its preceding activity has been completed, i.e.,

SE = the FE for the preceding activity.

3. The activity early-finish time equals the early-start time plus the activity time,

i.e., FE = SE + T.

4. When an activity or circle on the network diagram has more than one

predecessor activity, i.e., more than one arrow entering the node, the activity

early-start time equals the largest early-finish time of the preceding activities, i.e.,

SE = largest of (FE1, FE,, ... FEn) for an activity having n predecessors.

The determination of the early-start and early-finish times for a project using these

four rules, is illustrated with the numbers on top of the nodes (Figure 15). Since the initial

activity (A) is the starting activity for the project, its early-start time (SE) is set to zero.

The activity requires three weeks to complete, so its early-finish time (FE) equals three.

Therefore, the early-start time for activity B equals three, and since activity B requires two

weeks to complete, its early-finish times for these two activities provides an illustration of

rules 1 though 3. The application of rules 1 through 4 to the activities in Figure 15

provides the early-start (SE) and early-finish times (FE) for the whole project. When both

the activity times and the precedence relationships between the project activities have been

considered, it appears that this project cannot be completed earlier than the end of week

18.

93

Figure 15 Early-start and late-start activities.

4.4.4 Late-start Schedule and Backward Pass Calculation

An alternative schedule can be constructed for the project in which the activities are

scheduled as late as possible to meet the earliest project completion date. This schedule,

called the late-start and finish schedule, helps to define managerial flexibility in scheduling

individual project activities.

The late-start schedule is prepared by making a backward pass calculation through

the network diagram, beginning with a stated project completion date for the last project

activity, and working backward toward the first activity in the project. This scheduling

procedure produces a late-start (SL) and a late-finish time (FL) for each activity. These

times are usually noted under the nodes on the network diagram using the conventions

shown previously in Figure 14. There are four more rules for calculating the 1ate-start and

late-finish times for each activity:

1. The late-finish time for the final activity in the network is set to the earliest

project completion date, i.e., FL = the FE for the final activity.

94

2. The late-finish time for an activity equals the late-start time for the activity

immediately succeeding it, i.e., FL = the SL for the succeeding activity.

3. The activity late-start time equals the late-finish time minus the activity time, i.e.,

SL = FL - T.

4. When an activity has more than one successor activities, i.e., more than one

arrow leaving the node, the late-finish time for that activity is the smallest of the

late-start times for those activities immediately succeeding that activity, i.e., FL

MIN (SLI , SL2, 	SLn) for an activity having n successors.

4.4.5 Float Time

Once the early-start and late-start times have been determined for all of the activities in a

project network, the total float time, i.e. the slack time, for each activity in the project can

be determined. The total float time for an activity (TF) is defined as the difference between

its 1ate- and early-start times (TF = SL - SE). Alternatively, the total float (TF) for an

activity can be calculated as the difference between the early- and late-finish times (i.e., TF

= FL - FE). The total float time for each activity in our example graph is shown in Figure

16, and the detailed calculations are given in Table 2.

95

Table 2 Float time calculation.

Activity SE SL TF

A 	 0 0 0

B 3 3 0

C 3 4 1

D 5 5 0

E 9 9 0

F 9 10 1

G 9 15 6

H 12 12 0

1 16 16 0

Note that activity G can be started as early as the end of week 9 at the early-start

time (SE) and as late as the end of week 15 (SL) without affecting the project completion

date of the end of week 18. Therefore, the total float time (TF) for activity G is 15 - 9, or 6

weeks. The total float time measure indicates the degree of flexibility that management has

in scheduling the start time of a particular activity to best utilize the available resources or

to respond to unexpected conditions.

96

Figure 16 Float time in the graph.

There are two types of float, path float and activity float. Path float, as the name

implies, is the total float associated with a path. For a particular path activity, it is equal to

the difference between its earliest and latest allowable start or finish times. The path float

denotes the amount of time (e.g. the number of working days) by which the actual

completion time of an activity on the path in question can exceed its earliest completion

time without affecting the earliest start occurrence time of any activity on the network

critica1 path.

Activity float, also known as free float, is equal to the earliest start time of the

activity's successor activity(s) minus the earliest finish time for the activity in question.

Activity float indicates the amount of time that the activity can be delayed without

affecting the earliest start of any other activity in the network.

Path float and activity float are useful indicators for risk management.

97

4.4.6 Critical Path and Critical Task

Several of the activities shown in Figure 16 have a total float time of zero, indicating that

management has no flexibility in scheduling these activities. For example, since the early-

start time for activity B equals its late-start time, this activity must be started at the end of

week 3 or the completion of the entire project will be delayed beyond the end of week 18.

Similarly, activities A, D, E, H, and I all have a tota1 float time of zero.

The fact that activities A, B, D, E, H, and I have a zero total float time, and must be

performed in the sequence shown in Figure 16, means that they form a critical path in

completing the project. A delay in starting any of the activities on the critical path in the

project network means that the project cannot be completed at the end of week 18. The

determination of the critical path in a project network enables management to focus

attention on those activities which are most crucial in completing the project on time.

Other activities which do not lie on the critical path, do not warrant the same degree of

managerial attention since there is some flexibility (as indicated by the total float times) in

both starting and completing these activities.

It is possible for there to be more than one critical path in a project network. As an

example, suppose that activity C required two weeks to complete instead of one. In this

case, the project network would have two critical paths, A-C-D-E-H-I and A-B-D-E-H-I,

both requiring 18 weeks to complete. In this case, activity C would have an activity total

float time of zero, and the timely completion of this activity would also be of major

concern to management. The determination of the critical path is a key element in ensuring

the on-time completion of a project, and provides management with an important tool for

identifying those project activities that deserve special attention in managing the project.

98

Activity D in Figure 16 is a critical task. Tasks E, F and G all depend on the

completion of this critical task. Its delay would cause delay of all the tasks depending on

it, and therefore, demands special attention.

Unlike the critical path, however, the definition of critical task is of semantic

significance only. Another word, whether a task is considered as a critical task and the

degree of its criticality are interpreted based on the depending tasks and the operating

semantics. One can say, for example, that activity A is also a critical task, since both

activity B and C are dependent on A's completion. But semantically, this may not be the

case. To a certain degree, we can also regard each of the tasks on a critical path as a

critical task, regardless whether there are more than one task waiting on its completion.

4.5 Scheduling with Resource Constraints

The forward and backward pass calculations discussed before produce schedules based on

the assumption that no resource limitations are imposed. The only considerations were the

precedence relationship and the duration of each project task. This time-only scheme, of

course, is not realistic in practical situations.

This section discusses scheduling issues with resource constraints as additional

consideration.

When resource constraints are put into consideration, the longest sequence of

activities through the project may not be the same critical path anymore. It should be

noted that with the basic time-only procedures there is one unique early-start time

schedule, while under resource constraints many different early-start schedules may exist.

99

To understand these differences it is necessary to look at how limited resources affect

graph float (slack time in the schedule).

4.5.1 Resources Limitation and Float

Figure 17 shows a simple CPM graph. The number under each node is the estimated task

execution duration. Figure 18 shows the all early start bar-chart schedule for this network.

Courtesy: [Modes 83]

Figure 17 Sample graph with estimated duration.

As can be seen, the project duration is 18 weeks, the critical path is the activity

sequence A-C-I-J-K, and tasks B, D, E, F, G, and H all have positive float shown with

dashed lines. These float times are calculated by taking the difference between the forward

pass schedule and the backward pass scheduled as discussed earlier.

100

Figure 18 Al1 early start schedule with unlimited resources.

Now assume that tasks C and G must be performed by the same person and the

performance of these tasks cannot be done simultaneously. Assume also that tasks E and F

have the same restriction, i.e. they are performed by the same person in a sequential order.

Figure 19 All early start schedule with restricted resources.

The direct result of these resource constraints is that neither tasks C and G nor tasks E

and F can be performed simultaneously as indicated by the ES time-only schedule. One or

101

the other of the tasks in each pair must be given priority and each pair must be sequenced

so there is no overlap, as shown in Figure 19.

Examination of Figure 19 shows that, when resources for activities C/G and E/F,

respectively, are constrained, the following is apparent:

• Activity G and H become critical, with slack reduced to zero.

• Activity D,E, and F have their slack reduced significantly.

• With activity E given priority over F as shown, the slack of tasks D and E become

dependent upon F.

• No task can start earlier than shown, given the precedence relations and resource

constraints, so this represents an early start schedule. However this schedule is not

unique (as is the case with unlimited resources), since task F could have been

sequenced before task E in resolving the resource conflict. In that case, the resulting

schedule, though only slightly different from the one shown here, would be another

ES schedule for the resource constraint case.

As this example shows, float can be affected in significant ways when resources are

limited. In general, the following is true:

• Resource constraints reduce the total amount of schedule float.

• Float depends both upon activity precedence relationships and resource limitations.

• The early and late start schedules are typically not unique. This means that float

values are not unique. These values depend upon the scheduling rules used for

resolving resource conflicts.

• The critical path in a resource constrained schedule may not be the same continuous

chain(s) of tasks as occurring in the unlimited resources schedule. A continuous

102

chain of zero-float tasks may exist, but since task start times are constrained by

resource availability as well as precedence relations this chain may contain different

tasks.

4.5.2 Scheduling for More Than One Project

The impact of resource constraints illustrated by the single-project example is magnified in

scheduling multiple projects, i.e., situations where severa1 separate, independent projects

are 1ined together through their dependency upon a set of common resources. Figure 20

shows a hypothetical 3-project scheduling situation involving only 3 people. To further

simplify the example imagine that tasks requiring a resource (person) use only one unit of

his/her time. All tasks are shown on their respective resource bar charts at their early start

times.

Figure 20 Multi-project scheduling interactions.

103

Analysis of these graphs reveals the domino-like series of events that might occur

(depending upon activity float, and project finish times) as a result of delaying tasks to

resolve particular resource conflicts. For example, delaying task B of project. 1 (to resolve

the conflict with task B of project 2) might cause the following:

• Delays in successor tasks D, E, and F of project I.

• As a result, the creation of additional resource conflicts among tasks requiring

persons 2 and 3 (which must be resolved).

• Therefore, additional delays in projects 2 and 3, and possibly even project 1 again.

4.5.3 Resource Loading Diagrams

Figure 21 shows the same network as Figure 17 with manpower requirements indicated

above each task. By utilizing these resource requirements in conjunction with both an

early-start schedule (such as shown in Figure 18 and a late-start schedule (not shown) the

profiles of resource usage over time as shown in Figure 22 are obtained. These profiles are

commonly called resource loading diagrams. Such diagrams highlight the period-by-

period resource implications of a particular project schedule and provide the basis for

improved scheduling decisions.

12

10 	 --

.8

6

 	

4

2

n 	 c 	 10

15 15

12

Weeks

R
es

ou
rc

e
U

ni
ts

 R
eq

ui
re

d

104

Figure 21 Sample graph with resource requirement.

Note, if number of existing resources are fixed, resource capacity usage can be

calculated directly from the resource loading diagrams.

Figure 22 Sample graph with resource requirement.

Table 3 lists the period-by-period total requirements of man power (units of

resource) for the graph described in Figure 21. Both the early-start and last-start schedules

are shown. The period totals were used in constructing the resource loading diagram

shown in Figure 22. Also shown in the table are the cumulative requirements for each

105

period. These latter data can be usefully displayed in the form of cumulative resource

requirement curves as shown in Figure 23.

Table 3 Early start (ES) and late start (LS) schedule requirements of the resource.

Period ES Schedule

Total Units

ES Schedule

Cum. Units

LS Schedule

Total Units

LS Schedule

Cum. Units

1 5 5 3 3

2 5 10 3 6

3 5 15 3 9

4 9 24 3 12

5 9 33 5 17

6 9 42 5 22

7 9 51 5 27

8 9 60 5 32

9 6 66 9 41

10 5 76 10 51

11 5 76 9 60

12 5 81 9 69

13 5 86 9 78

14 6 92 6 84

15 4 96 6 90

16 5 101 7 97

17 5 106 7 104

18 5 111 7 111

The cumulative requirements curves can be very usefu1 during the project planning

stage for resource requirements and during the project execution stage in monitoring

resource utilization. For example, as time progresses after the project has started, the

cumulative resources required should lie within the closed area bounded by the early-start

and late-start cumulative curves. If actual cumulative resources fall under the late-start

C
um

ul
at

iv
e

un
its

 o
f r

es
ou

rc
e

106

curve the project is either behind schedule or the resource requirements were

overestimated. Conversely, if they exceed the early-start curve the project is either ahead

of schedule or the resource requirements were underestimated.

Weeks

Figure 23 Cumulative resource requirements.

4.5.4 Resource Planning Using Cumulative Curves

One important use of the cumulative curves is in preliminary resource allocation planning.

The magnitude of the total cumulative requirements and the slope of the average

requirements line drawn in the center can be used to develop rough indicators of resource

constraint "criticality" and of the likelihood of project delay beyond the initial forward-

pass determined critical path duration. For example, line I in Figure 23 indicates the

average weekly requirements for the manpower as:

average requirement = 111 total / 18 weeks = 6.2 people / week

107

4.5.5 Criticality Index

Suppose the manpower is available at a maximum level of 7 per week, a total of 126 could

be utilized over the 18-week critical path duration, which is considerably more than the

111 required over that period. Thus, there is unlikely to be a project delay beyond the 18-

week duration because of constraints on resources. This conclusion can also be drawn

from the ratio of resources required to resources available, which is a rough measure of

resource "tightness," or criticality. That is,

criticality index = avg. weekly manpower required / max. amount available weekly

= 6.2 7.0 = 0.88

The situation above can be contrasted to the case where only 6 manpower are

available each week. In this case,

criticality index = 6.2 / 6.0 = 1.03

In 18 weeks a total of only 108 manpower will have been available, leaving some

work unfinished and thus requiring an extension of the project beyond 18 weeks.

In general, higher values of the resource criticality index calculated here are

associated with the most critical (i.e., most tightly constrained) resources.

Note that when discussing manpower, we can't ignore the fact that certain

administrative overhead is necessary. For example, a dedicated person for project

management and process control is essential in the development of the projects. However,

this person may not be counted in the calculation of resource requirement discussed

above. The semantic implication of manpower requirement is beyond the scope of this

technical research.

108

4.6 Resource Constrained Scheduling Algorithms

There are two types of problems that need to be addressed in scheduling with resource

constraints. One type of problem is a soft resource limitation. It occurs when sufficient

total resources are available, and the project must be completed by a specified due date,

but it is desirable or necessary to reduce the amount of variability in the pattern of

resource usage over the project duration in order to reduce resource usage "spikes",

during which time a considerable amount of resources are needed compared to the norma1

resource level. Thus, the objective of the scheduling algorithms is to level, as much as

possible, the demand for each specific resource during the life of the project. This is called

resource leveling. Project duration is not allowed to increase in this case.

Another type of problem is a hard resource limitation, also known as, fixed

resource limits. It arises when there are definite limitations on the amount of resources

available to carry out the projects under consideration. The scheduling objective in this

case is to meet project due dates, insofar as possible, subject to the fixed limits on

resource availability. Thus project duration may increase beyond the initial duration

determined by the usual time-only calculations. The scheduling objective is equivalent to

minimizing the duration of the projects being scheduled, subject to stated constraints on

available resources.

The task of scheduling a set of project activities such that both precedence

relationships and constraints on resources are satisfied is not an easy one, even for projects

of only modest size. The basic general approach followed in both resource leveling and

fixed resource limits scheduling is similar: set task priorities according to some criteria and

109

then schedule tasks in the order determined as soon as their predecessors are competed

and adequate resources are available.

4.6.1 Resource Leveling

The objective of resource leveling is to provide a means of distributing resource usage

over time to minimize the period-by-period variations in manpower or other resources

need. The essential idea is to schedule tasks within the limits of available float (slack) to

achieve better distribution of resource usage. The float available in each activity is

determined from the basic scheduling computations, without consideration of resource

requirements or availability. Then, during the rescheduling, or "juggling" of tasks to

smooth resources, project duration is not allowed to increase.

Measuring the relative effectiveness of the different schedules obtained by resource

leveling was studied by Burgess as early as in the sixties [Burgess 62]. This method

utilized a simple measure of effectiveness given by the sum of the squares of the resource

requirements for each period (such as week) in the project schedule. It has been shown

that, while the sum of the weekly resource requirements over the project duration is

constant for all complete schedules, the sum of the squares of the weekly requirements

decreases as the peaks and valleys are leveled. Further, this sum reaches a minimum for a

schedule that is level (or as leve1 as it can get) for the project in question.

4.6.2 Scheduling for Fixed Resource Constraints

The fixed resource constraint scheduling, also known as constrained-resource scheduling,

or limited resource allocation, are techniques designed to produce schedules that will not

110

require more resources than are available in any given period, with project duration which

are increased beyond the original critical path length as little as possible.

One attempt in solving this type of problems is using optimization procedures for

producing optimal solutions. These procedures can be divided into two categories:

procedures based on linear programming and procedures based on enumerative and other

mathematical techniques, such as "branch and bound" procedures. However, these

procedures have not been proved effective for large and complex problems [Applegate91].

More practical procedures are still based on heuristic techniques [Moder83] which can be

useful for multiple project problems as well as single projects. The schedules produced by

these heuristic procedures may not be the theoretically best possible, but they are usually

good enough to use for planning purposes in view of the uncertainties typically associated

with activity duration and resource constraints and requirements.

4.6.3 Heuristic Algorithms

For any given problem, a large number of possible combinations of activity start times may

exist, with each combination representing a different project schedule. This becomes a

combinatorial problem: even for fairly small problems of 20 to 30 tasks the number of

combinations is extremely large as to prohibit enumeration of al1 alternatives. One

approach to solve these combinatorial problems is to use heuristic approach - a rule of

thumb and a simple guide in problem-solving situations - to reduce the amount of effort

required in coming up with an accurate solution. Many simple algorithms, such as "SPT"

or "minimum float first", can be classified in this category.

111

4.6.4 Efficiency of Task Scheduling and Resource Usage

Once a graphical network has been set up as discussed earlier, measuring the differences

between various graphs or impact of changes to a graph becomes relatively easy. This

research has set up a framework that makes this measurement possible, and the actual

measurement can be calculated and displayed as the graphs are manipulated.

The measurement can be classified into two categories: measures that indicate time

characteristics of the graph, and measures that characterize resource demands/ availability.

Examples of the measurements are shown below. In the actual implementation of a

process modeling environment (see Chapter 6), the user should have the capability of

disabling some of these measurements in order to concentrate on those measurements of

interest towards the specific modeling objectives.

Measures that indicate time characteristics of the graph:

Sum of activity duration

Average activity duration

Variance in activity duration

Critical path duration

Total network float

Density: Sum of activity duration / (Sum of duration + Total free float)

Measures that characterize resource demands/availability

Cumulative resource requirements

Average resource requirement per activity

112

Average resource requirement per period

Resource utilization criticality index

The above measurements provide insights on how the tasks are being scheduled, and

how the resources are being utilized. They provide the basis for comparison when

comparing one graph to another, or to a higher level, one process model to another.

CHAPTER 5

MEASUREMENT OF STOCHASTIC MODELS

Software development environments in real life are subject to many sources of uncertainty.

Among the sources with major impact are schedule delays, unexpected releases of high

priority tasks such as bug fixes, unavailability of developers due to human related reasons,

such as sick days, vacations, change of responsibilities, change of jobs, and so on. Another

source of uncertainty is processing times, which may not be accurately estimated in

advance. Thus, a good model of a software process would need to address these forms of

uncertainty.

In this chapter, stochastic models are briefly examined in theory followed by a

description of the statistical PERT approach. Applying the PERT approach in obtaining

measurements during the process model manipulations enables us to deal with the problem

of uncertainty effectively.

5.1 Scheduling Theory for Stochastic Models

In what follows, it is assumed that the distribution of the processing times, release dates,

and due dates are all known in advance, that is, at time 0. The actual outcome or

realization of a random processing time only becomes known upon the completion of the

processing; the realization of a release date or due date becomes known only at the point

at which it actually occurs.

113

114

In this chapter, the following notation is adopted. Random variables are capitalized,

and the actual realized values are in lower case. Task j has the following quantities of

interest associated with it.

Xij = the random processing time of task j by resource i; if task j is only to be

processed by one resource, or if it has the same processing times on each of the resources

it may visit, the subscript i is omitted.

1/λij = the mean or expected value of the random variable X.

Rj = the random release date of task j.

Dj = the random due date of task j.

wj = the weight (or important factor) of task j.

A random variable from a continuous time distribution may assume any real non-

negative value within one or more intervals. The distribution function of a continuous time

distribution is denoted by F(t) and its density function by f(t), that is,

F(t) = P(X < t) = ∫tf(t) dt, where

f(t) = dF(t) / dt

provided the derivative exists.

An important example of a continuous time distribution is the exponential

distribution. The density function of an exponentially distributed random variable X is

f(t) = λe- λt,

and the corresponding distribution function is

F(t) = 1 - e-λt,

115

which is equal to the probability that X is smaller than t. The mean or expected value of X

is

E(X) = ∫∞tf(t)dt = ∫∞ tdF(t) = 1/λ.

The parameter X is called the rate of the exponential distribution.

Often in stochastic scheduling, two independent random variables have to be

compared with one another. These comparisons are based on properties referred to as

stochastic dominance, that is, a random variable dominates another with respect to some

stochastic property.

The random variable X1 is said to be larger in expectation than the random variable

X, if

E(X1) ≥ E(X

2

).

The random variable X1 is said to be stochastically larger than the random variable

X2 if

P(X1 > t) P(X2 > t) or

1 - F1(t) 	1 - F2(t)

for all t. This ordering is usually referred to as stochastic ordering and is denoted by

X1 ≥st X

2.

During the evolution of a stochastic process, new information becomes available

continuously. Task completion and occurrences of random release dates and due dates

represent additional information that the decision maker may wish to take into account

when scheduling the remaining part of the process. The amount of freedom the decision

maker has in using this additional information is the basis for the various classes of

decision making policies. The following classes are defined:

116

1. Under a non-preemptive static list policy, the decision maker orders the tasks at

time 0 according to a= priority list. This= priority list does not change during the evolution of

the process, and every time a resource is freed the next task on the list is selected for

processing.

2. Under a preemptive static list policy the decision maker orders the tasks at time 0

according to a priority list_ This ordering includes tasks with nonzero release dates, that is,

tasks that are to be released later. This priority list does not change during the evolution of

the process, and at any time the task at the top of the list of available tasks is the one to be

performed by the resource.

Under this class of policies the following may occur. When there is a task release at

some point ant the task released is higher on the static list than the task currently being

processed, then the task being processed is preempted and the task released is put in the

system.

3. Under a non-preemptive dynamic policy, every time a resource is freed, the

decision maker is allowed to determine which task goes next. The decision at such a time

point may depend on all the information available, for example, the current time, the tasks

waiting for processing, the tasks currently being processed on other resources, and the

amount of processing these tasks already have received on these resources. However, the

decision maker is not allowed to preempt; once a task begins processing, it has to be

completed without interruption.

4. Under a preemptive dynamic policy, at any time the decision maker is allowed to

select the tasks to be processed by the resources. The decision may depend on all

information available and may require preemption.

117

There are several forms of optimization in stochastic scheduling. Whenever an

objective function has to be optimized, it should be specified "in what sense" the objective

is to be optimized. One form of optimization is in the expectation sense, for example, one

wishes to minimize the expected make-span, that is, E(Cmax) and find a policy under which

the expected make-span is smaller than the expected make-span under any other policy. A

stronger form of optimization is optimization in the stochastic sense. If a schedule or

policy minimizes Cmax stochastically, the make-span under the optimal schedule or policy is

stochastically less than the make-span under any other schedule or policy. Stochastic

optimization implies optimization in expectation.

Note, the use of the word optimization here does not necessarily mean finding an

optimal point for a solution. It simply means an improvement in a loose sense.

Based on the classes of policies discussed above, measurements of different

stochastic machine models can be obtained, these include stochastic flow shops, stochastic

open shops, and stochastic job shops. The stochastic flow shop machine model is closer to

the situation in a software development environment and can be studied further.

Consider two resources in series with unlimited storage between the resources and

no blocking. There are n tasks. The processing time of task j by resource 1 is X

1j, exponentially distributed with rate λj. The processing time of task j by resource 2 is X2j,

exponentially distributed with rate µ

j

. The objective is to find the non-preemptive static list

policy, or permutation schedule, that minimizes the expected make-span E(Cmax). Note

that this problem is a stochastic counter-part of the deterministic problem F2 ||

C

max and

can be solved based on the following theorem.

118

Theorem: Sequencing the tasks in decreasing order of λvj - µj minimizes the

expected make-span in the class of non-preemptive static list policies, the class of

non-preemptive dynamic policies, and the class of preemptive dynamic policies.

5.2 PERT Statistics Analysis

One of the difficulties associated with stochastic scheduling models is the accuracy of task

duration estimation. The PERT approach uses three different estimates for each task

duration estimation, the optimistic time, most likely time, and pessimistic time. It is based

on the assumption that the distribution of these task completion times is in normal

distribution. Using a guideline of 5 and 95 percentile, the three estimated values can be

defined as follows:

Optimistic Performance Time (a): This is the time which would be improved only

one time in twenty if the activity could be performed repeatedly under the same essential

conditions.

Most Likely Time (m): Also called the modal value of the distribution, this is the

value which is likely to occur more often than any other value.

Pessimistic Performance Time (b): This is the time which would be exceeded only

one time in twenty if the activity could be performed repeatedly under the same essential

conditions.

119

5.2.1 Normal Distribution and Central Limit Theorem

Let t be the completion time of task j, for n tasks the arithmetic mean of these task

duration values can be calculated as follows:

arithmetic mean: µ = (t1 + t2 + 	+ tn) / n 	(1)

This is the measurement of the central tendency. The measurement of the variability,

or the standard deviation can be calculated as follows:

standard deviation: α = [(t1 - µ)2 + (t2 - µ)2 + +(tn - µ)2] / n1/2 	(2)

Suppose m independent tasks are to be performed in order. This can be the case

when all the tasks lie on the critical path of a graph. Let t1 , t2, tem be the times actually

required to complete these tasks. Let tel, - te2, .., tem be the means and Vt1, Vt2, 	Vtm be

the variances. Now define T to be the sum:

T = t1 + t2 + 	+ tm

Note that T is also a random variable and thus has a distribution. The Central Limit

Theorem states that if m is large, the distribution of T is approximately normal with mean

E and variance VT given by

E = te1 + te2 + 	+ tem

VT = V

e1 + Vt1 + +

Vtm 	

That is, the mean of the sum is the sum of the means; the variance of the sum is the

sum of the variances; and the distribution of the sum of activity times will be normal

regardless of the shape of the distribution of actual activity performance times.

120

5.2.2 Estimation of the Mean and Variance of the Task Performance Times

It is commonly known in statistics that for normal distributions the standard deviation can

be estimated roughly as 1/6 of the range of the distribution. This follows from the fact that

at leas 89 percent of any distribution lies within three standard deviations of the mean, and

for the normal distribution this percentage is 99.7+ percent. Hence, we can use time

estimates, a and b, to estimate the standard deviation (Vt)1/2 or the variance,

(V

t

)

1/2 as follows:

(Vt)1/2 = (b - a) / 3.2 	or Vt = [(b - a) / 3.2]2 	(3)

A simple formula for estimating the mean, te, of the activity time distribution has also

been developed [Moder 83]. It is the simple weighted average of the estimates a, m, and b

as follows:

Mean: te = (a + 4m + b) / 6 	 (4)

It should be pointed out that the mean is equal to the most likely or modal time (

te

 =

m), only if the optimistic and pessimistic times are symmetrically placed about the most

likely time, i.e., only if b - m = m - a.

To illustrate the use of the statistical PERT approach, consider the graph shown in

Figure 24. The three value estimate of the tasks are as follows:

Task: 	a

a,m,b: 	1,2,3 	2,4,6 	1,2,3 	2,3,4 	3,4,5 	2,3,4

121

Mean = Ef = 12
3 Std. dev. = 3 (VT)1/2 = 5

Figure 24 Basic graph with t, and Vt for each activity.

The values of te, and Vt are computed according to equations (3) and (4). For

example, for task a,

tc = (1 + 4 x 2 + 3) / 6 = 2

V, = [(3 - 1) / 3.2]2 = 0.391

The result of the forward pass are indicated by the time scale as shown in

Figure 25.

Forward pass computations

	

V1=1.953 	I

VT=.391 	 S V 	 —0 	s S=0 	T=2,3/1/1 	V--2.735 S=0

0 S=0 	S=0
o 	VT=.782

0 	2 	4 	6 	8 	10 	12 	14 	16
Time units

Figure 25 PERT statistical computations.

In addition to the above calculations, the statistical PERT approach also enables us

to calculate the probability of meeting a scheduled target date (due date) for all tasks.

122

CHAPTER 6

AN INTEGRATED PROCESS MODELING ENVIRONMENT

The lack of industry-wide adaptation of process modeling as part of software development

activities can be attributed, in part, to the lack of an environment where process modeling

and software engineering activities are conveniently combined. Chapter 3 discusses the

mechanisms that these integrated activities can be carried out. This chapter further

describes the process modeling environment from the implementation's view point.

6.1 An Integrated Process Modeling Environment

An Integrated Process Modeling Environment (IPME) provides a base where process

description, simulation and analysis, as well as software engineering activities can be

Figure 26 An integrated process modeling environment.

123

124

carried out. It integrates databases, expert systems, tools, description graphs, and other

process modeling and software engineering tools into one system.

An IPME consists of three major components (see Figure 26):

• Process Description Component (PDC)

• Process Analysis Component (PAC)

• Process Data Collection Component (PDCC)

Process modeling activities can be divided into three phases with each component

above used primarily for one phase.

• Process Description Phase

• Process Simulation Phase

• Process Execution Phase.

During the Process Description Phase, the existing or the proposed process of the

software development in the organization, along with the parameters and constraints

affecting the process, are entered into the system using process description mechanisms

and the tool sets provided by the PDC.

During the Process Simulation Phase, the process is simulated through interacting

with the PAC. This Process Simulation Phase simulates real process execution in the

Process Execution Phase. In this phase, the described process is analyzed according to the

input data in the previous phase and the data stored in the process database. The analysis

is carried out in a process engine which is equipped with a formal process description

formalism. The output of this phase is a process outlook that contains analysis to the

effectiveness of the process exhibited in terms of measurements. The process improvement

personnel should be able to modify the process. If approved, the process database is

125

automatically updated, and a set of new collectable items are entered into the database

while obsolete items are being deleted from the system.

The heart of the PAC is a process modeling engine using graphs as its underlying

modeling formalism, so that both the scheduling algorithms on graphs and algorithms in

graph theory can be utilized for process manipulation. To enhance the intelligence of the

process modeling engine, a rule-based process knowledge base can be added, which may

be separated from the process database discussed above. This rule-based process

knowledge base should be generated and modified automatically with no or little

interference from knowledge engineers (except probably for the first time when the

knowledge base is set up). The knowledge base is generated using the rules in the

knowledge base and the data collected during the Process Execution Phase. The PAC of

the IPME consists of a task analysis engine, an inference engine and a collection of

process knowledge base, the expert system shells, and an expert system that can modify

process rules based on the collected data and user input.

During the Process Execution Phase, the engineering development group conducts

engineering activities according to the prescribed process. Process data collection is a

major part of the activities in this stage. The PDCC of the IPME is to provide a set of

tools and mechanism for collecting the data gathered during the execution of the process.

The collected data forms a process database, which can be used by the other components.

Central to the PDCC is a process monitoring function, which is used to analyze the

environment changes and their impact to the current process.

126

In order to collect data, certain tools used for project development, such as load

build tools, source code control libraries, and so on, can be integrated into the IPME so

that the output from those tools can be directly used as input to the PDCC.

With the IPME, processes can be studied and their effectiveness can be analyzed.

These analysis should be carried out throughout the life cycle of the process, from the

process description stage to process execution. This ensures that the process to be taken is

fully studied before it is put into action, and the process is fully monitored during its

execution, and data collected are put back to the system to drive process modifications.

This feedback loop ensures that risk management is carried out throughout the

process life cycle. During the Process Simulation Phase, the user entered data, the

previous performance database, the process knowledge base are all activated in an attempt

to identify risk areas and deficiencies. This is a deductive analysis of the process. During

the Process Execution Phase, the IPME system monitors execution of the process through

measurement and data collections. Risks are identified as soon as they are indicated by the

collected data. The process improvement personnel can then go back to the Process

Simulation Phase to put the newly derived process under study. Thus, data collected

through process execution are used to drive process modifications, and the process can be

modified with ease and on a timely basis.

After the Process Execution Phase, the collected data enables the IPME system to

do a retrospective analysis to the process. This postmortem analysis and measurement can

lead to improved process for the next process cycle.

127

6.2 Users' Interaction with IPME

The users of the IPME are typically the process improvement personnel, management

team, and possibly, project management team as well.

Users' perspective to a process and a process model can be formulated into several

sets of parameters interacting with each other. This is consistent with the perspective with

machine models discussed in Chapter 4 and 5. On a user's level, these parameters include

the following:

• a set of tasks (τ)

• a set of resources (p)

• a set of restrictions (y)

A process, P, is then a function of all the sets interacting with each other:

P = τ, ρ, y}.

The set of tasks, τ, are the building blocks of the whole process. The user defines the

set of process tasks for the specific domain or applications. These tasks can be defined at

different levels based on the level of organization that the process is to be modeled. Tasks

can be broken down into smaller tasks through task refinement. This activity continues

until a satisfied level of abstraction has been achieved for that particular process being

modeled. Note that these tasks are process tasks onto which project tasks are being

mapped. For details on process tasks, project tasks and their interactions, see Chapter 3.

The set of resources, p, include all the resources that affect the process. These

include the set of people, the set of equipment (if applicable), the set of inputs such as test

procedures, and the set of outputs such as source code and design documents. (To

simplify the resource assignment in process modeling, the only resource type considered in

128

this research is personnel. Other resource types, such as computing equipment and labs,

are not considered.)

The set of restrictions, 7, define any restrictions imposed on the tasks and resources.

Such restrictions may include scheduling restrictions (deadlines, milestones), resource

restrictions (e.g. resources A and B are mutually exclusive), resource allocation

restrictions, (e.g. person A cannot do task C), and so on.

The complexity of the process tasks interactions and the mechanisms of process

representation should be transparent to users. The user interface of the IPME should take

the advantage of the state of art graphical user interface capabilities on PC, workstations

or other hardware platforms.

The PDC provides interfaces prompting users to enter all the data required by the

process model. The user should be able to query the data entered, modify the data,

experiment with the data, and so on. To enter data, the user should do the following (not

necessarily in this order):

• Enter process tasks.

• Setup functional links for all the process tasks.

• Enter project tasks.

• Map project tasks to process tasks.

• Assign duration for project tasks.

• Assign resource to project tasks.

• Invoke the process modeling engine to validate the input and to resolve errors such

as resource assignment conflicts, loops in dependency graphs, etc.

129

After data being entered, the PAC proceeds to analyze the input data, the stored

database, the process knowledge base, the requirements and restrictions, etc. Based on

this analysis, the system calculates measurement data, such as make-span, float, etc. and

presents it to the user. This kicks off the user/system interactions. The user keeps

modifying and experimenting with the data (tasks, resource allocations, relationships,

restrictions, etc.) through the PDC, and the system keeps presenting new measurement

data through the PAC. This cycle continues until the user is satisfied with the result.

In addition to the validation and measurement functions, the PAC is also capable of

setting up a recommended process based on user input and existing data. If invoked, the

system recommended process should be at least as good as the user defined process, since

it can always go back to the user defined process if that process is proven to be a better

one. In most cases, however, the set of tasks and resources are so large that coming up

with an ideal process solution is beyond human being's normal capacity. This is where the

process modeling tools can help. Even though in a simple situation when the user can

define an ideal process solution, the process still needs to be recorded in the IPME system

so that execution of the process can be monitored. When operational environment changes

(tasks being delayed, resources not available, change of requirements, etc.) the process

can be made adapt to the changes quickly.

There are many ways of arranging process tasks. The objective of the IPME system

is to help obtain an improved process (within the constraints given by the user) in terms of

the net process time (Tp) and the resource capacity usage (Cr). The objective of the user is

to fine-tune the obtained process based on such human factors as policies, managerial

aspects, motivations, and so on. These human factors can also be translated into process

130

constraints or entered into the system as process parameters. The end result of this human-

machine cooperation is a final process that is improved in the sense that it balances out

both the optimal point as measured mathematically by the system (based on the entered or

collected data) and the optimal point as judged semantically by the user based on the

human factors.

6.3 Graphs in the Process Modeling Engine

As mentioned earlier graphs are being used in the process modeling engine for the PAC.

Usage of graphs makes it convenient for studying the process in terms of scheduling

theory and graph theory.

6.3.1 Task Representation

A task system can be represented in the form of a directed graph, G = (V, E), where the

set of vertices, V, represents the set of tasks, τ, and the set of edges, E, represents the set

C (Figure 27). Thus, an edge, e ϵ E, represents a partial ordering of the two tasks T1 and

T2 in τ that are connected by e.

131

Figure 27 Functional dependencies of tasks.

Each edge, e, from vertices Ti to Tj can have an edge weight, w, associated with it.

Depending on the layer of task representation (see the section, "Task Representation with

Layered Graphs" for details), this weight can be used to represent different parameters.

For example, if the task duration is the parameter that we are interested in, then we can

use the weight of the edge, e, to represent the task duration of the vertex which the edge

is incident from, i.e. vertex Ti

Figure 27 is an initial and simplest representation of the set of tasks in τ. The

directed edges show the interdependencies, or ordering, of the tasks. These ordering are

due to functional dependencies, not resource dependencies. Resource dependencies can be

represented with a similar, but separate, graph.

As shown in the figure, tasks t2 and t6 have dependency on task t1, task t9 has

dependency on tasks t5 and t6, and so on. Tasks t3, t4 and t5 are tasks that can be done in

parallel, so are t2 and t6. w1=3 on the edge connecting t1 and t2 shows that the duration

of the task t1 is 3 units (weeks, months, or whatever other measurement unit is chosen).

132

This implies that the weight of the edge connecting t1 and t6 is also 3, since the duration

of executing t I is 3.

Each vertex in the graph has all the parameters associated with the task as identified

in the task system. The set of parameters associated with a task will be expanded as

needed.

There are many measurements that can be obtained. Two important ones are being

used to assess the effectiveness of the process, net process time (Tp) and resource

capacity usage (Cr). The net process time for the tasks, τ, is the duration between the start

of the first task and the conclusion of the last task. This measurement can be used to

anticipate how long execution of a particular task set would require from start to end.

Translated in graphs terms, this is the make-span (Cmax). The resource capacity usage is a

percentage of the maximum capacity of each resource that is being used. This can be used

to measure how effectively each resource is being used for a particular task set. Variations

of this can be used to measure resource capacity usage for a particular resource type,

groups of resources, or the whole resource set (p). In graphs terminology these are floats

of the tasks or paths.

By representing tasks in the task system using graphs, tasks can be studied in terms

of graph theories. Thus, the whole set of tasks can be rearranged according to the

functional dependencies, the resource dependencies, as well as other restrictions. The

objective is to be able to manipulate the graph so that a new graph, representing new and

improved task execution orders, can be derived. This new ordering should show

improvement over the initial ordering in terms of the net process time for t and the

133

resource capacity usage for the resources, p. The goal is to minimize the net process time

and to maximize resource capacity usage.

6.3.2 Task Representation with Layered Graphs

The tasks as described by the user form a functional relationship, which can be represented

by a graph. When resources are assigned to each individual task, the resources themselves

form another relationship, which can be described by another graph. If we put the two

graphs together, it becomes a two-layered graph (Figure 28). In Figure 28, one graph (the

functional dependency graph) is represented in solid lines and the other graph (the

resource dependency graph) is represented with the same set of solid lines plus the dashed

lines. In the resource dependency graph, P1, P2, P3... represent persons 1, 2, 3, ... and so

on.

Each task has a number of parameters and restrictions associated with it. Parameters

of the same type form a special relationship which can be represented by a graph.

Figure 28 Layered graphs for the task set.

134

Therefore, there can be multiple layers of graphs associated with a set of tasks. Each layer

represents one dimension of the process. This allows the process engine take different

approaches or use different algorithms on different layers while maintaining the layer

interactions by connecting them with the same set of vertices (tasks). For example, in

Figure 28, one layer is for the functional dependency and the other layer is for resource

dependency. In order to optimize a process, all layers should be considered. Another

word, the optimal point should be a balanced point for all the layers.

6.3.3 A Process Instance Example

Figure 29 shows a simple process instance. In this directed graph, the vertices a to f are

specific tasks, and the edges show the task ordering. The value on each edge show the

personnel assignment, for example, pi, P2 and p3 are allocated to do task a and p3 is

allocated to do task d when a is done.

Figure 29 A process instance example.

135

Depending on the duration of the tasks, the resource allocation restrictions, and

other process parameters, one way of allocating the personnel to different tasks is to let p

and p2 finish task e and get ready for task f. Then let p3 join p1 and P2 to start task a. An

alternative of this is to let p1 and P2 finish task g, then let p3 join pi and P2 to start task a.

At task d, pi and P2 start working on task e while p3 continue working on d.

Which is a better process? The process modeling tool and the user need to have a

joint assessment on this.

One example of the user interface may be as follows:

Task Set: ti, t2, t3,

Personnel: p1, p2, P3, P4...

t1 	P1, P2, P3, P4--

Select personnel(s): 	p1, p2

Select duration: 	20 days

Restrictions: 	none

t1 	P1, P2, P3, P4•••

Select personnel(s): 	p5

Select duration: 	15 days

Restrictions: 	none

In this example, personnel assignment is done for each task. The user is given

prompts to select the personnel who can do this task, and for this particular resource

136

assignment, how long the task will take, etc. This is repeated for the same task with other

alternatives. Note, this selection is the user's specification of who can do the task, not who

should do the task. The user's preference may he entered as additional parameters.

The more options the user give, the more flexible the system can be when providing

a recommended process. On the other hand, the more restrictions the user provide to the

system when specifying the parameters, the more accurate the recommended process can

be compared with the preferred user specifications.

6.4 Process Measurement and Improvement Through Graph Analysis

After tasks are decomposed, parameters and restrictions associated with each task are

specified, and functional and resource dependencies are identified, the tasks are going

through a series of interactive task manipulations to put the task in order, to assign

resources for each task and to fine-tune the whole process by rearranging tasks or

resource assignments or both.

6.4.1 Ordering of Tasks by Topological Sort

When tasks are identified and the partial ordering relationships are specified, the tasks

need to be put in an execution order. The initial execution order can be done without

regard to the resource allocations, i.e. the execution order is dominated only by the partial

ordering relationship given by the user.

This execution order can be obtained by performing a topological sort on the tasks.

After the sorting, it is very likely that several tasks can be started independently. This gives

the system flexibility to decide when to start which task. The system only knows certain

137

task cannot be started until certain other tasks are done. When resources are also allocated

to the tasks, the system also has to know that certain task cannot be started until certain

point in time, ti, due to resources dependencies. Therefore, there are two dimensions in

execution of tasks: ordering and timing. The task dependencies determine the task

execution ordering. The resource dependencies determine the task execution timing.

Together they define which task should be done at which time and by whom.

The end result of this ordering is a network of tasks in graphs with several

independent paths from sources to sinks. There could be more than one ordering, resulting

in more than one graphs with different paths. Overlaying all the graphs on top of each

other (conceptually), the single graph will show all the possible resource assignments.

Using ''shortest path" algorithms, the system can find an optimal resource assignments and

task ordering to present to the user. Again, this optimal ordering is measured in terms of

the net process time and the resource capacity usage. This has been discussed in Chapter 4

in details.

Figure 29 shows one example of the task ordering after a topological sort. As shown

in the figure, p1, p2 and p3 execute task a. p3 continues to execute task d. When pi and

P2 finish task e, p3 joins them to finish task f.

The problem is that tasks a, b, and c cannot be started together, because pi and p2

are involved with tasks b and c as well as task a, resulting in resource contention. To

show the resource dependencies, the graph is converted to a resource dependency graph

as shown in Figure 30.

138

In Figure 30, p1, p2 and p3 start working on task a. Then p l starts working on task

b while p2 starts working on c. After that, both p 1 and P2 work on task g. Meanwhile, p3

is assigned to work on d.

Note, in the task dependency graph, the value on an edge is the person assigned to a

task that the edge is incident from; in the resource dependency graph, the value on an edge

is the person assigned to a task that the edge is incident to.

After the transformation of the graph into a resource dependency graph, the duration

from start of task a to finish of task f can be traced. When one task has resource

dependencies on more than one task, process slack time may result, since it may not

happen that all the resources involved with the depended tasks get freed up at exactly the

same time. In certain cases, the waiting task can be started with partial resources. In other

cases, this is not possible.

Figure 30 A resource dependency graph.

139

6.4.2 Resource Assignment Using Maximum Bipartite Matching

If considering resources as one set and the tasks as another set, then assigning resources

to tasks can be done in terms of maximum bipartite matching.

The maximum bipartite matching is a problem of finding a maximum number of

matches between two sets, L and R [Cormen90] (Figure 31). In Figure 31, the set (a) has

a matching with cardinality of 2, and the set (b) has a maximum matching with cardinaliy

of 3.

Figure 31 Maximum bipartite matching.

The set of resources and the set of tasks have an n to m relationship. That is, many

resources can be assigned to the same task, and one resource can be assigned to many

tasks.

The resource assignment using maximum bipartite matching needs to interact with

the task ordering by topological sort. If treated separately, the former concentrates

assigning resources without considering the task ordering and the latter concentrates on

I40

task ordering without considering resource contention. Only coupled with the task

duration, the task dependency graph, the set of restrictions, and so on, resources can be

assigned to tasks meaningfully.

6.4.3 Determine Process Capacity Using Flow Network

One particular problem in this research is to study the resource capacity usage of the

process. Specifically, given a proposed process, what is the resource capacity usage?

Given resource restrictions, such as a pre-defined net process time, where should

resources be added in order to execute the whole set of tasks within budget and within

schedule? What is the effect of adding these resources? Where is the process bottleneck?

One way of calculating resource capacity usage is by finding out the float of the

paths as discussed in Chapter 4. An alternative is to consider the resources and resource

capacities as a flow network. The resource utilization can then be studied in terms of the

maximum flow problem in a flow network.

The maximum flow problem is to find the maximum flow from source(s) to sink(s)

of a graph under certain capacity restrictions. For example, we may want to find out what

is the greatest rate at which material can be shipped from the source to the sink without

violating any capacity constraints. If we think of resources (personnel, facilities,

equipment, etc.) as "pipes", and tasks as materials, we can then try to find answer to the

following question: What is the greatest rate that tasks can be executed by the personnel

within the constraints?

In fact, the capacity issue can be translated to many maximum flow questions as

shown below.

141

• What is the maximum flow of the current network with all the capacity restrictions?

• Where is the bottleneck? Which capacity (between which pair) should be increased

and by how much?

• Some of the flows are way under capacity, how to rearrange the flow network so

that the capacities are highly utilized?

• What is the effect of adding (or reducing) capacities to the network? Can this

increased capacity or capacity usage result in reduced net process time?

• Rearranging the flow network may result in more (or less) capacity being needed;

adding capacity to the network may result in the flow network being rearranged.

What is the optimal point?

pr
oc

es
s

va
lid

at
io

n

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

A software process model must possess capabilities in three major categories, namely,

representation capabilities, comprehensive analysis capabilities and forecasting capabilities.

The software process modeling research, therefore, can be conducted along the three

dimensions that provide these capabilities: process representation, process validation and

process optimization (Figure 32).

process representation

Figure 32 Process modeling dimensions.

Current software process modeling research has made significant progress towards

process representation, and to a certain degree, towards process validation. However, few

satisfying results have been achieved along the process measurement dimension.

The goal of process modeling should not stop at the process representation level.

Describing a process concisely and succinctly is just a first step in studying the process.

Process modeling should not stop at the process validation level either. A correctly

142

143

described process to its completeness does not mean that the process is a good process.

The research has to go further. Given a described process, we should be able to answer

the following questions: Where is the bottleneck? Where are the slacks? Are the resources

being used to their full potential? Are the resource capacities exceeded? Where is the risk

area? What are the effects of changing certain parameters? Following answers to these

diagnostic questions, an improved process with predictable behavior can be derived. This

process improvement is an ongoing activity - after a process is invoked, the process

execution is closely monitored and the above questions are re-examined based on the

current performance as measured by the collected data. The process is further modified, if

necessary.

7.1 Conclusion

A process modeled project management environment enables software development

activities to be fully integrated to the process established by an organization or by the

whole software development community. Process execution steps form the backbones of a

project breakdown structure, based on which the project is decomposed into tasks.

Resource assignment to the tasks and scheduling of the tasks are done using scheduling

algorithms and techniques. This treatment of tasks is based on a scheduling model in

industrial engineering.

From a scheduling model's perspective, software development activities consist of a

set of tasks (t), a set of resources (p), and a set of constraints (y). A process, P, is then a

function of all the sets interacting with each other: P = { τ, ρ, y}. These sets can be readily

"plugged in" to a machine model in a Flexible Flow Shop environment by considering as

144

jobs, ρ as machines, and y as constraints. Study of interactions of these sets is thus done in

terms of different flexible flow shop machine models. The outcome of these interactions

are reflected through a set of measurement criteria, in particular, the make-span, the float

and the bottlenecks. The make-span tells us how long the project is expected to take, the

float indicates where the slacks occur, and thus how resource capacities are being utilized,

and the bottlenecks point out the area where management focus should be directed. These

measurements enable us to quantitatively compare and judge the end results from

modification of the process, such as rearrangement of a certain project tasks or resource

assignments, whether in its process description stage, process simulation stage or process

execution stage.

Description of combining project management and process modeling into an

integrated entity in Chapter 2 is followed by a detailed description of deterministic

resource models in Chapter 4. The description starts from a simple model with single

resource and lots of assumptions and extended to a more general and realistic operating

environment with multiple resources, multiple tasks (not necessarily from the same

project), and assumptions removed but constraints added. Software development activities

often exhibit stochastic behavior. The statistical analysis of these uncertainty is dealt with

in Chapter 5.

An integrated process modeling environment is presented in Chapter 6. This sets up

the environment where the process can be described, simulated, measured and modified. A

feedback look from the actual execution is the key to this process modeling environment.

This helps to fulfill the requirements that a process model not only has to be able to

predict the process outcome, it also has to react quickly to environmental changes.

145

Process description using graphs is adopted in this research. While there are many

mechanisms to formally describe a process, process description using graphs lends itself to

the convenience of studying the process in terms of such established graphical project

management schemes as CPM and precedence diagrams. It also allows many established

graph theories and algorithms to be used for the process analysis and task manipulations.

The framework established in this research has been experimented with a real world

software development process modeling initiative as part of the organization's Process

Improvement engagement. Description of this initiative is done in Appendix A as a case

study for this research.

7.2 Research Contributions

As discussed in Chapter 2, a good process comprises both a managerial framework and a

technical framework. Managerial frameworks are found in many software development

organizations; yet technical frameworks are still a topic of interest in the research

community. As we move to higher SEI capability levels, good technical frameworks are

essential.

An organization's software development capabilities are measured by its level of

capability maturity. At SEI level 1 and level 2, no technical frameworks are necessary. At

level 3, the Defined level, precise and powerful description of processes are needed. Since

no manipulation of these processes are required at this level yet, the process description of

this level is mainly for understanding of the process. Therefore, a formal process

description mechanism is not absolutely needed, but a good process description

framework would help the organization move to the next level, the Managed level. At this

146

new level, processes need to be formally examined and analyzed, and comprehensive

process measurements need to be provided to set the stage for continued improvements in

the next level, the Optimizing level. Processes at level 5 should have quantitative forecast

capability to predict the impact of any process changes.

This is the area where a contribution of this research has been made. Continuing

from previous work by Delcambre [Delcambre94] and Mills [Mills96], where process

description and analysis were done using a task system template, this research has

concentrated on setting a technical framework for process quantitative measurement and

comparison, thus helping organizations fulfill the technical requirements of the SEI level 4

and level 5, and in doing so, has advanced research in the area of process forecast and

prediction, pushing software process modeling one step further. By integrating process

modeling into a software development environment, this research has also bridged the gap

between research in the academic world and application in the software development

community, thus technically achieving a process centered software development

environment.

This research has adopted the following approaches:

1) Integration of project management with process modeling.

Project management and process modeling were treated as two separate subjects in

the software research and development community. Researchers in the area of software

development process modeling were reluctant in "crossing the border" to tap into the

techniques and infrastructure already built into the area of project management. As a

result, processes in the software development industry have been mainly used as a policy

or guidelines while project management is being used to track development activities.

147

Because of this separation, the feedback loop as described earlier is being cut, i.e. data

from the development activities and environmental changes cannot be put back into the

process during the process execution stage. Although project management software has

been used to keep track of projects, the computer power has not been fully tapped from

the standpoint of process improvement.

In this research project management has been integrated into a process model driven

environment. This process centered, integrated project management scheme allows

established processes being carried out through project execution tasks, and the results

from project execution being put back to the process for process monitoring and

modifications.

2) Usage of process modeling techniques from industrial engineering.

Scheduling theory and techniques have been used extensively in industrial

engineering. In a manufacturing process modeling environment, jobs are dispatched to

different machines according to the capabilities and capacities of the machines and the

specified constraints. Different scheduling models have been set up to deal with various

types of situations. This modeling technique has been studied and used in software

development process modeling in this research. The scheduling models are utilized by

considering tasks as jobs, and resources in a software development organization as

resources in a manufacturing environment. Different process models, both deterministic

and stochastic, are then studied. Measurements criteria have been set up so that the

processes obtained by manipulating parameters, resource assignments, tasks arrangements,

constraints, and so on, can be quantitatively compared and a judgment can be made based

on the semantics.

148

This inter-disciplinary approach has helped to set a stage for further studies of

process modeling using scheduling theory and algorithms.

3) Introduction of an integrated process modeling environment.

In order to simulate processes by manipulating process models, an integrated

process modeling environment has been described. This environment integrates tools for

all aspects of project management, process engineering and software engineering.

Examples of these include tools for process description, process analysis, process

simulation, process monitoring, data collections, and many traditional CASE tools used

for project management, problem tracking, software development, and software

configuration. This environment is essential for a process driven software development. It

provides direct feedback from software engineering activities to process engineering

activities, or vice versa. It is the base for planning control and risk management. Although

a complete implementation of such a system is beyond the scope of this research, the

concept proved by this research and the proposal outlined in this dissertation will provide

guidance for further study and implementation of an integrated process modeling

environment.

7.3 Research Results and Impact

As a problem "from the real world and back to the real world," this research intends to

address a software process issue in a division of a telecommunications company. The

"magic formula" for the organization's superior product quality and on-time delivery is its

adherence to software development processes. As a continued effort in process

improvement, systematic process control becomes a high priority.

149

This research has demonstrated that a sound technical process modeling framework

not only provides solution to the systematic process control problem, it is also the key to

sustain the organization's process capabilities. The result of this research has, therefore,

become a proposal to be submitted as part of the organization's Process Improvement (PI)

efforts in preparation for the 1998 TCS regional competition. TCS (Total Customer

Satisfaction) is the company's initiative which calls for "innovation and smart way of

doing business."

The impact of realization of a technical framework would be far beyond the division

level. Implementation of the comprehensive process modeling environment would help not

only the division but also the rest of the company to achieve and sustain top level SEI

maturity, thus to enhance their product development capabilities. The success story can

even go beyond the company and make a bigger impact to the whole software

development community in its efforts of product quality improvement.

7.4 Direction for Future Research

Extending the scope of the research described in this dissertation, the following identifies

future opportunities for its continuation.

The call for an integrated process modeling environment has been made and its

validity has been testified in this research. Implementation of such a system, however,

requires combined efforts from a team of software developers. Many practical issues, such

as budgeting and profitability, need to be worked out before this type of systems becomes

a reality.

150

This research has touched upon the stochastic behavior of software process models.

Research in this area needs to be carried further. Software development activities are full

of uncertainties. Tackling these volatile process models is crucial in software risk

management.

Cost control is an important aspect of any software development endeavor.

Constraints related to costs, such as duration sensitivity, lateness charges, benefit of hiring,

etc. will directly affect the outcome of a process. Therefore, cost control needs to be

considered in future process modeling research.

When describing resource assignments and task sequencing in both the deterministic

and stochastic models, this research adopted a set of assumed constraints. A formal

method of description for a variety of complex constraints is needed in order to study the

impact of the constraints to process models more effectively. This description can be done

either mathematically or by way of formal languages.

Determining resource capacity usage using Flow Network has been touched upon in

this research. It is an interesting alternative for determining and controlling resource

capacity usage and needs to be studied further.

Research is an ongoing activity, with earlier research results serving as step stones

and later researches carrying them on by modifying, improving and enhancing earlier

research results. It is hoped that this research has served as a step stone for future

researches. It is hoped that a "silver bullet" emerges as the entire software research and

development community moves forward towards a higher capability maturity level.

APPENDIX A

EMPIRICAL STUDY OF A SOFTWARE PROCESS MODEL

This appendix introduces the case study originated from a software development division

within a major wireless telecommunications corporation. As a case study experiment, a

software development group and its project has been chosen.

A.1 Business Practice

The particular software development group under study is engaged in a satellite based

personal communications system, which consists of four major components: a space

network formed by Low Earth Orbit satellites, a land based network formed by ground

stations (also called the Gateways), communications devices such as hand-held telephones,

and a data-network to support system operations. The group under study is contracted for

the software development of a major portion of the Gateway.

System level requirements have been handed down from the system requirements

group, who, through years of studies, has laid out a framework for all the components to

work together. Development is then carried out in component level organizations. The

components are tested locally and then submitted for system level integration.

The software development for the Gateway is on top of an existing hardware

platform, with new software being added and existing software being modified or deleted.

The software is released in phases, with each phase of delivery carrying more

functionality, or features. The development process follows a water fall model and consists

of the following process steps:

151

152

1. Software Requirement Specification (SRS)

2. Interface Control Design (ICD)

3. High Level Design (HLD)

4. State Machine Design (SMD)

5. Low Level Design (LLD)

6. Coding (CODE)

7. Process Test Design (PTD)

8. Process Test Execution (PTX)

9. Feature Test Design (FTD)

10. Feature Test Execution (FTX)

Once the High Level Design in step 3 is finished for each feature, the development is

carried out further by parallel development teams, each team is responsible for a certain

sub-component. All the components have to communicate with each other through the

communications protocols and messages designed in the Interface Control Design stage.

Steps 4 to 8 are followed by each team, if applicable. Step 9, Feature Test Design, can be

done any time after step 3 is finished. The last step, Feature Test Execution, is carried out

after all the teams have finished step 8 for that particular feature, provided step 9 is also

finished. This process is illustrated in Figure 33.

153

SRS

I T

HLD
f

SMD 	SMD 		SMD

LLD 	LLD 	 LLD

CODE 	CODE CODE 	FTD

PTD 	PTD 	 PTD
	 PTX

FTX

Figure 33 A simplified process example.

Since there are many features being developed in parallel, members in various teams

are engaged in different stages of development for different features.

According to the company's quality control policy, all the deliverables, including

internal and external documents, coding, test plans, test cases, etc. need to be inspected in

an inspection process, called Fagan Inspection. The inspection is normally attended by

four or more people. A certain amount of time is given for preparation before the

inspection. When the engineer finishes one delivery and is waiting for its inspection, he/she

typically goes into the next step and conducts some preliminary work.

After feature test of one or more features, a load carrying all these features is

delivered to an internal testing organization for rigorous component level tests.

Note, from the higher level of the development organization, the product design and

product test are two process tasks, with the task, product design, followed by the task,

154

product test. These two tasks are then decomposed into smaller tasks, and therefore form

sub-processes within a process. In this sense, what is described above (see Figure 33) is a

sub-process for designing a product; the process being followed by the testing

organization is yet another sub-process. Interacting with both the product design and

product test is a sub-process for problem reporting and resolution.

A.2 Process Execution Challenge

Software development processes face additional challenges that other processes, such as

manufacturing production processes, may not have. In a machine shop environment for

example, the process of execution, once established, is fixed for the most part, and the

capacity of each machine can be calculated or measured. Risks, such as machine

breakdown and material supply shortage, are factored in the production planning.

Software development processes, on the other hand, are more subject to changes and

abnormal situations.

The software development organization for this case study is no exception. Handling

those exceptional situations while carrying on with the normal process execution has

become a challenge. A detailed look at the operational environment, or semantics, can

make us understand the need for a software process modeling effort.

The following software development challenges were carefully studied:

1) The normal development process can be interrupted by many other events: for

example, problem reports can be generated from the field, or from the various testing

organizations. If the problem reports need immediate attention, the development process

will be put on hold. Setting aside a special team to address those problems seem to resolve

155

this particular issue, but it may not be practical in terms of operations or budgeting. In

reality, certain problems may be best addressed by the developers themselves. From the

project delivery and resource capacity usage's point of view, a separate team solution

satisfies one measurement (make-span) at the high cost of the other (float time).

To compound the situation, interruption of one task may lead to delays of other

tasks, causing a rippling effect.

2) Project task duration is estimated. With enough data collected, the accuracy of

estimation can be improved, but it is still estimated, not calculated or measured. Therefore,

the actual task execution duration may be different from the estimation, and due to the

complex nature of the project, sometimes these differences are quite large - it is either

overestimated or underestimated.

3) Other than the development equipment the major resource for software

development is the manpower - people. Yet, these resources are subject to a variety of

changes. People can come and go; they can take sick leaves; they can be promoted or

moved to a different department or company. Their availability or absence are not even

completely under their own control. Therefore, the resource assignment has to be updated

from time to time, causing rippling effects to the resource dependencies, resource

utilization and delivery date.

4) Task assignment is based on people's skill levels. While, say, the production rate

of a particular machine is measurable, there is no accurate and convenient way of

measuring people's skill levels. Any attempt of such measurements, such as by education

levels or by years of experiences, is a rough approximation. Task assignment is also based

on people's interest and specialties. While we can assign jobs to machines based on the

156

machine's functions, we can't assign tasks to people without considering their interest,

their training need, the job rotation need, and many other human related issues. Certain

tasks can only be performed by certain people, or if changed, the execution duration may

need to change also. This not only poses challenges in coming up with a comprehensive

set of constraints, it also causes more uncertainty in process execution.

5) During the course of project execution, the task breakdown structure may need to

be changed, nullifying many previous dependency relationships and resource assignments.

These software development and project management difficulties can explain the

project delays experienced by many organizations. However, these project delays are not

tolerated by an SEI level 5 organization, and product quality cannot be compromised

either.

In order to deal with these operational issues, a big portion of the manpower in the

group under study has to be devoted in project tracking, process control, and process

monitoring, causing a major development overhead. Even with the help of a project

management tool, for a complicated project this size, the traditional project management

method is far from satisfaction. What is needed is a process environment that can

systematically adjust to the situation changes, quickly and effectively.

A.3 Process Centered Project Management Setup

As described previously, the first step in combining project management to a process

modeling environment is setting up a process execution steps, or process tasks.

An example of a simplified process described in Section 0 for the target group under

study is set up as shown in Figure 33.

157

The project work breakdown structure (WBS) is obtained next. This WBS is project

specific. However, Each project task should fit in one of the process task above. For

example, different modules of the system may need to be modified depending on the

project. When the amount of work get large, the modules are grouped (or breaking down)

into several project tasks, such as, coding of modules A-J, coding of modules G-I, and so

on. All of these are then mapped to the CODE process task for the particular sub-

component. Different set of modules may be mapped to a process task in a different sub-

component.

Note that the functional dependency of these project tasks may he established

automatically by the links from their respective process tasks. See Chapter 3 for detailed

descriptions.

The functional dependency set up previously forms a directed acyclic graph (DAG).

During the next step, duration for each project task is assigned. This is recorded for each

node of the graph. This is followed by a resource assignment step, when initial resource

assignment is associated with each task. The purpose of this crude resource assignment is

to set up the basis for later graph manipulation and fine-tuning by establishing an initial

resource dependency graph.

A.4 Process Execution, Measurement and Analysis

The heart of a process modeling environment is a process modeling engine which

incorporates different algorithms for process manipulation. It also has all the

measurements calculated for the user to compare the processes and to see the impact to

the whole project by changing parameters, such as constraints or resource assignments.

158

The bulk of this dissertation has been devoted to discussions of measurements. In

terms of project management interest, the mangers want to know how long a project can

take and how much manpower is needed. In case of environmental changes, such as

sudden shortage of resources, they want to know what is the impact to the whole project.

From an operational perspective, they want to know whether the teams are over-staffed or

understaffed. All these translate into the set of measurement criteria. The major ones are

the make-span (the longest duration for the project), the float {the slack time which can be

used to calculate the resource capacity usage), the critical paths and bottlenecks.

To deal with uncertainty, measurement of stochastic models are proposed. These

measurements give managers a confidence level, or a range of answers when the process is

being manipulated. Through a friendly user interface, the tasks manipulation should

become very easy. An integrated process modeling environment (see Chapter 6) ensures

that data from actual process execution are collected and used on a continual basis.

To completely implement a comprehensive and user friendly process modeling

environment requires a team effort. However, once the theoretic framework as discussed

in this dissertation is adopted, the system implementation becomes a matter of

endorsement from the company or a sponsor for the development effort.

REFERENCES

[Akhras92] F. N. Akhras, et al. Towards Dynamic Generation of Knowledge-Based
Environments for Software Process Assistance, IEEE, 1992.

[Applegate91] D. Applegate, W. Cook, "A Computational Study of the Job-Shop
Scheduling Problem," ORSA Journal on Computing, vol. 3, pp.149-156.

[Bandi93] S. C. Bandinelli, A. Fuggetta, C.Ghezzi, Software Process Model Evolution in
the SPADE Environment, IEEE 1993.

[Boehm86] B. Boehm, "A Spiral Model of Software Development and Enhancement,"
ACM SIGSOFT Software Engineering Notes, August 1986.

[Bohm80] D. Bohm, Wholeness and the Implicate Order, Ark Paperbacks, Boston, 1980.

[Brooks87] F. P. Brooks, "No Silver Bullet: Essence and Accidents of Software
Engineering," Computer, Vol 20, No. 4, pp.10-19, April 1987.

[Chris92] M. Christiansen, S. Delcambre, E. Demirors, 0. Demirors, M Tanik, Software
Development with Transformable Components, IEEE 1992.

[CaCo93] B. Cain, J. Coplien, A Role-Based Empirical Process Modeling Environment,
IEEE 1993.

[Cormen90] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, The MIT
Press, 1990.

[Delcambre94] S. Delcambre, A Software Process Modeling Framework as a Basis for
Process Analysis and Improvement, Southern Methodist University, 1994.

[Demi92J E. Demirors, 0. Demirors, W. Yin, M. Tanik, D. Yun, An Alternative Software
Development Model Supporting Software Evolution, IEEE 1992.

[Dogru92] A. Dogru, S Delcambre, C. Bayrak, M. Christiansen, M Tanik, The
Development of an Integrated System Design Environment, IEEE 1992.

[Dsn93] M. Dowson, Software Process Themes and Issues, IEEE 1993.

[Dun90] R. Dunn, Software Quality Concepts and Plans, Prentic-Hall, Englewood Cliffs,
NJ, 1990, pp. 142-145.

159

160

[Earl95] A. Earl, A. Christie, "An Approach to Classifying Graphical Process Modeling
Notations," SEI Technical Reports, 1995, pp.109-123.

[Gibbons9l] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1991.

[Fagan86] M. E. Fagan, "Advances in Software Inspections," IEEE Transactions of
Software Engineering, Vol SE-12, No. 7, July 1986.

[Garg94] P. K. Garg, P. Mi, T. Pham, W. Scacchi and G. Thunquest, The SMART
Approach for Software Process Engineering, IEEE 1994.

[Garg96] P. K. Garg and Mehdi Jazayeri, Process-Centered Software Engineering
Environments, IEEE Computer Society Press, 1996.

[Hatono92] I. Hatono, et all, "Modeling and On-Line Scheduling of Flexible
Manufacturing Systems Using Stochastic Petri Nets," IEEE Transactions on
Software Engineering, 17(2) 1992, pp.126-131.

[Heim91] D. Heimbigner, "The Process modeling Example Problem and its Solutions,"
Proc. 1st International Conference on the Software Process, IEEE Computer
Society Press, October 1991.

[Hoare85] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall
International, Englewood Cliffs, NJ, 1985.

[Hodson92] William Hodson, Maynard's Industrial Engineering Handbook, McGraw-
Hill, 1992.

[Hooc94] S. M. Hooczko, B. J. Hirsh, 'Taking Inspections to the Limit," Motorola 7th
Software Engineering Symposium, 1995.

[Huff88] K. Huff and V. Lesser, "A Plan-Based Intelligent Assistant That Supports the
Process of Programming," ACM SIGSOFT Software Engineering Notes, Vol.13,
Nov. 1988, pp.97-106.

[Humphrey88] W. S. Humphrey, "Characterizing the Software Process: A Maturity
Framework," IEEE Software, 5(2), March 1988, pp.73-79.

[Humphrey90] W. S. Humphrey, Managing the Software Process, Addison-Wesley
Publishing Company, 1990.

[Jacc93] M. L. Jaccheri, R. Conradi, Techniques for Process Model Evolution in EPOS,
IEEE 1993.

161

[Kaiser87] G. E. Kaiser, P. H. Feiler, An architecture for Intelligent Assistance in
Software Development, Proceedings of 9th ICSE, Monterey, CA, April 1987.

[Kaiser88] G. E. Kaiser, et al. Database Support for Knowledge-Based Engineering
Environments, IEEE Expert, 1988.

[Kaiser88a] G. E. Kaiser, "Rule-Based Modeling of the Software Development Process,"
Proceedings of the 4th Int. Software Process Workshop, New York, NY, 1988,
pp.84-86.

[Kellner89] M. Kellner, "Software Process Modeling: Value and Experience," SEI
Technical Review, 89(23), 1989, pp.23-54.

[Kellner93] Marc Kellner, Tutorial: Software Process Modeling, Software Engineering
Institute, Carnegie Mellon University, 1993.

[Kramer90] B. Kramer, Luqi, Petri Net-Based Models of Software Engineering
Processes, IEEE 1990.

[Lehman87] M. Lehman, "Process Models, Process Programs, Programming Support,"
Proceedings of 9th International Conference on Software Engineering, 1987,
pp.14-16.

[Lin89] Chi Y. Lin, et al. Computer-Aided Software Development Process Design, IEEE
1989.

[Luqi92]Luqi, The Management of Uncertainty in Software Development, IEEE 1992.

[Lonch90] J. Lonchamp, K. Benali, C. Godart, J. C. Derniame, Modeling and Enacting
Software Processes: an Analysis, IEEE 1990.

[Madh90] N. H. Madhavji, et al., "Prism = Methodology + Process-oriented
Environment," McGill University, Montreal, Proceedings of the 12th ICSE, Nice,
March 1990.

[Matsu90] Y. Matsumoto, "Toshiba Fuchu Software Factory," Modern Software
Engineering, Van Nostrand Reinhold, New York, 1990, pp.479-501.

[Mills96] Stephen Mills, Resource-Focused Engineering of Reliable and Efficient Process
Systems, Southern Methodist University, 1996.

[Milner80] R. Milner, "A Calculus of Communicating Systems," Lecture Notes in
Computer Science, Vol. 92, Springer-Verlag, New York, 1980.

162

[Moder83] J. J. Moder, et al., Project Management with CPM, PERT and Precedence
Diagramming, 3rd Edition, Van Nostrand Reinhold Company, 1998.

[Mou96] Gary Mou, "A Graph Based Process Representation for Process Modeling,"
Proceedings of the Second World Conference on Integrated Design and Process
Technology, Society for Design and Process Science, 1996, pp.370-375.

[Ng90] Peter A. Ng, Raymond T. Yeh, Modern Software Engineering, Foundations and
Current Perspectives, Van Nostrand Reinhold, New York, 1990.

[Ost87] L. Osterweil, "Software Processes are Software Too, " Proceedings of 9th
International Conference on Software Engineering, IEEE Computer Society Press,
1987, pp.2-13.

[Ould88] M. Ould, C. Roberts, Defining formal models of the software development
process, Software Engineering Environments, Brereton P. (ed.), Ellis Horwood,
1988.

[Pinedo95] Michael Pinedo, Scheduling - Theory, Algorithms, and Systems, Prentice-Hall,
1995.

[Petri87] C. A. Petri, "Concurrency Theory," Lecture Notes in Computer Science,
Springer-Verlag, 1987.

[PMI96] PMI Standards Committee, A Guide to the Project Management Body of
Knowledge, Project Management Institute, 1996.

[Royce70] W. Royce, Managing the Development of Large Software Systems, IEEE
WESCON, Aug. 1970.

[Sakurai85] J. J. Sakurai, Modern Quantum Mechanics, Benjamin / Cummings, 1985.

[Shih95] C. Shih, "Fuzzy Multiobjective Optimization Techniques and Process for
Engineering Design," Proceedings of the First World Conference on Integrated
Design and Process Technology, Austin, 1995, pp.57-62.

[Soma95] H. Soma, et all, Schedule Optimization Using Fuzzy Inference, IEEE, July,
1995.

[Tajima90] D_ Tajima, Y. Usuda, F. Tsunoda, S. Ebina, "Hitachi's Software Factory Tools
for COBOL: An Introduction to Skips/SDE for Business Applications," Modern
Software Engineering, Van Nostrand Reinhold, New York, 1990, pp.421-447.

[Tanik87] Murat Tanik, "In Search of Silver Bullet," IEEE/ACM Fail Joint Computer
Conference Proceedings, Dallas, TX, October 1987, pp.686-687.

163

[Tanik91] Murat Tanik, E. Chan, Fundamentals of Computing for Software Engineers,
Van Nostrand Reinhold, New York, NY, 1991.

[Tanik961 Mural Tanik, Raymond Yeh, Franz Kurfess, et. al., "Issues and Architecture
for Electronic Enterprise Engineering (EEE)," Proceedings of the Second World
Conference on Integrated Design and Process Technology, Society for Design and
Process Science, 1996, pp.57-62.

[Yeh90] Raymond Yeh, Peter Ng, Modern Software Engineering, Van Nostrand
Reinhold, New York, NY, 1990.

[Yeh94] Raymond Yeh, Suzanne Delcambre, Murat Tanik, "Cosmos: An Architecture for
Improving Process Capability Maturity," 3rd International Conference on Systems
Integration, 1994.

[Yu94] Eric S. K. Yu, J. Mylopoulos, Understanding "Why" in Software Process
Modeling, Analysis, and Design, IEEE 1994.

[Zeigler76] B. P. Zeigler, Theory of Modeling and Simulation, Wiley-Interscience, New
York, 1976.

	A graph based process model measurement framework using scheduling theory
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment
	Table of Contents (1 of 6)
	Table of Contents (2 of 6)
	Table of Contents (3 of 6)
	Table of Contents (4 of 6)
	Table of Contents (5 of 6)
	Table of Contents (6 of 6)
	Chapter 1: Introduction
	Chapter 2: Research On Software Development Process Modeling
	Chapter 3: Scheduling, Project Management, and Process Modeling
	Chapter 4: Measurement of Deterministic Models
	Chapter 5: Measurement of Stochastic Models
	Chapter 6: An Integrated Process Modeling Environment
	Chapter 7: Conclusion and Future Research
	Appendix A: Empirical Study of a Software Process Model
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	Nomenclature (1 of 3)
	Nomenclature (2 of 3)
	Nomenclature (3 of 3)

	Glossary of Terms (1 of 3)
	Glossary of Terms (2 of 3)
	Glossary of Terms (3 of 3)

