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ABSTRACT 

DUAL MATERIAL GATE FIELD EFFECT TRANSISTOR (DMG-FET) 

by 

Wei Long 

Improving performance and suppressing short channel effects are two of the most 

important issues in present field effect transistors development. Hence, high performance 

and long channel like behaviors are essential requirements for short channel FETs. This 

dissertation focuses on new ways to achieve these significant goals. A new field effect 

transistor — dual material gate FET (DMG-FET) — is presented for the first time. The 

unique feature of the DMG-FET is its gate which consists of two laterally contacting gate 

materials with different work functions. This novel gate structure takes advantage of 

material work function difference in such a way that charge carriers are accelerated more 

rapidly in the channel and the channel potential near the source is screened from the drain 

bias after saturation. Using HFET as a vehicle, it is shown that the drive current and 

transconductance in DMG-FET are therefore substantially enhanced as compared to 

conventional FET. Moreover, it is observed that the short channel effects such as channel 

length modulation, DIBL and hot-carrier effect are significantly suppressed. Numerical 

simulations are employed to investigate the new device structure and related 

phenomenon. A simple and practical DMG-HFET fabrication process has been 

developed. The proposed DMG-HFET is thus realized for the first time. Experimental 

results exhibit improved characteristics as the simulation results predicted. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

High performance high speed field effect transistors (FET), including MOSFET (metal­

oxide-semiconductor FET), MESFET (metal-semiconductor FET), and HFET 

(heterostructure FET), have been playing increasingly important roles in high 

performance, high speed and high density Ie applications, both analog and digital. High 

figure of merit values, such as high transconductance and drain impedance, are required. 

During the past decade, excellent high speed and performance have been achieved (see 

for example [1]) through improved design, the use of higher quality material, and the 

shink of the device structure. However, two major problems persist, namely, short 

channel effects and gate transport inefficiency. 

The predominant feature of the detrimental short channel effects is high drain 

conductance, which also prevents the pinch off and leads to a shift in tlu'eshold voltage, 

and therefore VT dependence on drain voltage [2J, [3]. The phenomenon has been 

previously described in several cases of FETs (see for exan1ple [4]). 

It has been demonstrated that the dual gate (DG) FET structure is an effective 

means to overcome the short channel effects [5], [6]. The DG-FET can be treated as a 

cascade connection of two FETs as long as the separation between the two gates is large 

compared to the channel thickness. But the evaluation of the dependence of its 

performance on DC bias and on its technological parameters is still extremely 

complicated due to an additional freedom of variables. Hence, it has become important 

that the dual gate analytical model be available for fully utilizing the benefits of the DG 

1 
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structure, since the devices would have to be designed based on the analytic 

understanding of the device. 

Gate transport efficiency is related to the average electron transport velocity 

traveling through the channel, which is related to the electric field distribution along the 

channel. In a field effect transistor, electrons enter into the channel with a low initial 

velocity, gradually accelerating towards the drain. As numerous numerical simulations of 

FETs indicate, the maximum electron drift velocity is reached near the drain [7]. The 

electrons move very fast in the region near the drain but relatively slow in the region near 

the source. Hence, the speed of the device is affected by a relatively slow electron drift 

velocity in the channel near the source region. 

In 1989, M. Shur [8] theoretically suggested a split gate (SG) FET structure to 

enhance the gate transport efficiency. This device consists two closely separated gates 

with the gate closer to the drain having a positive voltage offset with respect to the gate 

near the source. Therefore, the electric field along the channel becomes more uniform 

and the electrons near the source are accelerated more rapidly. As a consequence, the 

average electron velocity in the channel is increased. However, the attempt to realize the 

SG-FET [9] has not been satisfactory up till now. The challenge is not only related to 

technological difficulties, but, above all, also to the inherent fringing capacitance between 

the two gates which rises significantly as separation of the two gates become close to or 

smaller than the channel depth as the device requires. This is detrimental to the device 

high speed performance. Thus, other ways have been looked for to take full advantage of 

the high efficiency electron transport without the inherent capacitance effect. 

This thesis focuses on issues related to the reduction of short channel effects and 

the improvement of gate transport efficiency via dual gate or dual gate related approach. 



3 

Suppressing short channel effects hinges on an in-depth understanding of dual gate 

effects involved. Hence, the first part of this thesis attempts to present a new and simple 

analytic dual gate model by considering one of the most important parameters in 

calculating dual gate characteristics ---- the common node potential at the mid point 

between the two channels, fundamental treatment of which has been lacking in dual gate 

modeling. 

Enhancing dual gate transport efficiency mandates a scaling in gate separation to 

less than channel thickness. As a consequence, parasitic gate to gate fringing capacitance 

[10] becomes dominant or comparable to intrinsic capacitance. This is extremely harmful 

to device's high frequency performance. Thus, a new approach to device structure design 

is needed. To this end, the split gate effect and the concept developed in the first part of 

this thesis for dual gate HFET are extended to a new device structure 	adual material 

gate (DMG) HFET. We select the HFET as a vehicle to explore the concept of DMG, 

which is presented in the main part of this thesis as a generic device structure, valid for 

all kinds of FETs, including MOSFET, MESFET, and HFET. 

If we use two different materials with different work functions for the two gates in 

a DG-HFET, and merge them into one single gate by connecting them laterally, we 

obtain a DMG-HFET. The advantage of DMG is that both short channel effects and gate 

transport efficiency can be improved considerably. In the main part of this thesis, the 

simulation, structure design, processing realization, and measured characteristics of the 

DMG-HFET are presented in detail. 
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1.2 	Scope and Organization 

Introduction of a new device requires four steps: present approach overview, now 

approach analytic analysis, numerical simulations and practical realization. The existing 

approaches provide basis for new device. The physics based analytic models can give an 

overall knowledge and insight of device behavior and predict its dynamic characteristics 

dependence on its technological parameters and bias conditions. Numerical simulations 

serve the purpose of providing detailed data to illustrate complex device phenomena. 

Thus, with the help of these two approaches, one can predict the characteristics, and 

therefore selectively target technology optimizations. This leads to much improved 

effectiveness of experimental approaches with a large number of technological 

parameters. 

The scope of this thesis is based on the following systematic methodology for our 

new device construction. The first step involves analytical modeling and calculation of 

dual gate HFETs. Secondly, in order to develop our new device structure, dual gate and 

split gate effects are investigated using numerical simulations. Then, the dual material 

gate structure is presented and compared with other related device structures. Afterwards, 

the proposed DMG structure is simulated and studied extensively. Finally, the optimized 

device structure supported by simulations is fabricated and tested. 

In chapter 2, an overview of the state-of-the-art HFET is presented together with 

the design and optimization of the single gate HFET structures. The approaches 

employed in this thesis to develop new device structure are also discussed. 

As we mentioned, the objective of this thesis is to develop a novel high 

performance DMG-HFET, which is virtually an extension the dual gate structure. Since 

analytic analysis has been lacking for DG-HFETs, it is carried out in first few chapters of 
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the thesis. In this part, Chapter 3 provides the background of a DC model and the 

calculation of DC I-V characteristics. The mechanism developed in Chapter 3 is then 

employed in Chapter 4 to calculate the key small signal characteristics. A systematic 

analysis needed for understanding of the origin of dual gate effect and for further device 

design and optimizations is also made. 

Chapter 5 is concerned with the more detailed numerical simulation and study. 

Based on the theoretic approach, the novel device structure--dual material gate (DMG) 

FET--is proposed and its new features are outlined using HFET as the vehicle. Chapter 6 

deals with the design, optimization and characteristic simulation of the resulting new 

DMG-HFET. 

Finally, in Chapter 7, the DMG-HFET processing procedure is presented. Our goal 

is to realize the device which improves both short channel effects and gate transport 

efficiency. The fabricated DMG-HFETs are characterized under a wide range of bias 

conditions. As expected, the new device does exhibit greatly improved transport 

efficiency and significantly suppresses short channel effects, as our simulation results 

predicted. 

Chapter 8 summarizes the conclusions of our research. 



CHAPTER 2 

BACKGROUND INFORMATIONS 

2.1 Introduction 

We have used HFET as a vehicle for the presentation of a new device structure as 

mentioned in preceding chapter. The HFET is a nature extension of the modulation-

doping concept. By applying an external voltage across the heterojunction interface, one 

can modulate the 2DEG density, and thus its conductivity. Due to the high electron 

mobility, this novel device is the fastest three-terminal semiconductor device in the world 

and is very promising in ultra-high-speed/high-frequency applications. Today, there are 

tens of millions of HFETs in operation around world. 

In this chapter, an overview of the state-of-the-art HFET is presented together 

with the design and optimization of the single gate HFET structures. The approaches 

employed in this thesis to develop new device structure are also discussed. 

2.2 Development of HFETs 

A breakthrough in HFET technology occurred when it was demonstrated that high 

quality, dislocation-free gallium indium arsenide (GaInAs) can be grown 

"pseudomorphically " on a GaAs substrate without misfit dislocations as long as its 

thickness is less than a certain critical thickness[11],[12],[13].This approach results in 

HFET structures with higher conduction band discontinuity and, consequently, higher 

2DEG sheet density and modulation efficiency. As a result, the fT of state-of-the-art 

HFET's improved substantially, from 110 Ghz in 1987[14] to over 150 Ghz[15]. 

6 
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During this period, a significant amount of research and development also took 

place in the AlInAs/GaInAs material system, grown on an InP substrate[16],[17]. The 

conduction band discontinuity between AlinAs and GalnAs is considerably higher than 

other material systems, which results in a significantly higher 2DEG sheet density and 

modulation efficiency. This improvement yielded an approximately 33% increase in IT 

for state-of-the-art HFETs, from 150 to over 200GHz in 1988[18]. 

These dramatic improvements are also a result of significant advances in the 

fabrication of HFETs. The gate length of state-of-the-art HFETs has been steadily 

reduced, from 0.33um in 1984[19] to .05um in 1992[l4]. At these short gate lengths, the 

effects of parasitic resistances become more pronounced and often mask the intrinsic 

device performance. As a result, a number of " mushroom- " or T-gate, and self-aligned 

gate process have been developed to reduce gate and parasitic source resistances, while 

still maintaining a small gate " footprint " [14],[20]. 

In addition, a great deal of work has been devoted to suppress the short channel 

effects of the HFETs. Several effective approaches, such as double-recessed 

structure[21], undoped surface cap structure[22], lightly doped drain structure[23], and 

low conductance drain[24], have been demonstrated. Significant improvements in short 

channel effect behaviors have been achieved. 

2.3 Principles of Operation 

The basic principles of operation of HFET can be described by a one dimensional(1-D) 

charge control model in the direction perpendicular to the heterojunction interface, which 

was developed by Delagebeaudeuf et al [25]. It was assumed that, for 0 < Ns < Nso. 
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(2.1) qNs==Cs(Vg-Vth) 

where Ns is the 2DEG sheet density, q the electrostatic charge, Cs the 2DG capacitance 

per unit area, Vg the applied gate voltage, and Vth the threshold voltage. 

Despite its simplified assumptions, the charge control approximation correctly 

predicts the linear dependence of Ns on Vg. The real behavior, however, rapidly deviates 

from a simple linear relationship when Ns versus Vg curve approaches its upper bounds 

(Nso). This nonlinear charge control characteristic is associated with the onset of parasitic 

charge modulation in the wide-band gap material. The gate potential modulates the 2EDG 

electrons and their parent donors simultaneously, resulting in a nonconstant capacitance. 

This mechanism is responsible for the premature saturation of Ns in a modulation-doped 

structure and leads to degradation in device performance. 

The modulation efficiency is a useful concept in the design and analysis of FET 

structures[26],[27]. Loosely speaking, it indicates how efficiently an FET modulates the 

total channel charge (Qtot) in order to produce an incremental change in drain current 

(Ids): 

efficiency = η cc delta(Ids)/delta(Qtot) 

Since Qtot is made up of various charge components, each with an unequal contribution 

to Ids, one must examine the rate of change of each of these components separately. 

In a HFET structure, the only charge component that contributes to Ids is that of 

the 2DEG(Ns); the other " parasitic " components, such as donor bound electrons and low 

velocity electrons that reside in the wide-gap material, contribute essentially nothing to 

Ids. We now examine the simplest case in which the modulation of charge is assumed to 

be uniform over the entire length of the gate. We assume that all electrons in the 2DEG 

(2.2) 
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travel at their saturated velocity (Vsat) over the entire length of the gate while those 

residing in the wide-gap material --- bound and free --- are stationary. Thus, the rate of 

charge of Ids with respect to Qtot is given by 

AIds/AQtot = A (q Vsat Ns)/ A(Qtot) 

= Vsat A (q Ns)/ A(Qtot) 

Comparing (2.2) and (2.3), one can define the modulation efficiency, η, as the ratio of the 

rate of change of the "useful" charge over that of the total charge, i.e., 

(2.4) 

Since AQtot > qANs, 0< η <1. An η of 1.0 represents the most efficient state of operation 

in which only the 2DEG sheet charge is being modulated by the gate voltage. 

The current gain cutoff frequency ( f T ) of a HFET, which is the most useful 

figure of merit for assessing device speed, is thus given by 

(2.5) 

where g1  is the device transconductance, Cgs is the total gate capacitance, and Lg is 

gate length. 

Substitute (2.4) into (2.5), one obtains 

(2.6) 

Thus the excess charge modulation reduces the f T  by a factor equal to η. n assumes the 

gate bias dependence of f T  as well as the differences among various types of FET's of 

similar gate length and saturation velocity. 

(2.3) 
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Since the distribution of 2DEG electrons(Ns) and electron velocity are 

nonuniform along the gate, the modulation of charge is not as efficient as the ideal case 

that all electrons in the 2DEG travel at their saturation velocity (Vsat) over the entire 

length of the gate. Thus in order to support the same amount of current, the gate has to 

modulate more charges, particularly near the source end of the gate where the electron 

velocity is lowest. As a result, the modulation efficiency along the gate is always less 

than unity; and its magnitude depends on Ns, as well as the difference in Ns at the source 

and drain ends of the gate or the velocity distribution along the gate. 

It is clear from the above discussion that one can establish the following 

relationship: 

gm = Cs Vsat η 

The maximum transconductance is achieved by improve η to reach the value of unity. 

Thus for a given gate length, and gate to channel thickness, the intrinsic 

transconductance of a HFET depends solely on the modulation efficiency. 

This formulation has offered new insights on HFET's principles of operation. It 

was therefore found that smaller conduction band discontinuity(AEc) material system 

modulates more parasitic charge components, causing more severe reduction in HFET 

overall modulation efficiency. 

2.4. Dynamic Performance of Short Channel HFET 

2.4.1 Parasitic Effects 

Since the speed of an FET is traditionally limited by the electron transit time, the most 

obvious approach to improve this speed has always been a reduction in gate length. 

(2.7) 
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Unfortunately, as the gate length approach the 0.1 µm regime, this strategy is no longer 

effective. At such a short gate length, the electron transit time is comparable to, or even 

smaller than, other parasitic delays in the device. Consequently, as the gate length is 

reduced, a simultaneous effort must be made to proportionally reduce the various 

parasitic delays as well. Among those, the parasitic capacitance charging time (gate pad, 

gate fringe, etc.), the source resistance, and drain delay (due to the extension of the drain 

depletion region), are the dominant delays and must be further reduced[29],[15]. 

Here, we describe the parasitic effects using a small signal model that takes into 

account the charging time associated with the gate pad (t tact)  and gate fringe (t fringe ) 

capacitances, as well as an additional parasitic delay due to the extension of the drain 

depletion region beyond the gate edge (tdrain  )[30]: 

(2.8) 

where t T and ti are the total and intrinsic delays, respectively. For simplicity, we left 

various terms, such as the output conductance (gds ), and feedback capacitance (Cgd), 

and drain resistances (Rd ), for later consideration. 

For 	a field effect transistor with a pad capacitance C pad, extrinsic 

transconductance gin  , and gate width, t Pad is approximately given by 

(2.9) 

where C Pad is typically 10 fF per 50x50-µm bonding pad. Although often ignored, this 

parasitic charging time has been found to account for a significant portion of the total 
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delay in ultra-short gate length FET's. For instance, a t pad of 0.33 ps is estimated for a 

30 µm wide device with gm  = 1000 mS/mm and C pad= 10fF, which is as much as 

60% of the intrinsic delay of a 0.1µm gate length AJGaAs/GalnAs MODFET[1 5]. 

Similarly, the gate fringe capacitance charging time is given by 

(2.10) 

where gmo  is the intrinsic gm  and is approximately related to the extrinsic g m  and gmo  

source resistance Rs by the relationship: 

(2.11) 

Thus the presence of RS  affects only the gate pad, but not gate fringe, capacitance charge 

time. This fringe capacitance is typically 0.18 pF/mm for HFETs. 

The drain delay (tdrain  ) due to the extension of the drain depletion region is a 

difficult parameter to be obtained with high accuracy. For state-of-the-art MODFET's, 

t drain  introduces an additional 0.1-0.2 ps delay at low drain bias voltages [14]. 

From (2.3), the intrinsic delay at a particular bias condition is given by 

(2.12) 

where 11 is the modulation efficiency. Typically, ti  is equal approximately 0.4-0.6 ps for 

0.1 µm gate length HFETs. 



and 

g ds (Rs+Rd) << 1 (2.14) 
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2.4.2 The Effects of Feedback Capacitance and Drain Conductance 

In above discussions, we have taken into account the effects of the parasitic elements in 

addition to the major parameters, namely Cgs  and gm  . Similarly, as the gate length 

continues to decrease, the effects of the feedback capacitance Co-d and drain conductance 

gds  become more and more important. When these term are included, it can be shown 

that (2.4) must be modified as follows[31]: 

(2.13) 

Therefore, in order to avoid excessive delays associated with gds  and Cgd , one must 

ensure the following: 

(2.15) 

Since gmo  must be increased with reduced gate length, one must proportionally reduce 

gds  and Cgd in addition to the reduction of parasitic resistances, Rs and Rd, in order to 

minimize the effects associated with them. 

It has been demonstrated that both gds  and Cgd are strong functions of drain 

bias and drain recessed width[32]. This is due to the extension of drift region as a space 

charge layer by drain bias. Thus, the g ds  and Cgd  could be reduced largely by 

increasing the recess width and drain bias. For high performance short channel HFETs a 
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highly doped cap layer is necessary to reduce the parasitic resistances. Therefore a 

recessed device configuration is employed. However, the performance of the device 

depends strongly on the shape of the recess configuration. A narrow recess leads to a low 

gds and high Cgd  , whereas a wide recess introduces a current limiter, especially at the 

source. Therefore an asymmetric recess configuration is needed. A wider recess at the 

drain side can be used to reduce feedback and improve breakdown. A narrow recess at the 

source side leads to a low parasitic source resistance. 

2.4.3 f max,  an Important Figure of Merit of RF HFETs 

In above discussions, we concentrated on f T  , which is certainly an important figure-of- 

merit, especially in terms of digital performance. But with regard to RF performance, 

f max is probably better indicator of high frequency performance. From reference [31], 

f max  can be expressed below: 

(2.16) 

Equation (2.11) demonstrates that f max takes more into account the losses associated 

with gate resistance, R g , output conductance, gds , and gate drain feedback capacitance 

C gd 
	

gm     Cgs .    Moreover, the ratios 	and 	gs  gain more influence. It should be noted that 
gds 	Cgd 

a device that is optimized for high f max is not usually operated at optimized J' T  

Therefore, it is not practicable to have a single device working simultaneously at highest 
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f max and f T. Instead many approaches are devoted to considerably improving gm /gds,   

C gs
/Cgd and small signal gain of ultra-short gate-length HFETs while not    significantly 
 

degrade f T . 

2.4.4 Other Short Channel Effect Related Issues 

Performance of short channel FETs is a strong function of device aspect ratio ( the ratio 

between the gate length and effect gate-to-channel separation). Many key parameters, 

such as g m, gm  and g m, gds , 	and Cgs , degrades due to the reduction in aspect ratio. Thus, as 
gds 	gd 

the gate length of an FET is reduced, one must also proportionally reduce its vertical 

dimensions in order to maintain a reasonably high aspect ratio and thereby acceptable 

short channel effects. This geometrical parameter is a very important factor in controlling 

the field effect action of a transistor, and should be maintained above five[30]. 

For a given gate length, one can often increase the device transconductance and 

suppress short channel effects by reducing the gate-to-channel separation or increase the 

aspect ratio. This will also result in high speed or lower parasitic delays, which is 

proportional to the parasitic capacitance divided by transconductance. 

2.5 The State-of-the-art Approaches of Short Channel 1-IFETs 

Significant improvement has been achieved in the area of short channel HFETs. 

Numerous device structures and excellent performance (e.g. f max 	T  , breakdown and 
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gain) have been reported in the literatures. However, due to complicity and often 

controversy behaviors, it is difficulty to merit all the parameters in a single device. Thus 

different approaches are often aimed to optimize one or some of the key parameters for 

specific applications. In this section, we discuss approaches of the state-of-the-art HFETs 

and the physics behind these approaches. 

2.5.1 Self-aligned Gate and Ohmic Contact 

In the presence of parasitic effects, the extrinsic f T  of a short gate length HFET is no 

longer inversely proportional to its gate length. In order to improve the speed of ultra-

short gate length HFETs, self aligned gate scheme was used to allow the source and drain 

contacts to be " self-aligned " to the gate[33]. In this technology, additional ohmic 

contacts are evaporated in a self aligned process using the T-gate structure as mask. The 

corresponding self-aligned gate HFETs exhibited a factor-of-2 reduction in delays 

associated with gds  and Cgd , due to their extremely low Rs and Rd. This is expected by 

(2.13) and (2.14). Moreover, for a 0.1  µm gate length devices reported in [34], —70% 

reduction in the Rs and Rd resulted in an increase in extrinsic transconductance 

approximately 22%, from 900 to 1100 mS/mm, and that in extrinsic f T  approximately 

15%, from 200 to 230 GHz. With further optimization, the state-of-the-art self-aligned 

HFET with extrinsic transconductance of 1580 mS/mm and extrinsic f T  of 340 Ghz have 

been achieved for a 0.05 µm pseudomorphic HFET[35]. 

Another very attractive self-aligned gate structure is the lightly doped drain 

(LDD) structure[23]. The fundamental concept of this approach is the decrease of 
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maximum electric field along the channel. It shows low parasitic resistance, low drain 

conductance and high breakdown voltage. In addition, since the breakdown voltage is 

related to the strong electric field at the drain side of the gate, asymmetric LDD 

structures, such as lightly doped deep drain structure and long lightly doped drain[23], 

have therefore been proposed to further increase the drain breakdown voltage while the 

small source resistance. 

2.5.2 Double-recessed Technique 

HFETs with short gate length suffer from a high drain conductance, g ds  , low voltage 

gain g m  and low breakdown voltage, which consequently degrade the f max and other 
gds 

performance. For many applications especially RF power, it is desired to have high 

breakdown voltage. Three advantages of high breakdown voltage are known: (1) higher 

breakdown has been attributed to longer life times[36] ; (2) higher breakdown allows 

higher drain operating voltage which translates to a higher output power density as long 

as the power gain is sustained. (3) Higher drain operating voltage usually leads to lower 

C gs gds and Cgd, and consequently higher voltage gain and Cgs ratio. Thus it is desirable 
C gd 

to develop a HFET that has a breakdown voltage appropriate for the intended drain 

operation voltage. 

An effective method for suppressing short channel effects and increasing the 

breakdown voltage is to use a double-recessed gate process. We know a wide recess 

width allows the spreading of the space charge while a narrow recess leads to small 
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source resistance. Therefore, the double stepped recess with gate close to the source 

combines the advantages of narrow recess (high transconductance and drain current ) and 

wide recess (high breakdown voltage, low output conductance and low feedback 

capacitance). These leads to high RF performances. 

An important issue is associated with distance, L gd, between the gate metal edge 

and the N+ cap layer on the drain side of the device. In short gate-length HFETs, L gd  

can have a profound effect on both the DC current-voltage characteristics and RF gain of 

device due to the extension of drift region. Increase L gd  benefit FET performance by 

reducing the output conductance and the gate to drain feedback capacitance[21]. It was 

shown that longer L gd  HFETs have simultaneously improved 
c 

Cgs 	g m , 	 and g1  in 
C gd gds 

extremely short gate-length HFETs. Excellent f max and gain have been achieved while 

not seriously degrading the f T  using double recess and longer L gd  [21]. 

2.5.3 V-shaped Spike Gate FETs 

Both low-voltage and high efficiency operations are major concerns for the power 

applications. The narrowed voltage swings is due to the presence of the knee voltage of 

FETs which is originated from the on-resistance. This ends up with decreasing the 

available output power as well as the drain efficiency. In order to reduce the on-

resistance, shrinking the channel length is most effective, however, as mentioned earlier, 

shortening the channel causes higher drain conductance that reduces the power gain and 

thereby the power added efficiency(PAE). 
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Recently, Tsuyoshi et al [22] reported very short channel HFETs using a V-

shaped spike gate structure, which was first proposed by Kohn[37], in order to reduce the 

on-resistance. It was shown that this V-shaped structure can suppress the increase of drain 

conductance, because the depletion widening from the fringe of the V-shaped gate 

alleviates the electric field between the gate and drain. A lowest on-resistance ever 

reported by using the unique gate structure has been achieved. The attained on-resistance 

was less than a half of that without V-shaped spike. The implemented device achieved the 

PAE of 70% with 31.5 dBm output power at drain bias of 1.5V for the first time[22]. 

2.5.4 Dual Gate FETs 

The advantage of dual gate structure comes from the added functionalities obtained by 

integrating two independent FET's in a compact manner. Compared to the single gate 

FET, a dual gate FET of the same gate length provides the same input impedance with 

higher output impedance, higher breakdown voltage, higher power gain, and much 

reduced feedback capacitance. This is mainly due to the second gate which increases the 

effective gate length and the distance between first gate edge and the drain end, therefore, 

also increases the aspect ratio, which suppresses short channel effects. However, the 

penalty of the improvements is also due to the increasing of the total effective gate length. 

This produces higher gate capacitance and lower transconductance, and consequently, 

lower f T  . Thus, a trade-off is required to optimize dual gate FETs. 
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2.6 Primary Goals of This Research 

In the view of the trend of improving FET performance, device structure based on 

asymmetric design have become very attractive. Several new approaches, such as 

asymmetrical double-recessed structure [21], asymmetrical lightly doped drain 

structure[23], low conductance drain[24], and asymmetrical channel doping 

FETs[38],[39], have been demonstrated to be very effective in suppressing short channel 

effect, increasing the breakdown voltage and/or enhancing transconductance. In this 

work, we propose a new type of FET structure, the dual material gate field effect 

transistor (DMGFET), which is presented to suppress short channel effects and enhance 

transconductance simultaneously. The special feature of this new structure approach is 

that the improvements are due to the modification of electric field along the channel. We 

will show that this structure can considerably reduce drain conductance and improve 

transconductance. Like other device structures, this device has its inherited demerits 

besides the merits. Although the DMGFET exhibits lower gds  Cdg and higher gm , its 

Cgs tends to be higher. Thus, a proper treatment of these parameters will require a trade-

off Another related issues is the manufacturing. Here we have limited ourselves to the 

ideal structural effect. Therefore more issues related to manufacturing are not addressed. 

Hence further works are still needed to obtain more stable/repeatable processing methods 

and, especially, to control the two gate contacts which are functions of many 

experimental parameters. 
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2.7 Scope and Methodology Used in This New Structure Development 

In this work, we employ analytical modeling, device simulation and experimental data for 

the new structure study. Analytical model provides good physical insight. Device 

numerical simulation is a good tool for different structure comparison or trend prediction. 

The experimental approach is thus guided by simulation and analytical models. 

Although the proposed DMGFET is a single gate FET, it has a structure like dual 

gate FET. We therefore expect that it has the benefits of both single and dual gate 

structures. In order to take full advantage of the dual gate effects, we first study the 

principles of operation of the dual gate HFET: Chapter 3 will outline the dual gate 

intrinsic 1-V characteristics for the simplest case using simple analytical approach. To 

understand dual gate small signal behavior, Chapter 4 will discuss its key small signal 

parameters. In Chapter 3 and 4, we will simulated and studied dual gate InAlAs/InGaAs 

HFET, since this device is an ideal test vehicle for dual gate effects discussed in the 

chapters and we previously studied experimental dual gate HFET behaviors using this 

material system[40]. 

The rest chapters will be devoted to the new device structure, DMGFET. We will 

emphasize the pseudomorphic InGaP/InGaAs HFET since this device is most suitable for 

stable and simple device fabrications. The device structure and parameters employed in 

this study are primary come from the real material structure we used for experimental 

processing, which was provided by Bell Labs, Lucent Technologies. 

A 2-D device simulator, PISCES, is used as a numerical tool to investigate the 

presented new device structure and other related device structures. It should be noted that 

PISCES is not a well developed tool for HFETs simulations, since some of the models it 
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used are far under/over-estimation of the real HFET behavior. Thus this simulator is used 

to serve as a tool to predict the trend of device behavior under different structures. In 

order to make the best comparisons, we will usually fix the channel doping Nso, gate-to-

channel thickness and other vertical device parameters unchanged for devices simulated. 

The detail of this parameters used are presented in the Appendix A. 

2.8 Summary 

We have presented an overview on the state-of-the-art single gate HFET and the trends in 

improve single gate HFET performances. It was demonstrated that increase modulation 

efficiency and reduce parasitic and short channel effects are extremely important in 

achieving ultra-high-performance short channel HFETs. 

We anticipate that the DMGFET will demonstrate enhanced overall electron 

velocity along the channel and therefore increased modulation efficiency. In addition, the 

short channel effects could be suppressed by this novel structure. Therefore, this new 

device can be a promising candidate for the applications such as low noise FET( needs 

high gm and low gds, Rs, etc), power amplifiers (high gm/gd ratio, low gds, Rs, Cdg, 

etc.), and digital integrated circuits( high modulation efficiency, low parasitic, etc.). 



CHAPTER 3 

ANALYTIC MODEL FOR DG-HFET DC CHARACTERISTICS 

3.1 Introduction 

Our development of analytical dual gate (DO) model starts with a closed form analytic 

single gate model proposed by Khondker et al [41], which has been successfull y used for 

the prediction of single gate HFET behavior, and then proceeds through a set of 

simplifying assumptions to arrive at a novel expressions for the common node potential 

between the two gates that determines the operating status under each gate. For single 

gate, the DC I-V behavior, which is described in term of the two possible operating 

regions, is simply determined by given external biases. Whereas for dual gate, it is 

determined by specifying the common node potential in addition to the external bias 

conditions. Hence, to characterize the operation of dual gate analytically, we can not 

simply plug in the given external bias values into single gate equations, rather we have to 

solve for the common node potential under the given biases before the single gate 

analytic equations can be used. This points out that the major work needed for the dual 

gate model is to figure out external bias dependence of the common node potential. 

Consider the DO-HFET to be composed of two single gates in cascade, its 

common gate potential can be obtained by determination of the intersection of two HFET 

I -V curves. Due to the complicated expression of HFET I-V behavior, we have to resort 

to non-analytic method which involves a numerical procedure. However, if we assume 

that the non-linearity in the whole linear operating region is weak, and that after both 

gates are in saturation, most of the excessive drain-source biasing voltage V ds' is 

dropped under the second gate near the drain, then the common node potential or the 
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intersection point can be calculated simply through analytic equations. Hence, we 

postulate that under those simplifying assumptions, the common node potential is 

governed by the analytic expressions thus derived, which forms the cornerstone of our 

dual gate analytic model. 

In this chapter, we present the above-mentioned analytic methodology for 

calculating the DG-HFET I-V characteristics from the simplified analytic equations. A 

detailed derivation and discussion are presented in this chapter, which is organized into 

three main sections. 

The first part, Section 3.2, is devoted to the derivation and simplification of the 

single gate HFET analytic model, which was originally presented by Khondker et al [41]. 

The Sub-Section 3.2.1 deals with the setting up of the I-V expressions based on charge 

control principles, while 3.2.2 presents an important simplification to the I-V expressions 

which permits us to calculate simple closed form expressions for DC characteristics. 

In the beginning of Section 3.3, we discuss the approximations and outline the 

derivation of dual gate common node potential equations from single gate equations. The 

section concludes with a closed form expression for common node potential, which has 

external bias conditions as parameters. It is important to understand the dependence of 

common node potential on external biasing, since it determines how external biasing 

influences the operating status of the two HFETs, and therefore, the performance of the 

DG-HFET. This forms the subject of discussion in Sub-Section 3.3.2. 

Finally Section 3.4 discusses the analytic methodology that allows one to 

calculate the DG-HFET I-V characteristics from a knowledge of device physical structure 

and bias parameters. Calculation and discussion of the key small signal parameters of 

DG-HFET forms the subject of the next chapter in which we first derive the closed form 
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expressions for those parameters, and then employ the machinery developed in this 

chapter to calculate DG-FET's behavior and discuss the dual gate effects. 

3.2 	Analytic Single Gate Modeling 

The closed form analytical model for calculating the I-V characteristics and the 

small signal parameters of HFETs can be developed through a properly selected 

velocity - electric field ( vd -E) empirical expression. Khondker et al [41] used such an 

approach to give simple analytic expressions for single gate HFET 1-V characteristics and 

the small signal parameters. In this section, the method we use to develop our dual gate 

HFET analytic model is in essence similar to Khondker et al.'s method. 

Theoretical work[42] has been very critical of the use of a vd -E curve in short 

channel device modeling. The recent literatures include a number of papers that deal with 

the current - voltage characteristics (I-V) of HFETs [43]—[47]. In these analytical models, 

several empirical relationships of the electron drift velocity-electric field (vd  — E) 

dependence have been used to achieve a fit to the experimental I-V data [44], [45], [46], 

[47]. In this thesis, we use the approximation used by Khondker et al [41] and illustrated 

in Fig.3.l: 

where vd is the electron steady-state drift velocity, vs  the saturation velocity, E the 

electric field, and E c =vs / µ 0 , with µ 0  as the low field mobility. It is instructive to 

notice that although the relation in (3.1) does not account explicitly for transient velocity 

overshoot, the phenomenon is partially implied in the assumption that the electron 
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velocity remains close to its peak value for channel field beyond E c  [42]. Furthermore it 

was shown that this type of velocity field relation produces the same current and 

transconductance as those resulting from the use of a hydrodynamic transport model 

which allows velocity overshooting[42]. It should be noted that in GaAs the equilibrium 

electron velocity goes down after reaching the maximum due to k-space transfer[49]. 

Therefore, equation (3.1) is approximately used in the interest of using an analytically 

solvable expression. It is probably fair to say that this is a weak link in this modeling. 

Fig. 3.1 The relationships of (vd — E) dependence defined by equation (3.1). 

The charge control model for device analysis has been used extensively 

[50],[51],[53], due to its apparent simplicity. In the derivation, the electron density in the 

channel of the HFET shown in Fig.3.2 is assumed to be governed by the following basic 

charge control equation: 
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(3.2) 

where ns  is the channel electron area density,    ε2 is the permittivity of InAlAs, di is the 

thickness of the InAlAs layer, Ad is the moment distance of the electrons from the 

hetero-interface [45], V gs  and V(x) are the applied gate voltage and the channel 

potential at any point x, respectively, and V 10  is the threshold voltage of the device. this 

equation is valid for 0 ≤ n s ≤ n s0,  where n s 0  is the maximum 2DEG sheet density. 

However, the linear ns( V gs ) approximation of (3.2) under estimates n s  close to 

pinchoff, which predicts a lower subthreshold current than measured[45], [52], [53]. For 

ns  near ns0, the above model ignors the fact that there is a gradual saturation of the 

2DEG concentration as the gate voltage increases[54]. It therefore predict only a 

maximum transcoductance instead of a peak, which is experimentally observed(e.g., 

[55]). 
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Fig. 3.2 A Cross-sectional Schematic Diagram of a Single Gate HFET Structure. 



(3.7) 

(3.8) 

28 

The simplest analytical HFET I-V models are those utilize the linear charge 

control approximation, equation (3.1), and integratable velocity-field models [52], [53]. 

The current in the channel of a HFET is given by Ic =  qns(x)Wvd(x), where W is the 

gate width. Substituting (3.1) and (3.2) in the expression for I. yields 

(3.3) 

where Go  = ε2  W vs  / d and Ec  = vs  /µ0  Note that Ic  is constant across the channel 

length. 

After integrating (3.3) from x = 0 to x = L, the gate length, and rearranging, we 

have 

(3.4) 

where 

(3.5) 

(3.6) 

and 

0 < z < I 

which upon integration yields 
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Which is an analytical expression and where z is a dummy variable which may not need 

to define. 

The linear region I-V characteristics of HFETs can be easily calculated using 

(3.4). For drain current greater than minimum saturation current, a technique similar to 

that proposed by Grebene and Ghandi [56] for MESFET and used by Chang and 

Fetterman [41] is followed. Near saturation the gradual channel approximation (GCA) 

becomes invalid since the longitudinal component of the electric field is no longer 

negligible. Therefore, one has to solve a two-dimensional Poisson equation in a region 

where the GCA break down. Hence, for saturation region, the channel of length L is 

divided into two zones. In zone L1  the GCA is valid, whereas in zone L7 a two- 

dimensional Poisson equation must be solved. The extent of the first region L1 is 

calculated with the help of (3.4), which can be rewritten, considering that saturation has 

taken place, i.e., D2(t L )=0 and t L  = 1, we get 

(3.9) 

In the second region, the longitudinal component of the electric field is not negligible. The 

field and potential distributions within these boundaries can be obtained by solving the 

two-dimensional Poisson's equation. The second region is assumed to be completely 

depleted. The analytic solution is based on the method develped by Chang and Day [57], 

and the assumptions and boundary conditions are similar to those used in [46]. They are: 

1) there is continuity of potential, 2) there is discontinuity of the transverse field at the 

heterointerface due to 2DEG, and 3) the space charge layer ends at the gate edge. From the 

solution we obtain the following expression for the depletion region length along the 

channel: 
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(3.10) 

where 

(3.11) 

where E0 7 E c, is the field at which the electron drift velocity equals 0.99 vs  . Using 

(3.10) and (3.11), the length of the channel, which is the summation of L1 and L2 , can 

now be written as 

(3.12) 

which yields the current-voltage characteristics beyond saturation. It should be noted here 

that, in order to be analytically solvable, the above derivations neglect the effects of 

dipole domain and drain depletion region extension. This will yield rather small values of 

drain conductance and drain to gate feedback capacitance as compared to those 

experimentally found for practical devices with comparable dimensions 

[58],[59],[60],[61],[62]. 
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Fig. 3.3 Configuration of dual gate HFET. 
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3.3 	The Common Node Voltage Model of Dual Gate HFETs 

An analytical description of the dual-gate HFET can be constructed through the series 

connection of the channels of two single-gate devices as indicated in Fig. 3.3. When 

analytical behavior of these two gates in cascade is characterized for dual gate devices, 

the usual analytical approach loses much of its efficiency and insight, and usually 

requires the use of numerical programs to solve for the common node 

voltage Vds1 between the two gates. Under these circumstances, where a detailed and 

accurate V ds1 model is desired, particularly when the microwave small signal 

parameters is of interest, closed form common node V ds1 models are of crucial 

importance and are the key to the problems. These closed form V dsi expressions can be 

used to conveniently determine not only the terminal I-V characteristics, but also the 

main small signal equivalent circuit parameters which are needed to represent the device 

microwave characteristics. Moreover, these models provide a good deal of insight into 

the correct operation regions of the two channels for proper utilization of the dual gate 

HFET. 

Source 	Gate 1 	Gate 2 	Drain 
r 
	 	 

N+ cap 	 N+- cap 

Undoped InAlAs 
 	6-doped plane 

 

Undoped InGaAs 
 	Channel 

 	Depleted Region 

Fig. 3.4 A cross section schematic diagram of the dual gate HFET structure showing 
depleted regions below each gate when both gates are biased into saturation. 



32 

3.3.1 The Analytic Model 

The structure of a typical DG-HFET is shown in Fig. 3.4. The device is assumed to be 

uniform in gate width direction with an overall width of W for both gates. To analyze this 

structure using analytical approach, the I-V expressions of single channel described in 

section 3.2 are used to derive the common node voltage expressions. With the two 

equivalent single gates, it is assumed all the physical and structure parameters are same 

except the gate length and threshold voltage. In a real device, the status of the surface of 

the recessed region is complicate and usually depleted due to interface states. To simplify 

the analytical approach, such a surface, where the surface potential should be changed 

accordingly, is not taken into account in this study and the potential at free InAlAs 

surface is assumed to be floating without surface states effects. Furthermore, for 

simplification purposes, we assume: 

• In linear operation region, non linearity is weak. 

• When one of the gate is in saturation, the excessive voltage above saturation is 

dropped in that gate. 

• In case both gate are in saturation region, the potential drop of vg, under each 

gate is similar. 

Following the formal derivation for the Vds1  under different operation regions. 

We may express the V ds 1 as function of external bias conditions. However, unlike the 

conventional single gate case, the expressions are more complicate and need much effort 

to derive due to the added external variable. Moreover, instead of conventional two 

operating regions, the dual gate FET has four possible combinations of operation regions: 

(1) both gates in linear region; (2) gate 1 (near source) in linear but gate 2 in saturation; 
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(3) gate 1 in saturation whereas gate 2 in linear; (4) both gates in saturation region. By 

equating the terminal characteristics of the two single gate as shown in Fig. 3.3 and 

solving for the common gate potential Vds1  at the four possible combinations of 

operating status, and by appropriate logical reasoning, we finally have figured out the 

V dsl expressions under all possible external bias conditions, that are list below: 

(3.14) 

both channels are operating in linear region, and 

(3.15) 

Here, K I and K 2 are defined as 

(3.16) 

(3.17) 

Condition 1.2:  

When 

the second channel operates in linear region, but the first channel works in saturation 

region, and 

(3.19) 



(3.21) 

Case 2: (3.22) 
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(3.20) 

both channels are placed in saturation region, and 

Condition 2.1:  

When 

Vds < (K1+ K2 — K1K2)(Vgs? — Vt.?) 

again both channels work in linear region, and we have 

(3.23) 

(3.24) 

Condition 2.2:  

When 

(3.25) 

the first channel is placed in linear region, but the second channel is operated in 

saturation region, and thus we have 

(3.26) 

As shown in the above expressions, the dual gate bias conditions can be divided 

into two special cases, that are (V gsi — V i i) 	(1— K 0(V gs.2 —1/ 12) and 

(V gsl —  Vtl) ?- (1— K 1)(V gs? — V t2). If the drain voltage increases, in both cases the 

channel current goes saturation from linear region and within these there exist all the four 

possible combination of bias regimes for dual gate FETs. 
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Fig. 3.5 The dependence of DGFET Vds1  upon V gs1 (a) and V gs2  (b) for several 

values of V gs2 and V gs1 , respectively, at V ds  = 2V using the simple model presented 

here and the plots generated by exact semi-numerical method. 
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The resulting system of equations, (13)-(26), gives a set of closed form equations in 

the bias variables of { V ds V gs1 ,  V gs2 }. From these common node voltage 

expressions, one can easily determine the bias at internal node and thus the operational 

regimes under each gate. In Fig.3.5(a) and (b), we compare the Vds1 characteristics 

generated by using equations (13)-(26) with the plots obtained by semi-numerical 

method. The values of the parameters used in these calculations are shown in Table 3.1. 

The values of parameters used in both calculations are the same. The semi-numerical 

method uses single gate equations described in section 3.2 and solves for the intersection 

point under each bias condition using numerical method. Our simple model is in good 

agreement with the more complicated numerical results. Therefore, this simple analytic 

model allows the static and dynamic characteristics of dual gate HFET to be deduced 

with much reduced efforts. By using our model, it is possible improve our knowledge of 

device behavior, to calculate the elements of equivalent circuits and to optimize device 

performances with greatly improved effectiveness. 

Table 3.1 
Assumed and calculated structure and physical parameters 

for each gate of the dual gate HFETs 

L 	= 0.2 µm W = 25 µm di = 220 A 

d 	= 300 A V s = 1.2x 107 cm2  1 s µ0= 4500 cm2 / V ·s 

V to= - 0.54 V Rs = 15 Q Rd= 25 f2 

Ns= 6x 1012 cm-2  ε = 12.1 ε0  
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3.3.2 Discussions 

With the aid of the above common node voltage expressions, the mechanism of the 

operation of DGHFET can be described as follows. For the first case, where 

(V gs1 — Vt1) ≤ (1 - K1)(Vgs2 - V t2 ), low drain bias voltages drive both channels, 

referred to as M1 and M2 , into linear region. The drain bias is then distributed between 

two linear resistors, and the common node voltage is thus mainly proportional to the 

drain bias. As the drain bias Vds  increases, the first channel M I  turns saturated first and 

the first channel absorbs most of the drain bias. Therefore, the common node voltage and 

thus the device operation are also well controlled by the first gate bias. As M i  saturates, 

the drain voltage of Mi (or common node voltage) reaches a maximum value, and 

further increases in drain voltage Vds  will not change the voltage bias across the M1  . In 

other words, the first channel is screened from drain voltage variations. This eventually 

saturates the second channel M2, with the common node voltage adjusting itself to allow 

both channels in saturation. It should be noted here that this is the only situation in which 

the two channels can both be biased into saturation region. 

For the second case, where (Vgs1  — Vt1) ≥  (1—K1)(Vgs2  — Vt2 ) ,  the low drain 

bias voltages again keep both M1  and M2  in linear region. The subsequent increase in 

V

ds , however, can only saturate M2. Therefore, there is no way in this case to bias both 

channels into saturation simultaneously to produce two high field regions along the two 

channels. This is because in this situation the resulting current flow through M 1  is 

insufficient to cause a voltage drop across it large enough to induce pinch off This 

behaves like a single gate with a channel resistance in series with its source, which 

degrades total transconductance. The corresponding common node voltage is thus 
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effectively controlled by the channel current or the bias of the second gate, whereas 

the first gate functions like a passive device. 

3.4 Dual Gate I-V Characteristics 

With the aid of the common node equations, (3.13)-(3.26), one can calculate dual gate I-

V characteristics via single gate method. In Khondker's single gate method, the 

evaluation of D2(z) clearly does not require any numerical technique. However, one has 

to calculate the I-V characteristics via numerical techniques. The following method can 

be used instead of the numerical procedure at the expense of only a few percent loss of 

accuracy. Khondker suggested an empirical function which approximates the relationship 

between D2(z) and z: 

(3.27) 

This equation slightly underestimates the velocity of electrons for E E.  However, this 

approximation can be used to achieve a much better computational simplicity. Therefore, 

the following method can be used to calculate dual gate theoretical I-V curves instead of 

any numerical procedure. Rewriting (3.4) using (3.27), we have 

(3.28) 

for the first channel. Thus, for a given value of Vgs1  , one can Icalculate the critical 

saturation current Icsat  for the first gate. The magnitude of the common node voltage 

for a given value of channel current is given by 
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(3.29) 

where 0 < c <I csat  - Note that I c  = Icsat  when t 	For Icc > I csat , (3.12) can be 

rewritten as 

The theoretical dual gate I-V curves can be calculated in the following manner. For a 

given set of values for { V gs1  V ds } or { V gs1 , V gs2  }, one can first compute the value of 

Icsat  . And for a given drain current, less than and greater than Icsat ,  the common node 

voltage V ds1  is then calculated using (3.29) and (3.30), respectively. Finally, 

using equations (3.13)-(3.26), either the gate two voltage V gs2  or the drain bias V ds 

can be determined. The theoretical DG-HFET 1-V curves calculated using (3.13)-

(3.30) are compared with our experimental results. In Fig. 3.6, we present the calculated 

I-V characteristics at V gs2 biased at zero volt. For comparison, experimental I-V curves 

is also presented in the figure for a dual gate HFET with same structure parameters as the 

simulated device described in Fig. 3.4 and Table 3.1. Our theoretical plots are in good 

agreement with the experimental data. We mention here that the approximate equations 

overestimate the current in the transition to saturation and less well predict the current in 

the saturation region. This could arise due to the surface potential caused by surface 

states in the recessed region and extention of the drift region at gate 

edge[59],[60],[61],[62],[63], which we have not incorporated in the derivation of the 

simplified analytic equations. 
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Fig. 3.6 DGHFET I-V characteristics of the first gate at V gs2 = OV for a 0.2µm dual gate 

HFET. The solid lines are calculated results and circled markers are our experimental 
data. 

3.5 Summary 

In this chapter, we have presented an analytic common node potential model to provide 

the methodology of calculation of dual gate I-V characteristics. In the next Chapter, we 

will derive analytic expressions of device small signal parameters and make use of the 

methodology outlined in this chapter to calculate and investigate the small signal 

characteristics and dual gate effects. 

We summarize here the dual gate I-V calculation methodology presented in this 

Chapter. Starting with device structural and physical parameters, the common node 

potential is calculated over the external bias ranges required according to equations given 
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in (3.13)-(3.26). For a given values of V gs 1 	the I csat value is first calculated using 

equation (3.28). And for a given set of values for { V gs1 , V ds or { Vgs1 , V gs2 } , if drain 

current is less than Icsat  as in linear region, then the common node voltage Vds1  is 

given by equation (3.29), otherwise, as in the saturation region, the V ds1 is given by 

equation (3.30). Finally, using the calculated results from equations (3.13)-(3.26), either 

the gate two voltage Vgs2 or the drain bias Vds  is determined. 

It should be noted that the calculation methodology for dual gate HFET I-V 

characteristics presented in this chapter is for normal dual gate structure with gate to gate 

separation larger than the channel depth, which validates our analytical calculation. 



CHAPTER 4 

ANALYTICAL DUAL GATE HFET SMALL SIGNAL CHARACTERISTICS 

4.1 Introduction 

The design, process and characterization of DG-HFET with high performance dual gate 

HFET has gained considerable interest in recent years, particularly for RF application 

such as Mixers[64] and high efficiency power amplifiers[65]. To address the issue of 

device small signal characteristics, several dual gate key small signal parameters are 

being explored that would help achieve improved device performance and obtain better 

insight into device physics. These parameters include transconductance, drain 

conductance, gate-source capacitance and gate drain capacitance that dominate device 

behavior. Proper understanding of those device parameters requires correct prediction of 

how external biases affect the parameters, particularly since small changes in some biases 

can significantly alter those parameters. It is recognized that the characteristics of a dual 

gate HFET, and hence the behavior of small signal parameters, are different and much 

more complicated than its single gate counterpart. However, what has been lacking is 

analytical characterization and first order analytic modeling of dual gate small signal 

parameters. 

In light of the above concerns, we present in this chapter a first order analytic 

calculations of dual gate HFET small signal parameters. The objectives are two fold: (1) 

to formulate closed form models for dual gate HFET small signal parameters that can be 

readily implemented analytically, and (2) to develop an analytic physics-based model 

which is an essential requirement for predictive device design and development. 

42 
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The organization of this chapter is as follows. Section 4.2 is devoted to the single 

gate small signal parameters equations. An important aspect of analytic dual gate small 

signal modeling is the formulation of the corresponding single gate parameters in various 

operating regimes. Once the single gate parameters have been formulated, we then 

employ the methodology developed in the previous chapter to calculate respective 

parameters for dual gate HFET. 

In section 4.3, we discuss the equivalent circuit approach and identify the key 

dual gate small signal parameters. Two possible dual gate configurations are investigated 

analytically. 

In section 4.4, we demonstrate the dual gate small signal characteristics by 

comparing them with single gate results. The unique behavior of dual gate HFET are 

shown to be explainable through our simple analytic models. In direct support of in-depth 

understanding of dual gate effects on device performance, Section 4.4.1 through 4.4.4 are 

devoted to the four key parameters, transconductance, drain conductance, gate-source 

capacitance and gate drain capacitance, respectively. Moreover, in section 4.5, we discuss 

the results presented in section 4.4 and therefore the dual gate effects. Moreover, we give 

practical information on exploiting dual gate effects to the full potential. Finally in 

section 4.6, we summarize the work described in this chapter and the major conclusions. 

4.2 Single Gate Small Signal Parameters 

Small signal parameters are obtained analytically with the help of DC expressions 

presented in Chap. 3. Since we shall only be concerned with modeling the major 

parameters, four key parameters that affect intrinsic device performance are explored 

here. 



44 

4.2.1 The Transconductance and the Drain Conductance 

Neglecting the non-intrinsic effects or in other words treating the device as a ideal 

intrinsic device, the tranconductance of the device in the linear (g ml ) and the saturation 

regions (g ms) can be readily obtained by differentiating the corresponding linear and 

saturation current equations derived in section 3.2 with respect to V gs, respectively. This 

approach yields the intrinsic transconductance, 

(4.1) 

(4.2) 

where the symbols are specified in section 3.2 of Chapter 3. 

Using the definition of drain conductance, that is, differentiating the 

corresponding current equations as given in section 3.2 with respect to Vds  in the linear 

and saturation regions, respectively, we obtain analytic drain conductance expressions for 

g di  and gds  as shown below: 

and 

and 
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(4.4) 

4.2.2 The Gate Capacitance and Drain to Gate Feedback Capacitance 

For the calculation of the gate capacitance, the integrated stored charge in the 2-DEG 

channel is approximated and differentiated with respect to V gs, and the resulting 

capacitance in the linear (C gsi) and saturation regions (Cgss) can be written as, 

and 

where 

(4.5) 

(4.6) 

(4.7) 

The drain to gate feedback capacitance arises primarily due to the gate to drain 

separation. For calculation of the drain to gate feedback capacitance, we calculate 



(4.8) 

and 
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channel charge with respect to V ds  , under the gate to source short circuit condition. 

Thus, we have in the linear (C dgl) and saturation regions (C dgs) that 

(4.9) 

4.3 Dual Gate HFET Small Signal Equivalent Circuit 

Fig. 4.1(a) illustrates the intrinsic HFET, the parasitic elements, and defines the 

simplification that will be used in the analysis. Rs1, Rs2, Rd1  and Rd2, are the parasitic 

resistances, assumed to be linear, which are included in our model equations as a first 

order approximation. This can be seem explicitly from the model parameters such as to 

and tl which are shown in equation (3.5) and (3.6), respectively. The fundamental 

performance of the intrinsic device can be understood in terms of the simplified small 

signal equivalent circuit shown in Fig.4.1(b). We focus on intrinsic device whereas the 

parasitic regions as shown in Fig. 4.I (a) are modeled with linear resistance attached to 

the core intrinsic model. 
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Therefore, we have neglected the parasitic-resistance blow-up effect at high drain 

current, which has been modeled by D. R. Greenberg and J. A. del Alamo [66]. This 

effect is of importance in HFETs optimized for high power and employing a sizeable 

gate-drain gap. We also ignore other performance-degrading effects, such as gate leakage 

current[67], parasitic MESFET formation[68], or electron real space transfer[67]. While 

these can be minimized by clever MBE structures[55] and optimized design. 

Fig. 4.1(b) is based on the association of two intrinsic equivalent single gate FETs 

in cascade configuration. Since in most applications the input signal is applied to one of 

the two gates, the equivalent circuit can be simplified as shown in figure 4.2. The 

parameters in Fig. 4.2 can be expressed in terms of the parameters in Fig. 4.1(h) for two 

possible bias configurations as listed below: 

(i) 	Fix the second gate potential V gs2 and use the first gate as the control gate. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(ii) Fix the first gate potential V gs1  and use the second gate as the control gate. 

(4.14) 
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(4.15) 

(4.16) 

(4.17) 

From the above exertions, one can readily find that configurations (ii) has 

enhanced gate to drain feedback capacitance whereas in configurations (i) the feedback 

capacitance decreases significantly. Using the simple analytical method developed in last 

chapter and employing equations presented above, we calculate the transconductances 

behavior of the two configurations. The values of the parameters used in these 

calculations are the same as shown in Table 3.1 except for the values of parasitic 

resistances. We assume that Rs1 = 15Q ,Rs2 = I0Q, Rd1 = 20Ω and Rd2  = 25D. The 

corresponding results are plotted in Fig.4.3 and Fig. 4.4 which show the variation of 

the transconductance gm  with Vgs1  and V gs2 respectively. Curves in two figures look 

similar in shape, but the maximum gm  values are significantly different. The first 

configuration demonstrates a much greater maximum transconductance than that of the 

second one. This is explainable, since in first configuration the second gate provides 

series drain resistance to the control gate which has minor influence on the 

transconductance, whereas in the second configuration the first device adds series source 

resistance to the active gate and it greatly reduces its transconductance. The above 

phenomenon is consistent with experimental observations [41]. This is the main reason 

why the first configuration in stead of the second one is preferred for 

applications. 
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According to the obvious advantages of the first arrangement, details of the small signal 

model described below will be limited in this configuration. 

4.4 Dual Gate Small Signal Parameters in the Current Saturation Region 

The four parameters that dominate device performance are transconductance, drain 

conductance, gate to source capacitance and gate to drain capacitance. Since none of 

previous works provide detailed pictures for current saturation operation, our objective in 

performing dual gate calculation of key parameters is to arrive at the understanding of all 

the four parameters. The device parameters used in the calculation below are same as 

those used for Fig.4.3 and Fig. 4.4, which are list in Table 3.1 except the parasitic 

resistances as illustrated in Fig. 4.I(a). We assume that psi = 15Q , R = I0Q, Rd1  

20 Q and jrc  = 25Q. The drain bias is fixed at 1.5 V to ensure the saturation of drain 

current. 

4.4.1 The Transconductance 

By using the analytical equations described above, the small signal equivalent 

transconductances can be readily calculated. As shown in Fig. 4.3, which depicts the 

behavior of intrinsic HFETs, the magnitude of single gate gm  sharply increases with the 

gate voltage near the threshold and attains a nearly steady value at higher gate voltages. 

This two regime behaviors have been explored in detail elsewhere[69], establishing 

mobility-limited transport in the regime of gm  rise and velocity-saturation limited 

transport in the plateau regime. In this study, we neglect the some effects like nonlinear 

charge control and the mobility dependence on the gate bias. In practical HFETs, g,„ 
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rises linearly at low gate voltages, reaching its peak value and then decreases with the 

increase of gate voltage. The peak value of gm  observed in practical devices coincides 

with the near steady value calculated analytically. As can be seen from Fig. 4.3, the 

envelope of the gm  curves corresponds to the gm  versus Vgsi  curve of single gate 

HFET. gm  of the dual gate HFET which is always lower than that of its single gate 

counterpart increases as the bias of the second gate becomes more positive. This effect 

can be understood via our common node potential model. With the increase of the first 

gate bias Vgsi so that the condition (Vgsi - Vti) (1 - Ki)(Vgs2 - Vt 2) holds, the first 

gate (of the active device) is driven into linear regime no matter what yds, is, and the 

equivalent transconductance drops sharply to linear regime value which is nearly zero. 
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4.4.2. The Gate Capacitance 

The integrated stored charge Qch  in the 2-DEG channel is approximated and 

differentiated with respect to Vgsi . The corresponding analytical equations are calculated 

and results are depicted in Fig. 4.5. For the single gate device, its Cgs - V gs  curve looks 

like its corresponding gm  - V ,s  curve with a sharp increase at the threshold voltage. 

For the dual gate case, the gate capacitance monolithically increases with the first gate 

bias, while decreases with the second gate potential. These observations, which clearly 

result from the change of operating regimes under the two gates, demonstrate that the 

gate capacitance is highly related to the bias of the two gates. Under the bias condition of 

(Vgsi — Vtl) > (1 — K1)(Vgs2 — Vt2), the first gate is always kept in linear regime. Due to 

very large gate capacitance in the linear regime, this results in higher gate capacitance at 

higher V gsi and lower vv.?  

4.4.3. The Output Conductance 

Calculations of the equations of output conductance have yielded rather small values 

when compared to those experimentally found for practical devices with the comparable 

dimensions[70]. This is could partly due to the variation of spreading of A d, the 2-DEG 

moment distance, on the electric field. It has been suggested that for practical devices 

higher output conductance arises due to the de-confinement caused by the channel high 

electric field [71]. In other words, due to the high electric field in the carrier velocity 

saturation region of the channel, some carriers are injected into the buffer layer causing 

an additional drain current. In presence of deep level traps in the buffer layer, the drain 

current usually shows the so called "kink effect" due to the field ionization of traps. 
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However, at microwave frequencies the output conductance in the current saturation 

region has been found to be lower than its value predicted by the corresponding slope of 

the I-V characteristics in presence of the "kink effect"[72]. With or without the "kink 

effect" the output conductance in practical HFETs are found to be much higher than that 

can be predicted analytically. However, no analytical model has yet been proposed to 

incorporate these effects. Here we propose an alternate approach, first determine the 

single gate gd  at saturation regime using comparable experimental data, and then 

calculate the dual gate gd  characteristics using derived equations. 

As depicted in Fig. 4.6, all gd  curves for the dual gate case are lower than that 

for the single gate case. In other words, the short channel effect has been greatly reduced 

by the use of dual gate configuration. This arises from the screen mechanism, or the 

modification of the resistivity distribution along the two channels by the second gate. In 

the case we consider here, the saturation condition for the second gate is kept true. 

Therefore, the second gate absorbs considerable part of drain bias and the influence of 

drain voltage on the resistance under the first gate is thus weakened. As the second gate 

becomes more saturated, the field distribution along the two channels is such that a very 

small increase in the drain current requires a large increase in the drain voltage. This 

means that the drain current practically saturates and the output conductance becomes 

smaller. This feature makes it possible to use dual gate FET to overcome the short 

channel effects. 
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4.4.4 The Feed Back Capacitance 

A clear advantage of the dual gate is observed in its influence on feed back capacitance 

Cdg • In Fig. 4.7, the feedback capacitance is significantly reduced for the dual gate 

case in comparison to the single gate device. This reflects the screen effect of the 

second gate. Even though the Cd I can be large in these circumstances, a large variation 

in V  ds can only produce very small percentage change in Vdg  the first gate drain bias, , 

and thus result in small perturbation in Qdg • Which leads to much decreased Cdg  for 

the dual gate device. 

4.5 Results and Discussions 

In the previous few sections we have presented a simplified analytical model that 

describes the dc and small-signal characteristics of DG-HFETs. In the course of 

illustrating the bias dependence of the I-V and key small signal parameters, we have 

explained the dual gate characteristics and its comparison with that of the single gate. Our 

model based results have demonstrated that the dual gate configuration has dramatically 

improved the output conductance and feedback capacitance behavior at the expense of a 

relatively small decrease in transconductance and some increase in gate capacitance in 

contrast to its single gate counterparts. This leads to much enhanced gni  / gd  and 

C gs  / Cdg  ratios for DG-HFET which are two key factors that determine the RF 

maximum power gain. 
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The data of the dependence of gm / gd  and cgs / C dg  on the gate bias voltage are 

presented in Fig. 4.8 and Fig. 4.9, respectively. They provide a clear picture as to why the 

external bias so profoundly affects the device performance. Since the parameter gm / Ed  

has an maximum value and C gs / C dg  increases with V gs1 but decreases with Vgs2 , 

one would expect the best performance occurs for an optimum set of device bias 

voltages. 

We can learn from our model based results presented in Fig. 4.3 to Fig. 4.9 that, 

in order to take the best advantage of dual gate devices, its two gates must be 

biased 	into saturation regime simultaneously (or double saturation ). To realize 

this, according to our common node potential model, the following bias condition 

(Vgs1 — V t1) (1 —  K1)(Vgs2  — Vt2) and Vds  (Vgs2 —  VC)) - ( I—  K2 )(Vgs1 -  Vtl) 

must be held true. Actually we find that these two conditions somehow conflict with each 

other. The maximum V gs2  applicable is clamped by V ds, whereas the maximum V gs1 

is determined by V gs2 . Hence, we need to select Vds large enough to provide required 

bias margin for V gs2 . After that we can choose V gs2 using the above two conditions 

for a required V gs1 value. 

Our analytical model points out several aspects of the selection of device 

parameters to realize the double saturation conditions. 

o Once Vds  condition or equation (3.I3) is satisfied, smaller V t2 or larger vt 1  

are required to widen V gs2 and V gs1 bias margins. 

® Since K1 and K2 are dominated by parasitic resistances, reducing these 

resistances will make the double saturation requirements easier to be satisfied. 
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• Gate lengths of the two gates have minor influence on the bias condition 

required. 

• In double saturation, the drain bias of the first gate follow the variations of 

V gs2 - V gs1 . It is not a function of the total drain bias. 

Furthermore, some hints to improve dual gate HFET performance or take full 

advantage of the dual gate configuration can be derived with our simple common node 

potential model. They include: 

• Make the threshold voltage of the first gate more positive than that of the 

second, or, make the threshold voltage of the second gate more negative than 

that of the first.. 

• Minimize parasitic resistances. 

• Increase breakdown voltage so that the device can work at higher drain 

voltages. 

• Use V gs2 as high as possible, whereas use V gs1 as small as it can be. 

4.6 Summary 

In this chapter we provide closed form equations for the key current, 

transconductance/conductance and capacitance parameters as functions of the two gate 

and drain bias voltages. It is believed that the analytical results presented in this chapter, 

concerning the small signal characteristics of dual gate HFET, and the optimization of 

external bias voltages and device structural and physical parameters will provide the basis 

for effective experimental approaches on the improvement of dual gate HFETs and 
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construction of new device taking advantage of the dual gate effects. It should be noted 

that, even though our model is for HFET, similar results can be deduced for other dual 

gate FETs. 



CHAPTER 5 

A NEW DEVICE STRUCTURE: 
DUAL MATERIAL GATE HFET 

5.1 Introduction 

Considering the structure of more general dual gate HFETs than those we have studied in 

the previous chapters, at least three different device structures in which the device are 

expected to exhibit different behavior have been identified. They are two gates in 

cascade, split gate, and two gates in contact. For two gates in cascade which we discussed 

before, the separation is only important when considering the parasitic resistance between 

the gates. For a split gate with a separation gap so small that it is less than that channel 

thickness, the gate separation is especially important in determination of the device 

behavior. Moreover, the device performance is limited by how close the two gates can be 

made. The two gates in contact is the ultimate limit of the split gate approach. However, 

in that ultimate case we can not bias two gates independently as in cases of split or dual 

gate HFETs. 

There are two kinds of effects when two gates are placed close together: screening 

effect and velocity enhancement effect. Screening effect is the effect that the second gate, 

which is near drain, absorbs most of the excessive drain bias when both gates are in 

saturation region, making the first gate or control gate insensitive to the drain bias in the 

saturation region and therefore ensuring low drain conductance for the first gate. This 

effect occurs for all the two gate structure as long as the two gates can be controlled 

differently. In contrast, velocity enhancement effect is valid only in case the two gates are 

extremely close, since it is based on the fact that electrons continuously accelerate 
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without cooling down during travel through the inter-gate region, and enter the second 

gate with high speed. The average electron velocity increases due to its higher value at 

the second gate. 

In the case of two extremely close gates or the case of a split gate, the relationship 

between the two gates has changed in contrast to the case of two widely separated gates. 

In a split gate, the separation of gates is sufficiently small that the electron almost loses 

no energy when passing through the region between the gates. Thus, in the split gate case, 

the average electron velocity increases significantly and gate transconductance improves 

appropriately as the gate separation decreases. However, as the separation decreases, the 

parasitic fringing capacitance between the two gates also increases. The resulting device 

has a much higher parasitic capacitance, which degrades its high speed performance. In 

the discussion that follows, we shall be concerned exclusively with aspects of avoiding 

gate to gate capacitance but taking the full advantage of screen and velocity enhancement 

effects of dual and split gate FETs by introducing new device structures. 

Simple but effective approaches to achieve screen and velocity enhancement in 

the channel are using single gate structure but change the threshold voltage along the 

channel. Shur[8] has suggested a FET consisting of two threshold voltages in the channel 

to improve the channel electric field distribution. Many related new device structures, 

such as low conductive drain(LCD) HFET[73] and double recessed asymmetric 

HFET[74],[75], have been demonstrated to be effective in improve device performance. 

In this thesis, we propose another single gate device structure to effectively improve 

device performance. 

It is well known that among the FET structural and physical parameters that 

determine its channel threshold voltage, one is the work function of the gate material. The 
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principal feature of the work function is that it is inherent to the material but invariant to 

changes in the channel structural parameters. This indicates that two gates in contact with 

different threshold voltages can be achieved by simply using two gate materials with 

different work functions. This leads to a new device structure — dual material gate 

(DMG) field effect transistor where the gate consists of two laterally contacting materials 

with different work functions. By keeping two threshold voltage zones, higher near the 

source than near the drain, the DMG-FET retains the screening and speed enhancement 

effects of the dual/split gate structures, while intrinsically eliminating the fringing gate to 

gate parasitic capacitance of the dual/split gate FETs and simplifying the gate control to 

only a single bias. 

In this chapter we present the physical principles that will help understanding of 

the new DMG structure, which can be used to all types of FETs, including MOSFET, 

MESFET, and HFET. We use HFET as a vehicle to explore the potential advantages of 

the DMG structure. The new DMG-HFET device have the improved characteristics of 

the dual gate and split gate HFETs, since the general form and operation of the DMG-

HFET is similar to the dual gate and split gate HFETs. We consider the DMG-HFET as a 

result of shrinking the separation of two cascade gates to zero. The new structure has 

been numerically simulated using PISCES, a 2-D device simulator, which provides an 

insight into the physical behaviors of DMG-FETs. Details of the PISCES simulations are 

presented in Appendix A, which describes major issues concerning PISCES, including 

theoretical background, physical models, material parameters, and example of our 

simulation. In this chapter, several device structures will be simulated. In fact, as 

mentioned in Appendix A, all these simulations use same physical parameters shown in 

the appendix except some structure parameter changes. 
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The organization of this chapter is as follows. First, in Section 5.2, the general 

dual gate HFET simulation and the screening mechanisms are described in Section 5.3, 

the velocity enhancement effect is discussed for the split gate HFET. The new dual 

material gate HFET is introduced in Section 5.4, in which the basic DMG-HFET device 

structure is considered and its physical principles are presented. In Section 5.5 we present 

comparisons of the DMG-HFET with other related device structures. Finally, in Section 

5.6, we summarize the concept of dual material gate HFET and other related physical 

concepts. 

5.2 Screening Effect in Dual Gate FET 

We have performed a DC PISCES simulation for the dual gate HFET(DG-HFET), the 

structure of which is as shown in Figure 5.1, similar in material structure as described in 

Appedix A. The gate regions of the channel are named control-zone (under gate 1) and 

screen-zone (under gate 2), which will be justified further on. The device considered and 

simulated here has a planar structure. The gate contacts are formed in a recessed manner. 

The effect surface potential in the recessed region is simplified in the numerical 

simulation by specifying high density of deep level impurities at the surface. Detail of 

this treatment in the simulation is presented in Appendix A. In practice, the effect of 

surface depletion may behave differently and influences the device performance other 

way[63]. As can be seen from Fig. 5.1, we have selected another heterostructure system, 

InGaP/InGaAs material system. This is mainly due to the simpler gate recess process 

control of the InGaP/InGaAs material system. The highly material selective etching of 

GaAs against InGaP[76] can provide a technological advantage concerning ending 
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point control. Another advantage of this material system is that the high valence band 

offset of InGaP/InGaAs heterointerface acts as a hole barrier and reduces hole-induced 

gate leakage current. HFETs with InGaP barrier layers have been reported with improved 

characteristics[77],[78],[79]. 

As described in details in Chapter 3, in order to bias the two channel zones into 

saturation simultaneously, the screen-gate driving voltage Vgs2 - Vt2  must be greater 

than that of the control-gate Vgs1  - Vt1  in such a way that at low Vds  the screen-zone 

is less resistive than the control-zone. The device is then simulated with V gs2 = 

V gs 1 

 

but Vt1  = V 12 + 0.3 V to keep a conservative condition of Vgs 2  

By studying the potential variations along the channel for several V ds  as shown 

in Fig. 5.2, it is possible to have a better understanding of the respective role of two gates 

in the control of the channel current. Below 0.5 V drain voltage, i.e., before the current 

saturation, the drain to source potential is entirely absorbed in the region of the channel 

with small electron density that is to say under the control gate. The potential barrier that 

controls the electron injection is gradually lowered under the influence of V ds  and the 

current increases. In this drain voltage region, the screen gate has no influence on the 

device operating. Beyond 0.5 V drain bias, the additional drain voltage is not absorbed 

under the control gate but under the second gate. In other words, the first gate region is 

screened from drain potential variations. The electron injection is then well commanded 

by the control gate and the current saturates. This justifies the name of control gate (gate 

near the source) and screen gate (gate near the drain) used in this chapter. 

The screening mechanism can be described as follows. At low V ds  the 

longitudinal electric field builds only in the more resistive zone of channel, i.e., in the 
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control zone. If Vds  is high enough, a high field domain built up and grows just behind 

the control gate. Therefore, further increasing of drain bias will only change the field 

distribution along the screen zone. The screen zone then becomes more resistive than the 

control zone and absorbs the additional drain potential. 

As we demonstrated in previous chapters, short channel effects can be effectively 

suppressed by introducing a second gate between the control gate and the drain. At lower 

control gate voltages the second gate allows to screen the potential barrier at the entrance 

of the active zone from drain voltage variations. As a consequence, V ds  has only a very 

small influence on drain current after saturation and the output conductance of the device 

is very small. Thus noticeable improvement in device short channel effects can be 

S Gate 1 Gate 2 D 

DG-HFET 
Separation = 0.5 urn 

2.6 V

2  

	

 

Vds 

1.4 V 	 

 

0.5 V 	 

0.0 V 	 

I 	I 	I 	I 	I 0   I 

0.5 1.0 	1.5 	2.0 	2.5 	3.0 

Lateral Position (um) 

(a) 

C
h

an
n

e
l
 

P
o

te
n
ti

a
l (

V
)  



C
h

a
n

n
e
l
 

P
ot

e
nt

ia
l (

V
)  

C
h

an
n

el
 P

ot
e

nt
ia

l  (
V

)  

68 

S 	1 	Gate 1 	 Gate 2 D 
 

DGFET 
Separation = 150 nm 

 Vds = 2.6 V 

Vds = 1.4V 

Vds = 0.5 V 

 

Vds = 0.0 V 

0.5 1.0 1.5 2.0 2.5 3.0 

Lateral Position (um) 

2 

0  

0.5 

S 	Gate 1 Gate 1 

 
DG-HFET 
Separation = 30nm 

Vds = 2.6 V 

Vds= 1.4 V 

 

 

Vds = 0.5 V 

 

Vds = 0.0 V 
 

I I I I 	 

1.0 	 1.5 2.0 2.5 3.0 

Lateral Position (um) 

(c) 

Fig. 5.3 Spatial variation of channel potential for various values of gate separations. 
Screening effect is retained true for all the gate separations studied. Vgs = - 0.4V. 



69 

achieved by this screening effect. It should be noted that this improvement is under same 

aspect ratio which is gate length divided channel depth. As we know, increasing aspect 

ratio is a very important way of suppressing short channel effects. Keep long channel 

aspect ratio and shrink the channel length is a main method of device scaling down. In 

practice, since reduce the channel depth also increase the gate capacitance which will 

reduce device speed, a treat off is required to balance the performances between short 

channel effects and speed. Thus, screening effect, suppressing short channel effects at  

fixed aspect ratio or channel depth, will benefit the device overall performance. 

Fig. 5.3 represents the potential profiles along the channel for various gate to gate 

separations. (a) is a split gate HFET with a gate separation of 0.5 	(b) has a separation 

of 0.15 p.m, while (c) has the two gates in contact. It is found that as long as the threshold 

voltages V t1 and Vt2 of the two gates are kept unchanged, the screening effect remains 

basically the same for the 3 cases. This important result will be used in the construction 

of our new DMG-HFETs. 

5.3 Velocity Enhancement Effect in Split Gate HFET 

Under certain conditions, in the FET with an extremely short channel, electrons move 

ballistically from source to drain[80],[81],[82], i.e. they reach the drain without collisions 

with phonons and impurities, which are the causes for them to reach an equilibrium or 

saturate velocity. The ballistic transport of electrons may boost their velocity far beyond 

the values expected for a long channel FET. Even in a FET with somewhat longer 

channels, owing to the so-called "overshoot" effect, the electrons may still reach a 

velocity greater than the saturate velocity[83]. The overshoot effect is most prominent for 

FETs using GaAs and other III-V materials, in which the high speed or hot electrons may 
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Fig. 5.4 Profile of electric field and electron velocity along the channel for conventional 
HFET with a gate length of 0.8 µm. Vgs = - 0.4V, Vds = 1.2 V. 
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Fig. 5.5 The electron average velocity profile of a conventional DG-HFET with a large 
gate separation of 0.5 p.m. Vgsl = - 0.4V, Vgs2 = - 0.3V, Vds = 1.5 V. 

loose their kinetic energy when scattered from F valley into X valley, which has a larger 

effective electron mass than F valley. It should be noted that PISCES has the capabilities 

to simulate the carrier and lattice temperatures in heterostructures. Hence, various non-

stationary phenomena such as hot carrier effects and velocity overshoot can be analyzed 

using this program[84]. 

In a field effect transistor, electrons enter into the channel with a low initial 

velocity, gradually accelerating towards the drain. As numerous numerical simulation 

results(see, for example, [85]) and our numerical simulation of Fig. 5.4 indicate, the 

maximum electron drift velocity is reached near the drain. The electrons move fast in the 

region near the drain but relatively slow in the region near the source where they are 
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more likely to experience collisions. The device speed is determined by the overall transit 

time under the gate and, hence, the speed is heavily affected by a relatively slow electron 

drift velocity in the channel near the source region. 

M. Shur proposed an idea to fully utilize the benefits of the ballistic and overshoot 

transport which is to change the electric field or electric potential distribution along the 

channel in such a way that electrons are accelerated more rapidly, leading to an enhanced 

average electron velocity in the channel[8]. This cannot be achieved by a conventional 

dual gate HFET, as shown in Fig. 5.5, since the electrons are cooled down in the fairly 

large intergate region. The average velocity enhancement, however, can be achieved by 

using a dual gate HFET with extremely small gate to gate separation, as shown in Fig. 

5.6. The two high electric field distributions under the two gates overlap in the extremely 

short inter-gate region and, hence, electrons are rapidly accelerated under the gate that is 

closer to the source, move with high velocity through the gap region without significantly 

cooling down and travel into the high field drain region, resulting an enhanced overall 

electron average velocity. This fundamental difference between a conventional dual gate 

HFET and a DG-HFET with extremely small gate separation leads to the need for a 

different name of split gate, or SG-HFET for the latter. Note that in a velocity 

enhancement DG-HFET or SG-HFET, for the electrons not to cool down in the inter-gate 

region, the separation between the gates should be smaller than or in the order of the 

effective channel depth, deff, as shown. It should also noted that the high field drift 

region extention behind gate 2 is limited here by the self aligned N+- cap layer, which is 

60nm away from the gate edge to reduce the series resistance. This length is 

approximately corresponding to the drift region length generated by 2.5 V of the drain 
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Fig. 5.6 The electric field {a) and average velocity (b) profiles along the channel of DG-
HFET with extremely small gate separation (30 nm). Electric fields in the two gate 
regions overlap resulting velocity enhancement. Vgs 1 = - 0.4V, Vgs2 = - 0.3 V, Vds = 
1.5V. 
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bias[86]. Therefore, further increasing of Vds might negatively influence feedback 

capacitance and drain conductance due to the limited gate to drain separation[87]. 

In short, the electron transport in DG-HFETs can be made considerably faster by 

utilizing lateral field overlap between the gates. This can be achieved by making the gates 

separation extremely small. However, beside the technological difficulty in realization, 

this approach brings in addition fringing capacitance between the gates which will be 

detrimental to device performance. 

5.4 	The Introduction of Dual Material Gate FET 

The characteristics of dual gate HFET have been investigated extensively in chapter 2 

and 3. In the earlier sections of this chapter, the screening effect of the DG-HFET has 

been further analyzed for the purpose of better understanding and more insight into the 

physical origins of the effects. It was shown that the split gate HFET, or the DG-HFET 

with an extremely small gate separation, has higher overall electron velocity and shorter 

transit time than a conventional DG-HFET. On the other hand, the SG-HFET introduces 

a detrimental parasitic gate to source capacitance, hindering its high speed performance. 

In order to take full advantage of both screening and velocity enhancement effects 

while avoiding the detrimental parasitic capacitance, a new approach to device design is 

necessary. Here, we propose the concept of dual material gate (DMG) structure which 

consists of two laterally contacting gate materials with different work functions. This 

structure exploits the high average electron velocity of the split gate HFET and the short 

channel suppressing screening of the dual gate HFET. The idea is to change the threshold 

voltage along the channel with the material work function difference in such a way that 

work function near the source is higher that that near the drain. Although the two metal or 
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metal like gate materials contact each other and have a common gate potential, the 

threshold voltage under gate material zone near the source is higher, since the threshold 

voltage is a function of its gate material work function. 

Source GATE Drain 

InGaP(Doped) 

InGaAs 

GaAs 

M1 M2 

	  Spacer 

Fig. 5.7 Dual Material Gate HFET(DMHFET) structure consisting of gate using two 
lateral contacting materials with work function of M1 larger than that of M2. 

Fig. 5.7 shows the proposed DMG-HFET structure. By choosing a material with 

higher work function near the source, we make the threshold voltage of this section of the 

channel more positive, thus introducing a threshold discontinuity and increasing the 

electric field near the source. This will lead to a more rapid acceleration of electrons near 

the source, as well as the screening of drain voltage to supress the short channel effect. 

Similar to the case of Dual Gate HFET in section 2, the first gate material near the 

source play the role of channel current control, whereas the second material near the 

drain serves as screen zone. The difference here is that the second channel under total 

second material zone now can be depleted completely as an extension of the depletion 

region of the first channel. 

For a given gate voltage, when changing the drain bias, the first channel will be 

pinched off first limiting the drain current, while the second channel still work in the 
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linear regime due to the more negative threshold voltage. The further drain bias will be 

mainly dropped in the second channel and pinch off the second channel. Because of the 

more negative threshold voltage, the second channel will not limit the channel current. 

We note that this not only retain the current drive capability of the first channel, but also 

will not waste the drive capability of the second channel. This can be understood by the 

relationship between drive capability and threshold voltage. Current drive increased by 

simply reducing the threshold voltage has boundary condition. The threshold voltage is 

optimized by the practical application and is usually fixed at certain value. In the case of 

DMG-FET, as we will show in section 6.2, the overall threshold voltage is determined 

0.5 

S 	M 1 M 2 D 

DMG-HFET 

Work Function 
	Difference = 0.5V 

Vds 

Vds = 2.6 V 	 
 

= 1.4 V 

 

Vds = 0.5 V 

Vds = 0 V 	 

 

1.0 1.5 2.0 2.5 

Lateral Position (urn) 

Fig. 5.8 The channel potential profile for dual material gate HFET with gate length of 
0.8 um. The applied gate voltage is -0.6 V. Strong screening effect is demonstrated. The 
two material work function difference AW is assumed to be 0.5V with W1 > W2 or Vt1 > 
Vt2. 
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Source GATE 	 Drain 

InGaP(Doped) 

InGaAs 

GaAs 

M1 

	  Spacer 

Fig. 5.9 Schematic cross section of conventional single material gate HFET. 
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Fig. 5.10 The channel potential profiles of conventional HFET with different drain 
biases. The gate length is 0.8 µm; gate bias is -0.6 V. There is no screening effect in this 
situation. The M I gate material of DMG-HFET is used here for the gate. 
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by the more positive material or first channel. Thus the threshold of the second channel 

can be reduced somehow freely to meet the requirement of the DMG structure without 

influencing device threshold voltage. But this drive capability increasing is basically not 

good for overall device due to the reduced threshold voltage which is considerably lower 

than what is required. 

Fig. 5.8 shows the channel potential profiles of a 0.8 µm dual material gate HFET 

with gate bias at - 0.5 V. It shows a very good screening characteristics, similar to 

conventional dual gate HFETs (Fig. 5.2). When the drain is biased above 0.5 V, unlike 

the conventional single material gate case shown in Fig. 5.9 and Fig. 5.10 without 

screening effect, the further drain bias causes the changes only in the region under gate 

material near the drain. Drain bias is effectively screened from the region near the source 

and the drain bias related short channel effects, such as drain conductance, are 

suppressed. 

Furthermore, an important parameter, Cgd, is expected to be improved by this 

screen effect. This is because that, for a fixed gate bias, changing Vgd is also changing 

Vds. Thus, the feedback capacitance can be obtained by the change of charge with 

respect to Vds, under the ac gate to source short circuit condition. Two main components 

contribute to the Cgd: channel charge and drift region extension. According to above 

discussion, the channel charge contribution(or current change) will be effectively 

suppressed by the screen effect. Therefore, assuming same drift extension for the DMG-

HFET and SMG-HFET, the DMG-HFET is expected to have better Cgd behavior. 

The electric field and average electron velocity profiles of DMG-HFET is shown 

in Fig. 5.11(a) and Fig. 5.11(b), respectively. There is still high electric field distributed 

in inter-gate region due to the screening effect, which will give rise to the further 
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Fig. 5.11 Electric field (a) and average electron velocity (b) profile of dual material gate 
HFET. In (b), the velocity profile of conventional single material gate HFET is also show 
for comparison. 
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acceleration of traveling electrons in this region. In Fig. 5.11(b), the velocity profile of 

conventional single material gate HFET is also shown as a comparison. The curves 

clearly indicate that velocity of DMG-HFET has another peak around the two gate 

material interface and the average velocity of DMG-HFET is always higher than those of 

the corresponding conventional single material gate HFET. Thus DMG-HFETs are 

expected to exhibit considerably higher speed over convention HFETs. 

Due to the limited scope of this thesis, our study is concentrated on normal HFET 

with channel length around 0.8),tm and aspect ratio about 30. We believe that similar 

results can be obtained when shrinking the channel length and keeping the same aspect 

ratio. For deep submicron devices, however, such as 0.1µm, it is difficult to reduce the 

channel thickness to the value (32A) accordingly due to the tunneling. Thus the aspect 

ratio needs to be decreased for short channel device, and this make short channel effect 

more severe when shrink the channel length. DMG structure opens a new way to 

suppress short channel by introducing screening effect. It is expected that this 

improvement will be more pronounced for small aspect ratio or deep submicron devices 

as long as other effects were not dominating. 

5.5 Comparison of Dual Material Gate HFET with Other Related Device 
Structures 

In the view of the trend of improving FET saturation behavior, Device structures based 

on asymmatric design have become very attractive, because of its ability to modify 

channel electric field distribution. In order to suppress short channel effects and inprove 

breakdown, several promising asymmatric structures are proposed. These include 

Asymmetrical Lightly Doped Drain(A-LDD) MESFET[88], Asymmetrical Double 
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Recessed (LDR) MESFET[89], Low Conductive Drain (LCD) HEMT[90], Lightly 

Doped Deep Drain MESFET[91] and Floating Gates MESFET[92]. These structures 

successfully increase breakdown voltage and improve output conductance and feedback 

capacitance behaviors. But in these structure, the transconductance and source resistance 

are either unchanged as compared to conventional structure or are degraded by the 

parasitic resistance in the case of LDD[88],[93]. The DMG structure add another member 

to these asymmetical FETs. A remarkable feature of the DMG structure is its ability to 

enhance device transconductance and drain current in addition to overcoming short 

channel effects. 

Another solution to enhance device transconductance and drain current is to 

realize FET with non-uniform channel doping[94],[95](Fig. 5.12). By doping more 

impurities near the drain than that near the source, the threshold voltage is gradually 

decreased from the source to the drain. Such a device can be made using tilt angle ion 

implantation in the region closer the source. Since the electric field under the gate closer 

to the source is larger, the transport properties of electrons in the channel or 

transconductor of the device are improved due to the average electron velocity 

improvement as shown in Fig. 5.13. The short channel effects, however, have not been 

noticeably changed due to the lack of screening effect as described for DMG-HFETs. 

This is clearly seen from Fig. 5.14. The numeric simulations demonstrate that in normal 

asymmetric channel HFETs, there is no screening effect for short channel suppressing. 

Further theoritical investigating indicates that this asymmetrical channel doping 

structure can induce screening effect by discontinuously doping the channel supporting 

layer (Ns). Since AVt oc ANs, threshold voltage therefore changes abruptly as the Ns 
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Fig. 5. 12 Schematic cross section of asymmetric channel HFET. More n-type doping is 
introduced in the region near drain making drain side threshold voltage less positive. 
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Fig. 5.13. Channel electron average velocity profile of asymmetric HEFT. Velocity 
enhancement is achieved by asymmetric threshold voltage distribution. Asymmetric 
structure is assumed to have same structure except Ns doping which is linearly increased 
from source to the drain. 
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Fig. 5.14 Channel potential profiles of normal asymmetric HEFT. There is no evidence 
of screening effect. Asymmetric structure is assumed to have same structure except Ns 
doping which is linearly increased from source to the drain. 
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Fig. 5.15 The channel potential profiles of Asymmetric HEFT with ideal step Ns doping 
profile along the channel. Excellent screening effect shows up only at this theoretical 
situation. 
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changes discontinuously along the channel. The simulation result is demonstrated in Fig. 

5.15. Screening effect is clearly shown. But this excellent screening behavior is 

extremely difficult and practically impossible to be realized due to the lateral 

redistribution during the doping activation. Thus, DMG-HFETs are essentially superior-

over this asymmetric channel HFETs and are more attractive device structure for both 

short channel suppressing and device performance improvement. 

It should be noted here that both theoretical simulation and logic reasoning point 

out that the screening effect is due to the step change of threshold voltage along the 

channel. As numerous numerical simulations of conventional HFET clearly indicate 

(see, for example Fig. 5.4), electric field always peaks near the drain. This can be easily 

understood by the fact that a stepping change of threshold voltage exists in the end of 

channel near the drain. Therefore, we speculate that the high field region near drain can 

be effectively "compensated" by the field distribution inside channel when there is a step 

like change in threshold inside the channel. 

This conclusion is important in evaluating new device structures like dual recess 

gate HFETs as shown in Fig. 5.16. Due to the gradual etching of wet etching feature, we 

predict that the performance of this device structure is inferior to our DMHFET, because 

of the obvious lack of screening effect. 

We should point out that it is required in DMG-I-IFET to introduce a downward 

stepping change of threshold voltage instead of upward change, as it varies from source 

to the drain. In other words, if source side of the gate material has smaller work function, 

the screening effect will disappear and device performance will be somehow 

like a conventional HFET. Fig. 5.17 shows the channel potential profiles of DMHFET 

with larger work function in source side instead. Both screening and velocity 
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Fig. 5.16 Another DMHFET related asymmetric HFET structure using dual recess wet 
etching technology. Different threshold is realized via different channel depths. 
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5.6 Summary 

In this chapter, a novel device structure of dual material gate (DMG) FET is proposed 

and its related physical concepts studied via numerical simulation. The concept of DMG-

FET, which has a gate composed of two laterally contacting materials with different work 

functions, is a general one, valid for all types of FETs, including MOSFET, MESFET, 

and HFET. Using HFET as a vehicle to study the behavior of the DMG structure, It has 

been demonstrated that this new device reproduces the superior properties of both the 

screening of dual gate HFET and the velocity enhancement of split gate HFET. This new 

device structure has been compared with other related device structures, and it is 

demonstrated that the proposed DMG-HFET has clear advantages over the other 

structures. It could be a preferred structure for high speed performance and short channel 

effect suppressing. As to our knowledge, this dual material gate HEFT is the first single 

gate device structure presented until now that shows both screening and velocity 

enhancement effect. The concepts related to this new DMG-HFET structure are 

summarized as follows. 

It is concluded that the step like abrupt downward change of threshold voltage 

inside the channel from source to drain creates an electric field profile that warrants both 

the screening of the drain voltage in the saturation region and the overall carrier velocity 

enhancement. Since the gate potential is uniform, the detrimental parasitic gate 

capacitance associated with the split gate HFET is avoided in the DMG-HFET. 

In conclusion, we would like to emphasize that the results obtained from a. 0.8 

micron DMG-HFET are expected to be valid for other FETs with other gate lengths. 



CHAPTER 6 

DMG-FET DESIGN AND ITS SIMULATED CHARACTERISTICS 

6.1 Introduction 

Designing single gate FET with high performance needs to optimize the key parameters, 

such as threshold voltage, channel length and channel thickness, and select best gate 

material. The threshold voltage is usally determined by application specification and is 

required to be adjusted to a certain value. Sufficiently short channel length and thin 

thickness are cretical in realizing high transconductance and high drive current. However, 

scaling down the channel length to submicron range leads to less effective carrier 

confinement in the channel and more severe short channel effect. Similarly, shrinking the 

channel thickness increases gate capacitance and faces some technological difficulties. 

Therefore, design and optimizing FET normally involves understanding the key device 

parameters and a trade-off among these parameters. 

In the case of designing dual material gate (DMG) FET, more parameters are 

involved due to the more complicate structure. These include another gate material and its 

length. We therefore need to study effects related to these additional parameters. 

First, we must choose two conducting materials for the DMG with different work 

functions, and therefore different threshold voltages, for the control zone and screen zone, 

respectively. The screening effect, which is related to the threshold voltage difference or 

the stepping change of the threshold, has been affected. In a conventional single material 

gate (SMG) HFETs, the gate material work function determines the threshold voltage 

range that can be realized, while in a DMG-FET, work functions have also become 
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significant factors, which determine the screening effect and related short channel effects 

in addition to the threshold voltage. 

In addition to the selection of materials, it is also essential to select L m1 and 

L m2 , the lengths of the control zone and screen zone of the gate, respectively. For 

velocity saturation FETs, electrons are accelerated through the control zone L m1 from 0 

to saturation velocity, and due to high field, velocity saturation, and velocity overshoot, 

they may continuously travel with almost this velocity through the screen zone L1772 until 

reaching at the drain. By adjusting L m1 and L m2 , we may optimize the most important 

device parameters, such as transconductance gm  and drive current I on. 

As discussed in the previous chapters, the concept of DMG-FET is evolved from 

the consideration of screening effect of the dual gate (DG) FET and velocity enhancement 

of the split gate (SG) FET. While in some aspects, the DMG-FET has similar behaviors 

as the DG-FET and SG-FET, however, certain fundamental differences do exist, since 

the nature of electron transport mechanism is different when the total length of the 

channel is considered. It is expected that the DMG-FET has its unique characteristics, 

different from any other device structures. 

In this chapter, several unique design considerations for DMG-FET are presented 

which are based on numerical simulation results. These special design considerations of 

DMG-FET are theoretical and intrinsic in nature. Complete simulated characteristics for 

DMG-FETs based on the new design are also presented, and it is shown to be superior to 

conventional device structures. 

The organization of this chapter is as follows. In Section 6.2, the threshold voltage 

of DMGFET is studied, in Section 6.3, the selection of gate material or work function 
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difference is discussed, and in section 6.4, the impacts of different length of the two gate 

materials are evaluated through 2D numerical simulations. In Section 6.5 the simulation 

of the high performance of DMG-FET is proposed, whereas in Section 6.6 is presented a 

systematic simulation of the device characteristics related to the short channel effects. An 

interest issue is discussed in section 6.7 in which an 1µm gate DMG-HFET is compared 

with a 0.5 µm gate SMG-HFET. All the characteristics of DMG-FETs are compared with 

those of conventional SMG-FETs. Conclusions are drawn in Section 6.8. 

6.2 Design Consideration 1: 
The Threshold Voltage of DMG-FET 

It is well know that in conventional single material gate (SMG) FET, its threshold voltage 

is a simple linear function of the work function of the gate material. This means that 

keeping other parameters identical, different gate materials will result in corresponding 

threshold voltage shift. In DMG-FET, two gate materials are involved, therefore, its 

threshold voltage may behaves differently and further study is needed to clarify its special 

features. 

The simulated threshold behavior or I ds- V gs curve for DMG-HFET is plotted 

in Fig.6.1, together with that for conventional SMG-HFET with same gate length(0.8µm). 

Except for the difference in gate composition, both the DMG-HFET and SMG-HFET 

have the same structure and geometry. The gate material of the SMG-HFET is the larger 

work function one of the two gate materials in the DMG-HFET for the purpose of 

comparison. As expected, they show almost the same threshold voltages when we do the 

extrapolation to extract the corresponding values from the plots. This verifies that the 
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1.5e-4  

1.2e-4 Threshold Behavior  

DMG 

9.0e-5 

SMG  
6.0e-5  

Threshold  

3.0e-5  
Voltage Vt  

0.0e+0 	 
-1.0 	-0.8 	-0.6 	-0.4 -0.2 0.0 

Gate Voltage (V) 

Fig. 6.1 The threshold behaviors of dual material gate HFET (DMG-HFET) and 
conventional SMG-HFET. Very close values (-0.67V for DMG and -0.65V for SMG )of 
threshold voltages have been extrapolated. 

material with larger work function in the DMG-HFET dominates the threshold behavior. 

The physical interpretation of this interesting feature is that the maximum electron barrier 

height in the channel is introduced by the material with larger work function. Clearly, 

drain current is determined by the maximum electron barrier height along the channel, i.e. 

the potential minimum in the channel or the saddlepoint in the bulk region between the 

source and drain. Therefore, the device threshold virtually does not depend on the 

material with smaller work function. This fact is very useful in predicting the actual value 

of threshold voltage in a DMG-HFET from the device parameters. 

D
ra

in
  C

u
rr

en
t  (

A
lu

m
)  



91 

6.3 Design Consideration 2: 
The Role of Work Function Difference of the Two Gate Materials 

The work function of a conducting material is the energy difference between the vacuum 

level and its Fermi level. For ideal conventional single material gate FET(SMG-FET), its 

threshold voltage linearly depends on the work function of the gate material. For DMG-

HFET, its threshold voltage is determined by the larger work function of the two gate 

materials and is no longer uniform along the channel. Thus, there is a threshold voltage 

offset along the channel material in DMG-HFET which is caused for by the laterally 

change of gate materials. Actually, this threshold offset is accounted for by the work 

function difference of the two gate materials. 

We note that the relation between the gate material work function and the 

threshold voltage is complicated, involving many factors. For MESFET and HFET, the 

threshold is a linear function of Schottky barrier height 0 bn  which is given by [48] 

Obn B  S(W  X) 	 (6.1) 

where B is a constant determined by other device and material parameters, S is Schottky 

constant which is a strong function of semiconductor surface states, oxides, foreign 

impurities, and other unstable candidates that have some uncertainties and are related to 

practical processing procedures. W is work function and x is the electron affinity. 

Typically, S is close to 1 for large bandgap semiconductor, and reduces with the bandgap. 

Therefore, the threshold voltage offset A V t  can be written as 

AV t  =S(Wi— W2) 	 (6.2) 

which is proportional to the work function difference. 
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For MOSFET, the effect of work function difference is to cause a direct voltage 

shift in the threshold voltage, and the threshold voltage offset is simply given by 

AV /  = Wi —W? 	 (6.3) 

There are virtually unlimited number of choices of gate materials or work function 

difference. Moreover, the material can be metal or non-metal. As we know, the material 

work function also depends strongly on the composition as well as on the doping level 

(for example the doping of polysilicon). For gate materials used in semiconductor device, 

most work function differences are in the 0 to 2V range and have typical values around 

0.IV to 0.6V ( for example the differences between Cr and Au, Al and Pt, etc. ). In III-V 

material, the final Schottky barrier is also a strong function of the quality of the interfacial 

layer and may have a value much less than that predicted by work function. 

Fig. 6.2 and Fig. 6.3 show the channel potential profiles for work function 

difference values of 0.36V and 0.63V, respectively. The two device have same first gate 

material (MI), gate length(0.81.1m), and device structures except the second gate material. 

Thus the two device have the same V t  = -0.6V, but different work function difference 

due to the difference in second gate materials. The bias conditions are such that V gs  is 

fixed at - 0.4V and Vds  is changed parametrically. Very good screening behaviors are 

clearly observed in both situations. 

Fig. 6.4 shows the comparison of channel electric field distributions for the two 

cases. The screening behavior improves with larger work function difference. The 

lower electric field peak near the drain reflects a relatively greater portion of overall 

electric field being screened. This will obviously improve device behavior against the hot 

carrier effect which depends on the maximum electric field in the channel. Moreover, as 
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Source Ml M2 Drain 

Vds 

0.36V 2.6V 

Work Function 
Difference 

1.4 V 
 

0.5V 	 

0.0V 	 

0.5 	 1.0 	 1.5 	 2.0 	 2.5 

Lateral Position (urn) 

Fig. 6.2 Channel potential profiles of DMG-HFET with work function difference of 0.36 
V. 
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Fig. 6.3 Channel potential profiles of DMG-HFET with work function difference of 
0.63 V. 
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5.00e+4 —  
 

 
 

1.0 1.5 2.0 

Lateral Position (urn) 

Fig. 6.4 Channel electric field distributions for two typical work function differences 
A W of 0.36V and 0.63V, respectively. The external biases are same. 
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Fig. 6.5 Channel average electron velocity profiles of DMGFET for different work 
function differences under same biases. 
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seen in Fig.6.5, due to the greater acceleration field distributed near the source, more 

velocity enhancement is achieved in device with larger work function difference resulting 

in higher drain current. Thus, increasing work function difference will improve device 

performance and overcome short channel effect 

 

 

Source 	MI 	M2 	Drain 

InGaP(Doped) 
Spacer 

InGaAs 

<-- 
Lm1 		Lm2 

Control zone Screen zone 

Fig. 6.6 Schematic cross-section of a dual material gate HFET. The two components of 
the gate region are shown. Other device and structural parameters besides gate length are 
same as described in Appendix A. 

To assess the roles of Lm1 and Lm2 on device I-V characteristics, 2-D device 

simulation of several realistic DMG-HFET was performed using PISCES [84] which was 

essentially the Poisson and continuity equation solver(see Appendix A). In Fig. 6.7 - 6.9, 

the channel potential profiles obtained from PISCES simulations is shown for different 
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Lm1 and Lm2 values. For all the 3 cases, t  = -0.6V, gs  = OV, and the source to gate 

and gate to drain distance unchanged. Fig.6.7 is a DMG-HFET with Lm1=Lm2= 0.4µm, 

Fig.6.8 with Lm2 increased by 0.2µm, and Fig.6.9 with Lm1 increased by 0.2pm. From 

Fig.6.10 and Fig.6.11, which show the channel electron velocity profiles corresponding to 

different Lm1 and Lm2 values, it is seen that electrons accelerate within the Lm1  region, 

reach saturation velocity near the metallurgical interface between the two materials, 

and travel with high speed through Lm2 region due to the high field in this region. 

From charge control point of view, the linear region is right within region Lm1 and there 

is a relatively 	shallow saturation at the end of Lm1. As a consequence, an 

important 

0 

0.5 

Source M 1 	M 2 Drain 

L1 = L2 = 0.4 

 

 

4 >  

um Vds = 2.6 V 	- _ 
_ 

Vds = 1.4 V 	 

 
Vds = 0.5 V 	 

Vds = 0 V 	 

 

1.0 1.5 2.0 	 2.5 

Lateral Position (urn) 

Fig. 6.7 Channel potential profile of DMG-HFET with equal lengths of Lm1 and Lm2. 
The gate bias is OV. 
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Source M 1 M 2 Drain 

Vds 
L I = 0.4 um 	 2.6V 	- 
L2 = 0.6 um 

 

	

1.4 V 	 

0  

	 — 

0.5 V 	 

0.0 V 	 

0.5 	 1.0 	 1.5 	 2.0 	 2.5 

Lateral Position (urn) 

Fig. 6.8 The channel potential profiles of DMG-HFET with longer Lm2. The gate bias 
is 0.0V. 
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Fig. 6.9 The channel potential profiles of DMG-HFET with longer Lm1. The gate bias is 
0.0V. 
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Fig. 6.10 The channel velocity profile changes with the Lm1 variation for DMG-HFET. 
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Fig. 6.11 The channel velocity profile changes with the Lm2 variation in DMG-HFET. 
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-0.1  V  L1 = 0.4 urn, L2 = 0.6 urn 
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Drain Voltage (V) 

Fig. 6.12 The I-V characteristics of various Lm1 and Lm2  values of DMGFET. 
Conventional SMGFET's curves are also included for comparison. 

characteristic for the HFETs' performance, I on , which is defined as I ds  under conditions 

of maximum bias at both the gate and drain electrodes, will increase as the Lm1 getting 

smaller. 

To get an indication of the drain current for various Lm1 and Lm2  values, 2D 

PISCES simulations are performed for different device structure and sizes. Fig. 5.12 is a 

plot of I-V curves at V gs  = 0 V and -0.4V of DMG-HFET with different Lm1 and Lm2  

values. 50 % and higher Ion  increase can be achieved by reducing Lm1 . This significant 

driving current increase is due to the fact that the length of charge control linear region is 

reduced and thus the channel potential changes increase by the scaling down of L,,,1 . 

From conventional charge control theory of electron transport in semiconductors {88], the 

current in the linear region of the device is given by: 

D
ra

in
  C

u
rr

en
t 

(A
/u

m
)  



100 

(6.4) 

where W is the channel width, L the length of linear region or effective channel length, µ 

the electron mobility, C o  the channel capacitance, and V dsat  is the total bias of the 

linear region. For a given device structure, due to all the same parameters except the 

length of linear region L, Ids  is simply inversely proportional to L, and hence increases 

as L or Lm1 shrinks. 

It should be noted that reduction in linear region length L has a greater impact on 

driving current Ion  than reduction in saturation region length which is proportional to 

Lm2. Since both are reduced in improved device technology, the result is a significant 

increase in channel driving current Ion  which is a key characteristic in modern device 

technology. 

Another important issue is the impact of Lm1 and Lm2  on the gate 

transconductance. This can be seen in Fig. 6.12 that, due to the similar threshold voltages, 

the drain current or transcondutance increases considerably with the decrease of the 

controlling length of Lm1. Lm2 has similar impact on transconductance, but less 

significantly. 

We should note here that since Lm1 is the control zone, the reduction in Lm1  will 

reduce the carrier confinement of the channel and lead to more short channel effect. Thus, 

a balance of drain current and improvement of short channel effects is required. 

In short, significant change in current can occur due to the variation of L111 and 

Lm2.  Therefore, it would be useful to be able to predict the impacts of these parameter on 

characteristics of the DMG-FET prior to its fabrication especially deep submicron FETs. 
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6.5 High Drain Current in DMG-FET 

In order to illustrate advantages of the DMG-FET, we simulate I-V characteristics of 

various FETs including both DMG-HFET and SMG-HFET using PISCES. We assume 

that all those device have the same structure, doping and geometry(detail in Appendix. A) 

except the gate structure and composition. For conventional SMG-HFET, the gate is 

consist of simply one material which is the material of the DMG-HFET near the source. 

For those DMG-HFETs, the two gate materials and total gate length are fixed, but each 

device has its own specific sizes of L Lm1 and L m2 as we defined in section 6.4. 

Fig.6.13 shows the drain I-V characteristics of two devices that one is a 0.8 um 

DMG-HFET with gate work function difference of 0.36V and the other is a 0.8 µm 

SMG-HFET with the same gate material as that near the source in the DMG-HFET. The 

threshold voltage of both devices was about - 0.6 V. The measured saturation current of 

DMG-HFET is 27% larger than that of the conventional SMG-HFET device at the gate 

voltage of - 0.1V. Moreover, at least two other advantages of DMG-HFET over its SMG-

HFET counterpart have been seen from the figure: 1) higher transcoductance and 2) 

lower drain conductance. Noteworthy is that, although it is shown that dual gate FET has 

also the advantage of low drain conductance, it generally do not reveal high driving 

current or transconductance due to lack of velocity enhancement effect. Such 

performance gain is only expected through the use of extremely closed dual gate FET or 

split gate FET. 

To understand the impact of the L L m2 or Lm1/L ratio on DMG-HFET 

performance for a fixed gate length L, we have simulated the I-V characteristics of a 

series of DMG-HFETs with different Lm1/L ratio. 
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Fig. 6.13 The I-V characteristics of DMG-HFET with Lm1 = Lm2 = 0.4 µm and SMG-
HFET with gate length of 0.8 p.m. 
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Fig. 6.14 The drain current variation with the change of gate sizes Lm1  or Lm2, where 

Lm1 + Lm2 = L fixed at 0.8 µm. Two gate voltage are used and the threshold voltages are 
almost same in all the situations. 
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Fig.6.14 shows the I-V curves of DMG-HFET with different Lm1/L ratio or 

location of the interface of the two gate materials. With Vt =-0.6V, the gate voltages are 

selected to be -0.1 V and -0.5 V, respectively. It is seen in Fig.6.14 that drain current 

dramatically increases with the shrinking of the Lm1  or with the interface of the two gate 

materials moving closer to the source. This is explainable from our simulation results in 

section 6.3. Reducing Lm1  is shortening the electron initial acceleration distance, or the 

linear region length, which will result in higher drain current and shorter transit time. 

Although it is considered that the I, m2  is accordingly increased in those cases, since Lm2 

is high velocity region and has much less impact on drain current than Lm],  its drawback 

in rising total transit time is in contrast with the merits of the decreasing of 47 1 as 

mentioned above. 

A high drive current Ion  of the DMG-FET can be achieved by optimizing the 

position of the gate material interface or Lm1/L . Ion  will be augmented by an amount 

that depends on the length of Lm1. By shrinking the length of Lm1, the device can be 

designed to yield a very large Ion, limited highly by the maximum electron velocity. The 

effect of shrinking Lm1 can be thought of as being similar in some ways to that of scaling 

down of gate length of short channel FETs, but the additional Lm2  of DMG-FET 

provides superior property of short channel effects suppressing and some possible new 

ways of gate length control. Reversely, by increasing the length of Lm1, the drain current 

will reduce and eventually reach single gate value when Lm1  = L or Lm1   L = 1 as shown 

in Fig.6.14. 

As a final note, we should recognize that in Fig.6.14 all the devices have almost 

same threshold voltages, therefore, the drain current is proportional to the corresponding 
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transconductance and similar trend and phenomena also occur to transcoductance. In 

other words, the reduction of Lm1 also yields higher transconductance. 

6.6 Suppressed Short Channel Effects in DMG-FET 

The exciting feature of DMG-FET, due to its screening effect as we mentioned in the 

previous chapter, is its ability to effectively suppressing short channel effects, such as 

channel length modulation, drain induced barrier lowering (DIBL) and hot carrier 

damage. To demonstrate the effects, single gate FET counterpart with same physical and 

structural parameters except gate structure is employed. The detail of them is shown in 

the example of Appendix A. 

We note that the degree of short channel effects discussed below is also a strong 

function of device aspect ratio. Thus different FETs have different onset of short channel 

effects. The devices simulated in this section have the same channel length of 0.8 µm and 

aspect ratio of about 30 which have normal HFET values. It also shoed be noted that the 

PISCES simulator we used is not perfect for HFETs especially for deep submicron and 

small aspect ratio HFETs, but neverthless predicts trends of the device performance when 

the geometrical and physical parameters are varied. 

6.6.1 Channel Length Modulation 

For the conventional single gate FET, as the channel length is reduced, its departure from 

long-channel behavior is manifested by the drain current increasing with drain bias. This 

departure, one of the short channel effects, arises as the result of channel length 

modulation due to the drain bias. For a given FET, with the channel length reduction, the 

shift of the depleted region width after pinch off now becomes comparable to the channel 
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1.5e-5  

DMG-HFET 
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Fig. 6.17 The drain conductance behaviors of both DMG-HFET and SMG-HFET. 

length L. In order to simplify the analysis of this effect, first order drain current equation 

is only used for the purpose of analysis. The length L in this equation for I ds  now 

depends on the shift of depletion region Al due to the change of Vds . It can be seen 

from the 2D PISCES numerical result in Fig.6.15 that the depletion region is extended 

toward the source by large drain bias. Thus the length of L now must be substituted by 

L — ∆L in the analysis current equation (6.4) which is rewritten below as a convenience: 

(6.4) 

Since the saturation drain voltage V dsat  is independent of the drain bias, this channel 

length modulation results in the rise of drain current after saturation in I-V curve, or the 

increase of drain conductance. 

For the DMG-FET, however, the effect of drain bias on channel length 

modulation is effectively eliminated, because the linear region potential distribution is 
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screened from drain bias after saturation. As Fig.5.16 illustrates, the high field or 

depletion region near the drain no longer expands further to the linear region. For a given 

DMG-FET, the linear region is virtually independent to the saturation region drain 

voltage, leading to a decrease of drain conductance. Fig.6.17 shows a comparison of 

drain conductance behaviors of DMG-FET and SMG-FET. The improvement of drain 

conductance for DMG-FET is apparent. 

6.6.2 Drain Induced Barrier Lowering 

In the long channel FETs, we assume that in its subthreshold operation the entire Vds  is 

dropped across the drain depletion region. Thus, the channel potential in the rest of the 

channel region is essentially independent of Vds  and depends only on the gate bias. This 

also implies channel potential minimum cϕds  is independent of Vds.. However, this 

assumption breaks down in the case of short channel FET. As the channel is reduced to 

be less than 2µm, especially in submicron, deep submicron region, the ϕ min  or the 

potential energy barrier lowers considerably. 

This drain induced barrier lowering (DIBL) can be empirically characterized by 

measuring and plotting a set of log Ids  versus Vgs  curves with increasing values Vds  

as the parameter. A quantitative estimate of DIBL can be extracted from the shift in gate 

voltage AV gs  at a fixed drain current as the drain voltage is changed. The shift in Vgs  is 

normally expressed in normalized form as ∆V gs  / ∆V ds . As shown in Fig.6.18, the value 

of ∆V gs  / A Vds  for DMG-HFET is —26 mV/V. AV gs. / A V ds  for conventional SMG- 

HFET is extracted from the curves in Fig.6.19 and has a much higher value of ~75mV/V, 

exhibiting a more severe DIBL effect. 



108 

	  1  

le-4   

DMG-HFET 
le-6 —  

Vds = 5.0V 

1e-8   
Vds = 2.0V 

le-10 — — Vds =0.05V 

1e-12 -  

   
-1.2 -1.0 	-0.8 	-0.6 	-0.4 	-0.2 	0.0 	0.2 

Gate Voltage (V) 

Fig. 6.18 Plot of log Ids  versus V gs  for DMG-HFET operated below threshold, 

with Vds  as the parameter. The value of ∆V gs  / A V ds  for a fixed value of I ds (e.g., 

1 x 10-7  A/µm) is used to characterize the DIBL. 
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Fig. 6.19 Plot of log I ds  versus V gs  for conventional SMG-HFET operated below 

threshold, with Vds  as the parameter. ∆ V gs  / ∆ V ds  value is also used. 
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Fig. 6.20 The calculated channel potential of DMG-HFET for different drain biases. 
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Fig. 6.21 The calculated channel potential of SMG-HFET for different drain biases. 
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Fig. 6.22 Variation of channel potential minimum min  or potential energy barrier 

height versus V ds  for DMG-FET and SMG-FET with same channel length. 

The results in Fig.6.18 and Fig.6.19 are accomplished by using a 2-D device 

simulator, PISCES. Such an entirely numerical approach, however, does not offer 

quantitative insight into the phenomenon of DIBL, nor does it provide detailed 

information on trends in the device behavior as the terminal voltages are varied. 

Therefore, a popular, hybrid approach that first employs a numerical method to calculate 

channel potential and then uses this solution in an analytical expression of /ds  to 

understand the device physics has been implemented. 

The analytical equation for I ds  in subthreshold regime can be expressed as: 
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where A is a constant related to the device structure and material parameters and V s  is 

the source potential. When V ds  > 0.1 V ( the operating condition of practical interest ), 

Equation (6.2) reduces to the following expression: 

(6.3) 

Thus the variation of I ds  or DIBL increases exponentially with the change of co min. 

In Fig.6.20 and Fig.6.21, we examine potentials along the channel for V ds  

stepped from 0 V to 2.6 V for DMG-HFET and SMG-HFET, respectively. The 

corresponding behaviors of the channel potential minimum ϕ min  are extracted and 

plotted in Fig.6.22. We note that, for conventional SMG-FETs, cu min  simply rises 

linearly with V ds, but for DMG-FET, min  initially rises rapidly and then increases 

slowly as ϕ min  is increased. This indicates that the co min  behavior for DMG-FET is 

actually due to some other phenomenon. In conventional SMG-FET, the continuous 

rising of co min  can be explained as the continuous extension of depletion region due 

to V ds. In DMG-FET, however, the rapid increase of ϕ min at very low Vds  is due to 

the set-up of the potential distribution in the control zone near the source, afterwards, 

further drain bias is dropped in the screen zone or under gate material near the drain and 

the change of ϕmin  is slowed down due to the screening effect as show in Fig.6.20. 

Comparing the behavior of the rise of ϕmin  of a DMG-FET with that of a SMG-FET as 

shown in Fig.6.22, the ∆ϕ min  / A V ds  value or ∆V ds  / ∆ V ds  value ( ϕ min  oc V gs), or 

so called DIBL rate, of DMG-FET is only 60 % of that of conventional SMG-FET in the 

saturation regime. 
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6.6.3 Hot Carrier Effects 

The hot carrier effect is caused by the high electric field in the channel. As the drain bias 

is increased to saturation regime, electric field increases rapidly at the region near the 

drain. When the maximum field is increased further, carrier multiplication near the drain 

occurs, leading to substrate current and parasitic bipolar transistor action. High fields also 

cause hot carrier injection into the gate region, leading to threshold voltage shift and 

transconductance degradation. Because the high electric field near the drain complicate 

device operation and degrade device performance, the maximum electric field should be 

minimized. 
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Fig. 6.23 The longitudinal channel electric field behavior of DMG-HFET and SMG-
HFET in saturation. ( V gs  = -0.4 V and Vds  = 1.4 V). 

The longitudinal channel fields for both DMG-FET and SMG-FET as calculated 

from PISCES simulation are plotted in Fig.6.23. The numerical simulations predict that 
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in both cases, electric fields exhibit a near exponential dependent rise towards the drain, 

in addition, for DMG-FET, however, another relatively low electric field peak exists near 

the interface of the two gate materials, causing a dramatic reduction in maximum electric 

field near the drain. Because hot carrier effects are extremely sensitive to the magnitude 

of the maximum channel field, it can be concluded that the DMG-FET can effectively 

suppress the hot carrier effects. Consequently, highly reliable behaviors of the DMG-FET 

are predicted. 

6.7 Comparison Between 
a 1 µm (0.5 µm + 0.5 pm) gate DMG-FET and a 0.5 µm gate SMG-FET 

The advantages of DMG-FET structure comes from the added functionalities obtained by 

integrating the two laterally contacting gate materials. As we have demonstrated in 

previous discussions, compared to the conventional (single material gate) SMG-FET, a 

DMG-FET of the same total gate length provides the higher driving current, higher 

transconductance, lower drain conductance and much reduced short channel effects. 

It is well know that in a conventional SMG-FET shrinking the gate length can 

also enhance the performance of the device. Therefore, it is of particular interest to 

compare a half micron SMG-FET with a one micron DMG-FET which is composed of 

two half micron gate materials. 

Fig.6.24 shows the drain I-V characteristics of a 0.5 pm gate SMG-HFET and a 1 

µm (0.5 µm + 0.5 µm) gate DMG-HFET. For the DMG-HFET, it shows very good 

saturation characteristics, but for the SMG-HFET, very high output conductance caused 

by severe short channel effects is observed. The dependences of transconductance for 

both DMG-HFET and SMG-HFET with drain biased at 1.5 V are shown in Fig.6.25. The 
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two transconductarnces are comparable, with the DMG having values slightly lower than 

those of the SMG. 

As predicted, the DMG-HFET yields significantly lower drain conductance, as 

shown in Fig. 6.26, by effectively eliminating the short channel effect such as channel 

modulation effect. Substantial reduction in drain conductance is seen in the figure as 

compared with the 0.5 p.m gate SMG-HFET. It should be noted that both DMG and SMG 

structure simulated have the same channel depth. The 0.5 µm gate SMG-HFET, 

therefore, has lower aspect ratio than practical device. That is why higher than normal 

output conductance for SMG has been obtained here. 

The DMG structure introduces an even more significant improvement in 

suppressing the drain induced barrier lowering (DIBL). This is illustrated in Fig.6.27. The 

DIBL rate or A co mi n  / A Vds  as low as 0.75 mV/V has been extracted for the DMG-FET 
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Fig. 6.24 I-V characteristics of a 0.5 µm gate SMG-HFET and a 1 µm (0.5 µm + 0.5 µm) 
gate DMG-HFET. 
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Fig. 6.25 The transconductance behaviors of the 0.5 um gate SMG-HFET and 1µm (0.5 
pm + 0.5 µm) gate DMG-HFET. 
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Fig. 6.26 Drain conductance behaviors of the two HFETs. 

115 

T
ra

n
s

co
n

d
u

ct
an

ce
  (

S
lu

m
)  

D
ra

in
C

o
n

d
u

c
ta

n
ce

  (
S

/u
m

)  



116 

50 

40 DMG-HFET  
  

 -- SMG-HFET   
30 

20 

10 

 	  
 

 
-   
	  

	 	  

 

	 
0 	1 	 2 	 3 4 

Drain Voltage (V) 

Fig. 6.27 Comparison of the channel potential minimum versus drain bias between a 0.5 

µm gate SMG-HFET and a 1µm (0.5 µm + 0.5 µm) gate DMG-HFET. 
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Fig. 6.28 Longitudinal channel electric field distributions for a 0.5 µm gate SMG-HFET 
and a 1 µm (0.5 µm + 0.5 µm) gate DMG-HFET. 
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in the saturation region, comparing to the value of 10.45 mV/V obtained for the SMG-

FET, which indicates that the DIBL rate of the DMG-FET is over 13 times better than 

that of the SMG-FET. 

The DMG-FET has another important advantage in suppressing hot carrier 

effects. The channel longitudinal electric fields are calculated and depicted in Fig.5.28 for 

both the 0.5 um gate SMG-HFET and 1 µm (0.5 um + 0.5 um) gate DMG-HFET. 

Maximum channel electric fields of 6.5 x 105  V/cm for SMG-FET and 1.4 x 105  V/cm 

for DMG-FET can be extracted from the curves. Over 78 % reduction in maximum 

electric field has been achieved for DMG-HFET as compared to the SMG-HFET 

counterpart. 

In short, the 1 um (0.5 µm + 0.5 um) gate DMG-HFET has nearly same drive 

current as compared to 0.5 um gate SMG-HFET, but exhibits significantly suppressed 

short channel effects. 1 um (0.5 µm + 0.5 µm) gate DMG-HFET is thus superior over the 

0.5 µm gate SMG-HFET counterpart. 

6.8 Summary 

Using PISCES 2ET 2-D numerical device simulations, it was shown in this chapter that 

the two gate materials in DMG-FET have played different roles. The length and work 

function of the first portion of the gate, which is near the source, are the dominant 

parameters to determine the channel current and device threshold voltage, whereas the 

work function difference and length of the second portion of the gate determine to what 

degree the short channel effects can be suppressed. 

A systematic simulations and analysis of the characteristics and effects of DMG-

FET were presented in detail in this chapter, which emphasized the physical in-sight of 
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the following major issues for better understanding and design of the novel device 

structure: 

• Threshold Voltage 

• Length of two gate materials 

• Work function difference 

• Saturation current I on  and transconductance 

• Drain conductance 

• Drain Induced Barrier Lowering 

• Hot carrier effect 

Excellent I-V characteristics and suppressed short channel effects were 

demonstrated. 



CHAPTER 7 

DMG-HFET FABRICATION AND EXPERIMENTAL RESULTS 

7.1 Introduction 

Real fabrication is the critical step in the procedure of developing novel device structures. 

The effectiveness of the experimental approach of the new semiconductor device 

structure is intimately related to the degree in which we understand its physical origin. 

In the previous chapters, with the help of various numerical device simulations, extensive 

efforts have been devoted to the physical in-sight of the device. In this chapter we are 

concerned primarily with the experimental issues. The concepts and principles developed 

in previous chapters are adopted in directing the experimental efforts. 

Because the proposed structure needs only modifications in the gate or channel, 

which all the FETs have in common, the new device structure is virtually good for all the 

family of the field effect transistors. Therefore, we can use any member of the general 

FETs as a vehicle to demonstrate the properties of the novel structure. To this end, 

Heterostructure Field Effect Transistors (HFETs) have been employed as a vehicle 

throughout the thesis. 

In this chapter, we investigate the experimental DMG-FET using pseudomophic 

InGaP/InGaAs HFET as a vehicle. In order to realize the proposed DMG structure, a 

simple and realistic method for forming a gate with two laterally contacting metals is 

required. For the short channel region ( 1 µm or less ), however, it becomes difficult to 

form the DMG structure by two levels of conventional lithography, which requires less 

than 10 % of the gate length align error. Such technology causes further complication of 

the fabrication process. In this work, using tilt angle evaporation and lift-off technology, 

119 
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we have developed a simple and practical fabrication method to form the DMG structure 

with two laterally contacting gate metals. Moreover, for the purpose of comparison, 

conventional single material (SMG) HFET are processed along with the experimental 

DMG-HFETs. They have the same structure except the gate metalization and they are 

fabricated on the same wafer using the same lithography and processing steps except the 

gate metal evaporations. After successive fabrication, the characteristics of the two kinds 

of device structures are measured, analyzed, compared and discussed. 

The organization of this chapter is as follows. Section 71 describes detailed 

HFET fabrication procedures and section 7.3 is devoted especially to the process 

technology of the formation of the laterally contacting dual metal gate. The fabricated 

devices are tested and the results are presented in section 6.4. The final section 6.5 

summarizes the experimental approach. 

7.2 HFET Fabrication Process 

The starting material, shown in Fig.7.1, is the MBE-grown pseudomorphic 

InGaP/InGaAs heterostructure, which is the only HFET material available to us and is 

supplied by the high speed electronics department of the Bell Labs, Lucent technologies. 

This material system has its special advantages. InGaP does not form DX-centers[96] and 

is less liable to oxidation than AlGaAs. The high valence band offset of the 

InGaP/InGaAs heterointerface acts as a hole barrier and reduces hole-induced gate 

leakage current. Furthermore the highly material selective etching of GaAs against InGaP 

[76] can provide a technological advantage concerning yield and homogenity. 

The material layer structure on the GaAs substrate consists of a 500 nm GaAs 

buffer layer, a 25 nm InGaAs channel, a 2 nm GaAs spacer, a 2 nm InGaP spacer, a 5 urn 
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N+ InGaP supply layer, a 25 nm undoped InGaP Schottky contacting layer, and finally a 

60 nm highly doped GaAs cap layer. 

Thickness 	Dopent 

N+ GaAs 	Cap 

i 	InGaP 

N+ 	InGaP 	Doped 

i 	InGaP 	Spacer 

i 	GaAs 	Spacer 

i 	InGaAs Channel 

i 	GaAs 	Buffer 

GaAs Substrate 

600 A 	Si 

250 A 	None 

50 A 	Si 

20 A 	None 

20 A 	None 

150 A 	None 

5000 A 	None 

Fig. 7.1 Schematic structure of the starting MBE grown psudomophic heterojunction 
materials. 
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Wet etched 	 N+ GaAs Cap 	 Wet Etched 

i 	InGaP 
Region 	 Region 

N+ InGaP Doped 

i 	InGaP Spacer 

GaAs Spacer 

i 	InGaAs Channel 

i 	GaAs Buffer 

GaAs 	Substrate 

Fig. 7.2 Process cross section of the active region after the mesa etching to form the 
isolation between active regions. 
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Ohmic _____> 	Source 	 Drain 	<----- Ohmic 
Contact 	 N+ GaAs Cap 	 Contact 

i 	InGaP 

N+ InGaP Doped 

i 	InGaP Spacer 

i 	GaAs Spacer 

i 	InGaAs Channel 

i 	GaAs Buffer 

GaAs 	Substrate 

Fig. 7.3 Process cross section after the formation Source/Drain ohmic contact. 

GATE 	Schottky Contact 

Source 	 Drain 
N + Cap 	 N+ Cap 

i 	InGaP 

N+ 	InGaP 	Doped  

i 	InGaP Spacer 

i 	GaAs Spacer 

InGaAs Channel 

i 	GaAs 	Buffer 

GaAs Substrate 

Fig. 7.4 Process cross section after the gate metallization. A typical HFET is fabricated. 

Our major device processing sequence and process conditions are depicted in 

Fig.7.2 - Fig 7.4. After careful chemical cleaning, the wafer was patterned by lithography 

and recessed by isotropic wet chemical etching to form isolation between the active 
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regions as illustrated in Fig.7.2. The drain/source metal stacking structure consists of 

Au/Ge/Ni and Au. After ohmic contact evaporation with a total thickness of ~250 nm, the 

wafer was rapidly thermal alloyed in an N7 ambient (385 C, 10 sec.) and tested for 

satisfied ohmic behavior. The corresponding structure is shown in Fig.7.3. 

The most critical steps in this processing is the gate definition by optical 

lithography and wet chemical etching using H2SO4:H2O2 :H2 0= 2:2:50 by volume 

( 25 C, ~ 40 sec.) to selectively etch out the highly doped GaAs cap layer, followed by 

oxygen plasma treatment to remove the possible thin layer of organic contaminant on the 

gate region and then by short time etch-dip in light NH4  OH solution (-10 sec.) to etch 

out the native oxides. The subsequent gate material evaporation at room temperature 

incorporates the metal atoms effectively in the InGaP to form good Schottky contact. 

The 1µm gate is formed after the step of lift-off. The final structure of the HFET is 

demonstrated in Fig.7.4. More details of the gate angle evaporation are described in 

section 7.3. 

7.3 DMG Structure Fabrication 

The conventional SMG-HFET processing procedure has been described in the previous 

section. The new DMG structure, however, requires additional processing step or steps in 

order to laterally form two well controlled contacting gate materials. A straightforward 

method of fabricating the DMG is using two steps of separate lithography to form the two 

gate material. Consequently, extremely precise lithography alignment is required 

especially for short channel FETs, which is extremely demanding and not practicable. 

We propose another way to fabricate the DMG structure. As shown in Fig.7.5, tilt 

angle evaporation is utilized to process the DMG in a single gate pattern. This method, 
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which was used back in 1975[67], has the merits of simple, one lithography only and 

easy control of the corresponding lengths. The care must take to minimize the problem 

caused by the small amount of metal evaporated into the side wall which may result in 

some difficulties in lift-off. 

Metal 1: Au, tilt 20° angle 
Metal 2: Cr, perpendicular 

 
	  

Photo Resist 	1400 nm 	 Photo Resist 	1400 nm 

Source 	 M1 Drain  
N + Cap 	 N + Cap 

1.4tm 

• 
InGaP 

N + 	InGaP 	Doped 
i 	InGaP 	Spacer 

i 	GaAs 	Spacer 
i 	InGaAs Channel  
i 	GaAs 	Buffer 

GaAs Substrate 

Fig. 7.5 Schematic diagram of the DMG structure fabrication process. The large work 
function metal is Au and the small work function metal is Cr. 

After gate lithography, one of the gate metal, say, metal 1, is first thermally 

evaporated on part of the patterned gate region using photoresist as the shadow. The 

relation of the tilt angle, 0, the photoresist thickness, d, and the gate length, Lm2 , is 

(7.1) 

The subsequent second metal is therefore deposited just beside and on top of the first gate 
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Samples: 
SMG DMG 

•
 

	 A 

~ 45 cm 

Vacuum 
Chamber 

Metal Source 
	  

 	
 

~ 1.5 cm 

Fig. 7.6 Simplified schematic diagram of the evaporation method used to fabricate both 
SMG and DMG in the same vacuum system. 

metal. A schematic diagram of the key features of tilt angle evaporation process are 

shown in Fig.7.6. By placing the sample wafer face down in a pre-designed angle with 

respect to the source, we can easily control the length of each gate metal. The total gate 

length is well defined by the lithography. 
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For the purpose of real comparison of the different gate structures between the 

DMG and SMG, we processed the DMG-HFET in the same wafer with the SMG-HFET. 

In other words, there was no difference between the DMG-HFETs and SMG-HFETs 

prior to the very beginning of the gate evaporation. The wafer was cut in two right before 

putting into the vacuum system. One of the pieces was placed perpendicularly face to the 

evaporation source to generate the SMG structure, whereas the other piece for DMG 

structure was placed with an angle of 20° to the direction of the evaporation source, 

which is schematically shown in Fig.7.6. Therefore, samples of the two kind of devices 

were first evaporated together, afterwards, the sample of DMG-HFETs was processed 

with an additional metal evaporation. The final fabricated HFETs have been examined 

using SEM. The typical gate lengths of 1 p.m for both SMG-HFET and DMG-HFET 

have been measured and the lengths of the two gate metal for DMG-HFET are nearly 

equal and have a typical value of 0.5 p.m as we predicted. Note that the tilt angle 

evaporation method does not require a separate lithography level, therefore, the 

lithography capable of processing 1µm gate can be used to fabricate 0.5µm + 0.5µm 

DMG. This is the reason why we compare the characteristics of a 0.5µm + 0.4 µm DMG 

with a 1µm SMG-HFET. 

7.4 Device Performance 

As a vehicle for experimentally demonstrating the superb DMG-FET performance, we 

have fabricated both DMG-HFET and SMG-HFET using the technology described in 

section 7.2 and 7.3. Both the gate of SMG-HFET and the first gate material of DMG-

HFET are Au. The second gate material of DMG-HFET is Cr which has lower work 

function. We have realized 1µm total gate length for both the SMG- and DMG-HFETs. 
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7.4.1 I-V Characteristics 

Typical current-voltage characteristics of DMG- and SMG-HFETs with the same gate 

width of 25 µm are shown in Fig.7.7. Both devices show good linear characteristics. 

However, as predicted by numerical simulation, the DMG-HFET exhibits a much higher 

drive current and clearly better saturation behavior than the SMG-HFET over all the bias 

conditions tested. The performance enhancement are apparently attributed to the more 

efficient electron transport or the electron velocity enhancement in the channel and the 

significant reduction in channel length modulation effect of DMG-HFET, which supports 

the concepts and simulation results we have explored in detail in previous chapters. 

It is important to point out that angle evaporation and recess etch shape might 

generate different series resistance for the two compared device, which may cause 

transconductance and drain current difference. It can be seen from Fig. 7.7 that the 

compared DMG and SMG HFET have very consistent linear behaviors, which are related 

to series resistance. This indicate that two device have quite comparable series 

resistances. Therefore, the contribution of parasitic resistance difference should not be the 

reason of the characteristic difference we have obtained. It is noticed that the drive 

currents of the two device are low as compared to the values published for 1 µm HFETs. 

We believe this is because that the devices is not well optimized especially the channel 

depth which seems large. 

7.4.2 The Transconductance 

The DMG-HFET sample also shows higher transconductance as shown in Fig.7.8. Up to 

50 % improvement is observed for the DMG-HFET biased at V ds  = 2 V. This drain-

source bias is large enough to place the devices into saturation mode of operation for the 
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gate voltage range we studied. The threshold voltage of the compared DMG-HFET and 

SMG-HFET is - 0.6V. If we substitute the gate metal of SMG-HFET with the same metal 

as the lower work function one in DMG-HFET, or use Cr as the gate instead, the 

threshold voltage of the fabricated SMG-HFET becomes -0.9V. From these values, we 

estimate the threshold voltage difference under the two gate metals is —0.3 V which is 

lower than the work function difference and consistent with Bardeen's theory we quoted 

in section 5.3. This is probably because that other factors like surface states also play 

roles on the threshold voltage difference we can attain. Unfortunately, the measured 

Schottky barrier heights for Au and Cr on InGaP are not available to our knowledge. 

Instead, Au and Cr with barrier height about 1.3 and 1.06 were measured on GaP[99], 

respectively. From this reference, our experimental results seem reasonable. 
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Fig. 7.7 Measured output characteristics of DMG-HFET ( solid line) and SMG-HFET 
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Fig. 7.8 Measured transconductance as a function of gate voltage for DMG-HFET and 
SMG-HFET. 
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Fig. 7.9 Measured drain conductance versus gate voltage for DMG-HFET and 
conventional SMG-HFET. 
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Moreover, we find in the experimental results that for V gs< Vt , the 

transconductance of DMG-HFET becomes smaller than that of SMG-HFET and 

decreases more rapidly when bias is down to the deep subthreshold region. This indicates 

that the decline of transconductance is due to the devices entering the subthreshold 

regime. We note that in regime below threshold, lower transconductance is an advantage 

instead of a drawback, because it stands for smaller subthreshold swing or faster current 

fall off. 

7.4.3 The Drain Conductance 

Fig.7.9 shows the behavior of drain conductance for typical DMG- and SMG-HFET 

biased at Vds  = 2 V. It is seen from the figure that the drain conductance of the DMG-

HFET is always larger than that of the SMG-HFET. This suggests that in saturation 

regime after the channel has been pinched off near the drain, the channel charge depletion 

region in DMG-HFET almost does not extend and the effective gate length is almost kept 

unchanged with the increase of V ds  indicating that the improvement in drain 

conductance is actually due to the screening effect. We note that in Fig.7.9, up to 100 % 

improvements in drain conductance are achieved by the DMG structure. The drain 

conductance deduction for the DMG-HFET is found to be more pronounced for lower 

gate voltage around the threshold. 

7.4.4 Subthreshold Behaviors 

The subthreshold characteristics for DMG-HFET and SMG-HFET are shown in Fig. 7.10 

and Fig.7.11, respectively. Similar and excellent subthreshold slope or swing 
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Fig. 7.10 Measured subthreshold characteristics of DMG-HFET at various V ds . 
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Fig. 7.11 Measured subthreshold characteristics of SMG-HFET at various V ds. 

D
R

A
IN

 C
U

R
R

E
N

T
 (

A
)  

D
R

A
IN

 C
U

R
R

E
N

T
 (

A
)  



132 

A V gs  
(S = 	

log (Ids) 
) of only ~ 75 mV/decade is observed for both DMG-HFET and SMG- 

HFET. This may be due to the same vertical structure for the two devices we fabricated. 

A V gs  
The V ds  induced gate voltage shift ( 	), neverthlessly, is found to be reduced to 

AV  ds I ds ds  

23 mV/V for DMG-HFET in comparison to 50 mV/V for SMG-HFET. The considerable 

lower value of gate voltage shift for DMG-HFET compared to SMG-HFET sample 

corroborates that minimum channel potential of the former device undergoes much less 

variation during the change of V ds , especially at relatively large V ds . This directly 

indicates that DMG-HFET suppresses the drain induced barrier lowering (DIBL) 

extensively. This is due solely to the screening effect of DMG-FET according to our 

simulation results presented in previous chapters. 

7.5 Summary 

In this chapter, we have experimentally demonstrated significant performance 

improvement of DMG-FET over a wide bias conditions. Using InGaP/InGaAs HFETs as 

a vehicle, we have fabricated DMG-HFET using a tilt angle evaporation technique for the 

formation of the novel gate with two contacting metals. The tested results of the 

fabricated devices prove that the novel DMG structure can provide a wide range of 

benefits to the FET performance both above threshold and in the subthreshold regime. 

From the measured characteristics, it can be seen that both drive current and 

transcoductance of DMG-HFETs significantly exceed that of conventional ones owing to 

the velocity enhancement. Also the use of two gate materials to introduce threshold 

voltage abrupt change in the channel leads to longer channel behavior in these short 
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channel DMG-HFETs we fabricated, resulting in greatly suppressing in short channel 

effects in terms of low drain conductance and small gate voltage shift in subthreshold, 

which suggests that the screening effect is responsible for the superb improvement. 

Therefore, the DMG-FET is very promising in many future applications, where high 

performance FET with deep submicron gate is required. 

Further improvement can be expected by choosing different set of gate materials, 

optimizing the length ratio and device parameters. We believe that the advantage of 

DMG structure will be more pronounced if we use MOSFET instead of HFET as a 

demonstrating vehicle, because, as equation (6.2) and (6.3) indicated, for same work 

function difference, MOSFET will have more threshold voltage difference due to the 

non-Schottky contact of the gate. 



CHAPTER 8 CONCLUSION 

8.1 Summary 

In summary, we have presented a new type of device — the dual material gate field effect 

transistor (DMG-FET) — for the first time and thereafter investigated this novel device 

extensively through theoretical and experimental approaches. Our investigation and study 

of DMG-FETs were motivated by the fact that it can take full advantage of dual gate FET 

and split gate FET while avoid their inherent disadvantages. We studied two most 

important issues — drive current and short channel effects — that have become the major 

concerns in recent years due to the continued scaling of FETs to deep submicron 

dimensions and the need for high performance. The objective of this research was to 

develop a new high performance FET structure, and the approach taken to achieve this 

was to start with related device of dual gate FETs, and then proceed to our new device 

structure. The major findings and results of this research are summarized below. 

8.1.1 Analytical Study of Dual Gate FETs 

1. An analytical dual gate FET model useful for device performance 

evaluation and physics study was derived. It included a complete set of 

device 1-V equations and established a basis for DMG-FETs. 

2. It was demonstrated that DG-FET could significantly suppress short 

channel effects but at a price of reduction in drive current and 

transconductance, as compared to conventional FETs. 
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8.1.2 Numerical Simulation of DMG-FET 

1. The channel potential or electric field, coupled with the electron velocity, 

were combined to analyze the DMG-FET using PISCES 2ET, a 2D device 

simulator. The mechanisms of the new device operation was identified. 

2. By making use of the work function difference between two gate 

materials, the DMG structure simultaneously induces two key effects: 

velocity enhancement effect and drain voltage screening effect. Velocity 

enhancement can increase device speed, drive current and 

transconductance. Screening effect can effectively suppress the short 

channel effects. 

3. The DMG structure greatly improves the characteristics of FETs by 

substantially increasing transconductance, decreasing drain conductance 

and suppressing DIBL and hot carrier damage. 

4. Two critical parameters limit the performance of DMG-FET: lengths of 

each gate material and the work function difference. We verified by 

numerical simulation that benefit was more pronounced by using shorter 

first gate material and larger threshold voltage offset or work function 

difference between the two gate materials. 

5. Simulation results shown that one micron DMG-FET outperformed half 

micron conventional SMG-FET. Significant improvements in short 

channel effects were obtained. 

6. The most important concept derived from our study is that the origin of 

screening effect is due to an introduction of step change of threshold 

voltage in the channel. Gradual change of threshold voltage can not induce 
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screening effect or introduce the mechanism of short channel effects 

suppression. 

7. 	It should be noted that the DMG structure is expected to be applicable to 

all kinds of FETs. Excellent results were achieved using the HFET as a 

vehicle. Similar results are achievable with the use of other type of field 

effect transistors. Even better results are expected for the MOSFET due to 

the direct effect on threshold voltage offset from the two gate material's 

work function difference. 

8.1.3 Experimental Realization of DMG-FET and Its Results 

1. Tilt angle evaporation was applied to the fabrication of the critical dual 

material gate. DMG-HFET was thus fabricated for the first time. SMG-

HFET were fabricated in the same process but without the tilt angle 

evaporation for comparison. 

2. Experimental results showed significantly enhanced device performance 

and considerable reduction in short channel effects for DMG-HFET as 

predicted by simulation. This also clearly the validity and effectiveness of 

our theoretical approach. 

3. Finally, it can be said that DMG-FET is very promising for the future, 

high speed, high performance, deep submicron FETs. It opens a new way 

to the improvement of the wide used FETs and it may be important to 

scaling down of FETs further into sub-quarter micron dimensions. 



APPENDIX A 

NUMERICAL 2D DEVICE SIMULATOR — PISCES 
AND THE SIMULATION DETAILS 

PISCES is used for two-dimensional semiconductor device simulation. It takes as input 

the device geometric structure, including electrode specification, and doping/composition 

profile, and outputs the device I-V and C-V characteristics in addition to the internal 

distribution of electrostatic potential and electron and hole concentrations. There are 

many new features available in the new version of PISCES used, predominately, the 

capabilities to simulate the carrier and lattice temperatures and heterostructures in 

compound semiconductors. Hence, various non-stationary phenomena such as hot carrier 

effects and velocity overshoot can be analyzed using this program. Most of the material 

parameters have been calibrated and thoroughly surveyed with the help of industry[84]. 

1. Carrier Transport Model 

PISCES uses a dual energy transport(for carrier temperatures and lattice thermal 

diffusion) model in semiconductors, which is developed based on the moment approach 

to solving Boltzmann Transport Equation(BTE). It uses six state variables to describe the 

status of a semiconductor device. These six variables are: electrostatic potential, ϕ, 

carrier concentrations, n and p, carrier temperatures T n  and T p , and lattice temperature, 

TL , and they are functions of space and time. All other device characteristics such as I-V 

characteristics and circuit model parameters can be calculated from the knowledge of the 

distribution of these basic variables, To determine the distribution of these variables 

137 



138 

under applied bias, six independent equations are required together with proper boundary 

conditions. It is well established that with the drift-diffusion carrier transport model, 

Shockley semiconductor equations, i.e., Poisson's equation and carrier continuity 

equations, govern the distribution of ϕ, n, and p. The carrier concentrations can also be 

replaced, equivalently, by their respective quasi-Fermi levels, con  and con , in classical 

distribution (either Boltzmann or Fermi-Dirac) functions. With the temperatures for both 

carriers and lattice introduced as independent variables, three more equations are needed 

and they can be derived from the energy balance principle. These include two kinetic 

energy balance equations for carriers and one thermal diffusion equation for the lattice. 

2. Material Properties for Heterostructures 

As mentioned in section 1, PISCES has introduced a set of expressions for carrier 

transport in heterostructures. In order to perform the simulation, essential material 

parameters must be known. The various material properties needed for the PISCES 

device simulation and their dependance on the composition are described below. 

2.1 Material Parameters for Device Simulation 

Material parameters in compound semiconductors depend strongly on the composition as 

well as (to a less degree) on the doping level. PISCES first identifies which material 

properties(parameters) are mostly concerned in the device simulation and then presents 

the composition dependence in terms of mole fraction. Beside, the lattice temperature 

effect on some parameters is also provided. 
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The minimum set of material parameters which have to be known in order to 

proceed the PISCES device simulation include: 

1. Electron affinity, x, and conduction band edge offset due to the composition 

change. 

2. Energy bandgap, Eg . 

3. Effective masses for electrons and holes, mn*, and m'p, from which the effective 

densities of states for the conduction and valence bands, Nc and N v , can be 

derived. 

4. Dielectric constants. 

5. Electron and hole mobilities, ,u„ and ,up  , and their dependence on composition, 

doping density, electric field, and temperature. 

6. Minority carrier lifetime and corresponding coefficients for various 

recombination mechanisms. 

7. Coefficients for the impact ionization. 

8. Saturation velocity, vsat, which is used as a parameter in certain field-

dependent mobility models. 

2.2 Interpolation Scheme for Composition Dependence 

The parameters for ternary materials are determined using the linear interpolation scheme 

from those of the constituent binary materials. But often this simple scheme is not 

accurate enough and the quadratic term, which is available for some materials from 
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experimental data, is therefore included. The material parameters for quaternaries is 

determined from those of ternaries using the following interpolation scheme. 

	 • {x(1-x)[(1-.Y)TGaxIni1-xP+yTGaxIn1-xAs]+  
Q(x,y)= x(1 -x)+ y(1 - y) 

y(1-y)(1-x)[(1-x)T 	P 	T GaAs P 	
(A.1) 

GaxIn1-xP 	y 1-y 

where Gax 	Asy 	is used as an example for quaternary material. 

2.3 Parameters for Base Materials 

Currently PISCES can handle four material systems: GexSi1-x, , 	As , Al x Int1-x, As 

and Gax 	Asy P1-y, . Those compound materials can be derived from four types of base 

materials: Si, GaAs, InAs, and InP. A partial list of their respective material parameters 

are given in the following. 

Table A.1 

Si GaAs InAs InP Units 

E g  1.08 1.424 0.359 1.347 eV 

a 4.73  5.405 3.35 1.4205 eV 

β 636  204 248 136 K 
ε„ 11.8  13.1 14.55 12.4 
x 4.17 4.07 4.9 4.4 eV 

m*n 1.08 0.067 0.023 0.08 mo 

m* lh  0.16 0.074 0.024 0.089 mo 

• mhh 0.49  0.62 0.41 0.85 mo 

Nc 2.8 x 1019  4.42x10" 8.72x1016  5.66x10" cm-3  
N v 1.04x1019  8.47x1018  6.66 x 1018  2.03 x 1019   cm-3  

µn  1500 8500 22600 4500 cm2/ V-s.  
µp  450 400 

 
250 150 cm2  I V . s 

v sat 1.5x107  1.0x107  2.5x107  cm/s 
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3. Mobility Models 

Carrier mobility is one of the most important parameters in the carrier transport model. In 

PISCES, the mobility is, for most case, modeled as the function of the total doping 

density, N, lattice temperature, TL, surface/interface scattering mechanisms which are 

generally modeled using the dependence on the transverse electric field to the 

surface/interface, and the electric field along the current path(longitudinal field). When 

the device size is in the submicron regime, however, the local, longitudinal field 

dependence may not be accurate enough and non-local effects, which is mainly 

characterized by the carrier temperature dependence, have to be taken into consideration. 

The following expression describes in a general way the carrier mobility dependence on 

various factors: 

(A.2) 

where EII  and E1 are the longitudinal and transverse components of the electric field 

with respect to the current direction, which depends on N, TL and E1, is called the 

low field mobility because when EH —>0, --> µ o , T c  is the carrier temperature with the 

subscript c representing either n or p for electrons and holes, respectively, and the symbol 

EH/ T c  indicates the dependency is either on EII  or on T c  but not on both. 

3.1 Low Field Mobility Models 

Without considering the transverse field dependence, the low field mobility can be 

written as µo  (N, TL). There are several such models available in PISCES. 
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Constant Mobility Model 	This mobility is the function of material only and 

does not dependent on the doping density. The values for four group of semiconductor 

materials are listed in table A.2: 

Table A.2 Constant Mobility Used in PISCES 

µ n(cm²V -1S-1) µ p(cm²V -1S-1) 

Silicon/ Ge.,Sil, 1500 450 

GaAs I AlxGa1-x  As 8500 400 

InAs Ix  Alx   In1-x, As 22600 	250 

InP I Gax In1-x, Asy P1-y  4500 150 

Arora's Empirical Mobility Model  An empirical mobility model based on the 

fitting to the measurement data for silicon at different lattice temperature has originally 

been proposed by Arora and et al. [60] and is extended to apply to GaAs and related 

materials by Yu[61] based on the available measured data. The model has a general form 

of the following: 

(A.3) 

where parameters ,µmin  , µdlt, , N0  and a are all functions of TL in the form of aT Lb  

where both a and b are constants. The parameter values for GaAs are list in Table A.3. 

Table A.3 

µmin  µdlt  N0 (cm-3) α  

Electrons 2136 TL-0.7475  
6331TL-2.687  7.345 x1016TL3.535  0.6273TL-0.1441  

Holes 
21.48TL-1.124 

 331.277L-2.366  5.136 x1017TL3.690  0.8057 
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3.2 Mobility Dependency on Longitudinal Field 

When the electric field along the current flow(called longitudinal field) becomes large, 

the carrier mobility is reduced. This reduction is on the top of the reduction due to the 

transverse field which usually happens only at the semiconductor and insulator interface. 

The longitudinal field reduction of the mobility can be modeled either as the function of 

the local field if the field intensity is not very large or the spatial change of either the field 

or the doping concentration is not very rapid, or as the function of the carrier temperature 

if the energy relaxation process lags apparently behind that of the momentum relaxation, 

a phenomenon termed as the non-local effect. In PISCES, two models for III-V are 

provided. One exhibits the behavior of the negative differential mobility when the field 

exceeds a critical value and is the accurate model for electrons in the bulk GaAs and 

related materials. The other has a saturation velocity and is suitable for the channel 

mobility modeling. 

Bulk Mobility Model  For electrons in the bulk GaAs and related materials due to 

the existence of several valleys with different effective mass in the conduction band 

structure, the drift velocity reaches a peak as the electric field is increased to a critical 

value and then the velocity decreases as the field further increases. This phenomenon, if 

viewed from the mobility modeling point of view, amounts to a negative differential 

mobility (defined as dv/dEll  ). To model this field dependence for electrons in GaAs and 

related materials, a model proposed first by Thim[63] is used in PISCES as follows: 

V sat  E 
	) 

E  µ(N ,T , Ell ) = E  4 

1 + 	) 

(A.4) 
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where E0  is the critical field and has a default value of 410//cm, and 

vs°, = 1.13 x 10' —1.2 x 104  T 1. . It can be shown that when E > Eo , equation (A.3) leads to a 

negative differential mobility (NDM). 

Channel Mobility Model 	One problem related to the above formulation is 

that when applied to the simulation of GaAs and related material FETs, the drain output 

characteristics (current vs. voltage) may exhibit an unrealistic zig-zag behavior. One 

possible reason is that the correct mobility model in the bulk may not be suitable to the 

carriers in the channel. In the program, PISCES provide another mobility model for 

electrons in GaAs and related materials, in which the carrier velocity approaches the 

saturation velocity with increased field monotonically in a manner of the hyperbolic 

tangent function. The model formulation is as follows[64] and does not exhibit NDM 

behavior. 

I-1( 1V,T L,E11 )= V'tanh( P'(1 	°EH ) 
vAa1 

(A.5) 

4. Simulation Example 

A typical simulation example of our simulation is presented here to demonstrate the main 

features of PISCES and to describe the detail of the our numerical simulation. The 

simulated device is the pseudomophic InGaP/InGaAs HFET, as shown in Fig. A.1, which 

is a typical device structure we used as a demonstrating vehicle. All the PISCES 

simulation parameters or input files in this thesis are virtually kept same as described in 

this example except very few differences specified in the main text, which ensures that 
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the corresponding variation of simulation results are only due to the variations of 

appropriate parameter or structure. 

o.o611 	o 
0.58µ 	0.8µ 

Source Drain 
Gate Gate Gate  

N+ GaAs N+ GaAs 

i 	InGaP 

N +      InGaP Doped 
i 	InGaP Spacer 

i       GaAs Spacer 

i 	InGaAs Channel 

i 	GaAs Buffer 

GaAs Substrate 

Fig. A.1 Simulated device structure. 

As shown in Fig. A.1, This n-channel p-HFET is constructed in a rectangular 

region with source/drain regions formed in a N+ GaAs cap layer and the gate contact 

formed on top of undoped wide-bandgap InGaP layer. The layer structure consists of a 

250A undoped InGaP barrier layer followed by a 50 A N+ doped InGaP layer, a 20 A 

undoped InGaP supply layer, a 20 A undoped GaAs spacer, a 150 A undoped InGaAs 

channel layer, and a 5000 A GaAs buffer. The GaAs buffer/substrate layer considered is 

limited to 5000 A in order to save computational time. Because in PISCES ternary 

compound InGaP is represented by setting y=0 in quaternary Gax 	Asy  P , in the 

input deck which follows "GaInAsP" is used instead of "GaInAs". The gate contact is 

formed in a recessed manner. But in order to maintain the planarity of the structure, an 
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oxide is filled in the recessed region. The structure is described in the following input file. 

An important issue is the treatment of recessed surface, which is modeled by specifying 

the high density of deep level impurities at the recessed surface. 

TITLE InGaP/InGaAs based p-HFET structure 

COMMENT Specify a Rectangular Mesh 

mesh nx=55 ny=35 rect 

x.mesh n=1 1=0 r=1 

x.mesh n=6 1=1.0 r=0.8 

x.mesh n=10 1=1.58 r=0.9 

X.MESH N=15 L=1.64 R=1 

X.mesh n=37 	1=2.44 r=1 

x.mesh n=42 1=2.50 r=1 

x.mesh n=46 1=3.08 r=1.1 

x.mesh n=51 1=4.0 r=1.2 

$ 

y.mesh n=1 1=0.0 r=1 

y.mesh n=4 1=0.06 r=1 

y.mesh n=12 1=0.085 r=0.8 

y.mesh n=14 1=0.09 r=1 

y.mesh n=16 1=0.092 r=1 

y.mesh n=18 1=0.094 r=1 

y.mesh n=25 1=0.109 r=1 



y.mesh 	n=35 l=0.609 	 r=1 .5 

$ Region and material specifications 

region num=1 ix.1=10 ix.h=42 iy.l=1 iy.h=4 insulator 

region num=2 ix.1=1 ix.h=10 iy.1=1 iy.h=4 algaas xmole=0 

region num=3 ix.1=42 ix.h=51 iy.l=1 iy.h=4 algaas xmole=0 

region num=4 ix.l=1 ix.h=51 iy.l=4 iy.h=12 gainasp xmole=.51 ymole=0 

region num=5 ix.l=1 ix.h=51 iy.l=12 iy.h=14 gainasp xmole=.51 ymole=0 

region num=6 ix.l=1 ix.h=51 iy.1=14 iy.h=16 algaas xmole=0 

region num=7 ix.l=1 ix.h=51 iy.l=16 iy.h=18 gainasp xmole=.51 ymole=0 

region num=8 ix.l=1 ix.h=51 iy.l=18 iy.h=25 gainasp xmole=.47 ymole=1.0 

region num=9 ix.l=1 ix.h=51 iy.l=25 iy.h=35 algaas xmole=0 

$Electrodes: 1 Source, 2 Gate, and 3 Drain 

elec num=1 ix.l=1 	ix.h=6 iy.l=1 iy.h=1 

elec num=2 ix.l=15 ix.h=37 iy.l=4 iy.h=4 

elec num=3 ix.I=46 ix.h=51 iy.l=1 iy.h=1 

$Doping specification 

doping region=2 unif conc=1e19 n.type 

doping region=3 unif conc=le19 n.type 
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doping region=5 unif conc=6e18 n.type 

$ Interface trapping for the pinning of Fermi-level 

deepimp unif x.I=1.60 x.h=1.64 y.t=0.06 y.b=0.061 accep conc=1e19 eion=0.7 

deepimp unif x.l=2.44 x.h=2.48 y.t=0.06 y.b=0.061 accep conc=1e19 eion=0.7 

contact num=2 workf=4.8 surf.rec 

models temp=300 conmob consrh fldmob auger incompl 

$ 

$ Solving Poisson's equation only for the equilibrium solution 

symb newton carriers=0 

method itlimit=50 biaspart 

solve 	init 

$ Switch to full set of semiconductor equations 

symb newton carr=2 

$ Re-solve at the equvlibrium and save solution 

solve outfile=hfet.ini 
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log ivfil=modfet.iv 

S 

S Apply the negative gate voltage and sweep Vd upto 4.0 

solve v2=-0.8 v3=0.0 vstep=0.2 nstep=4 elect=3 proj 

solve v3=1.3 proj 

solve v3=1.6 proj 

solve v3=2 vstep=1.0 nstep=2 elect=3 proj 

S 

plot.ld x.axis=v3 y.axis=i3 

S 

end 

Fig. A.2 PISCES input file for the simulation of InGaP/InGaAs HFET. 

As shown in Fig. A.2, a non uniform mesh is used with a minimum mesh size of 

10 A in the y direction and 120 A in the x direction (along the channel). The Poisson's 

equation, continuity equation and energy equations are solved by Newton method. 

Newton projection scheme is also adopted to project the next solution based on the 

current solution when the applied bias is changed. 
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