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ABSTRACT

DECENTRALIZED RELIABLE CONTROL FOR
LARGE-SCALE LTI SYSTEMS

by
Zhengfang Chen

Reliable control concerns the ability of closed loop system to maintain stability

and regulation properties during arbitrary sensor, controller, and actuator failure.

Reliable control research has been an active research topic for more than 10 years.

Recent approach for reliable control includes the Hoo method, the algebraic

factorization design, and the robust servomechanism control. These methods have

been surveyed and discussed in this thesis with the robust servomechanism control

methodology serving as the basis of the research development of this work.

In this thesis, the reliable control for large-scale, multi-input/output linear

system is considered. Two concepts of reliable control are introduced in this

work: (1) Decentralized Robust Servomechanism Problem with Complete Reliability

(DRSPwCR) and (2) Block Decentralized Robust Servo Problem with Complete

Reliability (BDRSPwCR). The DRSPwCR solves the reliable control problem by

applying strict diagonal decentralized controller configurations. The BDRSPwCR

solves the reliable control problem by applying block diagonal decentralized controller

configurations.

Research results of solving DRSPwCR for the class of minimum phase

systems is first developed in this work. The problem is solved by applying strict

decentralized PIDr control to an otherwise unreliable plant and thus significantly

extending the class of processes that can be controlled reliably. Research results

of solving BDRSPwCR is developed for plants which have a pre-imposed block

diagonal structure or plants with non-minimum phase minors. The reliable control

conditions for an arbitrary linear system is then analyzed, and a general controller



synthesis for solving the reliable control problem for arbitrary linear system is given

in this work.

The DRSPwCR can be applied in many industry areas as well as in the

transportation area. In this work, the reliable control results are applied in the

urban vehicle traffic network. A traffic queue length model is developed, a control

algorithm is synthesized, and simulations are made under different traffic subsystem

failure modes such as non-functioning traffic lights, traffic accidents, and intersection

blockage, etc.

Finally, future research topics such as to relax the constraints of plants to

achieve reliable control and to optimize the closed loop system dynamic perfor-

mances, etc. are proposed.
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CHAPTER 1

INTRODUCTION

Reliable control concerns the ability of closed loop system to maintain key properties

such as stability and regulation during arbitrary sensor, actuator or partial controller

failure. In many industrial control problems, reliability requirements are critical to

the long term feasibility of system operations.

Existing approaches in dealing with partial system failure can be classified as

1) fault-sensing and 2) fault-tolerant. The latter is generally considered as "reliable"

control where the system with partial failure can remain maximally functional

without retuning of the controllers.

In about the recent 10 years, a number of methods in the literature have been

developed in the research of reliable control. There are three major research methods

in this area: the extended H00 [13] method, the algebraic factorizations[12] design,

and the robust servo control[4] design, etc.

The Hoo-norm has been found as a particularly useful performance measure

in solving diverse control problems including disturbance rejection, model reference

design, tracking and robust design. The Extended H03 design method for the reliable

centralized and decentralized control system design was developed by using observer-

based output feedback. The leaders in this area are William R. Perkins[13][15]

of University of Illinois, Urbana, and M.H.Shor[14][15] of Oregon State University.

They present a methodology for design of the reliable centralized and decentralized

control systems in which the resulting designs are guaranteed closed-loop stability

and an Hoo disturbance-attenuation bound for the base case as well as any admissible

control component failures occur. The design is obtained by including in the nominal

plant description additional disturbance inputs or regulated inputs to account for

possible control inputs or measurements outages, respectively, and computing basic

Hoo control designs for the augmented plant. The existence of solutions of the

1
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design equations are sufficient to guarantee that the reliable design tolerates system

component outages within a prespecified set of susceptible sensors or actuators in

centralized case or within a prespecified set of susceptible control channels in the

decentralized case. The following subsections show the controller structure and appli-

cation conditions for the decentralized reliable control case.

The algebraic factorization methodology is an algebraic design method which

was developed based on diagonalization certain transfer functions of the nominal

system which is linear, time-invariant, multi-input multi-output with unity-feedback.

The leaders in this area are A.Nazli Günde§ and C.A.Desoer[9][12][11][10] of

University of California, Davis. In this research, the reliable control problem was

treated as simultaneous stabilization of the nominal plant and the plant multiplied

by different failure matrices. The system is stable for all possible failures of at

most k of the sensor-connections or at most in of the actuator-connections. In this

case the plant and the controller must have certain properties. These properties

are explained in terms of denominator-matrices of their coprime-factorizations. A

controller design methodology, which does not require the failure to be known in

advance, is obtained by diagonalization of certain transfer functions of the nominal

system having the above properties.

The robust servo control methodology assumes that no plant model of the

system is available. The motivation of this design is mainly directed at process

control systems and large-scale systems, where it is difficult to obtain a mathematical

model of the system, such system is carried out by using decentralized design, i.e.

the multivariable system is treated as though is consists of a number of separate

single-input/output systems. This research was first developed by T.N.Chang[4][5]

and E.J.Davison[4][41] of University of Toronto in 1986. Interaction analysis of multi-

variable systems has long been an outstanding issue[4][8]. The need for analyzing

interaction is obvious: high loop interaction frequently leads to deterioration of
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transient response, system stability and regulation characteristics. On the other

hand, this issue is complex, since the interactions depend on numerous factors such

as stability, control structure, and plant structure, etc. In addition, standard multi-

variable control design could be carried out only if the mathematical model of the

system was known. In the robust servo control design method, the only assumptions

made for the plant are that (i) it can be described by a linear time-invariant model

and (ii) it is open loop asymptotically stable. Under these assumptions, a set of

steady-state interaction indices has been introduced, these indices give a measure of

interaction when a decentralized proportional and integral controller configuration is

used. The indices may be determined experimentally and thus, the design are quite

practical to apply to industrial large-scale systems, which often lack an accurate

mathematical description.

The robust servo control has wide applications on the following areas:

• Fault Tolerant Traffic Control Systems: In an urban traffic network where flow

efficiency is of prime importance, fault-tolerant capability is critical to the long

term operation and integrity of the system.

• Power Systems: In a power system, it is very critical to tolerant arbitrary

sub-system failure without affecting other fault free sub-systems operation

normally.

• Chemical Process Control: In such multivariable systems, the mathematical

model of the plant is usually unknown, the robustness of the reliable control

system is very important.

• Data Traffic Network Systems(ATM or other data communication network):

data traffic network systems is similar to the vehicle traffic network systems.

• Manufacturing Systems: the example such as multi-dimensional robot motion

control systems, the reliability is important to the system operations.
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The research work in this dissertation follows the robust servo control approach

where the decentralized robust servomechanism problem with complete reliability is

considered. The failure pattern considered in this work includes arbitrary sensor,

actuator, and controller failure, thereby imposing the restriction that the system is

open-loop stable. The primary objectives of the reliable controls are: 1) disturbance

rejection and 2) stability of the failed system and regulation of the remaining system.

In the following chapters, a detailed literature survey, including the appli-

cation conditions, and controller synthesis are provided as well as a comparison

of advantages and disadvantages between these existing methodologies. Following

the background theory of robust servo reliable control design, some new results of

decentralized robust servo problems with complete reliability(DRSPwCR) are given.

Following the background theory of robust servo reliable control design, some new

results of decentralized robust servo problems with complete reliability(DRSPwCR)

are given. A special application example of traffic network control using the robust

servo approach is given with simulation results.



CHAPTER 2

LITERATURE SURVEY

In this chapter, three major methodologies in reliable control research have been

surveyed. There methods are: Extended Hoo , Algebraic Factorization, and Decen-

tralized Robust Servochmechanism Problem. A comparison among these method-

ologies on their advantages, disadvantages and application limitations is given.

2.1 Extended Hoc, Method

In this section the Extended Hoo Method is analyzed in detail. In the system

description, the state space model of the open loop nominal plant is given, a full state

observer based feedback control law is synthesis; The main theoretical results include

a set of design equations to be solved for the synthesis of decentralized controllers,

such controller design results that the closed loop system is internally stable under

the prespecified measurement outages and controller outages, and provides a good

performance for the Hoc, norm of the closed loop system transfer matrix.

2.1.1 System Description and Control Law

In this subsection, the state space models of the nominal system and control system,

as well as the augmented system are described.

Consider the linear time-invariant plant:

= 	 + Bu + Gwo

Y = Cx + w 	 (2.1)

where Y 	 (yi , • • • , y,,)" = (C1 , 	 (w1, • , wv ) 1 is the locally measured

outputs vector. u E Rv is the local control input vector, B = 	 • • •

Also define:

S, = 	 i E (1, 2, 	 v) 	 (2.2)

5
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S = 	 + S2 + • • +	 B	 (2.3)

The decentralized control law an be expressed as:

= (A BK GA' d —

ui	 (2.4)

where Ki is the state feedback control gain, i E (1,2, 	 , v). Apply the v controllers

to plant(2.1) gives a closed-loop system of order (v + 1)n described by:

	

= Fe e Ge w e , z = Ile x,	 (2.5)

where

Transforming coordinates of (2.5) such that the last V77, state variables are the errors



where
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The closed loop system transfer matrix is defined as

T(s) = e (sI — Per Ge

The goal of the design is to select the state feedback gains, the observer gains and

the disturbance estimate gain so that the closed loop transfer matrix T(s) satisfies

ITI < a for some prescribed a > 0.

2.1.2 Main Results

The main results of the Extended Ho. design are listed as the following lemma and

theorem:

For a system described by:

= Fx + Gw, z = fix	 (2.25)

Lemma 2.1.1 Let T(s) = H(sI — F) -1 G with (F,H) a detectable pair. if there

exist a real matrix X > 0 and a positive scalar a such that

F i X + XF + —
1 

XGG'  X + H ' < 0	 (2.26)α²

then F is Hurwitz, and T(s) satisfies 1171 11,, < a.



where X > 0 satisfies

(2.27)

(2.28)

with Wii, and WD defined by

(2.30)

(2.31)

(2.32)
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Theorem 2.1.1 [13] Let (A, H) be a detectable pair and a be a positive scalar.

Suppose

and where A:, = A+ BK + GKd  is Hurwitz, and A+GKd had no jω-axis eigenvalues.

Suppose also

(2.29)

where W > 0 satisfies the Riccati-like algebraic equation

Then the decentralized feedback control law(2.4) stabilizes the plant(2.1) and the

closed-loop transfer-function matrix T(s) = He (sI — Fe ) —1 G„ from we to z satisfies:

Theorem 2.1.1 indicates that, if the state feedback controller gain K must satisfy the

design Equation(2.28), the resulting closed loop system is stable, and the 11,,o noise

attenuation bound satisfies the given performance value a.
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2.1.3 Design of Reliable Decentralized Control Systems

The following Theorem 2.1.2 and Theorem 2.1.3 are the main results of reliable

control design equations to be solved for fault tolerance of measurement outages and

control input outages, respectively.

A. Outages Modeled as Measurement Failures: 

Let S2 C {1, 2, 	 , dim(y)} corresponding to a selected subset of sensors susceptible

to outages. Introduce the decomposition

C = Co +

where CΩ is formed from C by zeroing out rows corresponding to susceptible sensors.

Let (.4.) C C/ correspond to a particular subset of the susceptible sensors that actually

experience an outage, and let 21,-(s) denote the transfer-function matrix of the

resulting closed-loop system. It is convenient to adopt the notation

C C Cw

where C„, and C7, have meanings analogous to those of Co and C. Also, decompose

the observer gain as

L =

so that

LC = LωCω + L7, Cri

Suppose the measurement failures takes the form y, = 0. The closed loop system

takes the form

'the = Feωxe GeωWe, Z — Hexe

where
A	 BK	 G	 G 0

LωC Ac,—LC ' et') ( 0

(2.33)

(2.34)
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and

A„ = A + BK + GKd

The following theorem describes the reliable design:

Theorem 2.1.2 [13] With all assumptions and the decentralized design as in

Theorem (2.1.1), let X > 0 satisfy

where Ω C 	 CO' = (C;44 • • C:,). Then, for the measurements outages

corresponding to any ω C 11, the closed-loop system is internally stable, and the

closed loop transfer matrix T(s) satisfies:

11 7171100 5- a

In addition, all controllers corresponding to the "susceptible" set Ω are open-loop

stable.

Theorem 2.1.2 indicates that, if the control gain design satisfies the design Equation(2.35),

then the closed loop system under certain prespecified set of measurement outages

is internally stable and Hoo bound satisfies the given performance.

B. Outages Modeled as Control Input Failures

Assume the controller failures are modeled as u i = 0, i E

Theorem 2.1.3 With all assumptions and the decentralized design as in Theorem

(2.1.1), let X > 0 satisfy



Let the controller be given by:

Assuming all controllers are open-loop (internally) stable. Then for controller outages

corresponding to any ω C 12, the closed-loop system is internally stable, and the closed

loop transfer matrix T(s) satisfies:

Theorem 2.1.3 indicates that, if the control gain design satisfies the design Equation(2.36),

then the closed loop system under certain prespecified set of controller outages is

internally stable and H bound satisfies the given performance.

2.2 Algebraic Factorization

In this section the Algebraic Factorization Method is discussed along with system

description, necessary and sufficent conditions of application, and control law

synthesis.
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The system (T(s) , FA ,K(s))

Figure 2.1 The System And The Sensor/Actuator Connections

2.2.1 System Descriptions

Consider the LTI, MIMO feedback systems in Figure 2.1 where T(s) represents the

plant, K(s) represents the controller, Fs E Rvxv represents the sensor connections, it

is a diagonal matrix whose entries are nominally equal to 1; if jth sensor fails, the jth

diagonal entry becomes a stable rational function including 0. FA E Rvxv represents

the actuator connections, it is a diagonal matrix whose entries are nominally equal

to 1; if jth actuator fails, the jth diagonal entry becomes a stable rational function

including 0.

If T(s) is stabilizable and detectable, then T(s) is said has no hidden-modes.

Let NTDT-¹ denote any right-coprime-factorization(RCF) and DT-¹NT denote

any left-coprime-factorization(LCF) of T(s) E k", T(s) = NTDT-¹ = DT-¹NT.



Similarly, NKDK-' denote any right-coprime-factorization(RCF) and DK-¹NK denote

any left-coprime-factorization(LCF) of K(s) E 	K(s) = NKDK-¹ =

Assumption 2.2.1 Assuming that:

2.2.2 Main Results

Notations:  Let U be a subset of field C of complex number, where U is closed and

symmetric about the real axis, +oo E U.

Let Ru be the ring of proper rational functions which have no poles in U. The group

of units of Ru  is 7/). The set of matrices whose entries are in Ru  is denoted M(Ru).

A matrix M is called Ru stable if M E M(Ru ); M E M(Ru ) is Ru-unimodular if

detM E

Definition 2.2.1 Ru -stability and integrity:

(a) The system (Fs,T(s), K(s)) is said to be R u stable if the transfer matrix Ts(S) E

M(.1=1„). For a fixed k, where k E (1,— , v), the system (Fs,T(s),K(s)) is said to

have k — sensor — integrity if it is R u-stable for all Fs

(b) The system (FA,T(s),K(s)) is said to be R u stable if the transfer matrix TA(s) E

M(Ru ). For a fixed m, where m E (1,• • . ,v), the system (Fs,T(s), K(s)) is said to

have M - actuator — integrity if it is Ru- stable for all FA

Definition 2.2.1 explaines the methematical meaning of reliability to tolerant sensor,

and actuator/control failures for the closed loop system described by Figure 2.1.
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Reliable Control Conditions:  Let .Fsk denotes the class of sensor-connection failures

defined by:

k corresponds to the maximum number of failures allowed in the sensor-connections,

k E (1, • • , v). Similarly, .FA„, denotes the class of actuator-connection matrices

defined by:

Theorem 2.2.1 Necessary and sufficient conditions for integrity[12.]:

(a) The system (Fs,T(s),K(s)) is stable for all Fs if

(b) The system (T(s), FA, K(s)) has is stable for all FA if

Theorem 2.2.1 indicates the necessary and sufficient conditions for the matrix Ds

has to satisfy in order to tolerant sensor failures, and the necessary and sufficient

conditions for the matrix DA has to satisfy in order to tolerant actuator/controller

failures.

2.2.3 Controller Synthesis

Figure 2.2 shows the controller design for the case k =1 or v — 1,

K(s) = D-¹NK

= (DSDNNSD(YSk 	 Sk)NT)-¹

NSD NSD(YSkQsk)DT)



Figure 2.2 The (Fs ,T (s), K(s)) System Where K(s) Has k-sensor Stable

15

Figure 2.3 The (T (s), FA, K(s)) System Where K(s) Has m-actuator Stable

Figure 2.3 shows the controller design for m = 1 or m = ii — 1.
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The QSk, Ysk matrices are constructed from the matrix and elements which

diagonalize the LCF of T(s), and the 0A lc YAk matrices are constructed from the

matrix and elements which diagonalize the RCF of T(s). See[11] for their definitions.

2.3 Robust Servo Control

In this section, the Robust Servo Control method is analyzed in detail. In the

system description, the state space model of the nominal plant is given, a set of

definitions are given including the normalized transfer matrix, the Decentralized

Robust Servomechanism Problem, and different system fault modes such as sensor

failure, controller/actuator failure and multiple failures. The existing main results

on the sulficent conditions of reliable control by using the decentralized robust PI

control configuration are given.

2.3.1 System Description

The plant is assumed open loop stable and represented be the following model:

the state, input, output and the constant disturbance vectors, respectively.

It is assumed that the controllers to be used to control (2.43) are constrained to be
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decentralized and has the following type:

The open loop transfer matrix can be expressed as:

Define the following normalized matrix:

The matrix TH, i 2 , . • • ,iΦ](s) is obtained from T(s) by retaining only the i1,i2,• . .,i0

non-redundant rows and columns.

Similarly, let N[i1 , i 2 , • ,iΦ(s) be obtained from N(s) by retaining i1,i2 , • 	 non-

redundant rows and columns where i 1 ,i 2 ,. 	 E [1, v],0 E [1, v].

The set of Φth order leading principal minors of N(s) is defined as:

whose roots are just the transmission zeros of the ql x .75 principal subsystem of (2.43).

With no loss of generality, it is assumed that the control structure is given by

the following input/output pairing:

Definition 2.3.1 14] Decentralized Robust Servomechanism Problem (DRSP):

Given the plant (2.43) and input/output pairing(2.48), obtain a decentralized

controller so that the following conditions all hold:

1. The closed loop system is asymptotically stable.

2. Asymptotically tracking occur, i.e. lim t„,„y(t) = 0, for all constant ω.

3. Property 2) holds for parametric perturbations: A —> A + SA, B 	 B δB,

and C	 C SC provided that the closed loop system remains stable.
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2.3.2 Main Results

The main results of Robust Servo Control method are described by Lemma 2.3.1

and Lemma 2.3.2, where Lemma 2.3.1 concerns with the existence of solution to the

DRSP and Lemma 2.3.2 provides a sufficient condition for a solution to DRSP with

complete reliability.

Lemma 2.3.1 [4] There exists a solution to the DRSP iff there exists a controller

installation sequence {i 1 , i 2 . . ,iv} = {1,2, . . . , v}, the following conditions all hold:

The following channel failure cases are now defined:

Definition 2.3.2 Sensor Failure: The ith sensor is said to have failed at time t i > 0

The ith sensor failure reflects the situation where a sensor in the ith channel ceases

to function and generates only a null output for all time thereafter.

Definition 2.3.3 Controller/Actuator Failure: The ith controller/actuator is said

to have failed at time t 2 > 0 if
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The ith controller or actuator failure reflects the situation where a controller or

actuator in ith channel ceases to function and generates only a null output for all

time thereafter.

Definition 2.3.4 [7] Plant with Multiple Failures: Given the plant (2.43) where v-Φ

sensors/actuators/controllers have failed so that the resulting plant is described by:

The Φ-input/output plant given by (2.49) is said to be a plant with partial sensor,

actuator or controller failure.

The v — sensors/actuators/controllers failure reflect the situation where

sensors/actuators/controllers in those v — 0 channels cease to function and generate

only null outputs.

Definition 2.3.5 [7] DRSP with Complete Reliability(DRSPwCR): Given the

plant(2.43) and the input/output pair(2.48), obtain a decentralized controller so

that the following conditions all hold:

1. There exists a solution to the DRSP for the normal plant(2.43).

2. Under partial channel failure, the controller solves the DRSP for (2.49) without

retuning.

Lemma 2.3.2 [4] By applying the decentralized control(2.44), there exists a solution

to the DRS PwC R if the following conditions all hold:
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Remark: The above lemma requires that all principal minors of T(0) be strictly

positive, a condition not always satisfied by an arbitrary plant.

Plant satisfying all the conditions in Lemma 2.3.2 are called "reliable systems".

Otherwise, it is referred to as an "unreliable system" in the later chapters.

To solve DRSPwCR for an unreliable system, it is not adequate to use integral

control(2.44) only. Existing reliable control results based on the Robust Servo

Control method are limited to the reliable systems.

2.4 Summary of Existing Methodologies

From the above introductions of different reliable control design methodologies, their

application conditions, advantages and disadvantages can be concluded as following:

The Hoo methodology focuses on the disturbance-attenuation performances of

the reliable control system. Besides the condition of an acurate mathematical model

of the plant is known, it is also required that the Hoc, disturbance-attenuation bound

is high enough in order to get a positive definite solution to the design equations. It

is a sufficient condition. At present, it is not known whether a solution exists for

lower Hoo-norm. One of the important advantages of this design is that it addresses

the issue of providing guarantees on system performance, it is a robust design. One

disadvantage of this design is that the failure mode is prespecified, while in many

cases the failure occurs without being noticed. Also, since it is an observer based

methodology, the order of the augmented closed-loop system increases rapidly with

the increasing of input/output channels, therefore it is not practical in the large-scale

industrial control systems.
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The algebraic factorization design requires an extremely acurate mathe-

matical model for the nominal plant and controllers and also at least one specific

sensor/actuator never fails. The advantage of this design is that it provides the

necessary and sufficient conditions for reliable control, and it solves almost complete

reliable problems of the plant without the failure being known. A disadvantage is

that a strictly acurate mathematical model is required. Since the parameterization

of the controllers are completely dependent on the plant transfer matrices, the

robustness is very weak. Once the plant model is slightly different due to parametric

perturbations, the controller design based on previous nominal plant model may not

be reliable to the perturbed plant model.

The robust servo control emphasizes the reliable control without the availability

of plant mathematical model. The most important condition is that the steady-state

interaction indices must be strictly positive. It is a necessary and sufficient condition.

This design not only provides almost all the advantages that other designs provide

such as robustness, system performances, complete reliability, etc, but also has a

significant advantage that other designs do not have, ie, it is very practical in the real

world, large-scale control systems. The disadvantage is that the systems satisfying

the conditions of steady-state interaction indices are still limited. Research based

on this design methodology for the purpose of relaxing the sufficient condition is a

current research topic.



CHAPTER 3

RELIABLE CONTROL FOR MINIMUM PHASE SYSTEMS

In this chapter, new research results of solving Decentralized Robust Servo Problem

with Complete Reliability(DRSPwCR) for a class of open loop stable, minimum

phase system is developed. The decentralized PIP controller configuration is

synthesized and simulation results of a numerator example is given.

3.1 New Results

From the discussion of Robust Servo Control Methodology in the previous chapter,

it is evident that decentralized integral control(2.44) requires the plant to satisfy all

conditions in Lemma 2.3.2, i.e., the T(0) matrix of the nominal plant must possess

positive principal minors. When a given plant does not satisfy all conditions in

Lemma 2.3.2, the integral control(2.44) strategy only cannot solve the DRSPwCR.

However, for a certain group of unreliable, minimum phase systems, the following

new results are now obtained to relax the conditions of Lemma 2.3.2:

Theorem 3.1.1 For a system whose normalized transfer matrix does not posses

positive principal minors and cannot achieve DRSPwCR with control(2.44) only,

there exists a solution to the DRSPwCR (Definition 2.3.5) if the following conditions

all hold:

1. There is a solution to DRS P for (2.43).

2. detN[Φ](s), q = 1,2,—. , v possess no unstable zeros.

To solve the DRSPwCR, a possible controller is the PRY type given below:
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where r is the maximum pole-zero excess defined as:

r =Δ n — minimum order(detN(Φ)), VΦ E [1, v] (3.6)

Remark: Compared with the traditional PID control, a higher derivative control

D' control is applied in this design. The practical implication of using higher

derivative term is to let the closed loop system to become diagonal dominant as

the frequency increases to a high value.

Given that "r", the maximum pole-zero excess, is generically 1, the PID'

controller reduces to a regular PID type where the derivative action can be indirectly

synthesized as follows:

From (2.43), the derivative of the output vector is calculated as:

If the plant model is known, then can be computed without carrying out the

differentiation explicitly.

In the event that high order Dr action is required, a description type controller

with the following structure may be used:

Where it is assumed that:
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Proof of Theorem(3.1.1):

The proof is carried out by construction. Define Tp(s) to be the transfer matrix of

plant (2.43) with proportional feedback If p; then,

as IIKpl becomes sufficiently large, Tp(0) approaches a diagonal matrix and

detT[i 1 , . • ) 4](0) = 1, which satisfies the conditions in Lemma 2.3.2.

Apply now the derivative controller in (3.4) so that the feedback control is

described by K(s) in (3.5) and the closed loop transfer function is given by:

Denote 	 . • • ,i
Φ

(s) be obtained from K(s) with only the i 1 ,. • •,iΦth non-

redundant rows and columns. The characteristic polynomial of nominal closed-loop

system is given by:

whereas the characteristic polynomial for the failed system is given by:

Now since K(s) is of order of r, the maximum value of pole-zero difference,

detN(s)K(s) has the same degree as dv and det(N[i 1 , . • . ,iΦ](s)K[i1,· . . , iΦ](s)) has

the same degree as dΦ(s). Therefore, in both cases, as IIKpII 	 co, the polynomials

are dominated by the last term of (3.12) and(3.13) respectively which are always

stable from the assumption that detN[15](s),Φ 	 1,2, . . . , v do not possess unstable

zeros.

The following algorithm provides a procedure to synthesize a P I Dr controller for

plant satisfying the conditions of Theorem 3.1.1:
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Algorithm 3.1.1 Synthesis of PID r Controller:

1. Verify that the conditions in Theorem 3.1.1 are satisfied.

2. Apply the proportional control(3.1) to the plant so that all principle minors of

Tp (0) are strictly positive. This can be achieved if ILK p is large enough.

3. Determine r, the maximum pole-zero excess.

4. Synthesize a stable PR- control(3.5) so that the closed loop system are asymp-

totically stable for all q E [1, v]. This can always be achieved if the conditions

in Theorem 3.1.1 are satisfied and the gain of controllers are high enough.

5. Apply the integral control(3.2) sequentially.

3.2 Example

A 3-input/output system is described by the following transfer matrix:

conditions of Lemma 2.3.2 are violated and therefore, DRSPwCR for this system
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Figure 3.1 System Outputs at Normal Operation

cannot be solved by integral controller only. However, it is noted that the trans-

mission zeros of all the principal minors are minimum phase:

Therefore, DRSPwCR can be achieved for this system by PM" control with r 3

here. In simulation, the following PID³  is applied:

The closed loop system disturbance rejection characteristic under the following failure

modes are shown in Figures 3.1 to Figure 3.5:

o All 3 channels are operational. Figure 3.1 shows that asymptotic tracking takes

place.

* One channel has failed. Figure 3.2 shows the system outputs with integral

control only, it is noted that the failed system remains asymptotically stable
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with tracking occurring for the remaining operational input/output channels.

Figure 3.3 the system outputs with PID³ control, the failed system also

remains asymptotically stable with tracking occurring for the remaining opera-

tional input/output channels.

• Two of the three channels have failed. Figure 3.4 shows the system outputs

with integral control only, this time, the fault free channel output will not

be asymptotically stable. However, with PID3 control, similar to the single

controller failure scenario, asymptotic stability and regulation still hold for the

remaining system as shown in Figure 3.5.

The current result shows that complete reliability against sensors and actuators

failure can be achieved for the class of open loop stable, minimum phase plant which

may not satisfy certain previous known conditions for reliable control. The key

towards establishing reliability is the introduction of high derivative control which

always stabilizes a minimum phase system without altering its DC gain. The

synthesis of reliable control( for an unreliable plant) becomes a fairly straight forward

process.

Figure 3.2 Outputs with /-Control, 1 Channel Failed



Figure 3.3 Outputs with PID³ Control, 1 Channel Failed

Figure 3.4 Outputs with I-Control, 2 Channels Failed

Figure 3.5 Outputs with PID³ Control, 2 Channels Failed



CHAPTER 4

RELIABLE CONTROL FOR ARBITRARY LINEAR SYSTEM

In this chapter, the necessary conditions to achieve reliable control for a given

unreliable plant are analyzed inductively. The general controller synthesis procedures

are derived, followed by 2 numerical examples of reliable control using different

control strategies.

4.1 Range of Reliability of Kp

In order to develop the theoretical conditions for reliable control by using strict

diagonal decentralized control, it is first necessary to analyze the range of reliability

of Kp for the general 2 x 2 open loop stable system.

Given an open loop stable, unreliable plant of the structure:

where d(s) is a stable polynomial. Let

where i,j E [1, 2], and r te denote the order of the polynomial n ij(s).

With no loss of generality, assume that,

Define now:

and assume that a decentralized proportional controller
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Figure 4.1 Kp Range of Stability and Reliability

has been applied. The regions of reliability for the proportional gain parameters are

now analyzed as follows:

As shown in Figure 4.1, in order for the closed loop system to be reliable, the

values of kp1 and kp2 have to be located in the shaded areas described by the following

four equations:

Region 1 (Quadrant I):

(4.4)

Region 2 (Quadrant II):

(4 .5)

Region 3 (Quadrant III):
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The derivation of the reliable range of Kp can be found in Appendix C. When

decentralized PP- controllers are applied, the closed loop characteristic polynomials

are described by the following equations:

where, D 1 (s) is the closed loop system characteristic polynomial when k p1 only is

applied. Similarly Dh (s) is the closed loop system characteristic polynomial when

kph only is applied and D 12 (s) is the closed loop characteristic polynomial when both

proportional controllers are applied.

Define Tp the normalized closed loop transfer matrix as described in Equation(3.10).

T1 is the closed loop DC gain matrix when controller 1 only is installed, while T2 is

the closed loop DC gain matrix when controller 2 only is installed. For the reliable

control consideration, values of kp1, kph have to be such that the closed loop system Tp

possesses positive principal minors under both cases of controllers normal operations

and any channel failures, therefore the conditions in one of the following scenarios

must be satisfied:

Scenario 1:



Scenario 2: 

Scenario 3: 

Tp, T1 and T2 are related to the values of open loop DC gain matrix and Kp values

as described by the following equations:

Furthermore,

substituting Equations(4.20), (4.21), (4.22), (4.23), and (4.24) into the above 3

scenarios, and multiplying all three equations of any one of the scenarios together,
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the following equation is obtained as a necessary requirement of Kp for reliability

consideration:

D1(0)D2(0)D12(0) < 0 	 (4.28)

Therefore, in order to achieve reliable control, Kp values have to be such that:

1. All closed loop characteristic polynomials in equations(4.8), (4.9) and (4.10)

must be stable.

2. Kp values must be located in the ranges described in Equations (4.4), (4.5),

(4.6) and (4.7) of Figure 4.1.

4.2 Necessary Conditions of Reliable Control for 2-input/output
Systems

For the 2-input/output system, necessary conditions of reliable control are stated as

follows:

Theorem 4.2.1 Necessary Condition of DRSPwC R For 2 x 2 System Using PI DI

There exists a solution to the DRS PwC R(Definition 2.3.5) for an unreliable 2 x 2

system by using strict decentralized PID r only if the following conditions all hold:

1. There is a solution to DRSP for (),.1).

2. order of (n12(s)n21(s)) > order of (n11(s)n22(s))•

3. n12(s), n21(s) hold no real roots that locate in RHP.

Before the proof of Theorem 4,2.1, the following lemma is required:

Lemma 4.2.1 Let P1 (s),Ph (s) be stable polynomials and define P³ (s) as

P³ (s) = P1(s) P2 (s) 	 (4.29)
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P1 (0)P2 (0) > 0

then P³ (s) holds no unstable real roots.

The proof of Lemma 4.2.1 is given in Appendix D.

Proof of Theorem(4.2.1):

When a decentralized controller

is applied to the open loop stable 2-input/output plant, the closed loop characteristic

polynomials are described by the following equations:

Re-write Equation(4.33) as:

From Lemma 4.2.1, stability of Di (s)D2 (s) and D12 (s) together with the condition

P1(0)P2(0) > 0, implies that P³ (s) holds no unstable real roots, or,

n12(s)n21(s)K1(s)K2(s) holds no unstable real roots. Equivalently,

• n(s) has no real roots in RHP, for i,j E [1,2], i j.

• K(s) has no real roots in RHP, for i E [1,2].



thus establishing the necessary condition 3 of Theorem 4.2.1.

Condition 2 of Theorem 4.2.1 is proved by contradiction. Assume that:
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(4.35)order of (n 11 n22 )(s) > order of (n 12 n 21 )(s)

From Equations (4.8) and (4.9),

• order of D i (s) > order of n 11 (s)K1 (s).

• order of D2 (S) > order of n 22 (s)K2 (s).

Therefore order of (D 1 D2 )(s) > order of (n11n22K1K2)(s),

together with the assumption in Equation(4.35), it is obtained that

From Equation(4.10), order of D12 (s) will following the order of (D 1 D2 )(s),

and the highest order coefficients of D12 (s) and (D 1 D 2 )(s) are the same.

Since D 12 (s) and (D 1 D2 )(s) are both stable, therefore, their coefficients must neces-

sarily be of same signs. For the lowest order terms,

which violates Equation(4.28). Therefore, (4.28) implies that:

which proves Condition 2 of Theorem 4.2.1.

As shown in Figure 4.1, with proportional control only, the gridded area is the region

for all closed loop characteristic polynomials D 1 (s),D 2 (s) and D 12 (s) to be stable.

This gridded area does not overlaps any shaded area, which is the range of reliability.

The following conclusion is also obtained:

Lemma 4.2.2 With proportional control only, the closed loop system is not able to

achieve reliable control for a given unreliable plant(4.1).
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The above lemma indicates that proportional control with gain Kp located in the

range of reliability will destabilize the system. It is therefore necessary to induce Dr

derivative feedback to restabilize the system.

4.3 Necessary Conditions of Reliable Control by Using PI Dr

From the above discussion of 2 x 2 system, the similar conclusions for an arbitrary

LTI system are readily obtained. When a strict diagonal decentralized controller

configuration is to be applied to solve the DRSPwCR, the system must satisfy

certain necessary conditions, these conditions are explained in Theorem 4.3.1 as

follows:

Given an open loop stable plant, with the open loop transfer matrix

where i,j E [1, vi, and rij denote the order of the polynomial nij(s). Now since d(s)

is assumed to be stable,

It is also assumed that

The following results are obtained:

Theorem 4.3.1 Necessary Condition of DRSPwCR Using PI D' :

There exists a solution to the DRS PwC R(Definition 2.3.5) using decentralized PID r

only if the following conditions all hold:



Figure 4.2 A 2-Input/output Plant with Permutation Controllers

1. There is a solution to DRSP for (2.43).

2. For any unreliable 2 x 2 subsystem

order of (nij(s)nji(s))> order of (nii(s)nij(s)) where i,j E [1,4

3. For any unreliable subsystem as (.39), ni j holds no unstable real roots, Vi, E

[1,v], and i 	 j.

4.4 Permutation Strategy in DRSPwCR

When a given plant does not satisfy the necessary conditions in Theorem 4.3.1, the

DRSPwCR cannot be solved by diagonal decentralized controllers. In this case, one

possible solution can be the use of input-output permutation strategy. In this way,

the decentralized control gains can be off-diagonal. For example, a 2 x 2 controller

structure can be:

When a controller of the above structure is added in the feedforward path of

the system, with a unit feedback, as shown in Figure 4.2, the closed loop system

is equivalent to one constructed from regular diagonal control and an open loop

transfer matrix with the input-output pairing re-assigned. The previously open-loop
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unreliable plant may be converted to a reliable plant. For the 2-input/output case,

the resulting transfer matrix becomes:

The steady-state indice matrix will be the exact complement of the diagonal system.

In this way, any unreliable 2 x 2 input/output system, reliable control can always be

achieved by permutation strategy. For higher order systems, this strategy may not

work.

4.5 Controller Synthesis

For an arbitrary given open loop stable linear system of v-input/output system,

the following steps can be applied to synthesize a decentralized controller to solve

DRSPwCR:

1. Obtain the DC gain matrix T(0) experimentally, determine whether the system

is reliable by using conditions in Lemma 2.3.2 of Chapter 2.

2. If all conditions in Lemma 2.3.2 are satisfied, then DRSPwCR can be solved

by using decentralized integral controllers only with k i = —etii„ where t„ is the

ith diagonal element of T(0), i E [1, v], and e > 0 is the tuning gain.

3. If one or more conditions in Lemma 2.3.2 are not satisfied, then complete

reliable control cannot be achieved by integral controllers only. Check all the

principal minors of the transfer matrix to verify if they are minimum phase.

4. If all the principal minors of the unreliable system are minimum phase, then the

DRSPwCR can be solved by using RID' controllers which can be constructed

by Algorithm 3.1.1.
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5. If one or more principal minors of the system are non-minimum phase, use

the permutation strategy to adjust the system structure. The permutation is

realized by pairing up certain inputs and outputs from the v channels.

6. After permutation, if the system can satisfy the conditions of Lemma 2.3.2, then

complete reliability can be solved by integral controllers. If the permutated

system is unreliable but minimum phase for all principal minors, then PIDr

controllers can be selected for reliability.

7. If any of the conditions of Theorem 4.3.1 is violated, the system is not able

to solve DRSPwCR by using the strict diagonal decentralized control. Refer

to the following chapter for a discussion of block decentralized reliable control

synthesis.

4.6 Examples

The following 2 examples illustrate the two different structure of plants with

unreliable characteristics. Example 1 is the Headbox Model from [4] , it is an

unreliable plant with all principal minors being minimum phase, the DRSPwCR

are solved by PID r controllers. The second example is an unreliable plant, one of

its sub-system's is the Rosenbrock's Model[4] with two inputs being flipped thus

resulting in an unreliable plant, this sub-system's principal minors have real roots

located in the RHP, therefore it does not satisfy the necessary conditions to solve

the diagonal DRSPwCR with PDT feedback compensators. However, the system

can be achieved reliability through the permutation strategy.

4.6.1 Example 1: Headbox Model[4]

The linear model of a headbox is given by the following state-space equation:

= 1 —0.395 0.01145 ) 	 0	 1.038 )x—0.011 	 0 	 0.000966 0.03362



The transfer matrix is:

and

det(T(0)) = —6.1323

this negative value shows the plant is unreliable, or it cannot achieve reliable control

by using decentralized integral control only. Figures 4.3, 4.4 and 4.5 show that, when

a controller installation sequence 1,2 is made, the following integral controller

K1 (s) = —10/s, Kh (s) = 10/s

provides closed loop stability and asymptotic regulation. However, when controller 1

failed, the resultant system becomes unstable. This is because the plant is unreliable

and cannot achieve reliable with integral control only.

However, all the principal minors of the plant are minimum phase,

Therefore, the DRSPwCR can be reached by PID control. For example, the

following choices of PID control yield the required reliable control:

K1 (s) = Kh (s) = —100s — 50s — 10/s

Figures 4.6, 4.7 and 4.8 show the step responses of the closed loop system under

different failure modes, it is obvious that the system is now reliable.



4.6.2 Example 2: Plant with Modified Rosenbrock's Model[4]

A linear model of a plant is given by the following transfer matrix:

so that

and
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The negative values indicate that the plant is unreliable and it cannot achieve reliable

control by using integral control only. Figures 4.9, 4.10, and 4.11 show the system

step responses by using diagonal decentralized integral control only. The integral

controller parameters are tuned sequentially for stability and asymptotic tracking

with

It is noted that when failure of some channel(s) occur such as channel 1 failed, channel

2 failed, and any two channels failed, the resultant system becomes unstable.

Furthermore, in the off-diagonal minors of the transfer matrix, there are real

roots that locate in RHP, which indicates that the plant does not satisfy the

necessary conditions of DRSPwCR in Theorem 4.3.1. Therefore, for this plant,

it is not possible to use the diagonal decentralized PIDr control to achieve reliable

control. To solve the DRSPwCR problem for this system, one possibility is then to
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try the strategy of permutation, resulting in the following structure:

Simulation results with

K1 (s) = —0.3/s; K h (s) 	 —0.3/s; K³ (s) = —0.8/s

are shown in Figures 4.12, 4.13 and 4.14. It is observed that the closed loop system

is stable and asymptotic regulation occurs for all output channels. Furthermore,

under arbitrary controller failure, the system with partial failure remains stable and

asymptotic tracking continues to take place for the fault free channels.



Figure 4.3 The Headbox Model Outputs with I-Control, Normal Operation
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Figure 4.4 The Headbox Model Outputs with I-Control, Channel 2 Failed

Figure 4.5 The Headbox Model Outputs with I-Control, Channel 1 Failed



Figure 4.6 The Headbox Model Outputs with PID-Control, Normal Operation

Figure 4.7 The Headbox Model Outputs with PID-Control, Channel 2 Failed

OLip.1 1 o Inp 1 	 CLIpLe 2 ol hput I

Figure 4.8 The Headbox Model Outputs with PID Control, Channel 1 Failed
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Figure 4.9 The Rosenbrock's Model Outputs with I-Control, Normal Operation

Figure 4.11 The Rosenbrock's Model Outputs with I-Control,2 Channels Failed



Figure 4.12 The Rosenbrock's Model Outputs with Permutation, Normal Operation

Figure 4.13 The Rosenbrock's Model Outputs with Permutation, 1 Channel Failed

Figure 4.14 The Rosenbrock's Model Outputs with Permutation, 2 Channels Failed



CHAPTER 5

BLOCK DECENTRALIZED RELIABLE CONTROL SYNTHESIS

In this chapter, block decentralized control configuration is considered. That is,

the feedback gain matrices possess a block diagonal structure instead of the strict

diagonal structure assumed in the previous chapter.

Motivations for adopting a block decentralization include:

1. Physical constraints such as when a number of multivariable, control subsystems

are interconnected.

2. For non-minimum phase, unreliable systems, block decentralization offers an

alternative way of achieving fault tolerance by grouping together strongly

coupled input-output channels.

5.1 System Description

In this section the state space model of the nominal plant is described, the block

decentralized controller is configured, and a set of different failure modes are defined.

The plant is assumed open loop stable and represented be the same model as in the

previous chapters:

To reflect the block decentralized structure, the B, C matrices are partitioned as:

Correspondingly, the inputs vector v and output vector y are partitioned as:
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where 	 = v. Finally, ω is assumed to be an unknown constant disturbance.

The open loop transfer matrix defined in (2.45)

N(s) 
T(s) C(sI — A)-¹B =

d(s)

is now partitioned according to the block decentralized control structure as:

• 	 „ 	 r,

where 	 E Cnixnj is the transfer submatrix corresponding to the jth input vector

it; and ith output vector z , furthermore, let

where d(s) is the minimal polynomial of T(s) and NBij(s) is the corresponding

numerator matrix. The above partition (5.2) corresponds to the following input-

output blocks pairing:

and the feedback control is therefore block diagonal, given by:

where

The following block failure cases are now defined:

Definition 5.1.1 Sensor Block Failure:

The ith sensor block is said to have failed at time t 1 > 0 if
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Remark: Similar to the definition in the strict decentralized control structure, the

ith block sensors failure reflects the situation where all sensors in ith block ceased

to function and generate only a null output for all time thereafter.

Definition 5.1.2 Controller/Actuator Block Failure:

The ith controller and/or actuator block is said to have failed at time 1 2 > 0 if

Definition 5.1.3 System with Partial Block Failure:

Assume that sensor, actuator and/or controller blocks { 	 .,iμ} C {1, 2, • • , pt}

have failed, then the resultant system is referred to as a system with partial block

failure and it is described by the following equations:

Definition 5.1.4 Φ-th Order Leading Principal Minor:

Let TB [i1,i2,• . • ,iΦ](s) be the transfer matrix of the system with partial block failure

of (5.6), and let

when d(s) is the minimal polynomial of T(s) and NB[i 1 ,i 2 ,• . • ,iΦ](s) is the corre-

sponding numerator matrix. Then, det(NB[i1 ,• . ,iΦ](s)) is called the Φ-th order

leading principal minor.

Definition 5.1.5 Φ-th Order Fault-free Block Decentralized PDr Controller:

Let	 iΦ](s) be the Φ-th order fault-free block decentralized PR controller

applying to the system with partial block failure of (5.6).
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Definition 5.1.6 Block Decentralized Robust Servomechanism Problem (BDRSP):

Given the plant (5.1) and blocks of inputs/outputs pairing(5.3), obtain a block decen-

tralized structured controller so that the following conditions all hold:

I. The closed loop system is asymptotically stable.

2. Asymptotically tracking occur, i.e. limy(t) = 0, for all constant disturbance

ω.

3. Property 2) holds for parametric perturbations: A 	 A + SA, B —> B 8B,

and C 	 C SC provided that the closed loop system remains stable.

Definition 5.1.7 Block Transmission Zeros: Let

The existing necessary and sufficient condition for BDRSP is stated as the

following Lemma 5.1.1:

Lemma 5.1.1 There exists a solution to the BDRSP if there exists an installation

sequence {i1,i2 ,• 	 ,iμ,} 	 { 1, 2, . 	 so that

5.2 Main Results

In this section, the Block Decentralized Robust Servomechanism Problem with

Complete Reliability is considered. The failure condition are represented by block

sensor failure(Definition 5.1.1), and controller/actuator block failure(Definition

5.1.2). The goal is to maintain the reliability of the system under such block failures.



Definition 5.2.1 BDRSP with Complete Reliability(BDRSPwCR):

Given the open loop stable plant(5.1) and the block of inputs/outputs pair(5.3), obtain

a block decentralized controller so that the following conditions all hold:

1. There exists a solution to the BDRSP for the nominal plant(5.1).

2. Under partial block failure, the controller solves the BDRSP for the plant (5.6)

without retuning.

Definition 5.2.2 Steady-state Interaction Matrices:

Given plant (5.1) with block decentralized control configuration, assume that the

controller block installation sequence {i 1,i2,• • ,i} is to be applied; then the following

— 1 steady-state interaction matrices M, i = 2, . μ with respect to this controller

installation sequence are defined:
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It is noted that MR is the Schur complement of NB[i1,i2,.. ,iR](0).

The following new results on the BDRSPwCR is obtained:

Assume the integral controllers are applied to the system:

Theorem 5.2.1 There exists a solution to the BDRSPwCR by using block diagonal

decentralized integral control(5.10) if the following conditions all hold:

where Re(σ ( M(.))) are the real parts of eigenvalues of the matrices M(.).

Remark: In general, if the plant model(5.1) of the plant is not available, the steady-

state interaction matrices defined above can be obtained experimentally.

Proof of Theorem 5.2.1: 

Given plant(5.1) and the input/output pairings of (5.3), the open loop transfer matrix

is described as (5.2). The block decentralized controller structure is given by (5.5)

with the installation sequence of i 1 , i 2 , • . , j.

Assume that the integral controller(5.10) is applied to solve the BDRSP, the

state space realization of the integral controller is:
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Assuming the 	 iΦ-1 controller blocks have been properly installed and the

closed loop system is stable, the nominal closed loop system Ai Φ _, is given by:

with the iΦth controller block installed, and c —> 0, eigenvalues of the closed loop

matrix AiΦ are given by:

since it is assumed that Re(σ(AiΦ-1)) < 0, in order for the closed loop system to be

stable, it is required that,

From the following matrix inversion lemma:

where A = B 	 E = A-¹D and F =CA- 1 , and the structure of Ai Φ_, in

(5.12), the left hand side matrix of Equation (5.15) becomes:
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with —CiA-¹Bj = T,(0), and K1 set to --€(—CiA -¹Bi)', Vi,j E [ii, i2, . . . iΦ]· Upon

simplification, Equation (5.16) becomes:

For stability requirement,

Similarly, for the iΦ-1 I/O blocks system, stability requirement is

where the M 	 matrix is obtained by substituting i Φ with iΦ-1 . Similar requirements

apply to the iΦ- 2 , iΦ-3  • • • , 2 block I/O systems and therefore establish the sufficiency

of Theorem(5.2.1).

(end of proof)

To solve the BDRSPwCR, it is not always adequate to use only integral

control. That is, the conditions of Theorem 5.2.1 are not always satisfied by any

general process. Therefore, a block PIDr type controller, which is the multivariable

extension of Theorem 3.1.1 of Chapter 3, will be applied to weaken the conditions of



Theorem 5.2.1. The structure of the block P I Dr controller is given below:

Theorem 5.2.2 There exists a solution to the BDRSPwCR(Definition 5.2.1) if thy

following conditions all hold:

1. There is a solution to BDRSP for (5.1).

Proof of Theorem 5.2.2: 

Define Tp(s) to be the transfer matrix of plant (5.1) with block decentralized propor-

tional feedback Kp(s) = block diag(K¹p, K1,,, . · . , Kμp); then,
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and KBPD[i1 , . • . ,iΦ (s) is the fault-free block decentralized PDr controller. Then the

fault-free subsystem closed-loop transfer matrix:

Now set 	 00, IIKD II —> co, when r be the maximum pole-zero excess of T(s),

then

therefore equation (5.27) becomes:

TPD[i1, 	KBPD[i1,	 iΦ](s)-¹

Controller KBPD[i1 , • . , i Φ ](s) matrix can always be chosen such that each controller

is a polynomial with all roots being located in LHP, therefore, the roots of charac-

teristic polynomial of the closed loop system are located in LHP.

(end of proof)

Remark: Specially, for a two-block system, condition 2 of Theorem 5.2.2 becomes:

Re(ΔNB[1]) <0

Re(ΔNB[2]) <0

i.e. detNB[1](s), detNB[2](s) are Hurwitz.

The following example in the next section is a 4-input/output system with its transfer
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matrix being partitioned into two blocks and the simulation results confirm the above

theorem, i.e., the BDRSPwCR can be solved by using the block decentralized PIT'

control.

5.3 Example

In this example, the BDRSPwCR will be solved for a 4-input/output system

consisting of 2 blocks with 2 input/output channels. The principal diagonal blocks

TB11(s) and TB22(s) are modified Rosenbrock's Models (Rosenbrock's Model with the 2

inputs interchanged). The system does not satisfy the conditions in Theorem 5.2.1,

however, it satisfies the conditions in Theorem 5.2.2, therefore the BDRSPwCR

can be solved by block PITY controllers.

The transfer function matrix is partitioned into two blocks, with each block

consists a 2-input/output subsystem.
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(5.35)

(5.36)

(5.37)

It is noted that for the TB11(s),TB22(s) blocks, reliable control for strict diagonal decen-

tralized configuration cannot be obtained as discussed in the previous chapter.

The steady-state interaction matrix

The eigenvalues of the M2 matrix are calculated as —1.599 x 103 , —8.99 x 102 , which

are all negative, and the condition in Theorem 5.2.1 is not satisfied.

However, the transmission zeros of all principal minor blocks are given by:

The real parts of all the block transmission zeros are all negative, therefore the

conditions in Theorem 5.2.2 are satisfied and the BDRSPwCR can be solved by

block decentralized P Dr structured controllers. In the example, the maximum

pole-zero excess is 1, therefore, the PID¹ controllers are selected as:
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Figure 5.1 Step Responses of The Plant at Normal Operation

5.3.1 Simulation Results

The following simulations are made for two cases: (1)Without PD' feedback

controllers and (2) With PD' controller enhancement. These situations are

considered:

• Both blocks are normally operational.

• Block 2 failed.

e Block 1 failed.

Case 1: Without PD' feedback control:

Block decentralized integral controller with

are applied to the plant. As shown in Figure 5.1, asymptotic regulation takes place

for the nominal plant. However, the closed loop system becomes explosively unstable

when controller 1 fails (Figure 5.2) or controller 2 fails (Figure 5.3).



Figure 5.2 Step Responses of The Plant with Block 2 Failed

Case 2: With PD¹  feedback control:

As shown in Figures 5.4, 5.5 and 5.6, with the block decentralized PID ¹ controllers

(5.39) and (5.40) added, the closed loop system is reliable. The failure of any block

does not affect the stability of the system and the fault-free block continues to

produce asymptotic regulation.

The conclusions that can be obtained from this chapter are: To deal with the

closed loop reliability for non-minimum phase, unreliable, open-loop stable linear

systems, it is always significant to group those channels that have severe internal

interactions, and treat this group as a single sub-system. Failures of one such sub-

system does not affect the stability and regulation of other sub-systems.

It should be noted that the responses of the closed loop system have not been

optimized. In the event that faster speed of response is desired, the parameter

optimization method[6] can be applied.



Figure 5.3 Step Responses of The Plant with Block 1 Failed

Figure 5.4 Step Responses of The Plant at Normal Operation



Figure 5.5 Step Responses of The Plant with Block 2 Failed

Figure 5.6 Step Responses of The Plant with Block 1 Failed



CHAPTER 6

RELIABLE CONTROL OF MARGINALLY STABLE SYSTEMS AND
APPLICATION TO FAULT TOLERANT URBAN TRAFFIC

CONTROL PROBLEM

The previous chapters deals with relaible control of open loop stable systems. In this

chapter, the reliable control analysis are extended to systems with special structure,

e.g., systems with marginal stability. This is followed by an application to fault

tolerant urban traffic network, which is a marginally stable system. The example

includes the traffic network queue length model development, decentralized controller

synthesis, and simulations results on the system under normal operations as well as

under different failure modes.

6.1 Reliable Control of Marginally Stable Systems

The application of decentralized reliable control can be extended to systems with

marginally stability. Consider the system described as:

state, input, output and the constant disturbance vectors, respectively. Furthermore,

the error vector e = [e l , . . , e n] E Rn and the constant reference yiref E IV vector

are assumed known.

This is a marginally stable system since the minimal polynomial of this system

possesses only a single root at the origin.
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The following decentralized robust PI control is applied to achieve closed loop

stability and asymptotic regulation, i.e. hmt--> ooe(t) = 0:

Definition 6.1.1 Strictly Diagonally Dominant: An n by n matrix A is said to be

strictly diagonally row dominant if

It is said to be strictly diagonally column dominant if A' is strictly diagonally row

dominant.

The following result is obtained:

Theorem 6.1.1 There exists a solution to the reliable control of the marginally

stable system(6.1) by using the decentralized control structure(6.3) if B is strictly

diagonally row or column dominant.

Proof of Theorem 6.1.1: 

The necessity follows from Theorem 1 of [41]. The sufficiency is established on

noting that as IIKpll 	 0, the eigenvalues of the closed loop system are given by the

eigenvalues B Kp together with those of	 The reliable properties can now

be obtained by choosing a diagonal Kp and a diagonal K1 so that:

1. The nominal closed loop eigenvalues are stable.

2. The eigenvaluses of failed closed loop system (excluding those corresponding

to the failed subsystem dynamics) are stable.

This is always possible if the B matrix is diagonally dominant.

(end of proof)
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Figure 6.1 A Standard 2-Input/Output Intersection

6.2 Fault Tolerant Traffic Control Applicaiton

Traffic-responsive area traffic control are steadily gaining popularity in many cities

where road congestion is becoming a serious problem.

A number of strategies such as SCAT(Sydney Co-ordinated Adaptive Traffic)

and SCOOT(Split, Cycle and Offset Optimization Technique) are currently in use

in a number of British Commonwealth Countries such as Australia and The United

Kingdom.

In an urban traffic network where flow efficiency is of prime importance, fault-

tolerant capability is critical to the long term operation and integrity of the system.

Most importantly, a fault-tolerant traffic control system does not become unstable

when unpredictable faults occur, thereby ensuring the integrity of the fault-free

subsystem until full fault recovery takes place.

The dynamics of the urban traffic networks can be analyzed from a number

of existing approaches: e.g., mass-balance[41], continuum flow[44] and microscopic ,

discrete-time model[45]. The approach of [41] is used in this work in that it directly

addresses the issues of traffic queue dynamics.

In this section, a model based on the mass-balance approach [41] is developed.

Standard traffic networks, consisting solely of 2-input, 2-output nodes shown in

Figure 6.1, is first considered. This is followed by an analysis of "non-standard"

traffic networks which may include merges, splits, and alternate routes.
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To facilitate the discussion of the model, the following symbols are introduced

below:

: queue length in front of the ith intersection in the x direction

qiy 	 : queue length in front of the ith intersection in the y direction

fim 	 : maximum output flow rate of the ith intersection

gi 	: normalized "go" signal duration of the ith intersection in
the x direction

1 — gi : normalized "go" signal duration of the ith intersection in the
y direction

: nominal value of gi

Δg i 	: incremental go duration ( = 92 — V2)

fractional right turn traffic flow rate at the ith intersection

: fractional left turn traffic flow rate at the ith intersection

input flow rate at the x direction of the ith intersection

input flow rate at the y direction of the ith intersection

The x or y direction of the ith intersection is said to have an external feed

if the source is external to the network (rather than being other routes inside the

network). Otherwise, the input is called internal. Furthermore, the ith intersection

is defined as undersaturated if:

fi + fiyin <fim

it is said to be saturated if:

fiyin = fim

and it is said to be oversaturated if:

fin fiyin

J fiyin

fixin --I- t >Inn 	 fim
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Figure 6.2 Standard Traffic Network Structure

6.2.1 General Model of Queue Lengths in Traffic Network

As shown in Figure 6.2, assume a standard structure of traffic network consists of N x

horizontal streets and Ny vertical avenues, each street or avenue is one-way, any two

neighboring streets or avenues have opposite flow directions, the traffic light cycle

length is fixed, and a no-turn-on-red traffic rule is applied. The total number of

intersections in the network is therefore n = N x N.

The queue dynamics of the network, taking into account of vehicles making

right or left turns, is derived in the Appendix A and given by the following equation:

where

• T E $2 2" 2n characterizes the flow configuration between any two intersections

in the network. The structure of this matrix is given in Table A.1 of Appendix

A.
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• J E Rnx2n is defined as

• Δu [Δu1, Δu 2 , Δu3, • • . , Δu n] E Rn is the control input vector whose

elements are given by Δu, = Δgifim, , i = 1,2, . . . , n. The physical meaning of

Δu,: is the adjusted amount of traffic flow passing through the ith intersection

at the green light duration from x direction of that intersection.

• MєR²2nx1  is defined as:

where

and F E R271 is determined by the following conditions:

Fc(2i — 1) = 	 0 if x-input is internalFc(2i-1)
if x-input is external

Fc(2i) 	 0 	 if y-input is internal
fiyinif y-input is external

i = 1, 2, • • , n

• Finally,



Figure 6.3 f (q) Function

where f(qi) is a nonlinear function defined as:

The role of f (q) is to maintain the non-negativity of the queues by keeping 4
non-negative when q = 0. In the limiting case, this can be achieved by letting

K — oo, E 0. It is noted that f•) can be readily approximated by a relay

or a sigmoidal function such as

as shown in Figure 6.3.

6.2.2 16-Intersection Example of Queue Model

Consider now the 16-intersection network shown in Figure 6.4. For this network,

and
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F, is given by:



Figure 6.4 Standard 16-Node traffic network structure

while other elements of F are set to zero. Furthermore,

7" matrix is given in Figure 6.5:

6.2.3 Special Case: Saturated Intersections

For a saturated or over-saturated network with non-zero initial conditions, qi >

0, i = 1, 2, . . • , 2n, therefore f (q) = 0 and (6.4) becomes:
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or equivalently,



Figure 6.5 T Matrix for the 16-Intersection Example
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It is noted that (6.6) is equivalent to the model described in [41.

6.2.4 Treatment of Non-standard Structure Networks

Although the traffic model (6.4) is derived for standard rectangular networks, this

model can also be extended to include non-standard networks by first converting

them into equivalent standard structures. The conversion procedure consists of

adding fictitious nodes and fictitious streets. The following examples illustrate this

construction.

Figure 6.6 Split Node and Its Standard Equivalent Node

Figure 6.6a is a split node, i.e., one street is split into two without traffic light

control . Figure 6.6b is its equivalent standard node (fictitious) with 	 0, 0, = 0.

Figure 6.7a is a merge node, i.e., two streets merge into one street , also without

traffic light control. Figure 6.7b is its equivalent standard node(fictitious) with 0, = 0.

Further examples are shown in Figures 6.8 and 6.9, where the latter is taken

from reference [41].

The general non-standard queue model can now be expressed as:



Figure 6.7 Merge Node and Its Standard Equivalent Node

Figure 6.8 A Non-standard Network and Its Equivalent Structure

where L is determined as following:

1 the ith node is real
0 the ith node is fictitious

C is determined by: C(i,j) = 0 for i 	 j, and C(i, i) = 1 if the ith queue is real,

and 0 if it is fictitious. N E 	 is the fictitious controller vector, N(i) = 0 if the i

th node is real, and N(i) = f —ii if the node is fictitious.
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nodes 1,2 & 3: normal 	 nodes 1,2,3 & 4 : real

node 4: merge 	 nodes 5,6,7,& 8 : fictious

node 5: split 	 fictious streets

: real streets

Figure 6.9 A Non-standard Network and Its Equivalent Structure

6.3 Traffic Control System Design

For modern area traffic control systems such as SCAT or SCOOT, the primary goal

is the regulation of queue length. However, given that there are two queues (x

and y) and only one traffic control, it is not possible to regulate the queue length

individually. Instead, the difference of the queue length is regulated to a set of

prespecified values according to optimal area traffic conditions. In the development

to follow, it is assumed that the network is either saturated or oversaturated so that

the queue dynamics are given by (6.6).

6.3.1 Nominal Control Objectives

Let the queue difference and queue difference error at the ith intersection to be

and define
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The process error is given as:

The model representing the queue difference is readily obtained from (6.4) as:

From (6.14) and (6.13), the nominal control objectives can be stated as:

2. The closed loop system is asymptotically stable.

6.3.2 Controller Structure

For this work, a robust P1 controller is selected for fault-tolerant traffic control:

where kpi and k, correspond to the proportional gain and integral gain of the ith

controller, respectively.

This controller has the advantages that 1) it readily admits a decentralized

information distribution structure, 2) it has low dynamic order and hence is efficient

to implement, and 3) its frequency response characteristics can be directly shaped

to match a given set of performance and robustness specifications.

6.3.3 Traffic Faults

The types of system fault that may arise in such traffic networks include:
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1. ith sensor fault: Δqi = 0, i = 1,2, 	 , n.

2. ith actuator fault: Δui = 0, i = 1, 2, 	 , n.

3. Flow blockage due to accidents and other road conditions: Such faults result

in parametric and structural changes in the B, E and .1), M matrices.

4. Grid-lock at the ith intersection is defined as 	 --> 0, i.e., the maximum flow

rate of the intersection drops to zero.

5. Communication fault where signal transmission between the intersections is

partially blocked. For example, a communication blockage from the jth sensor

(q.7 ) to the ith intersection control (Δui) results in the ijth entries of the gain

matrices Kp, K1 becoming zero.

6.3.4 Fault -tolerant Traffic Control

The performance objectives of a fault-tolerant traffic control system are:

1. Stabilization of the nominal traffic network so that Δq, the incremental queue

difference, is bounded.

2. Regulation of queue length so that e 	 0 and q < oo for saturated intersections

and q —> 0 for a non-saturated intersection.

3. Under partial system fault, the remaining subsystem is stable and the

queues corresponding to the fault-free subsystem continue to be regulated.

Furthermore, no readjustment of the controllers are required.

Condition 3 above implies that the traffic control system can tolerate local

faults without relying on fault detection techniques that may further increase system

complexity and sensitivity. Moreover, a fault-tolerant system does not become

exponentially unstable so that during the period between the fault occurrence and

fault recovery, the traffic network remains maximally functional.
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6.3.5 Closed Loop System and Fault Tolerant Control Synthesis

Two closed loop dynamic models are generated by applying the controller (6.15) to

the queue difference (6.11) and the queue length (6.4).

The equations describing the closed loop dynamics of the queue difference is

given as:

while the closed loop dynamics of the queue length are described by:

It should be noted that the model (6.18) always contains 72 uncontrollable

eigenvalues at the origin.

Let V diagonalize the closed loop matrix

so that

where

The traffic control problem may be considered as an extension of the basic reliable

control prolbem discussed in Section 6.1 since the dynamics of both Δq and q are

considered. Therefore, in addition to the conditions in Theorem 6.1.1, it is necessary

to further characterize the properties of (6.17) and (6.18). Moreover, for traffic

networks, B = J4) = J(I — T)J' is always strictly diagonally dominant and thereby
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satisfying the condition of Theorem 6.1.1. It remains to establish the boundedness

of Δq and q. This is given by Theorem 6.3.1 below:

Theorem 6.3.1 There exists a solution to the fault tolerant traffic control problem

if the following conditions all hold:

1. Re(λi) < 0, i = 1, 2, .. . , 2n where λi's are the controllable eigenvalnes given

in (6.19).

2. The first n elements of the vector V-¹M do not possess positive constants.

Proof of Theorem 6.3.1: 

Condition 1 is obvious. Boundedness of q is established on noting that q> 0 so

that the non positivity of the first n constant elements of the vector V-¹M implies

the elements of q either stay constant or reach zero.

6.4 Simulation Results for Fault Tolerant Control

The 16-intersection traffic network developed in the previous chapter is now

simulated for the following operating conditions:

• Normal operation

• Failure mode 1: sensor failure

• Failure mode 2: actuator failure

• Failure mode 3: flow blockage

• Failure mode 4: grid lock

The controller is given in (6.15), with kpi = 5, ki = 5, i = 1, . • , 16 for each

controller. The simulation block diagram is given in Figure 6.10.
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Simulation Diagram for Standard 16-node Traffic Queue Model

Figure 6.10 Simulation Diagram of 16-Node Traffic Network

6.4.1 Normal Operation

For normal operations, input flow rate at boundary nodes are assumed to be

saturated, i.e.

the sensors and actuators function normally. where:

Two cases are simulated: Δqref = 0 and Δqref = 10. The results are plotted

in Figures 6.11 and 6.12. It is observed that in both cases, the queue lengths are

bounded and Δq2 , Δq9 approach the reference levels asymptotically.



Figure 6.11 q and Δq Outputs When Δqref = 0

6.4.2 Sensor Failure

Assume now that Δqref = 0 and the queue length sensors at intersections 2 and 9

have failed so that Δq ² = 0 and Δq 9 0. As shown in Figure 6.13, the fault tolerant

control system continue to regulate all Δqs except Δq 2 and Δq9 which settled to 3.06

and —11.8, respectively. It is further observed that, despite the sensor failure, all

queue lengths are bounded.

6.4.3 Actuator Failure

Similar to the sensor failure mode, it is now assumed that the actuators at inter-

sections 1, 3, and 7 has failed, resulting in Δu1 = 0, Δu ³ = 0, and Δu7 = 0. The

simulation results with Δqref = 0 are shown in Figure 6.14. Again, all the queue in

the traffic network are bounded and asymptotic regulation occurs for all Δqs except

at ΔR' , Δq³ and Δq7 which approach —8.5, 8.1, and L4 respectively.



Figure 6.12 q and Δq Outputs When Δqref = 10

6.4.4 Operation with Flow Blockage

Assume now a blockage occurs between intersections 1 and 2, so that the vehicle

exiting x direction of intersection 1 must turn right, and all the vehicle exiting y

direction of intersection 1 must go straight, i.e., 0 1 = 1, 13 1 = 0. The simulation

results are plotted in Figure 6.15.

It is observed that the queue in front of intersection 5 keeps increasing as the

intersection is oversaturated. All other intersections, on the other hand, continue to

function properly under fault tolerance control.

6.4.5 Operation with Gridlock

This is the case when an intersection is totally blocked so that its flow rate effectively

drops to zero. For this simulation study, it is assumed that a gridlock occurs at

intersection 6 and f767, = 0. Due to the gridlock condition, the queues at intersection

6 grow linearly as shown in Figure 6.16. All other intersections continue to operate

properly.
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Figure 6.13 q and Δq Outputs with Sensors at Intersections 2 and 9 Failed

6.4.6 Effects of Δqref on Total Queue Length

Frequently, it is the primary objective of an area traffic network to minimize a

weighted sum of the queue length over a period of time. For example, the sum

of queue length >2 q may be used to measure the efficiency of the network. In this

simulation study, it is shown that the reference queue difference (Δqref) plays an

important role in influencing the value of >2 q.

A family of >2 q under different Δqref  are computed and the results are plotted

in Figure(6.17)

It is observed that, to minimize >2 q, the reference queue difference should be

around zero which is perhaps not surprising, given the high degree of symmetry of

this example network.

However, for a more general network topology, the choice of Δqref will have a

significant impact on the overall vehicle density or equivalently, >2 q. The adjustment

of Δqref as a daily schedule has been utilized in SCOOT but such adjustment is based

strictly on past traffic data only.
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Figure 6.14 q and Δq Outputs with Actuators in Intersections 1,3,7 Failed

83

Figure 6.15 q and Δq with Flow Blockage Between intersection 1 and 2



Figure 6.16 q and Δq Values with Gridlock Occurs at Intersection 6
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Figure 6.17 E q Values Under Different Δq Reference Values



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH ISSUES

In the previous chapters, the research of decentralized reliable control on large-scale,

multi-input/output linear plant without mathematical model available is developed.

A DRSPwCR is solved for the class of plants that are open loop stable, unreliable,

and minimum phase by applying the strict decentralized PIDr algorithm. A

BDRSPwCR is solved for the plants with non-minimum phase minors by applying

block diagonal decentralized controllers. A general controller synthesis is provided

for an arbitrary linear plant. The application of urban vehicle traffic network

fault tolerant control is also developed in this work. The following conclusions are

obtained:

• Reliable control can be achieved for a class of open loop linear system with the

steady-state interaction indices satisfying certain conditions by using decen-

tralized integral controller configurations.

• By applying the decentralized proportional feedback controllers, the steady-

state interaction indices can be adjusted to satisfy the reliable control

conditions but will cause the closed loop system unstable under certain

input-output channels failure.

s The introduction of the decentralized D' controller re-stabilize the closed loop

system without affecting the steady-state interaction indices and therefore the

synthesis of decentralized PIDr controllers solve the DRSPwCR for a certain

class of unreliable systems with minimum phase minor characteristics.

• Certain class of unreliable systems can achieve reliable control by the input-

output permutation strategy.
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• The block diagonal decentralized control configuration is an alternative way to

solve the reliable control problem for the systems which have non-minimum

phase minors and cannot achieve reliable control by strict diagonal decen-

tralized control.

• Most of the arbitrary open loop stable system can achieve reliable control by

using DRSPwCR, BDRSPwCR, or permutation strategy.

• The DRSPwCR solves fault tolerant control problem for urban vehicle traffic

networking system under multiple failure modes.

Future research will focus on the following issues:

• To solve reliable control problem for open-loop unstable systems.

• To find the necessary and sufficient conditions of achieving reliable control

for an arbitrary linear multi-input/output system by using the decentralized

controller configurations.

• To synthesize the controller configuration without Dr term, which tends to

introduce noise with the high order derivative algorithm.

• To optimize the controller parameters to improve the system outputs dynamic

performances.



APPENDIX A

STANDARD NETWORK QUEUE MODEL DERIVATION

Figure A.1 Standard 4-Node Traffic Network

Figure(A.1) of 4-node network is a part of any standard square structure of traffic

network, from the figure we can derive the relationship between fin and font :

In fact, each fixin, fiyin, of the ith node can be expressed as a function of linear

combination of its neighboring nodes' input flow rate and queue increasing rate.
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Let

See Subsection(6.2.1) for F, structure. Then, the Fin , Fout relationship can be

expressed as:

Substitute (A.4) into (A.3) , the Fi r, can be solved as

T matrix characterizes the flow configuration between two intersections in the

network.

From equations (A.1) ,(A.2) and refer to Figure(A.1), the input flow into intersection

(2) is described by:

where

Let n i denotes intersection i , i = 1, 2, 	 ,n, then the flow pattern and the corre

sponding T matrix elements are:

774, X direction -4 nj, x direction : 7- (2j — 1,2i — 1)

ni, y direction 	 nj, x direction : T(2j — 1, 2i)

n i , x direction 	 nj, y direction : T(2j, 2i — 1)

n 1 , y direction —> nj, y direction : T(2j, 2i)

Table A.1 shows the T matrix structure:
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Table A.1 Structure of 7" Matrix

The elements of T may be determined by enumerating intersection 1 over inter-

sections 1, 2, . . . , n. The elements of T are otherwise set to zeros.

From Equation (A.5) :

(A.8)(I — T)Fin = F, —14

Define η as the maximum rate of change of queue length, i.e.

= Fin — Gm (A.9)

(A.10)

substitute (A.10) into (A.8) to remove Fin:



n is the total number of intersections of the network, and

Since 70 is the net queue increase rate, and q is a non-negative value, so q =

limit integrate(η), i.e.



let

where E is a small value(10-¹7 in simulation),

K is a large positive number(10 ³ in simulation).

then,

or

substitute (A.13), (A.12) into (A.11):

Or

let

then

which is the general queue length model of standard structure traffic network.

The dimension for each matrix in the above equation is the following:

q 	 : 2n x 1 vector

: 2n. x 2n square matrix

J : 2n x n matrix

: n x 1 vector

M : 2n x 1 vector
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The key in the development of the queue length model of the standard traffic

network structure is the introduction of the non-linear function f(q), which keeps

the queue length to be non-negative. The term (q i ) and the term ij are exactly

the same as the queue length in front of the ith intersection are non-zero, the only

difference between these two terms is: the former can still be negative when q i is

zero, reflecting the queue length changing direction (postive means the increasing

direction, and negative means the decreasing direction), while the later is always

zero as long as qi = 0.



APPENDIX B

NON-STANDARD STRUCTURE MODEL DERIVATION

This appendix is the derivation of the general non-standard structure network queue

length model by converting the structure into standard equivalent. Figure B.1 is a

typical non-standard structure example.

Figure B.1 Example of General Non-standard Structure

nodes 1, 3, 4and 5 : normal nodes with 2— input/output

node 2 	 : merge node

node 5 	 : split node

Figure B.1b is the equivalent standard structure with nodes 2, 3, 6 and 7 be

the fictitious nodes and the dotted lines the fictitious streets.

By adding these fictitious nodes on the non-standard traffic network, the

network has been converted into a standard structure and can be analyzed by the

standard queue length model as discussed in Appenidx A.
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The fictitious nodes have the following special characteristics:

node 2

node 6

node 3

node 7

From the standard model:

Here, Δu f = [Δu ' , Δu 2 , • , Δu8]', a vector consists of both "real" and "fictitious"

controllers.

Now,

Or,

where L is determined by: L(i,j) = 0 (i j) and

1 the ith node is real
0 tth ith node is fictious

and

Δu = [Δu1, Δu 4 , Δu5,8]
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which is the controller vector of real nodes, and N is a constant vector consists of

Os, f s and ūis, i E [1, 	 ,n} denotes a real node number.

Since q vector includes the fictitious queue lengths, only interested in those

come from the real ones are to be measured, so the output vector can be expressed

as:

similar to L, C is determined by: C(i, j) = 0 for i 74 j, and C(i,i) = 1 if the ith

queue is real, and 0 if it's fictitious. Substitute (B.2) into (B.1),the general model

becomes:

Let a non-standard structure traffic network is converted into an a-node standard

structure, where there exist m fictitious nodes, the matrices dimensions in Equation

(B.3) are:
q 	 : 2n x 1 vector

: 2n x 2n square matrix

J	 : 2n x n matrix

L	 : n x — m) matrix

Δu : (n — m) x 1 vector

: n x 1 vector

M	 : 2n x 1 vector

f(q) : 2n x 1 vector

C	 : (2n — 2m)n matrix

Y	 : (2n — 2m) vector
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In fact, Equations (B.3) and (B.4) is a general expression for all the standard and

non-standard topology. The standard queue model is a special case when in = 0.

It is noted that the traffic network model developed in this work matches the

road map of the downtown Manhattan of New York City. It will be significant

to apply the decentralized robust P1 algorithm to the traffic lights control system

to reduce the traffic problem in New York City which is becoming more and more

critical in the our daily life.



APPENDIX C

Kp RANGE OF RELIABILITY DERIVATION

In this appendix, the range of Kp of reliability and stability is derived for the 2-

Input/Output unreliable systems.

Given a system with the transfer matrix:

where

where i, j E [1,2], and rij denotes the order of the polynomial nij(s).

Define

The system has the following characteristics:

o Open loop stable, i.e., As) possesses no unstable roots. Assuming:

o It is unreliable, ie.,

where

is the DC gain matrix of the open loop system.
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Equation(C.4) implies that

Without loss of generality, assuming:

then

C.1 Kp Range of Reliability

When decentralized proportional controllers are added to the system, the closed loop

system DC gain matrix Tp becomes:

L

substitute Equations(C.5) and (C.10) into Equation(C.9), the closed loop DC gain

matrix is obtained as following:

where Dc (0) is the constant part of closed loop system characteristic polynomial:

then T p matrix is obtained as follows:
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the determinant of Tp is obtained as following:

:ewrite the determinant of Tp as:

where Dc(0) is known from Equation(C.12). From Equation(C.11), the following

equations are obtained:

Define also

T1: DC gain matrix when kp1 only is added,

T2: DC gain matrix when kph only is added, then, from Equation(C.11),

Define D 1 (0) as the constant part of characteristic polynomial when /co is added in

the closed loop system, and Dh (0) as the constant part of characteristic polynomial

when kp2 is added in the closed loop system, then

then, equations(C.18) and (C.19) can be rewritten as:

From the reliable control conditions, If p values have to be such that the equations

all hold in 3 different controller installation sequences:
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C.1.1 For Any Installation Sequence:

substitute Equations(C.15), (C.16), (C.17), (C.18), and (C.19) into the above

equations,

The product of left hand sides of equations(C.26), (C.27) and (C.28) yields:

since the system is unreliable, from the given assumptions (C.7) and (C.8),

therefore, a necessary condition of reliable control for 2-input/output system is

obtained as following:

To satisfy the above inequity, there are 4 different cases which is discussed as following

cases (I), (II), (III) and (IV):

and this inequity yields:

(C.31 )



and this inequity yields:

Also from Dc(0) < 0,

the above expression should be < 0, therefore,

by dividing Δn(0) (which is a negative value) at both sides, the following inequity is

obtained:

Combine the Kp range from Equations(C.31), (C.32) and (C.34), one of the

Kp range of reliability is obtained as plotted in Figure C.1.

Case(II): Dc(0) > 0, D 1 (0) < 0, D 2 (0) > 0 

From(C.26),

and this inequity yields:

(C.35)



Figure C.1 Kp Range of Reliability in Quadrant III

From D1 (0) < 0,

and this inequity yields:

And the above Kp range is included in the range Dc(0) > 0, which is shown in

Figure C.2.

Case(III): Dc(0) > 0, D 1 (0) > 0, D 2 (0) < 0 

From(C.2 7),
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and this inequity yields:



Kpl

Figure C.2 Kp Range of Reliability in Quadrant IV

and this inequity yields:

And the above Kp range is included in the range Dc(0) > 0, which is shown in

Figure C.3.

Case(IV): Dc(0) < 0, D 1 (0) < 0, D 2 (0) < 0 

From D 1 (0) < 0,

and this inequity yields:

(C.39)

From Dh (0) < 0,

and this inequity yields:
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(C.40)
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Figure C.3 Kp Range of Reliability in Quadrant II

And the above Kp range is included in the range Dc(0) < 0, which is shown in

Figure C.4.

By combining the above four ranges of reliability, As shown in Figure C.5, this

is the Kp range of reliability is completed at any controller installation sequence.

C.1.2 For Installation Sequence: Controller 2, 1

substitute Equations(C.15), (C.16), (C.17), (C.18), and (C.19) into the above

equations,
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Figure C.4 K Range of Reliability in Quadrant I

The product of left hand sides of equations(C.44), (C.45) and (C.46) still yields the

necessary condition as Equation(C.30):

D 1 (0)D2 (0)Dc(0) < 0

To satisfy the above inequities, there is only one solution under the case

Dc(0) > 0, D1(0) < 0, D 2 (0) > 0

From Dc(0) > 0,
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From D 1 (0) < 0, the Equation (C.39) shows:



Figure C.5 Kp Range of Reliability at Any installation sequence

From D2 (0) > 0, the Equation (C.35) shows:

Figure C.6 shows the range of reliability under this condition:

C.1.3 For Installation Sequence: Controller 1, 2

substitute Equations(C.15), (C.16), (C.17), (C.18), and (C.19) into the above

equations,



Kp1

Figure C.6 Kp Range of Reliability at Installation Sequence 2, 1

The product of left hand sides of Equations(C.51), (C.52) and (C.53) still yields the

necessary condition as Equation(C.30):

To satisfy the above inequities, there is only one solution under the case
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From D 1 (0) > 0, the Equation (C.37) shows:



Figure C.7 Kp Range of Reliability at Installation Sequence 1, 2

From D 2 (0) < 0, the Equation (C.40) shows:

Figure C.7 shows the range of reliability under this condition.

Figure C.8 combines all the above Kp range of reliability.

C.2 Kp Range of Stability Derivation

For the given plant with transfer matrix (C.1), when decentralized feedback propor-

tional controllers(C.10) are add, the Kp range of stability can be obtained by plotting

the characteristic loci of the matrix KpT(s), where,
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where



Figure C.8 Kp Range of Reliability

Case 1: both controllers are operational 

In this case, the characteristic roots values are obtained as follows:

When s jω = j0, DC values of characteristic roots are:

Figure C.9 shows the characteristic loci with ω E [—co,  +oo]

Since the open loop plant is stable, the closed loop stability range is:



Figure C.9 Characteristic Loci with Both Controllers Installed

From(C.59),
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substitute (C.57) into the above equation:



take square operation at both sides and after simplifying, the following equation is

obtained:

the left hand side of the Equation (C.61) is exactly the same as the Dc (0) in Equation

(C.12). Therefore Equation (C.61) can be re-written as

From(C.60), substitute (C.58) into,

take square operation at both sides and after simplifying, the following equation is

again obtained:

again, the left hand side of the Equation (C.61) is exactly the same as the Dc (0) in

equation (C.12), hence

is again obtained.

Case 2: controller 1 only is installed



Figure C.10 Characteristic Loci Controller 1 Only Installed

In this ca8e, KpT(s) becomes:

(C.62)

Obviously, one of the characteristic root always stays at the origin. The other root

is equal to:

112

(C.63)

(C.64)

(C.65)

Figure C.10 shows the characteristic loci with ω E [ — co, +co]

K7,1 range of stability:



Case 3: controller 2 only is installed

In this case, KpT(s) becomes:

Obviously, one of the characteristic root always stays at the origin. The other root

is equal to:

Figure C.11 shows the characteristic loci with ω E [—oo, +oo]

Kp2 range of stability:

For the fault tolerant consideration, conditions (C.61), (C.66) and (C.71) must

all hold. The overlapped range of the 3 conditions is the Kp range of stability as

shown in Figure C.12.



Figure C.11 Characteristic Loci Controller 2 Only Installed
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Figure C.12 Kp Range of Stability



APPENDIX D

LEMMA (4.2.1) DERIVATION

In this appendix, the following lemma is proved:

Let P1 (s),P2 (s) be stable polynomials,

(D.1)

then P³ (s) holds no unstable real roots.

Proof 

Let

(D.2)

(D.3)

Assuming P³ (s) holds unstable real roots, then there exists a > 0 such that

From equation(4.29),

Or, equivalently,

Since Pi (0)Ph (0) > 0, and P1 (s),P2 (s) are all stable, this implies that all coefficients

of P1 (s) and Ph (s) are of the same sign. Therefore, Equation(D.4) is not true under

this given condition, so the assumption that P³ (s) holds unstable real roots is not

true, or, P³ (5) holds no unstable real roots.

(end of Proof)
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