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ABSTRACT

SPACE-TIME REDUCED RANK METHODS AND CFAR SIGNAL
DETECTION ALGORITHMS WITH APPLICATIONS TO HPRF

RADAR

by
Tareq F. Ayoub

In radar applications, the statistical properties (covariance matrix) of the

interference are typically unknown a priori and are estimated from a dataset with

limited sample support. Often, the limited sample support leads to numerically

ill-conditioned radar detectors. Under such circumstances, classical interference

cancellation methods such as sample matrix inversion (SMI) do not perform satis-

factorily. In these cases, innovative reduced-rank space-time adaptive processing

(STAP) techniques outperform full-rank techniques. The high pulse repetition

frequency (HPRF) radar problem is analyzed and it is shown that it is in the class

of adaptive radar with limited sample support. Reduced-rank methods are studied

for the HPRF radar problem. In particular, the method known as diagonally loaded

covariance matrix SMI (L-SMI) is closely investigated. Diagonal loading improves

the numerical conditioning of the estimated covariance matrix, and hence, is well

suited to be applied in a limited sample support environment. The performance

of L-SMI is obtained through a theoretical distribution of the output conditioned

signal-to-noise ratio of the space-time array. Reduced-rank techniques are extended

to constant false alarm rate (CFAR) detectors based on the generalized likelihood

ratio test (GLRT). Two new modified CFAR GLRT detectors are considered and

analyzed. The first is a subspace-based GLRT detector where subspace-based trans-

formations are applied to the data prior to detection. A subspace transformation

adds statistical stability which tends to improve performance at the expense of

an additional SNR loss. The second detector is a modified GLRT detector that



incorporates a diagonally loaded covariance matrix. Both detectors show improved

performance over the traditional GLRT.
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CHAPTER 1

INTRODUCTION

Adaptive antenna arrays are employed in communication and radar systems for the

purpose of interference cancellation and desired signal reception or target detection.

The main function of adaptive arrays is to dynamically place deep nulls in the antenna

beam pattern in the direction of interference sources while preserving the desired

signal or target. Adaptive arrays are used since conventional signal reception systems

are susceptible to degradation in performance due to the presence of undesired signals

in the signal environment that enter the system through the beam pattern mainlobe

or sidelobes. The undesired signals may consist of deliberate interference, clutter

scatterer returns, and noise sources. Adaptive antenna arrays have the ability

to automatically sense the presence of undesired signals (interference signals) and

suppress them while preserving the desired signal without the prior knowledge of

the interference environment. Hence, adaptive arrays improve the probability of

detection.

The theory of adaptive arrays and adaptive radar has been an active area

of research for over three decades. Howells, Applebaum, Widrow and Frost were

among the first to investigate the applications of adaptive array systems 1, 2, 3, 4].

Examples of their work are the Howells-Applebaum sidelobe canceler and Widrow's

beamformer. Frost in particular suggested a linearly constrained array that preserves

presumed targets while cancelling the interferences. Frost's architecture serves as the

basis for the methods presented in this work.

Space-time adaptive processing (STAP) is an extension of adaptive arrays.

A space-time adaptive array consists of an antenna array (spatial domain) with a

tapped-delay line at each element (temporal domain). The receiver then combines

the spatial and temporal samples of the received signal in order to obtain infor-

1



2

mation about interferences and subsequently cancel them. The adaptive archi-

tecture will automatically adjust the array beam pattern so that the performance

is maximized. The STAP architecture is important in certain scenarios, in airborne

radar for example, where interference extends in both range and Doppler simulta-

neously. In this case, a. conventional moving target indicator (MTI) that uses only

temporal degrees of freedom, is ineffective in cancelling the interference. As a result,

spatial degrees of freedom must be added and hence, STAP is required. Spatial

and temporal dimensions provide the processor with range and Doppler information,

respectively. STAP is a multidimensional filtering approach that utilizes adaptive

arrays to mitigate interference in range and Doppler simultaneously. The cost of

improved performance offered by STAP architectures is increased computational

overhead.

Brennan and Reed pioneered the theory of adaptive radar [5]. They showed

that, in the maximum likelihood sense, the optimal detector for a. target in Gaussian

interference whose covariance matrix is known a priori is a linear detector where

the output is a weighted sum of the input samples. This adaptive array archi-

tecture maximizes the output signal-to-colored noise ratio where colored noise is the

aggregate of interference, clutter, and noise. This technique however, is limited in

the sense that in most applications, the covariance matrix of the colored noise is not

known a priori and has to be estimated. The covariance matrix is estimated from

a set of returned data referred to as the secondary data set. This data is obtained

from range cells around the range cell under test. Reed et al. suggested using

the sample covariance matrix in place of the true covariance matrix in the linear

detector, where the former is the maximum likelihood estimate of the latter. This

method is known as the sample matrix inversion (SMI) method [6]. As a performance

measure, they used the output conditioned signal-to-noise (actually colored noise)

ratio (CSNR). The CSNR is defined as the ratio of the output signal-to-noise ratio
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(SNR) to the optimal one which is obtained when the covariance matrix is known.

Since the sample covariance matrix is random, the CSNR is also random and is

bounded between 0 and 1 since it is normalized by the optimal SNR. Reed et al.

derived an expression for the probability distribution of the CSNR which turned out

to be a function of the array's dimension and of the size of the secondary data set

used to obtain the sample covariance matrix. This distribution is not a. function of

the covariance matrix and hence, is independent of the interference power. It was

also shown that for an array of dimension N, the SMI detector achieves an average

CSNR of 0.5 or equivalently, 3 dB within the optimal SNR, if K 2N samples are

used to estimate the covariance matrix. Obviously, the computational complexity

increases with N. Other drawbacks of the SMI are the lack of robustness against

calibration errors and that it is does not exhibit the desirable property of constant

false alarm rate (CFAR). Various authors investigated various improvements to the

SMI detector [7, 8, 9]

Kelly derived an adaptive detection algorithm for signal presence in colored

noise with unknown covariance. This algorithm is based on the maximum likelihood

ratio principle and is known as the generalized likelihood ratio test (GMT) [10]. The

generalization is clone on the target model, where the likelihood test is maximized

over all unknown target parameters. This test exhibits the CFAR property where the

probability of false alarm is independent of the covariance matrix of the colored noise.

The CFAR property is desirable in detectors since the colored noise environment

is usually non-homogeneous and hence, for non CFAR detectors, the detection

threshold has to be continuously adjusted. Kelly derived a maximum likelihood

decision rule and also expressions for the probabilities of detection and false alarm.

The probability of detection is dependent on the estimate of the covariance matrix.

Kelly's algorithm is different from the SMI detector in that it is based on detecting

a target rather than cancelling interference. This detector improves on the SMI in
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exhibiting the CFAR property, however, it shows similar slow convergence properties

where convergence refers to the number of samples needed to estimate the covariance

matrix to result in a specified performance.

The need for a detector that combines the desirable properties of fast

convergence and robustness gives way to an eigen-analysis based detector. The

eigencanceler [11] and the principal component inverse (PCI) [12] are two forms of

the eigen-based detector. Both of these methods compute their weight vectors based

on a subspace of the signal space, and use the fact that the signal space can be

partitioned into an interference subspace and a white noise subspace. The eigen-

canceler produces a minimum norm weight vector which is subject to a set of linear

constraints and which is orthogonal to the interference subspace. The PCI produces

a weight vector in the noise subspace. Under certain situations, the two methods

produce similar weight vectors. Advantages of such eigen-analysis based detectors

are faster convergence, higher output CSNR, and reduced complexity. It is shown

in [11] that for a uniform array and fixed pulse repetition frequency (PRF), the

space-time covariance matrix is low rank clue to the inherent oversampling nature of

the STAP architecture. Both the eigencanceler and the PCI based detectors exploit

this low rank nature of the covariance matrix. Since the interference power is usually

much higher than the signal and the white noise power, the large eigenvalues of the

covariance matrix are dominated by the interference eigenvalues. It is shown in [1 1]

that for an array of dimension N, the number of secondary samples needed to obtain

an output SNR within 3 dB of the optimal SNR is K 2r, where r is the inter-

ference subspace rank and r < N. The eigen-analysis based detector is a member

of the class of reduced-rank detectors. Reduced-rank detectors take advantage of

the nature of the STAP architecture from a reduced complexity standpoint. Other

reduced-rank techniques were discussed and compared in [13, 14, 15].
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As was mentioned earlier, the sample covariance matrix is the maximum

likelihood estimate of the true covariance matrix and is obtained from a secondary

data set from neighboring range cells to the range cell under test. The application

of adaptive interference cancellation techniques such as the SMI for example, which

utilize the inverse of the sample covariance matrix, requires the estimate to be non-

singular. For this to be true, the number of secondary data samples K, must exceed

the array's dimension N. It is also true that K must exceed N by a significant factor

if the covariance matrix estimation is not to cause a major loss in performance [6].

This requirement of a non-singular estimate usually does not pose a problem if the

adaptive array is operating in a radar that utilizes a low pulse repetition frequency

(LPRF) waveform. In this case, the radar would not face any range ambiguities

that would limit the number of available secondary data set samples. However, the

radar sometimes operates in a limited sample support environment, such as in the

case when an airborne radar is utilizing a high pulse repetition frequency (HPRF)

waveform. In such an environment, due to range ambiguities, the unambiguous range

is usually short and hence, the number of independent samples available is low. As

a consequence, the sample covariance matrix will be singular. In this case, methods

like the SMI cannot be applied. Reduced-rank methods like the eigenca.nceler and

the PCI take advantage of such an environment.

Limited sample support relative to the large dimensionality of the adaptive

array may also suggest a cascade STAP approach where spatial and temporal

processing are done in cascade rather than jointly [16, 17, 18]. One such architecture

is known as element-space post-Doppler. This technique reduces the STAP dimen-

sionality by transforming the space-time data snapshot into a snapshot of array

elements' data and Doppler bins. This is achieved by applying temporal filtering to

the space-time data across the array elements. Consequently, the joint-STAP's A1 -

dimensional problem is separated into q separate N/q-dimensional problems where



6

q is an integer. Although the receiver's performance might suffer because of reduced

degrees of freedom, low sample support will not be a significant problem. This is

so because, with this cascade architecture, the minimum number of samples needed

to estimate the covariance matrix is K 2N/q instead of K = 2N samples for the

joint architecture. Hence, SMI can then be applied to the reduced dimension data.

Another cascade architecture is referred to as beam-space pre-Doppler where spatial

filtering is applied to the space-time data instead of temporal filtering prior to the

adaptive array.

A modification of the traditional SMI technique was investigated in the early

eighties by Abramovich and Cheremisin 19, 20]. They investigated the problem of

detecting a signal in colored noise when the sample covariance matrix  is singular

clue to reduced sample support as in the HPRF radar case mentioned above. They

suggested that the singular sample covariance matrix can be regularized by loading

it with a scaled identity matrix. Once this is clone, SMI can be applied. This

method is known as the loaded sample matrix inversion (L-SMI) technique. Loading

is applied to the sample covariance matrix whenever it is ill-conditioned. They

also found an expression for the probability distribution of the CSNR obtained by

applying the L-SMI method. This CSNR distribution expression was shown to be

a function of the interference subspace rank r rather than N, and the size of the

sample support K. The L-SMI technique provides higher CSNR values at the output

of the adaptive array than the SMI techniques for low rank interference (r < N).

Also, L-SMI requires only K 2r samples to achieve a SNR within 3 dB of the

optimal SNR. Abramovich and Cheremisin showed that applying loading to the

sample covariance matrix, results in improved conditioning of the noise eigenvalues.

The L-SMI technique, though obtains its weight vector by evaluating the inverse of

the full size sample covariance matrix, behaves somewhat similar to reduced-rank
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techniques where only K 27- samples are required for a CSNR that is within 3 dB

of the optimal. This method was also investigated by other authors [21, 22].

The focus of this dissertation is to study and investigate the application of

reduced-rank STAP techniques to interference cancellation in radar systems in a

limited sample support environment such as the case when the radar is using a

HPRF waveform, as well as to derive improved CFAR maximum likelihood detectors

based on Kelly's GLRT detector. The following contributions are made:

The HPRF radar problem is analyzed. Due to the range ambiguous nature

of the HPRF waveform, low Doppler targets are masked by strong sidelobe

clutter located at relatively short ranges and steep grazing angles. Another

issue associated with the HPRF waveform, is the limited sample support. This

causes the covariance matrix estimate to be ill-conditioned and hence, classical

SMI does not perform satisfactorily.

2. The advantages of applying reduced-rank STAP to address the two problems

of range ambiguity and limited sample support are shown.

3. Due to practical limitation, errors resulting from including the desired target

in the training set, are inevitable. The robustness of reduced-rank techniques

against these errors is investigated and shown.

4. An expression for the probability distribution function of the CSNR for the

LSMI detector in the case that the sample covariance matrix is non-singular

(K > N) but ill-conditioned is derived and analyzed.

5. Kelly's GLRT CFAR detector is extended to the subspace-based GLRT

detector where subspace-based transformations are applied to the data prior to

detection. Expressions for false alarm and detection probabilities are obtained.
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6. A CFAR generalized likelihood ratio test detector under the condition that the

sample covariance matrix is diagonally loaded prior to detection, is derived and

analyzed. Expressions for false alarm and detection probabilities are obtained.

This dissertation is organized as follows: Chapter 2 presents the signal model

and reviews previous related work. Chapter 3 discusses the application of STAP

techniques for interference cancellation in HPRF radar and analyses the robustness

of these methods. The distribution of the CSNR for the LSMI technique for K > N

is presented in Chapter 4. Chapter 5 has the derivation and analysis of the subspace-

based GLRT and the diagonally loaded sample covariance matrix GLRT. Chapter 6

has the conclusions.



CHAPTER 2

SIGNAL ENVIRONMENT

This chapter presents the mathematical model and definitions of the various signals

used throughout this work. Also, a brief review of previous and related work is

presented for reference in proceeding chapters.

2.1 Signal Model

The system considered is a pulsed Doppler airborne radar. The radar antenna is a

uniformly spaced linear antenna array consisting of N s elements. The radar transmits

a coherent burst of Nt pulses at a constant pulse repetition frequency (PRF). The

time interval over which Nt returns are collected is referred to as the coherent pulse

interval. The resulting array is shown in Figure 2.1. After carrier demodulation,

matched filtering and sampling, the data received at the array is organized into a

NsNt-dimensional vector x(k), where the index represents a range gate. The vector

x(k) contains samples of the complex envelope of a bandpass signal and hence it is

complex-valued. Under hypothesis H o , no desired signal is present and x(k) is the

sum of clutter c(k) (interference) and additive white Gaussian noise contributions

n(k)

x(k) = c(k) n(k). (2.1)

The clutter and noise are assumed to be independent. The vector x(k), under

hypothesis H 1 , is given by

x(k) = as H- c(k) n(k), (2.2)

where a is zero-mean, complex Gaussian random variable with variance al and s

represents the space-time steering vector. The vector x(k) could also be defined to

incorporate interference from jammers. From this point on, interference refers to

9
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clutter contributions in the signal vector and colored noise refers to the aggregate of

interference and white noise. The vector x(k) is made up of N x Aft samples

of the complex envelope of the received signal. from a specific range gate k for k =

1, • • • , L. Considering returns from all possible L range gates, the vector x k makes

up one 'slice' in the Ns x N x L data cube shown in Figure 2.2.

The basic airborne radar geometry is shown in Figure 2.3. Under the

assumption that the spatial channels are co-linear, identical, omni-directional and

equally spaced with spacing d, the components of vector x(k) due to a clutter point

source can be written as

2π(s-¹)ue²π(t-¹)v
Xst = c	 s	 , • • • 	 is

t = 1, • • , Art, 	 (2.3)

where u and v are the point source spatial and normalized Doppler frequencies and

are given by

d
—
A 

sin 0 cos 0

91/

A PRF sin 
0 cos 0
	

(2.4)

where d is the spacing between the antenna, elements, 0 is the point source azimuth

angle, 0 is the point source elevation angle, and V is relative speed of the point source

as seen by the airborne radar.

The desired signal component of vector x(k), under the same conditions, can

be written as

S 	 s s 	s,
	 (2. 5)

where 0 is the Kronecker product, s s is a Ns x 1 normalized spatial steering vector,

and st is a Nt x 1 normalized temporal steering vector. The two vectors s s and st
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Figure 2.1 Space-time adaptive array architecture



Antenna Array
N, - elements

•

••

12

Ns

PRI
	 Nt

Figure 2.2 Data cube

Clutter Patch

Figure 2.3 Airborne radar basic geometry.



are given by
1ej²πut

S3

St =

e j2 (N s - 1)u. t

and
1

ej2πvt

•

j2π(Nt  -1 )vt

where 'a t and vt are the presumed target's spatial and normalized Doppler frequencies.

Since the colored noise true  covariance matrix is usually not known a priori, a

maximum likelihood estimate is obtained from a secondary data set from neighboring

range cells around the cell under test. This estimate is referred to as the sample

covariance matrix and is given as:
1 K
- E x(k)x(k)kH 	 (2.8)
I( k=1

where xk is defined in equation (2.1).

Equation (2.8) is an estimate of the true covariance matrix R. For low rank

interference, R can be decomposed into interference and white noise contributions

as follows

R = Qr ArQHT 	(2.9)

where the diagonal of the r x r matrix A, consists of the r principal eigenvalues of R,

the columns of Q, are the corresponding eigenvectors, o is the variance of the white

noise, and the columns of Q v are the remaining eigenvectors of R. In [11] it was

shown that the rank of the interference has an upper bound of rma x = Ns +Nt — 1. The

spectral decomposition of R in equation (2.9) suggests the following decomposition

for the estimate R

= Qr 	 7 -I I + (2.10)

where A consists of the N — r eigenvalues of the noise subspace. The addition of the

13

(2.6)

(2. 7 )

to the eigenvector and eigenvalue matrices denotes that they correspond tohat r .
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the estimate R. The noise eigenvalues of the true covariance matrix in equation (2.9)

are all the same and given by the noise power a. However, the noise eigenvalues

obtained by decomposing the covariance matrix estimate R in equation (2.10) are

going to be spread over a range of power which depends on the sample support size

used to estimate the covariance matrix. Noise exists at all frequencies and hence, an

infinite number of degrees of freedom is needed to fully estimate the noise subspace.

As the sample support size K increases, R approaches the true covariance matrix

R and the noise eigenvalues in Â„ all converge towards the noise power c. This

representation of R and R. will be used in subsequent sections and chapters.

2.2 Background

The following sections present a brief review of previous and related work in adaptive

processing for radar. This discussion is provided since it will be used in proceeding

chapters of this work.

2.2.1 Optimum Signal Processing

In [5], Brennan and Reed developed the theory for optimum adaptive arrays which

maximize the probability of detection. They showed that the optimal detector for

a desired signal in Gaussian noise whose covariance matrix is known a priori, is

achieved by using a Wiener filter. The weights of this filter are given by

w kR-¹s (2.11)

where k is a gain constant and R is the colored noise true covariance matrix. The

Wiener filter can be interpreted as a cascade of a whitening filter for the interference,

followed by a matched filter for the desired signal. This solution requires the prior

knowledge of the true covariance matrix R.
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2.2.2 Sample Matrix Inversion

In practice, the true covariance matrix of the interference, R, is unknown a priori.

The covariance matrix has to be estimated from a finite number of secondary data

(interference and white noise) set as given in equation (2.8).

Substituting R for the true covariance matrix, R, in equation (2.1 1) yields the

following solution

= s. (2.12)

This solution for the array's weight coefficients is not optimal since the covariance

matrix has to be estimated from a finite number of secondary samples.

The conditioned signal-to-colored noise (CSNR) is defined as the ratio of the

actual signal-to-colored noise (SNR) ratio to the optimal one which results when

the covariance is known. Again, colored noise refers to interference as well as white

noise. Reed et al. showed that the solution in (2.12) achieves a CSNR at the output

of the array that has a mean of 0.5 if K 21V snapshots are used to estimate R in

equation (2.8). Since the covariance matrix is estimated using equation (2.8) from

random secondary data, the resulting SNR is a random variable, and the CSNR is a

random variable bounded between 0 and 1. A CSNR with a mean of 0.5 is equivalent

to a 3 dB loss with respect to the optimal SNR.

The sample covariance matrix estimate given in equation (2.8) has to be

continually updated since the environment maybe considered stationary for only

short periods of time.

2.2.3 Pseudoinverse SMI

If the sample covariance matrix obtained using equation (2.8) is non-singular, then

the SMI algorithm can be applied and the expression in equation (2.12) can be

used to find the weight coefficients. A necessary condition for a non-singular sample

covariance matrix is that K > N. However, in a. limited sample support environment,
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this condition may not be satisfied. The pseudoinverse SMI (P-SMI) technique

suggests replacing the true inverse of the singular estimated covariance matrix R, by

the pseudoinverse. A low rank approximation to R is constructed from the singular

value decomposition [23]:  

vH
0 0VH_ 	 2 _  

U2 = UI EMV (2.13)         

where A4 is the M x M diagonal matrix of the largest singular values of R. The

total number of singular values included in Em is chosen equal to the rank of the

original covariance matrix. The two unitary matrices U 1 and V 1 are the left singular

vectors and right singular vectors of RA/ respectively. This construction ensures that

the generalized inverse R#M = (RHMRM ) RHM, exists. The low rank approximation

weight vector is then given by:

w = s. (2.14)

The weight vector in equation (2.14) defines the P-SMI weight vector. The matrix

R#M is sometimes referred to as the Moore-Penrose generalized inverse of the

covariance matrix R [23].

2.2.4 Diagonally Loaded Sample Matrix Inversion

Under similar conditions to these mentioned in the previous section where the sample

covariance matrix is singular, Abramovich and Cheremisin suggested diagonally

loading the matrix by a scaled identity matrix 19, 20]. This process was shown to

improve the conditioning of the noise eigenvalues by reducing the eigenvalue spread.

Then following equation (2.12), the weight vector is written as

w = + air S (2.15)

where a is the loading factor.

The loading of the covariance matrix decreases the fluctuations of the small

eigenvalues, which are predominantly white noise eigenvalues, and as a result
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decreases fluctuations in W. It was suggested in [20] to use a loading factor such

that o < o < Amin where A rnim is the minimum interference eigenvalue.

2.2.5 Eigencanceler

The sample covariance can be represented as shown in equation (2.10) where the

matrix is decomposed into two orthogonal subspaces Qr and Qu denoting the inter-

ference and noise subspaces, respectively. The eigencanceler selects its weight vector

to lie in a space that is orthogonal to the interference subspace and hence, in the

noise subspace. It is shown in [11] that the weight vector is written as

= k — Z4, QHr ) s

= kQs 	 (2.16)

where k is a complex constant and I is the identity matrix of dimension N.

This choice for the weight vector produces higher values of the SNR as

compared to the SMI. Also, to achieve a signal-to-noise ratio within 3 dB of the

optimal, only K 2r samples are needed to obtain the sample covariance matrix.

This chapter presented a brief discussion of some adaptive processing techniques.

Proceeding chapters will assume the knowledge of these techniques and their corre-

sponding filter weight coefficients.



CHAPTER 3

SPACE-TIME PROCESSING FOR HPRF RADAR

Radar returns consist mainly of interference echoes from unwanted objects that

often obscure echoes from targets of interest. In airborne radar, ground clutter

returns from all ranges and angles appear to be moving relative to the platform.

These mainlobe and sidelobe clutter returns exist in the Doppler region given by

±2Vfc/c Hz, where V is the platform velocity, f is the radar's carrier frequency,

and c is the speed of propagation. The geometry for an airborne radar system is

shown in Figure 3.1. A clutter patch seen by the radar at an azimuth angle and

an elevation (depression) angle 0 has a Doppler frequency associated with it which is

given by ii (2V/λ) sin Ф cos 0 Hz, where A is the wavelength corresponding to the

transmitted carrier frequency. Radar systems, for missions such as airborne early

warning (AEW), may employ high pulse repetition frequency (HPRF) waveforms to

enhance long-range detection of high closing-rate targets which appear in the clutter

free region of the radar system's Doppler spectrum. However, clue to the range-

ambiguous nature of the HPRF waveform, strong near-range ground. clutter returns

received in the antenna sidelohes cannot be simply gated out and are, therefore,

folded in with desired signal returns that fall within the Doppler bandwidth of the

clutter. This chapter discusses the application of space time adaptive processing

(STAP) techniques for clutter suppression in HPRF radar systems.

In recent years, STAP has been studied and applied mainly to low pulse

repetition frequency (LPRF) radar [5, 24, 25, 18]. The application of STAP to

the HPRF radar problem presents a unique set of challenges and differences from

the traditional LPRF radar, which are discussed in this chapter.

Clutter seen by an airborne radar extends in both space and time domains. In

order to cancel the clutter, temporal and spatial degrees of freedom are needed. As

shown in Figure 3.2 and by observing the clutter Doppler frequency expression above,

18



Zero Doppler

Figure 3.1 Geometry of the airborne radar problem.

it is evident that elevation sidelobe clutter returns are a function of both Doppler and

elevation. If only temporal (Doppler) processing is used, and the Doppler 'mainbeam'

points at frequency a ¹ , then the clutter at elevation angle θ1 = cos' (kv), where k

is a constant, will compete with the target (see Figure 3.2). Alternatively, if only

elevation processing is employed, and the mainbeam points to elevation angle 0 1 , then

the clutter at Doppler frequency v1 = l0 will compete with the target. STAP is

therefore required to eliminate competing clutter in the mainlobe. Thus performing

processing along a single domain will be ineffective in cancelling the clutter. STAP

combines both spatial and temporal degrees of freedom needed in this case.

Three STAP approaches will be investigated. The first is the pseudoinverse

sample matrix inversion (P-SMI) technique. With traditional SINAI, the adaptive

weight vector is computed by taking the inverse of the sample covariance matrix. In

HPRF radar, the sample support is greatly reduced as compared to LPRF due to

range ambiguity effects. Hence, the pseudoinverse of the covariance matrix is used.
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Figure 3.2 STAP for HPRF radar.

The second method investigated is the diagonally loaded SMI [26]. This method is

traced back to the early 1980's with publications by Abramovich and Cheremisin [19,

20]. In this technique the singularity of the sample covariance matrix is overcome by

diagonal loading. The last STAP technique investigated is the eigencanceler [11]. The

different STAP techniques are evaluated through a number of performance measures

such as output signal-to-colored noise (clutter and noise) ratio and probability of

detection. In addition, we provide simulation results for interference cancellation

using an element space post-Doppler processor where Doppler filtering is applied

prior to the adaptive array to reduce the dimension of the data. The adaptive

array's weight vector is then obtained using SMI.

3.1 Advantages of HPRF Operation

The radar's choice of the pulse repetition frequency (PRF) depends on its requirements

in terms of range measurement, Doppler measurement, transmit power, and

ambiguities. There are three PRF classes based on the sampling criteria for range

and Doppler: LPRF, HPRF, and medium PRF. In HPRF systems, the sampling



Figure 3.3 Clutter and target Doppler returns.

b)

Figure 3.4 (a) HPRF and (b) LPRF waveforms.

rate is fast enough to meet the Nyquist rate for the target Doppler shift. There are

advantages for choosing a HPRF waveform. These are summarized below.

1. High closing-rate targets appear in the clutter-free region. Since the PRF is

high, high closing-rate targets will have a greater Doppler shift than any of the

clutter. This is shown in Figure 3.3

2. High average transmit power. A high duty cycle is associated with a HPRF

waveform. This makes HPRF inherently the longest range PRF class for the

ability to detect targets at very far ranges. A HPRF waveform is shown in

Figure 3.4 relative to a LPRF waveform.
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3. Capability to reject high-power near-range clutter while achieving target

detection. This is true for both nose and tail aspect targets. Tail aspect

targets and near-range clutter exist at different elevation angles with respect

to the radar's platform, hence clutter can be rejected while preserving the

desired target. This can be seen from Figure 3.5.

The HPRF waveform, due to range ambiguities, obviously has some disad-

vantages as well. However, depending on the specific application of the radar and

by the use of processing techniques, some of the disadvantages could be overcome.

This discussion is deferred to the next section.

3.2 Problem Statement

As a result of the airborne radar platform motion, regions of ground clutter can

compete in both range and Doppler with targets of interest. As illustrated in

Figure 3.6, regions of competing clutter for LPRF airborne radars are at the

intersections of the target range ring and iso-Dopplers ambiguous with the target

Doppler. Classical STAP techniques have been shown to be effective in suppressing

this competing clutter for LPRF radars [5, 18].

Unlike the LPRF problem, for HPRF airborne radars, regions of competing

clutter lie along the iso-Doppler contour at points where the ambiguous range is the

same as that of a target. This is shown schematically in Figure 3.7. Due to

the range-ambiguous nature of the HPRF waveform, each range gate consists of the

superposition of the returns from all visible ambiguous ranges. Therefore, regions of

strong sidelobe clutter, located at relatively short ranges and steep grazing angles,

cannot be gated out and are folded in with mainbeam target returns. Another issue

of much importance is sample support. Since the clutter statistics are typically

unknown a priori, an estimate has to be obtained from the secondary data. If the

sample support is small, there will be a problem of obtaining a good enough estimate



Figure 3.5 Surveillance geometry.
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Figure 3.6 Iso-Doppler, Iso-range ring map for LPRF radar.

Figure 3.7 Iso-Doppler, Iso-range ring map for HPRF radar.
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of the colored noise covariance matrix. The filter coefficients used to cancel the

clutter are derived from the estimate of the covariance matrix. Due to the nature

of the HPRF waveform, sample support for the estimation of the covariance matrix

is limited to the number of range gates available in the radar system. This limited

sample support can lead to ill-conditioning of the covariance matrix, and hence, poor

performance is offered by classical STAP approaches, such as SMI.

In general, the covariance matrix estimate used by the various STAP techniques

is obtained using target-free data. However, due to calibration errors, this is not

always the case. If the sample support size is large, the calibration errors might

be negligible since the target exists only in few range cells. In HPRF radar, where

the sample support is limited, calibration errors can be significant. L-SMI and the

eigencanceler are members of the class of reduced-rank techniques. Reduced-rank

techniques [12, 27, 11] have been shown to outperform full-rank techniques such as

SMI for limited sample support and have also been shown to be more robust to

calibration errors [11].

The application of innovative reduced rank STAP solutions, shown to outperform

conventional STAP techniques [12, 11, 15], is proposed to address the two problems

of range ambiguity and limited sample support associated with HPRF radar systems.

3.3 Processing Strategy

The HPRF waveform is range ambiguous by nature. The reason for range ambiguity

is explained by Figure 3.8. Unlike the LPRF waveform, with the HPRF waveform,

it is not readily possible to identify which pulse caused a particular echo. This

implies that discrimination between different returns in range is not possible. The

far-range target and the near-range clutter however, can be discriminated in the

elevation plane. Although the target and the near-range clutter appear to have the

same range, they exist at different elevation angles. Hence, the adaptive array's
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Figure 3.8 Range returns.

weight vector is chosen to cancel the near-range sidelobe clutter region shown in

Figure 3.5. This is done while also protecting the target in the mainbeam clutter

region (surveillance region). The mainbeam clutter at the same elevation angle as

the target will have a different Doppler shift, hence we expect to isolate the target

from near-range and mainbeam clutter once processing is applied.

3.4 HPRF System's Definitions and Properties

This section presents definitions and requirements relevant for the HPRF radar

system discussed in this chapter. Also an explanation of the spectrum of the clutter

seen by the airborne radar for such a system is provided.

3.4.1 System's Definitions

We use the same signal model presented in Chapter 2, however, we define a few

additional parameters that are necessary for the discussion of HPRF radar.

The radar's unambiguous range is related to the PRF:

Run = c/(2PRF).	 (3.1)

If the target's range extends beyond R un , the radar cannot measure the true range

of the target. Consequently, target returns may be folded over close range clutter

echoes.
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Figure 3.9 Available range gates.

The unambiguous range is divided into a number of range gates depending on

the bandwidth of the radar system. The range resolution is given by

613. = c/(2 Bw )	 (3.2)

where Bw is the radar system bandwidth. Hence using equations (3.1) and (3.2), the

number of available range gates or equivalently, the number of independent sample

returns is given by

K = Run/6	 (3.3)

Equation (3.3) can be explained by observing Figure 3.9. As shown in the

figure, the unambiguous range is divided into a finite number of range gates governed

by the resolution requirement which is in turn a function of the system's bandwidth.

Hence only K secondary data samples are independent and can be used in estimating

the covariance matrix.

As a consequence of equation (3.1), radar echoes will have an apparent range

Rapp, and a true range Rt rue , which are be related by

Rapp = Rtrue — Run [Rtrue/Run], 	 (3.4)

where the brackets denote integer part. The data vector x(k) consists of the sum

of contributions of all the range cells folded onto the cell corresponding to index k.
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Also, the number of independent data samples equals the number of range cells in

an unambiguous range interval. Let K be the number of range gates spanning the

unambiguous range interval of the radar. Then the maximum likelihood estimate of

the space-time covariance matrix is given again by

R = E x(k)x(k)H. 	(3.5)

The matrix R is clearly singular if K < N. The parameter K is controlled by the

radar's range resolution which is a direct function of the system's bandwidth.

3.4.2 Degrees of Freedom

The number of the degrees of freedom that is needed for effective clutter cancellation

is determined by the rank of the clutter covariance matrix. In a typical airborne

scenario and a calibrated radar, eigen-clecomposition, when applied to the covariance

matrix, yields a few large eigenvalues while the rest are relatively small. The number

of significant eigenvalues or equivalently the rank, can be predicted by the Landau-

Pollak relation r 2BT + 1, where B is the clutter bandwidth and T is the time

across the filter structure [11].

The rank of the space-time covariance matrix has been studied in [11, 18]. Here

we provide a brief argument for illustrative purposes. For an array with elements at

half-wavelength intervals, and a point clutter source at azimuth angle 0 with respect

to the array normal and at elevation angle 0, a space-time sample is given by,

Xnk =
jπ(n-¹) sin Фcos o ej2π(k- 1.) v 	 (3.6)

C

where v is the point source Doppler frequency normalized with respect to the PRF.

The maximum frequency space-time component is then

jπ[(Ns—1)+2(Nt—1)Vmax]
Xnk = e	 (3.7)

where vmax = 2V/(λ PRF) is the highest normalized Doppler component of the

clutter returns. It follows that the number of space-time samples required to
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represent the clutter contributions is upper bounded

r < 2(A' — ) vmax (3.8)

This is also the highest approximate rank of the clutter and noise covariance matrix

for high clutter-to-noise ratio. In the case of a HPRF radar, v max << 1 since the

clutter occupies only a fraction of the Doppler spectrum. Thus, the HPRF problem

is of lower rank than an equivalent LPRF problem.

3.4.3 'J-Hook' Clutter

In an airborne HPRF application, clutter enters the receiver primarily through the

mainbeam and principal elevation sidelobes. This is illustrated in the clutter intensity

plot, shown in Figure 3.10. It can be observed that at far ranges clutter returns

are approximately parallel to iso-Doppler contours. This implies little variation in

the Doppler frequency as a function of range. The clutter ridge crosses increasingly

more iso-Doppler contours as it gets closer to Nadir. This results in the charac-

teristic J-Hook' curvature of the clutter ridge in the range-Doppler domain. The

'J-Hook' is clearly visible on the range-Doppler plot shown later in Figure 3.16 in

the Numerical Analysis section. As this plot illustrates, for the HPRF waveform,

most of the Doppler band is clutter free with mainlobe and siclelobe ground clutter

returns located only in the Doppler region given by I'd = +2V/,\.

The 'J-Hook' formation could also be shown mathematically by analyzing the

elevation angle-Doppler frequency relation. The clutter's Doppler frequency was

given previously in section 2.1 as

v = (2V/λPRF) sin 0 cos 0. 	 (3.9)

Then the elevation angle 0 can be expressed in terms of the Doppler frequency as

PRF v

2V sin 0
0 = cos - ¹ (3.10)



Figure 3.10 HPRF Clutter Intensity map.
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Figure 3.11 'J-Hook' Clutter.

or equivalently we can relate the range to the Doppler frequency where

Rtrue = h/ tan 0, 	 (3.11)

where Rtrue is the true range and h is the altitude of the radar platform. By plotting

this last equation for a fixed azimuth angle, the 'J-Hook' shape becomes apparent.

This is shown in Figure 3.11.

3.5 Performance Measures

The P-SMI, L-SMI, eigencanceler and the element-space post-Doppler will be

compared under two performance measures: signal-to-colored noise ratio and proba-

bility of detection.

3.5.1 Conditioned Signal-to-Noise Ratio (CSNR)

SNR is a very common performance measure in signal processing applications.

It shows the effectiveness of the radar in cancelling the interference. A related
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performance measure is the CSNR. The CSNR is defined as the ratio of the SNR

obtained using the weight vector derived from a specified method to the optimal

SNR when the covariance matrix is known,

where R is the true covariance matrix of the colored noise. Then the CSNR in

equation (3.12) can be written as

9
W s

	P  = W -11 Rw sH R -¹ s 	
(3.15)

•

The CSNR in equation (3.15) is a random variable bounded by 0 < p < 1. A

probability density function of this random variable p, can be obtained and is given in

:6, 20, 1.1] for SMI, L-SMI, and Eigencanceler respectively. For reasons of comparison

between theoretical and simulation results, the CSNR distributions for L-SMI and

the eigencanceler are provided next.

In [20], the distribution of the CSNR, p, for L-SMI is given as

Γ(K + 1) 	 pK- r.=	 p)r-¹ 	 (3.16)f(p) 	 F(K — r 1)F(r)

where Γ(k) = (Jr — 1)! is the Gamma function, K is the sample support dimension,

and r is the interference subspace rank. In [20, 28], it is suggested to choose a loading

factor a such that o a < where .7, 2 is the noise power, and λ min denotes

the smallest interference eigenvalue.
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In [29], the asymptotic distribution for the CSNR, p, was derived for the eigen-

canceler. It is shown that the CSR can be expressed as

1
p =  	 (3.17)

'+ c
where = E:-=¹ 	and vi are independent identically distributed random variables

with exponential distribution and hence, 	 is a Gamma random variable with r

degrees of freedom and parameter 1. This characterization results in the density

(3.18)

where 71i = 1-13= ¹ 2,34i TV ( 17j — 17i). Also, [29] gives an approximation to the distri-

bution in equation (3.18) for the case of a large interference-to-white noise ratio.

This is given by
A7

r

 —¹
(P) = (r) 	

Pr„	 0 < p <1.	 (3.19)

3.5.2 Probability of Detection

Probability of detection is the main measure for the radar system's performance.

The processor decides on one of the two hypotheses, H o or H ¹ , by taking the instan-

taneous output power wHx(k), where w is the appropriate weight vector as

(3.20)

where 717 ,. is a given threshold. Since the received vector x(k) has a Gaussian distri-

bution with circular symmetry under both hypotheses, the statistic 'y has a chi-

squared distribution given as

where i=0,1, and 'yo and -( ¹ are the average output powers under hypotheses H o and

H i , respectively. For a given threshold 7/ 7: in equation (3.20), the probability of false
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alarm is given as

(3.22)

and the probability of detection as

71T

(3.23)

(3.24)

When the covariance matrix is known, the optimal weight vector is given by w

Define a as the optimum CSNR given in equation (3.15) which is achieved

when the covariance matrix is known as

(3.26)

The average power under hypothesis H ¹ under the a unity signal gain constraint

(wHs = 1) can be written as

(3.27)
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Using a in equation (3.25) and p in equation (3A5), the average power under

hypothesis H 1 can be written as

(3.28)

The probability of false alarm for the test given in equation (3.20) can be

written as

Similarly, the probability of detection can be written a.s

The average probabilities of false alarm and detection are obtained by averaging the

conditional probabilities of false alarm and detection over all possible values of p.

Hence, the unconditional probability expressions are given a.s

(3.31)

and

The integral expressions in equations (3.31) and (3.32) are numerically evaluated for

different values of the SNR.

3.6 Element-Space Post-Doppler

Element-space post-Doppler processor performs Doppler processing on the data from

each array element prior to the adaptive array. Hence, the space-time data snapshot

is transformed into a snapshot of array's elements and Doppler bins. This process is



PRI

Figure 3.12 Possible reduced rank STAID algorithms.

shown in Figure 3.12 which is borrowed from [18]. The element-space post-Doppler

is one class of possible algorithms. Once this algorithm is applied, a different adaptive

problem is to be solved for each Doppler bin. For example, after Doppler filtering

is applied to the space-time data, SMI can be used to calculate the adaptive weight

vector as

w = kRs-¹ 	 (3.33)

where R, is the estimated spatial covariance matrix and s, is the spatial steering

vector for a Doppler bin.

The advantages of such an algorithm are summarized in the following:

1. Reduced data dimension which is necessary in an environment of reduced

sample support.

36

2. Faster conversion rate since the size of the matrix to be inverted is much smaller.
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Figure 3.13 Clutter region for HPRF radar.

3. This algorithm is suitable to apply to HPRF radar where the clutter's Doppler

shifts do not extend over the whole radar's bandwidth. Hence, processing and

detection is applied only in a few, usually, about 10%-20% of the total number

of Doppler bins depending on the radar's parameters. This is shown in Figure

3.13.

3.7 Robustness Analysis

As was mentioned in section 3.2, the sample support for HPRF radar is limited. The

covariance matrix estimate given in (2.8) is for the interference and noise and it is

obtained using data from range cells away from the cell under test and its immediate

neighborhood. If the target is present during training, then mismatches between the

target estimate (as incorporated in R) and the steering vector will result in signal

cancellation. The cancellation becomes more pronounced with the increase in the

target power. This effect may be negligible if the estimate of the covariance matrix

is done by averaging a very large number of range cells. In this case, the impact

of the few range cells containing the target return is small. However, with HPRF

radar, range cells containing the target form a larger share of the overall number of
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snapshots and the effect is not negligible anymore. The estimate of the cova.riance

matrix could then be written as

(3.34)

where L is the number of range cells for which there is a target return and lakI² is

the target power in each range cell. From (3.34) and (2.8), it can be seen that if

K >> L, R t R.

The effect of having the desired signal present in the training region can be

investigated theoretically. The expression for the CSNR in the presence of the target

can be written as

where W t is the weight vector obtained using R t  rather than R.

It is shown in [30] that the following relation exists between p and pt:

(3.36)

The CSNR distributions for the eigencanceler and the L-SMI techniques are

very similar with respect to the mean CSNR. The probability density function (PDF)

of the CSNR for L-SMI was previously given in equation (3.16). If the target was

included in the training set during training, the transformed PDF can be obtained

by using equation (3.36) and by applying the Jacobian transformation. Then the

mean CSNR can be found as

K > r — 2	 (3.38)
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where 2 F1 is a hypergeometric function 131] that is defined as

(3.39)

The CSNR mean, E[pt ], is a function of the desired signal power. As the desired

signal power increases, the mean will decrease and will eventually reach zero.

3.8 Numerical Analysis

The simulation model assumed a linear uniform antenna array with N, = 8 elements

spaced at half wavelength. Each array channel consisted of Ar t = 61 tap FIR filter.

The system under consideration is mounted on an airborne platform. The platform

was assumed to be at an altitude of 30,000 ft and moving with a constant velocity of

250 m/s. The clutter was assumed to come from all elevation angles and was modeled

to have a complex-valued Gaussian distribution, with zero mean, and variance equal

to the clutter-to-noise ratio (CNR). We assumed the clutter returns are uncorrelated

with each other and also uncorrelated between snapshots. The CNR was calculated

from the total contributions of all clutter sources and was set to 60 dB. Attenuation

due to free-space propagation was assumed proportional to R-³true, where Rtrue  is R-3true,

true range of the cell under test. The radar PRF was chosen to be 25 KHz. The

radar's transmitted frequency was 3.3 GHz. Using equation (3.1), the unambiguous

range was calculated to be 6 km. The target signal-to-noise ratio was 48 dB and the

target was chosen to be at an ambiguous range of 90 km with a Doppler frequency

of 0.05xPRF.

The sample covariance matrix was obtained from equation (3.5) using K=112

independent identically distributed snapshots. Equations (2.14), (2.15), (2.16), and

(3.33) are used to calculate the adaptive filter weight vectors for P-SMI, L-SMI,

eigencanceler, and element-space post-Doppler, respectively. Equation (3.12) is then

used to calculate the CSNR values for all methods by averaging 10,000 Monte-Carlo
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runs. The resulting simulated probability density functions for all four methods are

shown in Figure 3.14. The figure shows that the L-SMI and eigencanceler techniques

produce high values of the CSNR. Equation (3.30) is used to calculate the probability

of detection (PD) as a function of detection for all the methods. The probability

of false alarm was assumed to be 10. The PD curves were obtained by averaging

200 Monte-Carlo runs and are shown in Figure 3.15. The PD curves provide similar

results to the CSNR distributions in terms of performance.

Figure 3.14 PDF of the CSNR.

The range ambiguous clutter map is shown in Figure 3.16. The clutter has

Doppler returns in approximately 12 out the 64 Doppler bins used. The J-Hook'

shape of the clutter ridge is apparent in the figure. The post processing clutter maps

for L-SMI and the eigencanceler are provided in Figures 3.17 and 3.18 respectively.

The two figures show that the near range clutter masking the target has been rejected

and the target is now evident.

Finally, the issue of robustness of L-SMI and the eigencanceler is investigated.

A target with a SNR of 10 dB was included in the training set used to obtain the
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Figure 3.15 Probability of detection of the CSNR obtained by averaging 200 runs.

sample covariance matrix as in equation (3.34). The probability density functions of

the CSNR for both methods were obtained by averaging 10,000 Monte-Carlo runs.

The simulated CSNR distribution curves with and without the target included are

given in Figure 3.19. The theoretical CSNR distributions are provided for comparison

reasons in Figure 3.20. The simulation and theoretical results of the CSNR distri-

butions are shown to be very similar.



Figure 3.16 Clutter map for HPRF radar.
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Figure 3.17 Post-processing clutter using the Loaded SMI.
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Figure 3.18 Post-processing clutter using the eigencauccler.
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Figure 3.19 Simulation PDF of the CSNR with and without the desired signal.
present.

Figure 3.20 Theoretical PDF of the CSNR with and without the desired signal
present.

3.9 Discussion

This chapter discussed the application of STAP techniques to suppress the inter-

ference effects of ground clutter in HPRF radars. It was shown that reduced-rank

methods are necessary for clutter cancellation due to reduced sample support as a
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result of range ambiguity. Three STAP methods were compared in this chapter:

P-SMI, L-SMI, and the eigencanceler. The three techniques were evaluated for

performance measures CSNR and probability of detection. It was shown that the

eigencanceler slightly outperforms L-SMI. P-SMI does not perform satisfactorily.

The element-space post-Doppler method resulted in a mediocre output CSNR as

compared to the L-SMI and the eigencanceler. This is due to the fact that only

spatial degrees of freedom are not enough to cancel the clutter. Although the size of

the secondary data used to estimate the spatial covariance matrix in each Doppler

bin exceeds the spatial dimension of the system, the performance still suffers.



CHAPTER 4

DISTRIBUTION OF THE CONDITIONAL SIGNAL-TO-NOISE
RATIO FOR L-SMI

The loss incurred from estimating the covariance matrix of the interference sources

can he measured from the conditioned signal-to-colored noise ratio (CSNR). The

CSNR was previously defined in section 3.5.1 as the ratio of the actual SNR at

the output of the adaptive array to the optimal SNR. The CSNR is a. random

variable with certain statistical properties. These statistical properties depend on

the adaptive algorithm used by the adaptive array to obtain its weight vector. Reed

et al. obtained an expression for the distribution of the CSNR when the sample

matrix inversion (SMI) algorithm is used to obtain the array's weight vector [6].

Haimovich derived an asymptotic distribution of the CSNR for the eigencanceler

algorithm in [11j. Kirsteins and Tufts obtained a. distribution of the CSNR for the

principal component inverse (PCI) algorithm in [12]. Cheremisin derived a. distri-

bution of the CSNR for the diagonally loaded SMI (L-SMI) algorithm in [20] where

the sample covariance matrix is singular and diagonal loading is applied to improve

the conditioning of the eigenvalues. The CSNR distribution gives a. theoretical

performance measure and a means of comparison between different interference

cancellation methods in terms of the output SNR.

Cheremisin's distribution of the CSNR was derived for the case when the sample

covariance matrix estimate is singular due to limited sample support. If the tradi-

tional SMI algorithm is to be applied to find the weight vector for an array, K 2N

samples are needed to estimate the covariance matrix for a mean CSNR of 0.5 [32]

where N is system's dimension. Hence, even if the sample covariance matrix is non-

singular (K > N) hut K is not much larger than N, the system's performance will

suffer. Diagonal loading of the sample covariance matrix can improve the condi-

tioning of the eigenvalues. In this chapter, the discussion is limited to the L-SMI
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adaptive algorithm. The L-SMI technique is investigated and analyzed in terms of the

benefits it adds to the system's performance. A probability distribution expression

is obtained of the CSNR for the L-SMI algorithm when the covariance matrix is

non-singular (K > N) but ill-conditioned.

4 . 1 Background

The sample covariance matrix is obtained from a set of secondary data vectors.

obtained from neighboring range cells to the one under test. The sample covariance

matrix is the maximum likelihood estimate of the true covariance matrix and was

given in equation (2.8) and is repeated here for convenience as

R= x(k)x(k)'' (4.1)
k=1

where x(k) is a space-time snapshot of dimension (N = NsNt) x 1 and K is the

number of secondary data vectors. It is emphasized that the true covariance matrix

R consists of two subspaces; an interference subspace and a noise subspace. Matrix

R obeys the model given by

R = QrΛArQHr (4..2)

where Q r is the N x 7- matrix of principal eigenvectors, A., is the r x r diagonal

matrix of principal eigenvalues, 0'2,2 is the variance of the white noise, and Q„ is the

N x p matrix of noise eigenvectors, where p = N — r. Hence, when the covariance

matrix is said to be of low rank, it is implied that r < N.

As was briefly discussed in Chapter 2, the adaptive array that produces the

highest SNR is based on the Wiener filter. Since the true covariance matrix is

usually unknown a priori, the sample covariance matrix, R., given in equation (4.1)

is substituted for it (SAE) [6]. Hence, the system's performance is highly dependent

on the size of the sample support K relative to N. The number of independent

samples K used to generate the sample covariance matrix, affects the adapted beam.
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pattern generated by the array. The beam gain and sidelobe structure are directly

related to the estimate of the covariance matrix. If a low number of samples is used,

the array pattern will have a distorted beam shape and high sidelobes which will

result in inaccurate target detection and poor performance. Kelly showed in [33]

that the expected value of the array sidelobe pattern is given by

E(sidelobe) =  1 (4.3)
K •

This shows that in order to achieve low gain in the sidelobe region, a very large

number of secondary samples K should be used. In practical applications, the average

clutter sidelobe level is attenuated to -40 to -80 dB.

The distorted mainbeam pattern is a result of widely spread eigenvalues of

the sample covariance matrix which is in turn a result of a limited size of sample

support K. The input to the radar receiver (returned data) is made up of interference

contributions which include white noise. Noise exists at all Doppler frequencies,

and hence, an infinite number of secondary samples are required to estimate the

noise subspace. Strong interfering signals can be estimated using a low number of

samples. As more samples are used, the estimation of the noise subspace improves

and the noise eigenvalues converge to the expected value of the noise power. If the

noise subspace is poorly estimated, an ill-conditioned covariance matrix estimate is

obtained and hence, randomly shaped noise eigenbeams occur in the array's beam

pattern. Applying the SMI algorithm using the ill-conditioned covariance matrix

results in the subtraction of these eigenbeams and hence a distorted mainbeam

pattern. The eigenvalues of a sample covariance matrix where the interference is

low rank (r < N in equation (4.2)) are shown for K = N and K = 1ON in Figure

4.1. It is obvious from the Figure that the size of the sample support controls

the noise eigenvalues spread. For this scenario, the noise eigenvalues are spread over

more than 30 dB at K = N as compared to only 3 or 4 dB at K 10N. As K

increases, the eigenvalues of the sample covariance matrix will converge towards the
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Figure 4.1 Eigenvalues of the sample covariance matrix.

eigenvalues of the true covariance matrix and all the noise eigenvalues will be at the

noise power.

Diagonal loading is the process of replacing the sample covariance matrix, R

by another matrix Rd where

Rd = R + αI 	 (4.4)

The loading factor a is a scalar and I is the identity matrix. This process in effect

reduces. the spread of the noise eigenvalues. When an appropriate loading factor a is

chosen, the strong interference eigenvalues will be minimally affected by the loading of

the covariance matrix, but the widely spread noise eigenvalues will converge towards

the loading factor a. This has the net effect of a better or less distorted beam pattern

produced by the adaptive array. Hence, we can say that loading the covariance matrix

is almost equivalent to using more secondary samples to obtain the sample covariance

matrix from a performance standpoint. In Figure 4.2, the effect of loading is shown.

For a particular radar scenario, a diagonal loading factor of 8 dB is used to load
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Figure 4.2 Eigenvalues of the sample covariance matrix under loading condition.

a sample covariance obtained by averaging K = 21V secondary samples. The noise

eigenvalues are not wide spread when diagonal loading is applied.

Hence the application of diagonal loading which reduces the spread of the noise

eigenvalues, results in lower sidelobes in the mainbeam pattern and hence, results in

higher values of the CSNR.

In the next section, we use the same approach used by Cheremisin and derive

an expression for the distribution of the CSNR for L-SMI in the case that the sample

covariance matrix is non-singular. We attempt to show that applying diagonal

loading to the sample covariance matrix is equivalent to using a larger set of the

secondary data for the estimation.
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4.2 Distribution of the CSNR for K > N

In this section, the probability density function of the CSNR is developed. The

CSNR expression was given in equation (3.12) as

where R is the true covariance matrix of the colored noise and the loaded SMI weight

vector w is given as

w	 kRd-¹s.	 (4.6)

The diagonally loaded sample covariance matrix Rd is give in equation (4.4). Substi-

tuting the expression of the weight vector into equation (4.5), the CSNR is written

as	 ² 9

(SHRd-¹p = 	 (4.7)
sHRd-¹ •

' R — s sHR-¹ sRd

The goal is to characterize the CSNR in equation (4.7) statistically. However, the

CSNR expression is first simplified before the characterization can proceed.

Using equations (4.1) and (4.4), matrix Rd can be written as

Rd 	
K.

= 	 E x(k)x(k)H + a IL	 (4.8)

A new matrix X is defined as a N x K matrix whose columns are made up of

the statistically independent secondary data vectors x(k) for k = 1, • • • , K. Under

hypothesis H 1 given in Chapter 2, x(k) for k = 1, • • • ,K are zero mean, N x 1

complex Gaussian random vector with the N x N covariance matrix R. A distri-

bution so defined is denoted as CN (0, R). Hence, X is a matrix whose columns are

distributed as CN (0, R). Using this definition of the matrix X, equation (4.8) is

written as

(4.9)
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Substituting equation (4.9) into equation (4.7), the CSNR is written as

The true covariance matrix R. is positive definite, and hence a positive definite square

root matrix R 112 can be defined. Then the matrix 11. -112 is obtained by taking the

inverse of the matrix R 1 /2 . Consider a matrix Z who is written in terms of matrix

X as

The columns of matrix Z are distributed as CN (0, R-½-RR-½ ) and equivalently

as CN (0, I) (see Appendix A) where

where z 1 and z, are two columns of matrix Z and 8(1,m) is the Kronecker delta

Replacing matrix X in the CSNR expression in equation (4.10) by matrix Z, the

following expression is obtained

(4.14)

Only matrix Z in the last CSNR expression is random.

The true covariance matrix R is assumed to obey the model given in equation

(4.2). The inverse of this matrix is given as
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where the r x r matrix Λr  is diagonal and is given as

and 71 for 1 = 1, • • , r are the interference eigenvalues. Assuming that the interference

power is high relative to the noise power σ ²v, such that for the minimum interference

eigenvalue λmin  in the matrix A r , the following holds true

Using this assumption on the interference power, the inverse of the covariance matrix

in equation (4.15) can be written as

where 00[0 for / = 1, • • - ,r terms were neglected to obtain the last expression,

where o(0) refers to terms in the order of Using equation (4.18), R -112 is expressed

as

under the same assumption of the high interference power. Setting the noise power

5,72 equal to unity, equations (4.18) and (4.19) are written as

Substituting equations (4.20) and (4.21) for R -1 and R- 112 , respectively, in the

CSNR expression in equation (4.14), the CSNR is written as
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2

Defining a matrix C such that

equation (4.22) is written as

(4.24)

To further simplify the last expression, we can define a normalized deterministic

(N — r) x vector b which is related to the steering vector s

(4.25)

Using this definition of vector b, equation (4.24) is written a.s

(4.26)

At this point, since matrix C is not a simple matrix to analyze, we further proceed to

obtain simplified expressions for the two matrices CeCQ„ and QHvC²Qv appearing

in the numerator and denominator of equation (4.26) respectively.

From the definition of matrix C in equation (4.23) and by pre-multiplying with

(4.27)

Using the fact that for the two orthogonal subspaces Qr and Q..„, it is true that

QvQHv +	 I, equation (4.27) can be written as

and equivalently

(4.29)
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By pre-multiplying equation (4.29) by (14,11 and Q v', and by using the orthogonality

between the two subspaces, the following two equations are obtained

(4.30)

Solving these two equations simultaneously for QC, the following equation is

obtained

where matrices A and B are of sizes K x (N — 7-) and K x r, respectively, and are

defined as

Since the columns of matrix Z are distributed as CN (0, I) and since the two

subspaces Q, and Q 7. are orthogonal, then the two matrices A and B are statis-

tically independent. Moreover, the columns of each matrix A and B are independent

and distributed as CN(0,I)) (see Appendix A).

The matrix PB = B(BHB)-¹BH  is a projection matrix, and so is the matrix

PD = I PB. Projection matrices have unity eigenvalues such that P P8

and P ².6 = PHD = PD [34]. The expression in the square brackets in the first term

of the right hand side of equation (4.31) represents a projection matrix and can be

written as

where matrix D is of dimension K x (K — 7-) and is orthogonal to the matrix

B(BHB)-¹/² where D HB(RH B) -¹ / ² = 0. Finally, QHvC in equation (4.31) can

be written as
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At this point, as given in equation (4.34), the matrix Q Hv C is expressed in terms of

matrices which are either deterministic or random with known distributions. Using

equation (4.34), we proceed to find expressions for the two matrices QHvCQv and

C²Qv where both appear in the CSNR expression in equation (4.26).

There are two possible conditions under which equation (4.34) can be

considered: a small loading factor where a << k and a large loading factor where

a k. However, if the loading factor is very small and close to zero, the distri-

bution of the CSNR expression in equation (4.26) seems to be intractable. Moreover,

if the estimated covariance matrix is non-singular (K > N) and the loading factor

a is very small, then L-SMI becomes SMI. The distribution of the CSNR when the

weight vector is obtained using the SMI method was obtained by Reed et al. in

[6]. Hence, in the proceeding derivation, only the case of a large loading factor is

considered. The final obtained distribution of the CSNR for L-SMI will be compared

with Reed's distribution of CSNR for SMI.

For a large loading factor a relative to the unity elements of the identity matrix

appearing in right hand side of equation (4.34) where

(4.35)

or equivalently

(4.36)

equation (4.34) can be written as

where o(1/Kα) terms were neglected to obtain equation (4.37). Using this expression

for QHvC, expressions for the two matrices QHvCQv and QHvC²Qv can be obtained.

The first matrix QHvCQv can be obtained from equation (4.37) by post-multiplying
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WI C by Qv as

since the two subspaces Q„ and Q r are orthogonal. The second matrix QH vC²Qv , is

obtained as

Substituting equations (4.38) and (4.39) into equation (4.26), the CSNR is written

as

(4.40)

(4.41)

From the definition of the deterministic vector b in equation (4.25), bH b  = 1 and

hence, equation (4.41) is written as

(4.42)

where is a r x 1 vector that is expressed as

As was previously shown, the columns of matrices B and A are statistically

independent and are distributed as CN (0,I). Now, the statistical properties of
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the vector are sought. Let Ab = c, then the mean of vector c is

E{c} = E{Ab}

= 0, 	 (4.44)

since the columns of matrix A have zero mean. The covariance of vector c is

( 4.45 )

where Ak for k = 1, • • • , (N—r) are columns of matrix A and bm  for 771 = 1, • • , (N-

O are elements of vector b. Hence vector c is distributed as CN (0, I) and is statis-

tically independent of matrix B. The vector is expressed in terms of vector c

as

(BHB)-¹/²BHc. 	 (4.46)

Let the matrix QH	 (B ig B)-¹/²BH Since the vector c is statistically independent

of matrix B, matrix Q H is statistically independent of vector c. Also, QHQ = I.

Then the vector is written in terms of vector c and matrix Q as

•
= QHc . 	 (4.47)

Since vector c is distributed as CN (0,I), then by Appendix A, vector ζ is also

CN (0,I) and is statistically independent of matrix Q and hence ) statistically

independent of matrix B. At this point, all the quantities appearing in the CSNR

expression in equation (4.42) are of known distribution.

The distribution of the quantity 	 ζH(BHB)-¹ζ is obtained first and then

by performing a transformation of variables, the distribution of p in equation (4.42)
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is obtained. The quantity obeys a multivariate F-distribution (Hotelling's T ² ) 1351

given as (see Appendix B)

Performing a transformation of variables where p is related to 4" as

(4.49)

the distribution of the CSNR in equation (4.42) is given as

This CSNR distribution has a mean value of

where for E {p} to equal 0.5, K = 2r-1 secondary data vectors are needed to estimate

the covariance matrix. The final expression for the distribution of the CSNR for

L-SMI given in equation (4.50) is the same as the distribution obtained by Cheremisin

in [201 when the sample covariance matrix is singular.

4.3 Discussion

The expression for the distribution of the CSNR for L-SMI given in (4.50) is a

function of the number of secondary data vectors used to estimate the covariance

matrix and the number of interference (principal) eigenvalues of the covariance

matrix. This distribution is similar in form to the expression obtained by Reed

et al. in [6] for the SMI, which was given as

By comparing the distributions in equations (4.50) and (4.52) for the L-SMI and

SMI respectively, it can be shown that for an average CSNR value of 0.5, K 	 2r
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samples are needed to estimate the covariance given in equation (4.4) for L-SMI,

while K 2N samples are needed to estimate the covariance given in equation (4.1)

for SMI (no loading). Assuming that the covariance matrix is of low rank and obeys

the model given in equation (4.2) where r < N, less samples are needed to estimate

the covariance matrix if loading is applied for an equivalent performance as compared

to SMI. This is important when the radar is operating in a limited sample support

environment. The trade off in using diagonal loading is that the system becomes less

sensitive to weak interferences that are close to the noise power.

The next section provides comparison between the distribution of the CSNR

for L-SMI and SMI theoretically and by using simulations.

4.4 Performance Analysis

The simulation model assumed a linear uniform antenna array with N s = 8 elements

spaced at half wavelength. Each array channel consisted of N t = 4 tap FIR. filter.

The clutter was modeled to have a complex-valued Gaussian distribution, with zero

mean, and variance equal to the clutter-to-noise ratio (CNR). We assumed the clutter

returns are uncorrelated with each other and also uncorrelated between snapshots.

The clutter consisted of 120 point sources randomly distributed in the azimuth sector

0 - 30 degrees with respect to the array's boresight. The CNR was calculated from

the contributions of. all clutter sources and was set to 10 dB. The clutter map in

angle-Doppler coordinates is shown in Figure 4.3. The steering vector was pointed

at a target assumed to be at 50 degrees and 0.5 normalized Doppler frequency with

respect to the PRF. The steering vector is shown as the straight line on the clutter

map in Figure 4.3.

The sample covariance matrix was obtained from equation (4.1) using K =

2NsNt  independent identically distributed snapshots. The eigenvalues of the sample

covariance matrix are shown in Figure 4.4. The interference subspace has a rank of
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r = 4. Equation (4.5) is used to calculate the CSNR values. The probability density

functions of the CSNR are given in Figure 4.5 for the cases of small and large loading

factors, obtained by averaging 2000 Monte-Carlo runs. The large loading factor used

was 8 dB. The theoretical distributions of the CSNR are plotted and given in Figure

4.6. The theoretical distribution of the CSNR for a small loading factor is the

distribution obtained by Reed et al. in [6] for the SMI adaptive detector which is

also given in equation (4.52). The theoretical, distribution of the CSNR for a large

loading factor is obtained by plotting the expression given in equation (4.50). The

simulation and theoretical CSNR distributions are very similar.
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Figure 4.3 Simulation clutter map.
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Figure 4.4 The power of the eigenvalues of the true covariance matrix.



Figure 4.5 Simulated CSNR curves.
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Figure 4.6 Theoretical CSNR curves.



CHAPTER 5

GENERALIZED LIKELIHOOD RATIO TEST

Kelly formulated and derived a decision rule for signal detection under the assumption

of Gaussian interference with unknown covariance [14 The algorithm is based on

maximum likelihood ratio principle and is referred to as the generalized maximum

likelihood ratio test (GLRT). The generalization is done on the target model, where

the likelihood test is maximized over all unknown target parameters. The GLRT

exhibits the property of constant false alarm rate (CFAR) where the probability of

false alarm does not depend on the noise covariance matrix. The CFAR property

is desirable in detectors since the interference is non-homogeneous and hence, for

non CFAR detectors, the detection threshold has to be continuously adjusted. The

adaptive detector of Reed, Mallet, and Brennan [6] used for interference rejection is

not a CFAR detector. This detector is referred to as the sample matrix inversion

(SMI) detector. A modification of this detector has been considered by various

authors [7, 8, 9, 36, 37]. Robey et al. derived a SMI detector obeying the CFAR

property which was called the adaptive matched filter (AMF) detector. The AMF

detector is identical to Kelly's GLRT detector except for a missing term which

vanishes as the size of the sample support used in estimating the covariance matrix

becomes very large. Analysis and comparison of the GLRT and the AMF detectors

showed that both lose in performance due to estimating the covariance matrix from

limited sample support and also both detectors suffer a CFAR loss in SNR due to the

CFAR normalization. These losses are relative to an optimum matched filter detector

with known covariance matrix. Reed's non-CFAR SMI detector does not suffer a

CFAR loss with the trade off being that it is non-CFAR. The GLRT outperforms the

AMF at most SNR values. The AMF, depending on the signal vector and sample

support dimensions, can outperform the GLRT at very high SNR ratio. Also, the
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AMF detector suffers in performance in the case of any signal mismatch where the

actual signal is not aligned with the presumed steering vector [37].

Both of these detectors, the GLRT and AMF, are dependent on the sample

support size relative to the system's dimensions. When the interference is confined

to a subspace of the signal space, the SNR loss can be reduced by mapping the data

into that subspace prior to detection [38, 39, 151. Hence, a reduced rank version of

the GLRT detector (GLRT-RR) is considered in the next section. As a result of

subspace transformation, the required sample support needed to estimate the noise

unknown covariance matrix decreases because of the reduced dimensions. The trade

off is that subspace processing results in an additional SNR loss which is a direct

function of the specific transformation applied. The loss is referred to as a SNR

bias [15]. This bias, however, can be minimized by designing optimum subspace

transformations [38, 13]. The resulting probability of detection of the GLRT-RR

detector is a function of the subspace transformation.

Recalling the results from Chapter 4, applying diagonal loading to the

estimated covariance matrix improves the conditioning of the eigenvalues, and

hence, emulates the effect of using a larger sample support. The trade off in using

diagonal loading is that the system will become less sensitive to weak interferences.

It is expected that if the estimated covariance matrix in the GLRT test statistic is

diagonally loaded, the resulting probability of detection should improve. In other

words, diagonal loading will reduce the SNR loss suffered by the detector, which is a

direct function of the size of the sample support. Both subspace transformation and

diagonal loading can improve the performance of the GLRT detector by reducing the

size of the sample support required to achieve a certain performance or equivalently,

by achieving a faster convergence rate.

The objective of this chapter is two fold. First, Kelly's GLRT detector is

extended to obtain a general GLRT-RR test for fixed subspace transformations and
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expressions for the probability of false alarm Pi-, and the probability of detection PD

are obtained. It will be shown that the PD is a function of the subspace transfor-

mation applied to the data prior to detection. Second, a GLRT test is derived when

the estimated covariance matrix is diagonally loaded prior to detection, a test which

is referred to as GLRT-LSMI.

This chapter is organized in the following order. Section 5.1 develops of the

likelihood ratio test. Section 5.2 extends the GLRT to incorporate subspace trans-

formation and the performance of the GLRT-RR is investigated. GLRT-LSMI is

derived and analyzed in Section 5.3. Numerical results and the discussion are given.

in Section 5.4.

5.1 The Likelihood Ratio Test

Given an N-dimensional complex Gaussian primary data vector z from a range cell in

which desired signal presence is being sought and a set of K additional N-dimensional

complex Gaussian secondary data vectors z(k) for k 1,- • • , K from neighboring

range cells (desired signal free), two hypotheses are formulated. Under hypothesis

Ho , no desired signal is present and z(k) is the sum of clutter c(k) (interference) and

additive white Gaussian noise contributions n(k):

H o : z(k) = c(k) 	 n(k). 	 (5.1)

The clutter and noise are assumed to be independent. The signal model under H ¹

is given by

H1 : z(k) = bs	 c(k) 	 n(k), 	 (5.2)

where b is the signal amplitude and s represents the space-time steering vector. The

colored noise (clutter and white noise) true covariance matrix R is typically unknown

and hence, the sample covariance matrix is obtained as

K 
R =	 >2 z(k)z(k) H .	 (5.3)

K k=¹
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The secondary data vectors z(k) for k 1, • • , K have complex Gaussian distri-

butions with zero mean and covariance matrix R. In Goodman [40], it is shown

that the distribution of the elements of R is given by the central complex Wishart

distribution

(5. 4)

where

(5.5)

The fundamental parameters for the central complex Wishart distribution are the

number of secondary vectors K, the dimension of the vectors N, and the N x N true

covariance matrix R. Thus, the distribution of R is designated by CW(K, N; R).

The matrix R is the maximum likelihood estimate of the covariance matrix and is

highly dependent on the size of the secondary data set K, with the condition that

K> N for the estimate to be non-singular.

Under noise-alone hypothesis Ho , the primary vector does not contain a desired

signal and hence the primary vector along with the secondary vectors have complex

normal distributions with zero mean and covariance matrix R and are denoted as

CN (0, R). Under the same hypothesis, the joint probability density function (PDF)

for all the input vectors is

(5. 6)

where tr( )is the trace operator and

Under signal presence hypothesis H ¹ , the primary vector z will contain the

desired signal and, hence, is CA (bs, R) where his the target's amplitude. The joint

PDF in this case is
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The two PDFs are maximized over all unknown parameters (target's amplitude

b) and the ratio of the maximas is obtained to form the detection statistic which can

be written as

where 71 0 is a threshold that satisfies the false alarm rate Pia .

The AMF detector [37], which is a CFAR version of the SMI detector, has the

same decision rule as that of the GLRT given in equation (5.10) except that the term

(1 + 1/KzHR-¹z) is missing. Obviously, the two detectors will be equivalent if K is

very large where kzHR-¹z will become very close to zero.

The true covariance matrix R is positive definite and hence, R¹ / ² is also positive

definite and can be defined. The matrix R- ' 1² is the inverse of the matrix R ¹12 . Now

consider the whitened steering vector

the whitened primary vector

and the whitened secondary vectors

The primary and secondary vectors have Gaussian distributions with covariance
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The matrix M is defined as

(5.15)

By using the expression for matrix R given in equation (5.3) and the definition in

equation (5.13), matrix M is written as

(5.16)

It was shown that matrix R is distributed as CW(K, N; R). The expectation of

matrix M is

where I is a N x N identity matrix. Hence, M is distributed as CW(K,N; I).

Having defined the whitened vectors and matrix, the following can be written

Incorporating these expressions into the GMT test in equation (5.10), the test is

written as

(5.21)
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By defining the matrix S as

the GLRT is simply written as

Note that the distributions of all random quantities in the GLRT expression are

independent of true covariance matrix. The subspace transformation will be

performed on the quantities in the GLRT expression given in equation (5.23) in

the next section where the GLRT-RR test will be developed.

5.2 Subspace GLRT (GLRT-RR)

This section analyses a reduced rank version of the GLRT test which we refer to

as GLRT-RR. With GLRT-RR, received vectors are pre-processed by a full column

rank N x r matrix transformation T where r < N. Matrix T can be either a

fixed transformation such as discrete Fourier transform (DFT) and discrete cosine

transform (DCT) or a data dependent transformation such as Karhunen-Loeve

transform (KLT).

By applying the subspace transformation to the quantities in the GLRT test

given in equation (5.23), the GLRT-RR is written as

(5.24)
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By making the following definitions.

(5.25)

the GLRT-RR is written as

(5.26)

The vectors t and x are of dimension r x 1. The matrix E is of dimension r x r and

can be written using equation (5.22) as

(5.27)

where x(k) for k = 1, • • K are the transformed and whitened secondary vectors

The matrix S is distributed as CW(K,N; I). The expectation of matrix	 is

Thus, the matrix E is distributed as CW(K, N; I).

The GLRT-RR in equation (5.26) is similar in form to Kelly's GLRT in equation

(5.23) except that N is replaced by the reduced dimension r. Kelly analyzed the

GLRT test and derived expressions for Pia and PD [10, 41, 42]. Following Kelly's

results, under hypothesis H o , the test in equation (5.26) resembles a simple scalar

CFAR test with Pfa given as

(5.29)



where

The PD for the GLRT [10] is found to be dependent a SNR expression which

is given as

where rl represents a loss factor due to estimating the covariance matrix and is

bounded, 0 < rl <1. The quantity SNRGLRT represents the SNR obtained from

where z is the original primary vector, s is the original signal vector, R is the original

true covariance matrix and b is the signal amplitude. By normalizing SNR f with

sHR- ¹s, equation (5.31) can be written as

However, by using subspace transformation, analogous to equation (5.32), the SNR

obtained is

where x =	 t THs, and E = TH RT. Hence, for the GLRT-RR, the effective

SNR is written as

By performing a similar normalization as that done in equation (5.33), SNR-RR eff

is written as

(5.36)
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where the SNR bias, rb , is defined as

(5.37)

For a N x r subspace transformation matrix T with r < N, we have tHE-¹t <

sH R-¹ s. Hence, the SNR bias takes on values 0 < rb < 1. This bias in the SNR is

clue to subspace transformation. Having defined the SNR expression, SNR eff , as in

equation (5.36), the PD expression for a given value of r1 can be written as a function

of SNReff  f as

(5.38)

where Gk (y) is the incomplete Gamma function and is defined as

(5.39)

However, in order to get the final expression for PD, the expression in equation (5.38)

has to be averaged over the distribution of r 1 . The loss factor r 1 was derived in [10]

for the GLRT and can be written for the GLRT-RR by replacing the vectors and

matrices in the expression by their transformed counterparts and is given as

(5.40)

'W here

where xB, x(k)B for k = 1,-••,K, and EBB are obtained from x, x(k) for k

1,• • • ,K, and 	 , respectively, by the following partitioning
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All vectors appearing in equation (5.41) have complex Gaussian distributions

and BB has a complex Wishart distribution. As shown in Appendix B, the quantity

B has a multivariate central F-distribution (Hotelling's T2 ) distribution [351 given

as

(5.45)

Then a simple change of variables yields the distribution of r 1 as

(5.46)

The probability of detection PD can then be expressed as

giving the expression

(5.48)

where

Hk(y)	 Gk(rly).frl (rl) dn.	 (5.49)

If the desired signal is not present, where 1b1 ² = 0, the expression for PD gives back

Pfa . This expression is similar to Kelly's PD expression for the GLRT except that

the subspace transformation rank r replaces the vector dimension N and the SNR.

bias ph enters the expression. The expression for PD is a function of SNReff which

in turn is a function of the specific subspace transformation matrix T applied to

the data. Hence, this expression can be used to evaluate the performance of the

GLRT-RR using different transformations.

5.3 A Generalized Likelihood Ratio Test with Diagonal Loading
(GLRT-LSMI)

This section will derive expressions for the probability of false alarm and probability

of detection using the generalized likelihood ratio test that was defined by Kelly
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in [10] under the condition that the sample covariance matrix is diagonally loaded

(GLRT-LSMI) in order to improve the conditioning of the eigenvalues.

The maximum likelihood estimate of the covariance matrix is highly dependent

on the size of the secondary data set K, with the condition that K > N for the

estimate to be non-singular. In order to improve the conditioning of the sample

covariance matrix, loading is applied and the resulting estimate is

h-1

where the scalar α is the loading factor and I is the identity matrix. The subscript

denotes diagonal loading. The GLRT-LSMI can then be written in a similar way to

the GLRT in equation (5.10) as

(5.51)

where 	 is a threshold that satisfies the false alarm rate Pfa . The matrix S is related

to Rd as

This test will be shown to be CFAR where the Pia will be shown to be independent

of the true covariance matrix.

5.3.1 Analysis and Simplification of the Likelihood Ratio

In this section, the likelihood ratio of GLRT-LSMI in equation (5.51) is simplified so

that it would be possible to find its distribution under the two hypotheses H o and

H.

A new matrix Z is defined as a N x K matrix whose columns are made up of

the statistically independent secondary data vectors z(k) for k =1,•••,K. Under
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hypothesis H ¹ , z(k) for k =	 , K are distributed as CN (0, R). Hence, Z is a

matrix whose columns are distributed as CN (0, R). Using this definition of matrix

Z, matrix S defined in equation (5.52) is rewritten as

The true covariance matrix R is assumed to obey the low rank model

where Q r is the N x r matrix of principal eigenvectors, Λ,. is the 7- x r diagonal

matrix of principal eigenvalues, o is the variance of the white noise, and Q, is the

N x p matrix of noise eigenvectors, where p = N — r. The inverse of R is give as

As was the case in Chapter 4, the assumption of high interference power relative to

the noise power is made such that

(5.56)

where λmin  in the smallest element of the diagonal matrix A. Using this assumption

on the interference power, the inverse of the covariance matrix can be written as

where o(1/7 / ) for / = 1, • • • ,r terms were neglected to obtain the last expression,

where o(3) refers to terms in the order of 0. Using equation (5.57), R -1² is expressed

as

under the same assumption of high interference power. Setting the noise power σ²v

equal to unity, equations (5.57) and (5.58) are written as

(5.59)
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and

(5.60)

The inverse of matrix S in equation (5.53) can be written as

(5.61)

where matrix 2 is defined as

(5.62)

which is a matrix whose columns are zero mean Gaussian vectors with a covariance

matrix I and hence the columns are distributed as CN(0,I) (Appendix A). Substi-

tuting equations (5.59) and (5.60) into equation (5.61) yields

(5.63)

where the matrix C is defined as

Substituting equation (5.63) into the GLRT-LSMI expression in equation (5.51), the

test can be written as

To further simplify the GLRT-LSMI expression, an expression for the quantity

QH CQv using the definition of matrix C is obtained next. From equation (5.64)



QvQHvC+ 	 ZZHC =I.
v

(5.66)

and by pre-multiplying with C - `, we get

79

Using the fact that for the two orthogonal subspaces 	 and Q„, it is true that

QvQHv  Q,-(4 / = I, equation (5.66) can be written as

(5.68)

By pre-multiplying equation (5.68) by Q Hr and Q, and by using the orthogonality

between the two subspaces, the following two equations are obtained

Solving these two equations simultaneously for QHvC, the following equation is

obtained

where matrices A and B are of sizes K x (N — r) and K x r, respectively. They are

given as

A = ZHQv

B = ZHQ r .	 (5.71)

Since the columns of matrix Z are distributed as CN (0,I) and since the two

subspaces Qv and Qr are orthogonal, then the two matrices A and B are statis-

tically independent. Moreover, the columns of each matrix A and B are independent

and distributed as CN (0,I) (see Appendix A).
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The expression [I —B(BHB)-¹BH] represents an idempotent matrix [34], and

hence can be expressed as

where matrix D is of dimension K x (K — r) and is orthogonal to the matrix

B(BH B) -¹ / ² where D H B(B HB) -¹ / ² = 0. Using the definition in equation (5.72),

7111 is

For a large loading factor a relative to the unity elements of the identity matrix

appearing in right hand side of equation (5.73), where

(5.74)

equation (5.73) can be written as

where o(1/Kα) terms were neglected to obtain the last equation. Using the

expression for QC and recalling the GLRT-LSMI test expression in equation

(5.65), the matrix QHvCQ„ is written as

since the two subspaces Q,. and Q.v are orthogonal. Substituting equation (5.76) into

equation (5.65), the GLRT-LSMI is written as

(5.77)
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To further simplify this expression, the (N — r) x 1 deterministic vector t is defined

In addition, the following definition is made

This definition will be useful later. Using this definition of vector t, the GLRT-LSMI

is written as

(5.80)

The normalized signal vector t is then replaced by t where

t

 = Ut	 (5.81)

where the matrix U is a unitary matrix that transforms the vector t into t. By

choosing a matrix U whose first row is the conjugate transpose (hermitian) of vector

t, and whose other rows are the conjugate transpose of unit vectors orthogonal to t,

the new signal vector t can be chosen to be a vector whose first element is unity and

all other elements are zero. The vector t is written as

(5.82)

The N x 1 primary vector z in the test statistic in equation (5.80) is partitioned in

a similar way to vector t and is written as

(5.83)
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where zA is a scalar and zB is a (N — 1) x 1 vector. Using these definitions in (5.82)

and (5.83), the GLRT-LSMI is written as

(5.84)

where the vector x is defined in terms of the primary vector z as

(5.85)

Under hypothesis H o , the original primary vector z is distributed as CN(0,R),

hence vector x is distributed as CN(0, QHvRQv) or equivalently CN(0, I) where R

is defined in terms of the subspaces in equation (5.54). Under hypothesis H I , the

original primary vector z is distributed as CN (bs,I) and hence, vector x is distributed

as CN(bt, I) where t is defined in equation (5.82).

The test ratio can be further simplified by noticing that

Using this last equality and by re-arranging the ratio in equation (5.84), the

GLRT- LSMI can he finally written as

(5.87)

As was already shown, the elements of vector x are independent under both

hypotheses. This is important because under this condition, the numerator and

denominator of the GLRT-LSMI in equation (5.87) are independent. This makes
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the statistical properties of the test easier to analyze. In the next section, the test

statistic is analyzed under both hypotheses and expressions for Para and PD are

derived.

5.3.2 Derivation of Probabilities of False Alarm and Detection

Define the two random variables ζ and as

(5.91)

In order to obtain the distribution of 7], the random variables and are characterized

first. The distribution of 7) is considered under each hypothesis separately. Under

hypothesis Ho , the (N — 7-) x 1 vector x is distributed as CN(0,I), and hence, the

random variable xA  is distributed as CN(0, 1) and the (N — - 1) X 1 vector xB as

CN(0, I). The random variable in equation (5.89) then has a central chi-squared

distribution with two degrees of freedom given as

(5.9 2)

The random variable in equation (5.90) has a central chi-squared distribution with

2(N — r — 1) degrees of freedom given as

(5.93)

Since ζ and 	 are independent, the distribution of 7/ under hypothesis H o can. be

found (see Appendix C) and is given as
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The probability of false alarm can then found by integrating the distribution of the

test statistic under hypothesis Ho given in equation (5.94) above the threshold y,

i.e.,

where u is an integration variable. This integral can be solved in closed form and

Pfa -can be written as

The probability of false alarm expression is a function of dimensional parameters as

well as the loading factor. It is not a function of the covariance matrix. Hence, the

GLRT-LSMI in equation (5.87) represents a CFAR test;.

At this point, the GLRT- LSMI statistic in equation (5.87) is considered under

hypothesis H ¹ where a signal is assumed to be present in order to find an expression

for the probability of detection PD.

The random variables and are defined as in equations (5.89) and (5.90).

Under hypothesis H ¹ , the (N — r) x 1 vector x is distributed as CN(bt,I). Hence

the random variable xA is distributed as CN (b, 1) and the (N — 7' - 1) X 1 vector

xB is distributed as CN(0, I) due to the definition of the signal vector in equation

(5.82) . The random variable then has a non-central chi-squared distribution with

two degrees of freedom given as

where S i is its non-centrality parameter given a.s
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The random variable has a central chi-squared distribution with 2(N — — 1)

degrees of freedom given as

(5.99)

The generalized hypergeometric function 0 F¹ is expressed as [31]

(5.100)

where Г(n + 1) = n!.

Using the distributions of ç and in equations (5.97) and (5.99), respectively,

and recalling that the GLRT-LSMI is given as

(5.101)

the distribution of 77 can be found (see Appendix I)) and is given as

The probability of detection can then be found by integrating the distribution of the

test statistic under hypothesis H i given in equation (5.102) above the threshold 7,

i.e.,

PD = f du (5.103)
-y

where the appropriate threshold 7 is set using the Pfa expression given in equation

(5.96). The integral in equation (5.103) cannot be solved in closed form and hence is

numerically evaluated to give PD The distributions of the test statistic under both

hypotheses are verified by simulations and are shown in Figures 5.1 and 5.2. The

figures were obtained using the following parameters: N 32, K = 64, r = 4, and

a diagonal loading factor of 10 dB. In Figure 5.2, the SNR was set to 10 dB.
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5.4 Numerical Results and Discussion

The analysis carried out in this chapter aimed at investigating two modified forms

of the generalized likelihood ratio test (Kelly's GLRT) and at. deriving expressions

for their respective probabilities of false alarm and detection. The two detectors are

the GLRT-RR and GLRT-LSMI. Both of these detectors were shown to be CFAR

where their probability of false alarm expressions are not functions of the unknown

covariance matrix. Kelly's GLRT detector was shown to be highly dependent on the

size of the sample support used to estimate the unknown covariance matrix. The

detector suffers a SNR loss clue to this estimation. The need to reduce this SNR loss is

the motivation behind a subspace-based GLRT; GLRT-RR, and a diagonally loaded

sample covariance matrix GLRT; GLRT-LSMI. The former detector, because of the

reduced dimension, requires substantially less SNR for an equivalent performance

when compared with the GLRT. There is a penalty however. The GLRT-RR suffers

an additional transformation dependent loss (bias) in the SNR as a direct result on

the subspace transformation. This SNR bias can be controlled and minimized by

designing optimum subspace transformations.

Another direction that was taken to reduce the SNR loss clue to estimation is

the use of diagonal loading of the covariance matrix. As was explained in Chapter 4,

the conditioning of the eigenvalues of the estimated covariance matrix is improved

by applying diagonal loading. Widely spread eigenvalues are equivalent to having

high sidelobes in the antenna. pattern. Hence, diagonal loading emulates the effect

of using a larger size of sample support and hence improves the performance of the

sample support dependent GLRT.

The performance of the two detectors is shown using the probability of

detection. The results are compared with the optimum matched filter (MF) where

the covariance matrix is known a prior and with the CFAR version of the SMI

detector (AMF). The MF and AMF detectors should provide the upper and lower
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bounds for most of the SNR interval. The MF decision statistic is

The optimum weight vector is given as w = R's. Hence, the decision statistic can

be written as

Under hypothesis H o , the primary vector z is distributed as CN (0, R) and hence

the quantity sHR-¹z is distributed as CN (0, sHR-¹s). By normalizing the steering

vector such that sHR-¹s 1, the test quantity sHR-¹z  is distributed as CN (0, 1).

Hence, η will have a central chi-squared distribution with two degrees of freedom

and Pfa will be given as

Pfa =	 (5.106)

Under hypothesis H ¹ , 77 will have a non-central chi-squared distribution with two

degrees of freedom and PD will be given as

(5.107)

The Pfa and PD expressions for the AMF detector are given in [37] (equations 32

and 37). The model assumes a complex Gaussian primary and secondary vectors

of size N = 32. The detectors will be analyzed for different sample support sizes

K. The clutter is modeled to have a complex-valued Gaussian distribution, with

zero mean, and variance equal to the clutter-to-noise ratio (CNR) of 1.0 dB. The

clutter returns are assumed to be uncorrelated with each other and also uncorrelated

between snapshots. The interference subspace has a rank of 4. Probability of false

alarm is set to 10 for all detectors.

The PD is plotted in Figure 5.3 for Kelly's GLRT using a sample support sizes

of K = 40, 64, and 100 using the PD expression in [10]. It is shown that when K
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becomes close to N, the GLRT performance quickly deteriorates. The performance

of the GLRT is highly dependent on K. For comparison, Figures 5.4 and 5.5 show

the same plot for GLRT-RR and GLRT-LSMI. In Figure 5.4, a DCT transformation

matrix of size r x N with r = 4 is applied to the data prior to detection and

PD is plotted using equation (5.48). It is shown that even when K gets close to

N, substantially less SNR is required for an equivalent performance to the GLRT.

Figure 5.5 shows a similar result for the GLRT-LSMI. In this figure, equation (5.103)

is used to plot the PD for a large diagonal loading factor. The GLRT-LSMI behaves

similar to the GLRT-RR. For close comparison, Figures 5.6, 5.7, and 5.8 show the

PD curves for the AMF, GLRT, GLRT-RR using a DFT transformation of rank 4,

GLRT-RR using a DCT transformation of rank 4, GLRT-LSMI with c=15 dB, and

MF for K = 40, 64, and 100, respectively. The PD for the AMF was plotted using the

expression in :37]. As shown in the figures, the MF is the upper performance bound

for all the detectors since the covariance matrix is known a priori. As K becomes

very large, all the detectors approach the 114F. However, since the covariance matrix is

unknown and K is limited, the GLRT is not the optimal solution and is outperformed

by sub-optimal solutions such as the GLRT-RR and GLRT-LSMI.
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Figure 5.1 Distribution of the GLRT-LSMI test statistic under hypothesis Ho.
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Figure 5.2 Distribution of the GLRT-LSMI test statistic under hypothesis H I .
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Figure 5.3 Probability of detection curves for Kelly's GMT detector for different
sample support K.
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Figure 5.4 Probability of detection curves for GLRT-RR with DCT for different
sample support K.

Figure 5.5 Probability of detection curves for GLRT-LSMI for different sample
support K.



Figure 5.6 Comparison of methods for N=32 and K=40.
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Figure 5.7 Comparison of methods for N=32 and K=64.



Figure 5.8 Comparison of methods for N=32 and K=100.
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CHAPTER 6

CONCLUSIONS

In this dissertation, the high pulse repetition frequency (HPRF) airborne radar

problem was analyzed and the application of innovative reduced-rank space time

adaptive processing (STAP) techniques for clutter suppression in radar systems

employing a HPRF waveform was investigated and discussed. The performance of the

diagonally loaded sample matrix inversion (L-SMI) technique for clutter suppression

in an adaptive array was derived and analyzed. Also, two constant false alarm

rate ((TAR) detectors based on the generalized likelihood ratio (GLR) principle for

signal detection in noise with unknown covariance matrix were derived and their

performance was investigated.

In Chapter 3, the HPRF airborne radar problem was investigated. The appli-

cation of STAP techniques to suppress the interference effects of ground clutter in

HPRF radar were discussed. It was shown that reduced-rank STAP techniques are

necessary due to reduced sample support resulting in a HPRF radar environment due

to range ambiguous nature of the HPRF waveform. Three STAP techniques were

applied to the clutter suppressing adaptive array and were compared; pseudoinverse

sample matrix inversion (P-SMI), L-SMI, and eigencanceler. The three techniques

were compared through the performance measures of conditioned signal-to-colored

noise ratio (CSNR) and the probability of detection. It was shown that the eigen-

canceler along with the L-SMI techniques, both members of the class of reduced-rank

techniques, perform well in clutter suppression where as P-SMI does not perform

satisfactorily. It was also shown that due to the high output CSNR, reduced-rank

techniques show better robustness against calibration errors in practical systems.

Reduced-rank techniques are well suited to be used for clutter suppression in radar

systems employing the HPRF waveform because of the reduced sample support where

they require less degrees of freedom.

94
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In Chapter 4, one of the previously mentioned STAP techniques, L-SMI, was

closely investigated. An expression for the probability distribution of the CSNR for

this technique was derived. The CSNR is an effective performance measure where it

shows the effectiveness of the array in suppressing clutter and interferences. Through

the distribution of the CSNR, the L-SMI technique was shown to outperform the

traditional sample matrix inversion (SMI) technique for low rank interference. It was

shown that L-SMI requires a substantially smaller size of size of sample support for

an equivalent performance as that of the SMI. Hence, although a full rank technique

that requires the inversion of the full size covariance matrix, L-SMI performs similar

to reduced-rank techniques in terms of the required sample support. Diagonal

loading was shown to enhance the conditioning of the estimated covariance matrix

by reducing the spread of the noise eigenvalues of the matrix.

In Chapter 5, two GLR detectors exhibiting the desirable property of being

CFAR were derived and analyzed. The first detector is a subspace-based GLR

detector based on Kelly's generalized likelihood ratio test (GLRT) detector. It was

shown that, because of the reduced dimension, the subspace-based detector requires

substantially less signal-to-noise ratio (SNR) for an equivalent performance when

compared with the GLRT. As a trade off for this gain in SNR, the subspace-based

detector suffers an additional subspace transformation dependent loss in the SNR

which is called a SNR bias. An expression for the probability of detection was

derived and was shown to be a function of the specific subspace transformation

used. This detector was shown to outperform the GLRT detector and to be less

dependent on the size of the sample support. The second detector is a diagonally

loaded sample matrix inversion GLR detector. This detector is a modification of the

GLRT where the sample covariance matrix is diagonally loaded prior to detection.

The resulting CFAR detector was shown to also require substantially less SNR for an

equivalent performance when compared with the GLRT. This is due to the fact that
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the diagonal loading improves the conditioning of the sample covariance matrix, a

criterion on which the performance of the GLRT is highly dependent. This detector

was shown to outperform the GLRT and to also be less dependent on the size of the

sample support similar to the subspace-based GLR detector. Both detectors, the

subspace-based GLR detector and the diagonally loaded sample covariance matrix

GLR detector, outperform the GLRT for as long as the covariance matrix is unknown

and has to be estimated from a limited number of samples.

Most of the work in this dissertation is based on investigating the application

and performance of reduced-rank techniques for clutter and interference cancellation

and signal detection. It was shown that when the covariance matrix is unknown,

sub-optimal adaptive array STAP techniques such as the reduced-rank techniques,

outperform classical techniques. Reduced-rank techniques were shown to be well-

suited for applications with limited sample support. Moreover, these techniques

result in reduced system's complexity. Finally, desired signal detectors show much

improved performance when based on reduced-rank techniques.



APPENDIX A

SOME PROPERTIES OF MULTIVARIATE NORMAL
DISTRIBUTION

Let x he a N-dimensional vector of independent complex normal random variables

with mean E{x} = and covariance matrix E. Hence the vector x is distributed as

CN E). Then for any K x N matrix C, the matrix Cx will have the following

distribution [43]

A.1 Whitening Transformation

Consider a matrix X of dimension N x K with its columns made up of statistically

independent N-dimensional complex normally distributed vectors. The columns of

matrix X are xk for k = 1, • • • , K and are distributed as CN(xk, , E). Since the

covariance matrix E is positive definite, a positive definite square root matrix E 1 / ²

can he defined. The inverse of the matrix E h½  is taken to obtain the matrix E-¹/² •

Applying a whitening transformation to matrix X such that

defines a new matrix Z. The columns of this new matrix Z, by the property given

in equation (A.1), will therefore be distributed as CN (E-¹/²xk,I)

A.2 Distribution of the Matrix A = Z H Q

Consider the matrix Z which is N x K whose columns z k for k = 1 , • • , K are

independent and normally distributed as CN (0,4 Also consider the two deter-

ministic matrices Q1 and Q² of dimensions N x 7' and N x N — r, respectively, such

that

97



Then the two matrices

are statistically independent. The columns of each matrix are independent and are

distributed as CN (0, I).

Proof: Matrices A and B are linear combinations of the columns of normally

distributed matrix. Their expectations are:
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The cross-correlation of the two matrices is

A.3 Distribution of the Vector v = QHc

For a random matrix Q of dimension N x K with the requirement that Q HQ = I

and an arbitrary distribution and which is statistically independent of the CN (0, I)
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vector c, the product vector

(A.9)

is distributed as CN (0, I) and is statistically independent of matrix Q.

Proof: The joint PDF of v and Q is

(A.10)

where fvIQ  is the PDF of v given Q. Then the PDF of v as

If v and Q are statistically independent

and

The vector (vIQ) = Q H c is a linear combination of a complex normal vector

and is itself complex normal with a PDF, Ф v . Then (A.11) is written as

Then the two vectors v and (v IQ) are the same and hence, vector v is statis-

tically independent of matrix Q.



APPENDIX B

DISTRIBUTION OF THE QUANTITY XH(ZZ H)-¹X

Let X be a N x P complex matrix whose N-dimensional columns x k for k 1, • • , P,

are distributed as CN (xk, E). Also let Z be a N x K complex matrix whose N-

dimensional columns zk for k are distributed as CN (0, E) with the

condition that K > N and P < N. Then the quantity

= XH(ZZH)-¹X 	 K > N, P < N 	 (B.1)

has a multivariate F-distribution [35] given as

(B.2)

The ¹ F¹ is the confluent hypergeometric function [31] and defined as

If instead of the N x P matrix X, the Cllr (0, E) vector x is used in (B.1.), then.

the distribution of 77 becomes a special case of the F-distribution which is called the

Hotelling's T ² distribution [44].

In the case where x is a vector of dimension N x 1 with an expectation E{X}

0 such that x is CN (0, I) and matrix Z is CN(0, I), the distribution of the quantity
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is Hotelling's r distribution given as
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(B.8)



APPENDIX C

DERIVATION OF THE DISTRIBUTION OF THE TEST STATISTIC
UNDER HYPOTHESIS Ho, fη(ηlH0)

The random variables ζ and are defined as

The two random variables are independent and they have central chi-squared clistri

butions which are given as

(C.3)

(C.4)

Define the random variable 0 = Ka+ By performing a. transformation of variables

on the distribution given in (C.4), the distribution of 0 is given as

The test statistic 71 is written as

where the two random variables ç and 0 are independent and their distributions are

given in (C.4) and (C.5) respectively. At this point, the distribution of i is sought.

Assume b = a, where a is a scalar, then 77 = C/a is a scaled version of C. Therefore
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The distribution of 7) is therefore

where u is an integration variable. Using the distribution of and φ in (CA) and

(C.5), the distribution of 11 is written as

(C.11)

This integral can be solved in closed form to give



(D.])

(1).2)

xA 1²

= XXB

APPENDIX D

DERIVATION OF THE DISTRIBUTION OF THE TEST STATISTIC
UNDER HYPOTHESIS H¹, fη,(ηIH1)

The two independent random variables and are defined as

The random variable C has a non-central chi-squared distribution given as

where S ¹ is its non-centrality parameter and is given as

The random variable has a central chi-squared distribution given as

(115)

Define the random variable 0 = K 	 By performing a transformation of variables

on the distribution given in (D.5), the distribution of 'O is given as

(1).6)

The test statistic n is written as

77= —	 (D.7)

where the two random variables C and φ are independent and their distributions are

given in (113) and (D.6) respectively. At this point, the distribution of 17 is sought.

Assume = a, where a is a scalar, then 7/ = ζ/a is a scaled version of C. Therefore

f„(01) 	 a) =lajfζ(aηIφ = a). 	 (118)
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The distribution of 7) is therefore

where u is an integration variable. Using the distribution of φ  in (C.4) and

(C.5), the distribution of 77 is written as

(D.10)

and equivalently as

e-δ¹

f7)( 711 111) = Г(N - 7, 	1) f co 	0F¹ (1; δ1ηu)e-ηu. ( u — Kα)N-r- ²N

(D.11)
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