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ABSTRACT

ANALYSIS OF CLUSTERING ALGORITHMS FOR SPIKE SORTING OF
MULTIUNIT EXTRACELLULAR RECORDINGS

by
Jayesh S Rege

Various techniques have been considered in the past to identify distinct spike shapes

from mulitunit extracellular recording. These techniques involve adaptive filtering

techniques or template matching techniques or hierarchical clustering techniques.

In this investigation, we have used Principal Component Analysis followed by various

clustering techniques to identify distinct spike shapes. The amplitude filter is used to

separate spikes from background neuronal activity. The correlation matrix of the

spike data is used to compute principal component wave forms. Each spike is thus

represented by the cOefficients of principal components. Then, We have used

agglomorative hierarchical clustering algorithm to perform the initial clustering of the

data set. The clustering results are then refined by the application of the Estimation

Maximization Algorithm. The Bayesian Information Criteria(BIC) is used to find out

best fit of the mOdel to the data set.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to analyze various clustering techniques for spike

sorting of neuronal data. Over the years many techniques have been developed to

perform the spike sorting of single unit recording. We wish to extend these algorithms

and apply them to multiunit recording.

Our nervous system contains millions of interconnected neurons. Each neuron

consists of long tapering structure called axon that originates from its cell membrane.

These axons then terminate in to a mesh or tree of 'dendrites' which in turn are

connected to cell membrane of the next neuron. Each neuron acts like an integrator of

the nerve impulse received at its dendrites and produces an output at its axons, The

nerve impulse from one neuron to another consists of electric signal in the form of a

voltage spike. This neuronal activity can be collected by using the multielectrode

recording from the brain. Since the recording is done using extracellular electrodes,

the recording contains noise as well as the overlapped traces of the individual

neuronal activity, We wish to apply various clustering techniques to separate and

identify the activity of individual neurons. We will also use Principal Component

Analysis to perform the feature analysis, The statistical analysis is done using the

hierarchical clustering algorithm and the estimation maximization (EM) algorithm.
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1.2 Background Information

Advances in neurophysiology have enabled us to get a glimpse of the working of the

brain from the study of neurons. We now know that neurons interact with each other

by means of bursts of voltage spikes which is known as action potential. If we can

understand this language of neurons we might be able to understand the behavior of

the nervous system as a whole. Until a few years ago it was thought impossible to

understand the overall working of the brain from studying single neurons. However

many new discoveries in recent years in the field of neurophysiology have confirmed

the fact that the understanding of the working of the basic building block of the

nervous system i.e. the 'single neuron' is essential to the understanding of the overall

working of the brain.

It is believed that if we can accurately measure and understand the electrical

activity amongst the neuronal population it will greatly enhance our understanding of

the brain. Our brain is one of the most complex and fastest distributed computing

machines ever designed. This is possible because of the ability of our brain to perform

fast parallel computation and encoding of a distributed representation of the data.

Although the activity mechanism of each individual neuron may be simple, it is the

temporal activity of multiple neurons in the neuronal circuitry that gives rise to

immense robustness and speed of our nervous system, Hence, in recent years

considerable attention has been focused on the recording and analyzing of this

neuronal activity. It is hoped that such understanding will provide much needed

insight into how various neurons interact amongst each other. In order to correlate the

activities of multiple neurons we need to collect the firing patterns from multiple



neuons and study their relationships. We can measure the change in voltage in an

are surrounding the neuron by placing an electrode near the cell. Such recording will

contain the sum total of signals from the activity of various neurons. We need to

separate the individual spikes and assign them to individual neurons to identify the

global pattern of the behavior.



CHAPTER 2

ORIGIN OF THE ACTION POTENTIAL

In this chapter we will look at the physiology of how and why neurons produce action

potentials. We will review various techniques for measuring electrical activity from

cells. We will also describe the data that we are using in these experiments. In the

final section we will enumerate various sources of error that can occur during

measurement of the action potential.

2.1 Why Do Neurons Produce Action Potentials?

Understanding how neurons produce action potentials was a major research problem

until Hodgkin and Huxley described the concept of gated ionic channels in 1952. The

cell membrane of the neuron consists of a bilayer of phospholipid molecules. This

lipid bilayer effectively isolates the cytoplasm of the neuron from its surroundings.

The cell membrane also consists of peculiar arrangements of the protein molecules

across its surface. These protein molecules create ionic channels that span the cell

membrane. Ionic channels effectively allow only certain ions to pass through them

while blocking the movement of other types of ions. Thus sodium channels will allow

the movement of only Na+ ions and block K+ ions. These channels are also gated in

the sense that they open and close depending on the electric potential gradient across

the cell membrane. At equilibrium, the cell has a large concentration of K + inside,

while the surroundings of the cell includes a large concentration of Na ions.

HOwever, the diffusion gradient is offset by the electrical field across the cell

4
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membrane and, therefore, there is no net current across this membrane. The potential

difference between the inside and outside of the cell membrane is close to the ionic

equilibrium potential of IC which is around -70 mV.

During the action potential the sodium-gated channels open and cause the

influx of Na+ ions from the surroundings of the neuron. This makes inside of the cell

positive and takes it to the ionic equilibrium potential of the Na + ions. This process is

known as the depolarization of the cell. Thus, the rising edge of the action potential is

caused by the depolarization of the cell . After the initial influx of Na + ions, the Na+

channels start closing and at the same time the K + channels start opening. This causes

the efflux of the K+ ions. This process is known as the hyperpolarization of cell and

will take the cell back to its resting potential. In a recording this will be seen as falling

edge of the action potential. Due to the gating mechanism it is difficult for a neuron to

produce the next action potential before a certain interval of the time. This is called as

the refractory period and it has a duration of about 2 ms.

2.2 Data Collection

Initial attempts at recording neuronal activity were done using single

electrode.(Abeles and Goldstein, 1977). The experimenter would place an electrode

amongst the nerve cells or fibers being studied. The electrode has a low resistance and

is capable of measuring micro-voltage changes in the potential of the surrounding

environment. The electrical activity recorded consists of nerve spikes with a duration

of 1 ms and peak-to-peak amplitude of less than 1 mV. The measurement also

includes embedded background noise. Background noise is a white noise introduced
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by the measuring instrument and voltage variations due to background activity of the

neuronal population. If the signal to noise ratio of the waveform is good enough, then

the waveform could be converted into series of spikes by using a threshold detector.

The threshold detector could be a simple shmitt trigger, which can be set at a

particular threshold voltage.

However, since cells in hippocampus fire action potential in rapid bursts the shape

and amplitude of these spikes can change to a certain extent. Such changes in spike

shape can lead to identification of 2 or more units from the activity of a single cell.

In order to overcome such problems, multiple tip electrode recording

techniques such as tetrode was developed, The tetrode(Recce and O'Keefe 1989)

consist of twisted bundles of four strands of wire electrodes. The tips of the electrodes

are slightly displaced by about 20 p m. The lower end of the wire strands is cut at a

slight angle with sharp scissors to form a tip with four exposed surfaces. The upper

ends of the electrodes are electrically attached to measuring interments. Theoretically,

tetrode can uniquely identify the anatomical position of the neuron in space.

In the case of a tetrode even if there is a slight change in spike waveform on the 1 st

electrode, the corresponding spike on the 2 nd electrode also changes, This however

still maintains the relative proportionality of the spike waveforms. It has also been

found experimentally [6] that the tetrode improves the number of neuronal units

identified from the waveform. Figure 2.1 shows sample voltage waveform measured

across various electrodes of a tetrode.
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Figure 2.1 Action potential measured at various electrodes of tetrode.

2.3 Spike Detection and Types of Detection Errors

The first step in the spike detection is separating spikes from the data collected at the

tetrode. Consider the figure 2.2(a), which shows a general snapshot of the signal

collected at one of the electrodes of a tetrode. We need to separate spikes from the

background activity of neurons.

Figure 2.2 shows the original waveform and identified spikes from the data.

We define occurrence of a spike when voltage at any of the electrodes crosses a fixed

threshold value. Thus it is inherent in our argument that an estimate of presence of

spike activity is susceptible to variations in this threshold value. The number of

detected spikes will increase if we lower the threshold value but that will increase the

number of false alarms. A false alarm occurs when we identify a spike when it is

actually noise. On the other hand if we increase this threshold value we might reduce

the number of false alarms but it will increase the probability of a false dismissal. A

false dismissal occurs when we classify a valid spike as noise.
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Figure 2.2 a) Snapshot of original data waveform collected on one of the electrodes
of the tetrode. b) spikes identified from data.
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Other sources of errors in detection of spike activity include:

1. Cross-electrode stray capacitance.

2. Variations in the ground potential.

3. Background activity of the neuronal population.

4. Overlapping of the spikes from more than one neuron.

5. Drift in the anatomical position of the electrode.

The capacitance of electrode tips to solution is several times bigger than the cross-

electrode capacitance. Hence we can assume that the cross-electrode stray capacitance

is very low. It has been found that the coefficient of correlation across the channels of

two tetrodes placed near each other is very low[6]. However the coefficient of

correlation across the channels of same tetrode is very high. Hence we can assume

that the noise introduced by variations of the ground potential is very small. The

remaining sources of errors will result in noise outliers and will be removed by the

clustering algorithm.

One of the simplest methods for spike identification is amplitude filter. In its

simplest form an amplitude filter consists of a Schmitt trigger and produces a spike if

the maximum amplitude of the spike lies between the maximum and minimum of the

filter window. We can modify this simplest Schmitt trigger circuitry to take into

account the waveform on all four of the electrodes. In case of a tetrode, an amplitude

filter finds a spike if the spike amplitude crosses the threshold at any one of the four

electrodes, The threshold selected could be characteristic of the background process

or it could also be set by the user. This simple scheme gives rise to hypercubical

decision surface. However due to cross channel correlation, the noise spikes are also
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correlated across various channels of the tetrode. Hence more suitable approach[15]

could be to use a hyperellipsoidal decision surface to identify spikes.

Figure 2.3 Use of amplitude filter to identify spikes. 19H = spike height and O, is
Spike width.

A limitation to the performance of the amplitude filter is that, in most experimental

situations, the spike being filtered is immersed in noise and this will cause peak

amplitude to fluctuate from spike to spike. Also occasionally noise amplitude will

cross the threshold for spike detection and will result in a false spike detection. The

amplitude filter is also susceptible to small movements of electrodes or to slight

changes in the spike generating mechanism of neurons. Also since amplitude filter is
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checking for height of the spike, it is highly sensitive to noise at this particular instant

of time rather than noise spread over the total duration of spike.



CHAPTER 3

FEATURE ANALYSIS

The process of classification of spikes from the recorded signal mainly involves

following phases.

I. Detection of the spikes from recording.

2. Feature Extraction: Estimation of shapes of various spike wave forms.

3. Feature Analysis(Clustering): Establishment of decision criteria for classification,

based upon the differences in shapes of spikes. Testing of each spike to identify

the neuronal group to which the spike belongs.

In chapter 2, we considered the problem of the detection of spikes from measured

voltage wave form. In this chapter we will consider the problem of feature analysis

and various techniques to represent spike data. During feature analysis we will

represent each spike shape to facilitate clustering of the spike shapes in the next

phase.

3.1 Spike Shape Characteristics

The goal of feature extraction process is to reduce original data by measuring certain

properties of data that can be useful in the final classification of data. Over the years

various attempts to classify spike wave form have used characteristics of shape of the

spike wave fOrm. It is assumed that the spikes from different neurons will have

different spike shapes. We can use this variability of spike shape from one neuron to

12
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other to classify various spikes. The question now arises is how do we compare two

spike shapes?

One approach is to measure the spike height or the maximum amplitude of spike

wave form. However the amplitude of the spike wave form is susceptible to

fluctuations due to background activity as well as due to noise introduced by

measuring instrument. Some of the other characteristics of the spike shape that can be

considered are width of the spike or the slope of the spike wave form. However all

these features are susceptible to noise and are indirectly dependent on each other. The

positive overlap of spikes from two or more neurons will distort the resultant spike

measured at electrodes and makes identification of individual spike shapes even more

difficult. Hence we need some kind of additional independent features in order to

enrich our feature vector,

The other approach is using Principal Component Analysis to represent each

spike shape. We will discuss PCA and its advantages in the following section.

3.2 Principle Component Analysis

It is clear from above discussion that in order to maximize our chances of

classification we need to use full spike wave form characteristics. However

processing of full wave form characteristics increases computational complexity and

memory requirements.

One of the more popular ways to reduce wave form is by using the fourier

transformation. Processing of spike wave form in frequency domain results in a lot of

high frequency components with low amplitude[1]. Hence, number of cOefficients
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required to represent original wave form will exceed number of data points. This will

anyway make it difficult to differentiate individual spike shapes from each other.

Hence we need to look at alternative techniques to represent spike wave form which

will reduce the number of coefficients and at the same time will represent the signal

to a high degree of accuracy. Here we consider Principal Component Analysis

technique for dimension reduction of the original signal.

Consider the linear representation of set of N data wave forms Sn (t) where n ranges

from 1 to N.

Each fm (T) is an individual basic wave form and c„„, is the coefficient of individual

wave form. There are M basic wave forms and fm(T) represents n one of them,

Each of these basic wave forms are orthonormal to all other basic wave fOrms, Using

these basic wave forms we can represent the original signal by using

m x n coefficients as opposed to n x n data points.

We need to determine these basic wave forms and the corresponding coefficients

in such a way that the residual least-mean-square error is least. Our goal is to find

series of orthonormal components such that each component is the best fit for the

residual signal. Thus the first basic wave fi t, is the least mean square error fit of a

single wave form to the entire data set. The second basic wave is orthonormal to the

first one and is least-mean-square fit to the residual from the fit of the first wave. The

process is continued until the Si(t) data signal space is specified by the set of basic

wave forms to a sufficient degree of accuracy.
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In order to compute the Principle Components of the data we use correlation matrix

R of the signal. Let S be the signal matrix of N signals each with T dimensions. Let

C be the PCA coefficients. Then

where C is the N by M matrix of the PCA coefficients.

F is the M by T matrix and represents the basic orthonormal wave forms.

If R is the correlation matrix of the signal then R can be represented as

where, 2 is diagonal matrix of eigenvalues of R.

The set of the solutions (λ1,...λN)  of the above equation represent the eigenvalues

of matrix R. These eigenvalues can be real or imaginary numbers, Substituting

eigenvalues back in the equation [3,2] we will get a set of eigenvectors

(U 1 	 UN). Each eigenvector is of dimension N xl.

The eigenvectors and eigenvalues are related to their parent correlation matrix in the

following way:

These N eigenvectors taken together will form N x N an orthogonal matrix U called

as eigenmatrix of the R. Thus,
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Since eigenvectors are orthonormal to each other,

Postmultiplying equation [3.3] by U' and using equation [3.4] we get

but since R is correlation matrix, R is also equal to

Using equation [3,1] we get

Since F represents vectors which are orthonormal to each other F F 1 = I ,

Comparing equations [3.8] and [3.5]

The eigenvalue λN  represents the contribution of m th component of the basic wave

form to the total power of the original signal. The optimal representation of the signal

using M basic wave forms is obtained by using the first M eigenvalues of the

correlation matrix R.

The advantage of processing data by using PCA is that it reduces the dimensions

Of the data and in turn reduces the degrees of freedom for the statistical processing of

data. Another advantage of PCA is improvement in the signal to noise ratio of the
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wave form. Let us assume that the background noise perturbs the signal to a small

extent, so that original action potential from the neuron is still the dominant portion of

the recorded spike. In this case, the contribution of noise will be higher in the lower

principal components. Since we are taking only first M basic wave forms, in effect we

are also removing the contribution of noise to the signal and will improve signal to

noise ratio.

We are losing some characteristics of wave shape when we use principal

component analysis as compared to template matching techniques. However

reduction in the degrees of freedom and subsequent reduction in memory

requirements for analysis, makes PCA an extremely attractive alternative. In our case

each spike consists of 32 samples over 4 electrodes. We have applied PCA to the

signal on each electrode and reduced the data set to 3 dimensions using the first 3

principal components. Each spike is now represented by a 12 dimensional vector.

Figure 5,1 shows output of PCA analysis in two dimensions. We have used Xgobi

software to visualize data in multiple dimensions.



Figure 3.1 Principal Component Analysis of Spike Shape
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CHAPTER 4

CLUSTERING ALGORITHMS

Clustering is finding groups in the data. We can easily identify clusters in two

dimensions but it is very difficult to identify clusters when data consists of more than

two dimensions. As described in earlier section we have reduced the data set to 12

dimensions using principal component analysis. However identifying exact clusters

in so many dimensions is very difficult, hence we use clustering algorithms to

perform automatic clustering of data. In the current chapter we will consider various

clustering algorithms to perform automatic clustering of the data set.

Clustering algorithms can be divided in two categories, namely nonparametric

and parametric clustering. In case of parametric clustering we assume that the data set

follows certain statistical criteria and in turn we can successfully model the data as

one of the well-known statistical distributions. The goal of parametric clustering

algorithms is to identify parameters of the distribution of data. However, success of

the parametric techniques depends upon the choice of the selected model and the

fitness of data to the selected statistical distribution. The advantage of the parametric

techniques is that we can use analytical and statistical tools to predict the behavior of

the clustering algorithm. The EM algorithm, which we have used, falls in this

category.

On the other hand nonparametric clustering techniques try to use properties of the

data to identify classes of the data. Thus nonparametric clustering techniques rely on

heuristics of the data or the process which has created data, The hierarchical

19
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clustering and the K means clustering algorithms are examples of nonparametric

techniques for clustering data.

4.1 Hierarchical Clustering

Hierarchical clustering algorithms is a collection of algorithms that use the

dissimilarity distance between clusters to make decisions during clustering process. If

we map properties of objects to coordinate space then each object will be represented

by a point in this space. Since a cluster is a group of objects with similar properties,

the region of high concentration of points in the coordinate space will represent a

cluster of objects. The process of mapping properties of objects to a coordinate space

is known as normalization. The number of axis in the resultant coordinate space is

equal to the number of properties of the objects, Thus when we are representing each

spike by 12 principal components, we are normalizing each spike to a 12 dimensional

coordinate space represented by individual principal components. The position of the

spike in this space will be determined by the coefficients of principal components

required to represent the original spike. If we have two spikes of similar shape then

they will be represented by two points, which are closer to each other in the

coordinate space.

Next step is to determine the dissimilarity distance between the two clusters. The

dissimilarity distance indicates how close two clusters are in the coordinate space. If

two clusters are very close to each other then their dissimilarity distance is lower.

There are many metrics(Hartigan(1974) and Kaufman(1990)) that can be used to

identify the dissimilarity distance between two clusters. We have defined
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dissimilarity distance as the sum of distances between the points of each cluster.

Consider two clusters R, and R, then dissimilarity distance D is given by

The dissimilarity distance that we have chosen gives more weight to intercluster

distance as well as the shape of the cluster. As seen in Figure 4.1 we find that in case

of spike clusters, more number of points are located near the surface of clusters. Also

these two clusters almost overlap, Hence we feel that using the above metric we are

Figure 4.1. Sample spike clusters,

giving importance to both the intercluster distance and the size of the clusters.
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4.1.1 Removal of Outliers

Any clustering technique is susceptible to the presence of outliers or noise points. In

order to remove outliers, the first technique that we use is to filter points that are far

away from their nearest neighboring points. Figure 4.2 shows the graph of points

sorted according to their distance from their nearest neighbor. The graph shows that

points after 4800 clearly show an increase in their distance from their nearest

neighbor. These points are long distance away from their nearest neighbor, hence we

consider these points as outliers and remove them from our data set.

Figure 4.2 Distance of points from their nearest neighbor. The dashed line indicates
number of points removed from the intracellular cluster(cluster identified by
simultaneous intracellular recording). If we select 4800 points from this data set, we
are loosing only 3 points from the intracellular cluster,
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4.1.2 Agglomerative Clustering

Hierarchical clustering algorithms can be divided in two categories namely

agglomerative and divisive clustering. In case of divisive clustering techniques we

start assuming that all n points belong to same cluster. We then split this single

cluster to 2 cluster and then into 4 clusters and so on.

In case of agglomerative clustering techniques, we initially start with 17 clusters,

where each cluster contains a single point. We partition these n clusters to n -1

clusters, the next a partition into n -2 and so on. During each stage of clustering we

merge clusters that are closest to each other. Thus after one cycle of the algorithm we

will be left with n -1 clusters. The process is repeated until the required number of

clusters are remaining.

Hierarchical clustering techniques result in the formation of tree called as

dendogram tree, which indicates how samples are grouped tOgether. One of the

limitations of the hierarchical clustering algorithms is their memory requirements.

Since we need to store intercluster distances, the amount of memory required in the

worst case for n clusters in 0( n 2 ).

We have used agglomerative clustering techniques for clustering of the spike data.

We initially assume every point to be a single cluster.(i)For every cluster we calculate

the dissimilarity distance of the cluster with every other cluster. Thus if there are m

clusters we will get an m x m dissimilarity matrix. (ii) We find clusters which are

closest to each other. (iii) We then merge these clusters which we have found in

step(ii). Thus the number of remaining clusters after step(iii) is reduced by 1. The

above steps (i) to (iii) are then repeated until we are left with only 2 clusters. Since we
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are also interested in identifying the optimal number of clusters, we write the results

of each cycle of clustering when we are reducing clusters from 10 to 2. Hence in the

end, we will have results for 10 clusters, 9 clusters and so on.

We are reducing the number of clusters by one during each pass of the algorithm. We

can improve the speed of algorithm if we can merge more than one cluster in the same

pass. Hence in order to improve the speed of clustering we have divided the whole

algorithm into two phases depending upon the number of remaining clusters, Since

initially, number of remaining clusters is high, it will take a lot of computational time

if we decide to merge two clusters which are closest to each other. Also during this

phase, we are merging clusters which are smaller than 5 to 6 points and we do not

require the exact granularity in our decision about two closest clusters. Hence, even if

we make few wrong decisions about merging two most optimal clusters, it will not

affect the final outcome of the algorithm. During the first phase we merge every

cluster with its closest another cluster. Thus in effect in one cycle, we are reducing the

number of clusters by m/2 instead of one, However during phase 2, we want better

accuracy in Our clustering decisions and hence we use steps (i) to (iii) as described

earlier. We continue with phase 1 until we have found clusters with around 6 to 7

points each. At the end of phasel, we get around 70 clusters, each of which contain 7

points. We then revert to phase 2, and use the steps (i) to (iii) to reduce number of

remaining clusters to 2, Figure 4.4 shows the complete flow chart of the algorithm,

Even though we have reduced the number of outliers as described in section 4,2.1, we

still find clusters with a small number Of points after running the hierarchical

clustering algorithm. Figure 4,3 shows the histogram of 'number of clusters' Vs.
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'number of points' in each cluster. The histogram shows that there are many clusters

with the less than 50 points. As we can see out of 30 clusters, only 6 clusters contain

more than 50 data points. We consider these remaining clusters as noise clusters, and

filter these points from data set. The cut off that we have selected is around 0.01 times

the original size of the data set. The 6 clusters selected contain around 82% of the

original data set. We then again apply the hierarchical clustering algorithm to identify

the clusters in the reduced data set. The output of the hierarchical clustering algorithm

is shown in figure 5,2

Figure 4.3. Histogram showing number of points in each cluster.
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Figure 4.4. Flow-chart of the hierarchical clustering algorithm.

4.2 Estimation Maximization Algorithm

Expectation Minimization algorithm is a recent parametric technique for optimizing

Maximum Likelihood of the model. It was introduced by Dempster et in year 1977.

Since then it has shown great promise in solving complex problems in Bayesian

statistics. We plan to model data as multivariate mixture and apply EM algorithm to

perform clustering, We will use the output of the hierarchical clustering algorithm to
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start the nil algorithm. We will also evaluate improvements in the clustering due to

the EM algorithm.

4.2.1 Stochastic Processes

Before we apply the Bayesian approach to sorting of the spike data we need to model

firing pattern of the neuron as a stochastic process. Our goal is to model total spike

output as a sum of the stochastic processes. In this section we will describe

characteristics of various stochastic processes that we will use in the later sections to

actually perform modeling of the data. A stochastic process is a random process that

generates sequential signals such as noise or speech. The variation of the signal is

partially or completely random. Also occurrence of an event is random and is

completely independent of earlier events.

4.2.1.1 Multivariate Gaussian Process: Gaussian process is an example of

stochastic process and has been used extensively to describe many physical

phenomena, The probability density function of the gaussian randOm variable is

described by the following probability density function.

1u and a 2 are respectively mean and variance of the random variable x. The gaussian

process of equation [3.6] decreases exponentially with increasing distance of x from

the mean value 1u. The probability distribution function F(x) is given as
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Multi-vaiate Gaussian Process is an mixture of multiple vector valued gaussian

Processes. Consider a d-variate Gaussian vector process {X = [x(m0), x(m1),. —.1T }

with mem vector μ  and covariance matrix Σ.The probability density function of

the multivariate gaussian process is given by

Where the mean vector μ  is defined as

The covaiance matrix Σ is defined as

where cab= (x(m a ) - μ  a) * (x(m b ) - μ b )) .
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The mixture multivariate gaussian process is a weighted sum of a number of

individual multivariate gaussian processes.

Thus mixture multivariate gaussian distribution = Σp i=1 πig(x)

where g(x) is individual multivariate gaussian process and is given by

πi = mixing proportion or weight of the individual gaussian Process.

The multivariate gaussian distribution is represented by N (μ, σ ) .

4.2.1.2 Poisson Process: The poisson distribution is a continuous time, integer valued

counting process used for modeling of the occurrences of random events in varying

time interval. The poisson distribution is generally used to model the occurrences of

noise or sharp noise pulses in the input signal,

The probability density function of the Poisson distribution is given by

P(k,t) = (λtk/k!)e-λt , where k is a constant dependent on the process.

4.2.2 Application of EM algorithm to Multivariate Gaussian Mixture

The EM algorithm consists of two steps, the Estimation step and Maximization step.

The estimation step consists of calculation of the posterior likelihood of the data. The

Maximization step follows the estimation step and involves maximizing the

likelihOod computed in the earlier step. The process the repeated until the results
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converge to some stable value. In essence, the EM algorithm tries to find the local

maxima for the log likelihood of the model in the vicinity of the initial values.

In order to use EM for clustering of spike data, we assume that spike density due to

each neuron is a multivariate gaussian process. In a sense we are assuming that spikes

due to an individual neuron follows a random sequence and every spike occurrence is

independent of any earlier spike occurrence. The signal that we collect at electrodes

consists of foreground spike activity of multiple neurons and a noise component

introduced due to various components as explained in chapter 2.

We consider the signal s(t) to be

where 77(0 is the noise introduced in the measurement.

Since we are assuming that noise in our measurement is a white noise, the spikes

introduced due to such noise can be considered as random. Hence we consider

background noise to be purely random and assume that it follows a poisson

distribution.

Let us consider the d dimensional observation x from a multivariate gaussian

distribution of G classes.

The probability distribution of the mixture density will be

where πk  is the mixing proportion and 0 ≤ πk < 1 alsoΣπ k = 1.

And θ  = π1......πG, μ1......μG, Σ1......ΣG are unknown parameters.



The likelihood is given by

where n = number of total points

G = total number of clusters.

In order to apply EM to clustering of data, we will add another classification matrix Z

so that

where zik is the posterior probability that the i th observation belongs to cluster G and

4.2.2.1 Estimation Step: The Estimation step involves computing of posterior

likelihood probability, given the current data set. Since L(x; θ ) is difficult to

differentiate analytically we will consider log likelihood of the data as

λ(x;θ)= ln(L(x;θ)).

Since the log likelihood is a linear function of likelihood, any maximum in L will

also be reflected in λ(x;θ) .

Now according to Bayes rule we have
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We can compute f (x; θ ) by using the above Bayes rule. Using equation [4.1], [4.2]

and [4.3] we get

In order to compute initial estimate of log likelihood λ 0 (x;θ ) , we use the initial

estimate of the parameters θ

0

. We have used the output of hierarchical clustering

algorithm to compute initial estimates of Σ 0 andπ 0 . However,θ 0 also be

computed by using hand clustering or by using the K means clustering algorithm.

The initial classification matrix Z is computed as

4.4.2.2 Maximization Step: During the maximization step we try to maximize log-

likelihood that we have obtained in the estimation step.

The maxima of λ(x;θ ) will occur when

During the maximization stage we try to maximize λ  by computing a new value of

θ. Since θ  is indicated by n, π  and μ , the new value of parameter θ  is given by
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The new value of the parameter θ is used in the calculation of the classification

matrix during the subsequent estimation step.

The process of estimation step followed by maximization step is repeated until

changes in parameter values is below certain threshold.

4.2.2.3 ECM or Estimation Classification Algorithm: ECM was proposed by

Celeux and Govart[10] in their paper on pattern recognition. The ECM algorithm is

much like the general EM algorithm except for an additional step of classification. In

case of ECM algorithm the Z matrix contains the classification of the points to a

specific cluster. In the case of the EM algorithm we calculate the posterior estimation

of the point being assigned to particular cluster, while in case ECM the point is

allocated to a cluster which has maximum probability of observation. In order to do so

we add an additional constraint on Z that

Zik = 1: if ith observation belongs to cluster k.

0	 : if i th observation does not belongs to cluster k.
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Thus, ECM algorithm consists of

Repeat until solution has converged

Estimate the log likelihood

Classify the observations

Maximize the log likelihood.

End.

In case of ECM algorithm we try to maximize the classification log likelihood which

is given by

4.2.2.4 Modifications to the EM Algorithm: The EM algorithm has generally been

found to be very sensitive to the presence of large numbers of noise outliers in the

data. Hence we need to modify the basic EM algorithm to take into account outliers.

4.2.2.4.1 Removal of Outliers in EM Algorithm: Outliers are set if points that are

far away from the center of the cluster. In effect, the mahalanobis distance of these

points is >> a. These outliers generally arise due to background activity of the

neuronal population or due to nonlinear characteristics of the electrode. The

convergence rate of the EM algorithm is inversely affected due to presence of these

outliers. In some cases it might even lead to failure of the EM algorithm to reach

stable solution, In order to model these outliers we take an approach similar to that

used by Raftery and Dasgupta[2] for identification of minefields in the data, We
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assume that outliers are distributed evenly throughout the hypervolume V and follow

poiisson distribution. The probability of point occurring due to noise will beP0/V, P0

is constant. Hence during each iteration of EM algorithm we compute mahalanobis

distance of the point from the center of the cluster. If mahalanobis distance is greater

3σ  we assume the point to be outlier and remove it from the data set.

4.2.2.4.2 Incorporating Refractory Period in the EM Algorithm: Until now

clustering techniques that we have used have focused on use of the euclidean

distance between clusters to classify points, We have not taken into account temporal

properties of spikes. From neurophysiological behavior of neurons we know that

oiace a neuron has produced an action potential, it does not produce another action

potential during some interval of time. This interval of time is called as the

Refractory Period of a neuron and is about 2 milliseconds. In order to take

refractory period into account we have introduced an additional step after the

classification step of ECM algorithm. During this step we calculate number of

conflicts that will happen due to current set of classification. If we find that spikes in

two clusters overlap then we readjust the classification for those spikes so that the

number of conflicts between the two clusters is reduced.
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4.2.3 How Many Clusters?

In order to determine the exact number of clusters in the data set we use the bayes

factor.

Bayes factor is posterior odds of one model against another. The larger bayes thctor

indicates higher likelihood of the model M 1 as compared to M2 ,

But we calculate P(D / M) during each step of EM algorithm and is nothing but

maximum likelihood λ(x;θ ) . Hence,

In our case model M„ is a model containing n classes.

In order to select the best fit we use the Bayesian Information Criteria [6] to find

most matching model. BIC is basically derived from bayes factor and consists of an

additional term to take into account number of independent parameters of the model.

For multivariate gaussian mixture model

BIC = 2 log p(x|G) ≈ 2λ(x,θ,G) - mclog(n) , where m c is number of

independent parameters for model c.



Figure 4.5 BIC Vs. number Of Clusters
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Figure 4.6 Interspike conflicts Vs. Number Of Clusters
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Figure 4.5 shows the plot of BIC vs. model. The plot shows that there is a local

maximum for n = 9 clusters. Hence, We conclude that the model containing 9 clusters

is the best fit for the data set. In order to check the validity of our model, we have

also computed graph of number of inter spike conflicts Vs number of clusters. As we

can see from figure 4.6, when the number of spikes is 9 the number of interspike

conflicts is lowest. Figure 5.6 shows the 9 spike shapes identified as a result of the

application of the EM algorithm.

4.2.4 Limitations of the EM Algorithm

EM algorithm depends upon the starting values or the seed values of the unknown

parameters. Hence the rate of convergence of EM depends upon these starting values

and sometimes the algorithm might not even converge. Second . problem is that the

rate of the convergence a EM is very slow. Also the EM algorithm can not proceed if

any of the covariance matrix becomes singular,



CHAPTER 5

EXPERIMENTAL RESULTS

We have focused our experiments on the data set shown in Figure 5,1 I . Figure 5.1

shows output of the principal component analysis of the original data. We have used

Xgobi software to visualize data in multidimensional coordinate axis. Xgobi is a

multivariate data visualization system. It was designed by Deborah F, Swayne, Di

Cook and Andrea Buja and is available from "http://lib.stat.cmu.edu/general/

XGobi/". The red cluster shows the spikes that have been identified by using the

simultaneous intracellular recording. In most cases of spike sorting algorithms we

can not validate results, other than relying on statistical inferences. However in our

case, we will compare our result set with respect to actual experimental recording,

1. The data used in experiments was collected by Dr. Darryl Agnze. We are thankful to Dr. Kenneth
Harris for making this data available to us for analysis.
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Figure 5.1. PCA output of input data in two dimensions. The graph shows output of
[irst PCA on channel 1 with second PCA on channel 2 The red dots show the
intracellular cluster.
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Figure 5.2 Output of the hierarchical clustering algorithm. We can clearly see 4
separated clusters. We have also been able to find out intracellular cluster as shown in
Figure 5.1
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Figure 5.3. Output of hierarchical clustering algorithm on various principal
component axis.



Figure 5.5 I mprovement in the clustering by application of EM algOrithm. Figure a)
and c) indicate the output of the hierarchical clustering algorithm for six clusters.
Figure b) and d) show the corresponding improvement in the clustering by application
of EM algorithm. The clusters in a) and c) have been refined by the EM algorithm as
shown in b) and d).
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Figure 5.6. a) Representative spike wave forms for 5 of the 9 spikes identified in data
set of fig 5.1.
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Figure 5.6. b) Representative spike wave forms for remaining 4 of the 9 spikes
identified in data set of fig 5.1.
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