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ABSTRACT

NANOFILTRATION-BASED DIAFILTRATION PROCESS FOR SOLVENT
EXCHANGE IN PHARMACEUTICAL MANUFACTURING

by
Jignesh P. Sheth

Commercially available solvent stable polymeric nanofiltration membranes were used to

study the nanofiltration and diafiltration operations in the context of the pharmaceutical

industry. Experimental results are presented for a two-step operation involving the pre-

concentration of a feed solution via nanofiltration followed by the replacement of the first

stage solvent with a second solvent via diafiltration in two stages. Membranes MPF-50

and MPF-60, having molecular weight cut-offs of 700 and 400 respectively, were used in

the present study. A solution of erythromycin (MW 734) in ethyl acetate was pre-

concentrated via nanofiltration followed by replacement of ethyl acetate with methanol

via batch diafiltration. The experiments were carried out at 440 psig (3033.8 kPa) and

room temperature. Membrane compaction, during the initial period of each operation,

affected the solute rejection and permeate flux. High erythromycin rejection (96 % +)

was achieved with the MPF-60 membrane. During the diafiltration operations the

membranes exhibited no selectivity for the solvent mixture, irrespective of the feed

concentration. Ethyl acetate concentration was reduced to less than 4 % over two batch

diafiltration runs.
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CHAPTER 1

INTRODUCTION

1.1 General Background

Manufacturing activities within the chemical process industry (CPI) can be classified into

chemical processes, which involve the synthesis of various chemicals and unit operations,

which involve the isolation of products from various byproducts. With the increasing

sophistication of end-use applications, greater demands are being put on the field of

separations to isolate products more completely and at lower costs. This is especially true

in the pharmaceutical industry, which generally produces high value products. In such

applications, economics become very sensitive to the ability of the separation processes

to minimize waste and isolate products of interest completely.

Most pharmaceutical products (intermediate or final) are thermally sensitive and

hence require great care during their separation. Vacuum distillation, solvent extraction,

etc. have been traditionally employed to effect separation of these products from their

solvent media. However, the heterogeneous nature of most pharmaceutical reactions, that

involve intermediates and active components in the molecular weight range of 300 to

1000 daltons (Paul et al, 1990), can be advantageously exploited by non-conventional

separation processes involving selective membranes to effect separation.

Membrane separation technology has come a long way since the invention of the

first integrally skinned hyperfiltration (reverse osmosis) membrane by Loeb and

Sourirajan in 1960. Recent developments in this field has enabled it to overcome the

commercialization barrier, so much so that today the worldwide annual installed gas

handling capacity of membrane systems has reached 4 billion m 3 and is set to grow at the

1
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rate of 8 % per annum (Puri, 1999). The total sale of membrane materials is expected to

reach more than $1.5 billion by 2002, with liquid-solid separation applications in the field

of wastewater treatment and food and beverage industry accounting for more than 60 %

of the total consumption (Rogers, 1998). Liquid-solid membrane separation processes are

generally pressure driven, carried out at ambient temperature. Combined with their

modular nature (which facilitates capacity modification), competitive economics, ambient

temperature separation, and elimination of extraneous hazardous chemicals to effect

separation have made them particularly attractive to an industry that produces thermally

labile, high value products.

1.2 Liquid-Solid Membrane Separation Processes

Reverse osmosis (R0), ultrafiltration (UF), microfiltration (MF) and more recently,

nanofiltration (NF), are pressure driven separation processes that employ permselective

membranes to separate dissolved inorganic/organic species. Distinction between these

processes is primarily made on the basis of the magnitude of the applied transmembrane

pressure and the size of the particles retained. Figure 1.1 illustrates the pore sizes of RO,

UF, NF, and MF membranes along with characteristic particle sizes retained. RO

membranes are essentially nonporous.

RO and UF are well established membrane-based pressure driven operations

primarily used in the separation of aqueous solutions. NF however, is a relatively recent

development in this field. NF membranes are a new class of membranes with properties

in between those of RO and UF (Bowen et al., 1998). Separation mechanisms differ in

each of these processes. A classical model to describe solute rejection in RO is based on
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Figure 1.1 Filtration Range and Membrane Pore Size as Applied to Aqueous Systems
(adapted from Raman et al., 1994 and Porter, 1988)

the Solution—Diffusion model which assumes that both solute and solvent dissolve in the

microporous membrane and then each diffuses across it at a different rate, independent

from each other, thereby effecting separation (Lonsdale, 1965). Rejection of solutes in

UF, on the other hand, is based on a sieving mechanism in which the solvent flows

through the pores, convectively carrying along with it solute molecules smaller than the

pore size of the membrane (Blatt et al., 1970). Segregation properties of NF membranes,

however, depend on several parameters like streic forces (for neutral species) or

electrostatic forces and charge density of the ion (for charged species), determined by the

treatment employed during membrane fabrication and end-use application requirements.
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1.3 Nanofiltration

1.3.1 Historical Background

The term "nanofiltration", based on an analogous definition of microfiltration where

micron (gm) is the unit of measure for characterizing the nominal minimal particle size

retained by the membrane, has been coined in 1986; in the case of nanofiltration,

molecules on the order of a nanometer are retained (Eriksson, 1986). Generally the

nominal molecular weight cutoff ranges from 100 to 200 daltons (Raman et al., 1994).

Sometimes referred to as membrane softening, NF has been traditionally used to remove

divalent ions of calcium and magnesium from drinking water. The first commercial

demineralization/desalination membrane softening system (M/B 5575) was made

available by a Florida based equipment manufacturer in the mid-1970s (Culler et

al.,1976). The system offered as an alternative to conventional lime softening to treat

hard and mildly brackish shallow groundwater, utilized a modified RO membrane and

operated at 200 psig (as opposed to 400psig in RO). The cellulose diacetate membrane

had an approximate total dissolved solids (TDS) rejection in the range of 55 % for

monovalent ions such as sodium and chloride to 75 % for divalent ions such as calcium,

magnesium and sulfates. The membrane was also able to reject bacteria and viruses. But

the introduction of low pressure (200-300 psig) cellulose triacetate hollow fiber and thin-

film composite polyamide spiral-wound RO membranes in the 1980s having TDS

rejection in excess of 95 %, made this process economically unattractive. It was not until

the introduction of thin-film composite cross-linked polyamide NF membranes (capable

of operation in the 70-150 psig range) that NF became an economically viable unit

operation.
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1.3.2 Separation Mechanism

The separation of solutes (inorganic/organic) via NF depends upon several parameters

including streic (sieving) and hydrodynamic forces (Rosa et al., 1994), electrostatic and

dielectric forces, the hydration state of the molecules (Macoun et al., 1991), Donnan

effect (Tsuru et al., 1994) or the combination of hydrodynamic and electrostatic forces

(Pontalier et al., 1996). Application of NF has traditionally been confined to aqueous

systems and several models describing the separation mechanism exist. Two categories of

models exist to describe retention of charged and uncharged molecules, respectively.

Models that describe the retention of charged molecules can be further sub-

divided into space-charge models and fixed-charge models. The space-charge model

takes into account the distribution of potential and ions in the radial and axial direction

within microcapillaries. Nernst-Planck equation describes the transport and the Stokes

equation is used to calculate the volumetric flow (Morrison et al., 1965). Parameters

required for the model cannot be determined by separate measurements of membrane and

solution properties. This is a major drawback (Hagmeyer et al., 1999). The more recent

Teorell, Meyer and Sievers—extended Nernst Planck model (TMS-NP) is a fixed charged

model. It is a simplification of the space-charge model in that it neglects radial

distributions in a pore. This model is in good agreement with the space-charge model, if

the pore radius is much lower than the Debye length (Wang et al., 1995). A uniform

surface charge distribution and electroneutrality of ions and volume charge in the pore

are assumed in this model and the transport through the pore is calculated using the

Nernst-Planck equation extended for convection. This model has been successfully

applied to predict the rejection of binary and ternary ion mixtures.
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Models that describe the retention of uncharged molecules are based on the pore

size of the membrane and the solute molecules. The streic hindrance pore model (SHP)

assumes that all membrane pores have the same size. Steric hindrance and interactions

with the pores prevent the passage of molecules, having the same size (or larger) as the

pore, through the membrane completely. Molecules smaller than the membrane pore size

are retained partially (Wang et al., 1995; Wang et al., 1997). The model developed by

Zeman and Wales (1981)describes the rejection of a sphere through a cylindrical

capillary of uniform diameter and assumes a parabolic velocity profile within a pore. The

log-normal model on the other hand assumes a log-normal distribution of the pore size.

Streic hindrance within the pores or hydrodynamic drag are neglected.

Due to the susceptibility of conventional polymeric membranes to swell or

dissolve in contact with organic solvents, NF applications are primarily confined to

aqueous systems. A few studies, conducted with dilute aqueous solutions of methyl ethyl

ketone, tetrahydrofuran and ethyl acetate, found onset of membrane swelling at feed

concentrations above 8 % (Niwa et al., 1988). Solutions containing 20 % alcohol (such as

ethanol, iso-propanol, and iso-butanol) yielded similar results (Oikawa et al., 1991). Very

few studies have been conducted on organic solutions. Recent availability of solvent

resistant NF membranes has led to the study of rejection characteristics of large

molecules in organic solvents. Preliminary studies of the rejection behavior of certain dye

molecules in methanol have indicated the dependence of solute rejection (as a function of

permeate velocity) behavior similar to that predicted by the finely porous model (Whu et

al., 2000). Effect of solvent properties on permeate flow through NF membranes also

have been studied (Machado et al., 1999).
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1.3.3 Applications

Since its first commercial application in the mid-1970s, NF has evolved to become a very

versatile membrane separation technique, largely applied to process aqueous feed

streams. Recent availability of solvent stable NF membranes (KOCH Membranes

Bulletin, 1999) has made their application to process organic feed streams possible and it

will not be long before their large-scale commercial applications in the pharmaceutical,

fine chemicals and the chemical process industry become common.

Listed below are some of the commercial applications of NF technology:

1. Water softening: By far the largest users of NF technology are municipal drinking

water plants. Operated at 70-100 psig, the NF membranes are able to reject 85-95 %

of hardness and over 70 % of the monovalent ions (Watson et al., 1989). It is

estimated that more than 100 million gallons per day of NF permeate is currently in

design, construction or operation.

2. Groundwater cleaning: NF membranes are able to remove organics from industrial

and agricultural effluents, which combine with chlorine to form trihalomethanes

(THM), believed to be carcinogens (Amy et al., 1990). Existing plants in Florida are

able to remove 97 % of the total organic halogens in potable water.

3. Ultrapure water: The electronics and semiconductor industry and certain medical and

biotechnology applications require ultrapure water that is free of particulates and have

total organic carbon (TOC) of less than 5 ppb. Whereas ion exchange membranes can

bring down the TOC levels to about 30 ppb, negatively charged NF membranes have

been employed to achieve the required goal of TOC less than 5 ppb (Ary et al.,

1990).
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4. Beverage Industry: NF is gradually replacing lime softening to achieve an industry

standard of 50 ppm of alkalinity and also meet the federal THM limits (Paul, 1998).

5. Industrial effluents: Industrial wastewater containing precipitated hydroxides of

heavy metals like nickel, iron, copper and zinc can be processed by NF to recover and

reuse 90 % of the metals. Negatively charged NF membranes are used to remove

negatively charge chromophoric organics (colored lignins and chlorinated lignins)

from wash waters generated by the pulp and paper industry (Bindoff et al., 1987).

Textile industries produce effluent water containing sodium hydroxide and organics.

In a hybrid process, employed in South Africa, sodium hydroxide is first neutralized

to form sodium chloride, processed through NF stages to recover the organics and

consequently recovered as sodium hydroxide by electrochemical cells.

6. Food Industry: The dairy industry produce cheeses whey containing 4-6 % sodium

chloride and 6% whey solids. With a biological oxygen demand of 45000 ppm, the

whey poses a big waste disposal problem. NF membranes are now routinely used to

reduce the whey solids to less than 1 %.

1.4 Diafiltration

Diafiltration is the process by which a membrane-based filtration process is used to

rapidly and efficiently remove salts and/or lower molecular weight species from larger

macromolecules (Porter, 1988). A diafiltration operation consists of three steps viz., pre-

concentration, diafiltration and dilution. The diafiltration step can be carried out in a

discontinuous or continuous mode. Figure 1.2 illustrates a schematic of the two modes of

operation of a diafiltration process. As can be seen from the Figure 1.2, in continuous
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diafiltration the solvent is added to the system at the same rate as permeate flux. Hence

the volume and concentration of the rejected solute remains constant (assuming that the

membrane rejection for the solute of interest is 100 %). Discontinuous diafiltration on the

other hand involves alternate steps of concentration (via ultrafiltration or nanofiltration)

and dilution (by solute-free solvent) until the desired reduction in the concentration of the

salt (or any other small molecular weight solute) is achieved. A diafiltration operation

requires the membrane to have a high rejection 95 % +) for the larger solute molecules

because the large convective flow through the membrane would otherwise wash out the

solute of interest along with the smaller molecules.

OF membranes have been traditionally employed to carry out diafiltration

operations. Concentration of enzymes (coupled with simultaneous reduction of salt

concentration) (Porter, 1988) and albumin (coupled with simultaneous reduction of

ethanol concentration) (Jaffrin et al., 1994) have been accomplished by ultrafiltration-

diafiltration operation. Another process known as hemodiafiltration is carried out in a

single membrane device known as a hemodiafilter. This device combines dialysis and

hemofiltration to efficiently remove undesirable solutes from the feed (Ho and Sirkar,

1992). More recently diafiltration of industrially important dye solutions by nanofiltration

also have been studied (Bowen et al., 1998). Research efforts on diafiltration have been

confined to the study of aqueous feed solutions. Some optimization studies have shown

that a combination of pre-concentration of the solution (to the desired final concentration)

by ultrafiltration or nanofiltration followed by diafiltration (Asbi et al., 1991; Bowen et

al., 1998) results in an optimum processing time.



Figure 1.2 Schematic Representation of Discontinuous (a) and Continuous (b) Diafiltration (Asbi et al., 1991)
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1.5 Research Problem and Thesis Objective

"If liquid-solid separations are membrane technology's present, its future lies in replacing

such traditional unit operations as distillation and cryogenic applications" (Shanley,

1999). Most present day membrane-based commercial liquid-solid separations can only

handle aqueous feed streams. However, many separation processes in the pharmaceutical,

the fine chemicals and the chemical process industry in general, involve purely organic

feed streams that must be processed to separate components of interest. Recent

availability of solvent stable nanofiltration membranes has made it possible to process

pure organic solutions, but extensive research efforts are required before such membranes

can be offered as a viable alternative to conventional separation processes.

Organic synthesis of bulk drugs generally involves multi-step reactions where

each reaction may be carried out in a different solvent medium. Most reactor streams

contain a thermally labile, high molecular weight (>250-1000 daltons) product of interest

along with other smaller molecular weight by-products. The product (intermediate or

final) must be separated from other by-products and also the solvent medium, because

quite often the subsequent reaction (carried out in a different solvent medium) cannot

tolerate the original solvent as an impurity beyond a certain concentration. Conventional

separation processes require special conditions to handle thermally labile products and

sometimes require extraneous chemicals (which are a potential source of environmental

pollution) to effect separation. Nanofiltration membranes, on the other hand, can

selectively retain solutes with molecular weight greater than 250 daltons and

simultaneously allow the smaller molecules to wash out along with the solvent.

Furthermore, they can achieve these twin objectives at ambient temperatures. Hence, it is
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the objective of this thesis to explore the feasibility of solvent stable nanofiltration

membranes in carrying out solvent exchange via discontinuous diafiltration process for

an industrially relevant system. Furthermore, the behaviors of the permeate flux and

solute rejection profiles during nanofiltration and diafiltration are also to be studied.

1.6 Choice of Model System

Erythromycin is chosen as a solute of interest as it is a commercially relevant and

widely used broad-spectrum macrolide antibiotic. Moreover, the solubility of

erythromycin in both methanol and ethyl acetate is at least 20 wt % at room temperature.

In order to carry out solvent exchange, the original solvent and the replacement solvent

must be completely miscible with each other. Transport of solvents forming an

immiscible mixture, would be highly dependent upon the stirring conditions inside the

cell and the permeate concentration thus obtained would not be reliable. Methanol and

ethyl acetate are completely miscible with each other at room temperature and are widely

used solvents in the pharmaceutical industry (Chung, 1996).



CHAPTER 2

TRANSPORT MODEL

NF membranes are a new class of thin film composite membranes, made by interfacial

polymerization on polysulfone or polyamide ultrafiltration membranes (Wang et al.,

1997). As discussed earlier, their separation mechanisms involve both steric effects and

electrical effects. The average pore diameter of most NF membranes is of the order of 2

nm (Raman et al., 1994). Due to the small pore diameter, molecular size is an important

parameter for modeling of the retention of organic molecules. Although comparison of

hydrodynamic volume gives satisfactory prediction between different classes of

molecules for OF membranes, the much smaller pore sizes of NF membranes require the

stronger interactions between the pores and the solutes to be accounted for. Preliminary

studies on pure organic systems of methanol-dye solutions have suggested the possibility

that the finely porous model (which takes into account the friction forces between solute

molecules and the membrane) may predict the solute rejection as a function of permeate

flux through uncharged NF membranes (Whu, et al. 2000). The model will be briefly

discussed in this chapter.

Due to the lack of solvent-stable NF membranes, most experimental and

theoretical studies have been limited to aqueous systems. However, some attempts have

been made to describe the solvent flux in organic systems. These studies use a modified

Poiseuille expression (viscous approach) (Nguyen et al., 1979) or a modified solution

diffusion model (solubility approach) (Reddy et al., 1996). A generalized model, which

combines these two approaches, has also been proposed (Urugami et al., 1979). However,

these models do not take into account solvent properties and solvent-membrane

13
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interactions to predict permeate flux. The Machado-Hasson-Semiat (MHS) model

(Machado et al., 1999) uses a resistance in series like concept to predict solvent flux

through a composite NF membrane. Solvent properties (such as viscosity and surface

tension) that affect the permeate flux through the membrane (Machado et al., 1999) have

been accounted for in this model. It will be discussed in detail in this chapter.

The extended Nernst-Planck equation forms the basis for the description of the

transport of charged and uncharged solute molecules inside porous membranes. They will

be briefly discussed in this chapter.

2.1 Permeate Flux through NF Membranes

2.1.1 Finely Porous Model

The finely porous model, developed by Merten (1966) assumes that the porous

membrane has properties intermediate to those of solution-diffusion membranes and

viscous flow membranes. It incorporates a frictional force term in to the pressure gradient

across the membrane. The friction term affects not only the solute permeability of the

membrane but its apparent hydrodynamic permeability as well. Solvent properties and

solvent-membrane interactions are not accounted for. The model assumes perfectly

cylindrical pores and a fully developed parabolic velocity profile within the pores. Hence

the permeate flux, J„ generally expressed as,

when modified to include the friction factor between the solute and the membrane

becomes.



where the apparent permeability, L 1, is defined as,

Here the membrane permeability, Lp, defined by the Hagen-Poiseuille equation is,

As evident from equation 2.3, the apparent permeability, I; p, is always lower than the

membrane permeability, Lp. When the friction coefficient, f im, between the solute, i, and

the membrane is negligible the apparent permeability, L'  p , equals the membrane

permeability, Lp.

2.1.2 Machado -Hasson-Semiat (MHS)Model

The MHS model assumes a composite NF membrane to contain three main layers; a NF

top skin, an intermediate UF layer, and a baser support layer. As illustrated in Figure 2.1,

there are three resistances in series: Rs° (surface resistance at the pore entrance), which

accounts for the resistance generated due to the difference in the surface energy between

the solvent molecules and the polymer membrane surface, R I,' (viscous resistance during

flow through the NF skin portion of the pore), and R 1,2 (viscous resistance during flow

through the UF portion of the pore). The resistance of the porous support layer is

assumed to be negligible.

15
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Figure 2.1 Schematic Representation of the Three Flow Resistances in the Transport
Path of a Solvent Through a Composite NF Membrane (Machado, et al., 1999)

Based on these assumptions the solvent flux through membrane is given by,

where,

The surface resistance, Rs° , is directly proportional to the difference in the surface tension

of the membrane, γm , and the solvent, γ s , and inversely proportional to the square of

the pore diameter, d1p, of the NF skin. The proportionality constant, km° , describes the

pore characteristics of the membrane. The viscous resistances, R1μ and R 2μ, are directly
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proportional to the solvent viscosity, , and inversely proportional to the square of the

pore diameters of the NF skin, d ip , and the OF layer, d2p , respectively. Constants, km'

and km' , take into account the porosity and tortuosity of the membrane layers.

Substitution of equations (2.6), (2.7), and (2.8) in equation (2.5) yield,

Equation (2.9) consists of three parameters; two solvent independent parameters, fl

(characterizing the NF skin) and f2 (characterizing the OF layer), and one solvent

parameter, φ , which are defined as follows,

This model not only accounts for the varying membrane properties of the various layers

of the composite NF membrane but also contains the solvent properties (especially

surface tension) and the solvent-membrane interaction as variables. Studies on

nanofiltration of solvent mixtures of acetone with C 1 -05 alcohols through MPF-50

membrane showed that equation (2.9) closely predicts the solvent flux for a given solvent

mixture. However, for systems where the surface tension of the solvent mixture was

much higher than that of the membrane led to a negative value of φ, which would result
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in a lower permeate flux with increasing transmembrane pressure difference. This is a

clear deficiency of the model. Studies on acetone paraffin (pentane and hexane) mixtures

showed that the flux was not a monotonous function of concentration as opposed to that

predicted by equation (2.6). Modification of the equation by accounting the dielectric

effects gave a reasonable fit, but detailed study of dielectric effects is required to get a

clear picture. Furthermore, this semi-empirical model, developed for solvent mixtures,

needs to be modified to account for solute-solvent interactions if it is to predict the flux of

solute-mixed solvent systems.

2.2 Transport of Solute through NF Membrane

The extended Nernst-Planck equation describes the transport of solute molecules inside

the membranes. It accounts for the solute flux due to diffusion, convection and electric

field gradient and is given by,

The above equation takes the finely porous model into account by using the effective

diffusion coefficient, De (which is the diffusion coefficient through large pores reduced

by the hindrance factor for diffusion, K id ), given by,

K, accounts for the hindrance factor for convection and includes the friction forces

generated between the solute and membrane and between the solute and solvent.
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2.2.1 Uncharged Solutes

For uncharged solutes, in the absence of any electrical field effects, equation (2.13)

becomes

Solute rejection, R, can be determined by integration of equation (2.15) with appropriate

boundary conditions (Cim(0) = k ' Cir. and Cim(τδ) = k'Cip) and the assumption that

J,(=Js Cip ), Js , De , and Kic are constant and purely steric interactions exist. Hence,

where, 0 (partition coefficient) and Pe,,, (Peclet number) are defined as,

Hence the rejection at a given permeate flux, Js , is a function of two parameters, namely

γτδ/ε and ri/rp (ratio of solute radius to pore radius).

2.2.2 Charged Solutes

The extended Nernst-Planck equation in its entirety is used to define the transport of

charged species. Conditions of electroneutrality in the bulk solution and inside the

membrane are assumed. Also, solvent dielectric effects on ion partitioning are not taken

into account. Equations (2.19), (2.20), and (2.21) describe the conditions of
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electroneutrality in the bulk solution, inside the membrane and the zero current

conditions within the membrane respectively.

To determine the concentration just inside the membrane, at the membrane-bulk solution

interface, the Donnan and steric effects are taken in to account to give the following

equilibrium condition,

where, y 1 is the activity coefficient, 6. ΔψD is the Donnan Potential, F is the Faraday

constant, C 1° is the concentration of ion, i , in the external solution, and C,„, is the ion

concentration in the membrane. A detailed study on the transport model of charge solutes

can be found elsewhere (Merten, 1966; Bowen et al., 1999).

2.3 Diafiltration

Diafiltration can be carried out in a discontinuous or a continuous mode. Optimization

studies of a diafiltration process have concentrated on two parameters, the treatment time

(Asbi et al., 1994; Cheryan et al., 1991; Bowen et al., 1998) and the membrane area

(Dutre et al., 1994). These studies have found that the shortest processing time is

achieved by operating at the maximum allowable solute (of interest) concentration during
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the diafiltration step. This can be achieved by a pre-concentration step via NF. The

primary objective of these studies was to reduce the concentration of a small molecule

(e.g. sodium chloride, ethanol, etc.) by carrying out diafiltration with water as the diluent.

However, in the context of the present work, it is essential to determine the change in the

concentration of the original solvent (in the retentate) over the period of the diafiltration.

Consider continuous diafiltration (solvent exchange) of a pre-concentrated

solution, containing a large solute (MW > 300) of interest and smaller solute(s) (MW

<<300) in an organic solvent, by the addition of a second solvent. Assuming that the NF

membrane completely rejects the solute of interest and exhibits no selectivity for the

solvent mixture or the smaller solute(s) molecules, we get for zero accumulation (V =

constant),

where,

Equations (2.23) and (2.24) assume a perfectly mixed feed solution. In the above

equation, the term VSO (volume fraction of original solvent in the membrane cell)

accounts for the original solvent and also the small molecular weight solutes, which are

completely washed out. Similarly, the term Vl (volume fraction of the large molecular

weight solute) accounts for the large molecular solute of interest that is present in the

original solution and also any new large molecular weight reactants (for the next reaction

step in multi-step organic synthesis) that are added along with the replacement solvent.

V, is the volume fraction of the of replacement solvent in the membrane cell.



CHAPTER 3

MATERIALS AND METHODS

3.1 Chemicals and Gases Used

Erythromycin, C37H67NO13, FW 733.9, approx. 98%, (Sigma Chemicals, St. Louis, MO);

methanol, CH40, FW 32.04, HPLC grade, (Fisher Scientific, Fair Lawn, NJ); ethyl

acetate, C4H8O2, FW 88.11, Optima grade, (Fisher Scientific, Fair Lawn, NJ); ethyl

alcohol denatured, (Fisher Scientific, Fair Lawn, NJ); sulfuric acid, H2SO4, FW 98.08,

NF / FCC grade, (Fisher Scientific, Fair Lawn, NJ); sodium metabisulfite, Na2S2O5, FW

190.1, 98.8%, (Sigma Chemicals, St. Louis, MO); glycerol, C3H8O3, FW 92.09, 99%,

(Sigma Chemicals, St. Louis, MO); benzalkonium chloride, 50 wt % aqueous solution,

(Acros Organics, Pittsburgh, PA); and nitrogen compressed, N2, extra dry, (Matheson

Gases and Equipment, East Rutherford, NJ).

3.2 Membranes

SelRO®chemically stable flat sheet membranes for nanofiltration industrial applications,

manufactured by Koch Membrane Systems, Wilmington, MA, were used. The

membranes were supplied as 8.5" wide by 11" long sheets soaked in their preserving

solution and enclosed in individual plastic envelopes. MPF-50 and MPF-60 solvent stable

nanofiltration membranes were used. As specified by the technical data sheets supplied

by the manufacturer, the membranes were tested for solvent stability by immersion in

organic solvents for 125 hours at 25°C. Depending upon the state of the membrane at the

end of the test, the membranes were characterized as stable (S), limited stability (LS) and

not stable (NS). The membranes were tested for a wide variety of polar and non-polar

22
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solvents, such as alcohols, esters, ketones, alkyl halides, alkanes, etc., over a pH range of

2-10.

The membranes were stable in most of the solvents; however, in extremely polar

solvents like dimethylformamide, dimethylsulfoxide or dimethlyacetamide the

membranes exhibited limited stability or no stability depending on the water

concentration. Some of the properties of the membranes, as specified by the

manufacturer, are summarized in Table 3.1. The membranes were characterized by two

important properties, namely, molecular weight cut-off (MWCO) and hydrophobic or

hydrophilic nature of the membrane.

Table 3.1 Properties of the Solvent Stable NF Membranes

Type
MWCO
(daltons)

pH range
(solvent/water
applications)

Nature

Operating Conditions

Temp.

(°C)

Press.
(psi)

MPF-50 700 4 - 10 Hydrophobic
40 (Max.) 514 (Max.)

30 (Rec.*) 440 (Rec.*)

MPF-60 400 2 —10 Hydrophobic
40 (Max.) 585 (Max.)

30 (Rec.*) 440 (Rec.*)

* Recommended by manufacturer

A MWCO of 700 daltons (for MPF-50) membrane means that the membrane

rejects at least 95.0 % of molecules with a molecular weight of 700 or more. Hence, as

seen from Table 3.1, MPF-60 membrane is tighter than MPF-50. As indicated by the

manufacturer, the test solution for nanofiltration was to contact the active side of the
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membrane, which was shiny and smooth. MPF-50 was supplied in a preserving solution

of 0.1 % sodium metabisulfite and 10.0 % glycerin whereas MPF-60 was preserved in

20.0 % glycerin and 0.7 % benzalkonium chloride. The manufacturer recommended the

storage of these membranes in the respective preserving solution in a dry, cool area at a

temperature ranging from 4°C to 30°C.

3.3 Membrane Cell

A Sepa® ST, model 56414, high-pressure, low hold-up volume stirred test cell, supplied

by Osmonics, Minnetonka, MN, was used to conduct experimental runs in the present

thesis. The material of construction of the membrane cell, SS 316 L, made it resistant to

most chemical degradation. A schematic of the membrane cell is given in Figure 3.1. The

membrane cell consisted of a cylindrical SS 316 L body having a processing volume of

300 mL. At the top end of the cell, it was connected to the pressurization assembly by

means of a high pressure coupling capable of operation at a maximum pressure of 1000

psig (6.89 MPa). A similar high pressure coupling connected the membrane cell to the

membrane support assembly at the bottom end of the cell. A flat, circular membrane

having a diameter of 4.9 cm and an effective membrane area of 15.2 cm2 was supported

on a 1/16" thick circular 20 jam porous support disc. A hold-up volume of 1 mL

remained underneath the porous support. A Teflon ® coated stirring bar, suspended inside

the membrane cell, stirred the cell contents. A custom made 2" long, 1/8" diameter SS

tube facilitated permeate collection. The wetted sealing parts, such as 0-rings and gaskets

were made of ethylene propylene to ensure resistance to methanol. A 1/4" pressure inlet

at the top of the membrane cell facilitated the pressurization of the membrane cell.



Figure 3.1 Schematic Diagram of the Membrane Cell
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3.4 Experimental Set-up

A schematic of the laboratory setup is given in Figure 3.2. It consisted of a Sepa l' ST

membrane cell (described above) coupled to a membrane support assembly by means of a

high pressure coupling. At the other end of the cell the pressure inlet was connected to a

compressed nitrogen cylinder by means of a 1/4" S.S. tubing. The pressure within the

membrane cell was monitored by means of pressure gauges mounted on a single stage

pressure reducing valve near the nitrogen cylinder outlet and near the membrane cell

inlet. For safety considerations an adjustable relief valve (R. S. Crum, Mountainside, NJ),

set at 470 psig (3241 kPa) was installed in the set-up piping. A system of ball valves,

check valves and a pressure regulator (Matheson Gases and Equipment, East Rutherford,

NJ) was also installed in conjunction with the relief valve. The assembly was used in the

depressurization of the membrane cell. The membrane cell was mounted on a variable

speed magnetic stirring plate (Corning Corp., Budd Lake, NJ).

3.5 Experimental Procedure

3.5.1 Membrane Conditioning

Nanofiltration flat sheet membranes were supplied soaked in their preserving solutions.

Removal of the preserving solution and membrane activation was essential to preparing

the membrane for regular experimental work. As a first step, a circular piece of

membrane was cut from the sheet and was rinsed thoroughly with deionised water to

remove bulk of the preserving solution. The membrane was then immersed in deionised

water overnight to ensure complete removal of the preserving solution. Membrane

activation was carried out in the membrane cell by flushing it with ethanol at 440 psig



Figure 3.2 Schematic Diagram of the Laboratory Set Up
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(3033.8 kPa) and room temperature. Activation was carried out long enough

(approximately 80-100 minutes) to collect at least 10 mL of permeate. As recommended

by the membrane manufacturer (Koch Membrane Systems, Wilmington, MA), the

activated membranes that were to be used for nonaqueous organic solvent applications

were stored in ethanol.

3.5.2 Nanofiltration with Pure Solvents

Conditioned membranes were used to gather the pure solvent permeation data. A

membrane sample was loaded in the membrane cell and subsequently, approximately 200

mL of the solvent were added to the cell. The tests were then carried out at 440 psig

(3033.8 kPa) and at room temperature under stirred conditions. Permeate samples were

collected in graduated 25 mL glass cylinders at regular intervals. Nanofiltration

experiments with pure solvents were conducted for MPF-50 and MPF-60 membranes at

440 psig (3033.8 kPa) and room temperature with methanol and ethyl acetate

respectively.

At the end of each test run, the nitrogen supply to the membrane cell was stopped.

Depressurization of the system was carried out gradually using the back pressure

regulator assembly. A gradual drop of approximately 50 psi/min prevented the solvent in

the membrane cell from flashing and contaminating the pressure delivery tubing. Another

consideration in the gradual pressure reduction was the need to maintain the compacted

state of the membrane that it had achieved following the test run. Solvent flux profile

over several test cycles of pressurization and depressurization was thereby obtained. Used

membranes were preserved for future tests by keeping them soaked in ethanol.
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3.5.3 Nanofiltration and Diafiltration with Solutions

Nanofiltration and diafiltration experiments for solutions and mixed solvents

respectively, were carried out in a manner similar to that for pure solvent runs. Sections

3.5.3.1 and 3.5.3.2 describe the differences in experimental procedures.

3.5.3.1 Nanofiltration of a Given Solution: Solution of erythromycin in ethyl acetate

was prepared by dissolving a known amount of erythromycin in ethyl acetate in a 200 mL

volumetric flask. The solution concentration of erythromycin was determined by using a

Hitachi U2000 spectrophotometer after appropriate dilution and color development of the

test sample. Section 3.6.1 provides the details of the analytical procedure for determining

erythromycin concentration.

To carry out a nanofiltration run, a conditioned membrane was loaded into the

membrane cell. The cell was then placed on the magnetic stirring plate and the Teflon

coated magnetic bar inside the cell was rotated at a fixed speed. The membrane cell was

then pressurized by nitrogen gas up to 440 psig (3033.8 kPa). Permeate samples were

collected in 25 mL graduated volumetric cylinders at regular intervals. The permeate

samples were analyzed for erythromycin concentration after appropriate dilution and

color development. In a typical nanofiltration run, 200 mL of feed having a pre-

determined erythromycin concentration was prepared; of the 200 mL solution, 190 mL

were charged into the membrane cell and concentrated up to about 40 mL. The remaining

10 mL of feed were used for concentration analysis. The average of the absolute value of

the difference between the concentrations determined spectrophotometrically and

gravimetrically was less than 1.0 %. Permeate sampling was done more frequently at the
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beginning of a run so as to get accurate information about the initial membrane

compaction behavior. Permeate flux was calculated in terms of L/m 2h and the observed

rejection, R, was determined by performing a mass balance on erythromycin. Detailed

flux and observed rejection calculation procedures can be found in Appendix A.

Nanofiltration experiments were done with erythromycin in ethyl acetate solution,

using MPF-50 and MPF-60 membranes at 440 psig (3033.8 kPa) and room temperature.

A starting feed concentration of 5000 μg/mL was used in all tests so as to get a uniform

basis for performance comparison of both the membranes. The initial feed volume was

reduced to approximately 40 mL. Further reduction in solution volume within the

membrane cell would result in a significant increase in the solution concentration, giving

rise to considerable concentration polarization. Upon completion of the test, the

membrane cell was depressurized gradually taking the same precautions as described in

section 3.5.2. Membrane samples were then stored in ethanol and the membrane cell,

along with all accessories were thoroughly cleaned and stored in a dust free environment.

3.5.3.2 Diafiltration: A membrane subjected to a nanofiltration run as described in

section 3.5.3.1 was used for diafiltration experiments. Diafiltration was conducted in a

manner similar to a nanofiltration experiment. A conditioned membrane subjected to

nanofiltration was loaded into the membrane cell, which was then mounted on a magnetic

stirring plate so as to enable the retentate to be stirred continuously. Approximately 20

mL solution of erythromycin in ethyl acetate, subjected to a nanofiltration experiment

was mixed with 80 mL of pure methanol to give an approximately 20 % ethyl acetate

solution. A small quantity of this feed solution was used to analyze the erythromycin
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concentration (analysis detail in section 3.6.1) and ethyl acetate concentration (analysis

details in section 3.6.2).

The feed solution was then pressurized to 440 prig (3033.8 kPa) and permeate

samples were collected in 25 mL graduated volumetric cylinders. Permeate samples were

collected more frequently at the beginning of the experiment so as to get accurate

information about the initial membrane compaction behavior. Each permeate sample was

analyzed for the concentrations of erythromycin and ethyl acetate. Based on the results

obtained from the concentration analysis, the observed rejection pattern of the membrane

during the diafiltration stage was collected. The diafiltration run was continued till the

volume of the retentate was reduced to the original erythromycin and ethyl acetate

solution volume, i.e. approximately 20 mL. The retentate was also analyzed for

erythromycin and ethyl acetate concentration. This solution of erythromycin in ethyl

acetate and methanol was again diluted with pure methanol to approximately 4 % ethyl

acetate. This solution was then subjected to another cycle of diafiltration. During this

cycle, permeate samples were collected and analyzed in a manner similar to that in the

previous diafiltration run. Depressurization of the membrane cell at the end of each

diafiltration run was done gradually, taking the same care as with the nanofiltration

experiment.

A membrane sample, after activation, was subjected to three cycles, one

nanofiltration cycle and two diafiltration cycles. Figure 3.3 is a schematic showing the

pressurization, activation/nanofiltration/diafiltration and depressurization cycles

employed for each membrane tested.
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Time

Figure 3.3 Schematic Showing the Pressurization, Activation/Nanofiltration/Diafiltration
and Depressurization Cycles
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3.6 Analysis of Compositions of Feed, Permeate and Retentate Samples

3.6.1 Analysis for Erythromycin

Concentrations of the feed, permeate and retentate solutions were determined using a

Double Beam UV/Vis spectrophotometer, model U2000 (Hitachi Instruments, Danbury,

CT). The solution of erythromycin in methanol or ethyl acetate is colorless. Due to this

the calibration curve in the very dilute concentration range of 100 µg/mL or less is not

very accurate. Also, for identical concentrations of erythromycin in methanol and ethyl

acetate respectively, the absorbance of each sample is different. This would require

separate calibration curves for pure methanol, pure ethyl acetate and their mixtures

thereof. To avoid the need for such multiple calibration curves and to get an accurate

calibration curve, especially in the very dilute concentration range, each sample to be

analyzed was diluted with deionised water such that the concentration of the organic

phase was less than 5.0 % by volume. This was required because the solubility of ethyl

acetate in water at room temperature is less than 8.0 % (CRC Handbook, 1998). The

dilute sample was then mixed with 10 mL of 5 M sulfuric acid and heated to 100 °C in a

water bath for 2 minutes to develop color in the solution. The solution was then cooled,

further diluted with sulfuric acid to 25 mL and analyzed for absorbance. This analysis

method was adopted from (Chen et al., 1993).

Absorbances of samples prepared in this way, either in methanol or ethyl acetate

showed no difference in their absorbance values. Hence only a single calibration curve

sufficed for the entire concentration range of methanol and ethyl acetate solution. Figure

3.4 shows a flowchart for the dilution technique employed for the erythromycin

concentration analysis. Figure 3.5 shows the calibration curve used to determine the



Figure 3.4 Flowchart Depicting the Method Employed to Determine Erythromycin
Concentration in Ethyl Acetate, Methanol and their Mixtures
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Figure 3.5 Calibration Curve for the Analysis of Erythromycin Concentration
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erythromycin concentration during nanofiltration and diafiltration experiments.

Calibration curves were prepared from fresh, standard dilute solutions of erythromycin in

methanol to relate the concentration of a solution with the absorbance measured at λ max

(485 nm).

3.6.2 Analysis for Ethyl Acetate

Ethyl acetate concentration in methanol was measured in a gas chromatograph (model HP

6890) using a headspace sampler (model HP 7694). The output of the gas chromatograph

was connected to an integrator (model HP 6890). The sample was analyzed by a flame

ionization detector using a 30 m long, 320 pm diameter and 1 μm film thickness HP-5

capillary column containing crosslinked 5 % PH ME Siloxane (Hewlett Packard,

Wilmington, DE). Ultrapure nitrogen was used as the carrier gas.

The technique employed for analysis was based on complete transfer of analytes

from the liquid phase into the vapor phase. This eliminated the possibility of

contamination of the analytes from any nonvolatile component in the sample, namely

erythromycin. Reproducible results were obtained by delivering 3 of sample in a 22.5

mL headspace vial. The headspace oven temperature was maintained at 70°C with a

sample equilibration time of 7 minutes. The vapors generated in the headspace were

analyzed in the gas chromatograph according to a fixed temperature program in which

the initial oven temperature of 40°C was maintained for 1.5 minutes and then raised to

80°C at the rate of 3°C/minute. The carrier gas flow was maintained at 50 mL/minute.

Figure 3.6 shows the calibration curve for the gas chromatograph analysis.



Figure 3.6 Calibration Curve for the Analysis of Ethyl Acetate Concentration in Permeate



CHAPTER 4

RESULTS AND DISCUSSION

Time-dependent results for nanofiltration and diafiltration operations are presented and

discussed in this chapter. Permeate flux profiles of pure solvents during nanofiltration

operation are also presented. The time-dependent behavior of the membrane is studied

from two perspectives, permeate flux profile and solute rejection profile. The effect of

mixed solvent environment on membrane performance during diafiltration operation is

also presented and discussed. Sample calculations for permeate flux and solute rejection

are provided in Appendix B.

4.1 Membrane Behavior and Permeate Flux Profile in Pure Solvent Environment

MPF-50 and MPF-60 membrane samples were tested several times at 440 psig (3033.8

10a) and room temperature under stirred cell conditions. Methanol and ethyl acetate

permeate flux profiles for MPF-50 and MPF-60 membranes are shown in Figures 4.1 and

4.2 as a function of the operation time.

It is seen that the nature of the permeate flux profiles for both solvents, methanol

and ethyl acetate, follow a similar trend through the nanofiltration membranes. The

results show that the permeate flux was highest during the initial period of each test run.

A gradual declining trend in the permeate flux profile was observed thereafter. Moreover,

the permeate flux was the highest during the initial period of the test run for a fresh

membrane sample. Both MPF-50 and MPF-60 are flat sheet microporous anisotropic

polymeric membranes supported on porous supports. In general, under a sustained
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Figure 4.1 Permeate Flux as a Function of Operation Time for MPF-50 Membrane (Operation
Conditions: Starting Feed=Pure Solvent, 440 psig, room temperature, stirred cell)



Figure 4.2 Permeate Flux as a Function of Operation Time for MPF-60 Membrane (Operation
Conditions: Starting Feed=Pure Solvent, 440 psig, room temperature, stirred cell)
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pressure load, such membranes gradually undergo compaction. Membrane porosity and

pore size decrease as a result of this compaction. Due to the reduction in membrane pore

size, the permeate flux through such membranes declines over the operation time (Eisold,

et al., 1990). As can be seen from Figures 4.1 and 4.2, both MPF-50 and MPF-60

membranes exhibit a similar trend in their permeate flux profile, irrespective of the

solvent environment. During actual applications involving solutes, both in aqueous or

organic solutions, it is difficult to distinguish between the effect of membrane

compaction and membrane fouling on such a declining permeate flux profile. However,

in the present case due to the absence of any solutes, membrane compaction was

primarily responsible. Preconditioned and fresh MPF-50 and MPF-60 membrane samples

were used to test each solvent and subsequent tests were performed on the same

membrane. However, as can be seen from Figures 4.1 and 4.2, the permeate flux during

the initial period of each test run was higher than that at the end of the previous test. This

suggests that membrane compaction, whose onset was seen during the first test, was

partially reversible.

Table 4.1 Summary of Nanofiltration Experiments with Pure Solvents

Membrane Solvent

Test Conditions Permeate Flux (Um h)

Pressure
(psig)

Temp First Run Second Run

Initial Final Initial Final

MPF-50
Methanol 440 Room 68.89 54.05 60.00 49.34

Ethyl
acetate

440 Room 106.02 64.74 71.05 63.16

MPF-60
Methanol 440 Room 7.67 6.45 6.70 6.35

Ethyl
acetate

440
1

Room
I

15.16 12.04 14.61 12.68
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Table 4.1 provides a summary of initial and final values of the permeate flux for each test

run. The membrane, however, did not completely recover its original properties, since the

permeate flux during the initial period of the test run was lower for each subsequent test.

Another consequence of membrane compaction is the decrease in membrane thickness.

Permeate flux is inversely proportional to membrane thickness (eq. 2.1). Hence, the

decrease in membrane thickness should lead to a higher permeate flux. But the effect of a

smaller pore size and porosity seems to offset any increase in flux due to a decrease in

membrane thickness

4.1.1 Solvent Properties and Permeate Flux

The permeate fluxes of ethyl acetate through MPF-50 and MPF-60 membranes were

consistently higher than those of methanol. Such a result can be attributed to the

differences in several properties of the two solvents. Table 4.2 gives a summary of some

important solvent properties relevant in the present context.

In general it has been found that the permeate flux through a polymeric

nanofiltration membrane depends upon the solvent structure properties such as molecular

Table 4.2 Pure Solvent Properties (CRC Handbook, 1998 and Van der Bruggen et al.,
1 998)

Solvent
Molecular

Weight
(daltons)

Polarity
Viscosity
at 25 °C
(m.Pa. ․)

Surface
Tension
at 25 .0

m (N.m/m)

Dielectric
Constant
at 20 °C

Stokes
Dia.
(nm)

Equiv.
Molar
Dia.
(nm)

MeOH 32.04 High 0.544 22.07 33.0 0.51 0.51

EtAC 88.11 Moderate 0.423 23.39 6.0814 0.86 0.68
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size, molecular weight, solvent molecule polarity, and charge on solvent molecule.

Furthermore, some solvent properties such as viscosity, surface tension, dipole moment,

and Hildebrand solubility parameter are important parameters in determining the

permeate flux through the membrane. Higher polarity of the solvent decreases the

permeate flux, whereas lower viscosity and surface tension facilitate higher flux through

the membrane. The effects of the molecular size and dielectric constant on solvent flux

were observed to be relatively small (Machado et al., 1999).

In the case of methanol and ethyl acetate, as can be seen from the Table 4.2, the

viscosity of ethyl acetate is lower than that of methanol by approximately 28 % at 25 °C.

At the same time methanol is more polar than ethyl acetate. The combined effects of

these two parameters lead to a lower methanol permeate flux as compared to that of ethyl

acetate. This can be seen from Figures 4.1 and 4.2. Surface tension of methanol is only

slightly lower (approximately 6 % at 25 °C) than that of ethyl acetate. Hence, even

though lower surface tension of a solvent leads to a higher permeate flux through the

membrane, in the case of methanol and ethyl acetate, the much higher viscosity of

methanol (combined with its higher polarity) offsets the favorable effect of surface

tension on permeate flux. Thus in the present case, the viscosity and polarity of the two

solvents seem to be the dominant properties in determining the relative magnitude of the

solvent permeate flux through the membrane. The molecular weight and molecular size

of methanol are much smaller than that of ethyl acetate. However, the low molecular

weight cut off (MWCO) of the MPF membranes (as compared to the two solvents)

suggests that the membrane-solvent interaction properties are more important than

solvent structure properties in determining permeate flux through the membrane.
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4.2 Nanofiltration of a Given Solution

Membranes MPF-50 and MPF-60 were used to carry out nanofiltration experiments using

solutions of erythromycin in ethyl acetate. The experiments were carried out at 440 psig

(3033.8 kPa) and room temperature. Table 4.3 provides a summary of the experiments

performed. Permeate flux as a function of operation time follows a declining trend similar

to that of the pure solvent (discussed in previous section). Rejection on the other hand

exhibits a steadily increasing trend. Nanofiltration runs were carried out long enough for

the membrane rejection to reach a steady state. Figures 4.3 and 4.4 illustrate the

permeate flux and rejection profiles of MPF 50 and MPF-60 membranes, respectively.

Table 4.3 Summary of Nanofiltration Experiments with Ethyl Acetate Solutions.

Membrane Solute
Starting Feed

Conc.

μg/mL)
Stirring

Test Conditions

Pressure
(psig) Temperature

MPF-50 Erythromycin 5000 Yes 440 Room

MPF-60 Erythromycin 5000 Yes 440 Room

4.2.1 Permeate Flux Profile

In the case of pure solvents, the declining permeate flux can be attributed to the gradual

compaction of the polymeric nanofiltration over the operation time. A similar trend

observed in case of solutions can be explained by three other factors in addition to

membrane compaction. These are apparent membrane permeability, solute osmotic

pressure and membrane pore crowding by and membrane adsorption of solute molecules.

Equation (2.1) states that the permeate flux is directly dependent upon the apparent



Figure 4.3 Permeate Flux and Solute Rejection as a Function of Operation Time for MPF-50 Membrane
(Operation Conditions: Starting Feed = 5000 μg/mL Erythromycin in EtAC, 440 psig, room temperature,
stirred cell)



Figur 4.4 Permeate Flux and Solute Rejection as a Function of Operation Time for MPF-60
Membrane (Operation Conditions: Starting Feed = 5000 μg/mL Erythromycin in EtAC, 440 psig,
room temperature, stirred cell)
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membrane permeability and the net pressure difference across the membrane. The

osmotic pressure of dilute solutions (concentration less than 0.2M) can be estimated by

the Van't Hoff law for osmotic pressure (Atkins 1994; Nabetani et al, 1992) which is

given below,

π=MiRT(4.1)

Over the entire nanofiltration run for all the experiments performed, the concentration of

the solution inside the membrane cell (retentate) never exceeded 22000 μg/mL or

approximately 0.03M erythromycin in ethyl acetate. At this concentration the osmotic

pressure generated was less than 11 psi (assuming a very dilute permeate). Considering

the applied pressure difference across the membrane of 440 psig (3033.8 kPa), the

osmotic pressure constitutes only a 2.5 % reduction in this pressure. Hence it can be

concluded that the effect of osmotic pressure on permeate flux was negligible.

Furthermore, the presence of solute molecules in the solvent gives rise to frictional forces

that oppose permeate flux. These frictional forces reduce the apparent permeability of the

membrane. However, the frictional forces generated cannot be very high because of the

dilute concentration of the solution. Hence, membrane compaction, osmotic pressure or

apparent membrane permeability cannot explain an order of magnitude decrease (as seen

from table 4.4) in the permeate flux through the membrane.

Such a significant decrease in permeate flux can be explained by the crowding

effect of the retentate on the active side of the membrane. Although the membrane pore

dimensions are not available, it is postulated that due to the relatively small difference in

the molecular weight of erythromycin (MW 734) and the molecular weight cut-off of

MPF-50 (MWCO 700) and MPF-60 (MWCO 400) membrane, the molecular dimensions



48

of erythromycin are of the same order of magnitude as the average pore size of the

membranes. Furthermore, the membrane pore size distribution leads to a presence of

some pores whose dimensions are larger than the average pore size. Hence it was

possible that some solute molecules entered the membrane pores and blocked them

partially or in some cases even completely. This significantly increased the membrane

resistance to permeate flux. Additionally there is a significant possibility of solute

adsorption in the pores which will also reduce the permeate flux. At the end of a

nanofiltration run, formation of a gel layer was not observed in any of the experiments

performed. Hence the drastic reduction in permeate flux through the membrane can be

attributed to the membrane pore blockage I adsorption by solute molecules and not to any

concentration polarization effects.

Table 4.4 Comparison of Initial Permeate Fluxes of Pure Solvents and Solutions

Membrane Solution
Permeate Flux

 *(L/m2h)

MPF-50
Pure ethyl acetate 76.8

5000 μg/mL erythromycin in ethyl acetate 41.04

MPF-60
Pure ethyl acetate 15.16

5000 μg/mL erythromycin in ethyl acetate 9.47

* Flux after 25 minutes of operation.

4.2.2 Solute Rejection Profile

Rejection profiles of both MPF-50 and MPF-60 membranes followed a steadily

increasing trend with operation time. Table 4.5 provides a summary of initial and steady
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state rejection values of both membranes. As can be seen from Table 4.5, the MWCO of

MPF-50 is 700, but the erythromycin (MW 734) rejection never reaches the 95 % value

used to specify the MWCO of a membrane. In case of MPF-60, even though the

molecular weight of erythromycin is well above the MWCO of the membrane, it is

unable to completely reject the solute. Hence it can be concluded that the specified

MWCO of a membrane is an inadequate indication of the rejection characteristics of the

membrane. MWCO has been traditionally used to indicate the rejection characteristics of

a given membrane. However, this study and research conducted by others (Whu et al.,

2000; Van der Bruggen et al., 1999) have found the need for an appropriate model

describing the rejection profile of a membrane as a function of molecular size parameters,

to replace MWCO as the sole indicator of membrane rejection behavior.

Table 4.5 Summary of Erythromycin Rejection by MPF-50 and MPF-60 Membranes

Membrane MWCO Solute
% Rejection

Initial Steady State

MPF-50 700 Erythromycin 82.7 92.8

MPF-60 400 Erythromycin 93.4 97.9

Note: Starting Feed Concentration = 5000 μg/mL

Operation conditions: 440 psig (3033.8 kPa), room temperature, stirred cell.

4.3 Diafiltration of Nanofiltered Solutions

In multi step organic synthesis, consecutive reactions are often carried out in different

solvent media. The solvent medium used in one reaction step often acts as an impurity for

the next reaction step and hence must be reduced below a certain concentration. Such a
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situation was simulated by replacing ethyl acetate with methanol. As explained above, the

solution of erythromycin in ethyl acetate was concentrated by nanofiltration. The

retentate thus obtained was subjected to diafiltration with methanol. In two consecutive

diafiltration steps, the ethyl acetate concentration in the retentate was reduced to less than

approximately 20 % and 4% by volume, respectively. Dilution with methanol can further

bring down the concentration of ethyl acetate in the retentate to the required

concentration level.

Table 4.6 Summary of Erythromycin Rejection by MPF-50 and MPF-60 Membranes

Membrane MWCO Solute

% Rejection

Diafiltration 1 Diafiltration 1

Initial Steady State Initial Steady State

MPF-50 700 Erythromycin 79.6 97.0 91.9 96.8

MPF-60 400 Erythromycin 95.8 98.8 95.6 98.6

Note: Operation conditions: 440 psig (3033.8 kPa), room temperature, stirred cell.

Diafiltration experiments were carried out by using MPF-50 and MPF-60

membranes that had been already compacted by a nanofiltration run. The experiments

were conducted at 440 psig (3033.8 kPa) and room temperature. Two consecutive solvent

exchange runs were carried out for each membrane sample. A starting solution of

erythromycin in ethyl acetate was first pre-concentrated by nanofiltration and then diluted

by pure methanol, for the first diafiltration run, so that the concentration of ethyl acetate

in the diluted solution was approximately 20 %. For the second diafiltration run, pure
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methanol was again added to the retentate such that the concentration of ethyl acetate in

this solution was approximately equal to 4%. Figures 4.3 and 4.4 show the permeate flux

and solute rejection profiles during diafiltration. Figures 4.5 and 4.6 describe the

concentration of ethyl acetate in the permeate during the course of the diafiltration runs.

Table 4.6 contains a brief summary of the rejection values of MPF-50 and MPF-60

membranes.

4.3.1 Permeate Flux Profile in Mixed Solvent Environment

The permeate flux of erythromycin in ethyl acetate and methanol mixture through the

MPF-50 and MPF-60 membranes followed a trend similar to that of pure solvents or

solution of erythromycin in ethyl acetate alone. In general, the fluxes were lower than

those observed for the previous nanofiltration experiment. This was because of two

reasons. First, the feed solution was approximately 80 % methanol for the first

diafiltration run and approximately 96 % for the second diafiltration run. For reasons

mentioned above, the flux of methanol through the nanofiltration membranes is

inherently lower than that of ethyl acetate. Also, as can be seen from Figures 4.5 and 4.6,

both MPF-50 and MPF-60 exhibited no selectivity for either ethyl acetate or methanol.

Hence, as can be seen from Figures 4.3 and 4.4, the permeate flux was systematically

lower for each consecutive diafiltration run. Secondly, since the membranes had been

already used for the pre-concentration (by nanofiltration) runs, some of their pores had

already been blocked by the adsorbed solute (erythromycin) molecules. This led to a

considerably higher membrane resistance to permeate flux.



Figure 4.5 Permeate Concentration as a Function of Operation Time, During Solvent Exchange for MPF-50
Membrane: Diafiltration Operations



Figure 4.6 Permeate Concentration as a Function of Operation Time, During Solvent Exchange for MPF-60
Membrane : Diafiltration Operations
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The lack of selectivity exhibited by both MPF-50 and MPF-60 membranes to

methanol and ethyl acetate mixtures can be explained by the very large difference

between the molecular weights of methanol (MW 32.04) and ethyl acetate (MW 88.11)

and molecular weight cut-offs of MPF-50 (MWCO 700) and MPF-60 (MWCO 400).

4.3.2 Erythromycin Rejection Profile During Diafiltration

The rejection of erythromycin in ethyl acetate and methanol mixture through the MPF-50

and MPF-60 membranes followed a trend similar to that exhibited during the pre-

concentration (nanofiltration) of erythromycin in ethyl acetate solution. Table 4.7 gives

the percent loss of erythromycin during each experiment.

Table 4.7 Erythromycin Loss during Nanofiltration and Diafiltration Experiments

Membrane
% Erythromycin Loss During an Entire Experiment

Nanofiltration Diafiltration 1 Diafiltration 2

MPF-50 16.1 11.14 8.74

MPF-60 3.63 3.64 3.63

As can be seen from Table 4.7, the erythromycin loss steadily decreased with each

successive run for MPF-50 membrane. This was despite the fact that the starting feed

concentrations in diafiltration runs 1 and 2 were more dilute, approximately 4200 μg/mL

and 3750 μg/mL respectively, as compared to 5000 μg/mL for the nanofiltration run. In

the case of MPF-60, the starting feed concentration for the two diafiltration runs was only

half as that for the nanofiltration run. In previous studies (Whu et al., 2000) it was found

that solute rejection is directly proportional to feed concentration. Therefore, the steady
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increase in erythromycin rejection over the entire length of the experiment for both MPF-

50 and MPF-60 membranes is indicative of the progressive membrane fouling by the

solute, erythromycin. Appendix C contains an erythromycin mass balance for the entire

nanofiltration-diafiltration runs performed with MPF-60 membrane.



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

5.1 Conclusions

Nanofiltration as a separation technique has traditionally been used to separate dissolved

ionic species from wastewaters. More recently, due to the cost effectiveness of

nanofiltration over reverse osmosis, nanofiltration is finding increasing favor in the field

of liquid separations. However, most of the research efforts, both in industry and

academia, have been dedicated to aqueous solutions. In the present work, an effort has

been made to study nanofiltration of organic systems, as applicable to the pharmaceutical

industry in particular and the chemical process industry in general. The feasibility of

nanofiltration in the field of organic synthesis was studied from two different operational

stand points. In the first step an organic solution (erythromycin in ethyl acetate) was

concentrated via nanofiltration and in the second step the solvent medium (ethyl acetate)

was replaced by another solvent (methanol) via diafiltration stages. The following

conclusions can be drawn from this study:

I. Polymeric nanofiltration membranes undergo considerable compaction under a

sustained pressure load. Hence their performance is time dependent. This affects the

permeance and rejection characteristics of the membrane. It was found that the solute

rejection reached a steady state much earlier than permeate flux.

2. Solute loss decreased (as rejection increased) with each successive nanofiltration run.

This gives an important insight into the membrane conditioning requirements and the

mode of operation in large scale industrial applications. Solutes of interest, especially

in the pharmaceutical industry, are expensive and hence the initial stages of the first

56
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3. nanofiltration run (pre concentration) could be operated in a complete recycle mode,

where the permeate (with a relatively high concentration of the expensive solute) is

recycled until the membrane achieves a consistent high rejection of the solute. Also,

in order to minimize the length of the initial unsteady behavior of the membranes,

they could be pre compacted by exposure to pure solvents at operational pressure and

temperature.

4. It was found that the nanofiltration membranes studied (MPF-50 and MPF-60)

showed no selectivity when exposed to a mixed solvent feed. This underscored the

importance of the pre-concentration stage, which the reduced the total amount of

solution volume that had to be handled. By reducing the amount of the initial

solution volume, a reduced volume of the second solvent was required to replace the

first solvent within required levels. This technique has obvious economic implications

for large scale industrial operations, where the permeate must be further processed

(e.g. distillation) to separate the solvent mixture.

5. The manufacturer-specified MWCO was found to be an insufficient parameter for

accurate prediction since the observed rejection values were slightly lower than that

predicted by MWCO.

6. One potential advantage of this separation technique from the pollution prevention

perspective was realized through this study. Most chemical reactions in the

pharmaceutical industry produce a low molecular weight by-product that must be

separated from the intermediate product of interest by a separation technique that

involves a solvent (e.g. extraction). However, the present nanofiltration technique can

simultaneously remove the solvent and the low molecular weight by-product, since
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the MWCO of the nanofiltration membranes is generally much lower as compared to

these by-products. Hence nanofiltration can reduce the total amount of solvents

required, facilitate separation by using fewer different solvents and minimize the

number of post processing operations required.

5.2 Recommendations for Future Work

Through the present study, the feasibility of nanofiltration as a separation technique in

organic synthesis of pharmaceutical products was realized. A better understanding of

some other aspects, stated below, can further facilitate the potential use of this technique

in the pharmaceutical industry.

1. A need for a model, based on molecular dimensions, to indicate the rejection

capability of commercially available solvent stable membrane can be developed. This

would make the membrane selection procedure for an application more reliable.

2. In the present work every effort was made to study an industrially relevant system.

Further investigative efforts can be made on a "real-world" multi-step reaction

system, consisting of an intermediate (solute of interest) and its by-product. This

system could be also studied for long-term performance.

3. Solvent exchange via diafiltration was performed in a discontinuous mode. A

continuous operation mode can facilitate better control of the operation and eliminate

the need for the various pressurization cycles.



APPENDIX A

MOLECULAR STRUCTURE OF ERYTHROMYCIN

Figure A Molecular Structure of Erythromycin



APPENDIX B

SAMPLE CALCULATIONS FOR AVERAGE PERMEATE FLUX AND SOLUTE
REJECTION

Average permeate flux and solute rejection results for MPF-60 membrane, shown in

Chapter 4, are tabulated in Tables B.1 and B.2 respectively. Formulae used to calculate

the flux and rejection values are also presented in addition to a sample calculation for

permeate sample 2. Operation conditions are shown below each table.

The average permeate flux (shown in Table B.1) is given by,

Hence, for permeate sample 2, we have,

The % rejection was calculated on the basis of the average solute concentration in

the permeate and the retentate. A. solute mass balance at the end of each sample provide

the information required. Equations (A.2) to (A.5) illustrate the calculation procedure.

Each equation is followed by a sample calculation for permeate sample 2.
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Table B.1 Sample Calculation of Average Permeate Flux Through
MPF-60 Membrane

Sample
Sample
Time
(min.)

Cumulative
Time
(min.)

Permeate
Collected

(mL)

Average Flux

(L/m2h)

Pre-concentration

1 30 30 7.2 9.47

2 71 101 16.5 9.17

3 59 160 13.5 9.03

4 56 216 12.5 8.81

5 52 268 11.5 8.73

Diafiltration 1

6 67 335 15.1 8.90

7 96 431 17.4 7.15

8 90 521 15.6 6.84

9 98 619 16.5 6.65

10 94 713 15.5 6.51

Diafiltration 2

11 60 773 10.8 7.11

12  100 873 15.8 6.24

13 100 973 14.8 5.84

14 200 1173 25.7 5.07

Operation conditions:

Effective membrane area: 15.2 cm 2

Starting feed: 5000 µg/mL erythromycin in ethyl acetate

Operation pressure: 440 prig (3033.8 kPa)

Temperature: Room

Stirring: Yes
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Table B.2 Sample Calculation of Average Rejection of Erythromycin by MPF-60
Membrane

Sample
Permeate
Collected

(mL)

Solute
Concetration
in Permeate

(μg/mL)

Retentate
Volume

(mL)

Solute
Concetration
in Retentate

(μg/mL)

Avg. Solute
Concetration
in Retentate

(μg/mL)

%
Rejection

Pre-concentration
Feed -----> 100.00 5000.00

1 7.20 341.00 92.80 5361.47 5180.74 93.42
2 16.50 341.00 76.30 6447.16 5904.32 94.22
3 13.50 341.00 62.80 7759.79 7103.47 95.20
4 12.50 227.30 50.30 9631.68 8695.74 97.39

5 11.50 227.30 38.80 12419.06 11025.37 97.94

Diafiltration 1
Feed --> 100.00 2500.00

6 15.10 113.64 84.90 2924.43 2712.21 95.81
7 17.40 113.64 67.50 3648.99 3286.71 96.54

8 15.60 113.64 51.90 4711.64 4180.31 97.28

9 16.50 113.64 35.40 6854.77 5783.20 98.03

10 15.50 113.64 19.90 12105.40 9480.08 98.80

Diafiltration 2
Feed ----> 84.00 2500.00

11 10.80 113.64 73.20 2852.09 2676.04 	 95.75

12 15.80 113.64 57.40 3605.87 3228.98 96.48

13 14.80 113.64 42.60 4819.14 4212.51 97.30

14 25.70  113.64 16.90 11974.84 8396.99 98.65

Operation conditions:

Effective membrane area: 15.2 cm2

Starting feed: 5000 μg/mL erythromycin in ethyl acetate

Operation pressure: 440 psig (3033.8 kPa)

Temperature: Room

Stirring: Yes
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APPENDIX C

MASS BALANCE DURING PRE-CONCENTRATION AND DIAFILTRATION STEPS
FOR MPF-60 MEMBRANE
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