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ABSTRACT

AUTOMATIC CATEGORIZATION OF ABTRACTS
THROUGH BAYESIAN NETWORKS

by
William Ramirez

This thesis presents a method for assigning abstracts of Artificial Intelligence papers to

their area of the field. The technique is implemented by the use of a Bayesian network

where relevant keywords extracted from the abstract being categorized, are entered as

evidence and inferencing is made to determine potential subject areas. The structure of

the Bayesian network represents the causal relationship between Artificial Intelligence

keywords and subject areas. Keyword components of the network are selected from pre-

categorized abstracts. The work reported here is part of a larger project to automatically

assign papers to reviewers for Artificial Intelligence conferences. The process of

assigning papers to reviewers begins by using the inference system reported here to

derive Artificial Intelligence subject areas for such papers. Based on those subjects,

another module can select reviewers according to their specialization and limited by

conflicts of interest.
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CHAPTER 1

INTRODUCTION

In 1997, Professor James Geller, wrote a challenge paper for the International Joint

Conference on Artificial Intelligence(IJCAI). The challenge problem was to

automatically assign reviewers to papers for this conference. The same technology could

be used for other conferences as well.

The paper "Challenge: How IJCAI 1999 can prove the value of AI by using AI" based its

motivation of automatic assignment of reviewers in the way the current program for

assigning papers to reviewers worked. The program used in 1997 for such a conference

was basically a very limited program in many different manners. Created by Ramesh

Patil at USC/ISI, this program was not even intended for this conference, but for the

National Conference on Artificial Intelligence(AAAI), so extra processing was required

to accommodate the program to the particular requirements of IJCAI. The general

algorithm of this program was, that an author submitted a paper with a list of content

areas that the paper could be categorized, this list could not be extended since it actually

represented all the content areas included in Patil's program, after this information was

input into the system, the program assigns papers to reviewers according to the content

areas of expertise of them.
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From the previous sentence, one can infer two basic problems : The partial analysis

of the document from the author; the program was not intelligent enough to deduce

subject areas, and the limitation of the program on accepting new content areas. In other

words, the author describes this issue as the contradiction of the use of a non-artificial

intelligence program for the Artificial Intelligence Community.

The proposal of Prof. Geller with regards to what could be improved, can be

summarized in the following way : Authors will supply a list of Content areas from any

topic of Artificial Intelligence, and an intelligent program based on these contents and by

analysis of the body of the document will determine potential content areas and at the

same time will find reviewers for those papers. In those cases where program results were

not reliable, a data entry process will be required. Adding to this statement, this thesis

aims to eliminate the need for the authors to submit content areas, since the system will

generate them automatically.

Then, a general framework was developed in order for, the different teams that

wanted to participate on this challenge, to have the same conditions. The framework

consisted of electronic submission of paper for IJCAI 1997, so that all teams would have

them available online. Authors were asked to submit a list of five to ten individuals that

they would consider good reviewers for their papers. The process of selection of

reviewers is conditioned as follows : Reviewers can not have the same affiliation as the

author, author can not be presented as a suggested reviewer, author's doctoral advisor can

not be a reviewer, people with whom the author has recently written cannot be potential

reviewers, no reviewer can have more than thirty papers; papers must have a reviewer.
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The World Wide Web was proposed as a source of information to fulfill the reviewers

conditions.

A general processing example of how to solve the problem will give a better

understanding on how this issue can be faced : abstract can be submitted online or in

batch mode and a data entry system will process them. The knowledge based system

contains information such as the content areas, potential reviewers and references. A

keyword extractor program will draw out significant keywords from the abstracts and a

categorizer program will analyze those keywords and make inferences about the potential

areas of the paper. The last stage involves the assignment of reviewers to the potential

areas of the paper. Reviewers are chosen according to their specialization and by

matching certain restriction rules such as : no reviewers can be selected with the same

affiliation as the author, the author of the paper can not be selected as a reviewer, the

author's advisor is not accepted as a reviewer, a reviewer can not be assigned fifty

papers, nor can a paper be reviewed by 50 persons, reviewers that the author has recently

written a paper with are not allowed to be reviewers for such a paper. A reviewer

selection module supports these constraints and returns as the output, appropriate

reviewers based on these limitations. The system then, send data about reviewers

previously entered in the system and potential content areas to a checking reviewer

module which will verify reviewer's assignment conditions and determine appropriate

reviewers for such a paper. Should there be no information pertinent to the reviewer, a

web-crawler module would interface with World Wide Web Search Engines to try to find

information about reviewers.
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In answer to the challenge, a group of NJIT students started the development of what

is called the "REVIEWER SELECTION" project. The general structure of the project

consists of four different modules that communicate to each other : Data Entry module,

composed of a web interface and a batch process, Data Analysis module, conformed by a

keyword extractor program and keyword — abstract counter program that will generate

valuable information to the rest of the system, the Inference module composed of an

statistical program for keywords-areas and the Categorizer program that will infer

potential content areas, and the last module is the Reviewer selection module which will

determine the best reviewers according to the conditions described before in this chapter.

The functional schema of the system is presented in .

In this figure all the different system components that interact, are displayed :

• Web Interface: It will be used as the online input of abstracts. So authors of papers

for IJCAI, can submit papers by using this interface. Not only abstracts are entered,

but also, the content areas given by the author and a list of five to ten potential

reviewers chosen by the writer as well.

• Batch Processing: This batch processing will allow the processing of more than one

abstract. These abstracts are submitted to the system by using a flat file. This module

is required in order to gather paper from old conferences.

• Keyword Extractor : It will select significant words from the abstract in order to

determine potential content areas. These words are called keywords and the program

by using grammar rules will identify and then draw out verbs and nouns. Common

nouns and verbs from the English glossary will be eliminated.
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• Data Analyzer : This program generates statistical information that will be used for

the inference engine. It takes as input the keywords extracted from the Keyword

Extractor and try to find the number of occurrences of each keyword in the abstract

being processed. As a result the Data analyzer will save information in the knowledge

base about : keyword, paper, content area, and number of times the keyword occurs.

• Statistics Program : This process, based in the information gathered by the data

analyzer, tries to make up some probabilistic values that would represent relationship

between content areas and keywords. The result of this will be a table showing a

probabilistic value representing the relationship between keyword and content area.

• Inference Engine or Categorizer : By the use of Bayesian networks, content of

abstract can be analyzed and determined AI subject areas where it can be classified.

Once the category of the paper is determined, reviewers may be assigned as they are

in the Database as experts in that area. This is what this work is based on.

• Reviewer Selection Program : This program tries to find reviewers according to the

content areas of a document. It is also responsible for resolving conflicts of interest

about a particular reviewer (Author and reviewer belong to the same affiliation,

Reviewer is also author of the paper, Reviewer has recently written a different

document with this author, etc.). As a result, this will return a list of n reviewers,

where n is a predefined value, with no conflicts of interest at all.

This thesis describe my work on the problem of automatically assigning categories

to papers by using a Bayesian networks. The document is organized into : a theoretical

framework about Bayesian networks, a discussion of how Bayesian networks can be used

to perform the categorization problem, the implementation and Conclusions. The



Figure 1 Functional Model

Ch
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implementation of the network, was possible by the use of an API (Application Program

Interface) called Hugin, which , supports all the different components of Bayesian

Networks.



CHAPTER 2

BAYESIAN NETWORKS

Also known as belief networks, knowledge maps, probabilistic causal maps, It is a

method of reasoning using probabilities. Judea Pearl gave its actual name in 1988, but the

ideas are a product of many hands. Application of this theory has not only been accepted

in Computer Science topics, but in others such as medicine (medical diagnosis),

marketing and customer support, and robotics. Companies such as Microsoft and Hewlett

Packard have applied these methodologies for developing outstanding intelligent

software programs.

An expert system, is a system that analyzes the state of the world and based on its

interpretation, decides on an action. Then the system expects some results from the

action, which it will make come true or not, the results are used as a feedback to the same

system. For instance, a physician examines a patient, and gets a record of symptoms, then

she/he will conclude in a diagnosis and prescription of medicaments to cure the disease.

After the prescription is applied the physician gets feedback from the patient visits and

then she/he reformulates his/her prescription.

The first computer-based expert system was constructed in 1960. These systems

were based in computer models of an expert such as : doctor, engineer, and mechanic.

The constructs for these systems were production rules. A production rule is of the form.

If condition then fact or if condition then action.

8
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These systems, then were called rule based systems, consisting of a knowledge base'

and an inference system 2 . The knowledge base is a set of production rules and the

inference system combines rules and observations to come up with conclusion about the

state of the world. The only drawback of these models was when conditions were not

totally assured, then results were not 100% accurate. Some modifications were proposed

about this matter and one of then was to use production rules adding a certain probability

value of belief. These rules are of the form :

If condition with certainty x then fact with certainty f(x).

A Causal or Bayesian Network, is a DAG (Direct Acyclic Graph) composed of

nodes that represent random variables, and arcs that represent the relation of causality

between nodes, these arcs are also called the independent assumptions of the network.

When there is an arc or link from Node A to Node B, it is said that A is the parent of B,

and in the same way B is a child of A. In Figure 2, there is an example of a small network

representing the case when a person on his way home, wants to know whether his/her

family is in. First of all, if the family is out, then the dog is taken to the yard and

sometimes when the dog is at the yard, her bark can be heard. The family also turns on

the light when they leave, but they also turn it on when they are awaiting a visit. The dog

is also taken to the back yard when the dog has bowel problems. As you can see from the

diagram, arcs represent relation of causality like in the case of "family out", then the "dog

is out". This type of reasoning can be expressed in a more formal way as follows :

The Event A causes with certainty x the event B. (causation statement)

Knowledge base : facts, assumptions, beliefs, heuristics, and expertise, in this project
we refer to the information stored in the database.
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Figure 2 A Causal Diagram

In the same way, given the fact that the dog is out, one would like to know if this is

because the "family is out" or the dog has "bowel problems". In this case the two root

nodes are dependent to each other. This is called conditional dependence and the fact can

be expressed in a more formal way as follows :

If we know that A has taken place, then B has taken place with certainty x.(reasoning

statement).

As described before, each node is represented by a variable, which represents events

(propositions). In some cases these variables represent Boolean events, such as in the

previous example where every node represents a Boolean event (i.e. The dog is out of the

house or not). Each event value is called a state, so in the case of Boolean variables, there

are two states, but variables can have more than one state. A variable, may, for example,

be the color of a car (states blue, green, red, brown) or a disease (states : bronchitis,

2 Inference system: the process by which lines of reasoning are formed.
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tuberculosis, lung cancer). At any time a variable is in one state, which it may be

unknown. When a state is known in a certain point of time is called evidence.

2.1. Type of Connections

2.1.1. Serial Connections

It is a cascaded influence between Nodes. From Figure 2, Bowel problems influences dog

out, which at the same time, one can hear the dog barking. In a formal way this is

expressed as given three nodes : A,B, and C. if A influences on B, which in turn

influences on C, is a serial connection. Obviously, evidence on A will influence the

certainty of B which then influences the certainty of C. If the state of the intermediate

node is known , then the channel is blocked, and A and C, in this case become

independent. A and C are said to be d-separated and B is called an instantiated variable.

Figure 3 Serial Connection

2.1.2. Diverging Connection

Influence can pass between all the children of A unless the state of A is known. Nodes

are d-separated only and only if A is instantiated.



Figure 4 Diverging Connection

2.1.3. Converging Connection

In this case, If nothing is known about A, then the parents become independent. In the

example of figure 2, if the fact that the dog is out is uncertain, then nothing can be

assumed about the state of whether the family is out or the dog has bowel problems.

If any other kind of evidence, influences the certainty of A, then the parents become

dependent . The evidence may be direct evidence on A, or it may be evidence from a

child. This phenomenon is called conditional dependence.

Figure 5 Converging Connection

2.2. D-Separation

Two variables A and B in a causal network are d-separated if for all paths between A and

B there is an intermediate variable V such that either : the connection is serial or

diverging and the state of V is known or the connection is converging and neither V nor

any of V's descendants have received evidence.

12
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If A and B are not d-separated, they are called d-connected. The implication of these

definition denote that if A and B are d-separated, changes on the certainty of A have no

impact over the certainty of B, and vice versa.

Before proceeding with the quantitative formulation of Bayesian networks, it is

required to formulate the basic principles of this theory. This principles are based on

classical probability calculus.

2.3. Basic Axioms

The probability P(A) of an event A is a number in the unit interval [0,1]. Probabilities

obey the following basic axioms.

i. P(A) 1 if and only if A is certain.

ii. If A and B are mutually exclusive, then

2.4. Conditional Probabilities

A conditional probability statement is of the following kind :

Given the event B, the probability of the event A is x.

The notation for this statement is : P(A|B) = x. This notation is strictly read as If B is

true, and everything else known is irrelevant for A, then 13(A) = x.

The fundamental rule for probability calculus is the following:

Where P(A,B) is the joint probability of the event A and B. Conditioning equation 1 to a

context C, then we get the following formula :
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By analogy, from equation 1 we have the fact P(B|A)P(A) P(AIB)P(B) = P(A,B), which

yields to the well known Bayes' rule:

Bayes' rule conditioned by a context C will read,

2.5. Likelihood

Likelihood of B given A is P(A|B), and it is denoted by L(A|B). It measures how likely it

is that B is the cause of an event A. So, imagine different scenarios for different values of

B = B1B2...Bn, then P(A|BI) calculates such a likelihood. If all Bis have the same prior

probability, Bayes' rule yields

where k is independent of i.

2.6. Probability Calculus for Variables

As mentioned before, a causal network is composed of links and nodes, where each node

represents a random variable which in a given time it is just in one state. This last

sentence means the all states of a random variable are mutually exclusive and for each

state, there is a probability associated to it.
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XI, denotes the probability of A being in state al.

Therefore, the probability of A being in state ai is denoted P(A = ay) and denoted

P(al) if the variable is obvious from the context.

If there is a variable B, which states are : b1...bm, then the conditional probability

P(AIB) is an n x m table that consists of a probability for each configuration (al, bj), See

table below.

Table I. Conditional probabilities

B1 B2 B3

Al

A2

0.4

0.6

0.3

0.7

0.6

0.4

One can notice that the sum for each column is equal to one. From the conditional

probability equation on equation 1,

P(ai|bj)P(bj) = P(ai,bj) = P(ai,bj)

If we use the same table above to calculate P(A,B) with a vector Bj = (0.3, 0.5, 0.2)

and multiply each column, the result would be P(ai, bj). See table below

Table 2 Joint Probabilities P(A,B)

B1 	 B2 	 B3

A l 0.12 0.15 0.12

A2 0.18 0.35 0.08
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The sum of all cells gives the value of one. From a table P(A,B) the probability

distribution P(A) can be calculated. Let al be a state of A. There are exactly m different

events for which A is in state al, namely the mutually exclusive events (ai,

Then the conclusion is .

This calculation is called marginalization, and it says that variable B is marginalized

out of P(A,B) (resulting in P(A)). The notation is

From the previous example, we get the following values for P(A) = (0.39, 0.61).

2.7. Conditional Independence

Two variables are considered d-separated or independent when the following condition

holds :

The variables A and C are independent given the variable B if

This definition may look asymmetric ; however if equation 6 holds, then by the

conditioned rule (Equation 4), we get :

As a summary of all the information presented, a Bayesian network consists of the

following :

• A set of variables and a set of directed edges between variables

• Each variable has a finite set of mutually exclusive states.
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• The variables together with the directed edges form a directed acyclic graph (DAG) ³ .

• To each variable A with parents B 1 ,	 there is attached a conditional probability

If a node A has no parent, then this node does not have conditional probabilities, but

instead, it has initial values, which are called unconditional probabilities.

2.8. The Chain Rule

Let P(U) be the joint probabilities of all variables in a Bayesian network. P(U) =

P(A1 ,...,An) where U is the universe of variables: U = (A1,...,An). From this joint

probability table, it is possible to calculate the individual probabilities P(A1) as well as

P(Ai|e), where e corresponds to an evidence. However the computation of P(A i) grows

exponential in the way the number of variables increase, and therefore computation takes

longer. There should be a more compact way of calculating P(U) without the exponential

time factor and it is by the use of the conditional probabilities from the Bayesian network.

Theorem: (The chain rule) Let BN be a Bayesian network over

Then the joint probability distribution P(U) is the product of all conditional

probabilities specified in BN:

Where pa(Ai) is the parent set of Ai.

3 A DAG is characterized because there is no directed path A1-->... -An such that A1=An
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2.9. Probability Updating in Joint Probability Tables

Let A be a variable with n states, A finding on A is an n-dimensional table of zeros and

ones.

Semantically, a finding is a statement that certain states of A are impossible.

Now, let U be a universe of variables, and assume that we have easy access to P(U),

the universal joint probability table. Then, P(B) for any variable B in U is easy to

calculate:

Suppose we wish to enter the above finding. Then P(U, e) is the table resulting from

P(U) by giving all entries with A not in state i or j the value zero and leaving the other

entries unchanged. Again, P(e) is the sum of all entries in P(U,e) and

Note that P(U,e) is the product of P(U) and the finding e. If e consists of several

findings (f1,...,fm) each finding can be entered separately, and P(U,e) is the product of

P(U) and the findings fi . This can be expressed in a more formal way as follows :

Theorem : Let U be a universe of variables and let e = fl, 	 fm}. Then

Where
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Following, there is an example of a Bayesian network and how calculation are done.

The Bayesian network in Figure 2, would be used and the problem statement is the

following:

Let us suppose that Dr. Mason wants to know if by the time he comes back home at

night, his family is at home before trying the doors. He has some clues that may help him

guess in advance : Often when his wife leaves the house, she turns on an outdoor light.

However, she sometimes turns on this light if she is expecting a guest. Also, there is a

dog, that when nobody is home, it is put in the backyard. The same is true if the dog has

bowel troubles. Finally, if the dog is in the backyard, he will probably hear her barking,

but sometimes, he can get confused by other dogs barking.

After the statement is present, the next step is to model the network. As mentioned

before this example is represented by the model in Figure 2. From the model we find out

that we have two unconditional probabilities : family-out and bowel-problems, and the

rest of nodes require conditional probabilities such as : P(light-on | family-out),

P(dog-out' family-out, bowel-problems), P(hear-bark I dog-out). For each node we have two

states with the values or true-false. So in the case of family out is true, we give a value of

0.30, and in false case we give a probability value of 0.7. This means that 70% of the

cases, the family is at home. For bowel problems, a probability of 0.20 and 0.8 is

predefined for each case. For the conditional probabilities, as a matter of example, let us

take the case of P(light-on | family-out).
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This means the probability that the light is on, given that the family is out. In these

case, the value is 0.79. The rest of values and the tables for the rest of conditional

probabilities are shown below :

Table 3 Conditional probability for Light-on

Table 4 Conditional probability P(dog-out|bowel-problemfamily-out)

Bowel-

problem

False, True

Family-out False True i	 False True

False 0.95	 0.02 0.06 0.005

True I	 0.05	 0.98 0.94 0.995

Table 5 Conditional probability for Hear-bark



21 

From this table, one can deduce that the number of pr9~tabilities to compute for each 

node is proportional to the number of:nodes and the number of states of each node. So the 

formula can be expressed as : # of states for ~ode i = I1#of states of Node j, for all 

parents nodes of node i, including it itself. 

Suppose that when Mr. Mason is very close home, he finds out that the outdoor light 

is on, so we entered this value as evidence and propagate the results. The results are 

shown in the following graphic 

Figure 6 Propagation of evidence (outdoor light is on) 

From the original unconditional probability values for family-out (0.7, 0.3), they 

have now become 0.1456 for the fact that the family is in, and 0.8544 for the fact that the 

family is out. What this shows that the evidence that the light is on, increments the 

probability that Mr. Mason's family went out. 

Now, since Mr. Mason suspects that his family is away, he walks trough the alley to 

reach the backyard to confirm his suspicions. Finally he found the dog outside, and 

therefore he is pretty sure that his family is not in. (See figure below). 



22 

Figure 7 Propagation of evidence. (Dog is outside the house). 

As the graphic suggests, the probability of family-out, has increased from 0.8544 to 

0.9531 since the last evidence, which confirm the certainty that the family ': is out. Also 

from the bowel-problem node, the value of the probability of the dog, not having bowel 

problem is 0.7684, this is because the belief that the dog is out is because the family is 

out since the outdoor light is on. 



CHAPTER 3

PROJECT DESCRIPTION

This project consists in the implementation of a Bayesian network that will be used to

determine content areas of Artificial Intelligence documents. This network is composed

of an ontology of all Artificial Intelligence areas and significant keywords that are

indicative of a paper belonging to particular areas. Since a Bayesian network represents a

causal relationship between its components, the causal relationship between the different

Artificial Intelligence topics is represented upside down with respect to that of the

Ontology; influence is explained as pointing from specific to generic subject.

Additionally, there is a causal relationship between AI content areas and keywords. At

the end of this chapter I will use a small example of the network to explain how the

network is constructed and show the results after inferencing. The ontology is read from

an ASCII file where the classification is represented in terms of indentation, AI is

displayed at the first line and flushed completely to the left. The next levels in the

classification are indented with respect to the previous ones.

As we know, Bayesian networks are initialized with probability values, so this

information is extracted from a knowledge base composed of one Oracle table, called

weight. The weight table is used to determine the degree of association between a

keyword and an Al subject; a value called weight, is computed based on statistical

formulas. According to a threshold weight value, keywords are imported into the

Bayesian network, and these values are used to generate the conditional probabilities

required for the network. After keywords have been incorporated into the Bayesian

23
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network, then the network can be used for inferencing. The process starts by inputting the

abstract or paper from a front-end interface such as a web page or a batch file, relevant

keywords are extracted from the document and then passed into the Bayesian network to

be entered as evidence. Keyword nodes that match those found in the document are set to

one, and the keywords not present are set to zero. Then, this information is propagated

throughout the network. Another program will check for content areas with high

probability values. These high probability values mean a strong relationship between the

content area and the evidence just entered. The content areas selected are then displayed

as the content areas of the abstract or document.

3.1. Knowledge Base

The idea of this program is to give valuable data to the inferencing system in order to

have good predictions. Valuable data, in the case of REVIEWER-SELECTION means a

method or formula to determine the association that exists between a keyword and a

particular content area.. Traditional probabilistic methods such as frequency of

occurrence can not work in this case, since they would only calculate how many times a

keyword will occur in a document or in other words, the frequency of occurrence of

words inside Al documents. After certain period of investigation We based our approach

on that used by Salton4 for a similar problem : the problem of indexing terms to

document content for easy retrieval, in how to identify what is relevant and what it is not

relevant. He, then figured out, that in written text, grammatical function words such as

"and", "of', "or", and "but" exhibited approximately an equal frequency of occurrence in
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different documents of different contents. So he also analyzed the case of nonfunction

words, and he found out that there were extreme variations in frequency and that in some

way those variations were related to the document content. He concluded then, that the

frequency of occurrence of non-function words may be used to indicate term importance

for content representation. Then he proposed the following algorithm to extract valuable

term from documents :

I. Eliminate common function words from the document texts.

2. Compute the frequency for all remaining terms

3. Choose a threshold value T , to select those terms with a value greater or equal than T

and reject the rest.

There was a problem with this algorithm, using frequency of occurrence, was not a

very selective way to determine association between terms and content areas. This is true

because when calculating frequency for a keyword that occurs in more than one content

area, there would not be any difference to that one of a keyword that occurs in only one

document. So there should be a way to punish those terms or keyword that occurred in

more than one content and in some way to increase the value of those terms that appeared

in documents of a specific content. Salton, found similarities in the concept weight and

his observations, so he developed the following formula :

Let Wij, be called weight or importance of a term or keyword Tj in a document Di,

and is defined as the keyword frequency multiplied by the inverse document frequency.

4 The name of the book is : Automatic Text Processing , the author is : Gerard Salton.
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For the purpose of this thesis, we have adapted this formula in the following way :

Wu = will determine the weight or in other words, the closeness of association between

a particular keyword i and a particular area j.

= Indicator ratio. = # of papers of area j in which keyword i occurs
Total number of papers of area j

The values for IRIS, will be supplied from the data analyzer which outputs to an

Oracle database table: the id of the document, the keyword occurred in the document, the

content area the document belongs to, and the number of times the keyword occurs

within the document.

3.1.1. Functional Specification

Following is the flowchart diagram of the statistical program.

Figure 8 Flow Chart Diagram — Rule Constructor

The program receives as input : PaperId which is the identifier that uniquely

distinguish each document, Content Area, the area the document belongs to, Keyword , is

the keyword found in the document and extracted as a relevant keyword from the

keyword extractor, Ntimes, number of times the keyword happens in the document. Then
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the Rule Constructor generates the weight for each combination of keyword-are and

outputs the result into the Weight table.

3.1.2. Process Description

This module generates a weight value which represents the degree of association between

keywords are Artificial Intelligence content areas. The weight value is computed by using

Equation 8.

B egin
Query = SELECT DISTINCT AREA,KE YWO RD FROM STATIC
For each record in Query do

Extract area and keyw or d in areal keyw or d1
Compute  IN as number of paper where area = areal and keyword= keyword1 divided by total numb er
of papers of area= areal
Compute second term of the formula by summing all IN that have as a. k eywor d = keyword1 . Assign this
value into sumAllIRij.
Weighti= IRij * logo otal number of areas, sumAllIRij)
Store Weight, keywor di, and areal in Weight table
Read next record from Query

End for
End pr ocess.

Figure 9 Algorithm for the Rule Constructor program

3.1.3. Design

Program was implemented using Java 1.2 and information was extracted from Oracle

tables corresponding to the database model for this project. In Java, a special module

called JDBC was used, this module allowed the connectivity between Java and Oracle.

This program is not part of the interactive module, it works in batch mode and it is run

every time the information in the static table is changed. The source code of this program

can be found in Appendix B of this document.
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3.2. Inference Engine System

The inference engine system has to deal with the creation of a Bayesian network in order

to automatically derive content areas from keywords contained in a paper. The structure

of the network is composed of content areas supplied from Artificial Intelligence and

keywords extracted from the rule constructor. Artificial intelligent subjects are classified

in a way of a DAG (Directed Acyclic Graph). In this type of network, specific nodes are

not associated to one general subject; a specific subject may be related to more than one

subject area. So at the highest level of the hierarchy, there are the most specific classified

subject areas and at the lowest level, there is the AI subject with all the immediate higher-

level subject areas connected to it. Information about the content areas of AI, is stored in

a text-file, in which, for each line, there is a subject category and there is an indentation

that represents the relationship between the subject in the previous one and the current

one. With regards to keywords, not all keywords in the weight table are imported in the

Bayesian network, only those keywords with a weight greater than a threshold value will

be used. As a summary of the representation of the Bayesian network, areas will be in the

top level configured in a way of a DAG and at the bottom level , keywords are located.

The way keywords are connected to areas depends on the weight values, so there will be

some cases where a keyword is connected to just one area , or other cases where a

keyword is connected to more than one. A tentative diagram is shown in Figure 10.

Once areas are extracted from the text file and keywords are imported based on the

threshold value from the static oracle table, the next point would be to assign

probabilities to these nodes. All these nodes are Boolean nodes, what they express in the
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case of an area, is the probability of certainty of a content area based in a more specific

area, and in the case of a keyword node is the probability of certainty of a keyword

happening in a document of that type. The conditional probabilities, such as in the case of

the keyword "superset" in Figure 10, may express 'Probability of the keyword 'superset'

happening, given that this paper is classified in 'coalitions' but not in 'AI architectures' ".

Those nodes with no parents are initialized inversely proportional to the number of

orphans. In the case of areas, according to the structure, an area is usually influenced by

more than one node (multiparent). Therefore probability tables are usually big, and for

reasons of simplicity I assumed a probability value of 1 if any of the parents (influencing

nodes) occurs in the document. When computing the case when none of the parents occur

in the document , I assume a probability of 0 and 1 for the case of "yes" and "no"

respectively.

Keywords have a different way of assigning probabilities with respect to areas since

these can have more than one parent. The only information provided for computing

probabilities is the weight value, which is not enough, since in the case of one parent, it is

required four different values (each value for each combination parent-node). The

assumption taken from here is : add all the weights of all parents of the keyword node, for

every combination probability the value would be the multiplication of the weight values

of the nodes involved in the combination over the total sum of weight to the power of the

number of parents. For instance, let us use the keyword "superset" from Figure 10 and

assume we have the following weight values :



Area Weight

Coalitions 3.08

AI architectures 4.50
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Table 6 Weight values for the "superset" keyword node.

Total sum = 4.50 + 3.08 = 7.58

Since we have three nodes involved and each node has two states, we have 2 3 = 8

different probability values to assign to the keyword node "superset". Here are the

probability values for this particular case :

Table 7 Probability values for the keyword node "superset"



Figure 10 A causal diagram for Reviewer-Selection.

U.)



32

In the scenario where AI-architecture = No, Coalition = Yes and Superset = Yes, it is

noticed that the only node affecting is Coalition, so then, the probability value is the

division of its weight over the total sum of all weights. From the first column, also notice

that probability of keyword "superset" happening, given that the document is not

classified as AI-architecture, neither Coalition is 0. This value is because it is assumed

that a keyword can not appear in a document of any other subject than the one it is related

to in the Bayesian network.

After all probability values have been assigned, the network can be used for

inference. A new abstract is inputted into the web interface, and then this interface calls

the keyword extractor to extract relevant words from the document. These keywords are

then entered into the Bayesian network as evidence. Those keywords that are not present

in the Bayesian network are taken out of the evaluation. After setting evidence on the

different nodes, by using the Universal Joint probability, the evidence is propagated and

the new probability values are drawn out. A program will scan probability values

throughout the area nodes and those nodes with significant probability values are then

displayed as potential subject areas for such document.

As a purpose of understanding, following, I will use a small example to demonstrate

how the project works, starting from the Ontology ASCII file until the potential subject

area that fits to the document is deduced after inference. Appendix C presents a small

portion of the ASCII file as well as the different probability tables of every node in the

network.

Figure 12 shows a small Categorization network, composed of the area nodes : AI,

Distributed AI, Decision trees, real-time systems, search, planning, causality, description
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logic, theorem proving and cognitive modeling, and keywords membership, real-time,

pathways, simplex and epsilon. Probability values for subject areas are set to 1 for all the

cases when any of its parents happens as explained before. Keyword are assigned

probability values depending on the weight values extracted from the Weight table of

those subject areas that influence it, therefore, in the case of epsilon, this node has two

subject areas as parents : cognitive modeling and theorem proving. The weight values

extracted from this table are 3.34 for cognitive modeling and 4.78 for theorem proving.

Therefore as explained before, the probability of epsilon happening (being yes) given that

the document is classified under cognitive modeling but not in theorem proving is equal

Prob(epsilon = yes I cognitive modeling = yes & theorem proving = no) = 3.34 / (3.34 +

4.78) = 0.41

Apendix C contains all the input data to the Bayesian network : the ontology file,

keywords extracted from the weight table and the probability tables of every node. After

probability tables are ready with the values assigned for each combination case, the

network is ready for inference. Let us suppose the system is tested with a document that

contains the words "simplex", "real-time" and the rest of words are not present in the

document. Once keywords are extracted from the document, they are entered as evidence

in the system. In this case, then, the two keywords are entered as evidence, which means

its certainty is set to 100 percent in the case of yes. For those keyword nodes whose

keyword, do not occur in the documents, are set to zero percent in the case of True. Then

propagation of these values is done throughout the network. The results of the

propagation are shown in Figure 13. Analysis is started from the top level of the Bayesian

network based on the fact that the more selection of specific subject will lead to more
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accurate results. A threshold probabilistic value is assumed for purposes of selecting the

potential subject areas that the document may fit. Therefore a value of 55 is chosen for

this examples, so subjects nodes under that value are discarded, otherwise they are

inserted in the list of potential nodes. By looking at the "yes" field values of the top level,

the highest value is achieved by real-time systems with a value of 51 below the threshold.

In this case since none of the nodes reach or overpasses the threshold, then selection is

moved to the next level of specific subject areas. In the second level, the highest value is

obtained by decision trees which is 56; this value is over the based value, therefore this

subject is picked as a potential classification subject for the given document. Results in

lower levels are discarded since they represent redundant information like in the case of

decision trees and distributed AI where the later is a generalization of the earlier(i.e. the

fact that the document fits in distributed AI is redundant, given that the document is

already fitted under a subcategory of distributed Al). As a result of the inference,

Decision Trees is displayed as the subject where the example document can be classified.

3.2.1. Functional Specification

The flowchart that represents the different programs that make up the Inference system is

given in page 38. In the storage symbol, in the middle of the graphic, you can see the

name "Hugin Knowledge base file", this is the file type used by Hugin to store networks.

The text file that contains the list of subject areas, represents the classification by

means of indentation , so the more indented the file, the more specific the classification

is. The "Graphical representation" process was not included in the functional
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specification because of lack of relevance, this routine is more important for the

presentation of results.

3.2.2. Process Description

Import Areas

This routine imports Al subject area names from a text file. The classification of these

subject areas is represented in the text file as a matter of indentation. If a subject appears

more indented that the previous one, it means that the subject is classified under this

previous. The subject areas are then incorporated into the Bayesian network. A detailed

specification of the algorithm is displayed in Figure 11.

Main subroutine
Begin
Create new domain d.
Operl the text file with all the content areas.
Read the first line o f text file
While not end of the text file Do.

Extract area name from text line.
Create new no de in the B.N with the area name just extracted.
Call recursive subroutine Imp ort Subjects.

End while.
Save domain d
End subroutine.

Import Subjects subroutine.
Begin
Read next line from text file.
If it is not the end of fil e then

If line is indented with regards to previous line then
Extract subject name from text line.
Create new node in BN with name just extracted from text file.
Link this new no de as child of node read from previous line.
Make recursive call to Imp ort Subj ects subroutine.

End if
End if
End subroutine.

Figure 11 Import Subjects subroutine



Figure 12 An example of a Categorization network



Figure 13 Propagation of evidence - Small example. 



Figure 14 Flow chart Diagram Inference Engine System
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Assign Probability to Areas

This subroutine assigns probability values to the imported areas into the Hugin file. The

number of probabilities to compute, depends in whether a node in the Bayesian network

has links or not. In the case of a root node, default values must be assigned, like in the

case of the Al node, the probability values were 0.5 for each case. The other case

presented in this network is a node connected to one parent in which the values are

computed based in the number of children of the parent node. Figure Figure 15 displays

the corresponding algorithm.

Main subroutine
Begin
Open domain d
For each node in the domain d Do

If no de is a root node then
Prot' ability values are 0.5 for both cases

Else
Find number o f siblings for this node
For probability value equal "yes'', assign the value 1/ (number of siblings).
In the case of "no", assign the value of 1 — 1/(number of siblings)

End if
End for.
Save domain d with new changes.
End sub routine.

Figure 15 Main Subroutine : Assign probabilities to areas

Import Keywords

Keywords are extracted from the Reviewer Selection database, based on a threshold

value. The information stored in the database is keyword, area, and weight. The

threshold value is compared against the weight to extract those pairs keyword-area with a

weight bigger than threshold. Once keyword-area are drawn out, the keyword is inserted

as a node into the Bayesian network and is linked to the area node corresponding to area
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extracted from the database. The weight value is saved on the keyword node with the

purpose of computing probabilities for the keyword later on. The algorithm is explained

in the next figure.

Main subroutine
Begin
Get threshold value from command line
Get username and password from command line to connect to oracle database
Open domain d
Select 1 = "SELECT KEYWORD, AREA, WEIGHT FROM WEIGHT WHERE WEIGHT >
:threshold".
Connect to oracle database with username and password
Execute select_1
For each recor d extracted from s el ect_1 Do

Draw out keyword, area, and weight from record
Look for area inside domain d
If node found with same area name then

Look for keyword inside domain d
If no de found with same keyword name then

Link area node as parent o f keyword node
Else

Create new no de and give it keyword name in d.
Link area node as parent of this new keyword node

End if
Insert weight and parent name as attribute inside keyword no de

End if
End for.
Save domain with new changes.
Close connection to oracle database.
End subroutine.

Figure 16 Main subroutine : Import keywords

Assign Probability to Keywords

After keywords are imported into Hugin, probability values need to be assigned in order

to process the network. As different to the case of Al content areas, keywords can have

more than one parent, which implies more probabilities to compute. Depending on the

number of parents the number of probability values is equal to 21' + 1, where n is the
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number of parents. Probabilities are then computed based on the AI content areas

involved in the condition. After assigning probabilities, the Bayesian network is ready for

inference. The algorithm is explained in next figure.

Main. subroutine
Begin
Open domain d
For each keywor d node inside domain d Do

Find the number of parents of keyword node
If number o f p arents = 1 then

Probability values will be 0.3 for the case"no", and 0.7 for "yes"
Else

From. the keyword node, compute the sum of the weight of all parents connected to this
node
Numb er of probabilities to calculate = 2 to the power of numb er a fp arents
For i = 1 to the number of probabilities to calculate Do

Convert i into binary format.
From the binary format, determine which parents are involved in such a combination.

For each parent involved in combination multiply the corresponding weight value and
store it into num.
At the same time multiply total sum as many times as parents involved in the
combination and store into den.
Probability for "yes" = num den
Probability for "no" = 1 — num I den.

End 63r
End if

End for
Save domain d
End subroutine.

Figure 17 Main subroutine : Assign probabilities to keywords

3.2.3. Design

The inference engine system is basically written in C language, and developed for the

Unix Operating system. This system was built with the help of an Artificial Intelligent

software tool called Hugin, which is specially design for the manipulation of Bayesian

Networks (A demo version can be downloaded from their website http://www.hugin.dk).

This software comes with two applications, one is the runtime program which is used for
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the graphical manipulation of networks, and the other is an API 5 library developed in C

which provides the same functionality as the runtime program.

Following is a brief description of all the different functions from the API version

4.0, used in the development of this project.

In order to use the Hugin API, you need to include the library <hugin.h> in your C

program and make sure that you have the environment variable $HUGINHOME set in

your .cshrc file. To compile the program also be advised of the following command line :

%homer> cc —I$HUGINHOME/include —c myprogram.c

Hugin also handles the following datatypes :

• h_number_t : single precision floating point.

• h doublet : double precision floating point.

• h_triangulationmethod: defines the possible triangulation methods used during

compilation.

• h error t : defines the various error codes returned when errors occur during

execution of API functions.

• h status t : common return value of some API functions. If value is zero, the function

succeeded; if the value is nonzero, the function failed and the value will be the error

code.

• h_stringt : used as a character string data type.

• h_domaint t : domain data type. A domain is the name given from Hugin to the

whole network

• h_node_t : Node data type. Node of a BN network

5 Application Program Interface
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Here it is a brief description of most of the API functions used in our project :

h_domain_t  h_new_domain(void) : creates a new empty domain. If creation fails, NULL

is returned.

h_node_t h_domain_new_node(h_domain_t domain, h_node_category t category,

h_node_kind_t kind) : Create a new node of the indicated category and kind within

domain.

h_status_t h node_delete(h_node t node) : Remove node (and all links involving node)

from the domain to which node belongs.

h_statust h_node_add_parent(hnode_t child, h_node t parent) : Add node parent as a

new parent of node child.

h_node_t * h_node_get_parents(h node _t node) : Return a NULL-terminated list

comprising the parent nodes of node.

h table t h_node_get table(h_node t) : Return the probability table associated with

node. If the node is a chance node, the table is the conditional probability table for node

given its parents.

h_node t h_domain_getfirst_node(h_domaint domain) : Return the first node of the

domain. The first node is based on the most recent created node. This is with the purpose

of traversing.

h_node_t h_node_get_next(h_node_t node) : return the node that follows node according

to the date of creation.
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h_status_t h_node_set_attribute(hnodet node, h_string_t key, h_string_t value): Insert a

new attribute into node. This was used in the thesis with the purpose of storing the weight

values of the parents of node.

h_string_t h_node_get_attribute(h_node t node, h string_t key): Return the value

associated with key in the attribute list for the node.

h_status_t h_domain_save(h_domaint domain, h_string_t filename, h_endian_t format) :

Save the domain as a HUGIN kb to a file named filename.

h_domain_t h_load_domain(h_string_t filename) : Load a domain from the HUGIN KB

file named filename.

h_ node t * h table_get_nodes(h_table_t table) : Retrieve the NULL-terminated list of_

nodes assoicated with the table. If an error is detected, NULL is returned.

h_number_t *h_table_get_data(h table t table): Retrieve a pointer to the array of table

holding the actual discrete data (denoted by x[i]). This array is a one-dimensional

representation of the multi-dimensional array. It is possible to modify the contents of the

table from this pointer.

size t h table_get_size(h_table_t table): Return the size of the table. If an error is

detected, (size t) —1 is returned.

h_status t h_node_set_subtype(h_node t node, h_node_subtype t subtype): Set the

subtype of the node to subtype. h_node_subtype t can be any of the followings :

h_subtype_boolean or h_subtype_label. By default is set to h_subtype_label,

status _t h_domain _write net(h domaint domain, FILE * net_file) : produce a_

specification of the Hugin kb file in text format using a native language called NET.
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In order to import the keyword to the Hugin Bayesian network was necessary to use

Pro*C, a C language for Oracle since information was stored in an Oracle Table. The rest

of the programs were written in C including the HUGIN library.



CHAPTER 4

CONCLUSIONS

The planned objectives from the beginning of the project were accomplished to the

fullest. Even this particular case of categorization of documents for Artificial

Intelligence, could be extended for the classification of documents in other disciplines by

means of supplying the respective ontology of the discipline and the correct assignment

of probability values to the association between keywords and the elements of the

ontology.

The success of the thesis is reflected in the following attained achievements:

• The construction of the Bayesian network through the extraction of the Artificial

Intelligence ontology from an ASCII file and the importation of keywords from an

Oracle database based on a threshold value. There is no limitation from the network

with regards to the number of components (whether it is a keyword or content area).

• The creation and implementation of a statistical formula that determines the degree of

association between a keyword and a content area. This formula allows deriving the

probability values required to feed the Bayesian network.

• Portable and network independent algorithms for the assignment of probability

values. The routines utilized for the assignment of probability values can be used in

any type of network configuration, also they interface with varied types of software

languages such as Java, Pro*C and C language.

• The graphical representation of the Categorization network. This was achieved by the

use of the Hugin API and can be displayed using the Hugin runtime program.
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APENDIX A

USER MANUAL

The expert system is composed of six program files written in Java, Pro*C and C. There

is also an oracle table called "weight" used as the knowledge base for the system. The

Operating system over which the programs were created was Unix System V version 4.0.

These programs are not user interactive, they work in batch mode and parameters are

given from the operating system command line. The program files are located in the

server : logic.njit.edu and the path is : /home/challeng/william. In order to have access to

the files, you need to telnet logic; if you are on campus, just telnet to logic, outside the

University campus, telnet to logic.njit.edu .

The program files that use the Hugin API, do not run under the logic account

because license was only purchased for one server which is : homer.njit.edu . So

compilation and execution of such programs must be made from any homer account.

Program file : RuleConstructor.java

Description : This programs builds the knowledge base for the inference system. It

generates and inserts weight values in the weight table. Currently, the program works for

the shared oracle account challeng.

Language used : Java 1.2

How to compile : from the command line type the following line :

Logic% javac RuleConstructor

After compilation, a file RuleConstructor.java is generated.

47
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How to run : from the command line type the following line :

Logic% Java RuleConstructor

Table description :

Name : Weight
Fields : AREA VARCHAR2(35), KEYWORD VARCHAR2(25),WEIGHT

NUMBER(8,4)

Program file : import_a.c

Description : This program imports the AI subject areas from a text file.

Language used : C language.

How to compile : This program only compiles in Homer, since Hugin API is installed

there. There is a file that contains all the compile instructions for this program :

compimp. This file generates the executable called import_a. So in the command line

type the following :

Homer% compimp

How to run : There are two arguments for this program, one is the text file with the AI

subject areas, which for this case is called INPUTA.DAT. Notice that the file must be

typed uppercase because Unix is case sensitive. The other argument is the output Hugin

file where areas will be stored.

Homer%import_a INPUTA.DAT bayesnet

Program file : builprob.c

Description : Assign probabilities to subject areas. This program is dependent of the

network structure. So it only works with the current structure.

Language used : C language.
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How to compile : There is a compile file to execute, called compbuild. It creates the

executable : buildp. This program as well as the previous one can only be compiled and

executed in Homer.

This is the line to compile it :

Horner% compbuild

How to run : It requires only one argument which is the name of the Hugin file. The

Hugin file should contain all the subject areas at this point. Here it is the command line :

Homer%buildp bayesnet

Program file : impkey.pc

Description : It extracts keywords from the weight oracle table to the Hugin file,

according to a threshold value given as a parameter to the program. It also links keywords

to Al subject areas based on the information stored in the table.

Language used : Pro*c precompiler

How to compile : Since this program uses Hugin API library functions, it can only be

compiled in Homer. There is a makefile file with all the compilation instructions for this

program. The file is called test.mk. From the command line type the following :

Homer%make —f test.mk EXE=impkey OBJS=impkey.o

After compiled, an executable file called "impkey" is created.

How to am : The parameters are :

1. Threshold value : starting value for importing keywords into Hugin file.

2. Oracle username : Oracle name

3. Oracle Password : Oracle password

4. Hugin file : Hugin file which should include the AI subject areas.
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A typical command line should look like this :

Homer%impkey 4.50 challeng@logic chal101 bayesnet

Program file : assignkp.c

Description : Assign probability values to keywords after they have been imported from

the weight table

Language used : C language

How to compile : There is a compile file called compass. This compilation only works in

Homer.

Homer%compass

How to run There is only one parameter which is the Hugin file. This file at this point

should include the keywords imported from the oracle table. The command line is :

Homer% assignkp bayesnet

Program file : drawnet.c

Description : This programs generates the graphical coordinates in order for the

categorization network to be displayed in the Hugin Runtime module.

Language used : C language

How to compile : There is a compile file called compdraw. As well as most of the

programs, it only compiles and runs in Homer. The command line to compile is :

Homer% compdraw

How to run : Drawnet requires three parameters : the name of the Hugin file which

should be complete at this point, the width of the node given in pixels, and the height

given also in pixels.

The command line should look similar to this :
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Homer%drawnet bayesnet 50 30

In order to see the graphic representation of the categorization network, you need to run

Hugin runtime which is also installed in Homer. It is required to have an account in

Homer to run the Hugin runtime. The procedure for running Hugin runtime is :

1. Logon into a Unix machine that has Xwindows or OpenWindows

2. Open a shell command Window inside Xwindows or OpenWindows

3. Type the following command from the local host : xhost +homer.njit.edu

4. Telnet to homer.njit.edu with username and password

5. After being logged on, make sure you have set the environment variable

HUGINHOME or that you include the following path in your command line :

/usr/local/Hugin/bin.

6. In the command line type xhugin if you have the HUGINHOME variable set,

otherwise type the full path : /usr/local/Hugin/bin/xhugin

7. Open the categorization file from the directory you have it stored.
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SOURCE CODE

RuleConstructor.j ava
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APENDIX

REVIEWER SELECTION SMALL EXAMPLE DATA

Here is a detailed specification of input information to this problem : first, you will see

the input ASCII file corresponding to the different AI subjects, then the conditional

probabilities for all the nodes that compound the example of Figure 12.

AI
distributed AI

decision trees
real-time systems
search

planning
search
causality

description logic
planning

search
causality

theorem proving
causality

cognitive modeling

Figure 18 Ontology File

AREA	 KEYWORD	 WEIGHT

real-time systems 	 real-time	 41
distributed AI	 real-time	 6.89
decision trees 	 simplex	 5:0
description logic	 pathways	 4.2
planning	 membership	 3.69
causality	 membership	 4.59
theorem proving	 epsilon	 4.30
cognitive modeling	 epsilon	 4.49

Figure 19 Weight Table
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Conditional Probability Table 1 real-time systems.

State Value

Yes 0.25

No 0.75

Conditional Probability Table 2 search.

State Value

Yes 0.25

No 0.75

Conditional Probability Table 3 causality.

State Value

Yes 0.25

No 0.75

Conditional Probability Table 4 Cognitive modeling.

State Value

Yes 0.25

No 0.75



Real-time sys.

TruelYes

FalseINo

search

False|No

0

1

False I No

True|Yes 	 False|No

0

True|Yes

causality

False|No

search FalselNo

0

1

False I No

0 	 I 	 0

1

False|No	 TruelYes

True | Yes

0
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Conditional Probability Table 5 decision trees.

Conditional Probability Table 6 planning

Conditional Probability Table 7 theorem proving



planning

Decision trees
False|No

True|Yes

True|Yesplanning	 V 	False|No False|No	 True|Yes

0 0

1True(Yes

Conditional Probability Table 8 Distributed Al

85

False I No	 True I Yes

False|No TruelYes False|No True|Yes

0 1 1 1

Conditional Probability Table 9 Description logic

Theor. Prov. False | No	 A	 True | Yes

False|No 1

Conditional Probability Table 10 AI

Desc. log False I No True I Yes

Dist. AI FalselNo	 TruelYes FalselNo True(Yes

False|No

Tru-e|Yes 0 	 1 1 1



0.6 0.45

0.4 0.55

Conditional Probability Table 11 simplex
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Decis. Trees d	 FalselNo TruelYes

False|No

True|Yes

Conditional Probability Table 12 pathways

Desc. Logic	 False|No	 TruelYes

False|No	 II	 0.7	 I	 0.25

True|Yes	 I	 0.3 	 0.75

Conditional Probability Table 13 real-time

FalsetNo

0.75 	 I 	 0.35 	 0.41

0.25 	 I 	 0.65 	 1 	 0.59

False | No

True|Yes	 FalselNo True|Yes

0.37

0.63



0.85 0.42	 I	 0.59	 I	 0.51False|No
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Conditional Probability Table 14 membership

True|Yes

planning

False|No

False|No

0.9

True|Yes

0.2

False!No

0.35

True|Yes

0.26

Conditional Probability Table 15 epsilon

Cog. Mod. I	 False | No True | Yes

Theo. proving	 False|No TruelYes FalsefNo True|Yes

True|Yes	 I	 0.15 0.58	 I	 0.41	 I	 0.49
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