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ABSTRACT

BENTHIC COMMUNITIES IN SPARTINA ALTERNIFLORA AND
PHRAGMITES AUSTRALIS DOMINATED SALT MARSHES

by
Catherine E. Yuhas

The benthic communities were investigated in Phragmites australis and Spartina

alterniflora salt marshes, conducted in natural and mitigated salt marshes located in a

highly urbanized area, the Hackensack Meadowlands, New Jersey. Benthic samples were

taken with a 5-centimeter core at two habitats, the creek bank and the edge of the

vegetation in the low marsh zone. Salinity levels and textural and structural sediment

characteristics were also collected at each site. A recolonization experiment that utilized

sediment from an undisturbed and uncontaminated salt marsh was conducted to

determine if substrate is important in benthic colonization. The results suggest that there

were differences in abundance, taxa richness, diversity, and composition in the benthic

communities found among the different types of grasses as well as the mitigated and

natural marshes. The Phragmites australis marsh had a more diverse benthic community

than the natural and mitigated Spartina alterniflora marshes. The mitigated marshes had

a greater abundance and lower diversity than the natural marshes. However, there were

differences in salinity levels (oligohaline to polyhaline) between the mitigated and natural

marshes that could result in different types of benthic communities. Substrate and

contamination did not seem to be a factor in the recolonization of benthic communities.

The principles of opportunism were responsible for shaping the benthic communities in

the recolonization experiment. This study shows that Phragmites australis supports a

healthy benthic community. The benthic community of the mitigated marsh did not

resemble the natural marshes after 12-years of establishment.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

Salt marshes are tidal wetlands that are a part of the tidal marsh-estuarine ecosystem.

Spartina alterniflora (salt marsh cordgrass) is abundant on tidal creeks, and it dominates

the low marsh (Teal 1962; Bertness 1991). S. alterniflora provides a habitat for salt

marsh species as well as a source of food for benthic invertebrates and insects (Teal

1962; Healy and Walters 1994; Van Dolah 1978; Able and Hagan 2000; Graca et al.

2000; Kneib et al. 1997). Another type of salt marsh grass is Phragmites australis. P.

australis is an invasive reed grass in the Atlantic coastal salt marshes, and its rate of

expansion is 1-6% per year (Fell et al. 1998; Angradi et al. 2001; Windham and Lathrop

1999; Weinstein and Balletto 1999). P. australis colonizes into low marshes and replaces

S. alterniflora, but it is usually found on high marshes.

P. australis changes the marsh physically, hydrologically, and chemically

(Angradi et al 2001; Windham and Lathrop 1999). These changes can affect the

utilization of the marsh by fish, birds, and other animals. Even though there is some

knowledge on P. australis, its role in salt marsh ecology is poorly understood (Angradi et

al. 2001; Fell et al. 1998; Meyer et al. 2001) especially its effect on marsh

macroinvertebrates (Fell et al. 1998; Angradi et al. 2001). Recent studies on P. australis

have found it to be an ecologically functional habitat for salt marsh inhabitants such as

nekton (fishes and swimming decapod crustaceans) and benthic invertebrates (Rilling et

al. 1998; Meyer et al. 2001). There have also been recent studies that have found it to be

1
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a food source for fish (Wainright et al. 2000; Weinstein et al. 2000). However, there

have also been studies that have found P. australis to be a poor spawning and nursery

habitat for Fundulus heteroclitus (Able and Hagan 2000; Raichel 2001).

Benthic invertebrates are also important to a functioning salt marsh ecosystem.

These organisms are a source of food for salt marsh inhabitants (Kneib 1998; Fell et al.

1988; Sarda et al. 1995), and they are at the base of the estuarine food web (Ishikawa

1989). Benthic communities may also be affected by the invasion of P. australis, and

there have been recent studies that have looked into this. One study found a P. australis

marsh to be functionally equivalent to a non-P. australis marsh in which both marshes

supported benthic invertebrates (Fell et al. 1998) while another study found that a

Spartina marsh had more primary and secondary production than a Phragmites marsh

(Angradi et al. 2001).

Benthic invertebrates are being used to assess whether or not salt marsh

restorations and/or creations are functioning ecosystems. In order to create a functioning

ecosystem a salt marsh restoration should involve reintroducing vegetation while

duplicating the nekton and benthos along with other environmental factors of the marsh

(Packard and Stiverson 1976; Allen et al. 1994; Sacco et al. 1994). There have been

studies that have compared natural versus created or restored marshes, and similarities

and differences have been found between the two with regard to fauna (Minello and

Webb 1997; Minton 1999; Craft et al. 1998; Havens et al. 1995; LaSalle et al. 1991;

Sacco et al. 1994; Moy and Levin 1991). However, the number of years needed for a

benthic community in restored or created marshes to be comparable to natural marshes is

uncertain.
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1.1.1 Salt Marshes

Salt marshes are found in the mid- to high latitudes in the temperate regions of the

Northern and Southern Hemispheres. They are found along the coastlines in all parts of

the world, and they are an interface between terrestrial and marine habitats (Mitsch and

Gosselink 1993). According to Chapman (1977), there are seven characteristics that

determine the distribution of salt marshes, which are air temperature, protected coastlines,

shallow shores, currents, salinity, tidal range, and substrate.

Salt water or salinity is essential to a salt marsh as well as the tidal range. The

distribution of salt marsh vegetation is effected by salinity levels, tidal inundation and

elevation of the marsh (Chapman 1960). Tidal flooding divides salt marshes into two

sections, which are the upper and lower (intertidal zone) marsh (Mitsch and Gosselink

1993). The upper marsh is flooded irregularly (<1 submergence per day in day light per

<360 days per year) while the lower marsh is flooded daily (>1.2 submergence per day in

day light per >360 days per year) (Mitsch and Gosselink 1993).

Salt marshes are important to the tidal marsh-estuarine ecosystem. They serve

several different important functions. Some of these functions are being involved in

nutrient cycling within estuaries, and serving in pollution filtration, sediment accretion as

well as erosion control (Niering and Warren 1980). Salt marshes are also home to many

resident nekton species as well as a temporary home to transient species from nearby

waters (Hettler 1989; Kneib and Knowlton 1995).

Salt marshes are divided into vegetation zones from the low marsh to the

terrestrial zone, and the zones are formed by marsh elevation, daily tidal inundation, and

interspecific competition (Bertness 1991; Niering and Warren 1977; Niering and Warren
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1980; Mitsch and Gosselink 1993). Along creeks and bay fronts, S. alterniflora

dominates the low marsh while Spartina patens (salt meadow cordgrass) mixed with the

spike grass Distichlis spicata dominates the high marsh (Bertness 1991; Niering and

Warren 1977; Niering and Warren 1980; Mitsch and Gosselink 1993). The terrestrial

zone is divided into a lower and upper border in which the black grass Juncus gerardi (a

rush) dominates the lower border while the switch grass Panicum virgatum dominates the

upper border (Bertness 1991; Niering and Warren 1977).

The zone of importance to this study is the low marsh zone where S. alterniflora

dominates. It dominates the low marsh zone because of its ability to tolerate the daily

tidal inundation since it has a well-developed gas transport system (Bertness 1991). The

roots and stems of S. alterniflora provide oxygen to its rhizosphere. It also provides

oxygen to the sediments and therefore to the benthic invertebrates that are living around

the roots in the sediment (Teal and Kanwisher 1966; Teal and Wieser 1966; Healy and

Walters 1994). For example, oligochaetes can be found living in the stem sheaths and on

the stems to about 5-cm below the sediment (Healy and Walters 1994).

S. alterniflora is a habitat for salt marsh inhabitants such as benthic invertebrates,

nekton, and fish. The amphipod Gammarus palustris lives in close association with S.

alterniflora around the culms, and the density of this species decreases with the decrease

in the density of Spartina (Van Dolah 1978). Fiddler crabs live on the marsh surface,

where the root mat density of the vegetation affects their burrowing (Ringold 1979).

Crabs are also found at their greatest density at the creek bank habitat where there is

vegetation present (Kneib and Weeks 1990). Nekton access the marsh surface during

tidal inundation, and utilize the surface where they are protected from predators and
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where there is an abundant supply of food (Kneib 1993). The foraging area in the

intertidal zone of a marsh that is accessible to nekton depends on the tide, and Kneib and

Wagner (1994) found that nekton were not evenly distributed on the marsh at high tide,

but were more abundant in the creek bank habitat.

Fish and nekton utilize S. alterniflora as a spawning and nursery habitat. F.

heteroclitus places its eggs in Spartina stems, and spawns on Spartina marshes at high

tide in the intertidal zone (Able and Hagan 2000; Kneib 1993). The grass shrimp

Palaemonetes pugio forage on salt marshes, and feed on benthic invertebrates and plant

matter (Kneib and Knowlton 1995). The larvae of P. pugio are released into the estuary,

and the post-larvae and juveniles utilize the marsh surface in the intertidal zone as a

nursery (Kneib and Knowlton 1995).

S. alterniflora is also a good source of food for benthic invertebrates (Teal 1962).

Graca et al. (2000) found that the marsh periwinkle Littoraria irrorata, the salt marsh

coffee-bean snail Melampus bidentatus, and the talitrid amphipod Uhlorchestia

spartinophila feed upon the organic biomass from decomposing S. alterniflora leaf

blades more so than leaf sheaths. U. spartinophila lives in close association with the

leaves of S. alterniflora, and the decomposing leaves or fungi associated with it are a

major part of its diet, which will enable them to grow and reproduce (Kneib et al. 1997).
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1.1.2 Phragmites australis Invasion

P. australis has been replacing native vegetation (Weinstein and Balletto 1999; Fell at al.

1998; Angradi et al. 2001; Windham and Lathrop 1999) in the Atlantic and the Gulf

coasts since the 1900s. Marsh managers have been trying to decrease the presence of P.

australis on salt marshes. Studies on P. australis and its effects on salt marshes are very

few. Nevertheless, restoration/mitigation efforts have been occurring to eradicate the

unwanted grass and replace it with Spartina. Some view P. australis-dominated salt

marshes as degraded systems, but others view them as an important habitat for wildlife

(Fell et al. 1998).

According to Fell et al. (1998), P. australis is known to decrease plant species

diversity; change the physical habitat of the marsh; change the production of detritus and

therefore the consumption of detritus by marsh fauna. These changes can effect the

utilization of the marsh by fish, birds, and other animals. P. australis increases the

elevation of the marsh surface and decreases the microtopography of the surface. Nekton

could have a difficult time accessing the marsh surface due to the decreased

microtopography (Weinstein and Balletto 1999).

Recent studies seem to indicate that P. australlis marshes do provide a habitat to

support nekton similarly to S. alterniflora (Rilling et al. 1998; Meyer et al. 2001), and

that P. australis detritus enters food webs similar to S. alterniflora detritus (Wainright et

al. 2000). A study conducted in P. australis-dominated and restored high marshes on the

Connecticut River found that F. heteroclitus, the most abundant fish species, was

captured in both marsh types and were similar in total number and biomass (Rilling et al.

1998), but the mean total length of the fish was longer in the P. australis marsh. The
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American eel (Anguilla rostrata) was also found in both types of marshes with no

significant difference in total number or biomass. Species diversity of fish was low for

both types of marshes, but it was higher in the P. australis marsh. P. australis marsh

provides a habitat for foraging by fish since they can move around the marsh easily due

to the separated stems of P. australis. Rilling et al. (1998) established that P. australis

and the restored marshes were both ecologically functional because both marshes had an

abundance of fish and benthic invertebrates, which are a source of food for other animals.

Meyer et al. (2001) also found that nekton species are not significantly different in

abundance or biomass between P. australis and S. alterniflora marshes in the Chesapeake

Bay, Maryland. There was also no significant difference in abundances or biomass of the

shrimp P. pugio, and the three crab species collected in the two types of marshes. Thus,

both P. australis and S. alterniflora support a population of nekton species.

Furthermore, both marsh types can contribute trophically to the nekton species.

Isotopic studies have been conducted on F. heteroclitus in Spartina spp. marshes to

determine their source of carbon in their diets, and it has been found to come from a

combination of Spartina spp., benthic microalgae, and phytoplankton (Wainright et al.

2000). P. australis detritus is a major source of sulphur (S) and carbon (C) for F.

heteroclitus along with benthic microalgae and phytoplankton in Phragmites marshes.

Benthic microalgae are not as essential as macrophyte detritus in the trophic food chain in

P. australis marshes as in Spartina spp. marshes. The stable isotope, 8 34S, is derived

mainly from Spartina spp. and P. australis as well as other organic sources, and without

this source of 834S the consumers would suffer from this loss of sulphur in their diets.

Another study in the Delaware Bay conducted by Weinstein et al. (2000) looked at the
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sources of carbon, nitrogen, and sulfur from Spartina spp., P. australis, benthic

microalgae, and particulate organic matter for the bay anchovy Anchoa mitchilli and the

white perch Morone americana. P. australis was found to be a major source of food for

these two fish species in the upper estuary of the Delaware Bay while S. alterniflora was

a dominant food source in the lower estuary where P. australis is not a dominant plant.

P. australis and Spartina spp. marshes are therefore both important in the food chain.

However, the two plant species may not be equal in supporting a nursery and

spawning habitat for fauna. In two studies, one in southern New Jersey (Able and Hagan

2000) and the other conducted at Mill Creek along the Hackensack River in New Jersey

(Raichel 2001), both established that F. heteroclitus larvae and small juveniles collected

in pit traps were far more abundant in Spartina marshes than P. australis marshes,

probably due to the flatter microtopography of the P. australis marshes. However, the

size, composition, and abundance of larger fish and abundance of decapods, which were

collected in flume nets (Able and Hagan 2000) and the average catch per unit of large

juvenile and adult fish collected in minnow traps (Raichel 2001), during the same

sampling period for both studies, were similar in both marsh types.

Even though there have been some recent studies conducted on P. australis and

its affect on salt marshes, there are still areas that need to be further investigated. The

utilization of P. australis salt marshes by fauna, such as fish and nekton (Rilling et al.

1998; Meyer et al. 2001) and the use of the marsh surface as a nursery habitat by juvenile

and fish larvae (Able and Hagan 2000) needs to be further researched. More studies

should also address P. australis' effect on benthic invertebrates (Angradi et al. 2001).
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The functional value of a P. australis marsh (Meyer et al. 2001) needs to be assessed as

well as whether or not existing ecological functions of a marsh are altered by the invasion

of P. australis (Rilling et al. 1998).

1.1.3 Benthic Invertebrates

Benthic invertebrates are important components of shallow water estuarine and coastal

marine systems (Hopkinson et al. 1999) including salt marshes, because they are a source

of food for shorebirds, waterfowl, and the nekton community, especially F. heteroclitus

and P. pugio (Kneib 1988; Fell et al. 1998; Sarda et al. 1995). They play a role in

nutrient cycling of the sediments (Ishikawa 1989), and are a link between the primary

production of the salt marsh and the nearby body of water (Fell et al. 1998; Sarda et al.

1995). Benthic invertebrates can also be indicators of environmental pollution or

disturbance on salt marshes because they are sedentary (Sarda et al. 1995; Fell et al.

1998).

Benthic invertebrates are classified as macrofauna and meiofauna. Macrofauna

(large benthic invertebrates) do not pass through a 0.5-millimeter (mm) sieve, while

meiofauna are benthic invertebrates that will go through a 0.5-mm sieve, but will not pass

through a 0.063-mm sieve (Kneib 1984). Some macrofauna can be considered meiofauna

as juveniles, and some meiofauna can be retained on a 0.5-mm sieve as adults (Kneib

1984). Meiofauna include certain taxa, which are nematodes, ostracods, copepods, and

foraminifera (Levin et al. 1996), and consist of various feeding types as well (Teal 1962).
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There are two major feeding types for large benthic invertebrates, which are filter

feeders and deposit feeders (Mitsch and Gosselink 1993). Filter feeders can be found in

the hard substrate while deposit feeders dominate the soft substrate. Deposit feeders can

be broken down into groups, such as surface-deposit feeders and subsurface-deposit

feeders, which are burrowers (Gaston and Young 1992). The deposit feeders that live on

the sediment surface, and consume algae, detritus, and meiofauna that include

polychaetes, gastropods, crustaceans, and amphipods, while the filter feeders that obtain

their food from the water column (plankton) include ribbed mussels and oysters (Mitsch

and Gosselink 1993). Teal (1962) categorized annelids, nematodes, oligochaetes, fiddler

crabs, and Littorina as deposit feeders but all of these are a part of the detritus-algae

feeding group. Many benthic invertebrates feed upon detritus (Fell at al. 1998; Sarda et

al. 1992), and it is known that they feed upon S. alterniflora detritus as well as benthic

algae (Teal 1962; Sarda et al. 1992).

Benthic invertebrates are sensitive to their environment. Intertidal benthic

invertebrates live in extreme conditions being subject to changes in salinity, temperature,

weather, and exposure due to the ebb and flood of the tide (Teal 1962; Sarda et al. 1995).

They not only have to contend with the physical factors of salt marshes, but benthic

invertebrates also face biological interactions, such as predation, competition, adult-larval

interactions, and recruitment (Gaston et al. 1988; Osenga and Coull 1983; Sarda et al.

1995; Kneib and Stiven 1982; Kneib 1984; Sarda et al. 1992; Flynn et al. 1998).

Sediment chemistry and physics (Gaston et al. 1988) and substrate type and

characteristics (Sarda et al. 1995; Ishikawa 1989) have an effect on the benthos as well.

The activities of benthic invertebrates can modify their environment through bioturbation
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of the sediments, which changes the nutrients in the sediment (Flint and Kalke 1983).

Benthic invertebrates also have to deal with the physical structure of plants, such as roots

and culms (LaSalle and Rozas 1991). Spartina culms affect benthic invertebrate

communities since the abundance of individuals, such as macrofauna, juvenile

macrofauna, and meiofauna, were greater in samples with culms than those without

(Rader 1984). Levin and Talley (2000) reviewed the literature for the effects of

vegetation and abiotic environmental factors such as marsh age, salinity, elevation,

oxygen, hydrology, organic matter, particle grain size, and faunal biogenic structures on

benthic invertebrates in salt marshes, and found that these factors affect the distribution,

composition, and diversity of benthic communities.

Salinity also affects the composition, abundances, and diversity of benthic

communities (Boesch 1972; West and Ambrose 1992; Sarda et al. 1995; Levin and Talley

2000). Boesch (1972) sampled benthic invertebrates along a salinity gradient from

polyhaline (18-30 parts per thousand (ppt)) to oligohaline (0.5-5-ppt) sections of the

estuary. The diversity of benthic communities in the Chesapeake-York-Pamunkey

estuary was higher in the polyhaline section of the estuary and diversity decreased as the

salinity decreased to the oligohaline parts of the estuary (Boesch 1972). West and

Ambrose (1992) investigated oligohaline tributaries of the Pamlico River Estuary in

North Carolina, and found the diversity of the benthic community to be low and certain

species, such as Streblospio benedicti were less abundant in these low salinity tributaries.

Some species, such as surface-deposit feeders can withstand non-optimal salinity levels

(Gaston and Young 1992).
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The predators in salt marshes affect the benthic community as well. The aquatic

predators of benthic invertebrates in the intertidal zone of salt marshes are fish species

(e.g., F. heteroclitus), crustaceans, epibenthic invertebrates, and annelids. Kneib and

Stiven (1982) found that the size of F. heteroclitus determines their foraging behavior in

which smaller F. heteroclitus prey upon benthic infauna more than the medium to large

F. heteroclitus. The abundance of annelids, mollusks, and ostracods are affected by fish

size.

Benthic communities are not only affected by predators, but also by pollution and

the contaminants in their environment. Contaminated sediments directly impact benthic

invertebrates (Flynn et al. 1998). The benthic community structure changes with

contamination because the organisms cannot move away and reside within the

contaminated sediments (Gray et al. 1990; Pocklington and Wells 1992).

There are certain responses that benthic communities have to a stressed,

contaminated environment. Some of these responses are a decrease in species diversity,

an increase in abundance of certain species, the occurrence of opportunistic species, and

changes in the presence or absence of rare species (Gray et al. 1990). The presence or

absence of certain species of polychaetes that can or cannot withstand pollution indicate

whether or not a benthic community is healthy (Pocklington and Wells 1992). Benthic

invertebrates also respond to the pollution in their environment by changing the structure

of their community as well by changing the types of feeding groups that are present or

absent (Gaston and Young 1992). Opportunistic species also take advantage of a

disturbed environment, and some of these species are the spionidae polychaetes Polydora

ligni and Streblospio benedicti, the amphipod Ampelisca abdita, and the polychaetes
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Capitella spp. These species are considered opportunistic because they have certain

characteristics, such as a fast rate of development, high rate of reproduction per year,

high recruitment, and high death rate (Zajac and Whitlatch 1982; McCall 1977).

A major source of contaminants that alters benthic communities is heavy metals.

Heavy metals in the sediment are affected by environmental processes that can change

their bioavailability, such as binding to organic matter and sediment and competing for

uptake sites in benthic invertebrates. Gaston and Young (1992) found that the abundance

of benthic invertebrates and the number of species were inversely proportional to the

metal concentration. The tubificid and naidid oligochaetes (subsurface-deposit feeders)

are tolerant to concentration of metals in the sediment (Gaston and Young 1992). In a

study in Saudi Arabia, Whaley et al. (1989) found that the abundance, the taxa richness,

and the diversity of benthic invertebrates decreased in the outfall channel of discharge

water from a petrochemical complex. Maltby (1999) discussed the effects of metal

contamination on freshwater benthic invertebrates, and found that some of them can

adapt physiologically to reduce their susceptibility to metal stress. Benthic invertebrates

that had been residing in a metal contaminated environment could withstand hypoxia, and

their respiratory system had not been impaired.

The invasibility of certain plant species may also disturb the environment in

which benthic invertebrates reside, and this may also alter the abundance, diversity, and

composition of benthic communities. The effect on benthic communities by P. australis,

the invasive plant species along the Atlantic Coast, is largely unknown. There are only

two studies that directly look at the benthic communities found in P. australis and non-P.

australis salt marshes. Fell et al. (1998) conducted a study along the Connecticut River,
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and found that P. australis salt marshes were functionally equivalent to non-P. australis

salt marshes. Four high marsh macroinvertebrates (Orchestra grillus, Philoscia vittata,

Melampus bidentatus, and Succinea sp.) were the focus of Fell et al.'s (1998) study since

F. heteroclitus prey upon these macroinvertebrates. These species were found in both

marsh types. Adult F. heteroclitus were found on both marsh types on the high marsh,

and their gut contents revealed that they were feeding on benthic invertebrates in both

marshes. Fell et al. (1998) concluded that both types of salt marshes supported benthic

invertebrates, and supported foraging by mummichogs on the marsh surface.

The other study that looked at benthic invertebrates in Phragmites and non-

Phragmites marshes was conducted by Angradi et al. (2001). Benthic invertebrates were

found in S. alterniflora and P. australis salt marshes in southern New Jersey, and

Angradi et al. (2001) suggest that the Spartina marsh has greater primary and secondary

production than the Phragmites marsh. Overall abundance of benthic invertebrates was

higher in Spartina marsh than Phragmites marsh, especially at two of the three sampling

positions, which were 0.5-meters (m), 5.0-m, and 9.5-m from the edge of the marsh. The

abundance of benthos was significantly different between marsh types at the 5.0-m and

9.5-m positions because of a decrease in abundance of nematodes and polychaetes in the

Phragmites marsh. The taxa richness was significantly higher in the Spartina marsh than

the Phragmites marsh at all sampling positions and dates (Angradi et al. 2001).

Dominance by the three most abundant taxa (Oligochaeta, Nematoda, and Manayunkia

aestuarina) was higher in the Phragmites marsh than the Spartina marsh, except for the

0.5-m sampling position in which the type of marsh did not affect the results. Dominance

was always >85%.
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The 12 most abundant taxa in the Angradi et al. (2001) study were Oligochaeta,

Ceratopogonidae, Chironomidae, Acarina, small crustaceans, Gastropoda, Isopoda,

Polychaeta, Nematoda, Collembola, and Amphipoda. Twelve taxa were noted as the

most abundant, eight of which were more abundant in the Spartina marsh, while only

three of the taxa were more abundant in the Phragmites marsh (Angradi et al. 2001).

Angradi et al. (2001) also looked at the relationship between benthic invertebrates and the

root or detritus biomass found at each marsh type, and discovered that the number of taxa

was significantly associated with the root or detritus biomass at the Phragmites marsh,

but not in the Spartina marsh.

A litter bag study was also conducted to examine the abundance, taxa richness

and composition of benthic invertebrates in litter bags containing Spartina, Phragmites,

or plastic straws (Angradi et al. 2001). The litter bags with plastic straws seem to have

the opposite results (i.e., less or more of certain species) than the Spartina and

Phragmites filled litter bags. This study revealed that the abundance was greater in the

Spartina than the Phragmites litter bags, but there was no difference in taxa richness and

composition between the two grass types.

Angradi et al. (2001) found that benthic invertebrates in the Spartina marsh were

more abundant and diverse than in the Phragmites marsh. However, dominance of the

three most abundant taxa was higher in the Phragmites marsh. These two studies (Fell et

al. 1998; Angradi et al. 2001) established that both P. australis-dominated and P.

australis-free marshes are important in the trophic link between the marshes and the

estuary.
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1.1.4 Restored versus Natural Salt Marshes

Salt marsh restorations/creations along with preservation and protection have become one

of the solutions to coastal wetland loss, improving degrading systems (i.e., P. australis

invaded or diked marshes), and preserving ecological functions of wetlands (Weinstein et

al. 1997; Minton 1999). Minton (1999) states that the Rhode Island Coastal Resource

Management Council (RICRMC) defines wetland restorations as "...the re-establishment

of a wetland which has been degraded to such an extent that the site performs little or

none of its original wetland functions", and he states that the NICRMC and the National

Research Council (NRC) defines wetland creations as "...the construction of a coastal

wetland where one did not previously exist".

Successful restorations should follow three items under the performance criteria

developed for regulatory agencies: (1) the percent coverage of favorable vegetation, such

as S. alterniflora on the marsh (95% of the total vegetated area), (2) the decrease in P.

australis coverage (<4% of the total vegetated area), and (3) the percent of open water

(<20% of the total marsh area) (Weinstein et al. 1997). The ecological criteria is

concerned with restoring the tidal flow to the marsh that will allow for the growth of S.

alterniflora and other plants, and sustaining a functioning fish habitat. Weinstein et al.

(1997) conducted a study on the Delaware Bay, New Jersey, and projected that S.

alterniflora should recolonize the marsh at a rate of 9% per year while P. australis should

decrease in coverage by 10% per year. Minton (1999) discussed a study that was

conducted at the Galilee salt marsh in Waltham, Massachusetts conducted by the United

States Army Corps of Engineers where the elimination of P. australis is estimated to be

in approximately ten years after the restoration and increased tidal flooding.
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A standard criteria for determining the functionality of restored or created salt

marshes in comparison to natural marshes does not exist, and this makes it difficult to

assess their quality and to guarantee a "no net loss" of wetlands (Zedler 1993; Posey et al.

1997). The U.S. Army Corps of Engineers has stated an established "no net loss" policy

for wetlands, which includes mitigation (creation) as a necessity if any damage is done to

a protected habitat (Zedler 1996). According to Zedler (1996), the Office of Technology

Assessment defines mitigation "as the avoidance, minimization, rectification, and

reduction or elimination of negative impacts or compensation by replacement or

substitution". Replacing or substituting the current system is not always effective in

restoring ecosystem function because most mitigations involve reintroducing a species,

particularly a plant species, without knowing whether or not the existing system can

withstand or provide for that plant species (Zedler 1996). The reintroduced plant species

may not be able to survive because the necessities for its survival may be absent in the

restored ecosystem. Zedler (1996) also raises the question of whether the mitigation

should replace the existing ecosystem or reestablish the functioning system that currently

exists. "Providing a habitat that is functionally equivalent to the one that will be lost"

while maintaining biodiversity through knowledge of the present and historic conditions

of the area is the answer (Zedler 1996).

Reintroducing vegetation alone without duplicating the nekton and benthos along

with other environmental factors of the marsh does not indicate that the marsh will be a

functioning ecosystem (Packard and Stiverson 1976; Allen et al. 1994; Sacco et al. 1994).

There have been a number of studies that look at restored or created marshes compared

with natural marshes. The abundance of nekton and macroinvertebrates are not similar
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between created or restored marshes and natural marshes (Minello and Webb 1997;

Minton 1999). Minton (1999) points out that the number of years needed for fauna of a

restored salt marsh to be equivalent to that of a natural marsh is unknown, and it may be a

very long time before they achieve the functionality of a natural marsh. In comparing the

benthic communities found in created versus natural marshes, the benthic community in

the created marsh was greater in density and species richness than the natural marsh, but

the establishment of this benthic community took 25-years (Craft et al. 1998).

There are many studies that have documented differences between natural and

restored or created marshes. Since Posey et al.'s (1997) study of the benthic communities

found in created marshes of various ages, there has been some new information on the

colonization and succession of benthic communities in created marshes. Created marshes

are inhabitated by opportunistic benthic species, which will develop according to the

sediment, hydrodynamics, and vegetation of the marsh (Posey et al. 1997). Packard and

Stiverson (1976) suggest that a created Spartina marsh on dredge spoil will eventually

sustain a detritus-based community, which is a major food source for benthic

invertebrates.

In a few studies, however, salt marsh restorations have been deemed to have

similar characteristics as natural marshes (Posey et al. 1997). The more recently created

marshes of the Posey et al. (1997) study had more polychaetes than the older created

marshes, which had more oligochaetes and amphipods. Some studies indicate that the

benthic communities found in natural and restored or created marshes were similar.

Havens et al. (1995) established that constructed marshes and natural marshes were

similar in benthic communities, but blue crabs and fish abundance were lower in the
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constructed marsh than the natural marsh. This difference may be due to the lack of

microhabitat, marsh morphology, and microtopography of the constructed marsh.

Benthic communities as well as fish and shellfish of a naturally developed marsh on

dredged material were similar in species composition and abundance to natural marshes

(LaSalle et al. 1991). The differences between a 4-year and 8-year developed marsh were

investigated and both marshes appeared to be developing.

Minello and Webb (1997) found that the amount of macro-organic matter, the

abundance of fish, decapod crustaceans, and benthic invertebrates and overall species

richness of the benthic invertebrates were higher in natural marshes than created marshes,

but the differences were not associated with the age of the created marshes. Levin and

Talley (2000) looked at studies that focused on created versus natural marshes to

determine if marsh age was a factor, and these studies have shown that marsh age may or

may not affect macrofauna. In Moy and Levin's (1991) study, planted and natural

marshes were compared, and established that higher organic matter was found in the

natural marshes than the planted marsh. However, gut contents of Fundulus were similar

or richer in the planted marsh than in the natural marshes. There were fewer juvenile

Fundulus found on the planted marsh, and Moy and Levin (1991) speculate that this may

be due to the smooth, hard surface of the planted marsh, reduced Spartina densities, and

the lack of mussel and clam shells on the planted marsh, that are spawning sites utilized

by Fundulus. Benthic communities were structurally similar in the natural and artificially

established marshes, but the artificially established marshes had lower densities, which

may be due to the lower amount of organic matter and lower stem density (Sacco et al.
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1994). Allen et al (1994) found that the there was a difference in the foraging ability of

F. heteroclitus in the restored impounded and natural marshes, and suggest that a restored

impounded marsh was not equivalent to a preimpounded marsh.

1.2 Objective

The first objective of this study was to compare the benthic communities in S.

alterniflora, P. australis and restored S. alterniflora marshes. The (1) abundance of

individuals, (2) taxa richness and species diversity (3) species composition, and (4)

substrate characteristics were investigated. The second objective of this study was to

conduct a recolonization experiment in highly contaminated and disturbed salt marshes

using sediment from an uncontaminated and undisturbed salt marsh in order to determine

if sediment characteristics are important in benthic colonization. This study was focused

on restored and natural salt marshes in a highly urbanized area, the Hackensack

Meadowlands District, New Jersey.



CHAPTER 2

METHODS

2.1 Study Sites

Chapman (1960) categorized the salt marshes of the world into nine regions. New Jersey

salt marshes, which are the focus of this study, are considered New England salt marshes,

which run from Maine to New Jersey and are part of the Western Atlantic Group

(Chapman 1977; Niering and Warren 1980). The Hackensack Meadowlands, New Jersey

is located in the Piedmont Plateau geologic region of New Jersey (Waksman et al. 1943).

New Jersey salt marshes were formed behind barrier beaches and in front of coastlines,

and they were composed of salt marsh grasses, which decomposed into fine organic mud

(Chapman 1940; Waksman et al. 1943).

The Hackensack River Basin was formed during the Wisconsin Glaciation, which

created Glacial Lake Hackensack when the glaciers melted (Heusser 1949; TAMS 1990).

A terminal moraine enclosed Glacial Lake Hackensack, and the wetland came about

when the terminal moraine was breached by rising sea levels, which allowed the Glacial

Lake Hackensack to drain. Once the area was drained, it became a black ash swamp,

which was eventually replaced by black spruce and larch due to rising sea level and water

table and peat accumulation (Heusser 1949). White cedar (Chamaecyparis thyiodes)

swamp forest became the predominant vegetation and almost disappeared by 1919. In

1935, white cedar trees were found in the Secaucus bog, and the last remnants of the

white cedar swamp forest could still be seen in 1949 in a bog at Moonachie, which is

21
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located on the Hackensack River (Heusser 1949). The white cedar swamp was affected

by human disturbances such as logging, fires, ditching, and pollution (Heusser 1949).

The area then became a tidal salt marsh where P. asutralis is dominant.

However, it is uncertain when P. australis first appeared in the Hackensack

Meadowlands District, but there have been a few published sightings of P. australis in

the 1800's in New Jersey. Willis (1877) put together a list of the plants that were found

in New Jersey and Phragmites communis was found in meadows located in Ocean

County and the Hackensack Meadows. P. communis is the older nomenclature for P.

australis (Gleason and Cronquist 1991). Britton (1889) also found Phragmites vulgaris

in swamps and on the borders of ponds throughout New Jersey. P. vulgaris is the older

nomenclature for P. communis (Britton 1889). Harshberger and Burns (1919) cite the

presence of P. communis as a dominant and common plant species in the Hackensack

Meadowlands, and there are photographs of P. communis along the Hackensack River

that date back to 1916.

The Hackensack Meadowlands also had to contend with a lot of human

disturbances since the area first became settled during the 17 th century. Some historical

disturbances are salt hay farming, diking and draining for farmland and mosquito control.

Some recent disturbances are the construction of highways, pipelines, urbanization, the

construction of the Oradell Dam, industrial and residential wastewater discharges, heavy

metal wastes, and development (TAMS 1990). All of these forms of urbanization are

responsible for the altered wetlands and tidal flow in the area.
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The Hackensack Meadowlands District is 32-square miles located in Bergen and

Hudson counties of New Jersey (Figure 2.1). The study sites are located in Sawmill

Creek (SMC) and Mill Creek (MC). MC is located in Secaucus, New Jersey (Figure 2.2)

and SMC is in Lyndhurst, New Jersey (Figure 2.3). Sawmill Creek is found along the

southern section of the Hackensack River. It is a natural salt marsh that was formed in

1950 by a tide gate breach (Kraus and Kraus 1988). The known salinity range at this site

is 6.9 to 15.7-ppt, and the tidal range is approximately 1.5-meters (m). P. australis is the

dominant vegetation at SMC, but on extensive marshes S. alterniflora can be found there

as well.



Figure 2.1 Site map of Hackensack Meadowlands District, New Jersey

24
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Figure 2.2 Site map of Mill Creek, Secaucus, New Jersey.
Map Name: Weehawken. USGS Reference Code: 40074-G1-TF-024. Year Created: 1967. Revised/Inspected:
1981.
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Figure 2.3 Site map of Sawmill Creek, Lyndhurst, New Jersey.
Map Name: Weehawken. USGS Reference Code: 40074-G1-TF-024. Year Created: 1967. Revised/Inspected:
1981.

The other two sites of this study are mitigated marshes located on Mill Creek.

One of the marshes was restored 12-years ago while the other was undergoing the

beginning stages of the restoration at the time of the sampling. The Hartz Mountain

Company mitigated the 12-year Mitigation Site (M-12), and it is found on the western

brackish marsh section adjacent to Mill and Cromakill Creeks (HMDC 2000) along the

northern part of the Hackensack River. The Hartz Mountain Company in 1985-1988

removed P. australis; decreased the site elevations therefore increasing daily tidal

inundation; and planted S. alterniflora, and monitored the site (TAMS 1990). The site is

approximately 63 acres, surrounded by industry, highways, and urbanization (TAMS
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1990; HMDC 2000). The tidal range at M-12 is approximately 1.5-m, and the salinity

range at this site is 0.5 to 7.0-ppt (Kraus and Kraus 1988). The rest of MC is dominated

by P. australis.

In 1998 another restoration project took place in MC. The New Mitigation Site

(M-0) is a 140-acre site, and the site grading was underway during the time of sampling

in 1999. The newly mitigated section of Mill Creek is adjacent to the 12-year Mitigation

Site. The area was dominated by monoculture stands of P. australis before the

mitigation, which was conducted to eliminate P. australis, to increase tidal inundation,

and to create a low marsh system (HMDC 2000).

Kraus and Kraus (1988) reported that the Hackensack Meadowlands

Development Commission (HMDC) in 1982 found heavy metals in sediments of SMC.

Kraus and Kraus (1988) conducted their own heavy metal analysis on the sediment. The

water quality at SMC is better than at MC because of lower concentration of heavy

metals at SMC than MC (Kraus and Kraus 1988). The heavy metal concentrations found

in the sediment at MC were lower than SMC because the surface sediment was graded at

MC, and this removed the layer of sediment with the highest concentration of metals

(Kraus and Kraus 1988). It is also known that skeet shooting is a part of Mill Creek's

history, which is responsible for the high concentrations of lead (Kraus and Kraus 1988).

Currently, a sewage treatment plant discharges into MC near the newly mitigated section

(Figure 2.2).

The mitigated areas of MC are also contaminated by heavy metals. Kraus and

Kraus (1988) reported historic findings from the General Plan, Environmental Impact

Assessment Report conducted by TAMS in 1985 of the presence of heavy metals. Kraus
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and Kraus (1988) conducted their own heavy metal analysis of the sediment at MC in

1986 at (1) the non-mitigated section of the marsh, which is adjacent to the mitigation

site, and (2) the mitigation site. The site is also considered to be degraded due to the

types of organisms found there, such as oligochaetes, hydrobiidae snails, and

mummichogs, which are known to be pollution tolerant (TAMS 1990). Some other

reasons that the area is known to be degraded are the low dissolved oxygen levels (<4.0-

ppm in the summer months) and high biological oxygen demand (>5-ppm) (TAMS

1990).

2.2 Materials and Methods

2.2.1 Benthic Sampling

The area sampled at SMC consists of adjacent stands of P. australis (P) and S.

alterniflora (S) that are separated by a tidal creek. At MC, the samples were collected at

the 12-year old mitigated section of S. alterniflora (M-12) and the newly mitigated

section (M-0). At the time of sampling at the M-0 site, the mitigation was underway, and

all that remained was a bare substrate, some P. australis, and Pluchea purpurascens, an

annual salt marsh fleabane that flowers between late summer and fall (Newcomb 1977).

The samples were collected at two habitats on the low marsh, which are (1) the creek

bank and (2) the edge of each type of vegetation (P. australis and S. alterniflora) on the

marsh plain. At both SMC sites (S and P), the area sampled is a steep creek bank

coming off of the vegetated marsh surface that goes into an emergent area in the intertidal
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zone. At both MC sites (M-12 and M-0), the creek bank is a gently sloping emergent

area in the intertidal zone coming off of the vegetated (M-12) or non-vegetated (M-0)

marsh surface.

Benthic samples were taken with a PVC core sampler with a diameter of 3.9-

centimeters (cm). The cores were taken to a depth of 5-cm at each sampling station.

Three replicates were collected at each sampling station. Samples were collected once a

month at low tide from June 1999 to September 1999 from the creek bank adjacent to

each marsh. The edge of the vegetation on the marsh plain was sampled from July 1999

to September 1999. Salinity at each site was measured with a refractometer.

2.2.2 Biota

In the field, the samples were preserved in 20% Formalin. After approximately one or

two weeks, the samples were transferred to 70% Ethanol with Rose Bengal dye for

staining of the benthic invertebrates. The samples were sieved in a 0.3-mm sieve, sorted,

and identified to the lowest possible taxonomic level (Weiss 1995) to determine taxa

richness, overall abundance, and species composition. Some organisms were not

identified to species, such as nematodes and copepods while others were identified to

species (i.e., Streblospio benedicti), and this was determined because of the functionality

of the organisms. For example, nematodes and copepods are both small enough in size to

be prey for larval fish (Raichel 2001) while S. benedicti may be involved in infaunal

interference interactions (Levin 1982). The number of nematodes was estimated for

those sites that had a count of> 100 individuals in a petri dish. When this was the case,
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the total number of petri dishes utilized for the sorting procedure was counted, and this

was multiplied by the mean number of nematodes counted in the first two petri dishes

sorted for that particular site.

2.2.3 Sediments

In September 1999, sediment samples were also taken with the PVC corer for

determining sediment characteristics. The samples were taken at a depth of 0-5 cm at

each sampling station, and three replicates were taken at each sampling station. Prior to

lab work up of samples, they were kept in a cold room. The samples were initially sieved

through a 4.75-mm sieve to collect any pebbles, stones, and large pieces of organic

material. The sediment characteristics that were determined are percentage of organic

matter and the percentage of silt, sand, and clay.

2.2.3.1 Percentage of Organic Matter Five-grams (g) of sediment were

placed in a ceramic crucible, weighed, and placed in a 105°C oven for 16 hours to dry.

They were then reweighed to determine the dry weight. The organic matter content was

then determined. Any pieces that were greater than 1/8-inch (in) diameter were removed

from the dry sample. The samples were reweighed and then placed in a 440°C muffle

furnace in a hood for 16 hours. The samples were then cooled in the hood in order to be

reweighed. This weight is the ashed weight. The percent organic content then can be

calculated through this equation:

(Dry Weight - Ashed Weight)/Dry Weight x 100
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2.2.3.2 Percentage of Silt, Sand, and Clay The sample was air dried on a piece

of paper in a greenhouse. Once it was dry, pieces that were greater than 1/8-in diameter

were removed from the sediment after it was crushed with a mortar and pestal. The

sediment was analyzed using the LaMotte Soil Texture Unit® (LaMotte 1999) which

provides a volumetric calibration of sand, silt, and clay through sedimentation in an

aqueous solution.

2.2.4 Recolonization Experiment

A recolonization experiment was conducted at the study sites to determine if sediment

characteristics, such as contaminants, are important in benthic colonization. Sediment

was collected on May 25, 1999 at a relatively uncontaminated and undisturbed salt marsh

at the Rutgers University Marine Field Station in Tuckerton, New Jersey. The sediment

was taken at low tide in the creek bank. It was placed in a bucket and sealed until June 7,

1999. It was left in anoxic and greenhouse heated conditions, in order to defaunate the

sediment by depleting the oxygen and killing the ambient organisms (Zajac and

Whitlatch 1982). The sediment was then sieved through a 2-mm sieve. The sieved

defaunated sediment was placed in 118-milliliter (ml) Rubbermaid® storage containers

5.8-cm diameter and 5.9-cm height. After examining them microscopically to see that no

living organisms remained, they were placed in the creek bank at the two Mill Creek and

two Sawmill Creek sites in June 1999. The containers were flush with the ground (Smith

and Brumsickle 1989; Zajac and Whitlatch 1982). Three replicates were collected during

each sampling event in July and August 1999. The samples collected were processed in

the same manner as the ambient benthic samples. Sediment samples were collected on
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March 3, 2001 to determine the percentage of silt, sand, and clay for the Tuckerton

sediment. Sediment samples were also collected on April 7, 2001 to determine the

percentage of organic matter for the Tuckerton sediment. The sediment samples were

collected in the same manner as the Hackensack Meadowlands sediment.

2.2.5 Statistical Analysis

All of the benthic samples were analyzed on Statistical Analysis System (SAS) Version 8

(SAS 1999-2000). Multiple analysis of variance (MANOVA) along with the Student

Newman Keuls (SNK) test was utilized to analyze the monthly benthic samples. The

significance level used was P<0.05. The percentage of organic matter and the percentage

of silt, sand, and clay were analyzed by running analysis of variance (ANOVA) on the

data. All data were tested for normality and all of the abundance data were not normally

distributed, and so were log transformed. All of the other data collected were normally

distributed. The Shannon-Wiener and Simpson's Taxa Diversity Indices were

calculated on the Multivariate Statistical Package (MVSP) (MVSP 1985-2000).

Shannon-Wiener diversity index is a Type I index, which is affected by the rare species in

the community (Krebs 1999). Simpson's diversity index is a Type II index, which is

affected by the more abundant species in the community (Krebs 1999). The range for

Simpson's index is from zero to one. Principal components analysis (PCA) was

conducted on the ten most abundant taxa in the ambient benthic sampling. PCA was also

conducted on the 11 most abundant taxa from the ambient and recolonized samples.
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These taxa were chosen to be analyzed because they were greater than or equal to 1.0%

of the total abundance. PCAs were also conducted on the percentage of silt, sand, clay,

and organic matter. PCAs were conducted on SAS as well.



CHAPTER 3

RESULTS

3.1 Environmental Parameters

3.1.1 Organic Matter

In the creek bank samples, there was a significant difference (P<0.05) between S and the

other three sites in that S had more organic matter present (Figure 3.1). There was also a

significant difference between the percentage of organic matter at Tuckerton and the

Hackensack Meadowlands sites except for M-12. Tuckerton had less organic matter

present. There was no significant difference at the edge of the vegetation amongst the

sites. However the mean percentage of organic matter was significantly different from

the creek bank and the edge of the vegetation at M-12, M-0, and S. At M-12 and M-0,

the mean percentage of organic matter was significantly higher at the edge of the

vegetation habitat, and at S, the mean percentage of organic matter was significantly

higher on the creek bank.

Figure 3.1 Mean percentage of organic matter at the creek bank and the edge of the vegetation habitats.

Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site Mill Creek (M-0) during September 1999. Tuckerton (Tk) samples were
taken at the creek bank in April 2001.

34
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3.1.2 Percentage of Silt, Sand, and Clay

The percentage of silt, sand, and clay was determined for both habitats at all sites during

the September sampling (Figure 3.2 and Figure 3.3). There was a significant difference

found amongst the creek bank sites for the percentage of silt. P and S had a significantly

(P<0.05) more silt content than M-12. S was significantly coarser than P on the creek

bank since S had more sand present. S had fewer fine particles (less clay content) than

the other three sites at the creek bank. P was also significantly less coarse than M-12 and

M-0 since P had less sand content in its sediments. There was no significant difference

of percentage of silt, sand, and clay at the edge of the vegetation.

The sediments were classified by their basic textural classes by using a textural

triangle (USDA et al., no year listed). P at both habitats was considered to have clay

sediments as well as S and M-0 at the edge of the vegetation habitat. S at the creek bank

was considered a loam while Tuckerton at the creek bank was a sandy loam. The

sediments at M-12 at both habitats and M-0 at the creek bank were a clay loam.

PCA was conducted on the mean percentage of silt, sand, clay and organic matter.

The first principal component (PC 1) consisted of 74.8% of the total variation, and the

second principal component (PC2) had 25.1% of the total variation (Table 2.1). The

correlation coefficients of each variable (sediment characteristic) from PC1 and PC2 that

had a significant (P<0.05) affect on the principal components were taken into

consideration, and these were sand and clay for PC1 and silt for PC2 (Table 2.1). Sc (c-

creek bank) and Se (e-edge of vegetation) were different from each other, and Sc had

more sand than Se while Se had more clay (Figure 3.4). Pc and Pe were different from

each other as well, in which Pc had more silt than Pe (Figure 3.4).
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Figure 3.2 Mean percentage of silt, sand, and clay at the creek bank habitat.

Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek, (M-12) and New Mitigation Site Mill Creek (M-0) during September 1999. Tuckerton (Tk) samples were
taken at the creek bank in March 2001.

Figure 3.3 Mean percentage of silt, sand, and clay at the edge of the vegetation habitat.

Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site Mill Creek (M-0) during September 1999. Tuckerton (Tk) samples were
taken at the creek bank in March 2001.
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Table 3.1 Principal component analysis results of sediment characteristics.
Principal component loadings, eigenvalues, and percentage of variation of each principal component, and the
cumulative percentage of variation at the creek bank and edge of the vegetation habitats at Sawmill Creek-S.
alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill Creek (M - 12), and New Mitigation Site-
Mill Creek (M-0) sampled during September 1999. c= creek bank. e= edge of the vegetation.

Site ID	 Site PC1 PC2
Pc	 P-Creek Bank -9.9298 11.3115
Sc	 S-Creek Bank 27.1902 2.153

M-12c	 M-12-Creek Bank 4.0988 -5.441
M-0c 	 M-0-Creek Bank 3.0238 -2.2854

P-Edge of
Pe	 Vegetation -5.109 -7.8938

S-Edge of
Se	 Vegetation -11.3267 -7.7726

M-12-Edge of
M-12e	 Vegetation -2.8666 2.2896

M-0-Edge of
M-0e	 Vegetation -5.0807 7.6387

Eigenvalue 150.325440 50.533225
Percentage of Variation 74.76 25.13
Cumulative Percentage 74.76 99.9

Pearson Correlation Coefficients between sediment characteristics and the principal
components.
Sediment Characteristics PC1 PC2
Silt 0.44059 0.89771*
Sand 0.85726* -0.51488
Clay -0.98967* -0.14339
Organic Matter 0.53790 0.03455

*Indicates significant
correlation coefficient
(P<0.05)
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Figure 3.4 Principal Component Analysis for sediment characteristics at the creek bank and edge of the
vegetation habitats.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site Mill Creek (M-0) during September 1999.

The sediment from the Tuckerton salt marsh taken from the creek bank that was

used in the recolonization experiment was also analyzed for the percentage of silt, sand,

and clay (Figure 3.2). The sediment at Tuckerton was similar to the Hackensack

Meadowlands sites (P, S, M-12, and M-0) at the creek bank habitat in regards to the

percentage of silt. The Tuckerton sediment was significantly coarser than P, M-12, and

M-0, but similar to S. It was also similar to S for the percentage of clay therefore P, M-

12, and M-0 were significantly finer than the Tuckerton sediment.
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3.1.3 Salinity

Brackish estuarine systems are classified as having three types of salinity modifiers,

which are polyhaline (18.0-30.0-ppt), mesohaline (5.0-18.0-ppt), and oligohaline (0.5-

5.0-ppt) (Mitsch Gosselink 1993). Freshwater systems have a salinity level of <0.5-ppt.

Marine systems have a salinity range of 0-ppt

The salinity was different between the two creeks. At SMC, the salinity range

from June 1999 to September 1999 was 8-ppt in June; 15-ppt in July; 20-ppt in August;

and 4-ppt in September (Figure 3.5). At MC (M-12), the salinity over the same period

and sampled on the same days was 3-ppt in June; 10-ppt in July; 10-ppt in August; and 2-

ppt in September (Figure 3.5). The increase in salinity from June to August was due to

the drought that occurred in New Jersey during the 1999 summer. The salinity decreased

drastically in September due to the rainfall associated with Hurricane Floyd that went

through New Jersey on September 16, 1999, which was the week before my last sampling

event.

Figure 3.5 Salinity levels at Sawmill Creek and Mill Creek (M-12) monitored from June to September 1999.
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The SMC and MC sites are considered brackish estuarine systems since their

salinity levels can be classified as oligohaline to polyhaline. MC can be classified as

oligohaline and mesohaline. SMC can be classified as oligohaline to polyhaline.

Although, the low numbers in September are not indicative of the typical salinity levels

for the Summer of 1999 at MC and SMC since the low salinity levels are due to the

rainfall after the Hurricane.

3.2 Benthic Samples

The overall mean abundance, mean taxa richness, mean Shannon-Wiener and Simpson's

diversity indices for each site has been compiled (Table 3.2). All data has been pooled

together for both habitats and all sampling dates for each site (Table 3.2). The following

sections on abundance, taxa richness, and diversity indices look at the data more

specifically with regard to habitat and sampling dates.



Table 3.2 Mean abundance (#/m2), mean taxa richness, and mean Shannon-Wiener and Simpson's Taxa Diversity Index at Sawmill Ceck-P. australis (P), Sawmill Creek-
S. altcrniflora (S), 12-year Mitigation Site-Mill Creek (M-12), and New Mitigation Site-Mill Creek (M-0) sampled from June to September 1999. N=3.
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3.2.1 Abundance

The abundances of organisms were analyzed on the creek bank at all sites for all months

sampled (Figure 3.6). There was a significant difference (P<0.05) in the total number of

organisms for all months sampled on the creek bank. During the months of June, July,

August, and September 1999, the SMC sites had a significantly less abundance than the

MC sites. The SMC sites were also significantly different from each other during

September, when S had more abundance than P.

The mean abundance at the edge of the vegetation was also significantly different

for all three months sampled (Figure 3.7). During July, P and S had significantly less

abundance than M-12 and M-0. During August, M-12 had significantly more abundance

than the other three sites. M-12 once again had significantly more abundance than the

other sites in September, but the other three sites were also significantly different from

each other, in that M-0 and S had significantly more abundance than P. There was a

significant difference between the two habitats at M-12 for July and M-0 for August and

September. The creek bank had more abundance than the edge of the vegetation at M-12.

During August and September, at M-0, the creek bank had more abundance than the edge

of the vegetation. In comparing the SMC sites, S had a greater abundance of benthic

invertebrates then P at both habitats, and at MC, M-12 had greater abundance than M-0 at

both habitats as well. Overall, both MC sites had a more abundant benthic community

than both SMC sites at both habitats.
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Figure 3.6 Mean abundance (#/m2) of benthic invertebrates at the creek bank habitat
Sampled at Sawmill Creek-S. alterniflora (5), Sawmill Creek-P. australis (P), 12-year Mitigation
Site-Mill Creek (M-12), and New Mitigation Site Mill Creek (M-0) from June to September 1999.

Figure 3.7 Mean abundance (#/m2) of benthic invertebrates at the edge of the vegetation habitat.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site Mill Creek (M-0) from July to September 1999.
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3.2.2 Taxa Richness

There was a significant difference (P<0.05) for the month of August 1999 on the creek

bank in which M-0 was lower than the other three sites (Figure 3.8). The taxa richness of

the other three months sampled did not reveal any significant difference between sites.

The mean taxa richness at the edge of the vegetation did have a significant difference

(P<0.05) for the months of July and August (Figure 3.9). During July, M-12 had more

taxa present than the other sites. During the month of August, P had a significantly

(P<0.05) higher number of taxa than S. The mean taxa richness between the two habitats

at each site was significantly different at M-12 for August and September when the creek

bank had more taxa present than the edge of the vegetation. There was a significant

difference as well at S for the month of August when the creek bank had more taxa

present than the edge of the vegetation. The taxa richness was significantly different

between the habitats at some of the sites in which there were more taxa present at the

creek bank than the edge of the vegetation. As for the overall taxa richness, no one site

had more taxa present throughout the study period.



Figure 3.8 Mean taxa richness at the creek bank habitat.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site Mill Creek (M-0) from June to September 1999.

Figure 3.9 Mean taxa richness at the edge of the vegetation habitat.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site Mill Creek (M-0) from July to September 1999.
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3.2.3 Taxa Diversity Index

3.2.3.1 Shannon-Wiener Taxa Diversity Index P on the creek bank had the highest

species diversity for June, July, August, and September 1999 (Table 3.3). For the month

of June, the lowest species diversity index was found at the M-12 on the creek bank. S at

the edge of the vegetation had the lowest species diversity index for July. M-0 at the

creek bank had the lowest species diversity index in August. M-12 at the edge of the

vegetation was the lowest in September.

There is a significant difference between the species diversity found on the creek

bank between the sites. For the month of June, P was significantly more diverse than

both M-12 and M-0 sites. During July and September, P and S had significantly higher

diversity than the M-12 and M-0 sites. For the month of August, both SMC sites were

significantly more diverse than the MC sites, but the Mill Creek sites were significantly

different from each other as well, with M-12 having more diversity than M-0. At the

edge of the vegetation, M-12 had significantly less diversity than P and S for the month

of August. During September, M-12 was significantly less diverse than the other three

sites.

3.2.3.2 Simpson's Taxa Diversity Index P on the creek bank had the highest species

diversity for June, July, August, and September 1999 (Table 3.4). For the month of June,

the lowest species diversity index was found at the M-12 on the creek bank. S at the edge

of the vegetation had the lowest species diversity index for July. M-0 at the creek bank

had the lowest species diversity index in August. M-12 at the edge of the vegetation was

the lowest in September.
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There was a significant difference between the species diversity found on the

creek bank between the sites for all months sampled except for June. During July and

September, P and S had significantly higher diversity than the M-12 and M-0 sites. For

the month of August, both SMC sites were significantly more diverse than the MC sites,

but the Mill Creek sites were significantly different from each other as well, with M-12

having more diversity than M-0. At the edge of the vegetation, there was no significant

difference between the sites for the months of July and August. During September, M-12

was significantly less diverse than the other three sites.

Overall, the species diversity was the greatest at the SMC sites compared to the

MC sites, and P was the most diverse of all of the sites at both habitats. Shannon-Wiener

and Simpson's diversity indices both found the same general pattern in which P at the

creek bank was the most diverse and S at the creek bank was the second most diverse

site.
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Table 3.3 Shannon-Wiener Taxa Diversity Index at the creek bank and edge of the vegetation habitats.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site-Mill Creek (M-0) from June to September 1999.

Site June July August September
P-Creek Bank 1.66 1.64 1.77 1.49
P-Edge of Vegetation - 1.06 1.37 1.33

S-Creek Bank 1.33 1.50 1.65 1.30

S-Edge of Vegetation - 0.71 1.06 1.11
M-12-Creek Bank 1.05 0.94 0.66 0.63
M-12-Edge of Vegetation - 1.23 0.80 0.33
M-0-Creek Bank 1.12 0.79 0.37 0.38

M-0-Edge of Vegetation - 0.94 1.33 1.31
Bolded numbers represent the highest taxa diversity index for each month sampled.

Table 3.4 Simpson's Taxa Diversity Index at the creek bank and edge of the vegetation habitats.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site-Mill Creek (M-0) from June to September 1999.

Site June July August September
P-Creek Bank 0.76 0.75 0.78 0.72
P-Edge of Vegetation - 0.52 0.67 0.67
S-Creek Bank 0.64 0.73 0.74 0.61

S-Edge of Vegetation - 0.37 0.62 0.62

M-12-Creek Bank 0.52 0.46 0.33 0.29

M-12-Edge of Vegetation - 0.65 0.44 0.15
M-0-Creek Bank 0.59 0.39 0.15 0.17

M-0-Edge of Vegetation - 0.53 0.66 0.66
Bolded numbers represent the highest taxa diversity index for each month sampled.
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3.2.5 Composition

The presence (+) and absence (-) of the 25 taxa found over the four months at the sites

have been compiled, and the data has been pooled together for both habitats and all

sampling dates for each site (Table 3.5). There were three species of meiofauna

(Nematoda, Copedoda, and Ostracoda) for each site. The sites were composed primarily

of macrofauna taxa. Although the abundances of macrofauna compared to meiofauna

were greater at M-12 and M-0 while the meiofauna compared to macrofauna was greater

at P and S (Table 3.5). This section on composition looks specifically at the taxa that

were classified as common (>1.0% of the total abundance) and uncommon (>0.1% but

<1.0%) (LaSalle and Rozas 1991).

Table 3.5 Taxa present (+) and absent (-) found at Sawmill Creek-P. australis(P), Sawmill Creek-S.alterniflora
(S), 12-year Mitigation Site-Mill Creek (M-12), and New Mitigation Site Mill Creek (M-0) sampled from June to
September 1999.
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Table 3.5 Taxa present (+) and absent (-) found at Sawmill Creek-P. australis(P), Sawmill Creek-S.alterniflora
(S), 12-year Mitigation Site-Mill Creek (M-12), and New Mitigation Site Mill Creek (M-0) sampled from June to
September 1999. Continued.
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The ten common taxa (Figure 3.10) found at P were Oligochaeta (24.4%),

Nematoda (22.9%), the sabellid polychaete Manayunkia aestuarina (16.8%), Copepoda

(12.9%), the spionid polychaete Streblospio benedicti (6.0%), the ampharetid polychaete

Hobsonia florida (5.3%), other unknown spionidae polychaetes (3.3%), nereidae

polychaetes (2.5%), the dipteran larvae Ceratopogonidae (1.1%), and the anthurid isopod

Cyanthura polita (1.0%). The uncommon taxa found at this site were unidentified insect

larvae (0.96%), Turbellaria (0.83%), Foraminifera (0.61%), the dipteran larvae

Chironomidae (0.26%), the anthurid isopod Edotea triloba (0.22%), Acarina (0.22%), the

collembola Anurida martima (0.17%), and the marine bivalve Macoma balthica (0.13%).

Eight common taxa were found at S (Figure 3.10), which are the sabellid

polychaete Manayunkia aestuarina (33.0%), Nematoda (30.7%), Oligochaeta (19.0%),

the spionid polychaete Streblospio benedicti (6.5%), Copepoda (4.4%), nereidae

polychates (2.2%), the ampharetid polychaete Hobsonia florida (1.4%), and other

unknown spionidae polychaetes (1.1%). The uncommon taxa found at this site were

Turbellaria (0.39%), the anthurid isopod Cyanthura polita (0.35%), the dipteran larvae

Ceratopogonidae (0.32%), Foraminifera (0.25%), and gammaridae amphipods (0.11%).

Four common taxa were found at M-12 (Figure 3.11): Nematoda (79.8%),

Oligochaeta (13.7%), Copepoda (2.8%), and the sabellid polychaete Manayunkia

aestuarina (1.8%). The uncommon taxa at this site were Ostracoda (0.81%) and

Gastropoda (0.61%).
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Four common taxa are found at M-0 (Figure 3.11): Nematoda (77.3%),

Oligochaeta (12.6%), Ostracoda (6.8%), and Gastropoda (2.0%). The uncommon taxa at

this site were Copepoda (0.65%), the dipteran larvae Chironomidae (0.46%), and the

ampharetid polychaete Hobsonia florida (0.14%).

Figure 3.10 Percent composition of the common taxa.
Samples were taken at Sawmill Creek-S. alterniflora (S) and Sawmill Creek-P. australis (P) from June to
September 1999.

Figure 3.11 Percent composition of the common taxa.

Samples were taken at 12-year Mitigation Site-Mill Creek (M-12) and New Mitigation Site Mill Creek (M-0)
from June to September 1999.
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PCA was conducted on the 10 most abundant taxa, which includes 6 common

(>1.0% of the total abundance) and 4 uncommon (>0.1% but <1.0% of the total

abundance) taxa from the total abundance (LaSalle and Rozas 1991). The total

abundance was analyzed by taking the mean abundance for each month sampled for each

sampling site. The first principal component (PC 1) consisted of 98.1% of the total

variation, and the second principal component (PC2) had only 1.4% of the total variation

(Table 3.6). The results of the PCA revealed that there was no separation between P and

S, and there was also no separation between the two habitats for these two sites therefore

there was no variability (Figure 3.12). However, there was more variability for the

results of the mitigation sites. There was some separation between the creek bank and the

edge of the vegetation habitats for these two sites, but there was still no clear separation

(Figure 3.12).

Table 3.6 Principal component analysis results of ten most abundant taxa of benthic sampling. Principal
component loadings, eigenvalues, and percentage of variation of each principal component, and the cumulative
percentage of variation found at Sawmill Creek-P. australis(P), Sawmill Creek-S. alterniflora(S), 12-year Mitigation
Site-Mill Creek (M-12), and New Mitigation Site-Mill Creek (M-0) sampled from June to September 1999.
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Table 3.6 Principal component analysis results of ten most abundant taxa of benthic sampling. Principal
component loadings, eigenvalues, and percentage of variation of each principal component, and the cumulative
percentage of variation found at Sawmill Creek-P. australis(P), Sawmill Creek-S. alterniflora(S), 12-year Mitigation
Site-Mill Creek (M-12), and New Mitigation Site-Mill Creek (M-0) sampled from June to September 1999.
Continued.

Site ID Site PC1 PC2
August

13 P-Edge of Vegetation -625.49 -31.091
14 P-Creek Bank -623.63 -64.353
15 S-Edge of Vegetation -604.42 12.393
16 S-Creek Bank -650.17 -53.52
17 M-0-Edge of Vegetation -442.35 -21.329
18 M-0-Creek Bank 2094.71 -197.807
19 M-12-Edge of Vegetation 780.24 309.035
20 M-12-Creek Bank 1456.92 133.718

September
21 P-Edge of Vegetation -623.16 -58.823
22 P-Creek Bank -647.36 -65.901
23 S-Edge of Vegetation -614.89 -54.814
24 S-Creek Bank -594.99 -62.465
25 M-12-Edge of Vegetation -638.24 -5.934
26 M-12-Creek Bank 1135.42 -128.541
27 M-0-Edge of Vegetation 3173.05 -86.189
28 M-0-Creek Bank 1171.84 -8.948

Eigenvalue 1006072.66 14791.31
Percentage of Variation 98.14 1.44
Cumulative Percentage 98.14 99.58

Pearson Correlation Coefficients between taxa and the principal components.
Taxa PC1 PC2

Chironomid 0.21445 -0.09864
Copepod 0.04264 0.42633*
Gastroopod 0.25942 0.10875
Hobsonia florida -0.16867 -0.08709
Manayunkia aestuarina 0.02609 0.12923
Nematodes 0.99996* -0.00868
Nereidae -0.0675 -0.13647
Oligochaetes 0.51975* 0.85330*
Ostracods 0.37763* -0.1868
Streblospio benedicti -0.24381 -0.17788

*Indicates Significant Correlation Coefficient (P<0.05)



Figure 3.12 Principal Component Analysis results of the ten most abundant taxa.

Samples were taken at Sawmill Creek-P. australis (P), Sawmill Creek-S. alterniflora (S), 12-year Mitigation Site-Mill Creek (M-12), and New Mitigation Site-Mill
Creek (M-0) from June to September 1999. 	 tit

tit
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P had more common taxa present (10) throughout the study period compared to

the other three sites, S (8), M-12 (4), and M-0 (4). The common taxa that were present in

all four sites are Oligochaeta and Nematoda. Oligochaeta had the highest percent

composition at P, while Manayunkia aestuarina had the highest percent composition at S

(Figure 3.10). Nematoda had the highest percent composition at M-12 and M-0 (Figure

3.11). The MC sites were heavily dominated by nematodes at approximately 77-80% of

all taxa. The PCA revealed that the SMC sites had no separation between them, but the

MC sites were slightly separated (Figure 3.12). The results of the mitigation sites may be

due to the high abundances of organisms found there.

3.3 Recolonization Experiment

The containers that contained the Tuckerton sediment, which were inserted in the

sediment in the Hackensack Meadowlands salt marshes were affected by the tidal

conditions. During the July sampling event, there was approximately a 1/2 to 1-cm of

sediment accumulation on the containers at both MC sites, but at the SMC sites the

containers appeared to have lost some sediment, possibly due to the incoming tide that

was covering the sampling station. During the August sampling event, the containers at

the MC sites had additional accumulation of sediment on them.
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3.3.1 Abundance

The recolonization samples were analyzed by comparing the ambient and the recolonized

samples at each site for July and August (Figure 3.13). There was a significant difference

between the ambient and the recolonized samples for the months of July and August at

both SMC sites, in which the recolonized samples had higher abundance than the ambient

samples. The recolonized samples and the ambient samples from the Sawmill Creek and

Mill Creek Sites followed the same trends from July to August. Both the recolonized and

the ambient samples from the Mill Creek Sites were an order of magnitude higher in

mean abundance than both Sawmill Creek Sites

Figure 3.13 Mean abundance (#/m2) of benthic invertebrates found in the recolonized and ambient samples.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek, (M-12) and New Mitigation Site-Mill Creek (M-0) in July and August 1999.
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3.3.2 Taxa Richness

The mean taxa richness was analyzed in the same manner as the mean abundance

samples (Figure 3.14). For the mean taxa richness, there was a significant difference

between the ambient and the recolonized samples at S and M-12 for August. The

recolonized samples had significantly more taxa than the ambient samples at S, while at

M-12; the ambient sample had more taxa present than the recolonized sample.

Figure 3.14 Taxa richness of benthic invertebrates found in the recolonized and ambient samples.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site-Mill Creek (M-0) in July and August 1999.
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3.3.3 Taxa Diversity Index

3.3.3.1 Shannon-Wiener Taxa Diversity Index The SMC sites had a higher diversity

for July and August in recolonized samples compared to the MC Sites (Figure 3.15). The

diversity index for P was 1.71 for both July and August. At S, the diversity index for

July and August was 1.76 and 1.64, respectively. At M-12, the diversity index for July

and August was 0.96 and 0.85, respectively and at M-0, it was 0.89 and 0.84 for July and

August, respectively. There was no significant difference during the month of July

between the sites, but there was a significant difference during the month of August

between the SMC sites and the MC sites, in that the SMC sites had higher diversity index

than the MC sites (Figure 3.15).

3.3.3.2 Simpson's Taxa Diversity Index The SMC sites had a higher diversity for

July and August in recolonized samples compared to the MC Sites (Figure 3.16). S was

the most diverse (0.77) while M-0 was the least diverse (0.41) for the month of July. P

was the most diverse (0.75) while M-0 was the least diverse (0.43) for the month of

August. However, there was no significant difference between the sites for both month

sampled.

The Shannon-Wiener and Simpson's diversity indices both had the same general

pattern. P and S were both more diverse than M-12 and M-0. The only difference was

that there was no significant difference between the sites with regards to the Simpson's

diversity index, but there was a significant difference with the Shannon-Wiener diversity

index.



Figure 3.15 Mean Shannon-Wiener Taxa Diversity Index for Recolonization Experiment.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site Mill Creek (M-0) in July and August 1999.

Figure 3.16 Mean Simpson's Taxa Diversity Index for Recolonization Experiment.
Samples were taken at Sawmill Creek-S. alterniflora (S), Sawmill Creek-P. australis (P), 12-year Mitigation Site-Mill
Creek (M-12), and New Mitigation Site Mill Creek (M-0) in July and August 1999.
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3.3.4 Composition

The taxa found within the recolonization samples were also classified as common and

uncommon. There were eight common taxa found at P (Figure 3.17): unknown

Spionidae (34.6%), Copepoda (21.6%), Nematoda (17.1%), Nereidae (7.4%),

Oligochaeta (7.0%), the ampharetid polychaete Hobsonia florida (5.8%), the sabellid

polychaete Manayunkia aestuarina (2.9%), and Turbellaria (1.6%). The uncommon taxa

found at this site were the anthurid isopod Cyanthura polita (0.76%), the spionid

polychaete Streblospio benedicti (0.19%), Nemertinea (0.19%), phyllodocidae polychaete

Eteone sp. (0.19%), and Ostracoda (0.14%).

Eight common taxa were found at S (Figure 3.17): Spionidae (30.1%), Nematoda

(27.1%), Copepoda (15.5%), Oligochaeta (9.0%), Nereidae (7.3%), the sabellid

polychaete Manayunkia aestuarina (5.7%), the spionid polychaete Hobsonia Florida

(2.1%), and Turbellaria (2.0%). The uncommon taxa at this site were the anthurid isopod

Cyanthura polita (0.39%), Ostracoda (0.19%), Gammaridae (0.19%), Nemertinea

(0.12%), and other unknown Ampharetidae (0.12%).

Six common taxa were found at M-12 (Figure 3.18): Nematoda (74.3%),

Oligochaeta (19.1%), the sabellid polychaete Manayunkia aestuarina (2.3%), Copepoda

(1.4%), Ostracoda (1.2%), and Gastropoda (1.1%). The uncommon taxa at this site were

the dipteran larvae Chironomidae (0.25%).

Five taxa were found at M-0 (Figure 3.18), which were Nematoda (79.5%),

Ostracoda (10.4%), Oligochaeta (5.4%), Gastropoda (2.3%), and the dipteran larvae

Chironomidae (1.3%). The uncommon taxa at this site are Turbellaria (0.79%) and

Copepoda (0.26%).
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Figure 3.17 Percent composition of the common taxa.
Samples were taken in the recolonized and ambient samples at Sawmill Creek-S. alterniflora (S) and Sawmill
Creek-P. australis (P) from July to August 1999.
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Figure 3.18 Percent composition of the common taxa found in the recolonized and ambient samples.
Samples were taken at 12-year Mitigation Site-Mill Creek (M-12) and New Mitigation Site Mill Creek (M-0)
from July to August 1999.
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PCA was conducted on the 11 most abundant taxa, which are from the

recolonized and ambient samples. The total abundance was analyzed by taking the mean

abundance for each month sampled for each sampling site. The first principal component

(PC1) consisted of 97.3% of the total variation, and the second principal component

(PC2) had only 1.8% of the total variation (Table 3.7).

M-12 and M-0 were separated by PC1, and S and P were also separated by PC1

(Figure 3.19). The SMC and the MC sites were separated by PC2. The results revealed

that oligochaetes, nematodes, Manayunkia aestuarina, and ostracods were significant

variables (Table 3.7). The ambient M-0 site increased in abundance of nematodes from

July to August (Figure 3.19). The recolonized M-0 site increased in abundance of

ostracods from July to August. The recolonized M-12 site decreased in abundance of

nematodes while increasing in oligochaetes and M aestuarina from July to August. The

ambient M-12 increased in abundance of nematodes from July to August (Figure 3.19).

The results for M-12 and M-0 (the mitigation sites) may be due to the dynamics of it

being such a young system.



Table 3.7 Principal component analysis results of the 11 most abundant taxa in recolonized and ambient
samples. Principal component loadings, eigenvalues, and percentage of variation of each principal component,
and the cumulative percentage of variation for the recolonized and ambient samples at Sawmill Creek-P.
australis (P), Sawmill Creek-S. alterniflora (S), 12-year Mitigation Site-Mill Creek (M-12), and New Mitigation
Site-Mill Creek (M-0) sampled during July and August 1999.

Site ID Site PC1 PC2
Recolonized Samples

1 P-July  -874.83 8.084

2 S-July -839.37 36.357
3 M-0-July 453.94 -76.463
4 M-12-July 2223.59 303.524
5 P-August -793.07 32.976

6 S-August -712.63 18.721

7 M-0-August 647.96 -255.734
8 M-12-August 95.35 122.525

Ambient Samples
9 P-July -889.54 2.533
10 S-July -881.41 5.236
11 M-0-July -370.73 -86.838
12 M-12-July 600.77 128.127

13 P-August -856.3 -0.224

14 S-August -881.69 11.926

15 M-0-August 1845.46 -313.273
16 M-12-August 1232.51 62.524

Eigenvalue 1112532.40 20492.89
Percentage of Variation 97.27 1.79

Cumulative Percentage 97.27 99.07

Pearson Correlation Coefficients between sediment charactersitics and the principal
components.
Taxa PC1 PC2
Chironomid 0.41792 -0.23395
Copepod -0.22928 0.41992
Gastroopod 0.79838* -0.15993
Hobsonia florida -0.43569 0.17418
Manayunkia aestuarina 0.49688 0.65647*
Nematodes 0.99985* -0.01658
Nereidae -0.42800 0.11955
Oligochaetes 0.76093* 0.63910*
Ostracods 0.40623 -0.65187*
Spionidae -0.30865 0.07905
Streblospio benedicti -0.32439 0.04533

*Indicates Significant Correlation Coefficient (P<0.05)
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Figure 3.19 Principal Component Analysis of the 11 most abundant taxa in recolonized and ambient samples.

Samples were taken at Sawmill Creek-P. australis (P), Sawmill Creek-S. alterniflora (S), 12-year Mitigation Site-Mill Creek (M-12), and New Mitigation Site-Mill
Creek (M-0) from July to August 1999.
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Overall, the ambient and recolonized samples from the SMC sites and the MC

sites followed the same trends for abundance and taxa richness (Figure 3.13 and 3.14).

Regarding the abundance of benthic invertebrates, the ambient and the recolonized MC

sites were an order of magnitude higher than the ambient and recolonized SMC sites

(Figure 3.13). The recolonized samples had significantly greater abundance than the

ambient samples at SMC. There was no significant difference in regarding the

abundance of benthic invertebrates between the recolonized and the ambient samples at

MC. There was no significant difference in regards to the abundance of benthic

invertebrates between the recolonized and the ambient samples at MC. The taxa richness

results revealed that there was a difference between the ambient samples and the

recolonized samples at S and M-12 for August (Figure 3.14).

The Shannon-Wiener taxa diversity index found significant differences between

the sites while Simpson's taxa diversity index did not. P and S had eight common taxa

present, while M-12 had six and M-0 had five. The common taxa present at all four sites

were Nematoda and Oligochaeta. Spionidae had the highest percent composition (30-

34%) at the SMC sites (Figure 3.17), and Nematoda had the highest percent composition

(74-79%) at the MC sites (Figure 3.18). The recolonization experiment results reveal that

the recolonized samples follow the same trends as the its respective ambient samples.



CHAPTER 4

DISCUSSION

4.1 Benthic Invertebrates

The natural S. alterniflora and P. australis marshes as well as the mitigated S.

alterniflora and bare marshes support a benthic community in the low marsh in the

intertidal zone. However, different levels of abundance, taxa richness, diversity, and

composition were found. This study suggests that differences in the benthic communities

were attributed to the different types of vegetation and salinity levels, and whether or not

the marsh was a mitigated or natural system. This study also suggests that substrate was

not a factor. Contamination levels may have been a factor according to heavy metals data

collected from other sources (Appendix A). Since this study did not investigate

contaminate levels, the affect of contamination and pollution cannot be speculated.

This study reveals that a mitigated marsh after 12-years in the low marsh zone

does not have a diverse benthic community as a natural marsh. The mitigated marshes at

MC, specifically M-12, do not resemble the natural SMC sites, including the P. australis

marsh, which is the type of marsh that managers are removing. These data suggest that

significant progress in the benthic community has not occurred at the 12-year Mitigation

Site at the low marsh since the TAMS (1990) and Kraus and Kraus (1988) studies.

TAMS (1990) evaluated the benthic community at the Western Brackish Marsh (M-12),

and found a benthic community with a low diversity that contained pollution tolerant

species. Kraus and Kraus (1988) compared the benthic communities at SMC and MC in

1986 when the Hartz Mountain Mitigation at Mill Creek (M-12) was underway, and

found that SMC had a more diverse benthic community than MC.
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It has been over ten years since the TAMS (1990) study was conducted at M-12 in

the open water channels, and this study shows that a low diversity still persists. TAMS

(1990) found the benthic community at M-12 to consist of pollution tolerant organisms,

such as oligochaetes and hydrobiidae gastropods that comprised over 80% percent of the

population. In 1999, oligochaetes and gastropods consisted of 14.3% of the composition,

but oligochaetes had the second highest percent composition at M-12. This study also

found that M-12 was dominated by few taxa with large abundances.

The results of this study were also similar to Kraus and Kraus' (1988) study

conducted at MC and SMC. Sawmill Creek and the mitigated (S. alterniflora) and non-

mitigated (P. australis) sections of Mill Creek were sampled (Kraus and Kraus 1988).

However, the sections (S. alterniflora versus P. australis sections) sampled at Sawmill

Creek were not specified, and there was also no specification about where the Mill Creek

control sites were located or which type of vegetation was present there. Kraus and

Kraus (1988) found that SMC had a greater abundance of benthic invertebrates, higher

taxa richness, and higher diversity than the MC sites, which were dominated by

gastropods and nematodes. The current study found that SMC had more common

(>1.0% of the total abundance) taxa and higher taxa diversity than MC, and the MC sites

were dominated by nematodes. Polychaetes were found only at Sawmill Creek and not

Mill Creek (Kraus and Kraus 1988) while this study found polychaetes at the SMC and

MC, although the numbers were low at MC.

This study suggests that P. australis supports a healthy benthic community.

Angradi et al. (2001) compared the benthic communities in P. australis and Spartina

marshes. The Spartina marsh had a greater abundance than the P. australis marsh
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(Angradi et al. 2001) while this study found that the restored marshes (S. alterniflora and

the bare vegetation) had greater abundance than the natural marshes (S. alterniflora and

P. australis). Angradi et al. (2001) found more taxa present at the Spartina marsh while

this study found more common taxa (>1.0% of the total abundance) present at the P.

australis marsh. The dominant taxa were oligochaetes, nematodes, and Manayunkia

aestuarina in Angradi et al.'s (2001) study, which is similar to this study at both the P.

australis and S. alterniflora marshes. Fell et al. (1998) also looked at benthic

communities in non-P. australis and P. australis marshes, and found them to be

equivalent.

The benthic communities at SMC and MC could be the result of the different

salinity levels at these two creeks. Salinity is known to affect the composition and

diversity of benthic communities (Levin and Talley 2000). The surface water salinity

level was consistently higher at SMC (mesohaline to polyhaline) than MC (oligohaline to

mesohaline) from June to August. Both MC and SMC had salinity levels that were

classified as oligohaline in September, and this may be due to the rainfall associated with

Hurricane Floyd. The MC sites had a low diversity along with low salinity levels

compared to the SMC sites, and other studies have shown that low salinity has been

found to decrease abundance, taxa richness, and diversity of benthic communities (Levin

and Talley 2000; Boesch 1972; West and Ambrose 1992). Insects and oligochaetes

usually dominate benthic communities in a low salinity system, while a high salinity

system is known to favor polychaetes (Levin and Talley 2000), and this can be seen at

MC and SMC in which SMC had considerably more polychaetes than MC, but both sites
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had an abundance of oligochaetes. Although, oligochaetes were one of the few common

taxa found at Mill Creek while at Sawmill Creek oligochaetes were one of the many

common taxa.

Structural and textural sediment characteristics did not seem to have an affect on

the benthic communities of this study. There was only a significant difference between

the sites at the creek bank habitat, but not at the edge of the vegetation. Therefore, any

differences found between the sites in abundance, taxa richness, taxa diversity, and

composition cannot be attributed to the structural and textural sediment characteristics at

the edge of the vegetation. However, according to Levin and Talley (2000) soil organic

matter and soil grain size do have an effect on benthic communities found in salt

marshes.

Studies have shown that contaminants and pollutants affect benthic communities

(Gray et al. 1990; Pocklington and Wells 1992; Gaston and Young 1992; Whaley et al.

1989; Maltby 1999). This study cannot speculate about the affects of contamination on

benthic communities in the Hackensack Meadowlands, but there is heavy metals data

from this area that can be referred to (Appendix). Kraus and Kraus (1988) reported that

the water quality was better at SMC than MC, but the Center for Information

Management, Integration and Connectivity (CIMIC) through the Meadowlands

Environmental Research Institute (MERI) that conducts water quality testing in the

Hackensack Meadowlands District determined that water quality was better at MC than

SMC during the dates of this study (CIMIC 1999). However, water quality on a single

date is far less important than long-term sediment concentration, which would impact

benthos. Greater contamination persists in MC sediments (Appendix).
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Another source of contamination that may be affecting the benthic community at

MC is the sewage treatment plant along Mill Creek. According to Levin and Talley

(2000), a marsh that was exposed to sewage had more of an abundance of the oligochaete

Monopylephorus rubroniveus and the amphipod Talorchestia longicornis. Mill Creek is

exposed to a sewage treatment plant, which is near the newly mitigated section, and the

MC sites had an abundance of oligochaetes. Mill Creek's exposure to the sewage

treatment plant could be a factor in the types of organisms being found there, but this

should be further researched.

This study suggests that significant progress has not occurred at M-12 at the low

marsh since the commencement of the mitigation in 1988. Significant progress may not

have occurred due to the area being a stressed polluted environment where low salinity

persists. Changing the vegetation alone from P. australis to S. alterniflora may not be

able to alter these environmental conditions (Packard and Stiverson 1976; Allen et al.

1994; Sacco et al. 1994) at Mill Creek that affect the benthic community. This study also

suggests that the P. australis marsh does support a healthy benthic community that was

comparable to the S. alterniflora marsh.
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4.2 Recolonization Experiment

Opportunism plays a major role in recolonizing sediments. The basis of opportunism is

that ambient species will settle in disturbed sediments to increase their population above

their level of abundance in the surrounding sediment (Zajac and Whitlatch 1982). The

benthic invertebrates in the recolonized samples at SMC increased in abundance, and had

more abundance of benthic invertebrates than the ambient samples throughout the study

period. This increase in population size may be due to the opportunistic species that will

settle in disturbed sediments at a greater abundance than that is found in the surrounding

ambient sediments (Zajac and Whitlatch 1982; Thrush et al. 1996). After 4-6 weeks of

initial colonization, this population reaches a maximum and then decreases. This

decrease can be seen in the recolonized samples at the MC sites since the abundance of

benthic invertebrates decreases after two months into the experiment.

The recolonized samples from the SMC sites always had more abundance and

number of taxa than the ambient samples, and the recolonized samples at MC did not

always follow this trend. The more taxa and abundance of benthic invertebrates may

have been found in the recolonized SMC samples than MC because the presence of the

Tuckerton sediment may have been more of a disturbance at SMC than at MC. SMC is

more of an established salt marsh than MC; especially M-0, therefore more opportunistic

species may be colonizing the Tuckerton sediment at SMC.

Some opportunistic species are the spionidae polychaetes Polydora ligni and

Streblospio benedicti, the amphipod Ampelisca abdita, and the Capitella spp. (Zajac and

Whitlatch 1982; McCall 1977). These species are considered opportunistic species

because they have a fast rate of development, high rate of reproduction per year, high
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recruitment, and high death rate (McCall 1977). The taxa found in the recolonization

experiment at SMC were dominated by opportunistic species, such as polychaetes,

especially Spionidae.

Benthic recolonization is variable and ambient population fluctuations can affect

it (Zajac and Whitlatch 1982). This dependency on the ambient population is apparent

since the recolonized samples and the ambient samples have similar to identical

organisms (Zajac and Whitlatch 1982; Thrush et al. 1996). According to McCall (1977),

the species composition of the recolonized and the ambient samples were not similar until

a year after the commencement of the experiment, but the number of species were similar

prior to this. Thrush et al. (1996) conducted a study in New Zealand, and found that the

defaunated sediments were similar to the ambient sediment in reduction oxidation

characteristics after two tidal cycles.

Substrate and contamination may not be responsible for the differences found in

the recolonized samples between SMC and MC. The Hackensack Meadowlands

sediment is contaminated while the Tuckerton sediment is uncontaminated. The

Tuckerton sediment was texturally and structurally different from the Hackensack

Meadowlands sediment. Regardless of the differences in sediment structure and texture

and the contamination levels, the composition of benthic invertebrates was similar

between the recolonized and ambient sediments. McCall (1978) found that sediment was

not a factor in the distribution of benthic invertebrates, but depth and disturbance were

more important factors in species distribution. This study found that the recolonization of

benthic invertebrates did not indicate an effect from substrate and contamination.
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This recolonization experiment followed the concept of opportunism that was

proposed by Zajac and Whitlatch (1982) since the recolonized samples had always more

abundance of benthic invertebrates than the ambient samples at SMC, and sometimes at

MC. The abundance of benthic invertebrates in the recolonized samples at MC may have

decreased below the abundance found in the ambient samples because a benthic

invertebrate population that reaches a maximum after 4-6 weeks of initial recolonization

will decrease (Zajac and Whitlatch 1982; McCall 1977). Some of the known

opportunistic species, such as Spionidae polychaetes and Streblospio benedicti were

found in the recolonized samples. This study corroborates Zajac and Whitlatch (1982)

and Thrush et al.'s (1996) findings that the recolonized population of benthic

invertebrates is dependent upon the ambient population.



CHAPTER 5

CONCLUSIONS

The functional value of P. australis should be further evaluated to determine its

affects on salt marshes. According to this study, P. australis supports a healthy benthic

community that is comparable to S. alterniflora, and the benthic community of the

mitigated. S. alterniflora marsh had not improved since its establishment. However, more

research needs to be conducted on P. australis and its affects on benthic communities.

Since the knowledge on P. australis is incomplete, the management of P. australis should

be conducted by trying to control its invasive nature.

P. australis should be managed because it is beneficial to the environment in such

ways as being a buffer against storm wave damage, keeping estuarine banks stabilized,

serving as a refuge for wildlife, colonizing a disturbed area, and detoxifying sediments

(Hellings and Gallagher 1992; Rice et al. 2000). P. australis can be managed through

increasing tidal flooding and salinity levels onto the marsh, which supports flood-tolerant

and salt-tolerant shortgrass species (Windham and Lathrop 1999), instead of mowing,

burning, or spraying it with herbicides (Hellings and Gallagher 1992). Rice et al. (2000)

suggest that controlling recently established stands of P. australis in a marsh with diverse

vegetation instead of trying to control large well established monotypic stands might be

easier and more efficient. Meyer et al. (2001) state that conserving, restoring, and

creating marshes is the better option than transforming existing marshes, and knowing the

functional value of P. australis is necessary before trying to manage it.
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Suggestions for future research in the Hackensack Meadowlands District are that

benthic communities in P. australis and S. alterniflora dominated salt marshes should be

studied along a salinity gradient. The sites of this study have very different salinity

levels, and this could be a factor in the types and abundances of benthic invertebrates

being found at the sites. Salinity levels may affect the diversity of the benthic

communities. Conducting a study along a salinity gradient, could determine whether or

not salinity is a factor. Benthic communities should be investigated on the marsh surface

on the high marsh since this study concentrated on the creek bank and the edge of the

vegetation in the intertidal zone on the low marsh. The effects of heavy metal

contamination on the benthic communities in the Hackensack Meadowlands should also

be further researched since the area is highly contaminated.



APPENDIX

SUMMARY OF HEAVY METALS CONTAMINATION
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