
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 2000

Emulation of the dataflow computing paradigm
using field programmable gate arrays (FPGAs)
Segreen Ingersoll
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Ingersoll, Segreen, "Emulation of the dataflow computing paradigm using field programmable gate arrays (FPGAs)" (2000). Theses.
732.
https://digitalcommons.njit.edu/theses/732

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F732&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F732&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F732&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F732&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F732&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/732?utm_source=digitalcommons.njit.edu%2Ftheses%2F732&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

EMULATION OF THE DATAFLOW COMPUTING PARADIGM
USING FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)

by
Segreen Ingersoll

Building a perfect dataflow computer has been an endeavor of many computer engineers.

Ideally, it is a perfect parallel machine with zero overheads, but implementing one has

been anything but perfect. While the sequential nature of control flow machines makes

them relatively easy to implement, dataflow machines have to address a number of issues

that are easily solved in the realm of control flow paradigm. Past implementations of

dataflow computers have addressed these issues, such as conditional and reentrant

program structures, along with the flow of data, at the processor level, i.e. each processor

in the design would handle these issues. The design presented in this thesis solves these

issues at the memory level (by using intelligent-memory), separating the processor from

dataflow tasks. Specifically, a two-level memory design, along with a pool of processors

was prototyped on a group of Altera FPGAs.

The first level of memory is an intelligent-memory called Dataflow Memory

(DFM), carrying out dataflow tasks. The second level of memory called the Instruction

Queue (IQ) is a buffer that queues instructions ready for execution, sent by the DFM. The

second level memory has a multiple bank architecture that allows multiple processors

from the processor pool to simultaneously execute instructions retrieved from the banks.

After executing an instruction, each processor sends the result back to the dataflow

memory, where they fire new instructions and send them to the IQ.

This thesis shows that implementing dataflow computers at the intelligent-

memory level is a viable alternative to implementing them at the processor level.

EMULATION OF THE DATAFLOW COMPUTING PARADIGM
USING FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)

by
Segreen Ingersoll

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 2001

APPROVAL PAGE

EMULATION OF THE DATAFLOW COMPUTING PARADIGM
USING FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)

Segreen Ingersoll

Dr. Sotirios Ziavras, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, and Computer and
Information Science, NJIT

Dr. Edwin Hou, Committee Member 	 hate
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Durga Misra, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Segreen Ingersoll

Degree:	 Masters in Computer Engineering

Date:	 January 2001

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2001

• Bachelor of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Science in Physics,
Bombay University, Bombay, India, 1992

Major:	 Computer Engineering

Presentations and Publications:

Segreen Ingersoll and Sotirios Ziavras,
"Dataflow Computation With Intelligent Memories Emulated on Field-
Programmable Gate Arrays (FPGAs)." VLSI Design Journal, submitted for
publication, December 2000.

iv

To my beloved parents

v

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Dr. Sotirios Ziavras, who not

only served as my thesis advisor, providing valuable resources and insight, but also for

supporting and encouraging my ideas. Special thanks are given to Dr. Edwin Hou and

Dr. Durga Misra for actively participating in the committee.

I would like to take this opportunity to also express my gratitude to

Dr. Edip Niver, who supported my work as a graduate student, providing me with an

assistantship, and Dr. Raashid Malik who first introduced me to dataflow computing.

Finally I would like to mention a note of thanks to all the staff at ECE department

for their assistance over the years.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1
1.1 Objective 	 1
1.2 Fundamentals of Computing Paradigms 	 1

1.2.1 	 Control Flow 	 2
1.2.2 	 Data Flow 	 4

2 ISSUES AND PRIOR RESEARCH 	 10
2.1 Issues (Data Flow in Depth) 	 10
2.2 Prior Research 	 18

2.2.1 	 Direct Communication Machines 	 18
2.2.2 	 Static Packet Communication Machines 	 19
2.2.3 	 Machines with Code-Copying Facilities 	 20
2.2.4 	 Tagged-Token Machines 	 21
2.2.5 	 Other Architectures 	 22

2.3 Motivation and Objectives 	 24
3 THEORETICAL APPROACH AND IMPLEMENTING A DATAFLOW

COMPUTER 	 26
3.1 Overview of the Design 	 26

3.1.1 	 Data Flow Memory 	 27
3.1.2 	 Instruction Queue 	 29
3.1.3 	 Processor Pool 	 30
3.1.4 	 Flow of Data and Instructions in the Data Flow Computer 	 30
3.1.5 	 Remarks 	 31

3.2 Field Programmable Gate Arrays (FPGAs) 	 32
3.3 Detailed Layout and Implementation of the Design 	 35

3.3.1 	 DFM Architecture 	 35
3.3.2 	 Dataflow Memory Implementation 	 43
3.3.3 	 Instruction Queue (IQ) 	 50
3.3.4	 Processor Pool 	 55
3.3.5 	 Programming on the Dataflow Computer 	 56

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page
3.3.6 Altera Implementation 	 67

3.4 Remarks 	 81
4 TIMINGS, SIMULATIONS, AND PERFORMANCE 	 84

4.1 Timings 	 84
4.2 Simulations 	 88

4.2.1 Program 1 	 89
4.2.2 Program 2 	 91
4.2.3 Program 3 	 94

4.3 Simulation Results 	 97
4.3.1 Program 1 	 97
4.3.2 Program 2 	 99
4.3.3 Program 3 	 100

5 ANALYSIS AND ENHANCEMENTS 	 102
5.1 Enhancement I 	 102
5.2 Enhancement II 	 103
5.3 Enhancement III 	 103

6 CONCLUSIONS 	 107
APPENDIX 	 108

Appendix A — Hierarchies and Programs 	 109
A.1 Hierarchy of the whole Dataflow Computer 	 110
A.2 Hierarchy of module — BLOCKB3_B 	 111
A.3 Hierarchy and TDF Implementation of module — BLOCK_CS5H 	 112
A.4 Hierarchy and TDF Implementation of module —

RESULT_BUS_CONTROLLER 	 117
A.5 TDF Implementation of module — INITIALIZE 	 119
A.6 Hierarchy of module — BLOCKB3_A 	 120
A.7 Hierarchy and TDF Implementation of module — BLOCK_CS1B 	 121
A.8 Hierarchy and TDF Implementation of module — BLOCK_CS2B 	 125

A.9 Hierarchy and TDF Implementation of module — BLOCK_CS3 	 128

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

A.10 Hierarchy and TDF Implementation of module — BLOCK_CS4 	 131

A.11 Hierarchy and TDF Implementation of module —
LU234_BUS_CONTROLLER 	 134

A.12 Hierarchy of module — DFM2 	 136

A.13 Hierarchy and TDF Implementation of module — DFM2_CNTRL 	 137

A.14 Hierarchy and TDF Implementation of module — BUFF 	 139

A.15 Hierarchy of module — PROC_POOL 	 144

A.16 Hierarchy and TDF Implementation of module — PROC 	 145

A.17 TDF Implementation of module — 1COUNT 	 148

A.18 TDF Implementation of module — BUS_MERGE 	 149

A.19 TDF Implementation of module — COUNTER 	 150

A.20 TDF Implementation of module — DELAYTIMER 	 151

A.21 Hierarchy and TDF Implementation of module — MYCLOCK2 	 152

A.22 TDF Implementation of module — MYDFFE 	 154

A.23 TDF Implementation of module — MYLATCH 	 155

A.24 Hierarchy and TDF Implementation of module — PULSEGEN 	 156

A.25 Hierarchy and TDF Implementation of module — QUEUE 	 157
A.26 TDF Implementation of module — STOPTIMER 	 159

A.27 TDF Implementation of module — STOPTIMER2 	 160

A.28 TDF Implementation of module — TOGGLE 	 161

A.29 Hierarchy and TDF Implementation of module —
TRANS DETECTOR 	 162

Appendix B — Simulation Results 	 164

B.1 Fields of the Simulation Results 	 165

B.2 Program 1 Simulation Results 	 166

B.3 Program 3 Simulation Results 	 171

REFERENCES 	 172

ix

LIST OF TABLES

Table Page

1.1 Execution of a set of instructions under the two execution paradigms;
Control Flow and Data Flow.... 	 7

3.1 Full Instruction Set 	 57
3.2 Classification of Arrows associated with Dataflow Graph Nodes 	 61
3.3 Sample Code 	 63
3.4 Equivalent Dataflow Program of the Sample Code 	 64
4.1 Timing of the result_bus_controller 	 85
4.2 Timing of the 1u234_bus_controller 	 85
4.3 Timing of CS2 — CS4 	 86
4.4 Timing of CS1 	 87
4.5 Timing of CS5 	 87
4.6 Timing of IQ 	 88
4.7 Timing of Processor Pool 	 88
4.8 First Program Run on the Dataflow Machine in High Level Language 	 89
4.9 First Program Run on the Dataflow Machine in Dataflow Language 	 90
4.10 Second Program Run on the Dataflow Machine in High Level Language 92
4.11 Second Program Run on the Dataflow Machine in Dataflow Language 	 93
4.12 Third Program Run on the Dataflow Machine 	 94
4.13 Third Program Run on the Dataflow Machine in Dataflow Language 	 95

LIST OF FIGURES

Figure	 Page

1.1 Sample Program 	 6

1.2 (a) Sample Program (b) Memory layout of instructions in Control Flow
and Data Flow Computers. 	 8

2.1 Dataflow graph of the program presented on the right 	 10

2.2 Functional diagram of a processing element in of a tagged-token machine [1]. 	 11

2.3 (a) A BRANCH node. (b) A non-deterministic MERGE node. 	 12

2.4 Conditional Expression Graph 	 13

2.5 Loop Construct Graph 	 14

2.6 Interface for a Procedure Call. 	 16

2.7 A survey of dataflow machines, categorized according to their architecture and
implementation. The keys in the boxes refer to the machines [1] 	 18

3.1 Overall Structure of Data Flow Computer 	 26

3.2 Internal Structure of Intelligent Cell in DFM 	 28

3.3 Dataflow Memory Structure 	 35

3.4 DFM Cell Structure 	 36

3.5 DFM Cell Structure 	 43

3.6 Internal Structure of the DFM 	 44

3.7 Internal structure of the Block 	 45

3.8 Messages on the Operand Bus / Result Arrival Format 	 47

3.9 Instruction Dispatch Format 	 47

3.10 Message Communication format between LU2/LU3/LU4 and LU1 	 47

3.11 Structure of Dataflow Computer Implemented in this Thesis 	 51

3.12 Layout of Memory Bank in IQ 	 52

3.13 Structure of an IQ Memory Cell 	 52

3.14 Format of Instructions received by MC. 	 53

3.15 Result Dispatch format by a processor 	 56

3.16 Primitives to implement a Program Flow Graph 	 59

3.17 Flow graph of the code presented in Table 3-4 	 65

3.18 Flow graph of the sequential code in Table 3-3 	 66

xi

LIST OF FIGURES
(Continued)

Figure 	 Page

3.19 Altera produced Graphic Design File of the Full Dataflow Computer (redrawn) 	 72
3.20 Altera produced Graphic Design File of Blockb3_b (redrawn) 	 73
3.21 Altera produced Graphic Design File of Blockb3_a (redrawn) 	 75
3.22 Altera produced Graphic Design File of dfm2 (redrawn) 	 76
3.23 Altera produced Graphic Design File of Proc_Pool (redrawn) 	 77
5.1 Possible Schematic of an Intelligent Cell 	 104
5.2 Logic used to configure Flag Bits 	 105
5.3 (a) High-Level implementation of DFM (b) Block Implementation 	 106

xii

1 INTRODUCTION

1.1 Objective

Computing or information systems today are the most complex human artifacts, in many

respects, from their material composition. The invention of the transistor revolutionized

the computing industry and has had a tremendous impact on the society in a manner that

no one could have foreseen or predicted. Current estimates of transistor production stands

at about 5 — 6 billion transistors every second [21]. As manufacturing processes get

smaller and cheaper, add to that ever-faster computers, and simulation tools that can

replicate an engineer's design to the smallest detail, allows innovators to stretch their

imagination and ingenuity without any bounds. Every few years, what seemed

improbable is accomplished and exceeded. The dataflow computer is one such entity,

every new generation of design engineers has been coming closer to realizing a pure

dataflow machine. Dataflow computing was first proposed in the 1950s, followed by

dataflow schemas proposed by Karp and Miller in 1966 [1] and Rodriquez in1969 [1].

This document presents yet a new way of implementing a dataflow computer using

FPGAs (Field Programmable Gate Arrays).

1.2 Fundamentals of Computing Paradigms

Computing architectures can be broadly classified into two major groups based on their

execution model, namely Control Flow and Data Flow. This section briefly presents the

properties of the two paradigms.

1

2

1.2.1 Control Flow

By far, the Control Flow (CF) paradigm is the oldest surviving computing paradigm,

which also happens to be the most popular architecture being implemented today. The CF

model at its core is a sequential machine proposed by Von Neumann. It is surprising to

observe that the basic Von Neumann sequential computation model has remained

essentially the same through more than four decades. It is worth noting here that

sequential machines have been shown to be universal computing machines by Alan

Turing, and that the Von Neumann model can be considered as a pragmatic embodiment

of the Turing machine [7].

The heart of a CF machine is the Program Counter (PC), which steps sequentially

through a program (machine instructions) in memory, until it is explicitly changed by a

instruction in memory such as a conditional instruction, or a jump instruction. Each step

is divided into sub-steps; during the first sub-step, the memory address in the PC is used

to fetch an instruction from memory while simultaneously incrementing the PC (PC = PC

+ 1). This is followed by a sub-step where the fetched instruction is decoded. In the

subsequent sub-step, the operands specified by the instructions are fetched. This is

followed by a sub-step where the instruction is sent to the Arithmetic Logic Unit (ALU)

or execution unit, in general, to be executed. In the final sub-step, the result obtained

earlier from the ALU is written back to memory or CPU registers. The whole process is

then repeated and continues till a conditional instruction or a jump sends the PC in a new

direction of execution. Other reasons the PC would change direction of execution, is

when a procedure is called or when returning from a procedure, and when an exception

occurs.

3

Within the framework of the von Neumann model, relatively few architectural

innovations characterize today's sequential computers. These can be summarized as

follows:

• The indexed modification of addresses and the memory hierarchy ideas was

conceived by a group at Manchester University in 1949. The index registers

permitted the execution of loops without modifying the instruction addresses and

the automatic reallocation of programs in memory. The memory hierarchy idea

led later to the caches and virtual machine concepts [7].

• In 1951, Wilkes proposed the micro programmed control technique, as a new and

systematic way of controlling the operation of computers [7].

• Another important innovation incorporated into the von Neumann model is the

stack architecture proposed by Barton in 1958, as a tool for compiling and

executing expressions, in order to have the machine architecture reflect the

organization of a specific programming language. The same concept has been

subsequently recognized as particularly advantageous for operating systems in

managing subroutine invocation and in general program context [7].

• Other major innovations thrown into the cauldron of von Neumann model to

particularly "improve performance" are the introduction of the pipeline

architecture, vector arithmetic units, super-scalar structures and, separation of

I/O from major processor tasks [7].

One reason for the whole hearted adoption of the Von Neumann architecture can

be traced to its conceptual simplicity, which was necessary at the time it was conceived

due to the high cost (and unreliability) of the original electronic components (vacuum

4

tubes). A more poignant reason for its success is the fact that it has operated as an

efficient bridge between software and hardware, permitting the hardware to be developed

almost independently from the software and vice-versa.

1.2.2 Data Flow

The concept of data-driven computation is as old as electronic computing. It is ironic that

the same Von Neumann, who is some-times blamed for having created a bottleneck that

dataflow architecture tries to remove, made an extensive study of neural nets, which have

a data-driven nature [1]. Asynchronously operating in/out channels, introduced in the

1950s, which communicate according to a ready/acknowledge protocol, are among the

first implementations of data-driven execution. The development in the 1960s of

multiprogrammed operating systems provided the first experience with the complexities

of large-scale asynchronous parallelism. After exposure to these problems in the

MULTICS project, in 1969 Dennis developed the model of dataflow schemas, building

on work by Karp and Miller (1966) and Rodriquez (1969) [1]. These dataflow graphs, as

they were later called, evolved rapidly from a method for designing and verifying

operating systems to a base language for a new architecture. The first designs for such

machines (Dennis and Misunas 1974; Rumbaugh 1975 [1]) were made at Massachusetts

Institute of Technology. The first dataflow machine became operational in July 1976 [1].

Dataflow and Control flow are two extremes of execution model spectrum. While

control flow is inherently sequential, dataflow is inherently parallel. That is to say, to

extract the parallelism out of a control flow machine, additional work has to be done to

find instructions that can be executed concurrently. On the other hand, a dataflow

machine's inherent parallelism eliminates this overhead.

5

In a dataflow computer, the execution of an instruction is driven by data

availability instead of being guided by a program counter (described in the previous

section). In theory, any instruction should be ready for execution whenever all operands

needed for it's execution become available. Unlike sequential computers, where the

instructions resident in memory need to be stored in an ordered manner (since the

program counter steps through an ordered set of instructions), instructions in a data-

driven program can be ordered randomly in memory. Though data and instructions reside

in the same memory in a sequential von Neumann machine, they are stored in separate

memory locations, i.e. an instruction and the data it operates on, does not reside in the

same memory location. On the other hand, in a dataflow machine data are held inside the

instructions [20].

Due to the inherent parallelism of dataflow machines, it is not possible to describe

their operation in neat discrete steps as was possible in the operation of the Von

Neumann computer. Instead, an overview of what happens inside a dataflow machine is

presented. Results obtained from the execution of an instruction are called data tokens,

and are passed directly between instructions [20], i.e. when a instruction is executed the

produced result is duplicated into many copies, and forwarded directly to all instructions

that need that value. Each of these instructions that receive the value check to see if they

possess all the operands they need to execute. If any such instructions exist, they fire

(they are dispatched to be executed), producing more data tokens upon execution, which

in turn may fire other instructions. This process continues till no more data tokens are

produced, and no more instructions are readied for execution. A data token once

consumed by an instruction, is no longer available for reuse by other instructions [20].

6

This data-driven scheme requires no shared memory (since results are passed

directly to needy instructions), no program counter, and no control sequencer (since no

order of execution needs to be specified at run time) [20]. However, it requires special

mechanisms to detect data availability, to match tokens with needy instructions, and to

enable the chain reaction of asynchronous instruction executions. No memory sharing

results in no side effects, which is a problem in von Neumann computers.

Asynchrony implies the need for handshaking or token-matching operations [20].

These two operations produce considerable overhead on a dataflow computer; a reason

why dataflow machines have not made it into mainstream computing. A pure dataflow

computer exploits fine-grain parallelism at the instruction level. Massive parallelism

would be possible if data-driven mechanism could be cost-effectively implemented with

low instruction execution overhead [20].

To get a better overview of the two paradigms covered, an example is presented

of how a program is executed within the realm of either paradigms. Consider the

execution of the following program:

Figure 1.1 Sample Program

It can be easily seen from Table 1.1, that the dataflow model needs one less step

to execute this program and that it extracts the maximum parallelism out of this set of

instructions. Control flow on the other hand does not extract any parallelism and would

7

require special software (compiler or OS) or hardware added on to the sequential model

(look-ahead or branch prediction) to accomplish the same speedup.

Table 1.1 Execution of a set of instructions under the two execution paradigms;
Control Flow and Data Flow

STEPS CONTROL FLOW 1	 DATA FLOW

I When PC is 1, operands A and B are
added and the result is stored in C. PC is
incremented.

When operands A and B become available,
instruction 1 is sent for execution. The resulting
sum C is sent to instructions 2, 3, and 4.

II Operands C and A are multiplied and the
result is stored in D. PC is incremented.

Both instructions 2 and 3 have all their operands
available (C from instruction 1, A & B from
before instruction 1 was executed). Both
instructions 2 & 3 are sent for execution and
result D is sent to instruction 4, and E to any
other instructions that need it.

III Operand B is subtracted from operand C
and the result is stored in E. PC is
incremented.

Instruction 4 has all its operands available (C
from 1 and D from 2), so it is dispatched for
execution and the result F is forwarded to any
needy instructions.

IV Operands C and D are added and the result
is stored in F. PC is incremented.

A program memory layout is presented below to show how the above set of

instructions is laid out in memory of a control flow and data flow computer.

Figure 1-2 (a)

Figure 1.2 (a) Sample Program (b) Memory layout of instructions in Control Flow
and Data Flow Computers.

The left side of the figure represents the program in memory of a control flow

computer and the right side represents the program in memory of a data flow computer.

Though the memory locations in the control flow computer, labeled 1,2,3,4 and

A,B,C,D,E,F are shown separately, they belong to the same memory space. They are

drawn side-by-side to accommodate the representation of the flow of operands and

results. Note that there are no control flow arrows in the dataflow computer, since there

aren't any. Also note that, while results are stored in designated locations in the memory

of the control flow computer, in a dataflow computer the results are stored in the same

location as the instructions receiving the results.

9

Now that the two paradigms have been adequately understood, it is only

appropriate that issues that are to be dealt with when designing and implementing

dataflow computers are discussed.

2 ISSUES AND PRIOR RESEARCH

2.1 Issues (Data Flow in Depth)

The dataflow-computing paradigm is a direct result of dataflow graphs, which are a

characteristic component of graph theory. Shown in the figure below is the dataflow

graph of the program that was presented earlier.

Figure 2.1 Dataflow graph of the program presented on the right

Each dataflow graph is represented using directed arcs and nodes; arcs are arrows

entering or leaving the nodes, which are points that hold the instruction to be executed.

The number of arcs entering a node equals the number of operands the node (instruction)

needs to fire (execute), and the number of arcs leaving a node equals the number of nodes

(instructions) that need the result of the firing node (instruction execution).

This simplistic execution model of dataflow computers is also its biggest

drawback. The lack of an inherent control mechanism as in the von Neumann architecture

requires other mechanisms to keep a dataflow computer in check.

10

11

The first problem to be addressed is that of "How does an instruction know that

its operands have arrived?" Since instructions are static objects without intelligence,

some mechanism has to be provided to accomplish this task. This is normally done by a

device called the token matching unit, as shown in the Figure 2.2. The figure below

shows a typical construct of a dataflow computer called the Processing Element (PE),

which handles a number of nodes stored in the box labeled memory for nodes [1].

Figure 2.2 Functional diagram of a processing element in of a tagged-token
machine [1].

Input arcs (data tokens) enter the PE from the left and output arcs (result) exit

from the right of the PE. Each token entering the PE has two fields, 'a list of destination

nodes' and 'a value' that has to be forwarded to the list of destination nodes. In most

dataflow machines, the number of input arcs is limited to two, and associated with each

item in the 'list of destination nodes' in the token is an extra bit that indicates whether the

addressed node is monadic or dyadic. Only for a dyadic node does the matching unit

check whether its local memory already contains a matching token, i.e. it looks for a

token with the same destination. When the matching unit finds a node ready to fire, the

fetching unit extracts the addressed node (instruction) from the 'memory for nodes' and

12

forwards the entire set (instruction, operand/s, and destination addresses) to the

functional unit, which in turn executes the instruction and sends out the result (a token

containing the result and destination addresses) [1].

Other issues that plague dataflow machines are related to the implementation of

simple programming constructs that are taken for granted in Von Neumann architecture,

such as conditional statements, loops (count and conditional) and modularization

(procedures and functions). Accommodating loops and conditionals requires nodes that

implement controlled branching.

Figure 2.3 (a) A BRANCH node. (b) A non-deterministic MERGE node.

The conditional jump of a dataflow program is represented in a dataflow graph by

BRANCH nodes. The most common form is the one depicted in Figure 2.3(a). A copy of

the token absorbed from the value port is placed on the true or on the false output arc,

depending on the value of the control token. Variations of this node with more than two

alternative output arcs or with more than one value port (compound BRANCH) can also

be used. A MERGE node does not have a strict enabling rule; that is, not all input ports

have to contain a token before the node can fire. In the deterministic variety, the value of

a control token determines from which of the two input ports a token is absorbed. A copy

of the absorbed token is sent to the output arc. The nondeterministic MERGE node

13

shown in Figure 2.3 (b) (i.e., a MERGE node without control input) is enabled as soon

as one of its input ports contains a token; when it fires, it simply copies the token that it

receives to its successors.

Figure 2.4 Conditional Expression Graph.

Figure 2.4 shows an implementation of a conditional construct graph

corresponding to the expression z := if test then f(x, y) else g(x, y) fi. If one token enters

at each of the three arcs at the top of the graph, the two BRANCH nodes will each send a

token to subgraph f or to subgraph g depending on the value of test. Only the activated

subgraph will eventually send a token to the MERGE node [1].

An iterative loop can also be implemented using the same two specialized nodes,

BRANCH and MERGE. Figure 2.5 shows an implementation of a loop construct graph

corresponding to the expression while f(x) do (x, y) := g(x, y) od.

Figure 2.5 Loop Construct Graph

Initially the values (x, y) are presented at the input arcs of the nondeterministic

MERGE node which simply copies the values to its output arcs, which puts the value x at

the input arc of the subgraph f activating it. The output of the subgraph f determines the

output of the compound BRANCH. If the value at the control port of the BRANCH node

is true, then x and y at the value ports of the BRANCH node are forwarded to the

subgraph g. If the value at the control port of the BRANCH node is false, then x and y at

the value ports of the BRANCH node are sent the other way. Reception of (x, y) by the

subgraph g fires it and produces two new values of (x, y), which are forwarded to the

MERGE node. This process continues till the subgraph f evaluates a false output.

It may be noticed here that there is no exploitation of concurrency in executing

this loop. This method is called the lock method [1][12]. It is safe and simple, but not

very attractive for parallel machines. The level of concurrency is low since the BRANCH

node acts as a lock that prevents the initiation of a new iteration before the previous one

has been concluded. An alternative approach is the acknowledge method. This can be

15

implemented by adding extra acknowledge arcs from the consuming node to the

producing node. These acknowledge arcs ensure that no arc will ever contain more than

one token and the graph is therefore safe. One arc provides space for one token. In a

manner too complicated to show here, the proper addition of dummy nodes and arcs can

transform a reentrant graph into an equivalent one that allows overlap of consecutive

iterations in a pipelined fashion. The acknowledge method therefore allows more

concurrency than the lock method, but at the cost of at least doubling the number of arcs

and tokens [1].

A higher level of concurrency can be obtained when each iteration is executed as

a separate instance (or copy) of the reentrant subgraph. This code-copying method

requires a machine with facilities to create a new instance of a subgraph and to direct

tokens to the appropriate instance. A potentially more efficient way to implement code

copying is to share the node descriptions between the different instances of a graph

without confusing tokens that belong to separate instances. This is accomplished by

attaching a tag to each token that identifies the instance of the node that it is directed to.

These so-called tagged-token architectures have an enabling rule that states that a node is

enabled if each input arc contains a token with identical tags. Though this method

increases concurrency, implementation of such a technique is not easy and involves

considerable overhead [1].

The last problem that needs to be mentioned is the issue of procedure invocation.

Calling a procedure introduces similar problems as with reentrancy, to which the methods

described above can be applied. In code-copying architectures, a copy of the called

procedure is made. In tagged-token architectures, a new tag area is allocated for each

16

procedure call so that each invocation executes in its own context. Nested procedure

calls, recursion, and co-routines can therefore be implemented without any additional

problems. An extra facility is however required to direct the output tokens of the

procedure activation back to the proper calling site. This is usually implemented as

shown in Figure 2.6.

Figure 2.6 Interface for a Procedure Call.

On the left, a call is made to procedure P whose graph is on the right. P has one

parameter and one return value. The actual parameter receives a new tag and is sent to the

input node of P, and concurrently a token containing address A is sent to the output node

SEND-TO-DESTINATION. This SEND-TO-DESTINATION node transmits the other

input token to a node whose address is contained in the first token. The effect is that,

when the return value of the procedure becomes available, the output node sends the

result to node A, which then restores the tag belonging to the calling expression. These

17

output nodes are special nodes capable of sending tokens to nodes, to which they have

no static arc [1].

Machines that handle reentrancy by the lock or acknowledge method are called

static; those employing code copying or tagged tokens are called dynamic. Static

machines are much simpler than dynamic machines, but for most algorithms their

effective concurrency is lower. Algorithms with a predominantly pipelining type of

parallelism, however, execute efficiently on static machines with acknowledging [1].

COMMUNICATION IN A DATA FLOW PARALLEL COMPUTER:

Communication in a dataflow machine is accomplished either by direct communication

or via a packet communication network [1].

In direct communication machines, adjacent nodes in the graph are allocated to

the same processing element or to processing elements that have a direct connection with

each other. An important property of direct communication architectures is that the

communication medium delivers tokens in the same order as they were received [1].

Packet communication offers the greatest opportunity for load distribution and

parallelism in the communication unit, since it can be constructed from asynchronously

operating packet-switching modules. Such a module can accept a token and forward it to

another module, depending on its destination address [1].

This section covered the issues affecting dataflow computers, and the solutions

that researchers have come up with to overcome these issues. The apparently simple

concept of data driven execution has many complex implementation issues, yet

researchers have come up with brilliant ideas of implementing such machines, which is

the topic of the next section.

18

2.2 Prior Research

Figure 2.7 illustrates dataflow machines categorized according to the nature of the

communication unit and the architecture of the processing elements.

Figure 2.7 A survey of dataflow machines, categorized according to their
architecture and implementation. The keys in the boxes refer to the machines [1]

This categorization is not strict, but does broadly cover most dataflow machines

implemented or hypothesized till date. At the end of this section, dataflow machines that

do not strictly fall under the categories shown in Figure 2.7 will be presented.

2.2.1 	 Direct Communication Machines

The main drawback of direct communication machines is that for many graphs it is

difficult to find a good mapping onto the network (processor allocation problem). It may

be a fruitful approach, however, for applications that have predictable and regular

communication patterns matching the machine's topology. The most important member

of this class is the oldest working dataflow machine, the DDM1 [1]. The processing

elements of this machine are arranged as a tree. Allocation is simplified by preserving the

19

hierarchical tree structure of the program. Any internal node of the processing tree can

allocate a part of its program (a subtree) to any of its descendants. Allocation is simple

and distributed, but far from optimal with respect to load distribution over the processing

elements. The root of the tree forms a bottleneck in the communication between

processing elements.

In Japan, an interesting dynamic direct communication machine has been

developed for large-scale scientific calculations, such as solving partial differential

equations [1]. The processing elements are arranged on a two-dimensional grid and use

tags to distinguish tokens belonging to different activations. To avoid the necessity to

allocate unique tag areas dynamically, the input language is somewhat restricted (no

general recursion) so that static allocation is possible. A hardware simulator for 4 x 4

processing elements, each connected to eight neighbors has been used to study small

applications. It confirmed analytical predictions that communication delay does not

seriously degrade performance, provided that programs have enough parallelism.

2.2.2 Static Packet Communication Machines

The first packet communication dataflow machine that became operational is the

Distributed Data Processor [1], built at Texas Instruments. The references suggest that the

DDP uses a locking method to protect reentrant graphs. Although the compiler may

create additional copies of a procedure to increase parallelism, this copying occurs

statically. It is a one-level machine with a ring-structured communication unit,

augmented with a direct feedback link for tokens that stay within the same processing

element. A prototype comprising four processing elements has been built.

20

Dennis and his colleagues at the Massachusetts Institute of Technology

produced the first designs for dataflow machines [1]. The earliest design had a two-stage

structure, an enabling unit (called an instruction cell) dedicated to one node and

heterogeneous functional units. This design was later extended into a series of machines

differing in the way they handled reentrancy and data structures. They ranged from the

elementary Form I processor, which was static and could only handle elementary data, to

the full-fledged Form IV processor, which had extensive structure facilities and could

copy subgraphs on demand. The prototype that is now operational consists of eight

processing elements and an equidistant packet routing network built from 2 x 2 routing

elements.

Around 1990, Sandia National Laboratories in Albuquerque, NM, designed and

implemented a static dataflow computer called the Epsilon dataflow computer, based on

the Epsilon processor [9][111 The overall Epsilon system was designed as a scalable

multi-processor architecture consisting of Epsilon processors and structure memory units

connected with a packet switched network. The whole design was implemented on a

single board using off-the-shelf components. At the time the group demonstrated a

sustained performance of the Epsilon machine comparable to commercial mini-

supercomputers.

2.2.3 Machines with Code-Copying Facilities

The dataflow machines with potentially the highest level of parallelism are the dynamic

dataflow machines; they employ either code copying or tags to protect reentrant graphs. It

is a characteristic of a code-copying machine, that the physical address of a node cannot

21

always be determined statically. The first detailed design of a dataflow machine was of

this type was presented by Rumbaugh in 1975 [1]. Allocation in this machine is per

procedure; all the nodes and intermediate results of each procedure are stored in the

memory of one processing element. There is a fast connection from the output to the

input port of a processing element, such that a circular pipeline is created. Tokens stay

within this pipeline unless they are directed to another procedure, in which case they are

routed to a special processing element called the scheduler. This scheduler sends a copy

of the called procedure and its input values to an idle processing element. If there is no

idle processing element, it waits until a processing element becomes dormant and then

saves its state (i.e., all the unprocessed tokens) and declares itself as idle. The

Massachusetts Institute of Technology Form IV dataflow processor refers to a whole

family of designs, some of which have implemented the code-copying scheme.

2.2.4 Tagged-Token Machines

The first tagged-token dataflow machine built was the Manchester Dataflow Machine [1]. The

group developed the tagged-token concept to increase parallelism for reentrant graphs

independently from similar work done by Arvind and Gostelow in 1977 [1]. The

processing element of the Manchester Dataflow Machine had a pipeline of four units:

token queue, matching unit, fetching unit, and functional unit. Each unit works internally

in a synchronous manner, but they communicate via asynchronous protocols. More than

30 packets can be processed simultaneously in the various stages of the pipeline. To

maximize the communication speed, the data paths are all parallel (up to 166 bits wide),

transmitting a complete packet at a time. Consequently the sizes of packets, and thus of

tokens, are fixed. The token queue is implemented as a simple FIFO buffer.

22

One of the newest dynamic dataflow machines following the tagged-token

communication model is the Monsoon Computer built at the Massachusetts Institute of

Technology in collaboration with Motorola Inc. [10]. The Monsoon is an experimental

multi-threaded, multi-processor targeted to large-scale, general-purpose scientific and

symbolic computations. The Monsoon machine includes a collection of 64-bit pipelined

PEs that can execute up to 8 threads simultaneously. The PEs are connected via a

multistage packet switch network to each other, and to a set of interleaved I-structure

memory modules. An I-Structure memory module is a two stage pipelined structure

consisting of a memory stage and an output stage. In the memory stage, an incoming

request is decoded into an operation code, memory address, and a value or return

continuation [10]. A memory operation is performed on the memory address, and for

some operations, a response is generated to be sent to the requesting PE. If a response is

generated, it is injected into the interprocessor network in the output stage, which

forwards the response to the appropriate PE. The PE nodes implement hardware

primitives for direct support of efficient multi-threading, including zero-cycle context

switching, single cycle fork and join, and split-phase memory references with arbitrary

reordering. The basic run-time execution state of a Monsoon program comprises a tree of

activation records, which correspond to the invocation state of many simultaneous

procedures that can be executing at the same time.

2.2.5 Other Architectures

The EM-4 dataflow machine was based on the EMC-R dataflow processor, and was a

system proposed by the Electrotechnical Laboratory in Japan around 1989 [4]. This

architecture denounced the traditional architectural model in dataflow computing of

23

simple packet-switching, circular pipeline, and colored token style. It introduced the

concept of a strongly connected arc and that of a strongly connected block. In the

strongly arc model of representing a dataflow graph, arcs are categorized into two types:

normal arcs and strongly connected arcs. A strongly connected arc is a normal arc that the

user defines as strongly connected. A dataflow subgraph whose nodes are connected by

strongly connected arcs is called a strongly connected block (SCB). Two firing rules were

used. One, a node on a dataflow graph is firable when all the input arcs have their own

tokens (a normal data-driven rule). The other is that after each SCB fires, all the

processing elements which will execute a node in the block should execute nodes in the

block exclusively. The architectural detours made in the evolution of this computer were

based on these new concepts.

The Cydra 5 Directed Dataflow Architecture that was proposed in 1988 by

Cydrome Inc, California, added a new twist to the dataflow paradigm [2]. According to

the author Dr. B. Ramakrishna Rau, each executing operation on a data flow computer

needs to address five issues:

• Will the operation be executed at all?

• If so, when will it execute?

• On which processing element will it execute?

• Where are the input operands located?

• Where will the result be placed?

Although a directed dataflow computer retains the important benefits of the

dataflow architecture, it also makes the concept commercially viable by moving as much

24

decision-making as possible from runtime to compile time. While in a regular dataflow

computer the listed five issues must be addressed at run-time for each operation executed,

in directed dataflow architecture these issues are settled at the compile time to the extent

possible.

The MADAME computer (MAcro-DAtaflow MachinE) was proposed at the Jozef

Stefan Institute, Slovenia in 1991. The idea presented adopting dataflow scheduling in

larger chunks of instructions, instead of the traditional instruction level scheduling (fine-

grain dataflow) [8].

2.3 Motivation and Objectives

The concept of dataflow computers was first introduced to me as an undergraduate

student of computer engineering. Its conceptual simplicity struck a chord within me

immediately, but at the same time, the lack of methods to efficiently implement the

dataflow concept challenged and motivated me to study it further. After investigating the

work that other researchers in the field of computer engineering had done on dataflow

computers, I realized that engineers were trying to tackle the problem of implementing a

data flow computer at the processor level. Dataflow computers in the past have been

implemented by using a modified processor, often called the Processing Element (PE),

which composed of a processing unit along with memory to store partially active

instructions and tags. The PE would also contain a matching unit to match the incoming

tags, and in addition was assigned the task of sending and receiving tags, from and to

other PEs (described earlier in Section 2.1). Most of the inactive instructions would

reside in some memory outside the PE.

25

This thesis presents a way of implementing dataflow computer at the memory

level, i.e. intelligent memory is used to perform dataflow tasks. Processors in this system

perform the role of execution units; executing whatever instructions the dataflow memory

sends it. The motivation behind this idea was that, such a method would incur lesser

overhead than the previous methods used to implement data flow computers. In addition,

this idea follows the dataflow paradigm very closely, as opposed to the pseudo-dataflow

architectures that past researchers have proposed.

The objective of this thesis was to design and implement a proof-of-concept

dataflow computer in which the memory is dataflow. Since building this machine on

silicon was not a possibility, it was decided that FPGAs would be used instead to build

the machine. Speed, efficiency and performance were not primary goals of this design,

rather feasibility of the "dataflow memory" (active or intelligent memory) architecture

was given priority.

The architecture that is presented in this thesis is a breakaway from the traditional

methods of implementing data flow computers, and I believe that this architecture could

possibly offer a promising solution in designing an efficient dataflow computer.

3.1 Overview of the Design

The basic structure of the Data Flow Computer (DFC) is shown in Figure 3.1. It consists

of three major parts: the instruction memory Data Flow Memory (DFM), the intermediate

buffer Instruction Queue (IQ) and the execution units Processor Pool. In addition there

are minor components, such as the Bank Arbitrator, the Bus and the Bus Control.

3 THEORETICAL APPROACH AND IMPLEMENTING A DATAFLOW
COMPUTER

27

3.1.1 Data Flow Memory

Data Flow Memory (DFM) is the heart of the Data Flow Machine in this design. It is a

special kind of intelligent-memory, where each memory location is an intelligent cell

(cell) consisting of two parts, the instruction part, and the processing element part.

The instruction part is in turn divided into 6 components:

• The instruction opcode (OPCODE).

• Source of the first operand (D1A).

• Source of the second operand (D2A).

• Source of the clause operand (CAD).

• Operand to be obtained from the first source (OPD1).

• Operand to be obtained from the second source (OPD2).

• Flags used to control the behavior of the instruction (FLAGS).

The result of an instruction that has finished executing is immediately

broadcasted to all the cells in the DFM. Each broadcasted packet contains the result along

with the address of the instruction in DFM that sent it for execution, and is called a result

packet. The processing element (PE, different from previous dataflow discussions) in

each cell is responsible for picking up broadcasted result packets sent by the processor

pool via the result bus. If the address in the broadcasted result packet is either equal to

D1A or D2A, then the data is written to either OPD1 or OPD2 respectively, and

appropriate flags are set. When both OPD1 and OPD2 become available (determined by

examining appropriate flags), the PE sends an executable packet (composed of the

instruction opcode, the operands and the cell address of the sending PE) to the bank

28

arbitrator. An executable is an instruction ready for execution and contains four fields;

the instruction opcode, operands 1 and 2, and the cell address of the sending PE. It is

important to point out here that the bus on which the result packets are broadcasted is

independent (separate) of the bus on which executable packets are relayed to the bank

arbitrator. This is done to avoid congestion that would occur if one bus were used.

The CAD field is used to store the address of an instruction that sends the clause.

A clause is a Boolean value stored as a flag in the flags field which acts like a permission

for the instruction that needs it, i.e. an instruction will execute only if it's clause field is

`1'. The clause is useful in the construction and execution of "conditional" or "looping"

program constructs. For an instruction to fire, three flags have to be set, the two operand

flags (indicating at both operands are available) and the clause flag.

The internal structure of an intelligent cell in DFM is shown in Figure 3.2. Each

section within an intelligent cell is labeled as described earlier. The little arrows within

each cell denote the direction of information flow from the cell to the PE. The instruction

bus and the result bus are also shown along with the format in which the PE

communicates with them.

29

The Bus Controller (BC) in the DFM controls the arbitration of the result

packets sent by the processor pool to the DFM. The bus controller assures that the result

packets are broadcasted in orderly manner on the Result Bus.

3.1.2 Instruction Queue

The Instruction Queue (IQ) is an intermediate buffer between DFM and the Processor

Pool, and is made up of the Bank Arbitrator (BA) and multiple banks of memory. The

number of banks in IQ is equal to the number of processors in the processor pool. Each

processor is assigned one bank exclusively. This assures that all processors can access

memory at the same time. Ideally, a cross bar switch should be implemented so that a

processor can access another bank if no instructions are available for execution in its own

bank, but this method was avoided to keep the initial design simple. No processor is busy

all the time or idles all the time; this is because the bank arbitrator makes sure that the

number of executables allotted to each memory bank, hence to each processor, is the

same. It uses a round robin scheme to allocate executables to the memory banks.

The IQ acts as a buffer from where the processor pool can access the executables.

This leaves the DFM to do its tasks without worrying about distributing executables to

the processor pool. When instructions are ready for execution, the DFM simply

dispatches the corresponding executables to the IQ, where they await execution. This

concept of a two level memory structure, one where all instructions are held, and another

where only instructions ready for execution are held is similar to an idea presented by

Dr. Dennis of the Massachusetts Institute of Technology [13].

30

	

3.1.3 	 Processor Pool

The processor pool is simply a pool of execution units. Each processor sequentially

executes ready instructions (executables) from the bank that it is assigned. The

instructions are executed in no particular order because all the instructions in the memory

bank are waiting to be executed.

When any processor obtains an instruction, it also gets the originating address of

the instruction. After execution, the obtained result along with the originating address

(result packet) is sent to the Bus Controller of the DFM, which then broadcasts the packet

to all the cells via the result bus.

	3.1.4	 Flow of Data and Instructions in the Data Flow Computer

In Data Flow Memory.

1 The memory cell in DFM that has all its data (0P1 and OP2) and appropriate flags

set, sends an executable out for execution (to the bank arbitrator). A seed can be used

to initiate this.

In Intermediate Buffer.

2 Once the bank arbitrator receives the executable packet, it places that information in

the appropriate memory location. It chooses the appropriate location by first choosing

the correct memory bank, which it selects using a round robin scheme (it keeps track

of the next bank it must use), and then selecting the next available location in that

memory bank.

In Processor Pool.

3 Each processor in the processor pool executes the available ready instructions

(executables) sequentially, stepping through them as in a Von Neumann machine.

31

After the processors associated with their respective banks retrieve the executables,

the bank is notified and those locations from where the executables were retrieved are

made available to store new executables.

4 Each processor in the pool executes the ready instruction that it retrieved from the IQ

and then sends a result packet to the bus controller in the DFM.

In Data Flow Memory.

5 The bus controller broadcasts this packet to all the cells in memory.

6 All the cells in DFM, pick up the broadcast packet. A cell absorbs the packet only if

the originating address of the broadcast is equal to either one of its operand source

addresses. (The PE of each cell does this comparison.)

7 Once a cell gets both its operands, the PE of that cell then sends a packet containing

the executable (opcode + operands + cell address) to the bank arbitrator.

It may feel that broadcasting messages could cause considerable congestion on

the bus, but the number of messages on the bus is never greater than the number of

processors in the processor pool, since, besides the broadcast of the initial data (the seed

used to initialize), all the broadcasting is done only by the processors.

3.1.5 	 Remarks

This design presented here is suitable for small-scale data flow computers, i.e. a machine

having about 16-32 processors in the processor pool. This restriction is foreseen due to

two reasons. First, the number of memory banks in IQ will increase linearly with the

number of processors, which for a large number of processors such as 1024 will be

unrealistic. Secondly, having a large number of processors increases the number of

broadcasted messages causing congestion on the broadcasting bus.

32

This thesis shows a new way of implementing a data flow computer, at the

memory level (using intelligent-memory). Taking advantage of current advances in Field

Programmable Gate Array (FPGA) technology, an FPGA-based prototype will be

developed with emphasis on feasibility of the design. Performance currently is a

secondary issue and is left for future research.

3.2 Field Programmable Gate Arrays (FPGAs)

Fastest performance is achieved when a design is implemented directly on silicon, with

dedicated logic for all the different units. Since this project was a prototype, it was more

important to check the feasibility of the design than performance. Hence a device was

needed that could be easily reconfigured, if design flaws were detected. In addition to

this, the device was required to have sufficient logic to be able to accommodate the

different components of the design. The ideal solution for prototyping the dataflow

computer was to use a FPGA.

FPGAs are user-programmable devices, which are widely accepted as an

excellent technology for implementing moderately large digital circuits. They offer a

cost-effective solution for prototyping, and have a much faster turn around time. Since

FPGAs can be reprogrammed in the field, they can be used in innovative designs where

hardware needs to change dynamically to adapt to different user applications. Though

dynamically changeable hardware is not a consideration for this project, the ability to

reprogram an FPGA unlimited number of times is particularly useful when prototyping,

where the design is constantly being changed and updated. They also provide other

advantages, such as shortening design and development cycles. In terms of speed-

33

performance, most FPGAs are slower than Complex Programmable Logic Devices.

However, the rapid advance in FPGA technology is quickly closing the gap on speed and

device density. One prominent disadvantage using FPGA technology is that circuit

propagation delays are dependent on the performance of the design implementation tools

used. This however is not a handicap for this project.

The internal architecture of an FPGA consists of several uncommitted logic

blocks in which the design is to be encoded. The internal logic blocks consist of several

universal gates that can be programmed to operate like multiplexers, decoders, logic

gates, registers, transistors, random access memory and a slew of other digital logic

primitives. The internal logic blocks are connected through a maze of programmable

interconnects which can used to implement buses and logic interconnection. They have

elaborate clocking schemes and optimization methods (based on design tools) that could

produce faster hardware or use lesser logic blocks. Since all the logic blocks are

independent, multiple units can be built in a single FPGA, all of which work

independently and in parallel (key in the design of a parallel computer, such as a dataflow

computer).

The FPGAs used in this design are those made by Altera Corp. Three models

were chosen to implement the three major pieces of the dataflow computer; the DFM was

implemented on a FLEX10KE, the IQ along with the bank arbitrator was implemented on

the ACEK1K and the processor pool was implemented on a MAX9000.

The FLEX10KE was an ideal candidate for implementing the DFM because each

device could provide up to 98,304 RAM bits that could be configured as dual-port

memory for the DFM [17]. In addition each device contained sufficient logic, up to

34

200,000 gates depending on the device chosen, to implement the PEs in the DFM. All

this is connected together by a fast interconnect network that has predictable interconnect

delays [17].

The ACEX1K is a less powerful relative of the FLEX10KE. It has the same

features as the FLEX10KE, except there is less of everything. The largest ACEX1K has

49,152 RAM bits and about 100,000 gates [17]. Since the logic and memory

requirements for the IQ are less than that of the DFM, this device was an ideal device to

implement the IQ in.

The MAX9000 is the smallest of the three devices used. This device contains no

memory bits, but has sufficient logic gates and flipflops, up to 12,000 and 772

respectively, which was sufficient to implement the processor pool [19].

A major factor in deciding to use Altera's FPGAs to develop the prototype was

the availability of a free development kit from Altera called MAX+II BASELINE version

10. In addition, Altera also supports university programs, through which it is possible to

get free manuals on how to use the software, programming language reference (AHDL,

Altera Hardware Definition Language), sample boards for hardware development, and

most important of all, a technical help line to resolve problems faced during

development.

In short, Altera FPGAs provided a low cost, highly configurable solution, along

with a simple environment to develop the dataflow prototype. The FPGAs used for this

project were appropriate for testing and verification, and have proven to be a very

important tool for successful project completion.

35

3.3 Detailed Layout and Implementation of the Design

The detailed design of the proposed dataflow computer is presented in this section. Each

component (DFM, IQ and Processor Pool) is covered in depth. This section also

discusses the decisions made while implementing the proposed dataflow computer.

Figure 3.3 Dataflow Memory Structure

Besides the two buses shown in Figure 3.3, the DFM is divided into two sections, the

Queue Buffer (QB) and the DFM Cells. The internal structure of a DFM cell is shown in

Figure 3.4.

36

Figure 3.4 DFM Cell Structure

Each DFM memory cell is broken up into four sections, called Cell Sections (CS),

CS1 through CS4. Each cell section, CS1 CS4 holds a piece of the instruction to be

executed. Controlling each CS, CS1 through CS4, is a 'Logic Unit' or LU. The LUs, LU1

through LU4, managing CS1 through CS4, respectively, constitute a PE. The bits in the

CS's are grouped such that minimum communication is needed between the different

LU's controlling the different CS's. By having an LU controlling only one CS, work on

each CS is done independently and in parallel, avoiding potential waits that would arise if

an LU controlled more than one CS across the cell.

CELL SECTIONS:

Cell Section 1(CS1): CS1 is made up of nine fields. Each field is described below.

Operandi (OPD1): OPD1 is a field that holds operandi, which is received from the

instruction whose address matches the value in D1A (source of operand1). OPD1 is

sent to CS1 after LU3 picks up a result packet and makes a match between the

originating address (OA) in the packet and D1A.

37

Operand2 (OPD2): OPD2 is a field that holds operand2, which is received from

the instruction whose address matches the value in D2A (source of operand2). OPD2

is sent to CS 1 after LU4 picks up a result packet and makes a match between the

originating address (OA) in the packet and D2A.

Opcode (OP): OP is the opcode field, which holds the instruction to be executed.

Operandi Obtained (D1O): D1O is a one-bit flag that is set by LU1. The flag is set

when LU1 receives OPD1 from LU3. This bit may be set at compile time or at run

time. If it is set at compile time then the operand is already available (immediate

value).

OPRD2 Obtained (D20): D20 is a one-bit flag that is set by LU1. The flag is set

when LU1 receives OPD2 from LU4. This bit may be set at compile time or at run

time. If it is set at compile time then the operand is already available (immediate

value).

Clause Answer (CAN): This is a one-bit flag value which holds the boolean value that

LU2 picked up from a message it received. This boolean value is sent by LU2 to LU1

when LU2 picks a message whose address matches the value in CAD. It is a bit used

during execution of conditional and loop constructs. The CAN bit can be set at

compile-time or at run-time. When a clause is not required to execute an instruction,

this bit is set to '1' at compile time.

Operandi Reuse (DIU) and Operand2 Reuse (D2U): Fields D1U, D2U and LP

(described below) are used in implementing a loop, e.g. a FOR or WHILE loop. Often

instructions from inside a loop require values from outside the loop, but instructions

38

from outside the loop execute and transmit their values only once (i.e. an instruction

is fired only once). Hence the instruction inside the loop will receive that value only

once, and it will fire only once. To overcome this problem the reuse bit is used. Setting

this bit at compile time allows LU1 to realize that the received value has to be reused,

and will not change the D1O/D2O bit of the firing instruction whose D1U/D2U bit/s

is/are set. Thus that instruction can fire again when all its other operands/clauses are

available.

D1U and D2U are one-bit flags, which are used to determine if operandi and

operand2 need to be reused. These bits are set only at compile time.

Loop (LP): Loops are a terrible construct to manage in Data Flow Machines, but they

also are the most commonly used constructs in programming (the 90/10 rule). Loops

usually start by checking some value before the start of the loop (e.g. while x < 5,

where the value of x is set before the loop begins). This is particularly true for "while"

and "for" loops. The next time around, the value of x is obtained from within the loop,

which in the case of the example presented, would be an instruction such as "x = x +

1". Thus, the first time, the value of 'x' is obtained from outside the loop and every

subsequent time, it obtained from inside the loop. Hence we need a primitive that is

capable of obtaining the same variable from two different sources.

The second problem is that data flow machines are runaway machines; firing one

instruction subsequently fires many instructions in different parts of the code. In

particular when dataflow computers execute loop constructs, due to their inherent

runaway nature it is highly probable that the machine may be executing different

iterations of the same loop; i.e. part of the instructions in the loop are executing

39

iteration n, while other parts may be in iterations n+1, n+2, , n+m. This would

not be a problem if there were no dependencies between consecutive iterations, but

would be a disaster if there were any. Some way to control the execution of the loop is

needed under these circumstances.

To accomplish these controls, a special 2-bit flag, called LOOP(LP) is used to

implement 'loop constructs'. The 2-bit flag can only be set at compile time. The

values that the LOOP (LP) flag can take are 0-3. The value 0 is used for instructions

that are not used to implement a loop, i.e. only instructions that enclose the loop have

their LP values greater than zero. All other instructions inside and outside the loop are

set to zero. The other three values are used for constructing loops. Note that LP values

1-3 are not used to distinguish between different types of loop constructs, but are used

to control how a loop executes.

When LP = 1.

A value of LP equal to 1 is used to initiate a loop (beginning of a loop). The

instruction which has its LP flag set to 1, is a special instruction called SP (SPecial),

which is not actually an instruction at all (it is never sent for execution). In the

example above involving 'x', there would be a SP instruction whose LP value would

be 1, its D1A field would contain the address from where the value of 'x' is obtained

the first time (outside the loop) and D2A would contain the address from where the

value of 'x' is obtained other times (inside the loop). The instruction fires whenever it

receives the value of 'x', from either the address D1A or D2A.

When LP=2.

The SP instruction is always followed by a conditional instruction. This instruction

40

checks the loop conditional. In the example presented above, the conditional

instruction would check for x < 5. The result of this conditional statement is sent out

as a clause to all the instructions inside the loop. This instruction has its LP flag set to

2, because if it is treated as a regular instruction (LP = 0), upon execution its CAN bit

will be reset instantly along with its D10 and D2O flags, and this instruction will not

execute again when it receives its operands for the next iteration (since CAN is reset).

For the loop to iterate, all the instructions inside the loop need the clause coming from

this loop conditional instruction. To avoid such a situation, the LP flag of the loop

conditional instruction is set to 2, which instructs LU1 to leave the CAN bit intact

after it has sent the conditional instruction for execution.

When LP=3.

An instruction with a value of LP equal to 3 is used along with the loop instruction SP

to avoid situations where the runaway effect will cause a problem; i.e. a control of

iterations has to be maintained due to data dependencies between consecutive

iterations. When a LP value of 3 is used, an effect similar to when LP equals 1 goes

into action, except that instead of firing when the value of 'x' is obtained from either

D1A or D2A, SP will fire only when the value of 'x' is obtained from both D1A and

D2A. D1A is always the address of the SP instruction (beginning of loop), and D2A is

always the address of the instruction, which must be executed before the next iteration

starts. In the example presented it would be an instruction which modifies 'x'

(example, x = x+1).

Cell Section 2(CS2): CS2 is made up of two fields.

41

Clause Address (CAD): The CAD field is used to store the address of an instruction

that sends a clause. A clause as described in the previous section is a boolean value

which acts like a permission for the instruction that needs, i.e. an instruction will

execute only if it's clause field (in CS1) is '1'. If an instruction does not need a clause,

then clause field of that instruction (in CS1) is set to '1' at compile time and the value

in the CAD field is irrelevant.

Clause Required (CR): CR is a one-bit flag that is set at compile time, which

determines whether the execution of an instruction depends on a clause.

Cell Section 3 (CS3): CS3 is made up of two fields.

Operandi Address (D1A): D1A field of an instruction holds the address of the

instruction from which it is expecting its first operand. If the first operand is an

immediate value then the address in this field is irrelevant.

Operandi Required (D1R): D1R is a one-bit flag set at compile time that lets LU3

know if this instruction needs the first operand. When OPD1 is an immediate value,

then this bit is set to 0.

Cell Section 4 (CS4): CS4 also contains two fields.

CS4 is identical to CS3. The fields are D2A (Operand2 Address) and D2R (Operand2

Required).

LOGIC UNITS:

Logic Unitl (LU1): The LU1 in each intelligent cell controls CS1 and takes values sent

to it by LU1, LU2 and LU3, inserts them in the appropriate fields and sets the appropriate

42

flags. After LU1 sets the flags, it tires the instruction if all the required operands and

clauses have been obtained. Depending on the values of the LP, MU and D2U fields, the

values of the D1O, D20 and CAN bit may be reset.

Logic Unit2 (LU2): The LU2 in each intelligent cell controls CS2. It takes the result

packet broadcasted on the result bus and compares the originating address (OA) in the

packet to the CAD field in the CS2 it is controlling, if the CR flag is set.

Logic Unit3 (LU3): The LU3 in each intelligent cell controls CS3. It takes the result

packet broadcasted on the result bus and compares the OA in the packet to the D1A field

in the CS3 it is controlling, if the D1R flag is set.

Logic Unit4 (LU4): The LU4 in each intelligent cell controls CS4. It takes the result

packet broadcasted on the result bus and compares the OA in the packet to the D1A field

in the CS4 it is controlling, if the D2R flag is set.

The exact actions taken by each LU is presented in the implementation of the

DFM. Note that no distinction is made when packets are picked by the three LUs. Each

LU picks up and operates on every packet broadcasted.

QUEUE BUFFER (QB):

The queue buffer (QB) is a repository where result packets coming on the result bus are

deposited in case the results are coming faster then they can be absorbed. If result packets

arrive before the LUs have finished absorbing the packets that arrived earlier, then the

new result packets are queued in the QB. As the LUs become free, the QB sends the

queued result packets in the order that they were received. The order of dispatching the

43

result packets from the QB is not a requirement, but is a side effect of how the queue is

implemented, that is a FIFO (First In First Out).

The next section covers how the DFM was implemented and the design decisions

that were made that did not completely conform to the design presented in this section.

The reasons for these decisions are also presented in the next section.

3.3.2 Dataflow Memory Implementation

The structure of the DFM single cell is shown in Figure 3.5. Each memory cell is 61 bits

long, and is broken up into four sections CS1 — CS4, as described before. Each section is

of varying length. All addresses, i.e. operand] address (D1A), operand2 address (D2A),

and clause address (CAD) are 11 bits long, thus giving a total addressable memory of 2K.

All operands are 7 bits wide. This small operand size is not considered a limitation,

because our main purpose is to prove the viability of our design.

Figure 3.5 DFM Cell Structure

While implementing the DFM, some design decisions were made so that the DFM

would fit in a single Altera device. One in particular was the implementation of the PE,

i.e. LU1 — LU4. Ideally each intelligent cell should have its own set of LU1 — LU4, but

44

that required more logic than would fit in a single Altera device. So each LU was

assigned to a group of cells called a sub-block, instead of a single cell, as shown in Figure

3.6.

Each LU controls a sub-block of 256 cells, for e.g. LU1 would control a sub-

block of 256 CS1s, LU2 would control a sub-block of 256 CS2s and so on. The group of

five sub-blocks, formed by LU1 — LU5 forms a block. There will be eight blocks in this

design, thus giving a total space of 2K memory words. Notice that a new LU, LU5 is

introduced in the figure above. This LU is used to control the QB in a block and is not

part of the PE, which is made up of LU1 — LU4. LU5 takes no part in the manipulation of

instructions.

Figure 3.6 Internal Structure of the DFM.

BLOCK:

Figure 3.7 shows the internal structure of a block. The block, as mentioned before,

consists of the 5 sub-blocks. Instructions are loaded into each block using the LOAD line,

45

along with the LOAD ADDR lines and LOAD DATA lines. Once the instructions are

loaded, each block waits for the first initial result to arrive before an instruction is fired.

The source of the result coming on the Result Bus is either the processors in the processor

pool, or any of the LU1s from each block. The source may also be an external user input.

To put a result on the Result Bus, the sender should get permission from the Result Bus

Controller. This controller manages the information flow into LU5 of each block, which

in turn determines if the result packet should be queued or sent straight through to LU2,

LU3 or LU4.

Figure 3.7 Internal structure of the Block

46

Once LU5 gets a result off the Result Bus, each of them broadcasts this

information to the LU2, LU3 and LU4 units (to be collectively referred to in the future as

LU234) in their respective blocks, if LU234 are not busy. If the LU234 are busy, then the

incoming result is queued into the QB memory to be dispatched later when LU234 are

free. The information flow is synchronous, i.e. permission to put result on the Result Bus

is allowed only if LU5 in every block is not busy.

Upon reception of the result by LU234, each LU checks if any of the 256

instructions contained in its cell section requires the result. If an LU finds an instruction

that needs the result, it dispatches the result to LU1. The Operand Bus Controller controls

the dispatching of results by LU234 to LU1. On receiving an operand (result), LU1

dispatches the executable for execution if all the operands for the instruction are

available. LU1 uses the Instr_ Send _Req line to confirm if it is safe to send an instruction

for execution.

The last component in the block is the Block_Addr, which is used for house

keeping operations. The three most significant bits of the 11-bit address space determines

the block address, thus giving a total of 8 blocks in the 2K DFM structure.

LOGIC UNITS:

The logic units are the heart of the intelligent cell architecture (or, in this case, intelligent

sub-block architecture). The logic units fire instructions for execution when their

operands become available, keep tabs on those instructions that have already fired and the

ones that need to refire (like in loops). In addition, the LUs also determine if a result has

arrived for a particular instruction (matching operation). The LUs use the flags present in

each CS to perform their tasks properly.

47

The basic function of LU234 is to process anything that is sent by LU5 in the

format shown in Figure 3.8. LU1 processes operands and clauses sent by LU234, and is

responsible for the firing of instructions when all operands/clauses become available.

LU1 dispatches ready instructions (executable) to the IQ via the 'Instruction Bus," in the

format shown in Figure 3.9. LU5 looks out on the 'Result Bus' for results arriving from

the 'Result Bus Controller' (these are values sent out from the processors and LU1s). The

LU5 captures the 'result' and either dispatches it to LU234 or queues it based on the busy

state of LU234. The result is forwarded to LU234 if it is not busy and queued if it is.

Figure 3.10 Message Communication format between LU2/LU3/LU4 and LU1

FUNCTIONAL DESCRIPTION OF THE LUs.

LU1: Upon receiving an operand in the format shown in Figure 3.10, the LU1 takes

the following actions.

48

Goto to Cell (Originating Addr.)

If Operand Type == 01 then

OPD1 = Operand

D10 = True

Elseif Operand Type == 10 then

OPD2 = Operand

D20 = True

Else

CAN = Operand

Endif

If (LP == 1 && CAN && (D10 # D20)) then

Dispatch Operand on the operand bus

D10 = D20 = false

Elseif (LP == 3 && D10 && D20 && CAN) then

Dispatch Operand1 on the operand bus in format shown in

Figure 3.8

D10 = D20 = false

Elself (D10 && D20 && CAN) then

Dispatch instruction on the instruction bus in the format

shown in Figure 3.9

If not (D1U) then

D10 = false

Endif

If not (D2U) then

D20 = false

Endif

If LP == 0 then

CAN = false

Endif

Endif

LU2: When a LU2 picks up a message from the operand bus, the following actions are

performed on the CS2 it controls.

49

For i = 1 to 256

If CR[i] then

If CA[i] == Originating Address

CO[i] = True

Send CAN to LU1 in the format shown in Figure 3.10

Endif

Endif

Endfor

LU3: LU3's actions are similar to those of LU2, except that LU3 looks out for OPD1.

The following actions are performed on the CS3s that the LU3s control when they

pick up a message.

For i = 1 to 256

If D1R[i] then

If D1A[i] == Originating Address

Send OPRD1 to LU1 in the format shown in Figure 3.10

Endif

Endif

Endfor

LU4: LU4's actions are exactly like those of LU3, except that LU4 looks for OPD2

instead of OPD1.

For i = 1 to 256

If D2R[i] then

If D2A[i] == Originating Address

Send OPRD2 to LU1 in the format shown in Figure 3.10

Endif

Endif

Endfor

LU5: LU5 picks up results in the format shown in Figure 3.8. On the arrival of a

message, LU5 performs the following actions.

50

If LU234 busy

If queue not full

Enqueue result

Else

Hold result in temp register and send busy signal

Endif

Else

Dispatch message on Operand bus in format shown in Figure 3.8

If queue not empty

Dequeue result

Dispatch message on Operand bus as shown in Figure 3.8

Endif

Endif

This completes the functional description of the DFM. The next section covers the detail

design and implementation of the Instruction Queue (IQ).

3.3.3 	 Instruction Queue (IQ)

The instruction queue is composed of two major parts, the bank arbitrator and the

memory banks, as shown in the shaded portion of Figure 3.11.

MEMORY BANKS:

A layout of the memory bank within the IQ is shown in Figure 3.12. Each bank has two

pointers called the New Instruction Load Pointer (NILP) and Next Instruction Execute

Pointer (NIEP), for forming a circular queue. The NILP holds the address of the next

available location where the bank arbitrator can insert a new instruction coming from the

DFM. Each bank in the IQ also has a NIEP, which holds the address of the next

instruction that is ready to be executed. The processor associated with the bank uses this

address to fetch the next instruction to be executed.

51

Once an instruction has been accessed for execution by a processor or a new

instruction is loaded into the memory bank, both the NIEP and NILP pointers are

incremented using modulo 2m arithmetic.

Figure 3.11 Structure of Dataflow Computer Implemented in this Thesis

Each memory bank contains two parts, a group of memory cells (that hold

executables sent from the DFM) forming the circular queue, and a Memory Controller

(MC) that arbitrates the values going in and out of the circular queue. The structure of a

single cell in a bank is shown in Figure 3.13. The executable has already been described

earlier (Section 3.1.1.).

52

Figure 3.12 Layout of Memory Bank in IQ

When the BA informs the MC associated with a selected bank that a new

instruction is put on the bus, the MC reads the instruction from the bus in the format

shown in Figure 3.13 and puts it in the location pointed to by the NILP. The NILP is then

incremented by the MC of the active bank to the next location (NILP+1), if it is available.

The availability of the next location is determined by the value of the NIEP, which holds

the address of the next instruction that is to be sent for execution. If the NILP equals

NIEP — 1, the MC raises a flag which tells the BA that the buffer is full and not to send

any more instructions.

Figure 3.13 Structure of an IQ Memory Cell

The two pointers are used to manage the circular queue. When the values of the

two pointers are the same, then the queue is considered empty, and when NILP = NIEP —

1 the queue is considered full. The MC in each bank uses two signals to communicate

53

with its processor; the Instr_RD signal is used by a bank to indicate to it's processor

that a new instruction(s) is/are available for execution. In turn, when an instruction has

finished executing the processor notifies it's bank (MC) via the Instr_done signal, upon

which the corresponding MC increments NIEP, if NIEP NILP.

Each memory bank in the memory pool is implemented using a dual port memory,

allowing the BA to send instructions to it while the processor associated with that

memory can read from it. The BA, as described earlier, puts instructions into each bank

using a round robin scheme. Each bank has sixteen memory words that are used to

implement the circular queue, as shown in Figure 3.12. The number of memory words in

each bank is not an optimized number, but an arbitrary number chosen to build the

prototype. Messages are obtained and stored in the circular queue by the MC of each

bank in the format shown in

Figure 3.14. Each memory cell in the IQ is 29 bits long and contains an

executable. The algorithm followed by each MC is shown below.

Figure 3.14 Format of Instructions received by MC.

If NILP 	 NIEP - 1

Wait for INS to arrive

Set busy high

Store INS at location (NILP)

Set busy low

Increment NILP

Else

Set busy high

End if

If NILP 	 NIEP

Set instr avail high

Wait for instr done signal

Increment NIEP

54

End IF

BANK ARBITRATOR:

The BA's only job is to route the incoming instructions to the memory banks. For

simplicity, it uses a round robin scheme to fill the banks. When an instruction arrives, the

BA looks at a register called the Memory Pointer (MP). This MP tells the BA which bank

it is supposed to write the next incoming instruction into. The address in a bank where the

instruction should be written to is contained in the NILP. When the BA receives an

instruction in the format shown in Figure 3.14, it simply forwards that instruction to the

bank pointed to by the MP. The MC associated with the memory bank receiving the

instruction then writes the instruction to the address pointed to by its NILP.

The process of how the BA handles instructions it gets from the DFM is shown in

the algorithm below. When an instruction arrives, it is first stored in a local register, and

the bank pointed by MP is notified. Next it checks if the memory pointed to by the MP is

currently busy; if not busy, the Arbitrator puts the instruction on the bus and notifies the

bank about it. If the bank pointed by the MP is busy (either due to a pending write from a

previous insertion of an instruction or the bank is full), the MP is incremented and in the

next internal cycle the BA tries to put the instruction in another bank. This procedure is

explained in pseudo-code below:

MP = 0 	 ; Initialize MP

Wait for INS to arrive ; INS - instruction from DFM

Store INS 	 ; Store INS in local register

Bank Arbitrator sets itself busy ; so no new instr arrive

Enable MP 	 ; Enable memory pointed by MP

If (Bank(MP) not busy)

Put instruction on bus

Notify bank(MP)

55

Wait for bank(MP) to send ack

Increment MP

Bank Arbitrator sets itself not busy

Else

Increment MP

End if

3.3.4 	 Processor Pool

Each processor in the processor pool is associated with only one memory bank in the

memory pool, and vice versa. The processors in the pool are specially designed and are

more like execution units than general-purpose processors. When a processor is ready for

execution, it looks for the Instr_RD signal from its corresponding memory bank. When it

sees the signal go high, it reads the instruction from its memory bank in the format shown

in Figure 3.14, and executes it. An instruction is always executed with OPD1 on the left

side and OPD2 on the right, e.g. OPD1 — OPD2, OPD1 / OPD2, check if OPD1 > OPD2,

etc. The processor then sends a request to the Result_Bus_Controller in DFM, asking

permission to send the information back to the Data Flow Memory (DFM). Upon

receiving acknowledgement from the controller, the requesting processor sends the result

over to DFM in the format shown in Figure 3.15, and sends an Instr_done signal to its

corresponding bank, which in turn readies a new instruction for execution. There are

currently only two processors in the processor pool, but this is not a limitation, only two

were used to expedite the implementation. Since all the dataflow work is relegated to the

DFM, either processor in the processor pool is blindly executing instructions and sending

signals, independent of the other. The instructions that the processor can currently

execute are set to the bare minimum, just enough to make this data flow machine work.

The instructions and their corresponding opcode are:

56

ADD 	 0001 	 Addition

SUB 	 0010 —' Subtraction

MUL	 0011 —> Multiplication

DIV 	 0100 ---> Division

CEQ 	 1000 —> Compare if Equal

CNE 	 1001 —> Compare if Not Equal

CGT 	 1010 —> Compare if Greater

CLT 	 1011 —> Compare if Less

CGE 	 1100 ----> Compare if Greater or Equal

CLE 	 1101 ----> Compare if Less or Equal

17 	 7 6 	 0

ORIGINATING ADDRESS 	 I 	 RESULT

Figure 3.15 Result Dispatch format by a processor

The algorithm followed by each processor is shown below.

if instr rd goes high

read instr from instruction bus

execute instruction

ask permission from DFM to send result

wait for ack from DFM

send result along with originating address to DFM

send instr done signal to memory 2

end if

3.3.5 	 Programming on the Dataflow Computer

This section covers how the instructions presented in the previous section can be used to

write programs that will execute on this dataflow computer. The complete instruction set

is presented in the table below, along with their opcode.

57

Table 3.1 Full Instruction Set

ADD 0001 —> Addition CGT 1010 -' Compare if Greater than

SUB 0010 —> Subtraction CLT 1011 —' Compare if Less than

MUL 0011 —> Multiplication CGE 1100 —> Compare if Greater or Equal to

DIV 0100 —> Division CLE 1101 —› Compare if Less or Equal

CEQ 1000 —' Compare if Equal SP 0000 —> SPecial

CNE 1001 —' Compare if not Equal LK 0000 —› LocK

All the instructions presented in Table 3.1 are commonly used instructions, except

the SP and the LK instruction. This computer has six compare instructions, which is

unlike most machines that usually have four. The two compare instructions not usually

found in other computers are the CGE and the CLE, because these two instructions can

normally by made up by combining the other compare instructions, CLT & CEQ for

CGE, and CGT & CEQ for CLE. However, this is not suitable in this architecture

because, when a combination of instructions, such as CLT & CEQ, is used to build CLE;

instructions within the conditional have to fire either when CLT is true or CEQ is true,

i.e. each instruction within the conditional should be capable of receiving "two clauses"

and fire if either one is true. This ability to receive two clauses is not provided in this

architecture, which if implemented would make the DFM design more complex. To avoid

this problem, a conditional is provided for every possible scenario.

The instructions SP (SPecial) and LK (LocK) have already been presented before.

This section reiterates their purpose here. The SP instruction is not really an instruction,

and it is never sent to the processor pool for execution. Though its opcode presented in

Table 3.1 is "0000", it is irrelevant. The SP instruction is a special directive for the LU1,

instructing it to forward all values it receives to other cells in the DFM. What constitutes

58

an SP instruction is the value of the LP in an instruction; if the value of the LP is 1, the

LU1 realizes that this is a directive and treats it accordingly. When the LP is set to 1, LU1

sends the operands it receives from either LU3 or LU4 out onto the operand bus if the

CAN bit of the SP instruction is set to one. The SP instruction always has its D1R and

D2R bits set, but unlike other instructions where LU1 will wait for both operands to

arrive before dispatching them, the LU1 dispatches the arriving operands immediately.

The LK instruction is also a directive that has its LP set to 3 (opcode irrelevant).

While setting the LP to 1 makes the SP instruction transmit any operand it receives (from

either LU3 or LU4) onto the Operand Bus, setting the LP to 3 causes LU1 to transmit

OPD1 (the value it receives from LU3), but only after the LK instruction has received

both operands OPD1 and OPD2, and the CAN bit is set to one. This instruction is

particularly useful in 'Loop' constructs where it is necessary to prevent instructions from

different iterations of a loop from executing simultaneously. Concurrently executing

multiple iterations of a loop is not always bad and is an important feature in parallel

computing, but it is disastrous if there are dependencies between consecutive iterations.

An LP value of '1' (SP) and '3' (LK) act as directives for LU1, and these

instructions are never sent for execution. But a LP value of '2' directive is given to an

instruction that is sent for execution. An LP value of '2' is only given to a conditional

that follows the SP instruction. The conditional instruction following a SP is the one that

checks the loop control variable. An LP value of '2' for this conditional ensures that its

clause bit is not reset after it executes, which in turn guarantees that this instruction will

re-fire to check the loop control variable in following iterations.

59

Table 3.3 shows a segment of a program, which includes conditional

statements, reentrant code and reusable variables. The code is presented in two formats

in the table, a high level pseudo-code and a pseudo-assembly. The equivalent program in

the dataflow language is presented in Table 3.4. Since a high level dataflow language and

compiler was not developed for the dataflow machine, the equivalent code presented in

Table 3.4 is not how one would write a program for this computer to be compiled, but is

actually the code resident in the DFM. The alternately shaded areas represent the contents

of each cell section, which are labeled at the top of the table. For comparison and better

understanding, the flow graphs of the two codes (sequential and dataflow) are presented

in Figure 3.16 and Figure 3.18.

Before presenting the flow diagram of the dataflow computer, it is important to

learn to interpret the nodes of the flow graph of the dataflow code. Figure 3.16 shows the

primitives that are used to represent each node in the dataflow graph. There are three

basic primitives used to implement a flow graph, which are shown in Figure 3.16 (a), (b)

and (c). Figure (d) is a variation of (a). Arrows going in and out of the node are divided

into four categories based on arc type, arrowhead, label type and tail. Table 3.2 shows

the classification of arrows associated with the dataflow graph nodes.

Figure 3.16 Primitives to implement a Program Flow Graph

60

As mentioned earlier, there are three kinds of nodes that can be used to

implement a dataflow graph. The instr node is used to implement every kind of

instruction this dataflow computer offers, except for the SP and the LK instructions,

which have their own nodes presented in figures (b) and (c) above respectively. The two

solid headed arrows coming into the top of each node represent the two operands required

by the node. The operand arrow on the left is OPD1 and the operand arrow on the right is

OPD2. The hollow headed arrow on the side of the nodes is the clause needed by the

node and the solid headed arrow at the bottom of each node is the result pushed out by

the node.

Based on the explanation given and Table 3.2, Figure 3.16 (a) can be described as

a node with the following properties.

• The operand on the left is an immediate value, with value 'x' that has to be reused

by the node.

• The operand on the right is obtained from the instruction at location 'A' and it has

not arrived yet.

• The clause is also an immediate value (i.e. this instruction does not require a

clause) and its value is 'y' (which of course is '1', else this instruction will never

fire.)

• This node will perform the operation `instr' on the operands coming into the node.

• This node is located in memory at 'B' (evident from the label on the result arc),

which is sent out with the result. The result from this node has not yet been sent

out.

Table 3.2 Classification of Arrows associated with Dataflow Graph Nodes

61

The style of representing a flow graph for interpreting a dataflow program is new.

Though the nodes bear some similarity in form to the ones presented in Section 2.1, their

interpretation is completely different. One may use only solid lines for the arcs to show

less detail, but all other components are absolutely important to show reusability of an

arc, the two different arrowheads to show the difference between values and clauses and

the use of the single tail to indicate a LP value of '2'. Using dashed and solid lines shows

what state a program is in when it is loaded into memory, giving a clue of the operands

that are available to this program and those that it is waiting for. Labeling the arcs with

memory addresses does have the drawback of not being able to draw the flow graph until

the program has already been written. Eliminating all memory address labels (but leaving

value labels in) overcomes this problem but reduces the amount of information the graph

displays. Notice how some of the output arcs of the conditionals gets converted into a

clause arcs for some nodes; this is allowed because the result from the execution of a

conditional is either a '0' or a '1', thus it can be a clause arc for a node.

62

The high-level language code presented in Table 3.3 has two loops (a FOR loop

and a WHILE loop) and three conditionals (one explicit, two implicit). The explicit

conditional is the if statement, "If x 0 0 then"; the two implicit conditionals are part

of the two loop constructs. The conditional in the FOR loop checks if the value of T

(loop control variable) exceeds 'x', "If i > x then." The conditional in the WHILE

loop checks to see if the loop control variable 'x' is greater than '1', "If x > 1 then."

The two loops and the three conditionals can be easily observed in Figure 3.17.

The two loops execute concurrently and the values being used by either loop are not

interdependent. In a Von Neumann machine, it would be quiet difficult to concurrently

execute the two loops because the variable 'x' is needed by both the loops; while one

(FOR) uses variable 'x', the other (WHILE) modifies the variable 'x'. This of course

cannot be done concurrently, the FOR loop must finish executing before the WHILE loop

starts as shown in Figure 3.18. However, in the dataflow machine, each loop is sent its

own copy of 'x', thus allowing the loops to execute concurrently.

Table 3.3 Sample Code

63

179

Figure 3.17 Flow graph of the code presented in Table 3.4

65

Figure 3.18 Flow graph of the sequential code in Table 3.3

66

67

The FOR loop is bounded by an LK instruction, because, there are

dependencies between consecutive iterations of the loop. Since these dependencies do not

exist between the consecutive iterations of the WHILE loop, no LK instruction is needed

to bind the loop.

Writing a program for the dataflow machine is tricky and tedious, because the

programmer has to be aware of the data dependencies in the program and address the

issue. However, this issue can be overcome using a smart compiler that will

automatically take care of the problem.

3.3.6 Altera Implementation

The MAX-PLUS II allows design entry in three forms, a tdf (text definition file),

gdf (graphical definition file) and wdf (waveform definition file). Only the first two

methods were used in implementing the dataflow computer.

The whole project was developed very modularly, so that each module can be

tested and simulated individually. In addition, modularity reduces the complexity and

makes debugging easier. The whole design can be categorized into two parts, main

components and sub-components. The main components are made up of components that

have been already discussed such as DFM, Cell Sections, Processor Pool, Processors,

Instruction Queue, Bank, etc. The sub-components are additional modules built to make

the main components. Each of these is briefly discussed and their relevance presented.

FULL DESIGN:

Figure 3.19 presents the whole design and is composed of a block in DFM, the IQ and the

Processor Pool. Due to lack of time, a DFM with only one block was built, though it is

68

set up to have up to eight blocks (0 —7). This does not degrade the performance of the

computer; it is simply a handicap for the program size that can be accommodated by the

DFM. In the state presented, the DFM can accommodate a program whose size cannot

exceed 254 instruction words. Address 0 and 255 are omitted to eliminate a timing

problem that is encountered if used. Instead, these addresses are used as seeds for

initiating execution. In this design, address 255 is used to initiate execution by sending a

positive clause whose OA is 255 on the Result Bus. This will be seen in programs that

were simulated on this machine. In Figure 3.19, block csa and block csb makes up the

DFM. Attached to the DFM are the IQ and Processor Pool, as it was originally presented

in Section 3.1. The IQ is made of dfm2 and proc_pool makes up the processor pool. It

may be noticed here that the DFM block is broken up into two parts block csa and

block csb. This had to be done because the entire block could not be fit in a single Altera

device.

HEIRARCHICAL TREE:

Appendix A.1 presents the hierarchical tree of the whole design, showing all the main

components and some subcomponent. Each node of the tree is presented by the Altera

Hierarchical Display in two ways, component_type : item_number or component_type :

component name. The component_type is the type of primitive or composite that is being

used, the item number is the index of a primitive added to a GDF (Graphic Design File).

The component_name is the name of the variable, a primitive or composite is declared

by, in a TDF. For example when using a composite called counter in GDF file, it will be

assigned a index_number by MAX-PLUS II, and when using the counter in a TDF file, it

is assigned a name by the programmer. So the composite counter used in a GDF may

69

appear in the graph as 'counter : 45', where '45' is the index_number assigned to the

composite by MAX-PLUS II, and the composite counter used in a TDF may appear in

the graph as 'counter : addr_counter', where 'addr_counter' is the name of the composite

assigned by the programmer. Each tree grows from left to right, nodes on a vertical

branch are all at the same level and nodes on a horizontal branch represent depth, with

nodes to the left being higher in hierarchy then the nodes on the right.

The hierarchy and a brief explanation of each component (main and sub) follow.

MAIN COMPONENTS:

BLOCKB3_B: The hierarchy of blockb3_b is presented in Appendix A.2 and its layout

is presented in Figure 3.20. Blockb3_b is made of five components, two of which are

main components, the block_cs5h and result_bus_controller, and three sub-components,

the initialize and two bus_merge.

block cs5h: The block cs5h is the result queue explained earlier, which queues

incoming results when LU234 are busy to accept new results. Both the memory that

holds the values and the logic which controls the memory is built into block_cs5h. The

hierarchy of block_cs5h and its implementation is presented in Appendix A.3.

result bus controller: The result bus controller controls the arbitration of the results _ _

that are being fed into blockb3_b, by the processors and LU1. The controller is

preferential, i.e. there is a priority assigned to everybody sending messages, with LU1

having the highest priority and processor 2 the lowest. . The hierarchy of

result_bus_controller and its implementation is presented in Appendix A.4.

70

initialize: Initialize is a sub-component that is not found in any other modules,

hence presented here. This module is used to send the seed clause to start firing

instructions. The module sends a seed with a clause value one and OA of 255 to the

result_bus_controller when it receives a trigger, which in turn sends it to block_cs5h.

The implementation of initialize is presented in Appendix A.5.

Since most of the sub-components that are under the main components are

common, i.e. the same sub-component appears under multiple main components, they are

presented together after the main components.

BLOCKB3 A: Blockb3_a hierarchy is in presented Appendix A.6 and its layout is

presented in Figure 3.21. Blockb3_a is made of six components, five of which are main

components, the block cslb, block cs2b, block cs3, block cs4 and 1u234_bus_controller

and one sub-component, the bus merge.

block cs1b: The block cs1b is the combination of cell section 1 (CS1) and LU1. The

hierarchy of block_cs lb and its implementation is presented in Appendix A.7.

block cs2b: The block cs2b is the combination of CS2 and LU2. The hierarchy of

block cs2b and its implementation is presented in Appendix A.8.

block cs3: The block cs3 is the combination of CS3 and LU3. The hierarchy of

block cs3 and its implementation is presented in Appendix A.9.

block cs4: The block cs4 is the combination of CS4 and LU4. The hierarchy of

block_cs4 and its implementation is presented in Appendix A.10.

71

1u234 bus controller: The 1u234 bus controller controls the arbitration of

messages sent by LU2, LU3 and LU4 to LU1. Like the result_bus_controller, the

1u234_ bus_ controller is also preferential, i.e. there is an assigned priority to the LUs

sending the message, with LU2 having the highest priority and LU3 the lowest. The

hierarchy of result_bus_controller and its implementation is presented in Appendix

A.11.

DFM2: The DFM2 is really the Instruction Queue (IQ) and is made up of three main

components; the dfm2_controller also called the Bank Arbitrator and, two buffs also

called memory banks. The layout of DFM2 is shown in Figure 3.22 and its hierarchy is

presented in Appendix A.12.

dfm2_controller: The dfm2_controller distributes the instructions it receives from the

DFM to the two memory banks using a round robin scheme. The hierarchy of

dfm2_controller and its implementation is presented in Appendix A.13.

buff: The buff is the sixteen word deep circular queue that stores instructions sent by

DFM and arbitrated by the dfm2_controller. Besides the memory implemented as a

queue this module also has some logic used to control instructions going into and

coming out of the queue. The hierarchy of buff and its implementation is presented in

Appendix A.14

Figure 3.19 Altera produced Graphic Design File of the Full Dataflow Computer (redrawn)

Figure 3.20 Altera produced Graphic Design File of Blockb3_b (redrawn)

74

PROC POOL: The proc_pool is the processor pool that executes the instructions sent

by the DFM. The proc_pool contains two main components, two processors. The

hierarchy of the module is shown in Appendix A.15 and its layout is shown in Figure

3.23.

proc: The processors in the proc_pool are simple execution units capable of arithmetic

operations; ADD, SUB, and MUL and logical operations; CEQ, CNE, CGE, CLE,

CGT and CLT. Division is not implemented currently because there was a problem

with the parameterized divide function (1pm_divide) provided by Altera. The adder is

6-bits wide, while the subtractor uses all 7-bits of the two operands. The multiplier

uses a 4-bit multiplicand and a 3-bit multiplier; the 4-bits used come from the first

operand, while the 3-bits come from the second operand. Each of the logic operations

is performed on all 7-bits of both operands. All operations are of the form "OPD1

operation OPD2", and the results are padded to have a total of 7-bits. The proc is also

responsible for sending the computed result back to DFM. The hierarchy of proc and

its implementation is presented in Appendix A.16.

Figure 3.21 Altera produced Graphic Design File of Blockb3_a (redrawn)

Figure 3.22 Altera produced Graphic Design File of dfm2 (redrawn)

Figure 3.23 Altera produced Graphic Design File of Proc_Pool (redrawn)

78

SUB-COMPONENTS:

Most of the sub-components presented are parameterized functions. This is a feature

allowed by Altera's design language. A parameterized function is a function that accepts

parameters; it is method to generalize functions. For example, for some design two

counters are needed, one that has maximum count of seven, another that counts till thirty-

two and then resets. One-way to accomplish this is to write two counter modules, one that

counts till seven and another which counts till thirty-two, and then include the two in the

design. A more convenient and powerful way is to write one general-purpose counter that

accepts a 'count' parameter. Now to implement the two counters, the general-purpose

counter is declared twice in the design file, one is declared with a count parameter set to

seven and the other is declared with a count parameter set to thirty-two [22]. Each sub-

component used is presented below in alphabetical order.

1 count: 1count is a 1-bit counter with a clear line, used particularly for signaling. The

implementation is provided in Appendix A.17.

21mux: 21mux is an Altera provided 2-to-1 MUX.

4count: 4count is an Altera provided 4-bit counter.

bus_merge: Bus_merge is a sub-component that allows the merging of multiple lines

together to form a bus, or merge two smaller buses to form a larger bus. The

implementation is presented in Appendix A.18.

counter: Counter is a parameterized counter with enable and synchronous clear lines.

The parameter provided is the bit-width `sz' of the counter. The implementation is

provided in Appendix A.19.

79

delaytimer: Delaytimer is parameterized timer with enable and synchronous clear

lines, which takes in a 'delay' parameter. When the delaytimer is active, it

continuously sends out a pulses spaced 'delay' cycles apart. The implementation is

presented in Appendix A.20.

1pm_add sub: 1pm_add_sub is a parameterized Adder/Subtractor provided by Altera.

1pm_compare: 1pm_compare is a parameterized comparator provided by Altera.

1pm_counter: 1pm_counter is a parameterized counter provided by Altera.

1pm_mult: 1pm_mult is a parameterized multiplier provided by Altera.

1pm_ram_dp: 1pm_ram_dp is a parameterized function provided by Altera to

implement dual-port memory. All the 1pm_functions provided by Altera are extremely

powerful functions with a lot of flexibility.

myclock2: Myclock2 is a parameterized clock, which takes two parameters 	 and

`HI' and outputs a clock signal that has a high time of 'HI' cycles and low time of

TO' cycles. The implementation is presented in Appendix A.21.

mydffe: mydffe is edge triggered flipflop with enable and clear lines. The clear is an

active high clear, instead of the active low clear DFFE provided by Altera. The

implementation is presented in Appendix A.22.

mylatch: Mylatch is level triggered flipflop, which sets itself to '0' when power is

applied to it. Mylatch was implemented instead of using the level triggered latch

provided by Altera because when powered up, the Altera provided latch would have

80

an undefined value in it, until a value is latched into it. The implementation is

presented in Appendix A.23.

pulsegen: pulsegen is a parameterized function which takes two parameters, `PW' and

`DEL'. The pulsegen when activated by a trigger-signal, sends out a pulse `PW' cycles

wide, 'DEL' cycles after the trigger-signal came in. The implementation is presented

in Appendix A.24.

queue: The queue is a circular queue used to implement the memory banks in the IQ

and the QB. A module using the queue communicates with it using two signals in

particular, they are the empty and the full signal, which indicate the status of the

queue. The hierarchy and the text implementation is presented in Appendix A.25.

stoptimer: The stoptimer is a parameterized function which takes one parameter

`DEL'. When activated by a trigger-signal, the stoptimer sends out a high signal after

a delay of 'DEL' cycles. The implementation is presented in Appendix A.26.

stoptimer2: This stoptimer is a modified version of the above stoptimer. They both

perform the same task; only the implementation is a little different, which is presented

in Appendix A.27.

toggle: Like the 1 count presented earlier, the toggle is also a 1-bit counter, except the

implementation of toggle is different and is presented in Appendix A.28.

trans detector: The trans detector is a parameterized function which takes two

parameters TV' and 'DEL'. This module is used to detect transitions on a line. When

a line on which transitions have to be detected is connected to the trans_ detector, FV

determines whether the transition to be detected is high to low, or low to high. The

81

`DEL' value takes on two forms; if it is greater than zero, then the detector stops

detecting transitions on the line (after one is detected) until 'DEL' cycles have

expired. If 'DEL' is zero, then the detector stops detecting transitions on the line (after

one is detected) until an external signal (not on the line on which transitions are being

detected) reactivates the detector. The implementation is presented in appendix A.29.

3.4 Remarks

The design of the dataflow computer presented is simple, because the goal of this project

was not to create a large, powerful computer, but to examine the feasibility of

implementing a dataflow computer using the proposed `dataflow memory' architecture. If

categorized as per the tree presented in Figure 2.7, this design would be considered a

static data flow machine using a packet based communication scheme. Higher primitives

such as code-copying and tagged tokens are not implemented in this design, hence

procedure invocation and indirect memory addressing is not currently possible on this

machine. However, it is not impossible to add these features into the current architecture

by making some modifications in the design to accommodate them.

There is one feature of this architecture that eliminates a problem faced by past

dataflow designs, and that is the problem of Data Fan Out. Data Fan Out of an

instruction 'A' is the number of instructions that need result from the execution of

instruction 'A.' In past designs, the data fan out of an instruction was limited, usually to

two. That means that after execution an instruction can send out the result to at most two

or three destinations. So programs to be run on such machines had to be written adhering

to this restriction. Of course, this was a major drawback and different schemes were

82

developed to overcome this restriction. Two ways that were devised to nullify this

restriction were through hardware, as implemented in the Epsilon dataflow processor

[11], which used a repeat hardware unit that circulated the result value using a tagging

scheme. The second method is using specialized instructions, which hold addresses of

additional instructions (beyond the allowed limit) that need the result. The address of the

special instruction is on the list addresses that executing instruction needs to send the

result to. When the special instruction receives the result, it forwards this result to its list

of destination addresses. This method can be chained so that the result can be sent to a

large number of destinations.

However, no such means need to be employed in this architecture, since no

instruction maintains a list of destination addresses to send the result to; instead each

instruction has the addresses of the sources in its two operands. When a result packet is

sent out, all instructions pick up the packet and compare the source addresses it has with

the originating address in the result packet. All the instructions that make a positive

match absorb the result. This scheme completely eliminates the data fan out problem.

The beauty of the design is that increasing the number of processors does not

increase complexity drastically, because there is no need for synchronization between the

processors. Since the order of execution is not important, each processor simply executes

instructions as fast it can and sends the result back to the DFM. Even the cost of

implementing is linear; adding N processors costs N times the cost of adding one

processor.

Removing the processor from the dataflow tasks offers the advantage of simpler

processors, and the ability to easily replace simpler execution units with powerful ones

83

having a compatible interface. Besides, the dataflow in DFM is performed using only

the flag bits, thus offering opcode independence. Hence, a compatible (similar flag bits)

language can be used to write the same program or new opcodes can be added to the

existing language without affecting the dataflow; of course, a compatible processor needs

to be used to execute the different or new instructions.

This architecture offers a number of advantages over previous implementations of

dataflow computers. The performance of this machine is examined in the next chapter,

which presents simulations that were run on this machine, along with the observed

results.

4 TIMINGS, SIMULATIONS, AND PERFORMANCE

4.1 Timings

This section presents the timings of all the main components in the design in terms of

clock cycles, irrespective of the clock speed. The main components are the bus

controllers, the cell sections CS1 — CS4, the result queue also called CS5, the IQ, and the

processor pool.

result bus_ 	 To reiterate the result bus_ 	 controls the arbitration_ _ 	 _ _

of results coming into the DFM. It is a priority-based controller, with the highest

priority given to LW; Processorl and Processor2 bring up the rear respectively. Since

the controller is priority based, the timing for each unit asking permission from the

controller to send result is different. Though the result_bus_controller is priority

based, the priority is only applicable when multiple units are asking permission to

send data simultaneously; the priority has no effect if the controller is interrupted by a

unit with a higher priority while it is servicing a unit of lower priority. It takes 6-cycles

to service a request and on the seventh cycle, the controller looks for new requests.

Based on this and the priority, the best and worst timing for different units requesting

permission to send results are presented in Table 4.1.

1u234 bus_ controller:	 The 1u234 bus_ 	 is exactly 	 like the__ _

result_bus_controller. It is a priority-based controller with the highest priority given to

LU2; LU3 and LU4 bring up the rear respectively. The controller takes 7-cycles to

service a request for sending a matched value from any CS. On the eighth cycle, the

84

85

controller accepts new requests. The best and worst timing for different units

requesting permission to send matched values are presented in Table 4.2

Table 4.1 Timing of the result_bus_controller

Get Permission Best Case (cycles) Worst Case (cycles)

LU1 2 6 + tp + tLU5

Processorl 2 6 + tLU1 + tLU5

Processor2 2 6 + tp1 + tLU1 + tLU5

tp -k time taken by the controller to process a request made by a processor (max 6)

4, 115 —> time taken by LU5 process a result sent to (5 - 11 cycles)

tun —> time taken by the controller to process a request made by L U1 (max 6)

tp1 -f same as tp

Table 4.2 Timing of the 1u234_bus_controller

Get Permission Best Case (cycles) Worst Case (cycles)

CS2 2 8 + tLu + tLU1

CS3 2 8 + tLU2 + tLU1

CS4 2 8 + tLU2 + tLU3 ÷ tLU1tLU

 --> time taken by the controller to process a request made by LU1 or L U2 (max 8)

tun —> time taken by LU1 to process a token sent by cell sections (8 - 28 cycles)

tLU2 -b same as tLU

tLU3 —> same as tw

CS2 - CS4: The three cell sections as explained earlier, simultaneously checks if there

is a match between the OA of the incoming result and any of the operand/clause

address fields of the 255 instructions that each of the cell sections are managing. A CS

86

accepts no new results, when it, or another CS is busy making matches, i.e. all cell

sections must finish making matches, before a new result is accepted. Table 4.3

presents the best and the worst timing for a CS to make a single compare, and the time

it takes if a match is made.

Table 4.3 Timing of CS2 — CS4

Matching (with one cell) Best Case (cycles) Worst Case (cycles)

No Match (CS2, CS3, CS4) 5 -

Match (CS2) 14 20 + tLU1

Match (CS3) 14 20 + tLU2+ tLU1

Match (CS4) 14 20 + tun+ tLU2+ tLU1

tLU1 —› time taken by LU1 to process a token sent by cell sections (8 — 28 cycles)

tLU2 -f time taken processing a LU2 token sent to LU1 (max20)

tLU3 —> time taken processing a LU3 token sent to LU1 (max20)

CS1: CS1 takes the values sent to it by the other cell sections and either deposits it in

the appropriate location, or deposits and dispatches either an executable to the IQ or a

message to the result_bus_controller. The timing of these activities is presented in

Table 4.4.

CS5: If LU234 are not busy, the CS5 takes results sent by the result_bus_controller

and either sends it directly to LU234, else queues the result. If there are queued results

in the buffer, then the new incoming results are queued even if LU234 are not busy,

dispatching the queued results first. Queuing and dequeuing operations are

independent of each other and are carried out in parallel. Hence dequeuing does not

87

affect the amount of time it takes to queue incoming results. The timing of these

tasks performed by CS5 is presented in Table 4.5.

Table 4.4 Timing of CS1

Token Processing Best Case (cycles) Worst Case (cycles)

Depositing a token 8 -

Sending an Executable 8 16 + t10

Sending a Message 8 10 + tRBUS

tIQ -k time taken by IQ to process (queue) a previously sent executable (max 12)

tRBUS ---> time taken to get permission from result_bus_controller (refer to Table 4.1)

Table 4.5 Timing of CS5

Result Processing Best Case (cycles) Worst Case (cycles)

Dispatching results to

LU234 (LU234 not busy)

3 -

Queuing results 6 -

Dequeuing results 5 11 + toBus

tRBUS -› time taken to get permission from lu234_bus_controller (refer to Table 4.2)

IQ: The IQ is responsible for queuing executables streaming from the DFM to be

executed by the processor pool. Only two timings are of concern in the IQ, the time

taken to store an executable coming in and the time taken to remove an executable to

be sent to the processor pool. Table 4.6 presents the best and the worst cases for the

two timings.

88

Processor Pool: The timing of concern in the processor pool is the time it takes to

execute an executable and the time it takes to send the result back to DFM. Table 4.7

presents the worst and best cases of these times.

Table 4.6 Timing of IQ

Instruction Operation Best Case (cycles) Worst Case (cycles)

Queuing Instruction 4 12

Dequeuing 4 12

Table 4.7 Timing of Processor Pool

Processor Operation Best Case (cycles) Worst Case (cycles)

Execution 8 -

Sending the Result 1 1 + tRBUS

tRBUS ---> time taken to get permission from result_bus_controller (refer to Table 4.1)

Now that the timings of the different main components have been presented, it

will be easier to understand the execution times of the three programs that were run on

this dataflow machine.

4.2 Simulations

Three programs were run on this machine. They were designed, partially to test the

performance of the machine, but more to check if the computer handled the kind of

constructs that are usually found in a program, such as reentrant code, conditionals, and

arithmetic operations. Every program was simulated at a speed of 100Mhz, i.e. all the

89

units DFM, IQ and Processor Pool were clocked at a frequency of 100Mhz. This was

the fastest speed that the simulation could run at, without losing stability of the design.

4.2.1 	 Program 1

The first program run on this machine is a slight variation of the example presented in

Section 3.3.5, and is presented in Table 4.8; the equivalent dataflow program is presented

in Table 4.9. The shaded portions in Table 4.9 represent the cell sections; from the left

they are CS4, CS3, CS2 and CS1.

Table 4.8 First Program Run on the Dataflow Machine in High Level Language

Program 1 computes two functions, Fl and F2, it contains two loops enclosed

within a conditional if statement. The FOR loop is built with inter-iteration dependencies,

on the other hand the WHILE loop is setup to have no inter-iteration dependencies. Since

the dataflow machine is not setup to accept any direct input from the user, the program is

setup to be self-contained, i.e. no values are needed from outside the program. In the

90

dataflow version of the program, the instruction at location 1 needs a clause from 7FF,

which is the address 2047 (binary, 111-block 11111111-memory). As mentioned in

section 3.3.6, this is the seed clause sent by the sub-component initialize when a trigger is

sent to it. The fact that the seed comes from 7FF, has nothing to do with the decision to

load the program in locations 701H — 70FH. These addresses simply signifies that the

program was loaded in block 7, from addresses 01H — 0FH.

Table 4.9 First Program Run on the Dataflow Machine in Dataflow Language

91

The simulation results for this program are presented in Section 4.3.1 along

with the simulation run shown in Appendix B.2.

4.2.2 Program 2

The second program run on this machine is shown in Table 4.10, and the equivalent

dataflow program is presented in Table 4.11. This program was setup such that there was

higher level of concurrency. It consists of three arrays, A, B and X, each of them having

12 elements. In the pseudo-code presented in Table 4.10, array A = array X * 7 and array

B = array A + 10. Since there are no dependencies between any iterations of the first

FOR loop, the 12 elements in array A can be updated simultaneously, giving an effective

concurrency of 12. But there are dependencies between the first and the second FOR

loop, so the second FOR loop cannot execute until the first has finished executing. When

the first FOR loop finishes its execution, all the 12 iterations of the second FOR loop can

also execute concurrently, since there are no inter-iteration dependencies.

The amount of code for the equivalent dataflow program looks bloated because as

mentioned before in Section 1.2.2, in a dataflow computer both the instruction and the

data it works on reside in the same memory location. While in a Von Neumann

architecture, the instruction and the data it operates on reside in separate memory

locations. So in fact the two styles of programs use about the same amount of memory.

Secondly, this architecture does not have indexed addressing mode, hence the entire loop

is opened up and each element in the arrays is worked on independently. Though no

indexed addressing seems like a problem here, it actually helps in achieving maximum

concurrency without adding additional features that would be needed if indexed

addressing was part of the design.

92

The first set of LK instructions function as a placeholder for the array X, the

values of which are sent to array A (the set of MUL instructions) when the seed is

introduced. The MUL instructions after execution pass the results to array B (the set of

ADD instructions). The ADD instructions in turn pass the results of their execution to the

set of LK instructions, which function as placeholders to store the final results.

The simulation results for this program are presented in Section 4.3.2. No

simulation run is presented for this program run because the results are very similar to

those obtained from the first program run. These similarities in spite of a higher level of

concurrency are also discussed in Section 4.3.2.

Table 4.10 Second Program Run on the Dataflow Machine in High Level Language

Table 4.11 Second Program Run on the Dataflow Machine in Dataflow Language

93

94

4.2.3 	 Program 3

The last program specifically catered to the way programs executed on this machine, and

was designed so that maximum concurrency would be achieved on the dataflow

prototype presented. The third program is presented in Table 4.12, and the equivalent

dataflow code is presented in Table 4.13.

Table 4.12 Third Program Run on the Dataflow Machine

Table 4.13 Third Program Run on the Dataflow Machine in Dataflow Language

95

96

As explained earlier in Section 3.3.2, when a result comes into the DFM, each

LU (2-4) checks the OA of the result against the 256 cells that it is responsible for. If a

match is made, the result is sent over to LU1, and if all the required operands/clause is

available, the instruction is fired (sent for execution). As the number of matches made by

each LU (during its iteration of checking 256 cells) increases, more results are sent to

LU1, which in turn causes more instructions to fire. This program takes advantage of this

feature to increase concurrency.

There are two arrays X and A. X[1] is set to 2 * 2, while all the other elements of

the array X are computed to, X[i] * X[1]. Array A is computed to A[i] * X[2]. There are

two dependencies in this program, first, X[1] has to be computed before any of the other

X[i] can be evaluated. Secondly, X[2] has to be calculated before any A[i] can be

calculated. How this is an advantage to increase concurrency may not be obvious, until

the dataflow code is examined.

Instructions at locations 701H — 70EH are occupied by array X, and instructions

at locations 70FH — 71BH are occupied by array A. Instruction at 701H has all its

operands and waits for the seed clause. All the other members of array X require the

result of this instruction. When this result arrives, the instructions 702H — 70EH fire

during the first iteration that the LUs do the matching. The first instruction to fire in array

X is the instruction at location 702H, the result of which is needed by all the elements of

array A. When the result from the execution of instruction at 702H arrives, the

instructions at 70FH — 71BH fire during the second iteration the LUs do the matching.

Thus only in two iterations of the LUs, the entire program is executed.

97

This program maybe biased to show the best performance of the machine, but

the goal of the program was to show the best possible result that can be obtained from

this machine. This show that by reconfiguring the hardware to remove the time wasted

doing irrelevant tasks, it is possible to extract a high level of performance consistently,

provided there is sufficient concurrency. The simulation results for this program are

discussed in Section 4.3.3 and the simulation run is presented in Appendix B.3.

4.3 Simulation Results

4.3.1 	 Program 1

As seen in the simulation graph of program 1 in Appendix B.2, the whole program took

about 485μsec. This includes the time to load the program, which appears in the first two

pages of the simulation. The second page also shows the signaling of the 'Init' signal that

sends the seed clause that starts firing instructions. Subsequent pages show a lot of

activity happening in the DFM memory cells 1 — 15. Activity is also seen in the IQ

memory cells and the result lines coming out of the two processors. Note that beyond the

second page, the horizontal scale of the graph is shrunk to show the activities occurring in

the dataflow machine. If they were shown at the same scale as the first two pages,

activities occurring wouldn't be as visible, since the events occur too far apart. This is the

reason the clock signal is seen as a black band.

Unrolling all the loops in the program, gives a total of 37 instructions. Excluding

the time taken to load the instruction, which is about 1μsec, equates to about to about

484μsec of execution time. This gives an average execution of 12μsec per instruction.

98

The speed of the clock that the machine is being executed at is 100 Mhz, giving a

clock-cycle of ins. Hence the number of cycles needed to execute one instruction is

1200!!!

There is a plausible explanation for this despicable performance, and it lies within

the cell sections doing the matching, CS2, CS3 and CS4. As mentioned in Section 4.1,

the time taken by a cell section to perform a match is 5 cycles. Assuming that no match is

made with an incoming result, each CS would take 5 x 255 = 1275 cycles, which equates

to 12.75 μsec of wasted time. It is wasted time specially if the block (hence the cell

sections) is not full, as is the case with program 1. Only 15 of the 254 locations available

in the block are being used, thus each LU is wasting timing searching for a match in the

other 240 locations, where there is no match to be made.

The second problem with program 1 is that its level of concurrency is low. In case

of a few matches, say 10, the CS would take 5 x 245 + 20 x 10 = 1425 cycles, which

equates to a total matching time of 14.25 μsec and leads to average execution time of

1.425 μsec + T μsec per instruction, which is about 142 + t cycles. The T μsec (r cycles)

is the time required to do other tasks before an instruction finishes execution, such as

spending time in the IQ, Processor Pool and back in the DFM, however this time is very

small (< 80 cycles until it hits CS2, CS3 or CS4 again) compared to the matching time.

The most amount of concurrency observed in program 1 is three.

Ideally, more the matches are made the better overall result will be obtained. For

example, a block that is full and all the instructions in the block need the same result

would take 20 x 254 = 5080 cycles, equating to a total matching time of 50.8 μsec and

99

leading to an average execution time of 0.2μ sec + T μsec per instruction, which is

about 20 + z cycles.

4.3.2 Program 2

The total execution time for Program 2 was about 314μsec, which excludes the time

needed to load the program. There were a total of forty-eight instructions in this program,

which equates to an execution time of about 6μsec per instructions or 600 cycles. This is

an improvement over the execution time of Program 1, but yet quite poor. The

performance problem can again be attributed to the time wasted by the LUs checking

unoccupied cells, and those times when they make no matches.

Though there is plenty of concurrency, they do not exploit the architecture of this

dataflow machine. The concurrency of this program can be separated into four groups,

the LK group of instructions, the MUL group of instructions, the ADD group of

instructions, and the last LK group instructions. Each group is dependent on the

execution of the previous group, but no dependencies exist within a group. So after the

first groups of twelve LK instructions execute concurrently, the MUL group of twelve

instructions (that depend on results from the first LK group) can execute concurrently.

This is followed by the concurrent execution of the ADD group of twelve instructions

that depends on results from the MUL group. Finally the LK group of twelve instructions

executes upon receiving the results from ADD group. Thus at any given time there are

twelve possible instructions that can concurrently execute.

The problem arises because there is a one-to-one correspondence between the

instructions between each group; i.e. result from instruction no. x in the LK group is

100

needed by instruction no. x in the MUL group, in turn the result from the instruction

no. x in the MUL group is needed by instruction no. x in the ADD group, whose

execution then feeds the result to instruction no. x in the LK group. So when a result from

any group arrives, it is needed by only one instruction, so each LU wastes time checking

253 cells for a match, amounting to a large execution time for each instruction. The only

time that more than one match is made by each LU is when the initial seed needed by the

first group of LK instructions comes in. It may be noticed that the explanation presented

should actually give an execution time worse than the execution time obtained for the

first program, since, except for the first matching iteration of the LUs, where multiple LK

instructions are fired (when seed is obtained), all subsequent matching iterations made by

the LUs result in the firing of only one instruction. This discrepancy arises because the

execution time for an LK instruction is much shorter than then other instructions that are

sent outside the DFM (since LK instructions are not actually sent for execution).

These results show that a block level implementation of the DFM, where each LU

blindly checks the cells for a match is not a conducive way to implement this

architecture. Alternatives to this method are presented in Chapter 5.

4.3.3 Program 3

The total execution time for Program 3 was about 31μsec, which excludes the time

needed to load the program. There were a total of twenty-seven instructions in this

program, which equates to an execution time of about 1.15μsec per instructions or 115

cycles. This is an incredible improvement over the execution time of Program 1 and 2.

The performance enhancement can be attributed to program structure that was discussed

in Section 4.2.3. Even though time is wasted by the LUs checking unoccupied cells, a

101

one-to-many correspondence exists, which allows a high degree of concurrency for

this architecture.

The one-to-many correspondence exists because multiple instructions in the

program need the result from the execution of a single instruction. All elements of array

X, except the first, need the result from the execution of the instruction at location 701H.

Secondly all the elements in array A, need the result from the execution of the instruction

located at 702H. Thus in two iterations of the LUs, all the instructions are fired resulting

in higher overall performance.

This proves that by reconfiguring the hardware to eliminate the time wasted in

checking empty cells, and by using a program with a high degree of concurrency, it is

possible to extract an acceptable amount of performance from this architecture. These

possible enhancements to improve performance are presented in the next section.

5 ANALYSIS AND ENHANCEMENTS

Observing the performance of the three programs, it may be deduced that the entire

performance bottleneck of an executing program lies in CS2, CS3 and CS4. About 90%

of the execution time needed by an instruction is spent in these three units and most of

that time is wasted time, if a block is not adequately full. It is obvious that, to reduce

execution time, the time spent matching has to be reduced. Three enhancements are

presented, each one requiring more change in the implementation (not design) then the

previous.

5.1 Enhancement I

The first enhancement is based on limiting the matching to only those cells in a block that

have instructions. This can be accomplished with considerable ease, by two means, either

have a common register for CS2, CS3 and CS4 that informs each corresponding LU the

number of locations in a block that are occupied, and hence matching will performed on

only those locations.

The second option is embedding the presence of the instruction in the instruction

itself. Since LU2, LU3 and LU4 operate independently and in parallel, each CS needs to

be provided with this information. The presence of an instruction maybe indicated by

adding an additional bit to each part of an instruction appearing in every CS. Hence each

cell section will have three parts an operand/clause address, operand/clause required bit

and instruction bit. The 'instruction' bit will let the LU doing the matching know when to

stop matching and reset itself.

102

103

In such a setup, instructions in a block would need to occupy contiguous

locations, because the LU would reset itself after matching the number of instructions

specified by the register, or the first time the LU hits an instruction whose 'instruction'

bit is zero. Though contiguity is important in such a setup, order of the instructions is not.

5.2 Enhancement II

The second enhancement is based on a dual headed attack on reducing execution time. It

increases the concurrency of matching by reducing the block size, and decreases the time

wasted matching unoccupied locations by using one of the methods mentioned in the

previous section.

Reducing the block size from the current 256 cells to a small number, like 16 or

32 cells, would give 16 and 8 blocks respectively, thus increasing the concurrency of

matching to 16 and 8 times respectively. This of course increases the complexity of the

logic (since there would more LUs/blocks doing the work simultaneously) and introduces

some extra communication overheads between the DFM - IQ, and DFM - DFM (since

there are more LU1s that want to communicate with the IQ and with LU5s).

If in addition to implementing a smaller block, one of the methods presented in

the previous section is used to reduce time wasted in matching empty cells, considerable

performance improvement may be achieved.

5.3 Enhancement III

The last enhancement is the most complex of all, it is based on implementing the

dataflow computer as per the theoretical approach presented in Section 3. Maximum

matching concurrency is achieved and no time is wasted matching empty cells, even

104

though matching is performed on empty cells. Matching empty cells does not waste

time because the time spent in matching these cells is not in addition to the time spent in

matching non-empty cells, all the cells are matched simultaneously. The PE doing this

work needs to be a simple structure to reduce complexity.

The structure of a possible implementation of such a cell with a PE is presented in

Figure 5.1. Notice that the CS2, CS3 and CS4 don't have the operand/clause required

bits; the addresses in the field automatically indicate if the operand/clause is required.

Since address zero is not used, it can be used to indicate if the operand/clause is required.

Figure 5.1 Possible Schematic of an Intelligent Cell

An incoming result packet is split into the result and OA. The result goes into a

tri-state and the OA into a comparator of each CS. The OA is compared to operand/clause

address in each cell and forwarded if a match is made. The logic shown in the Figure 5.2

configures the flag bits and sends the executable if appropriate flag bits are set.

105

Figure 5.2 Logic used to configure Flag Bits

The concept of block takes a new meaning in this design; it is the group of cells

that communicate with a high-speed arbitrator that queues (2 — 3 cycles) outgoing

executables into the IQ. The concept of the IQ and Processor Pool remain unchanged. A

possible high-level implementation of the DFM and a block is presented in Figure 5.3.

It may be a concern that since results from a block are sequentially queued on to a

single bus, there may be performance degradation. It is a possibility, but unlikely to make

a significant impact, since the number of cells allocated in a block is low, besides the

arbitrator, if very fast, should be able to service all the requests very quickly. The idea

106

behind this design is to make the DFM pseudo-synchronous, i.e. mix both

synchronous and asynchronous activities and minimize handshaking in the asynchronous

activities.

Figure 5.3 (a) High-Level implementation of DFM (b) Block Implementation

Making this new design needs a complete rework of the DFM design. Except for

CS5, which queues incoming results, all the other cell sections need to be re-

implemented. The processor pool and IQ can stay relatively unchanged, but a high-speed

arbitrator needs to be implemented.

6 CONCLUSIONS

At the beginning of this thesis, the advantages of a dataflow computer were presented

along with all the issues that a designer has to resolve to successfully implement one.

This thesis presented the design and the prototype of a dataflow computer, addressing the

issues of implementing a one at the memory level by using intelligent-memory, which

was called Dataflow Memory.

The concept of intelligent-memory is very powerful, showing that the role of

memory sub-systems as docile units is short-lived. It is the author's opinion that the

computing systems of the future will involve active memory systems to further enhance

concurrency and decentralize the processor's role.

Though the performance of the dataflow computer was not impressive, this idea is

not a dead end. There is plenty of room for improvement and performance enhancement,

using methods suggested in Section 5. Besides, the idea of implementing a dataflow

computer using intelligent-memory systems, rather than using a modified PE is in itself

novel and deserves further investigation.

In addition to presenting a new way to implement a dataflow system, this thesis

also showed how valuable FPGAs are in prototyping. Their ease of use, flexibility, power

and cost make them an incredible asset for any kind of digital application.

This thesis provided me with an incredible opportunity to investigate and

implement a dataflow computer. It has challenged my skill as a researcher, and tested my

ability to overcome engineering hurdles. It has been a long and arduous nine months, but

the journey has been rewarding and well worth the effort.

107

APPENDIX

108

Appendix A — Hierarchies and Programs

109

A.1 Hierarchy of the whole Dataflow Computer

110

A.2 Hierarchy of module — BLOCKB3_B

1 11

A.3 Hierarchy and TDF Implementation of module — BLOCK_CS5H

112

113

114

115

msg_for_LU234 = msg_out_cntrll.signal #
msg_out_cntr12.signal;
END;

116

A.4 Hierarchy and TDF Implementation of module —

RESULT_BUS_CONTROLLER

117

118

A.5 TDF Implementation of module — INITIALIZE

119

A.6 Hierarchy of module — BLOCKB3_A

120

A.7 Hierarchy and TDF Implementation of module — BLOCKCS1B

121

122

123

124

A.8 Hierarchy and TDF Implementation of module — BLOCK_CS2B

125

126

127

A.9 Hierarchy and TDF Implementation of module — BLOCK_CS3

128

129

130

A.10 Hierarchy and TDF Implementation of module — BLOCK_CS4

131

132

133

All Hierarchy and TDF Implementation of module —

LU234_BUS_CONTROLLER

134

135

A.12 Hierarchy of module — DFM2

136

A.13 Hierarchy and TDF Implementation of module — DFM2_CNTRL

137

138

A.14 Hierarchy and TDF Implementation of module — BUFF

139

140

141

142

143

A.15 Hierarchy of module — PROC_POOL

144

A.16 Hierarchy and TDF Implementation of module — PROC

145

146

147

WHEN B"0001" =>
	

% ADD %
result_reg[6 ..0].d = (adder.cout, adder.result[]);

WHEN B"0010" =>
	

% SUB %
result_reg[6 ..0].d = subtractor.result[];

WHEN B"0011" =>
	

% MUL %
result_reg[6 ..0].d = multiplier.result[];

WHEN B"0100" =>
	

DIV
result_reg[6 ..0].d = divider.quotient[];%

WHEN B"1000" =>
	

CEQ %
result_reg[6 ..0].d = (B"000000", comparator.aeb);

WHEN B"1001" =>
	

% CNE %
result_reg[6 ..0].d = (B"000000", comparator.aneb);

WHEN B"1010" =>
	

% CGT %
result_reg[6 ..0].d = (B"000000", comparator.agb);

WHEN B"1011" =>
	

% CLT %
result_reg[6 ..0].d = (B"000000", comparator.alb);

WHEN B"1100" =>
	

% CGE %
result_reg[6 ..0].d = (B"000000", comparator.ageb);

WHEN B"1101" =>
	

% CLE %
result_reg[6 ..0].d = (B"000000", comparator.aleb);

END CASE;
END IF;

END;

A.17 TDF Implementation of module — 1COUNT

148

A.18 TDF Implementation of module — BUS_MERGE

149

A.19 TDF Implementation of module — COUNTER

150

A.20 TDF Implementation of module — DELAYTIMER

151

A.21 Hierarchy and TDF Implementation of module — MYCLOCK2

152

153

A.22 TDF Implementation of module — MYDFFE

154

A.23 TDF Implementation of module — MYLATCH

155

A.24 Hierarchy and TDF Implementation of module — PULSEGEN

156

A.25 Hierarchy and TDF Implementation of module — QUEUE

157

158

A.26 TDF Implementation of module — STOPTIMER

159

A.27 TDF Implementation of module — STOPTIMER2

160

A.28 TDF Implementation of module -- TOGGLE

161

A.29 Hierarchy and TDF Implementation of module —

TRANS_DETECTOR

162

163

Appendix B — Simulation Results

164

165

B.1 Fields of the Simulation Results

The fields that appear in the simulation results shown in the next section are:

clock: The clock signal of 100Mhz applied to all the units.

Load: The signal used to load a program into memory, the load signal is accompanied by

an 'address' on the address line and an 'instruction word' on the data bus.

Addr[7..0]: Address lines used to specify the address, where 'instruction words' are

loaded into memory. There are eight address lines, which allow the addressing the 256

locations in a block.

Data[60..0]: Data lines used to load 'instruction words' into memory. There are 61 data

lines which is the same as the width of an 'instruction word', i.e. CS1(25-bits), CS2(12-

bits), CS3(12-bits), and CS4 (12-bits).

Prot Result[17..0] and Prol Result[17..0]: The results sent out by each processor after

it finishes executing the executable it picks up from its memory bank. Each result sent out

is 18-bits wide, 11-bits of OA and 7-bits of result.

Iblock_cslb:12311pm_ram_dp:csl|altdpram:sram|content1_24..0] -

block cslb:12311pm_ram_dp:csl|altdpram:sram|content15 J24..0]: The memory

contents of CS1 from location 1 to 15. This set of words allows viewing the changes

occurring in CS1 memory as the program is executed.

-a
0'n
al
3
1-,
41,
aC
:7at
O=
74
(D
C

900.0ns 	 1.Ous 	 1.1us
	

1.2us 	 1.3us

1 1 1 I
9)0..00 nos

0084986

00000

0040184

00006D0

0040094

0000020

0040554

0000060

03C0105

0000190

0000084

0080094

0040086

0000020

0000485

00000

Name: 	 Value:

clock 	 1

Load 	 1

Et4- Addr[7..0] 	 HOC

Data[60..0] -

Init 	 0

instrout[11..0] 	 H 000

444. Pro2_Result[17..0] 	 H 00000

Prol_Result[17..0] 	 H 00000

sramicontent1_[24..0] H 0084986

(1.4' srarnIcontent2 J24..0] H 03C0105

• sramIcontent3_[24..0] H 0000485

sramicontent4_[24..0] H 0040086

sramIcontent5i24..0] H 0000020

sramicontent6 J24..0] H 00006D0

sramicontent7 _[24..0] H 0080094

sramlcontenta J24..0] H 0000190

• sramicontent9 J24..0] H 0000084

ramicontentl 0 J24..0] H 0000060

rarnicontentl 1_[24..0] H 0040094

CiP ramicontent12_[24..0] H 0000020

ramlcontent13 J24..0] H 0000000

ramjcontentl4_[24..0] H 0000000

ramicontent15 [24..0] H 0000000

1.4us 	 1.5us

0084980

OF 	 00

0000000000000000

000 	 093

0040114

Name: 	 Value: 	 25.0us 	 50.0us 	 75.0us 	 100.Ous 	 125.0us 	 150.Ous 	 175.Ous 	 200.01

clock

tto.... Load

Addr[7..0]

Data[60..0]

'nit

4g) instr_out[l 1..0]

1

1

H OC

0

H 000

H 00000

H 00000

Pro2_Result[17..0]

Pro1_Result[17..0]

srarnIcontentl _[24..0] H 0084986

sramlcontent2_[24..0] H 0300105

sramicontent3 J24..0] H 0000485

sramIcontent4 J24..0] H 0040086

srarnIcontent5_[24..0] H 0000020

sramlcontent6 J24..0] H 00006 00

sramlcontent7_[24..0] H 0080094

sramIcontent8_[24..0] H 0000190

gik sramIcontent9 J24..0] H 0000084

ramicontent10 J24..0] H 0000060

ramIcontent11_[24..0] H 0040094

ramjcontent12_[24..0] H 0000020

ramicontent13_124..0] H 0000000

fik ramicontent14_124..0] H 0000000

ramicontent15 	 [24. 0] H 0000000

093 C922 X 039 X 	801	 X 83A X 81D X 832 X 	 011 	 X 833 X 82A 'C66il 822):

38092 	 X 	 38181 	 38681 	 X38704 	 38383 	 X 	 38681 	 X 38706)1

00000 y, 	 38103 	 38201 	 X38301 X 	 38782 	 38409 	 "/,,38489 X 38781 J\

Contents of DFM memory, in CS1

0084980

- 	
03C9100

0000485

	

0040086 	 0040080

	

0000020 	 \F-7---iii 	 0000821 	 I(

	

i, 	 A
I. 00006D0- X 	0000605	 X 0000ED5 	 1.
P. 	1

0080094 	 k 0080896 	 0080894)

	

0000190 X 	 0000194	 X 	 0000195 	 X 	 0001994 	(

	

 	 1

	

0000084 	 0000085 	 0004880 	
Fn.

, 	 .L.1:
0000060 	 t 0000862)1i____________ 0000863 A 	 A

	0040094	 X 	 0040095 	 1
V 0000020 	 Y.
):: 0001821 	 X 	 0081821 A 	 L

	0040554	 X 0040555 	 0041D55 	 .	 0041555 	 1(
	 1

	

0040184 	 X 00419861 00419801 	 0001984	 v., 0001186 X 0001180)
.,,	
A 	 0040114 	 (0041916 	 '',)(0041914 	 Y 0041116 	 Y 0041114 1';,.

0001 C80

0000821 	 Y 	 0080821 	 X 	0000821

Name: 	 Value:

–1"–, clock

Igo– Load

Addr[7..0]

Data[60..0]

lnit

instr_out[11 _0]

Pro2_Result[17..0]

=4;4. Prol_Result[17..01

1

1

H 00

O

H000

H00000

H00000

sramIcontentl _[24..0] H0084986

sramIcontent2_[24..0] H0300105

sramlcontent3_[24..0] H0000486

(V' sramIcontent4_[24..0] H 0040086

sramIcontent5 J211..0] H0000020

sramlcontentEU24..0] H0000600

sramIcontent7 J24..0] H0080094

sramlcontent8 J24..0] H 0000190

srarnicontent9 j24..0] H0000084

ramlcontentl 0 J24..0] H0000060

ramIcontentl 1_[24..0] H0040094

fik ramicontent12_124..0] H 0000020

ramIcontent13_[24..0] H0000000

ramIcontent14_124..0] H0000000

rarnicontent15 [24..0] H 0000000

.0us 	 225.pus 	 250.pus 	 275.pus 	 300.0us 	 325.0us 	 350.,Ous 	 375.0us 	 400..0

00

0000000000000000

822 	 X EV-1'7Y 	81A	 8,1)(801 	 X 	821	 r8-3170-3-71 ,

38301 	
)

l (38400	 X 	 38583 	\i-l---)

38495 	 X 38301 ,
	 i

0084980

0309100

0001080

0040080

0001 ED5

0080894

0001994 	 =)(
0244884 	 X 0244885 =1(0546084	 Li

0240861 	 X 	 y
V 	 0241063 	0541061 	Y - '

0040095 	 X 	0040894	 A 	0040895 X 	0041094 	X___-___J'

0081821 X 	0041821

0041555

	 X 	 0181184 	X 0180986 X	

0041114 	 \lis. 0040916 	 X

38706 	V	 38582

38781 	 X	 38680

0000ED5 0001605

0081094

0002194

0040055

0180986

0040916

38384 	 X

0.0us 	 425.Ous 	 450.Ous 	 475.Ous 	 500.Ous 	 525.Ous 	 550.Ous 	 575.Ous 	 600Name:

/ 831 	 84D

384M 	38300
1 	

38584

0084980

0309100

0001 C80

0040080

fik sramIcontent5 J24..0] H 0000020

gli* sramIcontent7 J24..01 H 0080094 	0081894	 r-11%	

EV sramicontent8 J24..0] H 0000190

IV sramIcontent9 J24..0] H 0000084 	0546085 1--1 	 0907884 	 X	
V' ramIcontent10_[24. 0] H 0000060 	0541863 	 0901861 	-	 0902062

fil) ramicontentl1J24..0] H 0040094 	 0041095 	 0041894 	 0041894

10
Value:

CSilk srarnicontent6 J24..0] H 0000600 00C1ED5 00C26D5s

clock 	 1

Load 	 1

Addr[7..0] 	 HOC

Data[60..0] -

Init 	 0

instr_out[11..0] 	 H 000

Pro2_Result[17..0] 	 H 00000

Prol_Result[17..0] 	 H 00000

1110' sramicontentl J24..0] H 0084986

sramIcontent2 J24..0] H 03C0105

sramicontent3 J24..0] H 0000485

sramIcontent4 J24..0] H 0040086

03158 8F1

38385 !\
11

- 	 A 3840F

0000821 Y 	0100821

0000000000000000

00

0082096

- 	 1 	00C2994	 00C2994

0907884

rarnIcontent12_124..0] H 0000020

ramIcontent13_[24..0] H 0000000

(21,1u' ramIcontent14_[24..0] H 0000000

rarnicontent15 [24..0] H 0000000

0041821

0040D55

0180986

0040916

Name:
12

Value: 15.0us 	 20.0us 	 25.0us 	 30.0us 35.0us P3
60— clock

Load

Addr[7..0]

1

0

H 00

Pr

O
00 to

Data[60..0]

lnit 0

0000000000000000
3

1::E0 instrout[11..01 H 023 023 	 P* aft. 	 043 081

=44-. Pro2_Result[17..0] H 38084 "11111111111111111111111111111111111 38092 3
Prol _Result[17..0]

ASOA

H 00000 00000 LIUM 38012 sir
OCf2P dprann:sramIcontentl J24..0] H 0081180

dpram:sramIcontent2 j24..0] H 0080185 0082180

dpram:sramIcontent3_[24..0] H 0000185 5 	 x 	 0002180 O

dprarn:sramIcontent4_124..0] H 0100185 85 	 x 	 0102180 FP
dpram:sramIcontent5_[24..0] H 0140185 185 	 0142180 VI

dpram:sramIcantent6_[24..0] H 0180186 0185 	 0182180

dpram:sramIcontent7 J24..01 H 0100185 C0185 	 01 C2180

gt► - dpram:sramIcontent8 J24..0] H 0200185 200185 	 X 	 0202180

dpram:sramIcontent9_[24..0] H 0240185 0240185 	 X 	 0242180

(VI'	 pram: srarnIcontentl 0_[24..0] H 0280185 0280185 	 X	 028218 I/

IV pram: sramIcontent11_[24..0] H 0200185 0200185 	 X 	 02021 0

pram:sramIcontent12_[24..0] H 0300185 0300185 	 0302 80

C21)4 pram: sramIcontentl 3[24..0]

pram:sramIcontent14_[24..0]

H 0340185

H 0380185

0340185 	 X 	 034.180

0380185 	 x 	 03 	 180

pram:sramicontent15 .124..0] H 0280085 280085 0284080

Instructions 	 Group of executed
sent out for 	 results. 	 X[2] - X[12]
execution 	 Group of executed

results. A[1] - A[12]

Time wasted by
LUs checking
empty cells

REFERENCES

[1] Veen, Arthur H. "Dataflow Machine Architecture." ACM Computing Survey 18.4
(1986): 365-396.

[2] Rau, B. Ramakrishna. "Cydra 5 Directed Dataflow Architecture." Thirty-Third
IEEE Computer Society International Conference, Digest of Papers. (1988):
106-113.

[3] Dennis, Jack B., and Guang R. Gao. "An Efficient Pipelined Dataflow Processor
Architecture." Proceedings of Supercomputing:88. [Vol.1]. (1988): 368-
373.

[4] Sakai, Shuichi., Yoshinori Yamaguchi, Kei Hiraki, Yuetsu Kodama, and
Toshitsugu Yuba. "An Architecture of a Dataflow Single Chip Processor."
Proceedings of the 16th annual international symposium on Computer
architecture. (1989): 46-53.

[5] Deshmukh, R. G., and Tariq Jamil, "A Novel Technique for Parallel Computations
Using Associative Dataflow Processor." Proceedings of Southeastcon.
Visualize the Future, IEEE. (1995): 322-328.

[6] Lu, Shih-Lin., and Chi-Ming Chang. "Modelling of a Selftimed DataFlow
Processor in VHDL." Proceedings of the Sixth Annual IEEE International
ASIC Conference and Exhibit. (1993): 228-231.

[7] Dadda, Luigi. "The Evolution of Computer Architecture." Proceedings of the 5th
Annual European Computer Conference. (1991): 9-16.

[8] Robic, Borut, and Jurij Sile. "MADAME — Macro-Dataflow Machine."
Proceedings of the 6th Mediterranean Electrotechnical Conference. (1991):
985-988.

[9] Grafe, V. G., and J. E. Hoch. "Implementation of the Epsilon Dataflow Processor."
Proceedings of the Twenty-Third Annual Hawaii International Conference
on System Sciences. (1990): 19-29.

[10] Traub, Kenneth R., Gregory M. Papadopoulos, Michael J. Beckerle, and James E.
Hicks. "Overview of the Monsoon Project." Proceedings of the IEEE
International Conference on VLSI in Computers and Processors. (1991):
150-155.

[11] Grafe, V. G., G. S. Davidson, J. E. Hoch, and V. P. Holmes. "The Epsilon Dataflow
Processor." Proceedings of th 16th Annual International Symposium on
Computer Architecture. (1989): 36-45.

172

173

[12] Ang, Boon Seong. "Efficient Implementation of Sequential Loops in Dataflow
Computation." Proceedings of the Conference on Functional Programming
Languages and Computer Architecture. (1993): 169-178.

[13] Dennis, Jack B., and David P. Misunas. "A Preliminary Architecture for a Basic
Dataflow Processor." 25 years of the International Symposia on Computer
Architecture (Selected Papers). (1998): 125-131

[14] Ingersoll, Segreen, and Sotirios Ziavras. "Dataflow Computation With Intelligent
Memories Emulated on Field-Programmable Gate Arrays (FPGAs)."
VLSI Design Journal, submitted for publication, December 2000.

[15] Altera Corporation. MAX + PLUS II Getting Started. California: Altera Corp.,
1997.

[16] Altera Corporation. MAX + PLUS II AHDL. California: Altera Corp., 1997.

[17] Altera Corporation. FLEX 10KE Embedded Programmable Logic Family Data
Sheet. Sep. 2000. Oct. 2000
<http://www.altera.com/document/ds/dsf10ke.pdf>.

[18] Altera Corporation. ACEX 1K Programmable Logic Family Data Sheet. April
2000. Oct. 2000 <http://www.altera.com/document/ds/acex.pdf >.

[19] Altera Corporation. MAX 9000 Programmable Logic Family Data Sheet. July
1999. Oct. 2000 <http://www.altera.com/document/ds/m9000.pdf >.

[20] Hwang, Kai. Advanced Computer Architecture: Parallelism, Scalability,
Programmability. San Francisco: Mc Graw Hill, 1993. 475-539.

[21] Hatano, Daryl. "Statement of Daryl Hatano." Hearing Archives 26 Jan. 2000. 18
Nov. 2000 <http://www.workforce21.org/archive_ca_hatano.htm >.

[22] Baeverrud, Rune. Parameterized Functions Made Simple. 17 June 2000
<http://www.freecore.com/nosupport/param1.htm >.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 2000

	Emulation of the dataflow computing paradigm using field programmable gate arrays (FPGAs)
	Segreen Ingersoll
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Issues and Prior Research
	Chapter 3: Theoretical Approach and Implementing a Dataflow Computer
	Chapter 4: Timings, Simulations, and Performance
	Chapter 5: Analysis and Enhancements
	Chapter 6: Conclusions
	Appendix A: Hierarchies and Programs
	Appendix B: Simulation Results
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

