
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2001

Managing toxic and hazardous substances of concern in Managing toxic and hazardous substances of concern in

manufacturing manufacturing

Craig Jancerak
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jancerak, Craig, "Managing toxic and hazardous substances of concern in manufacturing" (2001).
Theses. 730.
https://digitalcommons.njit.edu/theses/730

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/730?utm_source=digitalcommons.njit.edu%2Ftheses%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

MANAGING TOXIC AND HAZARDOUS SUBSTANCES OF CONCERN
IN MANUFACTURING

by Craig Jancerak

This thesis examined data management from an object relational database perspective. The

database used was a product from Cornell University called PREDATOR. The context of

the evaluation is the life-cycle of a manufactured product. The manufacturing life-cycle

was chosen to correspond to an environmental life-cycle being done at NJIT. However,

the goal was to use a generic model that could be applied to many situations.

The first phase developed the conceptual life-cycle model. At a high level, the

model was not designed with a programming language in mind. Several questions needed

to be answered and the a model answers the questions regardless of implementation.

Once the conceptual model was completed, the implementation phase began.

Knowledge and past experience affected implementation of the life-cycle model. A totally

object oriented approach was the first step. Class diagrams were first developed. Then a

JAVA application was built against the class diagram.

Once the object oriented approach proved successful, the move to an object

relational implementation began. As this morphing occurred, it became clear that, for this

life-cycle model, the object relational approach is not appropriate. This is shown by

demonstrating that the object model becomes a purely relational model.

MANAGING TOXIC AND HAZARDOUS SUBSTANCES OF CONCERN
IN MANUFACTURING

by
Craig Jancerak

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 2001

APPROVAL PAGE
MANAGING TOXIC AND HAZARDOUS SUBSTANCES OF CONCERN

IN MANUFACTURING

Craig Jancerak

Dr. Jason T.L. Wang, Dissertation Advisor 	 Date
Director and Associate Professor,
Data Knowledge Engineering Lab

Dr. Jams Calvin, Committee Member	 Date
Assistant Professor and Co-Director,
Simulation and Modeling Laboratory

Dr. Franz J. Kurfess, Committee Member 	 Date
Director, Software Engineering Laboratory
Associate Director, Electronic Enterprise Engineering

BIOGRAPHICAL SKETCH

Author:	 Craig Jancerak

Degree:	 Masters of Science

Date:	 January 2001

Undergraduate Education:

• Bachelor of Science in Business Administration,
Seton Hall University, South Orange, NJ 07079

Major:	 Computer Science

ACKNOWLEDGMENT

I would like to thank Dr. Jason Wang for his guidance and for giving me the opportunity to

write this thesis. In the time I worked with Dr. Wang on this thesis, he was very supportive of

the work. Dr. Wang allowed me the freedom to explore this topic as I saw fit and gave me

the guidance when I needed. I could not have asked for a better experience.

My thanks also goes to Dr. Mark Healey for making it possible to become closely

involved with his project which is the basis for this thesis. Dr. Healey supported and

championed my involvement. Without that involvement and up-close experience, this thesis

would be much less complete.

iv

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 PROBLEM 	 3

3 CONCEPTUAL DESIGN 	 5

3.1 THSC Representation 	 5

3.2 Life Cycle 	 6

3.2.1 Design 	 7

3.2.2 Transportation 	 8

3.2.3 Storage 	 8

3.2.4 Manufacturing 	 9

3.2.5 Recycling 	 .10

3.2.6 Waste 	 .10

3.3 Work Order 	 11

4 IMPLEMENTATION 	 .14

4.1 Object Oriented 	 14

4.1.1 Class Diagram 	 .15

4.1.2 Java Application 	 .17

4.1.3 Object Persistence 	 .19

4.1.4 Inheritance 	 .21

4.2 Object Relational 	 21

5 CONCLUSION 	26

APPENDIX A THSC LISTS 	 28

APPENDIX B SOURCE CODE 	 .29

REFERENCES 	 .30

LIST OF TABLES

Table	 Page

1. Components of an Adhesive 	 5

vi

LIST OF FIGURES

Figure Page

1. Block Diagram of a Manufacturing Life Cycle 	 	 7

2. Work Order Tree 	 12

3. Object Oriented class diagram 	 .15

4. Screen capture of Java application 	 .17

5. Part Table 	 22

6. Relational Schema with EADTs 	 .23

7. Relational Schema with EADT Attributes Converted to Fields 	 .24

vii

CHAPTER 1

INTRODUCTION

Commercial data management technology is in a state of flux right now. Relational

databases have been around for more than twenty years. The theories have been proven

and put in practice. The technology is mature. And the knowledge to implement systems

is widely known.

On the application development front, while not new, object oriented technologies

are being to emerge. Some of the more well known and the ones I'm at some level familiar

with are SmallTalk, C++, and Java. Yes, there are many others. And their numbers are

growing rapidly. A testament to the technology. But object orientation is more than a

technology, its a way of thinking.

The data management and application development worlds are beginning to

converge. This is leading to a number of object oriented and object relational database

systems. This thesis investigates object relational technology through the view of

manufacturing. Specifically, a problem of tracking the life of toxic and hazardous

materials through the process of building a product.

I begin the thesis examining the problem and discussing what some high level

requirements have been posed (Section 2). The next section (Section 3) delves into a

conceptual design framework. It discussed what a products life looks like then focuses on

the manufacturing phase. I then outline (Section 4) the approach I took to try to implement

the ideas from Section 3. This includes an in-depth look at object oriented design. Then I

discuss issues with PREDATOR and the object relational approach. And finally wind up

with a conclusion (Section 5).
1

2

I have taken the perspective in this thesis that the reader is knowledgeable in relational

database systems and is familiar with PREDATOR.

CHAPTER 2

PROBLEM

What Is a THSC? As far as I am aware, there is no one 'list' of Toxic & Hazardous

Substances of Concern (THSC). There are, however, several lists compiled by the EPA

and other groups which focus on specific grouping of substances. Several of these lists are

included in the appendix. As a result, a wide definition of THSC will be to include any

substance used during, or for the purpose of, manufacturing a product. This can be a

compound substance or a chemical component there of.

One of the purposes of identifying and tracking these substances is the need to do

Activity Based Costing in the environmental arena. For our purposes, Activity Based

Costing is the process of allocating costs associated with using a THSC back to the point at

which the cost is generated. These costs may arise in the purchase, use, disposal, or

cleanup of a substance. The result of such analysis will rank, based on real dollars, what

the affect of using (or eliminating) a substance will be. While the end result will be a dollar

figure, the quantity of a THSC will also be a consideration.

Of course, it would serve no purpose to track a THSC in isolation. Without taking

into account the surrounding manufacturing environment, very little value can be gleaned

from 'it cost $700 to use substance A'. However, if you know the who, what and where of

the substance use, then you have valuable information.

3

4

As an example, you are a manufacturer of children's bicycles. These bicycles need

to be painted and you have a choice of several 'brands' of paints to use. However, one of

these paints may be inexpensive to purchase but difficult (and therefore costly) to clean and

dispose of, while another is moderately expensive, easy to clean but can only be kept in

small quantities requiring frequent replenishment. Its not very useful to know costs

associated with this paint were some dollar value. But if you knew that cleanup cost were

high and that the window frames you build with the same material didn't incur the same

cost, then you have something.

While this scenario alone may be trivial, if you add in the steps of cutting the tubing

for the frame, welding it together, then preparing it for painting, it becomes more complex.

Its rolling this entire assembly together, looking at the use of THSC, presumably in several

steps, and being able to quantify cost in the entirety of the products life that is the goal.

Some of the questions that would be important to answer include:
What are the quarterly costs for product X?
What are the top 5 most costly compounds in terms of disposal?
What part of product X is most expensive?

These types of questions are almost endless. It is my goal to introduce an

object-relation solution to facilitate the answering of these questions.

CHAPTER 3

CONCEPTUAL DESIGN

Knowing the types of questions we'll need to answer, no data modeling can take place

before a design is established. This section takes you through the original design

consideration that were made.

Conceptually there are several parts of the equation to being able to answer

questions about THSCs. Obviously, the first is what does a THSC look like? Next,

because where dealing with a manufacturing environment, some notion of a products life

must be created. Of course there is the obligatory inventory issues. And there are

undoubtedly more, but these three take us far enough to be able to begin answering

questions.

3.1 THSC Representation

Since we talking about THSCs, lets start there. One design consideration deals with the

THSC. For illustrative purposes, lets consider adhesive an example of a THSC. The

decision to be made here is to what level of abstraction is a THSC to be stored and

manipulated. Not all of these nasty substances are basic chemical compositions like

acetone. Our adhesive example can be decomposed into its basic composition as in Table

1.

Table 1. Components of an Adhesive
Component CAS# Pct
Acetone 67-64-1 15%
Butyl Acetate 123-86-4 20%
Ethyl Alcohol 64-17-5 25%
Isopropyl Alcohol 67-63-0 15%

5

6

The issue involved is how to record 'adhesive': as-is or as its separate chemical

composition? This is not really an end-user issue as it is a system design issue. In so much

as the design can be made to generate information on both the compound and its

composition, if a design is chosen that favors the compound, access at the composition

level may be unacceptable. The users need only know 'adhesive' but if Ethyl Alcohol is

banned in the future, linkage between the two needs to be available.

It seems prudent, at this point, to design to the compound (adhesive) level while

ensuring that access to the components remains acceptable. Some of the data elements

involved for a compound should probably include its name, manufacturer, and part

number.

3.2 Life Cycle

Moving on from the THSC, the system needs to be able to know where in its life the part

has progress to. I am referring here to the item being built, not the THSC. Or more

specially, where a THSC might be used in the life of a product. This is usually represented

by a Life Cycle. Leading us to the next decision to establish a life cycle that would be

general yet representative of the problem domain. I will now describe the Life Cycle in

some detail as it has an important place in keeping track of THSCs

From the outset, it was decided that any THSC can be present on any or all parts of

a given life cycle. Figure 1 shows a block diagram of the simple manufacturing life cycle

used. There are three fundamental stages that are represented by the boxes labeled Design,

Manufacture, and Recycle. There is also a block for Storage as well as Waste. The lines

interconnecting the blocks represent transportation.

Figure 1 Block Diagram of a Manufacturing Life Cycle

7

Reading time from left to right, the diagram simply states that after Design,

materials are taken from storage and sent to Manufacturing. During Manufacturing, more

materials may be added and Waste may be produced. After Manufacturing, materials are

returned to storage. What is not depicted is the finished product itself. However, it is an

important consideration because to completely account for a particular THSC, the quantity

that left the manufacturing process on the product itself must be included. We now

describe in detail the various stages in our life cycle.

3.2.1 Design

The first stage of the life cycle is 'Design'. For our purposes, no THSC are generated or

present in this stage. It is included, however, because it's part of the life cycle and if the use

of a THSC can be identified in the Design stage (the need to glue part A to part B),

potential costs (activity based costing) of using alternate THSC can be analyzed.

8

3.2.2 Transportation

Connecting all the remaining stages of the Life Cycle together is 'Transportation'. At this

time I am considering 'Transportation' as simply the physical movement of objects from

one location to another. No THSC are generated or used here. However, there are

potential costs that could be incurred. For instance, let's consider Trinitrotoluene or TNT.

One should imagine that its much more expensive to move TNT than a simple paint.

Therefore, our design should be able to account for these costs.

3.2.3 Storage

The next stop in our Life Cycle is 'Storage'. Storage can manifest itself in many ways,

including the physical location of an object. Our fundamental concern, however, is the

logical representation of the items used to create the final product and the final product

itself. Storage can also be thought of in terms of Inventory Control.

One can also see from Fig 1 that Storage exists before and persists after the

remaining sections of the Life Cycle. This is a conscious design decision based on the

assumption that there will be a quantity of inventory that is needed before Manufacturing

begins and exists after Manufacturing is complete. This inventory will generate costs

which could include warehousing, security, electricity, etc. that should be accounted for.

At any given point, this inventory will be represented as one of three different

types. The first is 'Raw Materials'. These items take the form of adhesive, metals, paint;

the build blocks which come from 'outside' of the manufacturing facility. For the most

part, this is where the THSC will be in its industrial form. Consider this a refinement of a

THSC. But THSCs are not the only type of Raw Material.

9

As these building blocks, or Raw Materials, are formed together the result becomes

'Work In Progress' (WIP), also referred to as a subassembly. It is often the case that several

subassemblies and additional Raw Materials are combined to create yet more WIP

(subassemblies). And, finally, there is the 'Finished Product'. It should be noted that the

Finished Product is a special-case subassembly (i.e. the last one).

It is currently believed important to distinguish between items in each category but

that the logical representation can be similar if not identical. Each of the items would need

to minimally have a unique identification, or part number, quantity data, and physical

location information. Later design consideration may call for more attributes and

separation of identities.

3.2.4 Manufacturing

This leads us into 'Manufacturing'. It is here where the 'Raw Materials' and 'WIP' are taken

as inputs to produce subassemblies (including the Finished Product). Other inputs and

outputs of the Manufacturing stage not to be overlooked include 'Waste' (discussed

shortly), labor, electricity, and other overhead that contribute to the cost of building a

product.

It is here at the 'Manufacturing' stage that THSC get infinitely more difficult to

track. Up to this point, a THSC generally existed on its own and could be easily located

and accounted for. One of the stages in building a computer memory board is adhering the

integrated circuit chip to the planar board. Simplistically there are 3 objects: the chip and

board (subassemblies) and a quantity of soldier (Raw Material). After completing this

subassembly you'll be left with a smaller quantity of soldier as Raw Material, some of the

to

soldier will be on the subassembly itself, and some will leave as Waste. We're still only

concerned with the soldier but it now exists in at least three places, all of which need to be

identified and stored.

3.2.5 Recycling

Then, of course, in these times of 'greening' our environment, we cannot neglect recycling.

In this part of the Life Cycle an old 'Finished Product' is disassembled. What can be reused

is, and everything else is disposed of as Waste, almost a reverse manufacturing process.

This process adds costs and therefore needs to be included in this analysis.

3.2.6 Waste

The final piece of the Life Cycle yet to be discussed is 'Waste'. As with any manufacturing

process, there are materials left over that have no intrinsic value and are disposed of. In the

case of THSC, disposal is not necessarily a simple or cheap activity. There are usually

special handling requirements or fees imposed by government regulation as to how to

dispose of THSC. Any attempt to activity base cost a THSC must include Waste. Our data

management system must, therefore, be able to keep track of disposal costs and be able to

identify precisely which process the waste was generated.

So we now have the THSC on one hand and the Life Cycle in the other. We've

discussed the product Life Cycle with some of its intricacies and how to represent the

THSC. Already we have seen some merging by acknowledging that a THSC can be a Raw

Material in the Life Cycle. Yet, answers to questions posed earlier cannot yet be supplied.

1 1

To close the gap further, the last step of the design will focus on the manufacturing phase

of the Life Cycle.

3.3 Work Order

While not unique, what the Work Order achieves is to completely detail the manufacture of

a subassembly (and of course the final product by extension).

This 'Work Order' concept works as follows. For every subassembly (including the

Final Product) there is a list of inputs. These inputs are raw materials and subassemblies.

The output(s) would of course be the subassembly being built. Also, the Work Order

entity must contain a Waste attribute. And since manufacturing may not take place in a

single physical location, location should also be an attribute of the Work Order entity. The

Work Order entity could/should also have the ability to record costs like labor, electricity,

special handling, transportation, etc.

Using this Work Order idea, the manufacturing of a product can easily be

represented as a tree. The leaves would represent Raw Material, each node a sub-assemble

(WIP), and the root as being the Finished Product. This makes the intersection of branches

the Work Order entity. Figure 2 shows a depiction of what a Work Order tree might look

like.

Figure 2. Work Order Tree

12

In other words, to produce subassembly F, a Work Order W is generated. This

Order specifies that to construct F, we need subassemblies A and B together with Raw

Material C. Using a previous example, A and B can be the chip and board, respectively.

Where C is the soldier. From this tree, it can also be discovered that to produce

subassembly F, soldier (label C) is used in two places. Not shown, but an integral part of

the Work Order would be quantities of soldier as input, waste, and that which is left on the

subassembly along with attributed previously mentioned.

The grand scheme should now be coming into focus. At the highest level is the

Life Cycle. Inside of that, in the Manufacturing phase, is the Work Order. And in the

Work Order is a part which might be a THSC. There is now a framework to be able to

answer some questions. I have a way to identify where a particular THSC (Raw Material)

was used via the Work Order. This can also focus down to a particular product or

subassembly.

13

One item obvious by its near absence is costs. I have yet to say where to store

costs. I believe this is an implementation issue as there are many ways recording costs can

be achieved. Certainly, though, enough infrastructure has been created to begin

implementation.

CHAPTER 4

IMPLEMENTATION

This was the difficult part. The solution described in the previous section seemed like a

good starting point and would be applicable to many manufacturing situations. You can

see that it went from the very abstract view of the Life Cycle, then focused on the

Manufacturing portion as the Work Order, finally to wind up at the finest definitions of

THSC and cost (a dollar amount). Just figuring out a way to implement it was necessary.

My first attempts were from the relational perspective since that's where all of my

practical experience comes from. It was relatively easy to develop a relational schema.

But the relational design was not what I was interested in developing.

I then attempted to move from the relation schema I conceptualized to an

object-relational design. Starting from the relational schema, it was not apparent to me

what the 'objects' in the object relational schema would be. It was here that I began to

wonder about the applicability of an object-relational approach. But more on that later.

4.1 Object Oriented

I went through several iterations of relational/object-relational schema's that didn't

satisfactorily answer the questions in an efficient manner. At this point I stopped

considering relational anything and began pursuing pure object orientation as a solution.

However, I realized this meant learning, or more accurately trying to learn, object-oriented

design and analysis. I also thought my lack of object oriented knowledge was hindering

my ability in the object relational framework as well.

14

15

To remedy my short comings, I turned to several sources. These sources included,

among others, Design Patterns by Gamma et. al.[10], articles in JavaWorld [13] electronic

magazine, the Gamalan web pages, and many other object oriented and Java publications.

4.1.1 Class Diagram

Learning and truly understand object oriented design and analysis is not a one semester

endeavor. While I am more comfortable, much more experience is needed. But the result

of what I did learn can be seen in Fig 3.

Figure 3 Object Oriented class diagram

Borrowing from a design in UML Distilled by Martin Fowler, the figure is a simple

class diagram showing the classes and their relation to each other. It is meant to mimic the

1 6

Life Cycle/Work Order/THSC concept presented earlier. While the Life Cycle is not

directly evident, this diagram can be construed as the manufacturing phase. Additionally,

since the Part class and its subclasses don't change during the Life Cycle, these could easily

be used with additional classes representing the other parts of the Life Cycle (i.e. Inventory,

Recycling).

In its current form, you wind up with 7 classes. There are 2 interesting pieces of the

diagram that need to be pointed out. The first is the MaterialList class. For a inexperienced

object oriented designer, this class was somewhat perplexing. Since the WorkOrder

contained many lineltems (MaterialList class), and the MaterialList contained only one

Part, couldn't the WorkOrder contain Part(s)? As it works out, the MaterialList class is a

refinement that helps better define what Part is in a WorkOrder. It can allow for an

ordering of Parts in a WorkOrder or can deal with inventory issues that do not belong to a

Part.

The other point of interest is the Part class itself This should be, if I understand

object oriented design and analysis, an abstract class. From this, the diagram shows that the

WIP and RawMaterial classes inherit from Part. This means that WIP and RawMaterial

have the same basic methods and attributes. So now, if I create my MaterialList class with

an instance of Part, it can hold either a Compound or a Component. And if further

specialization is needed, say for instance a distinction between a Raw Material that is a

THSC and one that's not, all that needs to happen is for the new class to inherit Part, and it

too can be used in a MaterialList.

17

4.1.2 Java Application

With some additional design specifications considered and further analysis, the model

could be unproved. But, now I've got an object oriented model to work with. As proof of

concept, I created a Java application (Fig 4) from the model. The applications top level is

the W orkOrder. Viewing down the figure is an obvious visual representation of the

remaInIng classes. That was the goal and its exciting to see a design working like

expected.

Figure 4 Screen capture of Java application

:, 1 f~ qt', 1

1 8

I can now demonstrate the concepts I described earlier. It is possible to navigate

from a WorkOrder entry down to a Part, attach a cost, and move to another Part. It is this

navigation that will make a full implementation of the THSC concept workable.

What you see in Figure 4 is a nice visual picture. But it does not let you see how

the classes actually work. I'll look at the Part and Cost classes in more detail. First the Cost

class. If the class diagram were a tree, the Cost class would be a leaf-node. Several other

classes us it, but it uses no other classes.

The specification for the Cost class is that it holds a 'type' of cost. This could be

something like Manufacturing, Inventory, Acquisition, ... And it also contains a dollar

amount. My Java Cost class also had a phase and unit attribute which Pm not sure are

necessary. Like its attributes, Cost has simple methods including getCost(), getType(),

setCost(), and setType(). These allow access to the private attributes _type and _dollars.

The Part class get a little more interesting. Its attributes include stock keeping

number (Sku), a name, a manufacturer, and a hash set. The hash set is used to hold and

manipulate Cost objects. Part also has some basic access methods like getSku(), getMfg(),

and getName(). But this is where it gets interesting. The Part class also has a methods

called getCosts() and getTotalCost().

If you were to instantiate a Part object called part, a statement like

part.getCosts(); would return all Cost objects associated with that part. If the method took

and argument, say type, it would return only Cost objects of that specific type. These are

not copies of the Cost objects, they are reference to the actual objects. So any manipulation

affect the real objects. And getTotalCost() is similar. But instead if returning objects, it

returns a dollar value representing the sum of each individual Costs dollar attribute.

1 9

Why is this important? Because it is the essence of the navigation through the class

diagram presented earlier. It doesn't matter how 'far' away from the Cost object you get, it

always accessible (if designed right). Say you wanted to find all the Waste costs for the

soldier Part in a WorkOrder. You would issue a statement like:

workorder.getParts("soldier").getCosts("Waste");

Its statements similar to these that my GUI uses to display data. This is why you

can enter a cost for a Part, move to another Part in a different WorkOrder, and then return

to the original Part and have the cost still there.

4.1.3 Object Persistence

In writing the code for these class, I choose to implement both WorkOrder and Part as

composite classes. Hence the hash set I described for the Part class. I also touched on this

previously when I mentioned WorkOrder contains MaterialList. From an object oriented

standpoint, this is an acceptable way of implementing the relationship between WorkOrder

and MaterialList. But the data in this Java application is not persistent. Or, there is no

database behind it to store the objects created. To address this, you could transfer the class

attributes to a relational database (not interested), create mapping to an object-relational

database like PREDATOR (discussed shortly), or store the classes in an object database.

For storing classes in an object database, the ODMG has created a C++ standard for

defining how to create the objects that will be stored. While my application is in Java, its

easy to see how this C++ standard can be applicable in Java.* In the next couple of

paragraphs I attempt to describe how this is done. To help me, I'll be referencing the book

"C++ Object Databases. Programming with the ODMG Standard" by David Jordan.

20

(*Note, since all database class must inherit from d Object in the Standard, a direct

implementation of the Standard in Java impacts Java single inheritance model)

According to that standard, "When an application uses the ODMG interface, a class

must be derived (directly or indirectly) from the ODMG d Object base class so that its

instances can be stored in the database." If I were to convert my WorkOrder class to C++,

the class definition might look something like the following:

class WorkOrder : public d_Object {
private char *name;
private d_Ref<Product> _prod;
private d_Rel_Set<MaterialList, _id> _materials;

What makes any instance of this object persistent is the new operator used. Three

overloaded new() operators are supplied. Using the new() method as follows

WorkOrder wo = new(&db, "WorkOrder") WorkOrder();

would accomplish this. Here &db is a reference to a connection to an object oriented

database.

The C++ definition of the WorkOrder class also introduces 2 ODMG types used to

deal with using persisted objects: d Ref<> and d Rel Set<>. d Ref<Product>, in the case

of the WorkOrder, indicates a reference to a Product object that is stored in the database.

And d Ref Set<MaterialList> is a set representation of "a relationship between two

classes." Its the second type, d Rel Set, that allows us to manage the composite classes.

Reference to MaterialList objects are where they belong, in the WorkOrder class.

For my Part class, the hash set in the original code would be replaced with

d_Rel Set<Cost, id>. And since both the Part and Cost classes would have subclassed off

of d Object, I now have my information stored in a object database.

21

This is a fantastic standard from a new object oriented developers view. I

purchased this book what must be six months ago, or more. As I started reading the book I

realized my grasp of object orientated development and analysis was weak. It wasn't until I

recently returned to it, after studying object orientation and writing the Java app, that I

began to realized how powerful object orientation can be.

4.1.4 Inheritance

Getting back to the Java application, what I have not done is implement the inheritance

outlined for the Part class. This leaves a hole in that there is no class for the THSC and no

way to visualize it. However, in this case I don't see that as significant. MaterialList

already contains Part. If I were to abstract it and create THSC, WIP, RawMaterial, etc.,

these new classes could be saved to 'MaterialLists' Part attribute without change to the

MaterialList class itself. My goal was to only demonstrate the possibility, not create a full

blown application.

4.2 Object Relational

Where does this leave us. I didn't create a relational model because that is not what I'm

studying. And, I believe we can agree that it would be trivial to create. I have, however,

created an object-oriented model and take a good deal of time to show it to be workable.

The last step in my process, and the goal when I started this project, was to move from the

two opposite ends, relational and object-oriented, to the middle ground of object-relational

using PREDATOR.

22

Unfortunately, as a middle ground, object-relational is just that. Its sort-of

relational and sort-of object oriented and, for this design, its not a solution I would choose.

This happens for a couple of reasons I'll discuss.

Again it comes back to the model. This time, instead of moving from the relational

model, I moved from the object model. The initial vision was to take each class in the

object model and make it a PREDATOR EADT. These EADTs needed to be stored, so for

these EADTs, I'd create a relational table for each one. But then I ended up with tables that

looked like Figure 5.

Figure 5 Part Table
wi one field 'pt' of type PartObject Cost table & one field 'ct' of type CostObject

Now that each class is converted to a data type and put in their own table, I needed

a key field to relate them on. Easy enough, just add a field to the table that's a counter.

And to complete the relationship, a foreign key field will be needed in some tables. The

result is shown in Figure 6.

23

Figure 6 Relational Schema with EADTs

I should note here that I implemented the foreign keys as an attribute of the EADT.

This is what is reflected in the code in the appendix. But you will see in a moment why

this is not a significant issue.

It didn't take long, in fact I only implemented 2 EADTs in PREDATOR before it

became completely obvious that we are really dealing with a relational model (Fig 7). The

EADTs in this case turned out to be nothing more than a composite key. A little

normalization, and its all cleaned up. At this point, implementing additional EADTs

becomes nothing more than a programming exercise. I would benefit more by using my

time to read object oriented books.

24

Figure 7 Relational Schema with EADT Attributes Converted to Fields

This is not the only issue I have with object-relational databases and the THSC

problem. In the object oriented application, when I designed the Part class it included a

hash set data structure (I could have used and array). This hash set kept in it one or more

actual Cost objects: a one-to-many relationship. So, one Part object held references to its

related Cost objects. Which also held true when I introduced the ODMG d_Rel_Set class

and made Part and Cost persistent. This is the opposite result of what normalization on a

relational databases does. There, it is the Costs responsibility to know its Part. I don't see

any straight forward logical way to keep Parts composition intact in PREDATOR.

Also, I have a hard time seeing how PREDATOR can handle inheritance. The WIP

and RawMaterial sub classing off of Part work well in the object oriented design. Even

persistent in the ODMG standard, using the following statement satisfies inheritance:

Part_wip = new(&dw, "WIP") WIPO;

But do I need to create a separate EADT and relational entity for each one in

PREDATOR? If so, they are no longer related. Will I be able to store a WIP in the Part

25

field? And if I can, how will I know its a WIP as opposed to a THSC? I leave these as

questions because I don't know how to solve these problems.

I also have another thought. I'm not sure the magnitude, but consider this. Say you

discover that PREDATOR is a good solution for image type data. Doing manipulations

and calculations. PREDATOR implements the EADTs as integral to the database engine.

What happens to performance if you have several users performing CPU or I/0 intensive

operations on these image types?

CHAPTER 5

CONCLUSION

I am both disappointed and excited about what I've learned. The disappointment is the

understanding that, for this topic (THSC), PREDATOR's object-relational EADTs are not a

good solution. Could they be made to work, absolutely. But it is my belief that its just as

important to know when a technology doesn't apply as when it does.

This does not mean PREDATOR is not a good fit for another topic. A lot of

individuals smarter than I feel that object relational databases do offer good solutions and

that PREDATOR is a excellent research tool. The NSF awards attest to that. Even so, I

stand by my conclusion.

The excitement, on the other hand, is the growing awareness of, and skill in,

designing object oriented solutions. This was definitely a surprise, but looking back it

seems terribly logical. Even though PREDATOR had relational foundations, the concept

as I took it of EADTs was object oriented. To make a true evaluation, I needed to know

both relational and object oriented design. Relational I know/knew. I now know object

oriented design as well. Although no where near as well as relational.

My recommendations to come out of this work would be to keep looking for

subject matter that is more tailored to PREDATOR if you wish to pursue that technology.

However, to be intellectually honest, you need a solid grasp of object oriented design.

object orientation is a way of thinking, not just an implementation. It has dramatically

changed the way I view data.

26

27

I spent the better part of 3 months trying to learn to think object oriented. Had I not

spent the time, I would not have developed the object oriented model presented here. And

it follows that I wouldn't have come to the same conclusion.

In fact, if given the opportunity, and gazing into a crystal ball, I would concentrate

on a purely object oriented database solution. I've now had a taste of object oriented and

I'm convinced its the future course.

My other recommendation, this to the group in CEES working on the THSC

problem, I believe the concept I outlined can lead you being able to answers the questions

of your users. And when you go looking for an implementation, use a relational database.

APPENDIX A

THSC LISTS

A partial collection of hazardous substance lists.

1. The EPA list of toxic pollutants and hazardous substance prepared under sections 307
and 311 of the Federal Clean Water Act

2. The EPA list of hazardous air pollutants prepared under section 112 of the Federal
Clean Air Act

3. The EPA list of restricted use pesticides found at 40 CFR 162.30 (relating to optional
procedures for classification of pesticide uses by regulation).

4. The EPA Carcinogen Assessment Group's List of Carcinogens
5. The OSHA list of toxic and hazardous substances found in 29 CFR 1910, Subpart Z
6. The International Agency for Research on Cancer sublist, entitled Substances Found

to Have at Least Sufficient Evidence of Carcinogenicity in Animals
7. The National Toxicology Program's list of substances published in the latest Annual

Report on Carcinogens
8. The National Fire Protection Association list found in Hazardous Chemicals Data

(NFPA 49)
9. The National Fire Protection Association list found in Fire Hazard Properties of

Flammable Liquids, Gases, Volatile Solids (NFPA 325M), but only those substances
found on sublists for health items, categories 2, 3 and 4; sublists for reactivity items,
categories 3 and 4; sublists for flammability, categories 3 and 4

10. The American Conference of Governmental Industrial Hygienists' list found in
Threshold Limit Value for Chemical Substances and Physical Agents in the
Workplace.

11.	 The National Cancer Institute sublist, entitled Carcinogens Bioassays With at Least
Evidence Suggestive of Carcinogenic Effect, but including only those substances
which satisfy criteria of the National Toxicology Program indicating significant
carcinogenic effect.

28

APPENDIX B

SOURCE CODE

Due to the nature and format of this document, a complete listing of all source code is not

included. However, several pages are included at the back for every source file. If the

source is less than three pages, it is included in its entirity. Otherwise, the souce code is

terminated with an elipsis (...) after three pages.

The full source is available on request by emailing jancera@ibm.net

29

REFERENCES

1. M. Fowler, UML Distilled. Applying The Standard Object Modeling Language,
Addison Wesley Longman, Reading, MA, 1997

2. D. Jordan, C++ Object Databases. Programming with the ODMG Standard,
Addison Wesley Longman, Reading, MA, 1998

3. NJIT CEES home, http://www.njit.edu/CEES

4. NJIT NJPIES project, http://njpies.njit.edu/

5. P. Seshadri, PREDATOR, Computer Science Department, CORNELL
UNIVERSITY, http://simon.cs.comell.edu/Info/Projects/PREDATOR/

6. P. Seshadri, PREDATOR Design Document, Computer Science Department,
CORNELL UNIVERSITY,
http://simon.cs.comeledu/Info/Projects/PREDATOR/designdoc.html

7. National Science Foundation, PREDATORdocument,
http://www.nsfgov/cgi-bin/showaward?award=9702149

8. Shore Storage Manager, Computer Science Department, University of Wisconsin,
http://www.cs.wisc.edu/shore/

9. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design, Prentice-Hall, Inc, Englewood Cliffs,
NJ, 1991

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley Longman, Reading, MA,
1995

11. M. Stonebraker and P. Brown, Object-Relational DBMSs: Tracking the Next Great
Wave, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1999

12. C.J. Berg, Advanced Java: Development for Enterprise Applications, Prentice Hall
PTR, Upper Saddle River, NJ, 1998

13.	 Java World, http://www.javaworld.com

30

PartC

/***************
* Part EADT
* Class definition code
* adapted by Craig Jancerak
* November 1998
* New Jersey Institute of Technology
**************/

#include <stdio.h>
#include <string.h>
#include "part.h"
#include "funcexpr.h"
#include "aggrexpr.h"
#include "JavaUDF.h"

//
// Part Number ADT
//

XxxBasicType XxxPartADT::PartTypeId;

XxxPartADT::XxxPartADT(XxxBasicType Id)
: XxxSmallFixedADT(Id, "part", sizeof(PartStruct))

PartTypeld = Id;
/*********

Register methods for Part
each function name (eg sku()) has an entry

*********/
NumMethods = 4;
MethArray = new FuncMethodInfo* [NumMethods];
MethArray[0] = new FuncMethodInfo("sku",XXX_STRING, 0,0,

(ExecuteFunc)(PlanInfo::execSku),0);
MethArray[1] = new FuncMethodInfo("name",XXX_STRING, 0,0,

(ExecuteFunc)(PlanInfo::execName),0);
MethArray[2] = new FuncMethodInfo("mfg",XXX_STRING, 0,0,

(ExecuteFunc)(PlanInfo::execMfg),0);
MethArray[3] = new FuncMethodInfo("subclass",XXX_INT, 0,0,

(ExecuteFunc)(PlanInfo::execSubclass),0);

// constructor
XxxPartADT::-XxxPartADT()

XxxErrCode XxxPartADT::methOptimize(XxxFuncParseInfo* FuncParse,
XxxValueExprPlan* OwnerPlan,
XxxValExprPlanList* ArgPlans,
XxxFuncPlanlnfo*& FPlan) const

if(!MethArray[FuncParse->MethodIndex]->OptFunc) [

31

32

if(IMethArray[FuncParse->MethodIndexl->OptFunc)
FPlan = new Planlnfo(FuncParse, (ArgPlans?ArgPlans->Count():0));
return XXX_OK;

}

else
return XxxADTClass::methOptimize(FuncParse, OwnerPlan,

ArgPlans, FPlan);

}

/*

function to specify how the attribute of Part are written
to outstream (screen, disk, ...)
*/

XxxErrCode XxxPartADT::WriteText(ostream& OutStream,
const XxxADTValue* Object,
const XxxADTMetaInfo* MetaInfo) const

PartStruct *CVal = (PartStruct *)Object;
OutStream << CVa1->_sku << " "

<< CVal->_name << " "
« cval - > mfg « n n
<< CVal->_subclass;

return XXXOK;

/* 	

function to specify how the attribute of Part are read
from instream (screen, disk, ...). Also used where
insert statements are issued.
*/

XxxErrCode XxxPartADT::ReadText(istream& InStream,
XxxADTValue* ObjectRef,
const XxxADTMetaInfo* MetaInfo) const

PartStruct *CVal = (PartStruct *)ObjectRef;
ASSERT(CVal);
CVal->Init(); 	 // ???????
/*
*/

InStream >> CVal->_sku
>> CVal-> name
>> CVal-> mfg
>> CVal->_subclass;

if (InStream.bad()) [
XXXNOTE_ERROR(XXX_BADPARSE,

"The proper syntax for a part number is: sku name mfg 1");
return XXX_NOT_OK;

return XXXOK;
)

33

/*

method that defines how two instances of class are equal
*/

XxxBool XxxPartADT::Equals(const XxxADTValue* Obj1,
const XxxADTMetaInfo* MInfol,
const XxxADTValue* Obj2,
const XxxADTMetalnfo* MInfo2) const

PartStruct *CVall = (PartStruct *)Objl;
PartStruct *CVa12 = (PartStruct *)Obj2;

ASSERT((CVa11 && CVa12));
if (CVa11->_sku == CVa12->_sku)

return XXX_TRUE;
else

return XXX_FALSE;

//
- -
//

//OWNER: Fabian Camargo DATE: 1/29/97
//PURPOSE: Returns a bounding box, which can then be used for an rtree
search
//NOTES: This is not really useful in itself, but it was used to test and
// debug the rtree code.

XxxBool
XxxPartADT::GetBoundingBox(const XxxADTValue*& Object,

XxxBoundingBox& Box)

// code removed. cgj

/*

casting functions
determines whether Part can be convert into or from
another class
*/

XxxBool XxxPartADT::CanCastTo(XxxBasicType TargetType,
const XxxADTMetalnfo* SourceMetaInfo,
const XxxADTMetalnfo* TargetMetaInfo)

return XXX_FALSE;

XxxErrCode XxxPartADT::CastTo(XxxBasicType TargetType,
const XxxADTMetalnfo* SourceMetainfo,
const XxxADTMetalnfo* TargetMetalnfo,
XxxADTValue* OldObject,
XxxADTValue* NewObject)

{

34

Partil

/***************

* Part EADT
* Class Header code
* adapted by Craig Jancerak
* November 1998
* New Jersey Institute of Technology
****************/

#ifndef XXX_PART_H
#define XXX_PART_H
#include "genadt.h"
#include "optrules.h"
#include "BoundingBox.h"
#include "adtfunc.h"

/**

// this type represents part numbers
*/

class XxxPartADT : public XxxSmallFixedADT
public:

static XxxBasicType PartTypeld;
protected:

class PartStruct : public XxxADTValue [public:
int _subclass;
char _sku[30];
char _name[30];
char mfg[30];

};

//// plan structure for methods on part numbers
class Planlnfo : public XxxFuncPlanlnfo
friend class XxxPartADT;
protected :

XxxErrCode execSku(XxxValueEnv* Env, XxxADTValue *ReturnValue) const;
XxxErrCode execName(XxxValueEnv* Env, XxxADTValue *ReturnValue)

const;
XxxErrCode execMfg(XxxValueEnv* Env, XxxADTValue *ReturnValue) const;
XxxErrCode execSubclass(XxxValueEnv* Env, XxxADTValue *ReturnValue)

const;

public :
Planlnfo(const XxxFuncParselnfo* FuncParse, int argCount)

XxxFuncPlanlnfo(FuncParse, argCount)[}
i;

virtual XxxErrCode methOptimize(XxxFuncParseInfo* FuncParse,
XxxValueExprPlan* OwnerPlan,
XxxValExprPlanList* ArgPlans,
XxxFuncPlanlnfo*& FPlan) const;

public:

35

XxxPartADT(XxxBasicType Id);
virtual -XxxPartADT();

virtual XxxErrCode WriteText(ostream& OutStream,
const XxxADTValue* Object,
const XxxADTMetalnfo* Metalnfo) const;

virtual XxxErrCode ReadText(istream& InStream,
XxxADTValue* ObjectRef,
const XxxADTMetaInfo* Metalnfo) const;

virtual XxxBool Equals(const XxxADTValue* Objl,
const XxxADTMetaInfo* MInfol,
const XxxADTValue* Obj2,
const XxxADTMetalnfo* MInfo2) const;

/**

* Determines if this ADT can cast an object of another type into
* its own type.
* Oparam SourceType The type to cast from
* Oparam SourceMetalnfo The meta info of the object to be casted
* Oparam TargetMetalnfo The meta info of the new object to be created
*/
virtual XxxBool CanCastFrom(XxxBasicType SourceType,

const XxxADTMetaInfo* SourceMetainfo,
const XxxADTMetalnfo* TargetMetalnfo);

/**

* Executes a cast from another type into this type.
* Oparam CastType The type id of the old object
* Oparam SourceMetalnfo The meta info of the object to be casted
* Oparam TargetMetalnfo The meta info of the new object to be created
* Oparam OldObject The object to be casted
* Oparam NewObject The new object to be created
*/
virtual XxxErrCode CastFrom(XxxBasicType SourceType,

const XxxADTMetalnfo* SourceMetalnfo,
const XxxADTMetaInfo* TargetMetalnfo,
XxxADTValue* OldObject,
XxxADTValue* NewObject);

/**

* Determines if this ADT can cast an object of its type into
* another type.
* Oparam TargetType The type to cast to
* Oparam SourceMetalnfo The meta info of the object to be casted
* Oparam TargetMetalnfo The meta info of the new object to be created
*/
virtual XxxBool CanCastTo(XxxBasicType TargetType,

const XxxADTMetaInfo* SourceMetainfo,
const XxxADTMetalnfo* TargetMetalnfo);

/**

* Executes a cast from this type into another type.
* Oparam CastType The type id of the new object
* Oparam SourceMetalnfo The meta info of the object to be casted
* Oparam TargetMetalnfo The meta info of the new object to be created
* Oparam OldObject The object to be casted
* Oparam NewObject The new object to be created

36

Partmethods.0

/***************
* Part EADT
* implementation code for EADT methods
* adapted by Craig Jancerak
* November 1998
* New Jersey Institute of Technology
**************/

#include "part.h"
#include "aggrexpr.h"

// .sku() method
XxxErrCode XxxPartADT::PlanInfo::
execSku(XxxValueEnv* Env, XxxADTValue *ReturnValue) const{

PartStruct* CV = (PartStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 0));
strcpy(((XxxCoreADTClass::StrValue *)ReturnValue)->Value, CV->_sku);
return XXX OK;

// .name() method
XxxErrCode XxxPartADT::PlanInfo::
execName(XxxValueEnv* Env, XxxADTValue *ReturnValue) const{

PartStruct* CV = (PartStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 0));
strcpy(((XxxCoreADTClass::StrValue *)ReturnValue)->Value, CV->_name);
return XXX_OK;

// .mfg() method
XxxErrCode XxxPartADT::PlanInfo::
execMfg(XxxValueEnv* Env, XxxADTValue *ReturnValue) const{

PartStruct* CV = (PartStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 0));
strcpy(((XxxCoreADTClass::StrValue *)ReturnValue)->Value, CV->_mfg);
return XXX_OK;

// .subclass method
XxxErrCode XxxPartADT::PlanInfo::
execSubclass(XxxValueEnv* Env, XxxADTValue *ReturnValue) const[

PartStruct* CV = (PartStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 0));
((XxxCoreADTClass::IntValue *)ReturnValue)->Value = CV->_subclass;
return XXX_OK;

Cost.0

/***************

* Cost EADT
* Class definition code
* adapted by Craig Jancerak
* November 1998
* New Jersey Institute of Technology
**************/

#include <stdio.h>
#include <string.h>
#include "cost.h"
#include "funcexpr.h"
#include Haggrexpr.h"
#include "JavaUDF.h"

//
// Cost Number ADT
//

XxxBasicType XxxCostADT::CostTypeId;

XxxCostADT::XxxCostADT(XxxBasicType Id)
: XxxSmallFixedADT(Id, "cost", sizeof(CostStruct))

CostTypeld = Id;
// Register methods for Cost
NumMethods = 6;
MethArray = new FuncMethodInfo* [NumMethods];
MethArray[0] = new FuncMethodInfo("type",XXX_STRING, 0,0,

(ExecuteFunc)(PlanInfo::execType),0);
MethArray[1] = new FuncMethodInfo(Hphase",XXX_STRING, 0,0,

(ExecuteFunc)(PlanInfo::execPhase),0);
MethArray[2] = new FuncMethodInfo("dollarsH,XXX_DOUBLE, 0,0,

(ExecuteFunc)(PlanInfo::execDollars),0);
MethArray[3] = new FuncMethodInfo("partID",XXX_INT, 0,0,

(ExecuteFunc)(PlanInfo::execPartID),0);
MethArray[4] = new FuncMethodInfo(Hincrease",XXX_POUBLE, 0,0,

(ExecuteFunc)(PlanInfo::execIncrease),1,XXXDOUBLE);
MethArray[5] = new FuncMethodInfo("decrease",XXX DOUBLE, 0,0,

(ExecuteFunc)(PlanInfo::execDecrease),1,XXX_DOUBLE);
MethArray[6] = new FuncMethodInfo(Hreset",XXX_DOUBLE, 0,0,

(ExecuteFunc)(PlanInfo::execReset),1,XXX_DOUBLE);

XxxCostADT::-XxxCostADT()

37

XxxErrCode XxxCostADT::methOptimize(XxxFuncParseInfo* FuncParse,

38

XxxValueExprPlan* OwnerPlan,
XxxValExprPlanList* ArgPlans,
XxxFuncPlanInfo*& FPlan) const

{

if(!MethArray[FuncParse->MethodIndex] - >OptFunc) {

FPlan = new Planlnfo(FuncParse, (ArgPlans?ArgPlans->Count():0));
return XXX OK;

else
return XxxADTClass::methOptimize(FuncParse, OwnerPlan,

ArgPlans, FPlan);

XxxErrCode XxxCostADT::WriteText(ostream& OutStream,
const XxxADTValue* Object,
const XxxADTMetaInfo* Metalnfo) const

{
CostStruct *CVa1 = (CostStruct *)Object;
OutStream << CVal->_type << "

<< CVal->_phase << " "
<< CVal->_dollars « H

<< CVal->_partOID;
return XXX OK;

}

XxxErrCode XxxCostADT::ReadText(istream& InStream,
XxxADTValue* ObjectRef,
const XxxADTMetaInfo* Metalnfo) const

{

CostStruct *CVal = (CostStruct *)ObjectRef;
ASSERT(CVal);
CVal->Init(); 	 // ??????? cgj
InStream >> CVal->_type

>> CVal->_phase
>> CVal->_dollars

CVal->_partOID;
if (InStream.bad()) {
XXX NOTE_ERROR(XXX_BADPARSE,

"The proper syntax for a cost number is: type phase dollar
partld");

return XXX_NOT_OK;

return XXX_OK;

//

XxxBool XxxCostADT::Equals(const XxxADTValue* Objl,

const XxxADTMetaInfo* MInfol,
const XxxADTValue* Obj2,
const XxxADTMetaInfo* MInfo2) const

39

CostStruct *CVal1 = (CostStruct *)Obj1;
CostStruct *CVal2 = (CostStruct *)Obj2;

ASSERT((CVa11 && CVal2));
if ((CVall->partOID == CVa12->partOID) && (CVa11->_type ==

CVa12->_type))
return XXX_TRUE;

else
return XXX_FALSE;

//

//OWNER: Fabian Camargo DATE: 1/29/97
//PURPOSE: Returns a bounding box, which can then be used for an rtree
search
//NOTES: This is not really useful in itself, but it was used to test and
// debug the rtree code.

XxxBool
XxxCostADT::GetBoundingBox(const XxxADTValue*& Object,

XxxBoundingBox& Box)

/*
removed by cgj

*/

/* 	
* casting functions
*/

XxxBool XxxCostADT::CanCastTo(XxxBasierype TargetType,
const XxxADTMetaInfo* SourceMetalnfo,
const XxxADTMetalnfo* TargetMetalnfo)

return =FALSE;

XxxErrCode XxxCostADT::CastTo(XxxBasicType TargetType,
const XxxADTMetaInfo* SourceMetalnfo,
const XxxADTMetaInfo* TargetMetalnfo,
XxxADTValue* OldObject,
XxxADTValue* NewObject)

XxxBool XxxCostADT::CanCastFrom(XxxBasicType SourceType,
const XxxADTMetaInfo* SourceMetainfo,
const XxxADTMetalnfo* TargetMetalnfo)

return XXX_FALSE;

40

Cost.H

/***************

* Cost EADT
* Class Header code
* adapted by Craig Jancerak
* November 1998
* New Jersey Institute of Technology
****************/

#ifndef XXX_COST_H
#define XXX_COST_H
#include "genadt.h"
#include "optrules.h"
#include "BoundingBox.h"
#include "adtfunc.h"

/**

// this type represents cost numbers
*/

class XxxCostADT : public XxxSmallFixedADT f
public:

static XxxBasicType CostTypeld;
protected:

class CostStruct : public XxxADTValue (public:
char 	 _type[30];
char 	 _phase(301;
double _dollars;
int 	 partOID;

1;

//// plan structure for methods on cost numbers
class PlanInfo : public XxxFuncPlanlnfo f
friend class XxxCostADT;
protected :

XxxErrCode execType(XxxValueEnv* Env, XxxADTValue *ReturnValue)
const;

XxxErrCode execPhase(XxxValueEnv* Env, XxxADTValue *ReturnValue)
const;

XxxErrCode execDollars(XxxValueEnv* Env, XxxADTValue *ReturnValue)
const;

XxxErrCode execPartID(XxxValueEnv* Env, XxxADTValue *ReturnValue)
const;

XxxErrCode execincrease(XxxValueEnv* Env, XxxADTValue *ReturnValue)
const;

XxxErrCode execDecrease(XxxValueEnv* Env, XxxADTValue *ReturnValue)
const;

XxxErrCode execReset(XxxValueEnv* Env, XxxADTValue *ReturnValue)
const;

public :
Planlnfo(const XxxFuncParselnfo* FuncParse, int argCount)
: XxxFuncPlanInfo(FuncParse, argCount)(1

1 ;

41

virtual XxxErrCode methOptimize(XxxFuncParseinfo* FuncParse,
XxxValueExprPlan* OwnerPlan,
XxxValExprPlanList* ArgPlans,
XxxFuncPlanInfo*& FPlan) const;

public:
XxxCostADT(XxxBasicType Id);
virtual -XxxCostADT();

virtual XxxErrCode WriteText(ostream& OutStream,
const XxxADTValue* Object,
const XxxADTMetalnfo* Metalnfo) const;

virtual XxxErrCode ReadText(istream& InStream,
XxxADTValue* ObjectRef,
const XxxADTMetaInfo* Metainfo) const;

virtual XxxBool Equals(const XxxADTValue* Objl,
const XxxADTMetalnfo* MInfol,
const XxxADTValue* Obj2,
const XxxADTMetalnfo* MInfo2) const;

/**

* Determines if this ADT can cast an object of another type into
* its own type.
* Oparam SourceType The type to cast from
* ®param SourceMetainfo The meta info of the object to be casted
* Oparam TargetMetalnfo The meta info of the new object to be created
*/

virtual XxxBool CanCastFrom(XxxBasicType SourceType,
const XxxADTMetalnfo* SourceMetalnfo,
const XxxADTMetaInfo* TargetMetalnfo);

/**

* Executes a cast from another type into this type.
* Oparam CastType The type id of the old object
* Oparam SourceMetalnfo The meta info of the object to be casted
* Oparam TargetMetalnfo The meta info of the new object to be created
* Oparam OldObject The object to be casted
* Oparam NewObject The new object to be created
*/

virtual XxxErrCode CastFrom(XxxBasicType SourceType,
const XxxADTMetalnfo* SourceMetalnfo,
const XxxADTMetalnfo* TargetMetalnfo,
XxxADTValue* OldObject,
XxxADTValue* NewObject);

/**

* Determines if this ADT can cast an object of its type into
* another type.
* Oparam TargetType The type to cast to
* Oparam SourceMetalnfo The meta info of the object to be casted
* Oparam TargetMetalnfo The meta info of the new object to be created
*/

virtual XxxBool CanCastTo(XxxBasicType TargetType,
const XxxADTMetalnfo* SourceMetalnfo,

42

Costmethods.0

/***************
* Cost EADT
* implementation code for EADT methods
* adapted by Craig Jancerak
* November 1998
* New Jersey Institute of Technology
**************/

#include Hcost.hi ,

#include Haggrexpr.hP

// .type()
XxxErrCode XxxCostADT::PlanInfo::
execType(XxxValueEnv* Env, XxxADTValue *ReturnValue) const{
CostStruct* CV = (CostStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 0));
strcpy(((XxxCoreADTClass::StrValue *)ReturnValue) ->Value, CV - >_type);
return XXX_OK;

7/ .phase()
XxxErrCode XxxCostADT::PlanInfo::
execPhase(XxxValueEnv* Env, XxxADTValue *ReturnValue) const(
CostStruct* CV = (CostStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 0));
strcpy(((XxxCoreADTClass::StrValue *)ReturnValue)->Value, CV->phase);
return XXX_OK;

// .dollars()
XxxErrCode XxxCostADT::PlanInfo::
execDollars(XxxValueEnv* Env, XxxADTValue *ReturnValue) const{
CostStruct* CV = (CostStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 0));
((XxxCoreADTClass::DblValue *)ReturnValue)->Value = CV->_dollars;
return XXX_OK;

// .partid()
XxxErrCode XxxCostADT: :PlanInfo::
execPartID(XxxValueEnv* Env, XxxADTValue *ReturnValue) const{

CostStruct* CV = (CostStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 0));
((XxxCoreADTClass::IntValue *)ReturnValue) - >Value = CV->_partOID;
return XXX_OK;

// .increase(x)
XxxErrCode XxxCostADT::PlanInfo::
execlncrease(XxxValueEnv* Env, XxxADTValue *ReturnValue) const{
CostStruct* CV = (CostStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 1));

43

double* ArgCV = ((double*)(Env->ArgValsPtrs[0]));
((CostStruct *)ReturnValue)->_dollars = CV->_dollars + *ArgCV;
return XXX_OK;

// .decrease(x)
XxxErrCode XxxCostADT::PlanInfo::
execDecrease(XxxValueEnv* Env, XxxADTValue *ReturnValue) const{

CostStruct* CV = (CostStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 1));
double* ArgCV = ((double*)(Env->ArgValsPtrs[C]));
((CostStruct *)ReturnValue)->dollars = CV->_dollars - *ArgCV;
return XXX_OK;

// .reset(x)
XxxErrCode XxxCostADT::PlanInfo::
execReset(XxxValueEnv* Env, XxxADTValue *ReturnValue) const[
CostStruct* CV = (CostStruct*)(Env->OwnerValPtr);
ASSERT((Env->NumArgs == 1));
double* ArgCV = ((double*)(Env->ArgValsPtrs(0)));
((CostStruct *)ReturnValue)->dollars = *ArgCV;
return XXX_OK;

Main.java

import Thesis.THSC.*;

//import com.sun.java.util.collections.*;
import COM.objectspace.jg1.*;
import java.io.*;
import java.util.*;
import java.awt.event.*;

/**

* This class was generated by a SmartGuide.
*

44

*/

public class Main
private

the gui
private
private
private
private

Visual 	 _visual = null; 	 // this the just

WorkOrder _wo = null;
ThscPart 	 part = null;
ThscCost 	 _cost = null;
HashSet 	 _orders = null;

/**

* inner class used by the _visual objects Work Order Add button.
* When that button is pushed the Desc, Loc, and Qty text fields
* are read and a new WorkOrder object is created and added to
* to the _orders HashSet. An item is also added to the
* Work Order List component.
*/

class AddWOListener implements ActionListener {

public void actionPerformed(ActionEvent evt) f
_yisual.ivjAddWO.setEnabled(false);
Stringdesc = _visual.ivjW0Desc.getText();
Stringloc = _yisual.ivjW0Loc.getText();
int 	 qty;

if (_yisual.ivjW0Qty.getText().1ength() > 0)
qty = new Integer(_yisual.ivjW0Qty.getText()

).intValue();
) else {

qty = 0;

if (desc.length()>0 & loc.length()>0 & qty>0)
wo = new WorkOrder(desc, loc, qty);

_orders.add(wo);
_yisual.ivjWorkOrderList.add(wo.toString());
_visual.ivjW0Desc.setText(null);
_visual.ivjW0Loc.setText(null);
_yisual.ivjW0Qty.setText(null);

System.out.println(_orders.size());
_visual.ivjAddWO.setEnabled(true);

45

/**

* inner class used by the _visual objects Materials Add button.
*/

class AddPartListener implements ActionListener
public void actionPerformed(ActionEvent evt) {

_yisual.ivjAddPart.setEnabled(false);
Stringsku = _yisual.ivjPartSku.getText();
Stringname = _visual.ivjPartName.getText();
Stringmfg = _yisual.ivjPartMfg.getText();
int 	 qty;

if (_yisual.ivjPartQty.getText().length() > 0) {
qty = new Integer(_yisual.ivjPartQty.getText()

).intValue();
} else

qty = 0;

if (sku.length()>0 & name.length()>0 & mfg.length()>0 &
qty>0)

part = new ThscPart(sku, name, mfg);
String m = wo.addMaterials(part, qty);
_visual. ivjMaterialListList.add(m);
_yisual.ivjPartSku.setText(null);
_visual.ivjPartName.setText(null);
_yisual.ivjPartMfg.setText(null);
_yisual.ivjPartQty.setText(null);

System.out.println(wo.getMaterialCount());
visual.ivjAddPart.setEnabled(true);

/**

* inner class used by the _visual objects Cost Add button.
*/

class AddCostListener implements ActionListener
public void actionPerformed(ActionEvent evt)

_yisual.ivjAddCost.setEnabled(false);
Stringtype = _yisual.ivjCostType.getText();
doubleamt;

if (_yisual.ivjCostAmt.getText().length() > 0)
amt = new Double(_yisual.ivjCostAmt.getText()

).doubleValue();
} else

amt = 0;

if (type.length()>0 & amt>0)
_cost = new ThscCost(type, amt);
_part.addCost(_cost);

46

_visual.ivjCostList.add(_cost.toString());
_yisual.ivjCostType.setText(null);
_visual.ivjCostAmt.setText(null);

System.out.println(_wo.getMaterialCount());
visual.ivjAddCost.setEnabled(true);

/**

* inner class that is used by the _visual objects Work Order List
component.

* When an item in the Work Order list is selected, the WorkOrder
object (yo) is

* interogated to see if it has any associated Materials. If it
does, the

* Materials List gets populated.
*/

class WorkOrderListListener implements ItemListener {

public void itemStateChanged (ItemEvent evt) {

int adv = 1;
String iteration = null;
String selected =

_yisual.ivjWorkOrderList.getSelecteditem();
WorkOrder wo = null;
HashSetlterator i = _orders.begin();

System.out.println("\nLooking for: " + selected);
System.out.println("iterating " + _orders.size() + U

time(s)");

//find the actual workorder object
while (i.hasMoreElements()) {

iteration = i.get().toString();
System.out.println("\tchecking item " + iteration

) ;

if (selected.equals(iteration)) [
System.out.println("\t--- FOUND ---ll);

WO = (WorkOrder)i.get();
adv = i.distance(_orders.end());

i.advance(adv);

_yisual.ivjMaterialListList.removeAll();
_visual.ivjCostList.removeAll();
visual.ivjPartsText.setText(null);

_yisual.ivjNewMaterialsPanel.setEnabled(true);
_yisual.ivjAddPart.setEnabled(true);

i = wo.getMaterials(); // getMaterials is a funs that
rtns an iterator of materials contained in a workorder

47

MaterialListjava

package Thesis.THSC;
import com.sun.java.util.collections.*;
/**
* This class was generated by a SmartGuide.

*/

public class MaterialList {
private int _qty;
private ThscPart part;
private WorkOrder wo;

/**

* This method was created by a SmartGuide.
*/

public MaterialList (WorkOrder wo, ThscPart part, int qty)
qty = qty;
_part = part;
wo = wo;

/**

* This method was created by a SmartGuide.
* @return Thesis.THSC.ThscPart
*/

public ThscPart getPart()
return part;

/**

* This method was created by a SmartGuide.
* @return int
*/

public int getQty() {
return _qty;

/**

* This method was created by a SmartGuide.
* @return Thesis.THSC.ThscPart
* Oparam part Thesis.THSC.ThscPart
*/

public ThscPart setPart(ThscPart part) {
_part = part;
return part;

/**

* This method was created by a SmartGuide.
* Oparam newqty int
*/

public void setQty(int newqty) {
_qty = newqty;
return;

/**

* Returns a String that represents the value of this object.
*/

public String toString() {return (_part.toString() + " qty + _qty); }

WorkOrder.java

package Thesis.THSC;
import java.util.*;
//import com.sun.java.util.collections.*;
import COM.objectspace.jg1.*;
/**
* This class was generated by a SmartGuide.
*
*/

public class WorkOrder f
private static int_staticnumber = 9;
private int 	 worknumber;
private String 	 _desc = null;
private Date 	 _dateissued = null ;
private String 	 _location = null ;
private int 	 _qty = 0;

private HashSet 	 materials = null;
/**
* This method was created by a SmartGuide.
*/

public WorkOrder (String desc, String loc, int qty)
_worknumber = ++_staticnumber;
desc = desc;
_dateissued = new Date();
_location = loc;
_qty = qty;

materials = new HashSet(true);

/**
* This method was created by a SmartGuide.
* return String
* Oparam part Thesis.THSC.ThscPart
* Oparam qty int
*7

public String addMaterials(ThscPart part, int qty) f
MaterialList ml = new MaterialList(this, part, qty);
if (_materials.add(ml) == null)

return ml.toString();
return "";

/**
* This method was created by a SmartGuide.
* •return java.lang.String
*/

public String equals()
return ("Order#" + _worknumber + " " _desc);

/**
* This method was created by a SmartGuide.
* return java.lang.String
*/

public String getDesc() f

48

49

return _desc;

/**

* This method was created by a SmartGuide.
* @return java.util.Date
*/

public Date getlssued() {

return _dateissued;

/**

* This method was created by a SmartGuide.
* @return int
*/

public int getMaterialCount() {
return materials.size();

/**

* This method was created by a SmartGuide.
* @return COM.objectspace.jgl.HashSetIterator
*/

public HashSetlterator getMaterials() f
return materials.begin();

/**

* This method was created by a SmartGuide.
* @return
*/

public int getOrderNumber()
return worknumber;

/**

* This method was created by a SmartGuide.
* @return int
*/

public int getQty()
return _qty;

/**

* This method was created by a SmartGuide.
* @return int * Oparam newqty int
*/

public int setQty(int newqty) f
_qty = newqty;
return _qty;

/**

* This method was created by a SmartGuide.
* @return java.lang.String
*/

public String toString()
//return (_dateissued + " - Order#

Integer.toString(worknumber) + _desc + " for + Integer.toString(_qty));
return ("Order#" + worknumber + 	 _desc + " qty " + _qty); I

50

VisuaLjava

package Thesis.THSC;
/**

* This class was generated by a SmartGuide.
*/

public class Visual extends java.awt.Frame implements
java.awt.event.ActionListener, java.awt.event.WindowListener I

public java.awt.Button ivjAddCost = null;
public java.awt.Button ivjAddPart = null;
public java.awt.Button ivjAddWO = null;
public java.awt.TextField ivjCostAmt = null;
public java.awt.List ivjCostList = null;
public java.awt.TextField ivjCostType = null;
public java.awt.Button ivjEXIT = null;
public java.awt.Label ivjlCosts = null;
public java.awt.Label ivjlMaterialList = null;
public java.awt.Label ivjlParts = null;
public java.awt.Label ivjlWOdesc = null;
public java.awt.Label ivjlWOdescl = null;
public java.awt.Label ivjlWOdesc2 = null;
public java.awt.Label ivj1W0desc21 = null;
public java.awt.Label ivj1W0desc211 = null;
public java.awt.Label ivjlWOloc = null;
public java.awt.Label ivjlWOlocl = null;
public java.awt.Label ivjlWOloc2 = null;
public java.awt.Label ivj1W0qty = null;
public java.awt.Label ivjlWorkOrder = null;
public java.awt.List ivjMaterialListList = null;
public java.awt.Panel ivjNewCostPanel = null;
public java.awt.Panel ivjNewMaterialsPanel = null;
public java.awt.FlowLayout ivjNewMaterialsPanelFlowLayout = null;
public java.awt.Panel ivjNewWOPanel = null;
public java.awt.Panel ivjPanel3 = null;
public java.awt.Panel ivjPanel4 = null;
public java.awt.Panel ivjPanel5 = null;
public java.awt.Panel ivjPanel6 = null;
public java.awt.Panel ivjPanel7 = null;
public java.awt.Panel ivjPane171 = null;
public java.awt.Panel ivjPane172 = null;
public java.awt.Panel ivjPane173 = null;
public java.awt.Panel ivjPanel8 = null;
public java.awt.Panel ivjPane181 = null;
public java.awt.TextField ivjPartMfg = null;
public java.awt.TextField ivjPartName = null;
public java.awt.TextField ivjPartQty = null;
public java.awt.TextField ivjPartSku = null;
public java.awt.TextField ivjPartsText = null;
public java.awt.TextField ivjWODesc = null;
public java.awt.TextField ivjWOLoc = null;
public java.awt.TextField ivjW0Qty = null;
public java.awt.List ivjWorkOrderList = null;

/**

* Constructor
*/

51

/* WARNING: THIS METHOD WILL BE REGENERATED.
*/

public Visual() {
super();
initialize(); }

/**
* Visual constructor comment.
* Oparam title java.lang.String
*/

public Visual(String title) {
super(title);

/**
* Method to handle events for the ActionListener interface.
* Oparam e java.awt.event.ActionEvent
*/

/* WARNING: THIS METHOD WILL BE REGENERATED. */
public void actionPerformed(java.awt.event.ActionEvent e) {

// user code begin {1}
// user code end
if ((e.getSource() == getEXIT()}) {

conn7(e);

// user code begin {2}
// user code end

)
/**
* connO: (Visual.window.windowClosing(java.awt.event.WindowEvent) -->

Visual. dispose())
* Oparam argl java.awt.event.WindowEvent
*/

/* WARNING: THIS METHOD WILL BE REGENERATED. */
private void connO(java.awt.event.WindowEvent argl) {

try {
// user code begin {1}
// user code end
this.dispose();
// user code begin {2}
// user code end

} catch (java.lang.Throwable ivjExc) {

// user code begin {3}
// user code end
handleException(ivjExc);

)

/** * conn7: (EXIT.action.actionPerformed(java.awt.event.ActionEvent) -
visual.dispose())
* Oparam argl java.awt.event.ActionEvent
*/

/* WARNING: THIS METHOD WILL BE REGENERATED. */
private void conn7(java.awt.event.ActionEvent argl)

try {
// user code begin {1}
// user code end
this.dispose();
// user code begin {2}

// user code end
catch (java.lang.Throwable ivjExc) {

// user code begin (3)
// user code end
handleException(ivjExc);

/**

* Return the AddCost property value.
* @return java.awt.Button
*/

/* WARNING: THIS METHOD WILL BE REGENERATED. */
private java.awt.Button getAddCost()

if (ivjAddCost == null) [
try {

ivjAddCost = new java.awt.Button();
ivjAddCost.setName(HAddCostH);
ivjAddCost.setLabel("Add");
// user code begin {1}
// user code end

catch (java.lang.Throwable ivjExc)
// user code begin {2}
// user code end
handleException(ivjExc);

1;
return ivjAddCost;

1

/**

* Return the AddPart property value.
* @return java.awt.Button
*/

/* WARNING: THIS METHOD WILL BE REGENERATED. */
private java.awt.Button getAddPart() {

if (ivjAddPart == null) {
try {

ivjAddPart = new java.awt.Button();
ivjAddPart.setName(HAddPart");
ivjAddPart.setLabel("AddH);
// user code begin {1}
// user code end

) catch (java.lang.Throwable ivjExc)
// user code begin {2}
// user code end
handleException(ivjExc);

1;
return ivjAddPart;

/**

* Return the AddWO property value.
* @return java.awt.Button
*/

/* WARNING: THIS METHOD WILL BE REGENERATED. */

• • •

52

ThscCostjava

package Thesis.THSC;
/**
* This class was generated by a SmartGuide.
*/

public class ThscCost {

private String _type;
private String _phase;
private double _perUnitCost = 0.0;
private String _units;

/**
* This method was created by a SmartGuide.
* Oparam type java.lang.String
* @param totalCost float
*/

public ThscCost (String type, double totCost) {
_type = type;
_perUnitCost = totCost;

/**
* This method was created by a SmartGuide.
* @param type java.lang.String
* Oparam phase java.lang.String
* @param totCost float
*/

public ThscCost (String type, String phase, float totCost) f
_type = type;
phase = phase;

_perUnitCost = totCost;
I
/**
* This method was created by a SmartGuide.
* @return java.lang.String
*/

public String equals () {

return (__type 	 phase + _perUnitCost);

/**
* This method was created by a SmartGuide.
* Oreturn double
*/

public double getCost () {
return _perUnitCost;

}
/**
* This method was created by a SmartGuide.
*/

public String getPhase()
return _phase;

/**
* This method was created by a SmartGuide.
* @return java.lang.String
*/

53

54

public String getType() f
return _type;

}
/**
* This method was created by a SmartGuide.
* @return java.lang.String
*/

public String toString () [
return (_type + phase + _perUnitCost);

}
/**
* This method was created by a SmartGuide.
* eparam newcost double
*/

public void updateCost(double newcost) {
perUnitCost = newcost;

return;
}
}

ThscPart Java

package Thesis.THSC;
import COM.objectspace.jg1.*;
/**
* This class was generated by a SmartGuide.
*
*/
public class ThscPart {

public String _SKU;
private String _name;
private String mfg;
private HashSet _costSet;

/**
* This method was created by a SmartGuide.
*/

public ThscPart (String sku, String name, String mfg)
_SKU = sku;
_name = name;
mfg = mfg;

_costSet = new HashSet(false);

/**
* This method was created by a SmartGuide.
* @return Thesis.THSC.ThscCost
* Oparam cost Thesis.THSC.ThscCost
* returns cost if successful, null otherwise
*/

public void addCost(ThscCost cost)
_costSet.add(cost);
return;

/**
* Returns a String that represents the value of this object.
*/

public String equals() f
return (_SKU _name);

/**
* This method was created by a SmartGuide.
* @return COM.objectspace.jgl.HashSetIterator
*/

public HashSetlterator getCosts()
return _costSet.begin();

/**
* This method was created by a SmartGuide.
* @return com.sun.java.util.collections.ListIterator
*/

public double getTotalCost()
HashSetlterator itr = _costSet.begin();
double totcost = 0.0;
ThscCost cost;

while (itr.hasMoreElements())

55

cost = (ThscCost)itr.get();
totcost += cost.getCost();
itr.advance(1);

return totcost;

/**
* Returns a String that represents the value of this object.
*/

public String toString() {
return (_SKU + _name);

/**
* This method was created by a SmartGuide.
* @return Thesis.THSC.ThscCost
* @param cost Thesis.THSC.ThscCost
*/

public ThscCost updateCost(ThscCost cost)
_costSet.add(cost);

return cost; } }

56

	Managing toxic and hazardous substances of concern in manufacturing
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Problem
	Chapter 3: Conceptual Design
	Chapter 4: Implementation
	Chapter 5: Conclusion
	Appendix A: THSC Lists
	Appendix B: Source Code
	References
	Source Code Examples

	List of Tables
	List of Figures

