New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2001

Towards hypermedia support in database systems

Anirban Bhaumik
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Cf Part of the Computer Sciences Commons

Recommended Citation
Bhaumik, Anirban, "Towards hypermedia support in database systems" (2001). Theses. 724.
https://digitalcommons.njit.edu/theses/724

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/724?utm_source=digitalcommons.njit.edu%2Ftheses%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TOWARDS HYPERMEDIA SUPPORT IN
DATABASE SYSTEMS

by

Anirban Bhaumik
The general goal of our research is to automatically generate links and other hypermedia
related services to analytical applications. Using a dynamic hypermedia engine (DHE), the
following features have been automated for database systems. Based on the database’s
relational (physical) schema and its original (non-normalized) entity-relationship specification
links are generated, database application developers may also specify the relationship between
different classes of database elements. These elements can be controlled by the same or
different database application, or even by another software system. A DHE prototype has

been developed and illustrates the above for a relational database management system.

The DHE is the only approach to automated linking that specializes in adding a hyperlinks
automatically to analytical applications that generate their displays dynamically (e.g., as the
result of a user query). The DHE’s linking is based on the structure of the application, not
keyword search or lexical analysis based on the display values within its screens and
documents. The DHE aims to provide hypermedia functionality without altering applications

by building “application wrappers” as an intermediary between the applications and the engine.

TOWARDS HYPERMEDIA SUPPORT IN
DATABASE SYSTEMS

by
Anirban Bhaumik

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degtee of
Master of Science in Computer Science

Department of Computer and Information Science

January 2001

APPROVAL PAGE

TOWARDS HYPERMEDIA SUPPORT IN
DATABASE SYSTEMS

Anirban Bhaumik

Dy. Michael Bieber Date

Associate Professor of Computer and Information Science, NJIT

Dr. Vincent Oria Date
Assistant Professor of Computer and Information Science, NJIT

Dr. Byoun;g-Kee Yi Date
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Anirban Bhaumik
Degree: Master of Science in Computer Science
Date: January 2001

Undergraduate and Graduate Education:
e Master of Science in Computer Science,

New Jersey Institute of Technology, Newark, NJ 2001

e Master of Science in Chemical Engineering
New Jersey Institute of Technology, Newark, NJ, 1998

e Bachelor of Engineering in Chemical Engineering
Regional Engineering College, Durgapur, India, 1996

Major: Computer Science
Presentations and Publications:
“Computer Aided Cognitive Tools for Teaching and Implementing Clean Manufacturing” at

the National Science Foundation, Technology Reinvestment Project, Engineering Education
Innovators’ Conference, April 8, 1997, Washington DC.

iv

To my Parents, and Suchi, thanks for being there.

ACKNOWLEDGMENT

The author would like to thank his advisor Dr. Michael Bieber for his guidance. Special thanks
are also due to my colleagues in the Collaborative Hypermedia Laboratory at the New Jersey
Institute of Technology: Mr. Roberto Galnares, Mr. Firas Aljallad, Ms. Deepti Dixit and Ms.
Aparna Reddy.

vi

TABLE OF CONTENTS

Chapter Page
JR a1 geTe L Te o) s AU 1
J O Y 0151 1T o OO OO 1
1.2 Literature REVIEWc..ccevirevcvciniieieeicttis et 2
1.2.1 Hypermedia EOgINes........ccceurueiveeeremncncerieeiniceeinseceeesesssisscsscssssssssesses 2

1.2.2 Research in Hypermedia and Databases...........cooeerrunicnivcenciiinnninicicncnenenenes 3

2 The Dynamic Hypermedia Engine.........c.ccooeeviiriiniinceniiiiiiiiiiccccicciceccie 7
3 Hypermedia support for relational database management systems............cceoveverennnn. 12
3.1 Introduction to the Relational Database Wrapper Module.cccoovvuiiiinirinininininacnen 12
3.2 Elements of Interest in Database Systems.cccccvevererinininininnnnnnsninsseiiinnene 14
3.2.1 Element TYPES. ...cceceueuruereurreniriereeeeertse e renenesesesesssss s besssssaessnnases 14

3.2.2 Marking an Element of INterest.ccoveeereesirinircniieinisinicsnseeseee s 15

3.2.3 Element Identifiers.cooeecuerreeenmnueenmnecsinicicsinisisincsie et 16

3.2.4 Marked Up MESSagE........cvvveueururenereininiecsrsest st ssesssi s sssssesasnes 16

3.3 Mapping Rules and Metadata for Relational Databases.ccccvuerrmeeierinninnciinnnen. 18
3.3.1 Mapping Rules for Relational Database Management Systems............cceceueurueunnes 19

3.3.2 Metadata for Relational Database Management Systems...........cccoovvveenrueirennenen. 20

3.4 The Relational Database Wrapper Module...........cccoouririiniiiiinnineece, 28
341 FEatures. ..c.eveveieniiiicinictitc s 28

3.4.2 Object Oriented ANAlYSS.cccoveiriiciicrimeisneseeseesss st ssssses 41

3.4.3 FUNCHONALILY. ...cvovovevevererieeireneetete st ensssesesssss e eaese s s s e sanassnans 42

3.5 Enhanced Links through a Database Schema Wrapper.........ccccoveveinninineeineiicnnee 50

4 Providing Support to Database Applications.cccoeeviiienienieninnnicecees 55

vil

TABLE OF CONTENTS

(Continued)

Chapter Page
4.1 Support to existing Database AppHCAtIONS.c.ccuriririeincrriricinnireeieresee s 55
41T MOIVATION. w.eertrtntreecueaeteir et a et ea et e et ss bbb se st s easaeseeseener et easasnesenenersrsnee 55

4.1.2 ALCRIEECIULE. c.vverrinrieieieiriesssssastsssietssses st s saeses et sssse s et seaetsasenesststesesensssesesearasasesotacane 55

4.1.3 CaS€ StUAY.....ourvneecrnincecec s 57

4.2 Support to Applications being developed. ...t 58

4. 2.1 MOIVATION. ...eveteinrurieererertstseeieieeeteseeaes et seacas e sereseeeenere e ser bt s bbb et e b e b s b s b ebsb s b b s et st bbb es 58

4.2.2 ALCHITECHULE. «.oecurerererertrtceieieeee et eeser e e s bbb bbbt s bbbt 59

4.2.3 CaSE StUAY. ..cuomiriuiirriititetini st s 61

4.2.4 Advantages of using the DHE’s infrastructure.ccocuoeieruiienueiieisieicccieieseesininns 62

5 Using the DHE as a Data Warehousing SOIUtion.ccocceeieiniiniiiinnnnsesecnce 64
5.1 TNLEOAUCHOM. «.curueerucericuciicaeericrerereeeeases e eeseesen e s caca e sas s bbb b s et a bbb b anas 64
5.1.1 Data Watrehouse Metadata.cccoeeeeerneeurenecenineieiecreenecieieeencssercsssessssseessssassssssssnsans 64

5.1.2 MOUVALON. c.oveveretieeeieeeresesessseeesesesesensssesessessssestssesseassessasesasestassetsisssesesassosssssanassessasinsses 65

5.2 FUNCHONALLY. c..cvuiveeveeteicctcte sttt 65
5.2.1 The Loader Module.ccoumiririeninicriciniccicieencisisiisicsssssisisse s sssasasssssssans 65

6 Future Research Plans — integrating data miningcecooeeeeieieiiiinnieenseseeiee 68
(30 I Fa ¥ o Ta 15 ot Lo o NPUNUUUU RO OO OO OO OO 68
6.2 Mapping Rules for Data MINUNE.ovvvurrvmeriiniieniins st sssssssssesssessasesess 68
6.2.1 Two Step Mapping RuUles.c.uciuriuniiiniiieiiiesisisississsssssesssssssssssesienisensesssesssssasens 69
APPENDIX A RDF Resource Properties used by the RDWM.......coniiiiiiiinnnn. 70
APPENDIX B Database Connection Pool Performance Metrics.ccoceevinieeniiieinreinennns 78
REFERENCEScoettrtrieieirtet ettt ss et ss e se st ssas s s ssssss s aa s s esensessassnesessanans 80

LIST OF FIGURES

Figure Page
1 : Screenshot of the DHEc.c.oiiiiicreerineee ettt eseeseseaens 8
2: DHE ASCRILECTULEcuvuueeeeriiemeinertreeie ettt s et sse s se s s s 10
3: Relational Database Wrapper Module Message Flow ..o 14
4: Marked UP MESSage.ccvurvrerereririneniieneeeessiese e e e e e e s e encs 18
6: Metadata of a ColUm........ccoeueuemircueeniniicerrececn e ses 22
7: RDEF/XML SYIIEAXceveveeeeeeeieiseeseseseetesessesesenesesenssesesesessasssssssssisssasssssssssssasasssssnes 23
8: Class diagram of the “dhyme . metadata.rdf” package.ccccovereercmcincccnnncnnnnennes 24
9: Class diagram of the “dhyme .metadata.database” package.cccovverrccneccennennne 27
10 : RDWM State Di1agramic..ccecruereireeeenerincniniecninietreeesessetsiessssessssesessenessessenessenssssnis 29
11: Connection POOl AfCHItECTULEc.cvvueucrriercerinerinccecicss s 35
12: State Diagram for Requesting and Returning Connections.............cecececueunieviviiniriscsccsenes 37
13: Broker Housekeeping State Diagramccceueeeueuecereneeenessenerensenrnceenseereeeeseesnssesesassens 38
14: Class Diagram of the dhyme . utils.dbBroker.DBBroker Class......c.coucrrriucnee. 39
15: RDWM Class DIagram........c.ccueereeeeurererereucesereceneeessssesesssssesesesssesssesessssssssssssisssssssas 41
16: Displaying the UI - Collaboration Diagram.........c.cceueeeeveueurururenmemscscsenennnesennesssesssssesenas 43
17: Executing a select statement - Collaboration Diagram.ccccveirniininininnnicnrencneneeen. 44
18: Executing a non-select statement - Collaboration Diagram.........cccccvuveeircrnnineniniennnee. 45
19: Retrieving Primary Keys.......ocecvecerrenneccrcniiciincis st 46
20: Retrieving Foreign Keys.........oouvvercvininiciiciniciincscceees s 47
21: Retrieving a Tableccoveviiceiriiiiiicccc s 48
22: Retrieving a TUPIE.cucuimimiiriiiiiici it 49

LIST OF FIGURES

(Continued)

Figure Page

23: Retr1eving MeEtadata ...t sss s sesssssssessssssssssssasesens 50
24 : Screenshot of the DSMMcivcnninnincineiicieieieiesseessesesse st ssesesasssessssnssesanins 51
25: Providing Support to New Database Applications — Architecturecocooecuvcverenrerieeennnen. 59
26: State DIAGIAI c...voveeeeereeceertc s 60
27: DHE Data Warehouse Loadetr ModUIecoouuricenerncniinicrceccecienerescneeeneeeeseenecee e 67
28: Database Connection Pool Performance at a Glance.c.ccocurernicirnirinincicnccnciciccinens 78

CHAPTER 1
INTRODUCTION

1.1 Motivation
Database queries typically return results in a plain text format. Some applications on the World
Wide Web generate link anchors for database elements, but these anchors normally hold a

single link to the most obvious destination for the dominant type of user.

An element within a database application maybe considered a potential starting point for
information exploration. Each element may have multiple links, each representing a different
relationship (schema-based or otherwise). The ability to explore a piece of information in more
detail would allow users to better understand that item, as well as analyze and view the various
relationships that define these elements. Users may wish to explore around data values and
symbols they see, labels on graphs or user input forms, options in pop-up lists, or even on the

menu commands they can invoke.

To complicate the developer's job, users often have different mental models of an application
and its underlying domain than the developer. Even when developers work closely with users,
the end result might not be intuitive for all users or serve each user's individual tasks equally
well. Many people visit a given application’s screen aside from the most dominant type of
user(s) for which it was developed. These include other users of the application, customer
service representatives, company analysts, managers, trainees, people inside the company
designing new databases or applications based on the current one, external analysts, and
stockholders, among others. Each may be interested in different aspects of application
elements, according to their current task-at-hand. Customization is one solution, but even so
users often might wish to explore several different relationships from a given anchor, and

therefore should have several links available.

The purpose of this research is to explore all aspects of hypermedia support for database
applications, and is based on the experience of designing and developing the prototype
Dynamic Hypermedia Engine (DHE). The DHE automatically generates anchors, sets of

links and metadata within database applications, as well as supporting users with other types of

hypermedia structuring, navigation and annotation functionality, including guided tours and

annotation.

This work makes many contributions to both the database and hypermedia fields. Many
database applications do not take as much advantage of hypermedia as they could. This
chapter puts forth a series of opportunities for integrating hypermedia and database systems.
As we shall describe in the next chapter, the DHE is the only tool that provides automated
linking and hypermedia services based on the application structure (as opposed to search or
lexical analysis), without altering applications. Thus it is uniquely suited to support databases
and other analytical applications on the Web that generate the contents of their displays

dynamically in response to user queries.

This work proceeds as follows. A Literature Review of other Hypermedia Engines and
hypermedia support in databases is presented followed by an introduction the Dynamic
Hypermedia Engine (DHE). The following chapters show how the DHE provides support to
relational DBMS, database applications and enterprise-wide Data Warehouses. This research

concludes by providing a direction for future Research in this field.

1.2 Literature Review

1.2.1 Hypermedia Engines

Several approaches exist for integrating hypermedia functionality into primarily non-
hypermedia information systems. These include employing hypermedia data models (Campbell
and Goodman 1988; Halasz and Schwartz 1994), hypermedia toolkits (Anderson 1996), link
services (Pearl 1989; Davis et al. 1992; Anderson 1997), hyperbases (Leggett and Schnase
1994), hypermedia development environments (Nanard and Nanard 1995a; Marshall and
Shipman 1995; Akscyn et al. 1988), open hypermedia systems (Whitehead 1997; Wiil 1997;
Gronbazk and Trigg 1999), and independently executing hypermedia engines, such as the
DHE.

Hypermedia engines execute independently of an application with minimal modifications to it,
and provide the application’s users with hypermedia support. Few approaches provide

transparent hypermedia integration as our engine does. Notable projects include Microcosm’s

Universal Viewer, Freckles and the OO-Navigator and SFX..

Microcosm's Universal Viewer (Davis et al. 1994) and Freckles (Kacmar 1993, 1995)
seamlessly supports an application’s other functionality but provides only manual linking. OO-
Navigator comes the closest to our approach, providing a seamless hypermedia support for
computational systems that execute within a single Smalltalk environment (Garrido and Rossi
1996; Rossi et al. 1996). This approach meets our goal of supplementing Smalltalk applications
with hypermedia support without altering them. Our approach applies to both object-oriented

and non object-oriented applications.

SFX's engine is very similar to DHE, but it only serves one specific environment. SFX
dynamically generates anchors within the reference section of academic papers being displayed
on the Web. Selecting these will lead to the original work within bibliographic databases (Van
der Stemple, 1999a,b,c). DHE, in contrast, provides a generalized approach for linking and

additional hypermedia functionality for most analytical applications.

1.2.2 Research in Hypermedia and Databases.
Several techniques have been proposed recently for the integration of hypertext and databases.
Some of them address the issue of building hypertext structures over existing databases to

provide more direct navigation through hyperlinks.

Hara and Botafogo (Hara et al 1994) use an SQL-like data definition language to map single
relations or relational views to node types. A node type is similar in nature to an entity type,
i.e., it models a real world object or concept in the hypertext conceptual schema defined over
the database contents. Its specification includes the correspondences between relation
attributes and node fields, as well as presentation information. At run time, a node type
produces two kinds of nodes: a composite one for the whole relation, and a number of nodes
corresponding to the tuples of the relation. The same language is used to define link types
among node types. A WHERE-clause is used to constraint the creation of links during

navigation.

In a similar approach, Falquet et al. (Falquet et al 1995, Falquet et al 1998) offer a declarative
language to produce databases views composed of node and link schemas, accessed through
the WWW. Each node schema is based on one object class or a set of inter-related object

classes. The content of the node is composed of a subset of the attributes of the class(es).

Foreign keys to other classes constitute link types to the corresponding nodes. Two kinds of
links are supported: Reference links are indented to offer navigation structure within the nodes,
while inclusion links are indented to create nested structures (part-of relationships). In addition,
the specification of the relational view includes presentation information. The above
definitions form the input to a cgi-script that produces HTML pages for the end-user. The

DHE would enhance the existing views specified through the database application.

The above approaches leave the original client application intact, introducing a new interface
that provides hypermedia-based interaction with the database. On the other hand the DHE
overlays linking facilities within the original user interface application by means of user

interface wrappers.

Domenicus (Constantopoulos et al. 1996) is a hypermedia engine developed over a repository
management system, called Semantic Index System (SIS). Domenicus offers hypermedia
functionality (such as alphabetic lists, subject catalogs, guided tours, query cards, hyperlinks,
image annotations, bookmarks and history), based on predefined queries over the information
objects and their structure, managed by SIS. Presentation Card Specifications are executed at run-
time to present objects or classes of objects stored in SIS, while hyperlink classes dynamically
produce links during navigation. Different presentation models can coexist for the same
repository instance, to fulfil the searching, browsing and updating requirements of different
user groups. The DHE provides many of these features in a generic way over any application,
allowing tours and indexes to contain elements from several systems. Also, in the DHE
queries are only predefined to the extent that mapping rules hold skeleton queries for

particular classes of database elements.

Other approaches suggest embedding database queries into HTML pages. For example, a
mechanism offering cross-language variable substitution between HTML and SQL is the core
of the DB2 WWW Connection system (Nguyen et al. 1996), which enables quick and easy
construction of applications accessing relational databases from the Web. The developer
creates macros that consist of HTML and SQL commands, written in distinct sections. The
sections are tied together via variable substitution. Macros are stored at the Web server and

are processed by cgi-scripts in order to get user input or produce output reports. The DHE

does not store single database queries in the pages displayed on the Web. Instead we generate

a list of several possible links for any element from specifications in the mapping rules.

Instead of providing hypertext functionality for a specific database, Geldof (Geldof 1996) uses
an abstract page definition language to construct templates embodying presentation guidelines
for terms of an ontology; a conceptualisation containing objects, concepts and relationships
among them, that are presumed to exist in some area of interest. Actual information sources
are linked separately with the terms of the ontology, using a definition language as well. CGI-
scripts in Perl are computed to dynamically generate the HTML pages returned to the user for
browsing. While this approach adds a certain level of automated linking to aid navigation, the
DHE provides a generally larger set of links based solely on the database structure and entity-
relationship schemas, as well as metadata. The DHE, however, does not provide customized
templates for domain-specific navigational contexts. The DHE might integrate well with

Geldof’s approach to provide an additional level of functionality.

Moreover, many products have been released recently that aim to interface RDBMS and Web
servers (Frank 1995). The solutions employed in these products require huge programming
effort in SQL or a scripting language. The ease of integration with the DHE depends on how
easy it is to parse application displays to identify the elements of interest, and to specify the
commands to return to the application in the mapping rules. If the application has an API or
marks the elements in the displays (as should become the custom as XML becomes more

prevalent), building the application wrapper should be relatively easy.

The approaches presented above presuppose the hypertext designer’s insight into the intrinsic
semantics of the relational structure. A different approach was proposed by Papadopouloset al
(1996). Instead of relying on the relational schema of the database, a more semantically
enriched Extended Entity-Relationship (EER) schema is semi-automatically produced, by
incorporating a reverse engineering methodology. Hypertext views, consisting of node and link
types, can be defined over the EER schema, while the SQL queries to instantiate them at run-
time where automatically created, based on mapping information gathered during the reverse
engineering process. Currently the DHE requires people to enter the entity-relationship

schemas manually to the Database Schema Mapper Module (see 3.5). This application could

help to automate this process, and perhaps provide additional relationships, which the DHE

could display for database applications.

While the hypermedia paradigm embodies an approach to structure and navigate information,
it has several shortcomings. In particular, few hypermedia systems have focused on
methodologies for information storage and retrieval. Database systems, on the contrary, are
only concerned with storage and retrieval of information based on a formal model. They
exhibit powerful methodologies for information storage, and effective indexing and querying.
Furthermore they provide facilities such as transaction management, concurrency and access

control as well as locking mechanisms.

The DHE should be able to streamline a company's software development efforts in several
ways. It automatically supplements the organization's applications with hypermedia links,
structuring, navigation and annotative functionality, and metadata. It also implements inter-
application linking, as the university department example shows. Mapping rules can point to
any accessible application. DHE also can speed the development of applications. Developers
can offload link management, navigational structures (such as guided tours), user preference

management and other features to DHE.

CHAPTER 2
THE DYNAMIC HYPERMEDIA ENGINE

A Web-based prototype of the Dynamic Hypermedia Engine (DHE) has been developed,
which redesigns an older PC-based prototype (Bieber 1999). Figure 1 shows a screenshot of a
database query result in the main frame. The DHE has added anchors to all parts of the query
result, including the field names at the column heads. The user has clicked on “Counseling
Center - department,” resulting in metadata for the element in the bottom center frame and a
list of links in the bottom right-hand frame. Selecting any link will generate an SQL query to
create the appropriate result. Currently the list of links includes only database structural links,
such as finding the primary keys for this element. The bottom left-hand frame contains menus
for any integrated application or DHE internal module. Links represent relationships and
relationships have “meta-information” as well. Selecting the “§” next to any link will provide
metadata and a list of links for it. The DHE’s next release will provide these for menu items as
well. The metadata frame currently displays the full Resource Description Framework (RDF)
record. The DHE’s next release will preformat the metadata for display. Future versions will

also filter and rank the links and metadata based on the user task and preferences.

parameterized command to retrieve annual budgets from the accounting system. Developers
may take advantage of this to integrate database applications with other applications without

altering their contents; they only have to add new mapping rules for the relevant element types.

The DHE executes concurrently with database management systems, database applications,
and other applications such as the accounting system, providing automated link generation and
other hypermedia functionality without altering them. Developers write an independent
application “wrapper” and a set of mapping rules for each. Note that once a wrapper is
written and the mapping rules are specified for each type of application (geographic
information system, relational database management system, accounting package, etc.), the
DHE will support all instances of that application in the future (new maps, database contents,

budget sheets, etc.).

The DHE executes as follows. Applications or their wrappers connect to DHE through
World Wide Web components, such as Servlets and JavaServer pages. It intercepts all
messages passing between the application and its user interface, and uses the mapping rules to
map each appropriate element of the message to a hypermedia anchor. The DHE’s Web
browser wrapper merges these anchors into the document being displayed and passes the
resulting HTML document through the Web component servlet to the user's Web browser.
When the user selects an anchor, the browser wrapper passes it to DHE, which returns alist
of possible links (one for each appropriate relationship as determined by the mapping rules)
and metadata. If the user selects a DHE link (e.g., to add an annotation or stage in a guided
tour), the DHE processes it entirely. If the user selects a relationship with a destinationina
known application, the DHE infers and instantiates the appropriate SQL queries or other
application commands from the relationship's mapping rule and passes them to the target
application for processing. If the user selects a user-created annotation or tour, etc., the DHE
retrieves it. Thus the DHE automatically provides all hypermedia linking (as well as
navigation) to applications, which remain hypermedia-unaware and in fact often entirely

unchanged.

Figure 2 shows the DHE’s logical engine architecture. Some major components are described
here. The others are described on our project Web site (http://space.njit.edu:8001). The

current prototype has been developed in Java. XML is the messaging format used for intra-

11

Application Wrappers, like user interface wrappers, manage the communication between DHE

and their application systems, such as database applications and DBMS. They translate user
requests from DHE’s internal format to the application’s programming interface (if any).
They receive output from the application, convert it to the DHE format, mark the elements

for the mapping rules module, and send it to DHE for eventual display on the UL

Other Hypermedia Functionality: A series of other service modules will be implemented in future
versions. Most will implement various kinds of hypermedia structuring, navigation and
annotation functionality (Bieber et al. 1997; Conklin 1987; Nielsen 1995). Hypermedia

structuring functionality includes local and global information overviews; node, link and

anchor typing; as well as keywords, attributes and metadata on all of these. Navigation
functionality includes structure-based query, sophisticated history-based navigation and bi-

directional linking. Annotation functionality includes adding user-declared links, comments

and bookmarks to dynamically-generated documents and displays.

CHAPTER 3

HYPERMEDIA SUPPORT FOR RELATIONAL DATABASE MANAGEMENT
SYSTEMS

3.1 Introduction to the Relational Database Wrapper Module
One of the first tasks in providing hypermedia support is to intercept messages between the

computational and user interface (Ul) portions of the DMIS.

In the case of a Relational Database Management System (RDBMYS), it provides only the
computational portion. The Ul portion is the responsibility of the database application. The
RDBMS provides a standard way of requesting computational services (i.e. store, retrieve and
analyze data) by means of Structured Query Language (SQL) statements. Database
applications send SQL statements to an RDBMS. The RDBMS then executes these statements
and returns the results of these statements back to the application, which then displays these

results in a Ul intuitive to its domain.

We have developed a service module, the Relational Database Wrapper Module (RDWM) that
accepts requests to, execute SQL statements on the underlying database, and retrieve metadata
of an element. It will also provide a Ul allowing users to execute SQL statements and view
results, metadata and all the relationships of the data affected by the SQL statement. This UI
provides a hypertext-enriched view of the data stored in the database and also acts as the

debug or test interface for our module.

Once a document containing the results of the original request has been created, our module
identifies and marks all “elements of interest”. An “element of interest” is an entity that may

have a relationship with another entity (element) or may have metadata of its own.

This document is then sent to the DHE Message Manager, which routes it to an intermediate
module called the Mapping Rules Module (MRM). The MRM maintains a list of Mapping
Rules, which are representations of the various inter-relationships between elements in a
domain. It retrieves all the Mapping Rules that each marked-up “element of interest” may have

and creates hyperlinks corresponding to each one of them.

12

13

The modified XML document containing the results of the original SQL statement (or the
requested metadata) and hyperlinks is returned to the gateway, which then sends it onward to
the database application. The database application thus receives hypertext-enriched result of a

SQL statement from the RDBMS, and is free to interpret it in 2 manner suitable to its domain.

For example when the user uses the UI to execute a SQL statement a message containing the
SQL statement is sent from the UIW to the RDWM (by way of the Message Manager). The
RDWM executes the SQL statement on the underlying database, identifies the "elements of
interest", marks them up and sends back a response containing this to the module that had
sent the original request (i.e. the UIW). The Message Manager routes this message to the
Mapping Rules Module, which applies the appropriate Mapping Rules and forwards the
response to the UIW (as before, by way of the Message Manager).

15

= Indices.

= Stored Procedures.

» Catalogs.
* Schema.
* Drivers.
» Users.

» User Rights.
» Table and Column Privileges.

*= JDBC Types.

The RDBMS Product itself.

Any instance of the above types can be uniquely identified, have metadata, and have one or
more relationships associated with it. Because any user may be interested in exploring that
type of object in terms of its metadata or relationships, the RDWM must mark each of its

instances as an “element of interest”.

3.2.2 Marking an Element of Interest.

Marking an item involves providing its unique identifier and its element type. When the results
of the SQL statement is returned from the RDBMS, the RDWM must parse through this
document and locate all elements and mark all instances with locator tags. An element’s locator

tag references its unique identifier and its type.

Later on as the Message containing this document makes its way to the Mapping Rules
Module it will use the element type information to find relationships and metadata for that
element. If an element has at least one relationship or piece of metadata, then the Mapping

Rules Module will specify that the Ul Wrapper make it into a hyperlink.

16

3.2.3 Element Identifiers.

When the user follows a hyperlink, the action is passed on to the underlying DMISW (in our
case the RDWM), as mentioned previously this action may either be a request for the hyper-
linked element’s metadata or the user may be trying to follow a relationship with another
element in which case it would be another SQL statement that has to be executed. In either

case the element must be uniquely identified.

Like other DHE modules the RDWM uses the Uniform Resource Identifier (URI) syntax
(Berners-Lee 1998) to define its element identification scheme. The generic URI syntax
specifies that the name of the scheme must be specified followed by a colon (which acts as the

delimiter), and followed by the scheme-specific part.
<scheme name>:<scheme-specific-part>

The DHE URI scheme is named “dhyme” (Dynamic Hypermedia Engine), and all URI’s must

also contain the module name which identifies the domain the element belongs to.

For elements belonging to the RDWM domain we use the following syntax.
dhyme: rdwm:<element type>:<Database JDBC URL>:<element specific part>

The JDBC (Java Database Connectivity) URL of the database provides a way of identifying it

so that the appropriate database driver will recognize it and establish a connection with it.

(White 1999)

Thus a column called “DEPT” in the table “DEPARTMENT” in the database with the JDBC
URL “jdbc:oracle:thin:@logic:1521:logic40” would have the following URL

dhyme : rdwm: column: jdbc:oracle:thin:@logic:1521:10gic40: DEPARTMENT : DEPT

Because of the case insensitive nature of SQL statements this scheme too, is case insensitive.

3.2.4 Marked up Message.
The result of the SQL statement “select * from department” on the database the JDBC URL
“jdbc:oracle:thin:@logic:1521:logic40” is as.

<?xml version="1.0" 2>
- <EngMsg>
<RequestID>960332321740</RequestID>
<MsgType>DISPLAYDOCUMENT< /MsgType>
<Origin>RDWM</Origin>
<Current>RDWM</Current>
<MsgNo>RDWM: 960332324364</MsgNo>
<Destination>UIW</Destination>
- <MsgBody>
- <SubFrame Name="MAIN">
- <Doc>
<DocID>dhyme:rdwm:QueryResults:select * from DEPARTMENT</DocID>
<DocType>dhyme: rdwm: QueryResults</DocType>
</Doc>
- <OutDoc>
- <! [CDATA[
<table border="0">

17

department</#id4></td></tr> e
<tr><td><$id5>Counseling e Ddarkedljp
Center</#id5></td><td><#id6>Counseling Center E Element
department</#id6></td></tr>

</table>
11>
</OutDoc>
- <List_Of_ Element>
- - <Element>
<Locator>#idé6</Locator>
<Type>dhyme : rdwm: value</Type>

<Element_ID>éHymg:rdwm:value:jdbc:oracla:thin:@logic:l
521:1logic40:DEPARTMENT : DESCRIPTION: Counseling Center -

<Action /> T ;
</Element> e g Type of
- <Element> ; Bhukedljp
<Locator>#idS</Locator> :
<Type>dhyme: rdwm:value</Type> Element

<Element_ID>dgyme:rdwm:value:jdbc:oracle:thin:@logié
521:logic40:DEPARTMENT : DEPT: Counseling
Center</Element I
<Action /> .,
</Element> T

- <Element> T -
<Locator>#id4</Locator> e i URI of
<Type>dhyme: rdwm: value</Type> i

Matked Up
<Element_ ID>dhyme:rdwm:value:jdbc:oracle:thin:@logic:1l E Element

521:logic40:DEPARTMENT : DESCRIPTION: Computing Services
- department</Element_ ID>
<Action />
</Element>
- <Element>
<Locator>#id3</Locator>
<Type>dhyme: rdwm:value</Type>

<Element_ID>dhyme:rdwm:value:jdbc:oracle:thin:@logic:1
521:1logic40:DEPARTMENT :DEPT : Computing
Services</Element ID>
<Action />
</Element>
- <Element>
<Locator>#id2</Locator>
<Type>dhyme: rdwm: column</Type>

19

A mapping rule for each of the above relationships may be specified. The DHE (specifically
the Mapping Rules Module) would then use the mapping rule to generate a link for each of the

instances of the participating elements.

For example all instances of columns would have a hyperlink corresponding to the “in table”
relationship that it has with a table. This link would contain the appropriate SQL command to
generate the contents of the mapping rule’s endpoint, in this case the table that this column
belongs to. Wan and Bieber (Wan 1996)(Bieber 1997) have given several mapping rules (called

“bridge laws”) for relational databases.

3.3.1 Mapping Rules for Relational Database Management Systems.
Wan and Bieber (Wan 1996) have identified the following classes of Mapping Rules for

databases:

Object Mapping Rules: These map the contents of database objects, as well as schemata and

ER diagrams.

Structure Mapping Rules: These map database objects to their structural containers, for
example a mapping rule for columns in a table, tables in a catalog etc. These would correspond

to the “In Object” relationships mentioned in Figure # 5.

Operation Mapping Rules: These map SQL queries. Frequently used specific queries maybe
mapped, and users who follow link generated from this mapping rule would retrieve a

document that contained the results of the SQL statement being executed.

Schema-based Mapping Rules: These mapping rules map relationships between entities as

defined in the database schema.

Meta-information Mapping Rules: Meta-information Mapping Rules define reference links to

database object statistics such as field types, size, table size, referential constraints etc.

3.3.1.1 Mapping Rules examples.
The following Mapping Rules have been implemented in the current DHE prototype.

¢ Structure Mapping Rules:

20

o Mapping Rule,, 4, maps tables to a set of records.

o Mapping Rule

cTuple Maps the tuple a database value belongs to.

e Schema-based Mapping Rules:

o Mapping Rule maps the primary keys of a table.

getPrimaryKeys

o Mapping Rule maps the foreign keys in a table.

getForeignKeys
e Meta-information Mapping Rule:
o MappingRule,, .., maps the meta-information of a Database Object.

3.3.2 Metadata for Relational Database Management Systems.

Metadata is data about data. The key purpose of metadata is to facilitate and improve the
retrieval of information (Miller 1998). Other uses of Metadata include providing semantic
information about the data, encoding information (i.e. how to interpret the data), relationships

with other resources etc. (Waugh 1997).

In a relational database, metadata is the representation of the objects defined in that database -
specifically, the definitions of its tables, columns and business rules and transformational

algorithms implemented as stored procedures and triggers (Gardner 1998).

The RDWM retrieves this metadata on demand. It is passed the URI of the element whose
metadata is being asked for. It then uses the Java Database Connectivity (JDBC) API to
retrieve information relevant to that element. The RDWM uses the Resource Description
Framework (RDF) to model the metadata, and the RDF/XML serialization syntax to format it

for transfer to other modules.

3.3.2.1 The Resource Description Framework.
RDF is a framework for describing and interchanging metadata it defines metadata in terms of
“Resources”, where each resource is any entity that can be uniquely identified, i.e., hasa URI,

and is defined by its properties (Lassila 1999).

21

Hence all “elements of interest” are resources and have associated metadata. Resources and
elements are thus interchangeable in the DHE context and the element identifier corresponds

to its URL Thus there exists a Resource for every element type mentioned in section 3.2.1.

RDF also defines a “Property Type” as a resource that has a name and can be used to define a
resource property. Consider the statement “The student’s name is John Doe”. “Student” is the

resource, “name” is the property type and “John Doe” is the property.

3.3.2.1.1 RDF Schema for Databases.

However the semantics of the statement in the previous section is meaningful to the reader if
and only if (s)he knows what the property type “name” actually means. RDF provides a
schema mechanism, which allows authors (i.e. those who define what the resources and
property types are) to define the terms that will be used in RDF statements and to give specific
meaning to them. The RDF schema may thus be considered to be the dictionary to the RDF
vocabulary in use (Brickley 2000).

To represent RDBMS resources in RDF, an RDF schema containing the various property
types used by the RDWM has been defined in Appendix A.

3.3.2.1.2 RDF/XML Serialization Syntax

A formal syntax representing this metadata model is required to store instances of this model
into machine-readable files and to communicate these instances among applications. XML 1s
this syntax. RDF imposes formal structure on XML to support the consistent representation

of semantics (Miller 1998).

23

</rdf:RDF>
Figure 7: RDF/XML Syntax

3.3.2.2 Architecture and Design of the Metadata Retrieval Subsystem

The Metadata Retrieval Subsystem is composed of two broad components.

= A set of utility classes responsible for storing Metadata and representing them in the
RDF/XML serialization syntax, these classes comprise the “RDF Package”. These
classes maybe used outside the RDWM and indeed outside the DHE.

» A setof classes extending the functionality provided in the RDF package for use in the
RDBMS context.

3.3.2.2.1 The RDF Package
The RDF Package essentially consists of two core classes the “Resource” class and the
“ResourceProperty” class. These classes are present in the Java package

“dhyme.metadata.rdf”.

25

3.3.2.2.1.2 FEATURES
Each Resource Object has 0..n ResourceProperty Objects.

Each ResourceProperty defines an attribute of the Resource, in turn a

Resource Object is defined by the ResourceProperty Objects it “has”.

A Resource must have a Uniform Resource Identifier (URI). A URI uniquely
identifies the Resource and by extension the ResourceProperty Objects it

PpoOssesses.

A ResourceProperty may be another Resource or a collection (referred to in
RDF syntax as a “container”) of Resource Objects. This collection may be a set of
unordered Resource Objects (referred to in RDF syntax as a “bag”) or it may be a
set of ordered Resource Objects (referred to in RDF syntax as a “sequence”), or it
may be a set of alternates, i.e. each Resource Object may substitute the other

(referred to in RDF syntax as a "alternate" or "alt").

A Resource Object has the ability to add, retrieve and remove

ResourceProperty Objects.

A Resource Object has the ability to express itself in the complete RDF-XML

“serialization” syntax.

A Resource Object has the ability to express itself in HTML and in Plain Text as an

aid to debugging and for viewing metadata on browsers.

ResourceWriter isautility class used to “write” a collection of Resources into an

Engine Message or express them in the RDF/XML serialization syntax.

ResourceReader is a utility class that may be used to parse RDF resources from

an Engine Message or from an RDF Element (i.e. the tag named rdf:RDF).

26

3.3.2.2.1.3 RECOMMENDED USAGE

Create an instance of a Resource object and add/remove/change it's properties by
adding/removing ResourceProperty Objects to its collection of
ResourceProperty Objects (as maintained in an internal Hashtable). The ability to
serialize a Resource into it's proper RDF/XML format is available by means of calls to

rdfForm () and rdfForm (schemaName) on it's instance.

Another approach is to subclass Resource class and then “load” ResourceProperty
Objects in the constructor of the subclass. An example of this Usage is provided by the

RDWM metadata retrieval subsystem.

3.3.2.2.2 The RDWM Metadata Retrieval Subsystem
This subsystem is an extension of the RDF package applied to the Relational Database
Domain. The classes that comprise this subsystem are present in the

“dhyme.metadata.database” package.

28

» It is then the responsibility of each subclass of DatabaseResource to extract
whatever metadata is relevant to it from the DatabaseMetadata instance passed

to it.

* Forexample the ColumnResource class is responsible for extracting all metadata
related to Columns in the Database, the TableResource class is responsible for

extracting all metadata related to Tables in the Database.

3.3.2.2.2.3 RECOMMENDED USAGE

Instantiate the appropriate subclass of DatabaseResource by passing in an instance of a
DatabaseMetaData object from the database that contains the Resource (Table, Column
etc.), and use the inherited methods of the Resource class to obtain the metadata in

RDFE/XML serialized form.

3.4 The Relational Database Wrapper Module
3.4.1 Features.
The Relational Database Wrapper Module passes through the following states:

30

3.4.1.1 Sending Startup Messages.
Because of the DHE’s distributed nature, all modules must register themselves with the DHE
Message Manager at startup time, so that the Message Manager knows which modules are

currently active and able to receive and process requests.

3.4.1.1.1 Inputs.

3.4.1.1.1.1 PARAMETERS
e The Module-ID. This identifies the module and hence must be unique for every

instance of this (and all other) module(s). The value of this is dependent on the
Message Manager’s mechanism of registration. The Message Manager assigns a unique
Module ID whenever any module tries to register itself. This module then proceeds to
use this value as the remote object identifier when it binds itself to the local RMI

Registry.

o IP address. Identifies the machine the RDWM is running on. This is required so that

the Message Manager is able to perform an RMI “lookup” on this module.

3.4.1.1.2 Processing

Like all DHE modules the RDWM extends the Module class in the
dhyme . gateway.module package. It thus inherits the st artMe method. An invocation
of this method with the URL of the Message Manager module sends the required Startup

Messages.

The st artMe method automatically discovers the IP address of the RDWM and sends this

information to the Message Manager.

3.4.1.1.3 Outputs
Registration is essential for any DHE module to send and receive messages. Thus if

registration fails, the RDWM exits with a message informing the user that registration has

failed.

31

3.4.1.2 Receiving Request Messages
A module waits until it receives a request to perform a service. The services the RDWM

provides are:
* Interact with the RDBMS.
» Retrieve metadata for an element
* Generate a user input form to enter SQL statements.

Like all DHE modules the RDWM receives requests by an invocation of rcvMsg aremote
method it inherits from the Module class. The argument to this method is the Request

Message itself.

The rcvMsg method goes on to call the method processMsg, which is an abstract
method in the Modul e class. Like all DHE modules the RDWM provides an implementation

of this method.

3.4.1.2.1 Inputs

An XML Message. This XML Message must contain the following two parameters:

e The source of the request, which will be used to determine the destination of the
response of the RDWM.

e The action to be performed by the RDWM.

A sample Message:

<..prolog..>

<EngMsg>
<RequestID>967145925626</RequestID>
<MsgType>FOLLOWLINK</MsgType>
<0rigin>UIW</Origin>
<Current>BLEM</Current>
<MsgNo>UIW:967145925675</MsgNo>
<Destination>RDWM</Destination>
<User name>quest:guest:Guest User</User_ name>
<MsgBody>

<Subject>select</Subject>
other elements

32

</MsgBody>
</EngMsg>

The source of the message is defined in the element Or i gin. The action to be performed by

the RDWM is defined in the element Subject.

The values of Subject isacommand to execute a SQL statement, and will have one of the

following values:

Select Execute a select statement

Insert Execute an insert statement.

Update Execute an update statement.

Delete Execute a delete statement.

Alter DDL (Data Definition Language) command
Create DDL command

A sample message to execute a SQL Select statement.

other elements
<MsgBody>

<Subject>select</Subject>

<BLid></BLid>

<Parameter>
<ParamName>Submit</ParamName>
<ParamValue>Execute Query</ParamValue>

</Parameter>

<Parameter>
<ParamName>query</ParamName>

33

<ParamValue>select * from publishers</ParamValue>
</Parameter>
</MsgBody>
All the above values of Subject require that a Parameter tag and a ParamName tag

having the value query exist, and that it have an associated non-null Paramvalue tag;

which is the SQL statement that will be executed by the RDWM.

The value of the Subject tag may also be a command to retrieve the Metadata associated with a

given Database Element (As defined in Section 3.3.2)

getMetalnfo Gets the metadata associated with a given

RDBMS element.

A sample getMetaInfo Message:

other elements
<MsgBody>
<Subject>getMetalnfo</Subject>
<BLid></BLid>
<Parameter>
<ParamName>Type</ParamName>
<ParamValue>dhyme: rdwm: value</ParamValue>
</Parameter>
<Parameter>
<ParamName>Element ID</ParamName>

<ParamValue>dhyme:rdwm:value:jdbc:oracle:thin:QRlogic.njit.edu:1521:1ogi
c40:booksauthors:ISBN:1-56-884454-9</ParamValue>
</Parameter>
</MsgBody>

For a getMetaInfo message, two parameter tags are required.

e OneParameter tag must have a ParamName with the value Type and an associated
non-null ParamValue, which contains the type of the element whose metadata is

being requested.

e The other Parameter tag must have a ParamName with the value Element IDand
an associated non-null ParamValue that contains the URI of the Element whose

metadata is being requested.

34

Two other values of subject, which do not perform any action on the underlying

RDBMS, are also supported.

List Lists all the values of subject that are
supported by the RDWM.
Display Displays a User Interface to enter a Data

Manipulation Statement.

3.4.1.3 Extracting and Executing SQL statements

Like all DHE modules the RDWM uses an XML parser to extract the action to be performed
and SQL statement (if any) from the request message. If the request is to execute an SQL
statement then the Ul Wrapper will have embedded the actual SQL in a request message.
(This is its default procedure for user input forms.) The RDWM then uses a persistent pool of
JDBC (Java Database Connectivity) Connection Objects, to execute a SQL statement on, or

retrieve metadata from the RDBMS.

3.4.1.3.1 Input
An XML message containing the SQL statement to be executed. As mentioned in section
3.4.1.2.1 there are 6 cases the RDWM may receive a message containing a SQL statement to

be executed, and in each case the SQL statement is in the Parameter tag of the message.

3.4.1.3.2 Processing

The Java Programming Environment provides an API for performing RDBMS related tasks.
This API, known as the Java Database Connectivity ([DBC) AP, creates a programming-level
interface for communicating with all relational databases in a uniform manner similar in
concept to Microsoft's Open Database Connectivity (ODBC). The JDBC APIis based on the
X/Open SQL Call Level Interface, the same basis as that of ODBC. The core JDBC API
consists of three interfaces: Connection, Statement, and ResultSet. A typical

operation would establish a connection with a database get an instance of a Connection,

36

3.4.1.3.2.3 CONNECTION POOL USAGE
The connection broker is in the class DBBroker in the package

dhyme.utils.dbBroker. Theconnection broker is a singleton, i.e. only one instance of
it ever exists in the life of the application/VM. When the application initializes, it must
initialize the broker. Different application components then proceed to request the broker for

a connection and once they are done with it they return this connection back to the broker.
¢ During Application Initialization:
DBBroker.init (database parameters);
e When a Component needs a Connection:
Connection conn = DBBroker.getInstance().getConnection();
. <ot «e ... do something with the connection

DBBroker.getInstance () .returnConnection (conn) ;

3.4.1.3.2.4 BROKER ARCHITECTURE
3.4.1.3.2.4.1 REQUESTING AND RETURNING CONNECTIONS

40

3.4.1.4.2 Processing
A ResultSetMarker class has been developed that iterates through the records returned
inaResultSet, formats those records into an HTML table for display and marks up each

element with a 1ocator tag. This HTML table is written into a Di splayDoc message for
display in the UIW.

3.4.1.4.3 Output
The Response as an XML message with all the required elements marked up with Locator

tags, and the types and the URIs of these elements in the ListOfElements tag.

3.4.1.4.4 Format of Respons
A DisplayDoc message.

3.4.1.5 Returning the Response

All DHE Modules extend the Module class and thus inherit the sendMsgToModule
method. To send a message to any other DHE module, the source module must specify the
ultimate destination of the module in the message, and call that method with the message as

the argument.

42

3.4.3 Functionality.

3.4.3.1 Architecture.

As shown in the class diagram, the RDWM itself receives and sends messages, it parses the
message and determines what command to execute. As mentioned in section 3.4.1.2.1, the
command may either be to execute a query, to display a Ul or to retrieve metadata. Another
class of commands maybe issued as a result of a user following link created from a Mapping
Rule, as detailed in section 3.3.1. These commands are also dealt with in the exact same

manner.

To process this command the RDWM uses “handlers” devoted for that purpose, for example,
a DisplayHandler is responsible for allowing a user to enter a SQL statement for

execution.

The following sections detail the processing involved in each of these “handlers”, by a series of
Collaboration diagrams that show the method calls in them. The arrows in each diagram
signifies the direction of the method call, the arguments to that method (if any) is also labeled

on each arrow.

3.4.3.2 Displaying the User Interface.
This is as a result of a di splay command being received by the RDWM.

52

ability to view the underlying E-R schema as well as the relational schema of the database from

which the query result was retrieved.

The DSM receives messages either from the RDWM or from the User Interface Wrapper.
The RDWM passes query result sets through the DSM to add schematic information. The
DSM parses the original query to get the table name. It then queries its own internal database
to see if it contains schema information for that table. If so, the DSM generates the E-R and
relational schemas, marks whichever elements of interest each contains, and sends a message

to the UI Wrapper to display these together with the regular query results.

The UI Wrapper sends the DSM messages when a user follows a DSM-related link. For
example, when the user selects a table and chooses a link to highlight that table in the relational
schema. The mapping rule corresponding to that link sends the appropriate command to the
DSM. The DSM must follow its internal mapping from the RDWM URI scheme to the DSM
URI scheme to identify the corresponding table element in the relational schema. Then the
DSM creates a new display where it indicates that the UI Wrapper should highlight certain

elements.

When parsing the RDWM’s query results, the DSM marks the following as elements of

interest in the corresponding E-R schema, and includes the properties shown as parameters:

1. E-R Database Schema

o Name (of the database in the DSM internal database)
2. Entities.

e Name.

o Type (Weak Entity or Normal Entity).
3. Relationship.

e Name

53

e Type (identifying relatiohship or wgak entity relationship)
4. Auributes
e Name
o Type:
1. Composite or Simple
2. Multi-valued or Single-valued
3. Stored or Derived
4. Key or not

The mapping rules capture the inter-relationships amongst each of these elements. Given any
particular database, entity, relationship or attribute in the E-R schema, the DSM will find the
corresponding database, entities, relationships and attributes related to it in the E-R schema.
Additional mapping rules will find the corresponding elements in the relational schema and the

query result currently being displayed.

When parsing the RDWM’s query results, the DSM marks the following as elements of
interest in the corresponding relational schema, and includes the properties shown as

parameters, with corresponding relationships:
1. Relational Database Schema
e Name
2. Relation
e Name

3. Attribute

o Primary Key
o Foreign key
4. Referential Integrity Costraint
o Relation name where the foreign key resides
e Relation name where the foreign key references
e Attribute name of the foreign key in the residing relation

e Attribute name of the primary key of the referenced table.

54

CHAPTER 4
PROVIDING SUPPORT TO DATABASE APPLICATIONS
One of the roles Relational Database Wrapper Module (RDWM) as envisioned in the original

architecture was to provide hypermedia enriched database services to existing as well as

completely new Database Driven Applications.

4.1 Support to existing Database Applications
Developers can retrofit existing database applications to work with DHE. This section begins
by describing such an integration. Then we describe the different kinds of links and metadata
that DHE provides and conclude with a brief description of a system we have integrated with
the DHE.

4.1.1 Motivation

Database applications that need to provide a hypertext-enriched view of data interact with the
RDBMS via the RDWM. Such a view enables the user or application and database designers to
view the underlying relationships that are not easily perceived, moreover by following links and

retrieving metadata they gain an insight on the domain that the application serves.

4.1.2 Architecture

One of the first tasks in providing hypermedia support is to intercept messages between the
computational and user interface (UI) portions of the application (Bieber and Kacmar 1995).
In the case of a Relational Database Management System (RDBMS), the application comprises
only a computational portion. The RDBMS provides a standard way of requesting
computational services (i.e., store, retrieve and analyze data) by means of Structured Query
Language (SQL) statements. The RDWM does this and provides its own interface for

entering SQL queries and displaying their results.

Database applications build a customized interface and possibly a larger set of functionality
around a RDBMS. Database applications, therefore, are responsible for their own UL
Database applications send SQL statements to their RDBMS. The RDBMS then executes

these statements and returns the results of these statements back to the application, which then

customizes and displays them.

55

56

If the Ul displays are easy to parse, i.e., a developer could easily figure out which elements are
in each display screen and how to pass back database and application commands to the
application, then one could write an application wrapper that intercepts all displays and
redirects them to DHE. This would satisfy our goal of providing automated hypermedia
functionality with minimal change to the application. The DHE’s UI would then display the

enhanced screens with hypermedia anchors as shown in Figure 1.

In general, Web-based database applications (Internet storefronts, catalogs etc.) have a clear
distinction between their UI and the database; usually the UI uses a middleware to
communicate with the database. The DHE may supplement or replace this middleware.
However most legacy database applications (client server or mainframe based) usually don’t
have such a clear distinction between their Ul and the underlying database; most often the data
and presentation is commingled. Integration with the DHE could be much more difficult in

this case.

In the DHE architecture each database application would be a DMIS, which would have its
corresponding DMIS Wrapper (DMISW). There are two integration points with an existing
Database Application.

4.1.2.1When the DMIS needs database services

This would be similar to supporting new database applications. The DMIS would route all
database requests to the wrapper, which would pass it onto the rest of the Engine. Once the
database request has been serviced, a hypermedia-enriched result of the database request
would be provided to the DMIS, which could then use the UTW to display it. (See section 4.2

for more details)

4.1.2.2 When the DMIS interacts with its Ul

All messages between the computational portion and the Ul portion of the application would
be intercepted by the Wrapper, which would route it to the engine to add hypermedia
functionality to it and use the UIW to display the enriched UI (Chiu 1997; Bieber and Kacmar
1995). Assuming that a clear distinction exists between the computational and the interface
portions of the application, and that the application allows these messages to be intercepted

(Bieber and Kacmar 1995).

57

4.1.3 Case Study

This section describes the integration of a database application with the DHE.

4.1.3.1 Problem Description

The New Jersey Department of Transportation has an extensive database that contains
commodity (coal, vegetable oil etc.) flow information between various counties in NJ and
various zones in the Northeastern US. A rudimentary web interface to this database exists; we
have created a DHE module that supplements this system and provides enhanced metadata,
exposes the various interrelationships between the “elements of interest” in the system and

provides additional functionality.

4.1.3.2 Architecture

The Freight Database Wrapper (FDW) is a DHE module that acts as the wrapper to the
Freight system. Like other application wrappers described in previous sections, the FDW
provides a gateway to application specific commands. Users may view the system through the
DHE’s User Interface and view reports on commodity flows between counties and zones, via

a set of Menu Items and Mapping Rules.

The FDW may also use the RDWM to completely bypass the existing web based freight

system and access the underlying database directly. This serves a twofold purpose:

* Metadata that is currently not provided by the system can be extracted directly from

the database by means of SQL statements executed by the RDWM.

» New mapping rules maybe formulated, these mapping rules would correspond to SQL
statements that would be executed on the freight database, thus providing additional

functionality not available in the existing system.

The FDW may also be used in conjunction with the DSM, providing users with a view of the

internal schema of the freight system’s database.

58

4.2 Support to Applications being developed
This section describes how database applications could be developed quickly and easily if

designed to take advantage of the DHE’s infrastructure. A system that is being built using the
DHE is also analyzed.

4.2.1 Motivation

In this role the DHE will provide access to a relational database for applications that need it.
All requests to a database i.e., SQL statements that need to be executed on a database will be
routed to the RDWM, which will execute the statement and return the hypermedia enriched

results to the application.

This will allow any application developer to quickly develop a database driven application that
is already enriched with hypermedia. The application developer will be able to use hypertext
functionality (HTF) to visualize relationships between entities in the application’s domain,
augment applications with, annotation and navigation functionality and other metadata that

would normally be hidden inside the Relational Database. (Bieber and Vitali 1997)

4.2.1.1 Scalable Application

Most database applications are tied to a certain database schema, which must be known when
the application is being designed. However by retrieving metadata and relationships (as a “list
of links”) it is possible to create a generic database application that dynamically generates a UI

corresponding to a database schema at runtime.

Thus instead of building a customized database application such as “Inventory” or “Purchase
Order Tracking” where the UI and screen flow must be decided at the application design
stage, it may be possible to build an application that utilizes the “list of links” to create a screen

flow and metadata to generate the UL

Because the application is not tied to a specific database schema, it is naturally scalable. Any
time the Data Model or underlying “Business Rule” changes and a change has to be made to
the schema, the application itself does not have to be modified, a change to an existing
Mapping Rule or addition of a new one will suffice. This is in stark contrast to conventional

application where a costly reengineering effort must be undertaken.

61

database elements, then the application wrapper should mark these up too, so they also may be
made into anchors. Each of these additional elements types will require its own mapping rules
for determining links and metadata. Many application commands can be moved into the link’s

mapping rules.

The application could also take advantage of other DHE services, such as the menu manager
for displaying application specific menus and the user preference manager for managing users’
sessions, login, profiles etc., not to mention the other hypermedia functionality that all

applications receive.

4.2.3 Case Study
This section describes a proposal to develop a student paper review information system using

the DHE.

4.2.3.1 Problem Description

As part of their coursework students must review a published paper, typically students would
email the instructor the bibliographic reference to the article they would like to review and the
instructor would approve or reject the request. If rejected the student would have to resubmit
his/her request with a new article. If approved the student would review the article and email it
to the instructor. The instructor would then grade the review and post it on the class message
board. Because of the volume of email an instructor receives it becomes difficult for him/her
to quickly approve or reject a request, because (s)he must go through previously approved

requests and make sure that this article has not been approved for review by another student.

To ameliorate this situation we propose to develop a DHE module that would allow a student
to request approval, check the status of the request, post a link to the review once completed
and to check his/her grade, once the review is corrected. The instructor would be able to view
pending requests, approve a request, view submitted reviews, assign grades, view reports on
approved articles, submitted reviews etc. The instructor would also be able to perform

administrative tasks such as adding students, deleting old reviews etc.

62

4.2.3.2 Architecture

The DHE only allows authenticated users access to the various modules (RDWM, etc.), if a
user has not logged in, he/she is presented with a login screen, where a valid DHE username
and password must be entered. At the start of semester, the instructor creates user accounts
for all students. When a student logs in he/she presented with a menu, customized to the
privileges that their user group has, in this case the student may have access only to this

application and is not able to “play around” with other DHE modules.

Thus the paper review application module does not have to manage customized menus or user
authentication issues; the DHE provides this service. Once a user has been authenticated any
subsequent requests (i.e. view grades, approve a review request etc.) will always contain the
username and the group the user belongs to. The application can thus perform or reject the
action based on the privileges the user may have. The application developer may also register
customized menus based on user groups; thus users belonging to the “student” group will not

see menus for administrative tasks.

The DHE would also provide database access to this application. For example when the
instructor to wishes to view a report on all approved articles not yet submitted, he/she would
click on the appropriate Menu Item and a message would be issued to the application module
with a request to generate this report. The application module would then issue a message to
the RDWM containing the appropriate SQL statement, the RDWM would execute the
statement and return a document containing the results of the statement, with the “elements of
interest” marked up. At this point the application module may simply forward this message to
the UIW and it will be displayed in the instructor’s browser with hyperlinks in them. The
instructor may follow this follow hyperlink to get more metadata for this element, and view a
list of mapping rules. For example if the element is an article, the metadata may be the
complete bibliographic reference to the article and a link to the article itself, and a mapping

rule maybe a list of students who have requested this article

4.2.4 Advantages of using the DHE’s infrastructure
The DHE thus speeds up the development process by freeing the developer from having to
program user management, menu management, database access and above all hyperlink

creation. All the developer would have to do is:

63

Register a set of mapping rules corresponding to the additional functionality desired
(i.e. view a list of students who have requested a specific article, view a list of pending

approval requests for a given section etc.).
Create a set of display screens.

Formulate a set of SQL statements corresponding to each of the main commands (i.e.

retrieve grades for a student, display submitted reviews etc.)

Write a DHE Module that receives requests for each of the main commands and sends

the appropriate SQL statement to the RDWM.

CHAPTER 5
USING THE DHE AS A DATA WAREHOUSING SOLUTION

This section proposes integrating a data warehousing application within the DHE
infrastructure, one of our future research topics. This would provide hypermedia support to
data warehousing applications, as well as facilitate linking among data warehouses and other

applications.

5.1 Introduction
A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of
data in support of management decision-making (Inmon 1996). A data warehouse is a
repository of information built using data from diverse, and often departmentally isolated,
application systems within an organization so this data can be modeled and analyzed by
managers (Johnson 1999; Inmon 1996). Data warehouses usually are customized for a
particular enterprise. Most vendors offer platforms on which enterprise data warehouses (or

smaller datamarts) may be buil.

5.1.1 Data Warehouse Metadata

Data warehouse architectures integrate a metadata repository that contains:

¢ Administrative metadata: source databases and their contents; gateway description;
warehouse schema, view and derived data definitions; dimensions and hierarchies;
predefined queries and reports; data mart locations and contents; data partitions; data
extraction, cleaning, transformation rules, default values; data refresh and purge rules;

user profiles, user groups; security
» Business metadata: business terms and definitions; ownership of data; charging policies

e Operational metadata: data lineage (history of migrated data and sequence of
transformation applied); currency of data: active, archived, purged; monitoring

information: warehouse usage statistics, error reports, audit trails

64

65

5.1.2 Motivation
The DHE maybe used top offer a complete end-to-end solution with the added benefit of

obtaining hypertext functionality without any additional effort.

Data warehouses are typically used for on-line analytical processing (OLAP). The key structure
of a data warehouse always contains some element of time and some dimension hierarchies.
OLAP queries are complex. They involve grouping and aggregation. A single OLAP query
can lead to several closely related queries (Chaudhuri 1997). The visualization of an OLAP
query result using DHE will involve links between data from one hierarchy level to the other
and links SQL subqueries contained in the OLAP query. In addition, an OLAP query can
result in a large collection of data with several dimensions. In the rest of this section we

concentrate on the loader module.

5.2 Functionality

The data warehouse has two broad functions:
e Accessing the data from the data warehouse.

e Loading the data from the operational systems into the data warehouse.

Like all Data Warehouses a DHE based Data Warehouse will use a DBMS as the underlying
store, thus functionality of accessing data from a data warehouse will be similar to any other

database application and has been dealt in previous sections.

5.2.1 The Loader Module.
To load data into the data warehouse a loader module will have to be designed and developed.
The Loader Module will be like any other DHE module, and will perform the following

functions:

5.2.1.1 Mapping data from Operational Systems to the Data Warehouse
The operational systems store data in their own structure, encoding etc. this has to be mapped

to the data warehouse’s format which is consistent across all operational systems.

66

5.2.1.2 Extracting Metadata from Operational Systems.
Metadata is the road map or blueprint to the data in the data warehouse, and needs to be
operational. Also, metadata needs to be preserved for analysis once it has been loaded

(Gardner 98). Metadata may include:
e The structure of the operational data.
e Relationships in the operational data.
e Other user-defined metadata.

5.2.1.3 Eliminating Noise
Operational data may contain data irrelevant to the warehouse (i.e., is noise), this data needs to

be eliminated before loading.

5.2.1.4 Architecture

The Loader Module is supplied a template (an XSL stylesheet) that maps data from the
operational systems’ format to the data warehouse’s format. It processes the template and
maps data from the operational system to the data warehouse. Any data not specified in the

template is noise and will be eliminated.

Once the extraction process is complete, the Loader Module sends a message to the RDWM
containing the data to be loaded as well as the metadata. The RDWM then loads this into the

data warehouse. Figure 27 describes the extraction process.

An argument could be made that a Loader Module is not required and the DHE is simply used
to access data from the warehouse. However this approach would not allow the DHE to
retrieve metadata from the operational systems. Moreover a complete end-to-end solution

requires that we provide a Loader Module.

CHAPTER 6
FUTURE RESEARCH PLANS - INTEGRATING DATA MINING

6.1 Introduction
Currently DHE determines links from the mapping rules. Because the person who develops
the application wrapper also writes the mapping rules at the same time, the types of
relationships DHE finds are known ahead of time. Data mining brings the opportunity of a
new kind of dynamic linking. Data mining searches large databases for relationships and
global patterns and relationships that are not immediately obvious, such as a relationship

between patient data and their medical diagnosis (Holsheimer 1994).

Data mining tools discover these relationships or models at runtime as opposed to design
time. Thus, the DHE must request the Data Mining Tool to discover the relationships for an

element of interest at runtime, and then use these discovered relationships to create hyperlinks.

Of course, in addition, the DHE could provide hypertext functionality to commercial Data
Mining Tools. A commercial data mining tool would have a wrapper written for it, just as with

»T™

any other application. Oracle Corporation’s “Darwin”™ is one of the most well known
commercial Data Mining tools. It provides a comprehensive API (in C+ +) to access its data
mining functions, it would be easy to write a wrapper that would be able to interface with it.

(Tamayo 1997), and thus seems an ideal candidate to develop a DHE wrapper for.

6.2 Mapping Rules for Data Mining
As mentioned in previous sections the DHE uses logical rules called mapping rules to provide
hypertext functionality to the components of the DMIS. Mapping Rules map the objects
defined in the DMIS such as models, relationships etc. to objects in the hypermedia elements
such as links etc. (Bieber 1995)

These Mapping Rules need to be defined when the DMIS Wrapper is being developed which
means the models, relationships that are going to be mapped should be known. Normally this
is not a problem since the relationships in the various elements/nodes/entities in a DMIS are

well known and determined when the DMIS is being designed.

68

69

The problem with a Data Mining Tool is that it discovers these relationships or models at
runtime as opposed to design time. Which means the Mapping Rules in this case cannot be

defined and entered into the Engine when the Data Mining Wrapper is being developed.

One way of solving this would be define a generic set of Mapping Rules for Data Mining,

which in turn would generate other Mapping Rules dynamically (Two step Mapping Rules).

6.2.1 Two Step Mapping Rules.
For each element in a document generated by the DMIS (i.e. the Data Mining Tool), the

Mapping Rules module would ask it to generate Relationships for elements of the same type.

For example, consider that the Data Mining Tool is operating on a mass of data related to
Automobile Tire Replacements that contain information on the customer who returned the
tire(s), the reason for return, the type of vehicle etc. all accessible via the tire’s serial number,
and it operates on another mass of data relating the tire to the place of manufacture, the batch
number and the composition of the components used. When asked to return possible
relationships for a tire it would automatically return correlations between the point of
manufacture, the vehicle the automobile tire was placed on and the composition of the
components. The Mapping Rules Module would then generate Mapping Rules for each of
these relationships and display them as hyperlinks allowing the user to quickly and navigate

these relationships and obtain an overall view of the detailed data available to him/her.

APPENDIX A

RDF RESOURCE PROPERTIES USED BY THE RDWM

Legend:

* Resource - The type of the resource the property belongs to.
* Resource Property - The name of the property, also the tag used in the RDF/XML serialized metadata representation.
= Type- Thetype of the Property
= Range - Range of the property if any.
* JDBC Method - The JDBC API method used to retrieve this information
* RDF:Comments - Explanatory comments on the RDF/XML tag.
* JDBC Class - The JDBC API class the JDBC Method belongs to.
Resourc[Resource Property{Type [Range JDBC MethodRDF:CommentsJDBC
e Class
Catalog NAME String IgetCatalogs() [Name of Catalog. DatabaseMet
aData
Column CHAR_OCTET_LENGTH]int getColumns() Maximum number of bytes|DatabaseMet
in the column, valid forfaData
char types only.
Column COLUMN _PRIVILEGE [Privilege getColumnPrivileges(),|Privileges for this Column|DatabaseMet
IgetTablePrivileges() aData
Column DECIMAL DIGITS int |getColumns() Number of Fractional|DatabaseMet
Digits. aData
Column DEFAULT String getColumns() Default Value for the|DatabaseMet
column. aData
Column |IN_TABLE Table getColumns() Which Table this Column|DatabaseMet
belongs to. aData
Column [IS NULLABLE String NO, YES, UNKNOWNIgetColumns() 'Whether or not a column|DatabaseMet
ican be null or not. aData
Column [IS PSEUDO_COLUMN |[String Unknown, NotPseudo,|getBestRowldentifier(){Whether or not this is ajDatabaseMet
Pseudo pseudo columns or not.[aData
(eg. Oracle ROWID)
Column |JDBC TYPE IDBCType getColumns() JDBC data type. DatabaseMet
aData
Column INAME String getColumns() Column Name DatabaseMet
aData
Column ORDINAL POSITION fint getColumns() Index of the column in ajDatabaseMet
table (first columnis 1) [aData
Column |RADIX int getColumns() DatabaseMet
aData
Column RDF:COMMENTS RDF:Com getColumns() Explanatory Comment on/DatabaseMet
ments the Column aData
Column RDF:LABEL RDF:Label getColumnLabel() [Suggested Column Title forfResultSetMet;
Column aData
Column SIZE int getColumns() Column Size. For char orjDatabaseMet
date types this is the max.|JaData
number of characters; for]
numeric or decimal types
this is the precision
Driver IDENTIFIER_QUOTE_STHString getldentifierQuoteStrigString used to quote SQL{DatabaseMet
ING 0 Identifiers. aData
Driver IS NULL_PLUS NON_NUboolean {true/false nullPlusNonNulllsNu|Whether concatenation of alDatabaseMet
LL_NULL 0 NULL value and a non-jaData
NULL value returns a
[NULL value.
Driver MAX CONNECTION |int getMaxConnections() [Maximum number of|DatabaseMet
connections that can befaData
made to the database
through this driver|
instance.
Driver NAME String getDriverName() JDBC Driver Name DatabaseMet
aData
Driver [VERSION String getDriverVersion() |JDBC Driver Version |DatabaseMet
aData

70

71

Index CARDINALITY int getIndexInfo() number of unique values infDatabaseMet
the index if TYPE isjaData
tableIndexStatistic then this|
is the number of rows in|
the table

Index FILTER_CONDITION |[String getIndexInfo() Filter condition, if any ~ |DatabaseMet

aData

Index IN_TABLE Table getIndexInfo() Which Table this Index|DatabaseMet
belongs to. aData

Index INDEX_QUALIFIER String getIndexInfo() Index Catalog DatabaseMet

aData

Index INDEX_TYPE String STATISTIC,CLUSTEREetIndexInfo() Type of Index DatabaseMet

D, HASHED, OTHER aData

Index IS NON_UNIQUE boolean [true/false getIndexInfo() (Whether or not Index|DatabaseMet
values can be non-unique [aData

Index NAME String getIndexInfo() [Name of the Index DatabaseMet

aData

Index ORDINAL POSITION |int getIndexInfo() Column sequence number|DatabaseMet
within index aData

Index PAGES int |getIndexInfol) When TYPE isfDatabaseMet
tableIndexStatisic then thisjaData
is the number of pages|
used for the table,)
otherwise it is the number]
of pages used for the)
current index

Index SORT_SEQUENCE String ASC, DESC, NONE [getIndexInfo() column sort sequence,[DatabaseMet
"ASC" => ascending,|aData
"DESC" => descending,|
may be none if sort
sequence is not supported

JDBCType |CAN BE AUTO_INCREMboolean [true/false getTypelnfo() 'Whether or not this type|DatabaseMet

ENT can be used for an auto-laData
increment value.

JDBCType |CAN BE MONEY VALUE}boolean [true/false get Typelnfo() 'Whether or not this type|DatabaseMet
can be a money value orfaData
not.

JDBCType {CASE SENSITIVE boolean [true/false getTypelnfo() 'Whether this type is case|DatabaseMet
sensitive or not. aData

JDBCType |CREATE PARAMS String getTypelnfo() Parameters used in creating|DatabaseMet
the type. aData

JDBCType {DBMS NAME String get Typelnfo() Local RDBMS Name for{DatabaseMet
this JDBCType aData

JDBCType {JDBC NAME String from java.sql. Types get Typelnfo() [Name of the JDBC Type |DatabaseMet

aData

JDBCType [LITERAL_PREFIX String |get Typelnfo() Prefix used to quote ajDatabaseMet
liveral. aData

JDBCType [LITERAL SUFFIX String getTypelnfo() Suffix used to quote ajDatabaseMet
liveral. aData

JDBCType [LOCAL NAME String get Typelnfo() Localized Version of the|DatabaseMet
DBMS NAME aData

JDBCType [MAX_SCALE int getTypelnfo() Maximum Scale Supported {DatabaseMet

aData

JDBCType |MIN_SCALE int get Typelnfo() Minimum Scale Supported [DatabaseMet

aData

JDBCType [NULLABLE String [NO, YES, UNKNOWNIgetTypeInfoO Whether or not a column|DatabaseMet
with this type can be null.]aData

IDBCType [PRECISION int get Typelnfo) Maximum Precision. DatabaseMet

aData

JDBCType |RADIX int 100r2 DatabaseMet

aData

JDBCType |[SEARCHABLE String NO_WHERE, get Typelnfo() Indicates whether it is|DatabaseMet

ONLY_WHERE LIKE possible to use a WHERE[aData
ALL WHERE_EXCEP clasue based on this type.

T WHERE _LIKE,

ALL WHERE

72

JDBCType [UNSIGNED boolean [true/false lg?tTypeInfo() 'Whether or not this type is[DatabaseMet
unsigned or not. aData

Privilege |CAN_GRANTEE_GRANT|boolean ftrue/false getColumnPrivileges(),| Whether or not the grantee{DatabaseMet

PRIVILEGE etTablePrivileges() jcan grant access to others jaData

Privilege ~ [PRIVILEGE GRANTEE |User getColumnPrivileges(),/ The User who is granted{DatabaseMet

etTablePrivileges() |the access. aData

Privilege [PRIVILEGE_GRANTOR |User getColumnPrivileges(),/ The User who grants the[DatabaseMet

et TablePrivileges() |access. aData

Privilege ~ [PRIVILEGE_TYPE String getColumnPrivileges(),| Type of Access (SELECT,[DatabaseMet

getTablePrivileges() [INSERT, UPDATE,[aData
REFRENCES etc)

Procedure [IN_CATALOG Catalog lgetProcedures() [Procedure Catalog DatabaseMet

aData

Procedure |[IN_SCHEMA Schema getProcedures() [Procedure Schema DatabaseMet

aData

Procedure |NAME String getProcedures() [Name of the Procedure [DatabaseMet

aData

Procedure |RDF:COMMENTS RDF:Com getProcedures() Explanatory Comment onfDatabaseMet

ments the Procedure. aData

Procedure |[TYPE String Unknown, NoResult,|getProcedures() Whether or not aDatabaseMet

ReturnsResult [Procedure returns a Result.JaData

Product CATALOG_SEPARATOR (String getCatalogSeparator() |Separator between catalog[DatabaseMet
and Table names aData

Product CATALOG_TERM String getCatalogTerm() Database vendor's term for]DatabaseMet
Catalog aData

Product CATALOGS Bag of getCatalogs() All Catalog Names|DatabaseMet

Catalogs available in the database (InfaData
no order)
Product DEFAULT _TRANSACTIOString NONE, getDefault Transaction]Default Transaction{DatabaseMet
N_ISOLATION READ_UNCOMITTE [solation() Isolation Level. (ByJaData
D, Isolation we mean|
READ_COMMITED, atomicity of a Transaction)
REPEATABLE READ)
SERIALIZABLE

Product DRIVER Driver getDriverName() JDBC Driver used to[DatabaseMet
connect to the Database |aData

Product DOES_DDL_IN_TRANSA(boolean |true/false dataDefinitionCausesT|Does a DDL in a]DatabaseMet

T_CAUSE_COMMIT ansactionCommit() [Transaction cause afaData
Commit?
Product EXTRA_NAME_CHARA(String getExtraNameCharactgASCII Special Characters|DatabaseMet
ERS rs() that can be used in namesfaData
(beyond a-z, 0-9 and)
Product IS BLOB IN_MAX ROW [boolean [true/false doesMaxRowSizelncluDoes the value returned byjDatabaseMet
IZE deBlobs() ulgetMaxRowSize includefaData
LONGVARCHAR and
LONGVARBINARY
blobs?

Product IS CATALOG_AT START|boolean [true/false isCatalogAtStart() Does the Catalog Name|DatabaseMet
appear at the start of a fullyjaData
qualified Table Name?

Product IS DDL IGNORED_IN_THboolean [true/false dataDefinitionlgnoredlls a DDL ignored in alDatabaseMet

[ANSACT nTransactions() Transaction? aData

Product IS NULL SORTED_AT E|boolean [true/false nullsAreSorted AtEnd(){Are Null values sorted at[DatabaseMet

ND the end regardless of sortfaData
order?

Product IS NULL SORTED HIGH|boolean [true/false nullsAreSortedHigh() DatabaseMet

aData

Product IS READ ONLY boolean [true/false isReadOnly/() DatabaseMet

aData

Product MAX BINARY LITERAL [int getMaxBinaryLiteralLdHow many hex characters{DatabaseMet

LENGTH ngth() can you have in an inlinefaData
binary literal?

Product MAX_CATALOG_LENGTjint getMaxCatalogNamel BWhat's the maximum|DatabaseMet

H ngth() length of a catalog name? [aData

Product MAX_CHAR_LITERAL_LKnt getMaxCharLiteralLenMaximum number offDatabaseMet

NGTH th() characters allowed in alaData
character literal.

73

Product MAX_COLUMN_NAME lint getMaxColumnNamel[Maximum number of|DatabaseMet
ENGTH ength() characters allowed in alaData
column Name.

Product MAX COLUMNS_IN_GR¢nt getMaxColumnsInGrdMaximum number of|DatabaseMet

UP_BY upBy() columns allowed in alaData
GROUP BY clause.
Product MAX COLUMNS IN INDint getMaxColumnsInInd§Maximum number of|DatabaseMet
EX x() columns allowed in an[aData
index.
Product MAX_COLUMNS_IN_ORInt getMaxColumnsinOrdMaximum number of[DatabaseMet
ER_BY By() columns allowed in anjaData
ORDER BY clause.
Product MAX_COLUMNS_IN_SEL}int getMaxColumnsInSelefMaximum number offDatabaseMet
CT t() columns allowed in ajaData
SELECT clause.
Product MAX_COLUMNS_IN_TABint getMaxColumnsInTabMaximum number of{DatabaseMet
LE Ie() columns allowed in a tableJaData
Product MAX CURSOR_NAME LHnt getMaxCursorNameLgMaximum number of|DatabaseMet
NGTH ngth() characters that can be usedfaData
in Cursor Name.

Product MAX INDEX LENGTH |int getMaxIndexLength() |Maximum number of bytefDatabaseMet
allowed in an index. aData

Product MAX PROCEDURE_NAMint getMaxProcedureN: aximum number of|DatabaseMet

E_LENGTH Length() characters allowed in alaData
procedure name.

Product MAX ROW _SIZE int getMaxRowSize() Maximum number of bytesiDatabaseMet
allowed in a single row. jaData

Product MAX _SCHEMA NAME Lfnt getMaxSchemaNameLMaximum number ofjDatabaseMet

NGTH ngth() characters allowed in ajaData
schema name

Product MAX _STATEMENT LENGint getMaxStatementLeng§Maximum Number offDatabaseMet

TH h() characters allowed in anfaData
SQL statement

Product MAX STATEMENTS int getMaxStatements() [Maximum number offDatabaseMet
active statements to thisjaData
database that may be open
at the same time.

Product MAX TABLE NAME LENint getMaxTableNameLerfMaximum number of|DatabaseMet

GTH sth() characters allowed in ajaData
table name.
Product MAX _TABLES IN_SELEC|int getMaxTablesInSelect([Maximum Number offDatabaseMet
T Tables allowed in afaData
SELECT clause
Product MAX USER NAME LENGnt getMaxUserNameLengMaximum number offDatabaseMet
TH h() characters allowed in a userfaData
name.

Product NAME String getDatabaseProductNqProduct Name for this|DatabaseMet

me() database. aData

Product NUMERIC FUNCTIONS |String getNumericFunctions()|Comma Delimited List of[DatabaseMet
Math Functions aData

Product PROCEDURE_TERM String |getProcedureTerm() |Database vendor's|DatabaseMet
preferred term forfaData
"procedure”

Product SCHEMA_TERM String getSchemaTerm() Database vendor's|DatabaseMet
preferred term forjaData
"schema"

Product SCHEMAS Bag Off getSchemas() Schema in the Database. [DatabaseMet

Schema aData

Product SEARCH STRING_ESCAPString getSearchStringEscape(String that can be used to[DatabaseMet

E_PATTERN escape " " or "%"[aData
wildcards in the string
search pattern used for]
catalog search parameters.

Product SQL_KEYWORDS String 2etSQIKeywords() |[Comma-separated list of[DatabaseMet
keywords used by thejaData
database that are not SQL-

92 keywords

74

Product STORE_LOWER_CASE IDboolean [true/false storesLowerCaseldentDoes the database treat[DatabaseMet
ENTIFIER iers() mixed case unquoted SQL{aData
identifiers as case|
insensitive and store them|
in lower case?
Product STORE_LOWER_CASE _Qfboolean [true/false storesLowerCaseQuotgDoes the database treatjDatabaseMet
UOTED_IDENTIFIER dIdentifiers() mixed case quoted SQLjaData
identifiers as case]
insensitive and store them
in lower case?
Product STORE_MIXED CASE ID|boolean [true/false storesMixedCaseldentifDoes the database treat[DatabaseMet
ENTIFIER iers() mixed case unquoted SQL|aData
identifiers as case|
insensitive and store them
in mixed case?
Product STORE_MIXED CASE QUboolean |true/false storesMixedCaseQuotd4Does the database treat|DatabaseMet
OTED_IDENTIFIER dIdentifiers() mixed case quoted SQLfaData
identifiers as case]
insensitive and store them
in mixed case?
Product STORE_UPPER_CASE IDBoolean [true/false storesUpperCaseldentifDoes the database treat|DatabaseMet
INTIFIER iers() mixed case unquoted SQL{aData
identifiers as case
insensitive and store them
in upper case?
Product STORE_UPPER_CASE_QUboolean [true/false storesUpperCaseQuotfDoes the database treat|DatabaseMet
OTED_IDENTIFIER dIdentifiers() mixed case quoted SQLiaData
identifiers as case]
insensitive and store them
in upper case?
Product STRING_FUNCTIONS {String getStringFunctions() |Comma-separated list of|DatabaseMet
string functions. aData
Product SUPPORT_ALTER_TABLHboolean [true/false supportsAlterTableWifls "ALTER TABLE" with{DatabaseMet
WITH ADD COLUMN hAddColumn() add column supported? [aData
Product SUPPORT_ALTER_TABLHboolean true/false supportsAlterTableWitls "ALTER TABLE" with{DatabaseMet
WITH DROP COLUMN| hDropColumn() drop column supported? [aData
Product SUPPORT_ANSI_92 ENTHboolean [true/false supportsANSI92Entry|ls the ANSI92 entry level[DatabaseMet
Y LEVEL SQL LevelSQL() SQL grammar supported?|aData
All]JDBC Compliant™
drivers must return true.
Product SUPPORT_ANSI_92 FULL]boolean ftrue/false supportsANSI92FullS [Is the ANSI92 full SQL{DatabaseMet
SQL QL() rammar supported? aData
Product SUPPORT_ANSI 92 INTE|boolean [true/false supportsANSI92Interrls the ANSI92 intermediate[DatabaseMet
RMEDIATE SQL ediateSQL() SQL grammar supported?[aData
Product SUPPORT CATALOG IN|boolean |true/false supportsCatalogsInDafCan a catalog name be used|DatabaseMet
DML aManipulation() in a data manipulationfaData
statement?
Product SUPPORT_CATALOG_IN|boolean [true/false supportsCatalogsInIndiCan a catalog name be used{DatabaseMet
INDEX DEFN xDefinitions() in an index definitionjJaData
statemnent?
Product SUPPORT_CATALOG INJboolean [true/false supportsCatalogsInPriCan a catalog name be used|DatabaseMet
PRIVILEGE_DEFN ilegeDefinitions() in a privilege definitionjaData
statement?
Product SUPPORT _CATALOG IN|boolean [true/false supportsCatalogsInPrqCan a catalog name be used|DatabaseMet
PROCEDURE_CALLS cedureCalls() in a procedure callfaData
statement?
Product SUPPORT_CATALOG_INJboolean [true/false supportsCatalogsInTaljCan a catalog name be used{DatabaseMet
TABLE DEFN eDefinitions() in a table definitionfaData
statement?
Product SUPPORT_COLUMN_ALlboolean [true/false supportsColumnAliasifis ~ column aliasing{DatabaseMet
SING 120 supported? aData
Product SUPPORT_CONVERT |boolean [true/false supportsConvert() [Isthe CONVERT function{DatabaseMet
between SQL typesjaData
supported?
Product SUPPORT CORE SQL |boolean [true/false supportsCoreSQLGralls the ODBC Core SQL|DatabaseMet
mmar() rammar supported? aData
Product SUPPORT_CORRELATEDboolean [true/false supportsCorrelatedSul‘{f\re correlated subqueries|DatabaseMet
SUBQUERIES queries() supported? aData

75

Product SUPPORT DDL AND DMboolean [true/false supportsDataDefinitiopAre both data definition|DatabaseMet
L IN TRANSACTION AndDataManipulationfand data manipulationfaData
Transactions() statements within o
transaction supported?
Product SUPPORT_DIFFERENT Tlboolean [true/false supportsDifferentTablgIf table correlation names|DatabaseMet
ABLE_CORRELATION_N CorrelationNames() [are supported, are theyjaData
AMES restricted to be different
from the names of the|
tables?
Product SUPPORT_EXPRESSIONS|boolean true/false supportsExpressionsInfAre expressions injDatabaseMet
IN ORDER BY OrderBy/() "ORDER BY" listsfaData
supported?
Product SUPPORT_EXTENDED _S|boolean [true/false supportsExtendedSQL|Is the ODBC Extended|DatabaseMet
QL GRAMMAR Grammar() SQL grammar supported?[aData
Product SUPPORT_FULL OUTER|boolean {true/false supportsFullOuterJoir|Are full nested outer joins|DatabaseMet
OINS 0 supported? aData
Product SUPPORT_GROUP _BY |[boolean [true/false supportsGroupBy() [Is some form of "GROUP|DatabaseMet
BY" clause supported? [aData
Product SUPPORT_GROUP_BY Blboolean [true/false supportsGroupByBeygCan a "GROUP BY"|DatabaseMet
I[YOND SELECT ndSelect() clause add columns not injaData
the SELECT provided it
specifies all the columns in|
the SELECT?
Product SUPPORT_GROUP BY Ulboolean |true/false supportsGroupByUnrgCan a "GROUP BY"|DatabaseMet
NRELATED ated() clause use columns not infaData
the SELECT?
Product SUPPORT_INTEGRITY_Efboolean Jtrue/false supportsintegrityEnhafis the SQL Integrity|DatabaseMet
NHANCEMENT FACILIT cementFacility() Enhancement FacilityfaData
Y supported?
Product SUPPORT_LIKE_ESCAPE |boolean [true/false supportsLikeEscapeCldls the escape character infDatabaseMet
CLAUSE use() "LIKE" clauses supported?laData
Product SUPPORT_LIMITED _OUTboolean [true/false supportsLimitedOuterls there limited support forjDatabaseMet
ER JOINS oins() outer joins? aData
Product SUPPORT _MINIMUM_SQJboolean [true/false supportsMinimumSQIIs the ODBC Minimum|DatabaseMet
| GRAMMAR Grammar() SQL grammar supported?{aData
All JDBC Compliant™
drivers must return true.
Product SUPPORT MIXED_CASE |boolean [true/false supportsMixedCaseldelDoes the database treat|DatabaseMet
DENTIFIER ntifiers() mixed case unquoted SQL{aData
identifiers as case sensitive
and as a result store them
in mixed case?
Product SUPPORT MIXED CASE [boolean [true/false supportsMixedCaseQyDoes the database treat|DatabaseMet
QUOTED_IDENTIFIER otedIdentifiers() mixed case quoted SQL{aData
identifiers as case sensitive|
and as a result store them|
in mixed case?
Product SUPPORT MULTIPLE RHEboolean [true/false supportsMultipleResulfAre multiple ResultSets|DatabaseMet
[ULTSETS Sets() from a single executefaData
supported?
Product SUPPORT_MULTIPLE_TRboolean [true/false supportsMultipleTran{Can we have multiple/DatabaseMet
ANSACTIONS ctions() transactions open at oncefaData
(on different connections)?
Product SUPPORT_NON_NULLAMoolean [true/false supportsNonNullabledCan columns be defined asjDatabaseMet
LE COLUMNS olumns() non-nullable? aData
Product SUPPORT_OPEN_CURSOpboolean [true/false supportsOpenCursorsfCan cursors remain open|DatabaseMet
S ACROSS COMMIT crossCommuit() across commits? aData
Product SUPPORT_OPEN_CURSOboolean Jtrue/false supportsOpenCursorsfCan cursors remain open|DatabaseMet
S ACROSS ROLLBACK crossRollback() across rollbacks? aData
Product SUPPORT_OPEN_STATE]TBoolean true/false supportsOpenStatemegCan statements remain|DatabaseMet
ENTS ACROSS COMMIT] tsAcrossCommit() [open across commits? aData
Product SUPPORT_OPEN_STATENoolean [true/false supportsOpenStatemegCan statements remain|DatabaseMet
ENTS_ACROSS ROLLBAG tsAcrossRollback() [open across rollbacks? |aData
K
Product SUPPORT_ORDER _BY Ulboolean |true/false supportsOrderByUnrdCan an "ORDER BY"|DatabaseMet
NRELATED ated() clause use columns not infaData
the SELECT statement?

76

Product SUPPORT_OUTER_JOINS}boolean . [true/false supportsQuterJoins() |Is some form of outer join{DatabaseMet
supported? aData
Product SUPPORT POSITIONED _|boolean [true/false supportsPositionedDelfls positioned DELETE[DatabaseMet
DELETE te()]t:fxpported? aData
Product SUPPORT_SCHEMAS IN |boolean [true/false supportsSchemasInDafCan a schema name be[DatabaseMet
DML aManipulation() used in a data manipulationfaData
statement?
Product SUPPORT_SCHEMAS IN |boolean [true/false supportsSchemasInInd|Can a schema name be|DatabaseMet
NDEX DEFN exDefinitions() used in an index definitionfaData
statement?
Product SUPPORT_SCHEMAS _IN |boolean |true/false supportsSchemasInPriyCan a schema name be|DatabaseMet
RIVILEGE_DEFN ilegeDefinitions() used in a privilegelaData
definition statement?
Product SUPPORT_SCHEMAS IN |boolean |true/false supportsSchemasInProfCan a schema name be|DatabaseMet
ROCEDURE_CALLS : cedureCalls() used in a procedure calllaData
statement?
Product SUPPORT_SCHEMAS IN |boolean [true/false supportsSchemasInTafCan a schema name be|DatabaseMet
TABLE DEFN leDefinitions() used in a table definitionfaData
statement?
Product SUPPORT_SELECT FOR_|boolean [true/false supportsSelectForUpdils SELECT for UPDATE|DatabaseMet
UPDATE te() supported? aData
Product SUPPORT_STORED_PROfbBoolean [true/false supportsStoredProcedyAre stored procedure calls|DatabaseMet
EDURES res() using the stored procedurejaData
escape syntax supported?
Product SUPPORT_SUBQUERIES Jboolean |true/false supportsSubqueriesin(Are subqueries in|DatabaseMet
N_COMPARISONS omparisons() comparison expressionsfaData
supported?
Product SUPPORT SUBQUERIES Jboolean [true/false supportsSubqueriesinHAre subqueries in 'exists'|DatabaseMet
N_EXISTS xists() expressions supported? [aData
Product SUPPORT_SUBQUERIES Jboolean [true/false supportsSubqueriesInlfAre subqueries in 'in'|DatabaseMet
N _INS s() statements supported? [aData
Product SUPPORT SUBQUERIES Jboolean [true/false supportsSubqueriesinQAre ~ subqueries in|DatabaseMet
N_QUANTIFIEDS uantifieds() quantified expressionsfaData
supported?
Product SUPPORT_TABLE_CORRJboolean [true/false supportsTableCorrelatjAre table correlation names|DatabaseMet
LATION NAMES onNames() supported? aData
Product SUPPORT_TRANSACTIONoolean [true/false supportsTransactions(){Are transactions|DatabaseMet
S supported? aData
Product SUPPORT_UNION boolean [true/false supportsUnion() Is SQL UNION|DatabaseMet
supported? aData
Product SUPPORT_UNION_ALL |boolean [true/false supportsUnionAll) [Is SQL UNION ALL{DatabaseMet
supported? aData
Product SUPPPORT_POSITIONED|boolean [true/false supportsPositionedUpfls positioned UPDATE|DatabaseMet
UPDATE ate() supported? aData
Product SYSTEM _FUNCTIONS |String getSystemFunctions() |Comma-separated list offDatabaseMet
System Functions. aData
Product TABLE TYPES String getTableTypes() Comma-separated list of{DatabaseMet
supported table types infaData
this DBMS
Product TIME DATE FUNCTIONS{String get TimeDateFunctionfComma-separated list of{DatabaseMet
I) time and date functions |aData
Product URL String get URL() JDBC Ut of this database.[DatabaseMet
aData
Product [USER User lgetUserName() User of this database. DatabaseMet
aData
Product [USES_LOCAL FILE PER [boolean [true/false usesLocalFilePerTable()|Does the database use a file]DatabaseMet
TABLE for each table? aData
Product USES LOCAL _FILES boolean [true/false usesLocalFiles() [Does the database store|DatabaseMet
tables in a local file? aData
Product VERSION String getDatabaseProductVefVersion for this Database[DatabaseMet
sion() Product aData
Schema NAME String getSchemas() Name of Schema DatabaseMet
aData
Table AUTO _UPDATED_COLUBag of getVersionColumns() {All Columns that are[DatabaseMet
MNS Columns automatically updated if ajaData
row is updated.

77

Table COLUMNS Bag off getColumns() Columns in Table DatabaseMet
Columns aData
Table IN CATALOG Catalog {getTablesO Table Catalog DatabaseMet
aData
Table IN_SCHEMA Schema get Tables() Table Schema DatabaseMet
aData
Table NAME String FetTables() Name of the Table DatabaseMet
aData
Table RDF:COMMENTS String getTables() Explanatory Comment on|DatabaseMet
the Table aData
Table TABLE_PRIVILEGE Privilege getTables() Privileges for this Table |DatabaseMet
aData
Table TABLE_TYPE String TABLE, VIEW JgetTables() Type of the Table DatabaseMet
SYSTEM TABLE, aData
GLOBAL
TEMPORARY, LOCAL
TEMPORARY, ALIAS,
SYNONYM
User INAME String getUserName() Username of this User. |DatabaseMet
aData
User RIGHTS UserRights allProceduresAreCallaRights for this User DatabaseMet
e(), aData
all TablesAreSelectable()
UserRights [ARE PROCEDURES_CALpoolean [true/false allProceduresAreCallaliWhether or not the currentjDatabaseMet
ABLE e() user has the rights to call allaData
procedures
UserRights |[ARE_TABLES SELECTAB|boolean true/false all TablesAreSelectable()| Whether or not the currentjDatabaseMet
LE user has the rights to calllaData
SELECT statements on all
Tables

APPENDIX B

DATABASE CONNECTION POOL PERFORMANCE METRICS

To test the Database Connection Pool’s performance and the fact that using a Connection

Pool is indeed superior to creating a connection every time, an experiment was conducted ona

Pentium II (266) with 128 MB RAM running WIN-NT Workstation 4.0 (SP5).

The Database the testing was performed on was MS-Access 97 (SR2). A tester program was
written that spawned 10 threads. Each thread simultaneously executed a SELECT query
(select * from test, thetable had 6 columnsand 250 rows) for a specified amount of
time. This program then obtained the ResultSet, stepped through each row and
converted each row into a Hashtable with the column names as the keys. This procedure
was repeated both with and without the Connection Pool. Without the Pool a connection was

created each time a query had to be executed.

The turnaround time (i.e. the time it took for executing the query, stepping through the
ResultSet and converting each row into a Hashtable was recorded for each query.

This time was then plotted for both the cases.

Performance of the Database Connection Pool

70000 .
60000
%% 50000
S
& § 40000 |
§§ 30000 Without the Pool
EE
E E 20000
10000 With the Pool
0 m
~ 00 W N O © MO O MM ¥ v O U N O © O O K~ ¥ v
™ = = v v v N &N N N N N O M M
Select Statement #

Figure 28: Database Connection Pool Performance at a Glance.

78

Summary Statistics

Without the With the

Database Connection PoolDatabase Connection Pool

Time of Run (secs) 500 500
Number of Select Statements 201 351

Mean Turnaround Time (millis) 24490.40299 13993.73504
Maximum Turnaround Time (mullis) 57783 19828
Minimum Turnaround Time (millis) 14301 11136
Median Turnaround Time (milllis) 21481 13800
Number of Threads 10 10

79

REFERENCES

Adler, A., Berglund, A., Caruso, J., Deach, S., Grosso, P., Gutentag, E., Milowski, A., Parnell,
S., Richman, J., and Zilles S., Extensible Stylesheet Language (XSL) Version 1.0, W3C
Working Draft 1, Mar. 2000, http://www.w3.org/TR/xsl/.

Agosti, M. and Smeaton A., Information Retrieval and Hypertext. Boston: Kluwer Academic
Publishers.

Anderson, M., K. Data Scalability in Open Hypermedia Systems, Proceedings of ACM Hypertext
’99 Conference, Darmstadt, Germany, pp. 27-36, Feb. 21-25 1991.

Balasubramanian, V., Bieber, M. and Isakowitz, T., A Case Study in Systematic Hypermedia
Design, Information Systems Journal (forthcoming).

Bapat, A., Waesch, J., Aberer, K., and Haake, J., HyperStorM: an Extensible Object-Oriented
Hypermedia Engine, Proceedings of ACM Hypertext Conference, Washington, D.C, pp. 203-
214, Sep. 1996.

Berners-Lee T., Fielding R. and Masinter L., "Uniform Resource Identifiers (URI): Generic
Syntax", Internet Engineering Task Force Request For Comments 2396, August 1998.

Bieber, M., Supplementing Applications with Hypermedia, Technical Report, New Jersey
Institute of Technology, Information Systems Department, Mar. 1997.

Bieber, M., On Integrating Hypermedia into Decision Support and Other Information Systems,
Decision Support Systems, vol. 14, pp. 251-267, 1995.

Bieber, M. and Kacmar, C., Designing Hypertext Support for Computational Applications,
Communications of the ACM, vol. 38(8), pp. 99-107, 1995.

Bieber, M. and Vitali, F., Toward Support for Hypermedia on the World Wide Web, IEEE
Computer, vol. 30(1), pp. 62-70, 1997.

Bieber, M. and Joonhee Y., Hypermedia: A Design Philosophy, ACM Computing Surveys
(forthcoming).

Chaudhuri, S. and Dayal, U., An Overview of Data Warehousing and OLAP Technology.
SIGMOD Record, vol. 26(1), pp. 65-74, 1994.

Chiramella, Y., and Kheirbek, A., An Integrated Model for Hypermedia and Information
Retrieval, In Information Retrieval and Hypertext, M. Agosti, A. Smeaton (Eds), Kluwer,
Amsterdam (NL), pp.139-176, 1998.

Chiramella, Y., Browsing and Querying: Two Complementary Approaches for Multimedia

Information Retrieval, Proceedings of Hypertext — Information Retrieval — Multimedia, (HIM
’97), Dortmund, Germany, pp. 9-26, 1997.

80

81

Chiu, C. and Bieber, M., A Generic Dynamic-Mapping Wrapper for Open Hypertext System
Support of Analytical Applications, Proceedings of ACM Hypertext '97, ACM Press,
Washington, D.C., pp. 218-219, Apr. 1997, http://www.cis.njit.edu/~bieber/pub/ht97/ht97-
mac.html.

Christodoulou, S., Styliaras, G. and Papatheodourou, T., Evaluation of Hypermedia Application
Development and Management Systems, Proceedings of ACM Hypertext '98, ACM Press,
Pittsburgh, pp. 1-10, May 1998.

Constantopoulos, P., Theodorakis, M. and Tzitikas, Y., Developing Hypermedia Over an
Information Repository, Proceedings of the 2" Workshop on Open Hypermedia Systems, ACM
Hypertext 96 Conference, Washington, DC., pp. 227-238, Sep. 1996.

Diaz, A., Isakowitz, T., Maiorana, V. and Gilabert, G., RMC: A Tool To Design WWW
Applications. Proceedings of the Fourth International World Wide Web Conference, Boston,
Dec. 1995.

Falquet, G., Guyot, J. and Prince, 1., Generating Hypertext Views on Databases, CUI Technical
Report No 101, University of Geneva, 1995.

Falquet, G., Guyot, J. and Nerima, L., Languages and Tools to Specify Hypertext Views on
Databases, International Workshop webDB '98 selected papers, Valencia, Spain, Springer-
Verlag LNCS 1590, Mar. 1998.

Frank, M., Database and the Internet, DBMS Magazine, vol. 8(13), pp. 39-47, Dec. 1995.

Fountain, A., Hall, W., Health, I. and Davis, H. C., Microcosm: An Open Model for Hypermedia
with Dynamic Linking. Proceedings of the ACM European Conference on Hypertext, Paris,
France, pp. 298-311, 1990.

Furner, J., Ellis, D. and Willett, P., The Representation and Comparsion of Hypertext Structures
using Graphs , In Information Retrieval and Hypertext, M. Agosti, A. Smeaton (Eds), Kluwer,
Amsterdam (NL), pp. 75-96., 1989.

Gardner, S. R., Building the Data Warehouse, Communications of the ACM, vol. 41(9), pp. 52-
60, Sep. 1998.

Geldof, S., Hypertext generation from databases on the Internet, Proceedings of the 2™ Intl.
Workshop on Applications of Natural Language to Information Systems (NLDB ’96),
Amsterdam, IOS Press, pp. 102-114, 1996.

Golovchinsky, G., "What the Query Told the Link: The Integration of Hypertext and Information
Retrieval", Proceedings of Hypertext ‘97, pp. 67-74, Apr. 1997.

Grenbzk, K., and Trigg, R., Design Issues for a Dexter-Based Hypermedia System.
Communications of the ACM, vol. 37(2): pp. 40-49, 1994.

Grenbak, K., and Trigg, R., From Web to Workplace: Designing Open Hypermedia Systems,
MIT Press., 1999.

82

Hara, Y. and Botafogo, R. A., Hypermedia Databases: A Specification and Formal Language,
Proceeding of the Databases and Expert Systems Applications Conference (DEXA), Springer-
Verlag LCNS 856, pp. 520-530, 1994.

Holsheimer, M. and Siebes, A, (Report CS-R9406) Data Mining, The Search for Knowledge in
Databases, CWI, Amsterdam, ftp://ftp.cwi.nl/pub/CWIreports/AA/CS-R9406.ps.Z, 1994.

Inmon, W. H., Building the Data Warehouse, Second Edition, Wiley Comp., ISBN 0O471-14161-
5, USA, 1996.

Johnson, A. H., Data Warehousing, Computerworld, vol. 33(49), pp.74-75, Dec. 1999.

Isakowitz, T., Stohr, E. and Balasubramanian, P., RMM: A Methodology for Structuring
Hypermedia Design. Communications of the ACM, vol. 38(8), pp. 34-44. Aug. 1995.

Lassila Ora and Swick Ralph R. (Editors), "Resource Description Framework (RDF) Model and
Syntax Specification", W3C Recommendation 22, Feb. 1999.

Leggett, J. J., (ed.) Hypertext *93 workshop on hyperbase systems. Technical Report TAMU-
HRL 93-009, Texas A&M University, 1993.

Nguyen, T., and Srinivasan, V., Accessing Relational Databases from the World Wide Web,
Proceedings of the ACM SIGMOD Conference, pp. 529-540, 1996.

Papadopoulos, A., Vaitis, M. and Christodoulakis, D., Building Hypertext Interfaces to Existing
Relational Databases. Proceeding of the 7™ Intl. Conference on Database and Expert Systems
Applications (DEXA ’96), Springer-Verlag LCNS 1134, Ziirich, Switzerland, pp. 276-288,
1996.

Schwabe, D. and Rossi, G., The Object-Oriented Hypermedia Design Model. Communications of
the ACM, pp. 45-46, 1996.

Schwabe, D., Rossi, G., and Barbosa, S., Systematic Hypermedia Application Design with
OOHDM. ACM Hypertext 96 Conference, New York, pp. 116-128, 1996.

Salton, G., Automatic Text Processing: : the transformation, analysis, and retrieval of
Information, Reading, MA: Addison-Wesley, 1989.

Salton G., Allan J., Buckley C. and Singhal A., "Automatic Analysis, Theme Generation, and
Summarization of Machine-Readable Texts", in Science, vol. 264, pp.1421-1426, 1994.

Savoy, J., Citation Schemes in Hypertext Information Retrieval. In Information Retrieval and
Hypertext, M. Agosti, A. Smeaton (Eds), Kluwer, Amsterdam (NL), pp. 99-120, 1996.

Tamayo, P., Berlin, J., Dayanand, N., Drescher, G., Mani, D. R. and Wang C., Oracle Darwin
Technical White Paper Darwin: A Scalable Integrated System for Data Mining, May 1997,
http://www.oracle.com/datawarehouse/products/datamining/downloads/darwin-arch.html.

Wan, J., Integrating Hypertext into Information Systems through Dynamic Linking. Ph. D.
dissertation, New Jersey Institute of Technology, Institute for Integrated Systems Research,
Newark NJ 07102, 1996.

Wan, J. and Bieber, M., Providing Relational Database Management Systems with Hypertext.
Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences,
IEEE Press, Washington, D.C., vol. VI, pp. 160-166, Jan. 1997.

Wiil U. K. and Leggett, J. J., The HyperDisco Approach to Open Hypermedia Systems. ACM
Hypertext Conference, Washington, pp. 140-48, 1996.

Yoo, J., Relationship Analysis. Ph.D. Dissertation, New Jersey Institute of Technology, CIS
Department, 2000.

Yoo, J. and Bieber, M., Towards a Relationship Navigation Analysis. Proceedings of the 33rd
Hawaii International Conference on System Sciences, IEEE Press, Washington, D.C., Jan.
2000.

Yoo, J. and Bieber, M., Finding Linking Opportunities through Relationship-based Analysis.
Hypertext *00 Proceedings, San Antonio, ACM Press, Jun. 2000.

83

	Towards hypermedia support in database systems
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The Dynamic Hypermedia Engine
	Chapter 3: Hypermedia Support for Relational Database Management Systems
	Chapter 4: Providing Support to Database Applications
	Chapter 5: Using the DHE as a Data Warehousing Solution
	Chapter 6: Future Research Plans - Integrating Data Mining
	Appendix A: RDF Resource Properties Used by the RDWM
	Appendix B: Database Connection Pool Performance Metrics
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

