
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2001

Towards hypermedia support in database systems Towards hypermedia support in database systems

Anirban Bhaumik
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bhaumik, Anirban, "Towards hypermedia support in database systems" (2001). Theses. 724.
https://digitalcommons.njit.edu/theses/724

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/724?utm_source=digitalcommons.njit.edu%2Ftheses%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TOWARDS HYPERMEDIA SUPPORT IN
DATABASE SYSTEMS

by
Anirban Bhaumik

The general goal of our research is to automatically generate links and other hypermedia

related services to analytical applications. Using a dynamic hypermedia engine (DHE), the

following features have been automated for database systems. Based on the database's

relational (physical) schema and its original (non-normalized) entity-relationship specification

links are generated, database application developers may also specify the relationship between

different classes of database elements. These elements can be controlled by the same or

different database application, or even by another software system. A DHE prototype has

been developed and illustrates the above for a relational database management system.

The DHE is the only approach to automated linking that specializes in adding a hyperlinks

automatically to analytical applications that generate their displays dynamically (e.g., as the

result of a user query). The DHE's linking is based on the structure of the application, not

keyword search or lexical analysis based on the display values within its screens and

documents. The DHE aims to provide hypermedia functionality without altering applications

by building "application wrappers" as an intermediary between the applications and the engine.

TOWARDS HYPERMEDIA SUPPORT IN
DATABASE SYSTEMS

by
Anirban Bhaumik

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 2001

APPROVAL PAGE

TOWARDS HYPERMEDIA SUPPORT IN
DATABASE SYSTEMS

Anirban Bhaumik

Dr. Michael Bieber 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Vincent Oria 	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. Byoung-Kee Yi 	 Date
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Anirban Bhaumik

Degree: 	 Master of Science in Computer Science

Date: 	 January 2001

Undergraduate and Graduate Education:

• Master of Science in Computer Science,

New Jersey Institute of Technology, Newark, NJ 2001

• Master of Science in Chemical Engineering

New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Engineering in Chemical Engineering

Regional Engineering College, Durgapur, India, 1996

Major: 	 Computer Science

Presentations and Publications:

"Computer Aided Cognitive Tools for Teaching and Implementing Clean Manufacturing" at
the National Science Foundation, Technology Reinvestment Project, Engineering Education
Innovators' Conference, April 8, 1997, Washington DC.

iv

To my Parents, and Suchi, thanks for being there.

v

ACKNOWLEDGMENT

The author would like to thank his advisor Dr. Michael Bieber for his guidance. Special thanks

are also due to my colleagues in the Collaborative Hypermedia Laboratory at the New Jersey
Institute of Technology: Mr. Roberto Galnares, Mr. Firas Aljallad, Ms. Deepti Dixit and Ms.

Aparna Reddy.

vi

TABLE OF CONTENTS

Chapter	 Page

1 Introduction 	 1

1.1 Motivation 	 1

1.2 Literature Review 	 2

1.2.1 Hypermedia Engines 	 2

1.2.2 Research in Hypermedia and Databases 	 3

2 The Dynamic Hypermedia Engine 	 7

3 Hypermedia support for relational database management systems 	 12

3.1 Introduction to the Relational Database Wrapper Module. 	 12

3.2 Elements of Interest in Database Systems. 	 14

3.2.1 Element Types 	 14

3.2.2 Marking an Element of Interest. 	 15

3.2.3 Element Identifiers. 	 16

3.2.4 Marked up Message 	 16

3.3 Mapping Rules and Metadata for Relational Databases. 	 18

3.3.1 Mapping Rules for Relational Database Management Systems 	 19

3.3.2 Metadata for Relational Database Management Systems 	 20

3.4 The Relational Database Wrapper Module 	 28

3.4.1 Features. 	 28

3.4.2 Object Oriented Analysis. 	 41

3.4.3 Functionality. 	 42

3.5 Enhanced Links through a Database Schema Wrapper 	 50

4 Providing Support to Database Applications. 	 55

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.1 Support to existing Database Applications. 	 55

4.1.1 Motivation 	 55

4.1.2 Architecture. 	 55

4.1.3 Case Study. 	 57

4.2 Support to Applications being developed. 	 58

4.2.1 Motivation 	 58

4.2.2 Architecture. 	 59

4.2.3 Case Study. 	 61

4.2.4 Advantages of using the DHE's infrastructure. 	 62

5 Using the DHE as a Data Warehousing Solution. 	 64

5.1 Introduction. 	 64

5.1.1 Data Warehouse Metadata 	 64

5.1.2 Motivation 	 65

5.2 Functionality. 	 65

5.2.1 The Loader Module. 	 65

6 Future Research Plans — integrating data mining 	 68

6.1 Introduction 	 68

6.2 Mapping Rules for Data Mining 	 68

6.2.1 Two Step Mapping Rules. 	 69

APPENDIX A RDF Resource Properties used by the RDWM 	 70

APPENDIX B Database Connection Pool Performance Metrics. 	 78

REFERENCES 	 80

viii

LIST OF FIGURES

Figure	 Page

1 : Screenshot of the DHE 	 8

2: DHE Architecture 	 10

3: Relational Database Wrapper Module Message Flow 	 14

4: Marked up Message 	 18

6: Metadata of a Column 	 22

7:RDF/XML Syntax 	 23

8: Class diagram of the "dhyme . met adata . rdf" package. 	 24

9: Class diagram of the "dhyme . met adata . database" package. 	 27

10 : RDWM State Diagram 	 29

11:Connection Pool Architecture 	 35

12:State Diagram for Requesting and Returning Connections 	 37

13:Broker Housekeeping State Diagram 	 38

14:Class Diagram of the dhyme . ut i 1 s . dbBroker . DBBroker Class 	 39

15:RDWM Class Diagram 	 41

16:Displaying the UI - Collaboration Diagram 	 43

17:Executing a select statement - Collaboration Diagram. 	 44

18:Executing a non-select statement - Collaboration Diagram 	 45

19:Retrieving Primary Keys 	 46

20: Retrieving Foreign Keys 	 47

21:Retrieving a Table 	 48

22:Retrieving a Tuple. 	 49

ix

LIST OF FIGURES
(Continued)

Figure

23: Retrieving Metadata

24 : Screenshot of the DSMM 	

25: Providing Support to New Database Applications — Architecture 	

26: State Diagram

27: DHE Data Warehouse Loader Module 	

28: Database Connection Pool Performance at a Glance 	

Page

 50

51

59

 60

67

78

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

Database queries typically return results in a plain text format. Some applications on the World

Wide Web generate link anchors for database elements, but these anchors normally hold a

single link to the most obvious destination for the dominant type of user.

An element within a database application maybe considered a potential starting point for

information exploration. Each element may have multiple links, each representing a different

relationship (schema-based or otherwise). The ability to explore a piece of information in more

detail would allow users to better understand that item, as well as analyze and view the various

relationships that define these elements. Users may wish to explore around data values and

symbols they see, labels on graphs or user input forms, options in pop-up lists, or even on the

menu commands they can invoke.

To complicate the developer's job, users often have different mental models of an application

and its underlying domain than the developer. Even when developers work closely with users,

the end result might not be intuitive for all users or serve each user's individual tasks equally

well. Many people visit a given application's screen aside from the most dominant type of

user(s) for which it was developed. These include other users of the application, customer

service representatives, company analysts, managers, trainees, people inside the company

designing new databases or applications based on the current one, external analysts, and

stockholders, among others. Each may be interested in different aspects of application

elements, according to their current task-at-hand. Customization is one solution, but even so

users often might wish to explore several different relationships from a given anchor, and

therefore should have several links available.

The purpose of this research is to explore all aspects of hypermedia support for database

applications, and is based on the experience of designing and developing the prototype

Dynamic Hypermedia Engine (DHE). The DHE automatically generates anchors, sets of

links and metadata within database applications, as well as supporting users with other types of

1

2

hypermedia structuring, navigation and annotation functionality, including guided tours and

annotation.

This work makes many contributions to both the database and hypermedia fields. Many

database applications do not take as much advantage of hypermedia as they could. This

chapter puts forth a series of opportunities for integrating hypermedia and database systems.

As we shall describe in the next chapter, the DHE is the only tool that provides automated

linking and hypermedia services based on the application structure (as opposed to search or

lexical analysis), without altering applications. Thus it is uniquely suited to support databases

and other analytical applications on the Web that generate the contents of their displays

dynamically in response to user queries.

This work proceeds as follows. A Literature Review of other Hypermedia Engines and

hypermedia support in databases is presented followed by an introduction the Dynamic

Hypermedia Engine (DHE). The following chapters show how the DHE provides support to

relational DBMS, database applications and enterprise-wide Data Warehouses. This research

concludes by providing a direction for future Research in this field.

1.2 Literature Review

1.2.1 Hypermedia Engines

Several approaches exist for integrating hypermedia functionality into primarily non-

hypermedia information systems. These include employing hypermedia data models (Campbell

and Goodman 1988; Halasz and Schwartz 1994), hypermedia toolkits (Anderson 1996), link

services (Pearl 1989; Davis et al. 1992; Anderson 1997), hyperbases (Leggett and Schnase

1994), hypermedia development environments (Nanard and Nanard 1995a; Marshall and

Shipman 1995; Akscyn et al. 1988), open hypermedia systems (Whitehead 1997; Wiil 1997;

Grønbæk and Trigg 1999), and independently executing hypermedia engines, such as the

DHE.

Hypermedia engines execute independently of an application with minimal modifications to it,

and provide the application's users with hypermedia support. Few approaches provide

transparent hypermedia integration as our engine does. Notable projects include Microcosm's

Universal Viewer, Freckles and the 00-Navigator and SFX..

3

Microcosm's Universal Viewer (Davis et al. 1994) and Freckles (Kacmar 1993, 1995)

seamlessly supports an application's other functionality but provides only manual linking. 00-

Navigator comes the closest to our approach, providing a seamless hypermedia support for

computational systems that execute within a single Smalltalk environment (Garrido and Rossi

1996; Rossi et al. 1996). This approach meets our goal of supplementing Smalltalk applications

with hypermedia support without altering them. Our approach applies to both object-oriented

and non object-oriented applications.

SFX's engine is very similar to DHE, but it only serves one specific environment. SFX

dynamically generates anchors within the reference section of academic papers being displayed

on the Web. Selecting these will lead to the original work within bibliographic databases (Van

der Stemple, 1999a,b,c). DHE, in contrast, provides a generalized approach for linking and

additional hypermedia functionality for most analytical applications.

1.2.2 Research in Hypermedia and Databases.

Several techniques have been proposed recently for the integration of hypertext and databases.

Some of them address the issue of building hypertext structures over existing databases to

provide more direct navigation through hyperlinks.

Hara and Botafogo (Hara et al 1994) use an SQL-like data definition language to map single

relations or relational views to node types. A node type is similar in nature to an entity type,

i.e., it models a real world object or concept in the hypertext conceptual schema defined over

the database contents. Its specification includes the correspondences between relation

attributes and node fields, as well as presentation information. At run time, a node type

produces two kinds of nodes: a composite one for the whole relation, and a number of nodes

corresponding to the tuples of the relation. The same language is used to define link types

among node types. A WHERE-clause is used to constraint the creation of links during

navigation.

In a similar approach, Falquet et al. (Falquet et al 1995, Falquet et al 1998) offer a declarative

language to produce databases views composed of node and link schemas, accessed through

the WWW. Each node schema is based on one object class or a set of inter-related object

classes. The content of the node is composed of a subset of the attributes of the class(es).

4

Foreign keys to other classes constitute link types to the corresponding nodes. Two kinds of

links are supported: Reference links are indented to offer navigation structure within the nodes,

while inclusion links are indented to create nested structures (part-of relationships). In addition,

the specification of the relational view includes presentation information. The above

definitions form the input to a cgi-script that produces HTML pages for the end-user. The

DHE would enhance the existing views specified through the database application.

The above approaches leave the original client application intact, introducing a new interface

that provides hypermedia-based interaction with the database. On the other hand the DHE

overlays linking facilities within the original user interface application by means of user

interface wrappers.

Domenicus (Constantopoulos et al. 1996) is a hypermedia engine developed over a repository

management system, called Semantic Index System (SIS). Domenicus offers hypermedia

functionality (such as alphabetic lists, subject catalogs, guided tours, query cards, hyperlinks,

image annotations, bookmarks and history), based on predefined queries over the information

objects and their structure, managed by SIS. Presentation Card Specifications are executed at run-

time to present objects or classes of objects stored in SIS, while hyperlink classes dynamically

produce links during navigation. Different presentation models can coexist for the same

repository instance, to fulfil the searching, browsing and updating requirements of different

user groups. The DHE provides many of these features in a generic way over any application,

allowing tours and indexes to contain elements from several systems. Also, in the DHE

queries are only predefined to the extent that mapping rules hold skeleton queries for

particular classes of database elements.

Other approaches suggest embedding database queries into HTML pages. For example, a

mechanism offering cross-language variable substitution between HTML and SQL is the core

of the DB2 WWW Connection system (Nguyen et al. 1996), which enables quick and easy

construction of applications accessing relational databases from the Web. The developer

creates macros that consist of HTML and SQL commands, written in distinct sections. The

sections are tied together via variable substitution. Macros are stored at the Web server and

are processed by cgi-scripts in order to get user input or produce output reports. The DHE

5

does not store single database queries in the pages displayed on the Web. Instead we generate

a list of several possible links for any element from specifications in the mapping rules.

Instead of providing hypertext functionality for a specific database, Geldof (Geldof 1996) uses

an abstract page definition language to construct templates embodying presentation guidelines

for terms of an ontology; a conceptualisation containing objects, concepts and relationships

among them, that are presumed to exist in some area of interest. Actual information sources

are linked separately with the terms of the ontology, using a definition language as well. CGI-

scripts in Pen are computed to dynamically generate the HTML pages returned to the user for

browsing. While this approach adds a certain level of automated linking to aid navigation, the

DHE provides a generally larger set of links based solely on the database structure and entity-

relationship schemas, as well as metadata. The DHE, however, does not provide customized

templates for domain-specific navigational contexts. The DHE might integrate well with

Geldof's approach to provide an additional level of functionality.

Moreover, many products have been released recently that aim to interface RDBMS and Web

servers (Frank 1995). The solutions employed in these products require huge programming

effort in SQL or a scripting language. The ease of integration with the DHE depends on how

easy it is to parse application displays to identify the elements of interest, and to specify the

commands to return to the application in the mapping rules. If the application has an API or

marks the elements in the displays (as should become the custom as XML becomes more

prevalent), building the application wrapper should be relatively easy.

The approaches presented above presuppose the hypertext designer's insight into the intrinsic

semantics of the relational structure. A different approach was proposed by Papadopoulos et al

(1996). Instead of relying on the relational schema of the database, a more semantically

enriched Extended Entity-Relationship (EER) schema is semi-automatically produced, by

incorporating a reverse engineering methodology. Hypertext views, consisting of node and link

types, can be defined over the EER schema, while the SQL queries to instantiate them at run-

time where automatically created, based on mapping information gathered during the reverse

engineering process. Currently the DHE requires people to enter the entity-relationship

schemas manually to the Database Schema Mapper Module (see 3.5). This application could

6

help to automate this process, and perhaps provide additional relationships, which the DHE

could display for database applications.

While the hypermedia paradigm embodies an approach to structure and navigate information,

it has several shortcomings. In particular, few hypermedia systems have focused on

methodologies for information storage and retrieval. Database systems, on the contrary, are

only concerned with storage and retrieval of information based on a formal model. They

exhibit powerful methodologies for information storage, and effective indexing and querying.

Furthermore they provide facilities such as transaction management, concurrency and access

control as well as locking mechanisms.

The DHE should be able to streamline a company's software development efforts in several

ways. It automatically supplements the organization's applications with hypermedia links,

structuring, navigation and annotative functionality, and metadata. It also implements inter-

application linking, as the university department example shows. Mapping rules can point to

any accessible application. DHE also can speed the development of applications. Developers

can offload link management, navigational structures (such as guided tours), user preference

management and other features to DHE.

CHAPTER 2

THE DYNAMIC HYPERMEDIA ENGINE

A Web-based prototype of the Dynamic Hypermedia Engine (DHE) has been developed,

which redesigns an older PC-based prototype (Bieber 1999). Figure 1 shows a screenshot of a

database query result in the main frame. The DHE has added anchors to all parts of the query

result, including the field names at the column heads. The user has clicked on "Counseling

Center - department," resulting in metadata for the element in the bottom center frame and a

list of links in the bottom right-hand frame. Selecting any link will generate an SQL query to

create the appropriate result. Currently the list of links includes only database structural links,

such as finding the primary keys for this element. The bottom left-hand frame contains menus

for any integrated application or DHE internal module. Links represent relationships and

relationships have "meta-information" as well. Selecting the "¶" next to any link will provide

metadata and a list of links for it. The DHE's next release will provide these for menu items as

well. The metadata frame currently displays the full Resource Description Framework (RDF)

record. The DHE's next release will preformat the metadata for display. Future versions will

also filter and rank the links and metadata based on the user task and preferences.

7

8

Figure 1 : Screenshot of the DHE

As this demonstrates, link generation in the DHE does not result from any type of lexical

analysis. Our focus is not on the display content of the link anchor, but rather on the

application elements underlying each anchor. A "mapping rule" encodes each relationship

found between two elements of interest at the "class level". For example, suppose an

application display shows the name of a university department. Departments generally have

professors and courses taught (based on the standard entity-relationship diagram within a

database system), as well as a Web page, an annual budget (within the accounting system),

hires-in-progress (within the personnel system), a location on a map (within a geographic

information system), etc. Individual mapping rules contain an algorithm or computation (set of

commands) leading to the appropriate component in these respective systems. When the user

selects a particular department, the DHE constructs these commands with the actual

department instance selected and sends them to the appropriate destination system, which

then retrieves— or more often generates— the resulting page. For example, one mapping rule

could state that an element of type "department" would be related to an element of type

"annual budget" through a relationship with the semantic type "annual budget for" and with a

9

parameterized command to retrieve annual budgets from the accounting system. Developers

may take advantage of this to integrate database applications with other applications without

altering their contents; they only have to add new mapping rules for the relevant element types.

The DHE executes concurrently with database management systems, database applications,

and other applications such as the accounting system, providing automated link generation and

other hypermedia functionality without altering them. Developers write an independent

application "wrapper" and a set of mapping rules for each. Note that once a wrapper is

written and the mapping rules are specified for each type of application (geographic

information system, relational database management system, accounting package, etc.), the

DHE will support all instances of that application in the future (new maps, database contents,

budget sheets, etc.).

The DHE executes as follows. Applications or their wrappers connect to DHE through

World Wide Web components, such as Servlets and JavaServer pages. It intercepts all

messages passing between the application and its user interface, and uses the mapping rules to

map each appropriate element of the message to a hypermedia anchor. The DHE's Web

browser wrapper merges these anchors into the document being displayed and passes the

resulting HTML document through the Web component servlet to the user's Web browser.

When the user selects an anchor, the browser wrapper passes it to DHE, which returns a list

of possible links (one for each appropriate relationship as determined by the mapping rules)

and metadata. If the user selects a DHE link (e.g., to add an annotation or stage in a guided

tour), the DHE processes it entirely. If the user selects a relationship with a destination in a

known application, the DHE infers and instantiates the appropriate SQL queries or other

application commands from the relationship's mapping rule and passes them to the target

application for processing. If the user selects a user-created annotation or tour, etc., the DHE

retrieves it. Thus the DHE automatically provides all hypermedia linking (as well as

navigation) to applications, which remain hypermedia-unaware and in fact often entirely

unchanged.

Figure 2 shows the DHE's logical engine architecture. Some major components are described

here. The others are described on our project Web site (http://space.njit.edu:8001). The

current prototype has been developed in Java. XML is the messaging format used for intra-

10

module communication, and RMI is the underlying protocol used to transfer these messages.

While the browser wrapper currently produces HTML documents for display, a future version

will produced XML documents, which take advantage of the Web's new XLink, and)(Pointer

standards to handle anchors and links.

Figure 2: DHE Architecture

User Interface Wrappers serve three important functions: First, they translate the DHE's internal

messages from DHE's standard format to a format the browser (or other User Interface or

UI) can process, and vice versa. Second, they handle communication between the engine and

the UT. Third, they implement any functionality DHE requires from the UI (e.g., maintaining

parameters), which the UI cannot provide itself.

The Message Manager Module enables the communication between all DHE modules, routing all

DHE internal messages.

The Mapping Rules Module maps the application data and relationships to hypermedia objects at

run-time. The Mapping Rules Module maps the element instances in the virtual document to

global element types (classes), and infers all relevant relationships (links) and metadata for the

given element classes. These links and metadata are passed in messages to the UI Wrapper for

display.

11

Application Wrappers, like user interface wrappers, manage the communication between DHE
and their application systems, such as database applications and DBMS. They translate user

requests from DHE's internal format to the application's programming interface (if any).

They receive output from the application, convert it to the DHE format, mark the elements

for the mapping rules module, and send it to DHE for eventual display on the Ul.

Other Hypermedia Functionality: A series of other service modules will be implemented in future

versions. Most will implement various kinds of hypermedia structuring, navigation and

annotation functionality (Bieber et al. 1997; Conklin 1987; Nielsen 1995). Hypermedia

structuring functionality includes local and global information overviews; node, link and

anchor typing; as well as keywords, attributes and metadata on all of these. Navigation

functionality includes structure-based query, sophisticated history-based navigation and bi-

directional linking. Annotation functionality includes adding user-declared links, comments

and bookmarks to dynamically-generated documents and displays.

CHAPTER 3

HYPERMEDIA SUPPORT FOR RELATIONAL DATABASE MANAGEMENT
SYSTEMS

3.1 Introduction to the Relational Database Wrapper Module

One of the first tasks in providing hypermedia support is to intercept messages between the

computational and user interface (UI) portions of the DMIS.

In the case of a Relational Database Management System (RDBMS), it provides only the

computational portion. The UI portion is the responsibility of the database application. The

RDBMS provides a standard way of requesting computational services (i.e. store, retrieve and

analyze data) by means of Structured Query Language (SQL) statements. Database

applications send SQL statements to an RDBMS. The RDBMS then executes these statements

and returns the results of these statements back to the application, which then displays these

results in a UT intuitive to its domain.

We have developed a service module, the Relational Database Wrapper Module (RDWM) that

accepts requests to, execute SQL statements on the underlying database, and retrieve metadata

of an element. It will also provide a UI allowing users to execute SQL statements and view

results, metadata and all the relationships of the data affected by the SQL statement. This UT

provides a hypertext-enriched view of the data stored in the database and also acts as the

debug or test interface for our module.

Once a document containing the results of the original request has been created, our module

identifies and marks all "elements of interest". An "element of interest" is an entity that may

have a relationship with another entity (element) or may have metadata of its own.

This document is then sent to the DHE Message Manager, which routes it to an intermediate

module called the Mapping Rules Module (MRM). The MRM maintains a list of Mapping

Rules, which are representations of the various inter-relationships between elements in a

domain. It retrieves all the Mapping Rules that each marked-up "element of interest" may have

and creates hyperlinks corresponding to each one of them.

12

13

The modified XML document containing the results of the original SQL statement (or the

requested metadata) and hyperlinks is returned to the gateway, which then sends it onward to

the database application. The database application thus receives hypertext-enriched result of a

SQL statement from the RDBMS, and is free to interpret it in a manner suitable to its domain.

For example when the user uses the UI to execute a SQL statement a message containing the

SQL statement is sent from the UIW to the RDWM (by way of the Message Manager). The

RDWM executes the SQL statement on the underlying database, identifies the "elements of

interest", marks them up and sends back a response containing this to the module that had

sent the original request (i.e. the UIW). The Message Manager routes this message to the

Mapping Rules Module, which applies the appropriate Mapping Rules and forwards the

response to the UIW (as before, by way of the Message Manager).

The Message Flow is as:

14

Figure 3: Relational Database Wrapper Module Message Flow

3.2 Elements of Interest in Database Systems.

3.2.1 Element Types.

The following types of elements exist in the RDBMS context:

■ Columns.

■ Tables.

15

■ Indices.

■ Stored Procedures.

■ Catalogs.

■ Schema.

■ Drivers.

■ Users.

■ User Rights.

■ Table and Column Privileges.

■ JDBC Types.

■ The RDBMS Product itself.

Any instance of the above types can be uniquely identified, have metadata, and have one or

more relationships associated with it. Because any user may be interested in exploring that

type of object in terms of its metadata or relationships, the RDWM must mark each of its

instances as an "element of interest".

3.2.2 Marking an Element of Interest.

Marking an item involves providing its unique identifier and its element type. When the results

of the SQL statement is returned from the RDBMS, the RDWM must parse through this

document and locate all elements and mark all instances with locator tags. An element's locator

tag references its unique identifier and its type.

Later on as the Message containing this document makes its way to the Mapping Rules

Module it will use the element type information to find relationships and metadata for that

element. If an element has at least one relationship or piece of metadata, then the Mapping

Rules Module will specify that the UI Wrapper make it into a hyperlink.

16

3.2.3 Element Identifiers.

When the user follows a hyperlink, the action is passed on to the underlying DMISW (in our

case the RDWM), as mentioned previously this action may either be a request for the hyper-

linked element's metadata or the user may be trying to follow a relationship with another

element in which case it would be another SQL statement that has to be executed. In either

case the element must be uniquely identified.

Like other DHE modules the RDWM uses the Uniform Resource Identifier (URI) syntax

(Berners-Lee 1998) to define its element identification scheme. The generic URI syntax

specifies that the name of the scheme must be specified followed by a colon (which acts as the

delimiter), and followed by the scheme-specific part.

<scheme name>:<scheme-specific-part>

The DHE URI scheme is named "dhyme" (Dynamic Hypermedia Engine), and all URI's must

also contain the module name which identifies the domain the element belongs to.

For elements belonging to the RDWM domain we use the following syntax.

dhyme:rdwm:<element type>:<Database JDBC URL>:<element specific part>

The JDBC (Java Database Connectivity) URL of the database provides a way of identifying it

so that the appropriate database driver will recognize it and establish a connection with it.

(White 1999)

Thus a column called "DEPT" in the table "DEPARTMENT" in the database with the JDBC

URL "jdbc:oracle:thin:@logic:1521:logic40" would have the following URI.

dhyme : rdwin: column: jdbc: oracle: thin: @logic: 1521: logic4O : DEPARTMENT: DEPT

Because of the case insensitive nature of SQL statements this scheme too, is case insensitive.

3.2.4 Marked up Message.

The result of the SQL statement "select * from department" on the database the JDBC URL

"jdbc: oracle:thin:@logic:1521:logic40" is as.

17

18

Figure 4: Marked up Message

3.3 Mapping Rules and Metadata for Relational Databases.

DHE specifies relationships based on the element type. The twelve types of elements noted

above are interrelated. These inter-relationships are depicted below.

Figure 5: Relationships between Element Types

Each of these relationships are reflexive i.e., if a column has a "in table" relationship with a

table then the table has a relationship called "has columns" with the column.

19

A mapping rule for each of the above relationships may be specified. The DHE (specifically

the Mapping Rules Module) would then use the mapping rule to generate a link for each of the

instances of the participating elements.

For example all instances of columns would have a hyperlink corresponding to the "in table"

relationship that it has with a table. This link would contain the appropriate SQL command to

generate the contents of the mapping rule's endpoint, in this case the table that this column

belongs to. Wan and Bieber (Wan 1996)(Bieber 1997) have given several mapping rules (called

"bridge laws") for relational databases.

3.3.1 Mapping Rules for Relational Database Management Systems.

Wan and Bieber (Wan 1996) have identified the following classes of Mapping Rules for

databases:

Object Mapping Rules: These map the contents of database objects, as well as schemata and

ER diagrams.

Structure Mapping Rules: These map database objects to their structural containers, for

example a mapping rule for columns in a table, tables in a catalog etc. These would correspond

to the "In Object" relationships mentioned in Figure # 5.

Operation Mapping Rules: These map SQL queries. Frequently used specific queries maybe

mapped, and users who follow link generated from this mapping rule would retrieve a

document that contained the results of the SQL statement being executed.

Schema-based Mapping Rules: These mapping rules map relationships between entities as

defined in the database schema.

Meta-information Mapping Rules: Meta-information Mapping Rules define reference links to

database object statistics such as field types, size, table size, referential constraints etc.

3.3.1.1 Mapping Rules examples.

The following Mapping Rules have been implemented in the current DHE prototype.

• Structure Mapping Rules:

20

o Mapping RulegetTable maps tables to a set of records.

o Mapping RulegetTuple maps the tuple a database value belongs to.

• Schema-based Mapping Rules:

o Mapping RulegetPrimaryKeys maps the primary keys of a table.

o Mapping RulegetForeignKeys maps the foreign keys in a table.

• Meta-information Mapping Rule:

o MappingRulegetMetaInfo maps the meta-information of a Database Object.

3.3.2 Metadata for Relational Database Management Systems.

Metadata is data about data. The key purpose of metadata is to facilitate and improve the

retrieval of information (Miller 1998). Other uses of Metadata include providing semantic

information about the data, encoding information (i.e. how to interpret the data), relationships

with other resources etc. (Waugh 1997).

In a relational database, metadata is the representation of the objects defined in that database -

specifically, the definitions of its tables, columns and business rules and transformational

algorithms implemented as stored procedures and triggers (Gardner 1998) .

The RDWM retrieves this metadata on demand. It is passed the URI of the element whose

metadata is being asked for. It then uses the Java Database Connectivity (JDBC) API to

retrieve information relevant to that element. The RDWM uses the Resource Description

Framework (RDF) to model the metadata, and the RDF/XML serialization syntax to format it

for transfer to other modules.

3.3.2.1 The Resource Description Framework.

RDF is a framework for describing and interchanging metadata it defines metadata in terms of

"Resources", where each resource is any entity that can be uniquely identified, i.e., has a URI,

and is defined by its properties (Lassila 1999).

21

Hence all "elements of interest" are resources and have associated metadata. Resources and

elements are thus interchangeable in the DHE context and the element identifier corresponds

to its URI. Thus there exists a Resource for every element type mentioned in section 3.2.1.

RDF also defines a "Property Type" as a resource that has a name and can be used to define a

resource property. Consider the statement "The student's name is John Doe". "Student" is the

resource, "name" is the property type and "John Doe" is the property.

3.3.2.1.1 RDF Schema for Databases.

However the semantics of the statement in the previous section is meaningful to the reader if

and only if (s)he knows what the property type "name" actually means. RDF provides a

schema mechanism, which allows authors (i.e. those who define what the resources and

property types are) to define the terms that will be used in RDF statements and to give specific

meaning to them. The RDF schema may thus be considered to be the dictionary to the RDF

vocabulary in use (Brickley 2000).

To represent RDBMS resources in RDF, an RDF schema containing the various property

types used by the RDWM has been defined in Appendix A.

3.3.2.1.2 RDF/XML Serialization Syntax

A formal syntax representing this metadata model is required to store instances of this model

into machine-readable files and to communicate these instances among applications. XML is

this syntax. RDF imposes formal structure on XML to support the consistent representation

of semantics (Miller 1998).

22

For example consider the following model that represents metadata about a column called

"Description" in the table "Department" on the Oracle instance on "logic".

The above model in RDF/XML serialization syntax is:

23

</rdf:RDF>
Figure 7: RDF/XML Syntax

3.3.2.2 Architecture and Design of the Metadata Retrieval Subsystem

The Metadata Retrieval Subsystem is composed of two broad components.

■ A set of utility classes responsible for storing Metadata and representing them in the

RDF/XML serialization syntax, these classes comprise the "RDF Package". These

classes maybe used outside the RDWM and indeed outside the DHE.

■ A set of classes extending the functionality provided in the RDF package for use in the

RDBMS context.

3.3.2.2.1 The RDF Package

The RDF Package essentially consists of two core classes the "Resource" class and the

"ResourceProperty" class. These classes are present in the Java package

"dhyme.metadata.rdf".

3.3.2.2.1.1 OBJECT ORIENTED ANALYSIS AND DESIGN

24

Figure 8: Class diagram of the
"dhyme . metadata . rdf" package.

25

3.3.2.2.1.2 FEATURES

■ Each Resource Object has 0..n ResourceProperty Objects.

■ Each ResourceProperty defines an attribute of the Resource, in turn a

Resource Object is defined by the ResourceProperty Objects it "has".

■ A Resource must have a Uniform Resource Identifier (URI). A URI uniquely

identifies the Resource and by extension the ResourceProperty Objects it

possesses.

■ A ResourceProperty may be another Resource or a collection (referred to in

RDF syntax as a "container") of Resource Objects. This collection may be a set of

unordered Resource Objects (referred to in RDF syntax as a "bag") or it may be a

set of ordered Resource Objects (referred to in RDF syntax as a "sequence"), or it

may be a set of alternates, i.e. each Resource Object may substitute the other

(referred to in RDF syntax as a "alternate" or "alt").

■ A Resource Object has the ability to add, retrieve and remove

ResourceProperty Objects.

■ A Resource Object has the ability to express itself in the complete RDF-XML

"serialization" syntax.

■ A Resource Object has the ability to express itself in HTML and in Plain Text as an

aid to debugging and for viewing metadata on browsers.

■ ResourceWriter is a utility class used to "write" a collection of Resources into an

Engine Message or express them in the RDF/XML serialization syntax.

■ ResourceReader is a utility class that may be used to parse RDF resources from

an Engine Message or from an RDF Element (i.e. the tag named rdf:RDF).

26

3.3.2.2.1.3 RECOMMENDED USAGE

Create an instance of a Resource object and add/remove/change it's properties by

adding/removing ResourceProperty Objects to its collection of

ResourceProperty Objects (as maintained in an internal Hashtable). The ability to

serialize a Resource into it's proper RDF/XML format is available by means of calls to

rdf Form () and rdf Form (schemaName) on it's instance.

Another approach is to subclass Resource class and then "load" ResourceProperty

Objects in the constructor of the subclass. An example of this Usage is provided by the

RDWM metadata retrieval subsystem.

3.3.2.2.2 The RDWM Metadata Retrieval Subsystem

This subsystem is an extension of the RDF package applied to the Relational Database

Domain. The classes that comprise this subsystem are present in the

"dhyme .metadata . database" package.

27

3.3.2.2.2.1 OBJECT ORIENTED ANALYSIS AND DESIGN

3.3.2.2.2.2 FEATURES

■ The core of this package is an abstract class called DatabaseResource, which in

turn extends the Resource class. DatabaseResource provides an abstract

method called loadProperties, which takes as an argument a

j ava . sql . DatabaseMetadata Object.

28

■ It is then the responsibility of each subclass of DatabaseResource to extract

whatever metadata is relevant to it from the DatabaseMetadat a instance passed

to it.

■ For example the ColumnRe source class is responsible for extracting all metadata

related to Columns in the Database, the TableResource class is responsible for

extracting all metadata related to Tables in the Database.

3.3.2.2.2.3 RECOMMENDED USAGE

Instantiate the appropriate subclass of DatabaseResource by passing in an instance of a

DatabaseMetaData object from the database that contains the Resource (Table, Column

etc.), and use the inherited methods of the Resource class to obtain the metadata in

RDF/XML serialized form.

3.4 The Relational Database Wrapper Module

3.4.1 Features.

The Relational Database Wrapper Module passes through the following states:

Figure 1U : KDWM state Diagram

29

30

3.4.1.1 Sending Startup Messages.

Because of the DHE's distributed nature, all modules must register themselves with the DHE

Message Manager at startup time, so that the Message Manager knows which modules are

currently active and able to receive and process requests.

3.4.1.1.1 Inputs.

3.4.1.1.1.1 PARAMETERS

• The Module-ID. This identifies the module and hence must be unique for every

instance of this (and all other) module(s). The value of this is dependent on the

Message Manager's mechanism of registration. The Message Manager assigns a unique

Module ID whenever any module tries to register itself. This module then proceeds to

use this value as the remote object identifier when it binds itself to the local RMI

Registry.

• IP address. Identifies the machine the RDWM is running on. This is required so that

the Message Manager is able to perform an RMI "lookup" on this module.

3.4.1.1.2 Processing

Like all DHE modules the RDWM extends the Module class in the

dhyme . gateway . module package. It thus inherits the startMe method. An invocation

of this method with the URL of the Message Manager module sends the required Startup

Messages.

The startMe method automatically discovers the IP address of the RDWM and sends this

information to the Message Manager.

3.4.1.1.3 Outputs

Registration is essential for any DHE module to send and receive messages. Thus if

registration fails, the RDWM exits with a message informing the user that registration has

failed.

31

3.4.1.2 Receiving Request Messages

A module waits until it receives a request to perform a service. The services the RDWM

provides are:

■ Interact with the RDBMS.

■ Retrieve metadata for an element

■ Generate a user input form to enter SQL statements.

Like all DHE modules the RDWM receives requests by an invocation of rcvMsg a remote

method it inherits from the Module class. The argument to this method is the Request

Message itself.

The rcvMsg method goes on to call the method processMsg, which is an abstract

method in the Module class. Like all DHE modules the RDWM provides an implementation

of this method.

3.4.1.2.1 Inputs

An XML Message. This XML Message must contain the following two parameters:

• The source of the request, which will be used to determine the destination of the

response of the RDWM.

• The action to be performed by the RDWM.

A sample Message:

32

</MsgBody>
</EngMsg>

The source of the message is defined in the element Origin. The action to be performed by

the RDWM is defined in the element Subj ect

The values of Subj ect is a command to execute a SQL statement, and will have one of the

following values:

Select 	 Execute a select statement

Insert 	 Execute an insert statement.

Update 	 Execute an update statement.

Delete 	 Execute a delete statement.

Alter 	 DDL (Data Definition Language) command

Create 	 DDL command

A sample message to execute a SQL Select statement.

33

<ParamValue>select * from publishers</ParamValue>
</Parameter>

</MsgBody>

All the above values of Subj ect require that a Parameter tag and a ParamName tag

having the value query exist, and that it have an associated non-null ParamValue tag;

which is the SQL statement that will be executed by the RDWM.

The value of the Subject tag may also be a command to retrieve the Metadata associated with a

given Database Element (As defined in Section 3.3.2)

getMeta Info 	 Gets the metadata associated with a given

RDBMS element.

A sample getMeta Info Message:

For a getMetaInfo message, two parameter tags are required.

• One Parameter tag must have a ParamName with the value Type and an associated

non-null ParamValue, which contains the type of the element whose metadata is

being requested.

• The other Parameter tag must have a ParamName with the value Element ID and

an associated non-null ParamValue that contains the URI of the Element whose

metadata is being requested.

34

Two other values of subject, which do not perform any action on the underlying

RDBMS, are also supported.

List 	 Lists all the values of subject that are

supported by the RDWM.

Display 	 Displays a User Interface to enter a Data

Manipulation Statement.

3.4.1.3 Extracting and Executing SQL statements

Like all DHE modules the RDWM uses an XML parser to extract the action to be performed

and SQL statement (if any) from the request message. If the request is to execute an SQL

statement then the UI Wrapper will have embedded the actual SQL in a request message.

(This is its default procedure for user input forms.) The RDWM then uses a persistent pool of

JDBC (Java Database Connectivity) Connection Objects, to execute a SQL statement on, or

retrieve metadata from the RDBMS.

3.4.1.3.1 Input

An XML message containing the SQL statement to be executed. As mentioned in section

3.4.1.2.1 there are 6 cases the RDWM may receive a message containing a SQL statement to

be executed, and in each case the SQL statement is in the Parameter tag of the message.

3.4.1.3.2 Processing

The Java Programming Environment provides an API for performing RDBMS related tasks.

This API, known as the Java Database Connectivity (JDBC) API, creates a programming-level

interface for communicating with all relational databases in a uniform manner similar in

concept to Microsoft's Open Database Connectivity (ODBC). The JDBC API is based on the

X/Open SQL Call Level Interface, the same basis as that of ODBC. The core JDBC API

consists of three interfaces: Connection, Statement, and ResultSet. A typical

operation would establish a connection with a database get an instance of a Connection,

35

then execute a query against that database using a Statement object, which would then

return a ResultSet

3.4.1.3.2.1 CONNECTION OVERHEAD

However the overhead time for establishing a database connection is typically around 1-3

seconds. This is the time it takes to locate the database server, establish a connection with it,

and exchange login information. For applications where the database query times are large, this

overhead is probably too small a fraction of the overall turn-around-time to be a critical issue.

However when the application has to perform numerous short-term queries, database

connection overhead can become a serious issue.

3.4.1.3.2.2 CONNECTION POOL ORIENTED ARCHITECTURE

The solution to this problem is to create a pool of persistent (reusable) database connections

to be used by various application components as needed. This pool of connections is created

and managed by a separate process or thread, the connection broker. An application

component requests the broker to hand it a database connection. In addition, the broker

manages the pool of connections, watches for locked or corrupted connections, logs events

and performs other housekeeping tasks. Once the application component has completed its

database request, the connection must be returned to the pool for reuse.

Figure 11: Connection Pool Architecture

36

3.4.1.3.2.3 CONNECTION POOL USAGE

The connection broker is in the class DBBroker in the package

dhyme . ut i 1 s . dbBroker . The connection broker is a singleton, i.e. only one instance of

it ever exists in the life of the application/VM. When the application initializes, it must

initialize the broker. Different application components then proceed to request the broker for

a connection and once they are done with it they return this connection back to the broker.

• During Application Initialization:

DBBroker.init(database parameters);

• When a Component needs a Connection:

Connection conn = DBBroker.getInstance().getConnection();

... do something with the connection

DBBroker. getInstance () . returnConnection (conn) ;

3.4.1.3.2.4 BROKER ARCHITECTURE

3.4.1.3.2.4.1 REQUESTING AND RETURNING CONNECTIONS

37

The Broker uses two Stacks to maintain the connections, the in Stack represents those

connections not yet handed out to an application component. The out Stack represents those

connections currently being used by various application components.

When a component requests a connection, and if one is not available (i.e. not in the in Stack),

instead of returning immediately (via a java.sql.SQLException), the broker waits a

while and then looks again to see if a Connection is available. This process is repeated a

number of times. The amount of time to wait for and the number of times this process will be

repeated are parameters and are passed into the broker during initialization.

3.4.1.3.2.4.2 BROKER HOUSEKEEPING
It is possible that after the connection has been handed out to application components, it may

have become corrupted during use and the application may not be able to return it back to the

38

pool. In such cases the broker should be able to remove that connection from the pool, and

replace with a new uncorrupted connection.

To manage this housekeeping operation a PoolManager has been developed.

Figure 13: Broker Housekeeping State Diagram

Deciding whether or not a connection is corrupted/locked is however not a trivial matter. A

rudimentary way of deciding is to keep count of the length of time the connection has been in

the out Stack. If this amount of time is extraordinarily "long" (i.e. greater than a max amount,

passed in to the broker during initialization) and there are SQLWarnings for this

connection, that would mean this connection is corrupted/locked, and hence should be closed

immediately. A side effect of this is that the application component utilizing this connection

39

would get a j ava . sql . SQLException when it tries to execute queries or access a

ResultSet, because the underlying resources would be closed.

3.4.1.3.2.4.3 OBJECT ORIENTED ARCHITECTURE

Figure 14: Class Diagram of the
dhyme . utils . dbBroker . DBBroker Class.

3.4.1.4 Identifying an Element of Interest

The Mapping Rules Module maps elements in the RDBMS domain into the hypertext

environment. In order to perform this mapping, the Mapping Rules Module needs to identify

which elements have any Mapping Rules or metadata associated with it. The RDWM (and all

DMISWs) thus has to "mark" those elements.

As mentioned in section 3.2.1, there are 12 kinds of elements in the RDWM context and any

instance of that is marked up.

3.4.1.4.1 Input

The Result S et from a query.

3.4.1.4.2 Processing

A ResultSetMarker class has been developed that iterates through the records returned

in a ResultSet, formats those records into an HTML table for display and marks up each

element with a locator tag. This HTML table is written into a DisplayDoc message for

display in the UIW.

3.4.1.4.3 Output

The Response as an XML message with all the required elements marked up with locator

tags, and the types and the URIs of these elements in the Li stOfElements tag.

3.4.1.4.4 Format of Respons

A DisplayDoc message.

3.4.1.5 Returning the Response

All DHE Modules extend the Module class and thus inherit the sendMsgToModule

method. To send a message to any other DHE module, the source module must specify the

ultimate destination of the module in the message, and call that method with the message as

the argument.

3.4.2 Object Oriented Analysis

Figure 15: RDWM Class Diagram

42

3.4.3 Functionality.

3.4.3.1 Architecture.

As shown in the class diagram, the RDWM itself receives and sends messages, it parses the

message and determines what command to execute. As mentioned in section 3.4.1.2.1, the

command may either be to execute a query, to display a UI or to retrieve metadata. Another

class of commands maybe issued as a result of a user following link created from a Mapping

Rule, as detailed in section 3.3.1. These commands are also dealt with in the exact same

manner.

To process this command the RDWM uses "handlers" devoted for that purpose, for example,

a DisplayHandler is responsible for allowing a user to enter a SQL statement for

execution.

The following sections detail the processing involved in each of these "handlers", by a series of

Collaboration diagrams that show the method calls in them. The arrows in each diagram

signifies the direction of the method call, the arguments to that method (if any) is also labeled

on each arrow.

3.4.3.2 Displaying the User Interface.

This is as a result of a display command being received by the RDWM.

rigure 16: Displaying the Ul - Collaboration Diagram

3.4.3.3 Executing a select statement.

This is as a result of a select command being received by the RDWM.

Figure 17: Executing a select statement - Collaboration Diagram.

3.4.3.4 Executing a non-select statement.

This is as a result of a delete, insert, update or DDL command having been issued

from the UI.

Figure 18: Executing a non-select statement - Collaboration Diagram

3.4.3.5 Executing a Mapping Rule - Retrieve Primary Keys.

This is as a result of a user following through the "Get Primary Keys" Mapping Rule for a

Column or Table.

Figure 19: Retrieving Primary Keys

3.4.3.6 Executing a Mapping Rule - Retrieve Foreign Keys.

This is as a result of a user following through the "Get Foreign Keys" Mapping Rule for a

Column or Table.

Figure 20: Retrieving Foreign Keys

3.4.3.7 Executing a Mapping Rule - Retrieve the Table a Column or a Value belongs to.

This is as a result of a user following through the "Get Table" Mapping Rule for a Column or

Table.

Figure 21: Retrieving a Table

3.4.3.8 Executing a Mapping Rule — Retrieve the Tuple a Value belongs to.

This is as a result of a user following through the "Get Tuple" Mapping Rule for a Database

Value.

Figure 22: Retrieving a Tuple.

3.4.3.9 Retrieving Metadata.

This is as result of a user retrieving metadata for an element.

50

Figure 23: Retrieving Metadata

3.5 Enhanced Links through a Database Schema Wrapper

Most database applications provide no contextual information about the underlying schema of

the database from which query results were retrieved. The DHE utilizes a dedicated Database

Schema Mapper Module to add value to database applications by making this information

explicit.

51

Figure 24

As shown above the three frames of the Database Schema Wrapper will subdivide the main

frame of the DHE. The leftmost frame contains the database query results as before. The

middle frame shows the relational (physical) schema behind the query results. The rightmost

frame shows the original, non-normalized entity-relationship schema corresponding to the

query results.

The DB Schema Mapper (DSM) runs in conjunction with the Relational Database Wrapper

Module. As mentioned in section 3.3.2, the RDWM provides metadata by examining the

physical schema and returns attributes such as names of columns, data types etc. To this

metadata the DSM adds schematic information for the values retrieved from a database query.

The schematic information about a particular database has to be entered through a user

interface by a system developer or administrator at the time the system is being designed or

integrated with DHE. At runtime when a query has been issued, the DSM checks its internal

database to see if the schematic information is available. If it is, then it allows the user the

52

ability to view the underlying E-R schema as well as the relational schema of the database from

which the query result was retrieved.

The DSM receives messages either from the RDWM or from the User Interface Wrapper.

The RDWM passes query result sets through the DSM to add schematic information. The

DSM parses the original query to get the table name. It then queries its own internal database

to see if it contains schema information for that table. If so, the DSM generates the E-R and

relational schemas, marks whichever elements of interest each contains, and sends a message

to the UI Wrapper to display these together with the regular query results.

The UI Wrapper sends the DSM messages when a user follows a DSM-related link. For

example, when the user selects a table and chooses a link to highlight that table in the relational

schema. The mapping rule corresponding to that link sends the appropriate command to the

DSM. The DSM must follow its internal mapping from the RDWM URI scheme to the DSM

URI scheme to identify the corresponding table element in the relational schema. Then the

DSM creates a new display where it indicates that the UI Wrapper should highlight certain

elements.

When parsing the RDWM's query results, the DSM marks the following as elements of

interest in the corresponding E-R schema, and includes the properties shown as parameters:

1. E-R Database Schema

• Name (of the database in the DSM internal database)

2. Entities.

• Name.

• Type (Weak Entity or Normal Entity).

3. Relationship.

• Name

53

• Type (identifying relationship or weak entity relationship)

4. Attributes

• Name

• Type:

1. Composite or Simple

2. Multi-valued or Single-valued

3. Stored or Derived

4. Key or not

The mapping rules capture the inter-relationships amongst each of these elements. Given any

particular database, entity, relationship or attribute in the E-R schema, the DSM will find the

corresponding database, entities, relationships and attributes related to it in the E-R schema.

Additional mapping rules will find the corresponding elements in the relational schema and the

query result currently being displayed.

When parsing the RDWM's query results, the DSM marks the following as elements of

interest in the corresponding relational schema, and includes the properties shown as

parameters, with corresponding relationships:

1. Relational Database Schema

• Name

2. Relation

• Name

3. Attribute

• Primary Key

• Foreign key

4. Referential Integrity Costraint

• Relation name where the foreign key resides

• Relation name where the foreign key references

• Attribute name of the foreign key in the residing relation

• Attribute name of the primary key of the referenced table.

54

CHAPTER 4

PROVIDING SUPPORT TO DATABASE APPLICATIONS

One of the roles Relational Database Wrapper Module (RDWM) as envisioned in the original

architecture was to provide hypermedia enriched database services to existing as well as

completely new Database Driven Applications.

4.1 Support to existing Database Applications

Developers can retrofit existing database applications to work with DHE. This section begins

by describing such an integration. Then we describe the different kinds of links and metadata

that DHE provides and conclude with a brief description of a system we have integrated with

the DHE.

4. 1. 1 Motivation

Database applications that need to provide a hypertext-enriched view of data interact with the

RDBMS via the RDWM. Such a view enables the user or application and database designers to

view the underlying relationships that are not easily perceived, moreover by following links and

retrieving metadata they gain an insight on the domain that the application serves.

4. 1.2 Architecture

One of the first tasks in providing hypermedia support is to intercept messages between the

computational and user interface (UI) portions of the application (Bieber and Kacmar 1995) .

In the case of a Relational Database Management System (RDBMS), the application comprises

only a computational portion. The RDBMS provides a standard way of requesting

computational services (i.e., store, retrieve and analyze data) by means of Structured Query

Language (SQL) statements. The RDWM does this and provides its own interface for

entering SQL queries and displaying their results.

Database applications build a customized interface and possibly a larger set of functionality

around a RDBMS. Database applications, therefore, are responsible for their own UI.

Database applications send SQL statements to their RDBMS. The RDBMS then executes

these statements and returns the results of these statements back to the application, which then

customizes and displays them.

55

56

If the UI displays are easy to parse, i.e., a developer could easily figure out which elements are

in each display screen and how to pass back database and application commands to the

application, then one could write an application wrapper that intercepts all displays and

redirects them to DHE. This would satisfy our goal of providing automated hypermedia

functionality with minimal change to the application. The DHE's UI would then display the

enhanced screens with hypermedia anchors as shown in Figure 1.

In general, Web-based database applications (Internet storefronts, catalogs etc.) have a clear

distinction between their UI and the database; usually the UI uses a middleware to

communicate with the database. The DHE may supplement or replace this middleware.

However most legacy database applications (client server or mainframe based) usually don't

have such a clear distinction between their UI and the underlying database; most often the data

and presentation is commingled. Integration with the DHE could be much more difficult in

this case.

In the DHE architecture each database application would be a DMIS, which would have its

corresponding DMIS Wrapper (DMISW). There are two integration points with an existing

Database Application.

4.1.2.1 When the DMIS needs database services

This would be similar to supporting new database applications. The DMIS would route all

database requests to the wrapper, which would pass it onto the rest of the Engine. Once the

database request has been serviced, a hypermedia-enriched result of the database request

would be provided to the DMIS, which could then use the UIW to display it. (See section 4.2

for more details)

4.1.2.2 When the DMIS interacts with its UI

All messages between the computational portion and the UI portion of the application would

be intercepted by the Wrapper, which would route it to the engine to add hypermedia

functionality to it and use the UIW to display the enriched UT (Chiu 1997; Bieber and Kacmar

1995). Assuming that a clear distinction exists between the computational and the interface

portions of the application, and that the application allows these messages to be intercepted

(Bieber and Kacmar 1995).

57

4.1.3 Case Study

This section describes the integration of a database application with the DHE.

4.1.3.1 Problem Description

The New Jersey Department of Transportation has an extensive database that contains

commodity (coal, vegetable oil etc.) flow information between various counties in NJ and

various zones in the Northeastern US. A rudimentary web interface to this database exists; we

have created a DHE module that supplements this system and provides enhanced metadata,

exposes the various interrelationships between the "elements of interest" in the system and

provides additional functionality.

4.1.3.2 Architecture

The Freight Database Wrapper (FDW) is a DHE module that acts as the wrapper to the

Freight system. Like other application wrappers described in previous sections, the FDW

provides a gateway to application specific commands. Users may view the system through the

DHE's User Interface and view reports on commodity flows between counties and zones, via

a set of Menu Items and Mapping Rules.

The FDW may also use the RDWM to completely bypass the existing web based freight

system and access the underlying database directly. This serves a twofold purpose:

■ Metadata that is currently not provided by the system can be extracted directly from

the database by means of SQL statements executed by the RDWM.

■ New mapping rules maybe formulated, these mapping rules would correspond to SQL

statements that would be executed on the freight database, thus providing additional

functionality not available in the existing system.

The FDW may also be used in conjunction with the DSM, providing users with a view of the

internal schema of the freight system's database.

58

4.2 Support to Applications being developed

This section describes how database applications could be developed quickly and easily if

designed to take advantage of the DHE's infrastructure. A system that is being built using the

DHE is also analyzed.

4.2.1 Motivation

In this role the DHE will provide access to a relational database for applications that need it.

All requests to a database i.e., SQL statements that need to be executed on a database will be

routed to the RDWM, which will execute the statement and return the hypermedia enriched

results to the application.

This will allow any application developer to quickly develop a database driven application that

is already enriched with hypermedia. The application developer will be able to use hypertext

functionality (HTF) to visualize relationships between entities in the application's domain,

augment applications with, annotation and navigation functionality and other metadata that

would normally be hidden inside the Relational Database. (Bieber and Vitali 1997)

4.2. 1. 1 Scalable Application

Most database applications are tied to a certain database schema, which must be known when

the application is being designed. However by retrieving metadata and relationships (as a "list

of links") it is possible to create a generic database application that dynamically generates a UI

corresponding to a database schema at runtime.

Thus instead of building a customized database application such as "Inventory" or "Purchase

Order Tracking" where the UI and screen flow must be decided at the application design

stage, it may be possible to build an application that utilizes the "list of links" to create a screen

flow and metadata to generate the UI.

Because the application is not tied to a specific database schema, it is naturally scalable. Any

time the Data Model or underlying "Business Rule" changes and a change has to be made to

the schema, the application itself does not have to be modified, a change to an existing

Mapping Rule or addition of a new one will suffice. This is in stark contrast to conventional

application where a costly reengineering effort must be undertaken.

59

4.2.2 Architecture

To integrate with DHE, an application normally routes all database access requests to its

application wrapper. In this case, because the application is being developed from the ground

up, this wrapper maybe a part of the application itself. The wrapper (or wrapper portion of the

application) would pass a DHE-formatted XML message to the RDWM to perform any

database services requested by the application— usually the execution of a SQL statement or

retrieval of metadata from the RDBMS being wrapped by the RDWM.

RDWM would still be responsible for marking up any query results, passing the hypermedia-

enriched document is then routed back to the application wrapper.

60

Figure 26: State Diagram

At this point the Application Wrapper may take the enriched document and translate it to the

native application's native User Interface, and display it there. However, should the

application developer decide to use DHE's user interface instead of writing its own, then the

Application Wrapper could then add any additional content and pass the final display

document to the Mapping Rules Module via the Message Manager. If it adds additional, non-

61

database elements, then the application wrapper should mark these up too, so they also may be

made into anchors. Each of these additional elements types will require its own mapping rules

for determining links and metadata. Many application commands can be moved into the link's

mapping rules.

The application could also take advantage of other DHE services, such as the menu manager

for displaying application specific menus and the user preference manager for managing users'

sessions, login, profiles etc., not to mention the other hypermedia functionality that all

applications receive.

4.2.3 Case Study

This section describes a proposal to develop a student paper review information system using

the DHE.

4.2.3.1 Problem Description

As part of their coursework students must review a published paper, typically students would

email the instructor the bibliographic reference to the article they would like to review and the

instructor would approve or reject the request. If rejected the student would have to resubmit

his/her request with a new article. If approved the student would review the article and email it

to the instructor. The instructor would then grade the review and post it on the class message

board. Because of the volume of email an instructor receives it becomes difficult for him/her

to quickly approve or reject a request, because (s)he must go through previously approved

requests and make sure that this article has not been approved for review by another student.

To ameliorate this situation we propose to develop a DHE module that would allow a student

to request approval, check the status of the request, post a link to the review once completed

and to check his/her grade, once the review is corrected. The instructor would be able to view

pending requests, approve a request, view submitted reviews, assign grades, view reports on

approved articles, submitted reviews etc. The instructor would also be able to perform

administrative tasks such as adding students, deleting old reviews etc.

62

4.2.3.2 Architecture

The DHE only allows authenticated users access to the various modules (RDWM, etc.), if a

user has not logged in, he/she is presented with a login screen, where a valid DHE username

and password must be entered. At the start of semester, the instructor creates user accounts

for all students. When a student logs in he/she presented with a menu, customized to the

privileges that their user group has, in this case the student may have access only to this

application and is not able to "play around" with other DHE modules.

Thus the paper review application module does not have to manage customized menus or user

authentication issues; the DHE provides this service. Once a user has been authenticated any

subsequent requests (i.e. view grades, approve a review request etc.) will always contain the

username and the group the user belongs to. The application can thus perform or reject the

action based on the privileges the user may have. The application developer may also register

customized menus based on user groups; thus users belonging to the "student" group will not

see menus for administrative tasks.

The DHE would also provide database access to this application. For example when the

instructor to wishes to view a report on all approved articles not yet submitted, he/she would

click on the appropriate Menu Item and a message would be issued to the application module

with a request to generate this report. The application module would then issue a message to

the RDWM containing the appropriate SQL statement, the RDWM would execute the

statement and return a document containing the results of the statement, with the "elements of

interest" marked up. At this point the application module may simply forward this message to

the UIW and it will be displayed in the instructor's browser with hyperlinks in them. The

instructor may follow this follow hyperlink to get more metadata for this element, and view a

list of mapping rules. For example if the element is an article, the metadata may be the

complete bibliographic reference to the article and a link to the article itself, and a mapping

rule maybe a list of students who have requested this article

4.2.4 Advantages of using the DHE's infrastructure

The DHE thus speeds up the development process by freeing the developer from having to

program user management, menu management, database access and above all hyperlink

creation. All the developer would have to do is:

63

• Register a set of mapping rules corresponding to the additional functionality desired

(i.e. view a list of students who have requested a specific article, view a list of pending

approval requests for a given section etc.).

• Create a set of display screens.

• Formulate a set of SQL statements corresponding to each of the main commands (i.e.

retrieve grades for a student, display submitted reviews etc.)

• Write a DHE Module that receives requests for each of the main commands and sends

the appropriate SQL statement to the RDWM.

CHAPTER 5

USING THE DHE AS A DATA WAREHOUSING SOLUTION

This section proposes integrating a data warehousing application within the DHE

infrastructure, one of our future research topics. This would provide hypermedia support to

data warehousing applications, as well as facilitate linking among data warehouses and other

applications.

5.1 Introduction

A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of

data in support of management decision-making (Inmon 1996). A data warehouse is a

repository of information built using data from diverse, and often departmentally isolated,

application systems within an organization so this data can be modeled and analyzed by

managers (Johnson 1999; Inmon 1996). Data warehouses usually are customized for a

particular enterprise. Most vendors offer platforms on which enterprise data warehouses (or

smaller datamarts) may be built.

5.1.1 Data Warehouse Metadata

Data warehouse architectures integrate a metadata repository that contains:

• Administrative metadata: source databases and their contents; gateway description;

warehouse schema, view and derived data definitions; dimensions and hierarchies;

predefined queries and reports; data mart locations and contents; data partitions; data

extraction, cleaning, transformation rules, default values; data refresh and purge rules;

user profiles, user groups; security

• Business metadata: business terms and definitions; ownership of data; charging policies

• Operational metadata: data lineage (history of migrated data and sequence of

transformation applied); currency of data: active, archived, purged; monitoring

information: warehouse usage statistics, error reports, audit trails

64

65

5.1.2 Motivation

The DHE maybe used top offer a complete end-to-end solution with the added benefit of

obtaining hypertext functionality without any additional effort.

Data warehouses are typically used for on-line analytical processing (OLAP). The key structure

of a data warehouse always contains some element of time and some dimension hierarchies.

OLAP queries are complex. They involve grouping and aggregation. A single OLAP query

can lead to several closely related queries (Chaudhuri 1997). The visualization of an OLAP

query result using DHE will involve links between data from one hierarchy level to the other

and links SQL subqueries contained in the OLAP query. In addition, an OLAP query can

result in a large collection of data with several dimensions. In the rest of this section we

concentrate on the loader module.

5.2 Functionality

The data warehouse has two broad functions:

• Accessing the data from the data warehouse.

• Loading the data from the operational systems into the data warehouse.

Like all Data Warehouses a DHE based Data Warehouse will use a DBMS as the underlying

store, thus functionality of accessing data from a data warehouse will be similar to any other

database application and has been dealt in previous sections.

5.2.1 The Loader Module.

To load data into the data warehouse a loader module will have to be designed and developed.

The Loader Module will be like any other DHE module, and will perform the following

functions:

5.2.1.1 Mapping data from Operational Systems to the Data Warehouse

The operational systems store data in their own structure, encoding etc. this has to be mapped

to the data warehouse's format which is consistent across all operational systems.

66

5.2.1.2 Extracting Metadata from Operational Systems.

Metadata is the road map or blueprint to the data in the data warehouse, and needs to be

operational. Also, metadata needs to be preserved for analysis once it has been loaded

(Gardner 98). Metadata may include:

• The structure of the operational data.

• Relationships in the operational data.

• Other user-defined metadata.

5.2.1.3 Eliminating Noise

Operational data may contain data irrelevant to the warehouse (i.e., is noise), this data needs to

be eliminated before loading.

5.2.1.4 Architecture

The Loader Module is supplied a template (an XSL stylesheet) that maps data from the

operational systems' format to the data warehouse's format. It processes the template and

maps data from the operational system to the data warehouse. Any data not specified in the

template is noise and will be eliminated.

Once the extraction process is complete, the Loader Module sends a message to the RDWM

containing the data to be loaded as well as the metadata. The RDWM then loads this into the

data warehouse. Figure 27 describes the extraction process.

An argument could be made that a Loader Module is not required and the DHE is simply used

to access data from the warehouse. However this approach would not allow the DHE to

retrieve metadata from the operational systems. Moreover a complete end-to-end solution

requires that we provide a Loader Module.

Figure 27: DHE Data Warehouse Loader Module

67

CHAPTER 6

FUTURE RESEARCH PLANS - INTEGRATING DATA MINING

6.1 Introduction

Currently DHE determines links from the mapping rules. Because the person who develops

the application wrapper also writes the mapping rules at the same time, the types of

relationships DHE finds are known ahead of time. Data mining brings the opportunity of a

new kind of dynamic linking. Data mining searches large databases for relationships and

global patterns and relationships that are not immediately obvious, such as a relationship

between patient data and their medical diagnosis (Holsheimer 1994).

Data mining tools discover these relationships or models at runtime as opposed to design

time. Thus, the DHE must request the Data Mining Tool to discover the relationships for an

element of interest at runtime, and then use these discovered relationships to create hyperlinks.

Of course, in addition, the DHE could provide hypertext functionality to commercial Data

Mining Tools. A commercial data mining tool would have a wrapper written for it, just as with

any other application. Oracle Corporation's DarwinTM is one of the most well known

commercial Data Mining tools. It provides a comprehensive API (in C + +) to access its data

mining functions, it would be easy to write a wrapper that would be able to interface with it.

(Tamayo 1997), and thus seems an ideal candidate to develop a DHE wrapper for.

6.2 Mapping Rules for Data Mining

As mentioned in previous sections the DHE uses logical rules called mapping rules to provide

hypertext functionality to the components of the DMIS. Mapping Rules map the objects

defined in the DMIS such as models, relationships etc. to objects in the hypermedia elements

such as links etc. (Bieber 1995)

These Mapping Rules need to be defined when the DMIS Wrapper is being developed which

means the models, relationships that are going to be mapped should be known. Normally this

is not a problem since the relationships in the various elements/nodes/entities in a DMIS are

well known and determined when the DMIS is being designed.

68

69

The problem with a Data Mining Tool is that it discovers these relationships or models at

runtime as opposed to design time. Which means the Mapping Rules in this case cannot be

defined and entered into the Engine when the Data Mining Wrapper is being developed.

One way of solving this would be define a generic set of Mapping Rules for Data Mining,

which in turn would generate other Mapping Rules dynamically (Two step Mapping Rules).

6.2.1 Two Step Mapping Rules.

For each element in a document generated by the DMIS (i.e. the Data Mining Tool), the

Mapping Rules module would ask it to generate Relationships for elements of the same type.

For example, consider that the Data Mining Tool is operating on a mass of data related to

Automobile Tire Replacements that contain information on the customer who returned the

tire(s), the reason for return, the type of vehicle etc. all accessible via the tire's serial number,

and it operates on another mass of data relating the tire to the place of manufacture, the batch

number and the composition of the components used. When asked to return possible

relationships for a tire it would automatically return correlations between the point of

manufacture, the vehicle the automobile tire was placed on and the composition of the

components. The Mapping Rules Module would then generate Mapping Rules for each of

these relationships and display them as hyperlinks allowing the user to quickly and navigate

these relationships and obtain an overall view of the detailed data available to him/her.

APPENDIX A

RDF RESOURCE PROPERTIES USED BY THE RDWM

Legend:
■ Resource - The type of the resource the property belongs to.
■ Resource Property - The name of the property, also the tag used in the RDF/XML serialized metadata representation.
■ Type - The type of the Property
■ Range - Range of the property if any.
■ JDBC Method - The JDBC API method used to retrieve this information
■ RDF:Comments - Explanatory comments on the RDF/XML tag.

70

71

72

73

74

75

76

77

APPENDIX B

DATABASE CONNECTION POOL PERFORMANCE METRICS

To test the Database Connection Pool's performance and the fact that using a Connection

Pool is indeed superior to creating a connection every time, an experiment was conducted on a

Pentium II (266) with 128 MB RAM running WIN-NT Workstation 4.0 (SP5).

The Database the testing was performed on was MS-Access 97 (SR2). A tester program was

written that spawned 10 threads. Each thread simultaneously executed a SELECT query

(select * from test, the table had 6 columns and 250 rows) for a specified amount of

time. This program then obtained the ResultSet, stepped through each row and

converted each row into a Hashtable with the column names as the keys. This procedure

was repeated both with and without the Connection Pool. Without the Pool a connection was

created each time a query had to be executed.

The turnaround time (i.e. the time it took for executing the query, stepping through the

ResultSet and converting each row into a Hashtable was recorded for each query.

This time was then plotted for both the cases.

Figure 28: Database Connection Pool Performance at a Glance.

78

Summary Statistics

Without the 	 With the

Database Connection Pool Database Connection Pool

Time of Run (secs) 500 500

Number of Select Statements 201 351

Mean Turnaround Time (millis) 24490.40299 13993.73504

Maximum Turnaround Time (millis) 57783 19828

Minimum Turnaround Time (millis) 14301 11136

Median Turnaround Time (milllis) 21481 13800

Number of Threads 10 10

79

REFERENCES

Adler, A., Berglund, A., Caruso, J., Deach, S., Grosso, P., Gutentag, E., Milowski, A., Parnell,
S., Richman, J., and Zilles S., Extensible Stylesheet Language (XSL) Version 1.0, W3C
Working Draft 1, Mar. 2000, http://www.w3.org/TR/xsl/.

Agosti, M. and Smeaton A., Information Retrieval and Hypertext. Boston: Kluwer Academic
Publishers.

Anderson, M., K. Data Scalability in Open Hypermedia Systems, Proceedings of ACM Hypertext
'99 Conference, Darmstadt, Germany, pp. 27-36, Feb. 21-25 1991.

Balasubramanian, V., Bieber, M. and Isakowitz, T., A Case Study in Systematic Hypermedia
Design, Information Systems Journal (forthcoming).

Bapat, A., Waesch, J., Aberer, K., and Haake, J., HyperStorM: an Extensible Object-Oriented
Hypermedia Engine, Proceedings of ACM Hypertext Conference, Washington, D.C, pp. 203-
214, Sep. 1996.

Berners-Lee T., Fielding R. and Masinter L., "Uniform Resource Identifiers (URI): Generic
Syntax", Internet Engineering Task Force Request For Comments 2396, August 1998.

Bieber, M., Supplementing Applications with Hypermedia, Technical Report, New Jersey
Institute of Technology, Information Systems Department, Mar. 1997.

Bieber, M., On Integrating Hypermedia into Decision Support and Other Information Systems,
Decision Support Systems, vol. 14, pp. 251-267, 1995.

Bieber, M. and Kacmar, C., Designing Hypertext Support for Computational Applications,
Communications of the ACM, vol. 38(8), pp. 99-107, 1995.

Bieber, M. and Vitali, F., Toward Support for Hypermedia on the World Wide Web, IEEE
Computer, vol. 30(1), pp. 62-70, 1997.

Bieber, M. and Joonhee Y., Hypermedia: A Design Philosophy, ACM Computing Surveys
(forthcoming).

Chaudhuri, S. and Dayal, U., An Overview of Data Warehousing and OLAP Technology.
SIGMOD Record, vol. 26(1), pp. 65-74, 1994.

Chiramella, Y., and Kheirbek, A., An Integrated Model for Hypermedia and Information
Retrieval, In Information Retrieval and Hypertext, M. Agosti, A. Smeaton (Eds), Kluwer,
Amsterdam (NL), pp.139-176, 1998.

Chiramella, Y., Browsing and Querying: Two Complementary Approaches for Multimedia
Information Retrieval, Proceedings of Hypertext — Information Retrieval — Multimedia, (HIM
'97), Dortmund, Germany, pp. 9-26, 1997.

80

81

Chiu, C. and Bieber, M., A Generic Dynamic-Mapping Wrapper for Open Hypertext System
Support of Analytical Applications, Proceedings of ACM Hypertext '97, ACM Press,
Washington, D.C., pp. 218-219, Apr. 1997, http://www.cis.njit.edu/—bieber/pub/ht97/ht97-
mac.html.

Christodoulou, S., Styliaras, G. and Papatheodourou, T., Evaluation of Hypermedia Application
Development and Management Systems, Proceedings of ACM Hypertext '98, ACM Press,
Pittsburgh, pp. 1-10, May 1998.

Constantopoulos, P., Theodorakis, M. and Tzitikas, Y., Developing Hypermedia Over an
Information Repository, Proceedings of the 2nd Workshop on Open Hypermedia Systems, ACM
Hypertext '96 Conference, Washington, DC., pp. 227-238, Sep. 1996.

Diaz, A., Isakowitz, T., Maiorana, V. and Gilabert, G., RMC: A Tool To Design WWW
Applications. Proceedings of the Fourth International World Wide Web Conference, Boston,
Dec. 1995.

Falquet, G., Guyot, J. and Prince, I., Generating Hypertext Views on Databases, CUI Technical
Report No 101, University of Geneva, 1995.

Falquet, G., Guyot, J. and Nerima, L., Languages and Tools to Specify Hypertext Views on
Databases, International Workshop webDB '98 selected papers, Valencia, Spain, Springer-
Verlag LNCS 1590, Mar. 1998.

Frank, M., Database and the Internet, DBMS Magazine, vol. 8(13), pp. 39-47, Dec. 1995.

Fountain, A., Hall, W., Health, I. and Davis, H. C., Microcosm: An Open Model for Hypermedia
with Dynamic Linking. Proceedings of the ACM European Conference on Hypertext, Paris,
France, pp. 298-311, 1990.

Furner, J., Ellis, D. and Willett, P., The Representation and Comparsion of Hypertext Structures
using Graphs , In Information Retrieval and Hypertext, M. Agosti, A. Smeaton (Eds), Kluwer,
Amsterdam (NL), pp. 75-96., 1989.

Gardner, S. R., Building the Data Warehouse, Communications of the ACM, vol. 41(9), pp. 52-
60, Sep. 1998.

Geldof, S., Hypertext generation from databases on the Internet, Proceedings of the 2n d Intl.
Workshop on Applications of Natural Language to Information Systems (NLDB '96),
Amsterdam, IOS Press, pp. 102-114, 1996.

Golovchinsky, G., "What the Query Told the Link: The Integration of Hypertext and Information
Retrieval", Proceedings of Hypertext '97, pp. 67-74, Apr. 1997.

Grønbæk, K., and Trigg, R., Design Issues for a Dexter-Based Hypermedia System.
Communications of the ACM, vol. 37(2): pp. 40-49, 1994.

Grønbæk, K., and Trigg, R., From Web to Workplace: Designing Open Hypermedia Systems,
MIT Press., 1999.

82

Hara, Y. and Botafogo, R. A., Hypermedia Databases: A Specification and Formal Language,
Proceeding of the Databases and Expert Systems Applications Conference (DEXA), Springer-
Verlag LCNS 856, pp. 520-530, 1994.

Holsheimer, M. and Siebes, A, (Report CS-R9406) Data Mining, The Search for Knowledge in
Databases, CWI, Amsterdam, ftp://ftp.cwi.nl/pub/CWIreports/AA/CS-R9406.ps.Z, 1994.

Inmon, W. H., Building the Data Warehouse, Second Edition, Wiley Comp., ISBN 0471-14161-
5, USA, 1996.

Johnson, A. H., Data Warehousing, Computerworld, vol. 33(49), pp.74-75, Dec. 1999.

Isakowitz, T., Stohr, E. and Balasubramanian, P., RMM: A Methodology for Structuring
Hypermedia Design. Communications of the ACM, vol. 38(8), pp. 34-44. Aug. 1995.

Lassila Ora and Swick Ralph R. (Editors), "Resource Description Framework (RDF) Model and
Syntax Specification", W3C Recommendation 22, Feb. 1999.

Leggett, J. J., (ed.) Hypertext '93 workshop on hyperbase systems. Technical Report
TAMU-HRL 93-009, Texas A&M University, 1993.

Nguyen, T., and Srinivasan, V., Accessing Relational Databases from the World Wide Web,
Proceedings of the ACM SIGMOD Conference, pp. 529-540, 1996.

Papadopoulos, A., Vaitis, M. and Christodoulakis, D., Building Hypertext Interfaces to Existing
Relational Databases. Proceeding of the 7th Intl. Conference on Database and Expert Systems
Applications (DEXA '96), Springer-Verlag LCNS 1134, Zürich, Switzerland, pp. 276-288,
1996.

Schwabe, D. and Rossi, G., The Object-Oriented Hypermedia Design Model. Communications of
the ACM, pp. 45-46, 1996.

Schwabe, D., Rossi, G., and Barbosa, S., Systematic Hypermedia Application Design with
OOHDM. ACM Hypertext '96 Conference, New York, pp. 116-128, 1996.

Salton, G., Automatic Text Processing: : the transformation, analysis, and retrieval of
Information, Reading, MA: Addison-Wesley, 1989.

Salton G., Allan J., Buckley C. and Singhal A., "Automatic Analysis, Theme Generation, and
Summarization of Machine-Readable Texts", in Science, vol. 264, pp.1421-1426, 1994.

Savoy, J., Citation Schemes in Hypertext Information Retrieval. In Information Retrieval and
Hypertext, M. Agosti, A. Smeaton (Eds), Kluwer, Amsterdam (NL), pp. 99-120, 1996.

Tamayo, P., Berlin, J., Dayanand, N., Drescher, G., Mani, D. R. and Wang C., Oracle Darwin
Technical White Paper Darwin: A Scalable Integrated System for Data Mining, May 1997,
http://www.oracle.com/datawarehouse/products/datamining/downloads/darwin-arch.html.

Wan, J., Integrating Hypertext into Information Systems through Dynamic Linking. Ph. D.
dissertation, New Jersey Institute of Technology, Institute for Integrated Systems Research,
Newark NJ 07102, 1996.

Wan, J. and Bieber, M., Providing Relational Database Management Systems with Hypertext.
Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences,
IEEE Press, Washington, D.C., vol. VI, pp. 160-166, Jan. 1997.

Wiil U. K. and Leggett, J. J., The HyperDisco Approach to Open Hypermedia Systems. ACM
Hypertext Conference, Washington, pp. 140-48, 1996.

Yoo, J., Relationship Analysis. Ph.D. Dissertation, New Jersey Institute of Technology, CIS
Department, 2000.

Yoo, J. and Bieber, M., Towards a Relationship Navigation Analysis. Proceedings of the 33rd
Hawaii International Conference on System Sciences, IEEE Press, Washington, D.C., Jan.
2000.

Yoo, J. and Bieber, M., Finding Linking Opportunities through Relationship-based Analysis.
Hypertext '00 Proceedings, San Antonio, ACM Press, Jun. 2000.

83

	Towards hypermedia support in database systems
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The Dynamic Hypermedia Engine
	Chapter 3: Hypermedia Support for Relational Database Management Systems
	Chapter 4: Providing Support to Database Applications
	Chapter 5: Using the DHE as a Data Warehousing Solution
	Chapter 6: Future Research Plans - Integrating Data Mining
	Appendix A: RDF Resource Properties Used by the RDWM
	Appendix B: Database Connection Pool Performance Metrics
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

