
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2002

A tool for phylogenetic data cleaning and searching A tool for phylogenetic data cleaning and searching

Viswanath Neelavalli
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Neelavalli, Viswanath, "A tool for phylogenetic data cleaning and searching" (2002). Theses. 678.
https://digitalcommons.njit.edu/theses/678

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/678?utm_source=digitalcommons.njit.edu%2Ftheses%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A TOOL FOR PHYLOGENETIC DATA CLEANING AND SEARCHING

by
Viswanath Neelavalli

Data collection and cleaning is a very important part of an elaborate Data Mining

System. 'TreeBASE' is a relational database of phylogenetic information at the Harvard

University with a keyword based searching interface. 'TreeSearch' is a Structure based

search engine implemented at NJIT that can be used for searching phylogenetic data.

Phylogenetic trees are extracted from the flat-file database at Harvard University,

available at {ftp://herbaria.harvard.edu/pub/piel/Data/files/ }. There is huge amount of

information present in the files about the trees and the data matrices from which the

trees are generated. The search tool implemented at NJIT is interested in using the string

representation of the trees for query and retrieval of information.

The purpose of this thesis and the work related to it, is to make an automated tool

to clean the files present in the Harvard University's Database using pattern-matching

techniques and gather all the phylogenetic trees' string representation to build a local

database of clean phylogenetic data that can be readily used in a versatile fashion.

A TOOL FOR PHYLOGENETIC DATA CLEANING AND SEARCHING

by
Viswanath Neelavalli

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

January 2002

APPROVAL PAGE

A TOOL FOR PHYLOGENETIC DATA CLEANING AND SEARCHING

Viswanath Neelavalli

Dr. Jason Tsong Li Wang, Thesis Advisor 	 Date
Professor of Department of Computer Science
College of Computing Sciences, NJIT

Dr. Chengjun Liu, Committee Member	 Date
Assistant Professor of Department of Computer Science
College of Computing Sciences, NJIT

Dr. Qicheng Ma, Committee Member	 Date
Novartis Pharmaceutical Corporation

BIOGRAPHICAL SKETCH

Author:	 Viswanath Neelavalli

Degree:	 Master of Science

Date:	 January 2003

Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2002

• Bachelor of Science in Mechanical Engineering specializing in
Production Engineering, Chaitanya Bharathi Institute of Technology, Osmania
University, Hyderabad, India, 2000

Major:	 Computer Science

Presentations and Publications:

G. Chandra Mohan Reddy, Viswanath Neelavalli, et al.
"Computer Aided Experimental Analysis of Drawing a Cup using a Blank
Holder", All India seminar on "Condition Based Monitoring", The Institution of
Engineers (India), Orissa State Center, June 1999.

Viswanath Neelavalli and Vinodh Putarjunan
"Expert Systems and Artificial Intelligence",
University of Roorkee, UP, India, February 1999.

Viswanath Neelavalli and Vinodh Putarjunan
"Applications of Expert Systems in Manufacturing Industry - ,
Birla Institute of Technoloy, Pilani, India, February 1999.

Viswanath Neelavalli and Vinodh Putarjunan
"Rapid Prototyping",
Chaitanya Bharathi Institute of Technology, Hyderabad, India, November 1999.

iv

To my beloved family

ACKNOWLEDGEMENT

First, I would like to thank my thesis advisor, Dr. Jason Tsong Li Wang, for his

invaluable direction, assistance, and guidance. In particular, his timely recommendations

and suggestions have been very crucial for the rapid progress and improvement of the

work. I also thank my committee members for their continuous support although my

research.

I also thank Mr. Muralidhar Maddala, my erstwhile Java Instructor, for the

numerous invaluable techniques of programming he had taught me and also for his

continuing guidance. I also thank my parents and my dear brother, in India, for their

immense support all through my work. Thanks are also due to Ms. Katherine G Herbert,

my laboratory's System Administrator, and my laboratory colleagues for their

invaluable support throughout the work. Special thanks to my friends, Geeta Josyula,

Kalyan Kuchimanchi and Vijay Mareddy, who helped me in many ways.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION

2 CURRENT RESEARCH........ 3

2.1 3

2.2 4

2.3 PHYLIP.. ---,

2.4 TreeBASE... 6

2.5 .

2.6 Ribosomal Database Project II................ 9

2.7 10

2.8 The Tree of Life Project.................. 11

2.9 13

3 PHYLOGENETIC DATA....................... 14

3.1 Overview of Phylogenetic Data... 14

3.2 Input	 to	 the	 Tool.................................... 16

3 .3 Output......... 17

18

4.1 18

4.2 Overview of Regular Expressions for Pattern Matching................ 18

4.3 Grouping in Perl Expressions.............. 20

4.4 The Regular Expressions for Identifying the File Names. 21

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.5 The Regular Expression for String Representation of Phylogenetic

	

Data............... • • • • • • • • • . • • .. • . • • • • • ••• 	 24

4.5.1	 Data Cleaning Overview...........	 24

4.5.2	 Data Cleaning Regular Expressions................................... 	 24

	

4.6	 Methodology for Data Collection and 		 25

	4 .7	 Summary........... 	 28

5	 CONCLUSION................ 	 29

6 APPENDIX A CODE LISTING FOR THE PHYLOGENETIC DATA

	

CLEANING AND SEARCHING TOOL...	 30

7	 APPENDIX B CODE LISITNGS............ 	 38

8	 APPENDIX C SAMPLE INPUT FLAT FILE 	 43

9	 APPENDIX D OVERVIEW OF ORO SOFTWARE... 	 46

10 REFERENCES	 47

viii

LIST OF FIGURES

Figure
Page

Fig 3.1	 Phylogenetic Terms................ 	 14

Fig 3.2	 Phylogenetic Tree Representation....	 14

Fig 3.3	 String Representation of a Phylogenetic Tree............................. 	 15

Fig 3.4 Formatted Phylogenetic Tree Representation 	 15

Fig 3.5	 Sample of Non-Related Data in the Input Files 	 16

Fig 4.1	 Sample Regular Expression........ 	 19

Fig 4.2	 Usage of Regular Expressions...... 	 19

Fig 4.3	 Usage of Pre-Compiled Regular Expressions................ 	 20

Fig 4.4	 Example of grouping in Regular Expressions...	 21

Fig 4.5	 Usage of Groups in Regular Expressions 	 21

Fig 4.6	 Sample of Lexicographical Combinations... 	 22

Fig 4.7	 Unique Patterns 	 23

Fig 4.8	 Regular Expressions for the Patterns Identified... 	 23

Fig 4.9 Methodology-1 	 26

Fig 4.9 Methodology-2 	 27

Fig 4.9 Methodology-3	 27

ix

CHAPTER 1

INTRODUCTION

With the rapid technological advancement in the field of generation and collection of

data over the past few decades, enormously large data banks have been built. The use

and retrieval of such stored data generates the need for new techniques and automated

tools that can intelligently assist us in transforming the vast amount of data into useful

information and knowledge. This leads to the concept of Data Mining also popularly

known as Knowledge Discovery in Databases (KDD), which has seen some rapid

progress in the past few years.

There is a greater need to develop much efficient data preprocessing techniques

than ever before. Real-world databases are highly susceptible to noisy, missing and

inconsistent data due to typical huge size, often in gigabytes or more. Data needs to be

preprocessed in order to help improve the quality of the processing and consequently,

of the mining results.

The are a number of data preprocessing techniques, some of which are outlined as

follows-

Data Cleaning: to discard noise and remedy inconsistencies in the data

Data Integration: to merge data from multiple sources into a coherent data store like a

data warehouse or data cube

Data Transformation: like normalization, used to improve the accuracy and efficiency

of the mining algorithms involving distance measurements

Data Reduction: used to reduce the data size by aggregating, eliminating redundant

features or clustering for example. [1]

1

2

This work is an effort to clean and filter the noisy data in the database of

phylogenetic information, TreeBASE, sponsored by Harvard University Herbaria, Leiden

University EEW, and the University of California, Davis. TreeBASE is a relational

database designed to manage and explore information on phylogenetic relationships. Its

main function is to store published phylogenetic trees and data matrices. It also includes

bibliographic information on phylogenetic studies, and details on taxon, characters,

algorithms used, and analyses performed [5]. The main interest of this work is to extract

the relevant phylogenetic information and prepare a local database that has data

• which can be searched flexibly

• which can be converted into any convenient format for further processing.

CHAPTER 2

CURRENT RESEARCH

Phylogenetics is the branch of study dealing with the evolutionary development and

history of a taxonomic grouping of organisms, at large, to the development of any

organ or a part of an organism or the development of a tribe or racial group, altogether.

There is an amazing diversity of life, in both living and extinct. The research issues in

this area vary from classification or categorization of the species into an organized

hierarchy by identifying the patterns and processes involved in evolutionary change, to

development of a standardized phylogenetic nomenclature keeping in view the ever

growing need to match the phylogenetic knowledge with the taxonomy of all the

species known thus far. There is a great deal of research in identifying patterns in the

existing databases of phylogenetic information to predict the behavior of less known

species and also about the species yet to be discovered. Phylogenetic databases, thus

offer a great deal of potential for research for developing analysis and search tools of

the biological data. This chapter will delve mainly on the prominent phylogenetic

analysis tools as well as well-known databases around the globe.

2.1 CAIC

CAIC (Comparative Analysis by Independent Contrasts) is a user-friendly computer

tool for the Apple Macintosh PCs that finds and calculates phylogenetically

independent contrasts in one or more variables, enabling the user to test hypotheses of

correlated evolution. The tool can be found at the Internet URL

http://www.bio.ic.ac.uk/evolve/software/caic/index.html [17]. Closely related species

3

4

tend to be similar because of shared inheritance, rather than through independent

adaptation. Ordinary statistics such as correlation and regression cannot validly be used

with comparative data.

The tool is distributed as a binhexed, self-extracting archive and includes two

helper programs for creating phylogenies. The tool TreeEdit could be used to translate

trees from other formats like NEXUS. The tool was initially written by Andy Purvis in

1991 at the Evolutionary Biology Group, Oxford University. The second version of the

work tool was developed by Andrew Rambaut using Think Pascal 4.5 and the latest

version 2.6x has been developed by Nick Issac and Paul-Michael using Code-Warrior

Pro 4 at the Imperial College. The tool runs on any Macintosh system.

The dataset for the tool can have up to 10,000 taxa and 128 columns of data. Up

to 20 columns of data can be selected in any one analysis. Each tip must be separated

from the root of the phylogeny by no more than 49 nodes.

2.2 MacClade

MacClade is a tool used for phylogenetic analysis. The tool has great analytical strength

in the studies of character evolution. It also provides many tools for entering and

editing data and phylogenies, and also for producing tree diagrams and charts.

The tool is maintained by David R. Maddison and Wayne P. Maddison. The

tool is available at the interne URL

http://phylogeny.arizona.edu/macclade/macclade.html [18]. The tool provides an

interactive environment for exploring the phylogeny. The tool also provides a 'Tree

Window' where the phylogenetic trees or cladograms could be manipulated and

S

character evolution visualized. A summary of changes in the characters can also be

depicted in the window and as the trees are manipulated, the tool updates the statistics

and the results are updated in graphics and charts.

The tool provides charts for depicting the summary of character evolution on

more then one tree and also it provides charts comparing two or more trees. The tool

also provides a systematic and comparative data-editor with versatile features of

graphical manipulation and also for convenient usage of various rows, columns and

blocks of data. The tool also facilitates interoperability between other prominent

software called PAUP; facilitating management of files stored in NEXUS format and

also helps in calculating the decay indices of the trees by storing the files in a format

that can be understood by PAUP.

2.3 PHYLIP

It is a package of programs for inferring phylogenies. The package is freely available

on the Internet at http://evolution.genetics.washington.edu/phylip.html [191 as a number

of executables. Joe Felsentein of the Department of Computer Science at University of

Washington maintains the web page. The package can be run on various platforms like

the Windows 95/98/NT, DOS and also Macintosh systems.

The programs contained in the package facilitate wide of variety of analysis that

include parsimony, distance matrix, and maximum likelihood methods, including

bootstrapping and consensus trees, Invariants (or Evolutionary parsimony) analysis,

interactive tree manipulation, compatibility analysis, comparative method analysis, and

tree plotting or drawing. The collection of programs can operate on a wide variety of

6

data types that include molecular sequences, gene frequencies, restriction sites, distance

matrices, and 0/1 discrete characters.

The package of programs can be conveniently downloaded from the web by ftp.

The web site also provides links to a large set of phylogenetic analysis programs and

databases over the Internet. The resources are very c onveniently c ategorized o n t he

basis of the various functions they provide like General-Purpose packages, Parsimony

programs, Distance Matrix methods, Quartets Methods, Artificial Intelligence methods,

Interactive Tree Manipulation methods, to quote few.

2.4 TreeBASE

TreeBASE is one of the fastest growing databases of phylogenetic data. TreeBASE can

be accessed on the web at http://www.treebase.org/treebase/index.html -5]. It is a

relational database containing phylogenetic information obtained from research papers

submitted to the web site. The site also allows the users to search the database. it also

allows the user to gain access to information concerning tree as well as use comparison

tools to learn more about various taxa contained within the tree and their relationships

with other taxa within the database. TreeBASE is currently maintained by Michael

Donoghue, William Piel, Mike Sanderson, and Mary Walsh.

TreeBASE mainly consists of the phylogenetic trees submitted to it by the

authors of the papers that present the trees. The s ite a ccepts, for r eview, a ny p eer-

reviewed and published paper that provides information on any kind of phylogenetic

trees. The paper goes through a review process before being incorporated in the

database.

7

The search techniques TreeBASE employs are based on keyword queries. The

interface facilitates the search of the database on taxa, author, citation, study accession

and matrix accession number and also structure. The search results comprises of other

resources for further analysis of the trees. These other resources include the ability to

"tree surf', download the matrix which models the tree, and initiate a structural search

of the tree by providing a link to TreeSearch, a structural search engine maintained at

NJIT by Dr.Jason T.L. Wang and Dr.Dennis Shasha at

http://aria.njit.edu/—biotool/search_index.html [20]. The matches for any keyword

contain information about the study in which the keyword was found. The information

also includes the publishing date, the Author, the title of the study in which the

keyword was found, and the periodical in which the study appeared. Analyses of the

data presented in the study are also present in the results. These analyses could include

the matrix, a link to the pictorial representation of the tree in a frame, a link for

downloading the tree so that the user can view it on his or her own viewer, and a link to

bookmark the view for quick retrieval.

TreeSearch takes the format of representation of phylogenetic data from

TreeBASE. TreeSearch also obtains its database from TreeBASE. TreeBASE has

incorporated into the functionalities of its tool a link to TreeSearch, if a user wants to

perform a structural search on the database.

8

2.5 TREEMAP

TREEMAP is a tool that facilitates visual comparison of phylogenetic trees of host and

parasite organisms. It is developed and maintained by Roderic D. M. Page at the

Division of Environmental and Evolutionary Biology at the Institute of Biomedical and

Life Sciences at the University of Glasgow and can be found at

http://taxonomy.zoology.gla.ac.uk/rod/treemap.html [21]. The tool is available for both

Macintosh and Windows platforms.

The TREEMAP provides a versatile user interface to explore the relationship

between the phylogenies of the host and parasite organisms by facilitating various

manipulations. The tool primarily consists of four windows for versatile display of

information. The first window, called the Tanglegram, displays the host and the parasite

trees showing the interdependencies by connecting lines. The appearance of the trees

could be altered, for better understanding, by rotating descendants around their

ancestors. The trees can be viewed in either cladogram or phylogram formats and can

only be viewed in t he p hylogram format if t he data c ontains information a bout t he

branch lengths. The fonts and colors can also be modified according to the viewer's

choice.

The second and the most important window, called the Reconstruction window,

helps in demonstrating how the nodes of the parasite tree can be assigned to the nodes

of the host tree to create the best reconstruction for those trees. The window displays

the parasite tree overlaid on the host tree for easy understanding of the reconstruction.

The facility of randomization help the user to evaluate the relationships between the

host and parasites and the result of the randomization is displayed in the Histogram

9

window. The fourth window, called the Branch Length window, uses a bivariate plot

for plotting the lengths of branches corresponding to the host and parasite trees.

On Macintosh machines, TREEMAP accepts data in TREEMAP format, flat

file text format, and PICT format. The *.PICT formats can be edited with any

Macintosh graphics or word processor. For Windows, the TREEMAP data files are

ASCII files with the extension *.NEX and picture files are generated with the extension

*.WMF. The *.WMF files can be edited using a graphics or word processing tools in

Windows environment. The tool provides a very user-friendly interface with versatile

features for comparative study of phylogenies of host and parasite organisms.

2.6 Ribosomal Database Project II

RDP, a set of programs, is developed by and is maintained by the Ribosomal Database

Project at M ichigan S tate U niversity [Rib]. The r esource is a vailable o n t he w eb at

http://rdp.cme.msu.edu/html/index.html [22] from which the tools can either be

downloaded or used online. The RDP provides services for online data analysis of

ribosomal information.

The RDP-II's tool set of nine programs contains many helpful tools for

analyzing ribosomal information. Firstly, the 'Alignment Slices' presents a compressed

view of (up to five) vertical alignment slices, with identical neighboring sequences

represented only once. The program proves useful in examining probe candidates,

covariation or for browsing a region of an alignment. The 'Chimera Detection' program

helps in determining if a sequence is composed of two fragments that are similar to

10

clearly different sequences from the database and uploaded user sequences, i.e. if the

sequence is of chimeric origin. The 'Probe Match' helps evaluating a specified probe

sequence with rRNA sequences in the RDP database. The analysis consists of an

overview of the matches between a probe and its potential target as a list and has a

phylogenetic overview. The 'Sequence Align' accepts sequence entries and aligns them

against the most similar RDP sequence. This program highlights unambiguous

alignment regions, with ambiguous or uncertain alignment regions displayed in non-

highlighted text. The 'Similarity Match' measures similarity between the user's

sequence(s) and those in RDP. The 'Similarity Matrix' computes a

similarity/dissimilarity matrix for the user's sequences and the most similar database

sequences in the RDP database. The `(sub) Tree' is an interactive Java applet that can

be used as an output device to display results of a query, or as an input device to obtain

a selection of organisms from the user. The program has been optimized to handle large

trees, but it is not an editor that would let the user change tree topologies. The T-RFLP

program facilitates comparative community analysis using terminal restriction fragment

length polymorphisms. It runs as a java applet from the resident web page.

2.7 SYSTERS

It is a protein database with a versatile tool for evaluating phylogenetic

information. This tool uses a web interface to evaluate nucleic and protein information

using set of tools that the user can select to use. It is maintained by Antje Krause and

can be found on the World Wide Web at http://systers.molgen.mpg.de/ [23].

11

The SYSTERS Cluster Set is based on the SYSTERS (SYSTEmatic Re-

Searching) algorithm. The algorithm finds a set of related sequences (called Cluster)

that share a strong similarity to the original query sequence. The sequences are not

ranked further within the cluster.

The tool provides the user with a wide variety of tools to search and analyze the

clusters. Some of the tools include selecting the clusters by Cluster number, Accession

number, also available a re t ools S SMAL a nd B LAST w ith us er inp utted p rotein o r

nucleotide sequences. The tool also facilitates the use of other tools and formats of data

including PROSITE numbers, PDB Accession numbers, ENZYME numbers, and also

accession numbers and identifiers of databases like PM, SWISS-PROT, FlyBase. The

tool also supports multiple formats of query strings.

The tool proves to be a powerful means for evaluating protein and DNA

sequences through cluster evaluation because of the provisions in the tool for working

with various formats of queries and also providing links to various related databases.

Allowing a multitude of formats at many different stages of the search facilitates

understanding of the clustering information.

2.8 The Tree Of Life Project

'Tree of Life' is a collection of about 2000 World Wide Web pages, authored by

biologists around the globe, providing information about the diversity of life. Pages are

linked in to each other in the form of evolutionary tree of organisms with links leading

to the pages about the group's subgroups. The resource is accessible on the World Wide

12

Web at http://phylogeny.arizona.edu/tree/phylogeny.html [24]. The project is currently

being maintained by David R.Maddison at University of Arizona.

The Tree of Life Project comprises of numerous websites that are authored

through a contribution process. Usually, a researcher who coordinates a certain group

within the project also authors the basal pages of the group. The coordinator selects

authors for his / her particular set of websites. Anyone interested in coordinating or

donating illustrations is encouraged to contact the project.

The website apart from providing links to the facilities it offers, it also provides

the user with a huge resource of links relating to the research round the globe in the

same field. One of the main resources on the main page is the link to 'browse' web

page that p rovides 1 inks t o t he ke y p ages o f t he p roject. I t c ontain t he 1 inks t o t he

'rootpage', that provides links to all the other pages, sample pages that demonstrate the

diversity of a select few organisms in the project, 'popular groups' providing a simple

hierarchy of the popular groups of organisms on the project, 'picture sampler' that

provides convenient display of pictures of the required Glade or picture that are

randomly chosen and finally a link to the search tool of the project.

The search tool of the project is based on a keyword search technique. The tool

can search the database for taxon names, Glade names, or any of the author names, or

references to retrieve a set of links to all the pages that contain the specified keyword.

The project is a great repository of exhaustive information relating to wide

variety of life forms. It serves as a great reference for research and also teaching. The

project does not facilitate comparative study of life forms in its current stage. In future,

13

it is intended to implement the project in dynamically generated web pages that could

facilitate the comparative study.

2.9 Summary

The research in this area is ever widening as we keep increasing our knowledge about

the origin and evolution of life on Earth. There are many analysis tools and databases

being used for phylogenetic research to be described in this small chapter. The current

effort is to contribute in the direction of having better tools of phylogenetic analysis.

CHAPTER 3

PHYLOGENETIC DATA

3.1 Overview of Phylogenetic Data

Phylogenetic data can be data relating to evolutionary development of some organ or

part of an organism or that of a species altogether. The data is mainly in the form of

trees and data matrices that are published regularly in leading journals [4]. It is also

represented in the format of trees. An example of the string representation of

phylogenetic data referred earlier in the document, is shown below:

1	 Apiaceae,

2	 Brassicaceae,

3	 Caprifoliaceae,

4	 Poaceae,

5	 Chenopodiaceae,

6	 Fabaceae

Fig. 3.1 Phylogenetic Terms

Phylogenetic Terms

TREE = [&R] (4,((1,5),((2,6),3)));

TREE Fig._7 = [&R] (4,(((1,5),3).(2,6)));

TREE Fig. 8A = [&R] (((1,5),(2,6),3),4):

TREE Fig._8B = [&R] ((1,2,3,5,6),4);

Fig. 3.2 Phylogenetic Tree Representation

14

15

The string representation is as shown below:

TREE Fi g._6 = [&R]

(Poaceae,((Apiaceae,Chenopodiaceae),((Brassicaceae,Fabaceae),Caprifoliaceae)));

TREE Fig. _7 = [&R]

(Poaceae,(((Apiaceae,Chenopodiaceae),Caprifoliaceae),(Brassicaceae,Fabaceae)));

TREE Fig._8A = [&R]

MApiaceae,Chenopodiaceae),(Brassicaceae,Fabaceae),Caprifoliaceae),Poaceae),

TREE Fig._8B = [&R]
((Apiaceae,Brassicaceae,Caprifoliaceae,Chenopodiaceae,Fabaceae),Poaceae);

Fig. 3.3 String Representation of a Phylogenetic Tree

The formatted tree representation, in the form of online search result, is shown in the

Fig. 3.3. For the tree named "TREE with reference to Fig. 3.3, is as shown

below:

Poaceae

Apiaceae

Chenopodiace

Brassicaceae

Fabaceae

Caprifoliaceae

Fig. 3.4 Formatted Phylogenetic Tree Representation.

16

An example of the non-related data (noise), in the form of data matrices of the

phylogenetic sequences is shown in the figure below.

BEGIN CHARACTERS;
DIMENSIONS NCHAR=28;
FORMAT SYMBOLS= " 0 1 2" MISSING=9 GAP , - ;
MATRIX

10	 20]
.	 .]

Dalbergia	 0000000000000000000000000000
Kunstleria	 0000001000011100000000010100
Lonchocarpus	 1000021011111110010000110110
Piscidia	 1010021011111110010000110110
Tephrosia	 1110021111111111011000111110
Sphinctospermum 1111112110001001111000091911
Siesbania 00i00110010000000111000000110
Hebestigma 0000110010000001911000110111
Robinia 0000110110000001111111111111
Peteria 0001110110000001111111111111
Coursetia 0000112110000001111011111111

END;

Fig. 3.5 Sample of Non-Related Data in the Input Files

Keeping in view the requirement of the local TreeSearch, there is lot of noise in the

data present in Harvard ftp site. There are as many as 947 (as of today) files, each

consisting of information pertaining to the study carried out and also the results

including the data matrices and the phylogenetic trees.

3.2 Input to the Tool

An idea of the relevant data that is processed by the tool is given by presenting the

content of a file, in Appendix C. The part of the input file that is being processed is

17

presented in italicized format. The strings containing numbers in brackets, at the end of

the file, represent phylogenetic data in phylogenetic tree format. The file also contains

the required phylogenetic terms, which correspond to the numbers in the string

mentioned above.

3.3 Output

The processed output of the tool is the string representation of all the phylogenetic trees

along with the name of the file stored locally. The output is ready for further operations

to be performed.

CHAPTER 4

THE TOOL

4.1 Overview

The technologies used to program the tool are Java, and Perl programming languages.

The Awk and Perl Programming manuals have been referred for writing efficient and

easily understandable pattern matching 'regular expressions' explained further in the

chapter [15][16]. The scope of Perl programming in the tool is identifying & matching

the patterns, to extract the string representation of the phylogenetic trees from the flat

text files on the ftp site. The pal script is subsequently ported into Java using custom

Java classes developed by a software company named ORO Inc. at the URL

www.savarese.org [3] .

The company has developed reliable custom APIs for converting most of the

text processing programs on Unix to Java. The instructions to download and use the

software are illustrated in the Appendix D. The tool has been programmed in Java alone

for reasons of cross platform compatibility. The application is designed to be a single

standalone program that can be invoked by a single command. An overview of the

pattern matching capabilities of perl is presented below, before detailing about the

patterns implemented, methodology employed for the data collection & cleaning and

the code of the tool.

4.2 Overview of Regular Expressions for Pattern Matching

A regular expression, in perl, is a syntax implemented that facilitates numerous text

processing operations including pattern matching, string comparisons, replacements

18

19

and selections, to name a few. Compiled regular expression is a data structure that can

be stored once and used again and again. Pre-compiled regular expressions can be used

for dynamic matches that don't need to be recompiled each time they are encountered

[6][7][8][9][10][111{121[13][14].

An example of regular expression is shown in the figure 4.1 below

qr/foo+bar?/; # reg contains a compiled regular expression.

Fig. 4.1 Sample Regular Expression

Then Sreg can be used as a regular expression.

$x = "fooooba";
$x	 $reg; # matches, just like /foo+bar?/
Sx =~ /$reg/; # same thing, alternate form

Fig. 4.2 Usage of Regular Expressions

An Example of pre-compiled regular expression is shown in the next page.

#!/usr/bin/perl
multi_grep - match any of <number> regexps
usage: multi_grep <number> regexp1 regexp2 file1 file2
$number = shift;
$regexp[$_] = shift foreach (0..$number-1);
@compiled = map qr/$_/, @regexp;
while ($line = <>) {

foreach $pattern (@compiled)
if ($line	 /$pattern/) {

print $line;
last; # we matched, so move onto the next line

% multi_grep 2 last for multi_grep

$regexp[$_] = shift foreach
foreach $pattern (@comp

last;

0..$number-1
ed)

20

Fig. 4.3 Usage of Pre-Compiled Regular Expressions

Storing pre-compiled regular expressions in an array ' @compiled' allows us to simply

loop through the regular expressions without any recompilation, thus giving flexibility

without compromising speed.

4.3 Grouping in Perl Expressions

Grouping allows parts of a regular expression to be treated as a single unit. Parts of a

regular expression are grouped by enclosing them in parentheses. Grouping

metacharacters 0 also serves another completely different purpose. It allows the

extraction of the parts of a string that has matched. This is very useful to find out what

part of the original string matched and also for text processing in general. For each

21

/(a|b)b/; # matches 'ab' or 'bb'
/(ac b)b/; # matches 'acb' or 'bb'
/(^a|b)c/, # matches 'ac' at start of string or 'be' anywhere
/(a|[bc])d/; # matches 'ad' , bd', or 'cd'

Fig. 4.4 Example of Grouping in Regular Expressions

grouping, the part that matched inside the expression goes into the special variables Si,

S2, etc. They can be used just as ordinary variables. This is shown in the Fig. 4.4 and

Fig. 4.5.

extract hours, minutes, seconds
$time =~ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss format
$hours = Si;
$minutes = $2;
$seconds = S3;

Fig. 4.5 Usage of Groups in Regular Expressions

4.4 The Regular Expressions for Identifying the File Names

Firstly, a comprehensive sampling of all the lexicographical combinations, as shown in

Fig 4.6 below, of file names is collected to make the regular expression generic enough

to match all the file names. After repeated perusal, unique patterns are identified. Every

sample or file name is a potential pattern to be taken into consideration. The procedure

is illustrated in the figure in the next page:

22

Sample Reference Tag
M1004 -1-
M1013 -1-
M101c2x3x96c12c55c08 -3-
M101c2x3x96c13c11c04 -3-
M1021 -1-
M102c2x3x96c13c14c20 -3-
M1031 -1-
M101c2x3x96c12c55c08 -3-
M101c2x3x96c13c11c04 -3-
M108c2x3x96c13c54c35 -3-

M1Oc11x4x95c21c26c07 -4-
M142c2x4x96c17c14c58 -5-
M14c11x5x95c11c38c19 -4-
M156c9x6x96c10c39c16 -3-

M160c1 lx 16x96c21c09c01 -3-
M161c11x16x96c22c10c59 -3-
M164c 1x6x97c14c48c13 -5-
M38c1 lx5x95c20c13c47 -4-

M3c1 1x4x95c20c31c27 -6-
M7c11x4x95c21c02c27 -6-
M80c1x29x96c17c16c17 -7-
M6c1 1x4x95c20c55c23 -6-
M60c 1 x28x96c14c00c15 -7-
M4c11x4x95c20c41c09 -6-
M1037 -1-
M999 -2-
M108c2x3x96c13c54c35 -5-
M83 LNX -8-
M833.NX -8-
M835 -2-

Note: All the samples with same Reference tags have similar combination of
lumbers and characters in their corresponding relative positions.

Fig. 4.6 Sample of Lexicographical Combinations

The samples projecting unique patterns in the above sampling are shown in the figure

shown in the next page:

23

Sample 	 Reference Tag
M1013	 -1-
M835	 -2-
M161c11x16x96c22c10c59	 -3-

M10c11x4x95c21c26c07 	 -4-
M164c1x6x97c14c48c13	 -5-
M4c1 1 x4x95c20c41c09 	 -6-
M60c 1 x28x96c14c00c15 	 -7-
M833.NX	 -8-
Observation: Every sample is different from another in character and number
combination.
The regular expressions need to be generic enough to match all the unique
patterns.

Fig. 4.7 Unique Patterns

The regular expression that match the above identified patterns are illustrated in the

picture below:

1. M\d{1,3}\D\d{1,2}\D\d{1,2}\D\d{1,2}\D\d{ 1,2}D\d{1,2}\D\d{ 1,2}

2. M\d{3,4}

3. M\d{3,4}\ .\D{2}

Note:
The regular expression '1' can match patterns with reference tags '3' through
,T.

The regular expression '2' can match patterns with reference tags '1' and '2'.
The regular expression '3' can match patterns of reference tag '8'.

The number of regular expressions depends upon the programming
considerations and the text processing requirements.

Fig. 4.8 Regular Expressions for the Patterns Identified

The perl script files used for processing the files are listed in Appendix B.

24

4.5 Regular Expression for String Representation of Phylogenetic Data

4.5.1 Data Cleaning Overview

Powerful text processing capabilities of per] language facilitate quick and efficient data

cleaning. Efficient processing of data has been accomplished by regular expressions

that do string comparisons, replacements and selections. Utilizing the 'options' in

regular expressions enhances the text processing, capability of the expressions.

4.5.2 Data Cleaning Regular Expressions

While processing the flat files, we require to get rid of numerous white spaces, tab

spaces new-line characters, return characters and form feed characters. Firstly the block

of data to be processed is identified and collected into a convenient data structure for

ease of retrieval and processing. The block of data, in the flat file, of interest starts from

the word "TRANSLATE" and ends after the last line containing "TREE".

The block of data of interest will be referred further as data. data consists of

phylogenetic terms and tree structure. The sub-block of data, containing the

phylogenetic trees, is cleaned off all the white space characters. The data structure

consists of a vector containing the phylogenetic terms in the appropriate positions. The

sub-block of the data containing the phylogenetic trees is also clean for the white space

characters and stored in a vector for convenient search and retrieval. API- loop is used

to loop through the elements of the vector containing phylogenetic data and during the

looping operation; every tree is checked for all the phylogenetic terms. This is done by

trying to search for a match of the 'number', against the phylogenetic trees, in every

tree and replacing the match with the corresponding phylogenetic term, to produce the

25

string representation of the trees. Please find the pert script for producing the string,

representation in the Appendix B.

4.6 Methodology for Data Collection and Cleaning

Java networking classes [2] and the classes made by ORO Inc at www.savarese.org

have been extensively used for reliable data collection and cleaning. The powerful

pattern matching and text processing capabilities of pert are utilized to arrive at a

methodology to clean the data.

Firstly, a program is written in perl to carry out the processing of the input file.

It is checked and cross-verified for its reliability with numerous files from the main ftp

site. Then the pert program in converted into a standalone java program for further

integration with the program that gathers the URLs of the file names. An overview of

the methodology employed for gathering and cleaning of data is illustrated in the

following three figures in the following pages.

The program, incorporating the custom java classes developed by ORO Inc and

the native Java classes, implementing the above methodology is listed in the Appendix

A. The tool has been flexibly programmed, dividing it into mainly the filename

collecting, part and the later recursive data collecting and cleaning module. Each of the

modules can be conveniently updated according to the changing requirements. It is

appropriately commented for effortless review.

Start
(FTP files present in the

Harvard TreeBASE)

Establish a URL connection with
The ftp server and extract the html
text containing filenames of all the
files.

Identifying the pattern of the
filenames, extract all of them and
store in a local file/data-structure as
full-fledged web accessible URL of
the specific file.

26

Check to see if the
tool is being run for
the first time or it is
being used to update
the local database?

Fig. 4.9 Methodology -1

27

Establish independent
connections to each of the
new files and extract the
required phylogenetic data
upon identifying the patterns.

End

Fig 4.10 Methodology -2

Determine the new files that
have been added to the
database and extract their
URL and store in the original
list of the files for the next
updating run of the tool.

Establish independent
connections to each of the
new files and extract the
required phylogenetic data
upon identifying the patterns.

END

Fig. 4.11 Methodology -3

28

4.7 Summary

The program, incorporating the custom Java classes developed by ORO Inc and

the native Java classes, implementing the above methodology is listed in the Appendix

A. The tool has been flexibly programmed, dividing it into mainly the filename

collecting part the later recursive data collecting and cleaning module. Each of the

modules can be conveniently updated according to the changing requirements. It is

appropriately commented for effortless review.

CONCLUSION

During the entire research, it was observed that numerous patterns of data exist for

processing. To process a variety of patterns, the regular expressions of the processing

tool used or the processing data structures for any other kind of phylogenetic data.

require being generic.

The most interesting part of this thesis effort is the perl regular expressions that

account for variety of patterns in the input files and make the tool a real world

application. The tool can be constantly upgraded and made good for latest patterns in

the input files by updating the regular expression and keeping the rest of the application

intact. The standard java networking classes and also the well-tested custom java

classes developed by www.savarese.org make the tool robust and platform independent.

There is enormous scope for research in the field of Phylogenetics. Building

efficient databases of the life forms is a great challenge because the any such database

keeps growing with our research and deeper understanding of the life forms on our

planet. There is a great need to develop efficient data-structures for efficient search and

retrievals from the databases and also to facilitate the advanced form of query and

retrieval based on structure matching.

29

APPENDIX A

CODE LISTING FOR THE PHYLOGENETIC DATA CLEANING AND
SEARCHING TOOL

Here are the guidelines for usage of the Phylogenetic Data Cleaning and Searching tool.

1. The tool has been programmed completely in Java.

2. User just needs to have some basic knowledge about Java runtime environment.

3. User can follow the instructions illustrated on the company's website.

4. The custom classes require to be placed in appropriate directory in the system

classpath and then the program is to be complied.

5. The compilation process gives an executable (". class") file. The files requires to be

run at the appropriate system prompt (DOS / UNIX).

import java.io.*;
import java.util.*;
import com.oroinc.text.regex.*;
import com.oroinc.text.perl.*;
import com.oroinc.text.*;
import java.net .*;

public class integrate2{
//module 1 for collection of file names

public static void main(String args[]){
URL ftpurl = null,ftpfileurl = null;
int maincount=0;
Date now = null;
Calendar hello= Calendar.getlnstance();
now = hello.getTime();
System.out.println("Starting at "+ now.toString()+"\n");
String reference = "ftp://herbaria.harvard.edu/pub/piel/Data/files/" ;
StringBuffer urlbuffer = new StringBuffer();

//buffer for the main FTPURL

30

StringBuffer strbuf = new StringBuffer();
String hi = null,temp = null, trystring,data1 = null, data2 = null,
temporary = null, tstring = null;
StringSubstitution sub = new StringSubstitution(" ");
StringSubstitution numsub = new StringSubstitution(" ");

Vector vec = new Vector();
Vector phyldata = new Vector();
Vector treedata = new Vector();
Vector result = new Vector();
Vector strrep = new Vector();
Vector tempvec;
Vector replacement = new Vector();

try{
ftpurl = new URL("ftp://herbaria.harvard.edu/pub/piel/Data/files ");

}catch(MalformedURLException mue){
System.out.println(mue.toString()+Thowdy mue\n ");

PatternCompiler compiler = new Perl5Compiler();
Perl5Matcher match = new Perl5Matcher();
PatternMatcherInput inp,input;
MatchResult mresult=null;

Perl5Pattern pattern 1 = null,pattern = null,splitpatt = null,pattern =
null,stringpatt = null ,,subpattern=null,pattern3=null ;
try{

pattern 1 =
(Perl5 Pattern)c ompi I er.c ompi le ("M \\d { 1 ,3}\\D\\d{ 1,2 } \\D\\d{ 1,2 } \\DW { 1,
2 }MU{ 1,2} \\D\\d{ 1,2 } \\D WI 1,2 } ",Perl5Compi ler.CASE_INSENSITIV
E_MASK I Perl5Compiler.MULTILINE_MASK);

pattern2 =
(Perl5Pattern)compiler.compile("M\\d{ 3,4 } ",Perl5Compiler.CASE_INSE
NSITIVE_MASK Perl5Compiler.MULTILINE_MASK);

pattern3 =
(Perl5Pattern)compiler.compile("M\\d{ 3,4 } \\.\\D{ 2 } " ,Perl 5Compi ler.CAS
E_INSENSITIVE_MASK Perl5Compiler.MULTILINE_MASK);

pattern = (Perl5Pattern)compiler.compile("{
\\s\t\n1 ".Perl5Compiler.CASE_INSENSITIVE_MASK
Perl5Compiler.MULTILINE_MASK);

31

splitpatt = (Perl5Pattern)compiler.compile("Ms\t\n\f\r
]",Perl5Compiler.CASE_INSENSITIVE MASK

Perl5Compiler.MULTILINE_MASK):

subpattern =
(Perl5Pattern)compiler.compile("\\d+",Perl5Compiler.CASE_INSENSITI
VE_MASK Perl5Compiler.MULTILINE_MASK);

}catch(MalformedPatternException MPE){
System.out.println("howdy..malformed
pattern"+MPE.toString()+"\n");

try{
File urlfile = new File("hi.txt");
File outfile = new File("mainop.txt");
RandomAccessFile raf = new RandomAccessFile(urlfile,"rw");
BufferedReader in = new BufferedReader(new InputStreamReader

(ftpurl.openStream()));
hi = in.readLine();
// to carry out the main pattern search and collecting the file names
//and storing it to a local file.
while(hi != null){
inp = new PatternMatcherinput(hi);
urlbuffer = urlbuffer.append(reference);

if(match.contains(inp,pattern 0){
mresult = match.getMatch();

strbuf.append(mresult.toString());
}else{

inp.setCurrentOffset(inp.getBednOffset());
if(match.contains(inp,pattern3)){

mresult = match.getMatch();
strbuf.append(mresult.toString());

}else{
inp.setCuiTentOffset(inp.getBeginOffset());if(match.contains(inp,pattern2)){

mresult=match.getMatch();
strbuf.append(mresult.toString());

}//end of if
Wend of else

urlbuffer = urIbuffer.append(strbuf.toString());
if(!(urIbuffer.toString().equals((Object)reference))){

maincount++;
System.out.println("file name"+ maincount +"being stored : -)

32

\n");

raf.writeBytes(urlbuffer.toString()+"\n");

hi =in .readLine();
strbuf=strbuf.delete(0,strbuf.length());
urlbuffer=urIbuffer.delete(0,urlbuffer.length());

}//end of outer while

//file name extraction ends here...END of MODULE 1

System.out.println("I am done with file name extraction !!\n");

//leaving a time stamp

hello= Calendar.getInstance();
now = hello.getTime();
System.out.println("File Names Extracted at"+ now.toString()+"\n");
RandomAccessFile ram = new RandomAccessFile(urlfile,"r");
RandomAccessFile ramf = new RandomAccessFile(outfile,"rw");
maincount=0;

//MODULE 2

temp = ram.readLine();
while(temp != null){

//while loop for extraction and cleaning of files recursively
//the main data collection and cleaning starts here--files bein
//individually extracted

// 	 the integration begins here 	 ***********

maincount++;
System.out.println("file number"+ maincount +"being

ssed : -) \n");
//ralwriteBytes(urlbuffer.toString()+"\n");
ramf.writeBytes(temp+"\n");
//System.out.println(urIbuffer.toString()+"\n");
try{
//ftpfileurl = new URL(urIbuffer.toString,());

ftpfileurl = new URL(temp);
catch(MalformedURLException mue){

Systenn.out.println(mue.toString()+"howdy ftpfile \n");

33

BufferedReader ftpfilein = new BufferedReader(new
InputStreamReader (ftpfileurl.openStream()));

String innerstring = ftpfilein.readLine();
//data being read from the particular ftp file
int linecount=0;

while(innerstring != null){
linecount++;
trystring = Util.substitute(match,pattern,sub,innerstring);
vec.add((Object)trystring);
//System.out.println("vec elementis "+trystring+"\n");
innerstring = ftpfilein.readLineQ;

ftpfilein.close();
//the connection with the particular file is closed
//System.out.println("the size of the vec is

"+vec.size()+"\n");
System.out.println("i just closed the file connection\n");
//setting flags

int startmark=0,flag=0,1astmark=0,1imit =
Util.SPLIT_ALL,sublimit=Util.SUBSTITUTE_ALL;

for(int i=0;i<linecount;i++){
if(vec.elementAt(i).toString().indexOf("TRANSLATE") != -1){

startmark = i;

}f/end for

for(int i=startmark;i<linecount;i++){
if((vec.elementAt(i).toString().indexOf(";") != -1)&&(flag

== 0)){
lastmark = i;
flag = -1;

//treemark = vec.elementAt(i).toString().indexOf("TREE");
if(vec.elementAt(i).toString().indexOf("TREE") != -1){

treedata.add((Object)vec.elementAt(i).toString());

for(int i=startmark+1;i<lastmark;i++){//the main loop
phyldata.add(vec.elementAt(i));

34

result= Util.split(match,splitpatt.vec.elementAt(i).toString.,(),limit);

for(int c=0;c<result.size();c++){
if(c==1){
datal = result.elementAt(c).toString();

if(c==2) {
data2 = result.elementAt(c).toString();
StringBuffer tempbuf =new

StringBuffer(data2);
int index = data2.indexOf(",");
if(index != -1){

tempbuf = tempbuf.deleteCharAt(index);

numsub.setSubstitution(tempbuf.toString());
tempbuf.delete(0,tempbuf.length());

}f/end for

StringBuffer strbuffer = new StringBuffer("([,\)\(])");
strbuffer.append(datal);

strbuffer.append("([,\)\(])");

try{
stringpatt =

(Perl5Pattern)compiler.compile(strbuffer.toString(),Perl5Compiler.CASE_
INSENSITIVE_MASK Perl5Compiler.MULTILINE_MASK);

Icatch(MalformedPatternException mpe){
System.out.println("MPE Exception"+mpe.toString()+"\n");

System.exit(1);

tempvec = new Vector();

for(int b=0;b<treedata.size();b++){ StringBuffer
'_..

.r _-..-.= new StringBuffer(treedata.elementAt(b).toString());
if(tempbuffer.toString().indexOf("{") != -1){

tstring =
tempbuffer.toString().substring(0,tempbuffer.toString().indexOf("1")+1);

tempbuffer =
tempbuffer.delete(0,tempbuffer.toString().indexOf("1")+1);

replacement.add((Object)tstring);

input = new
PatternMatcherInput(tenripbuffer.toString());

35

while(match.contains(input.strin patt)){//the while
mresult = match.getMatch();
//ram.writeBytes("the item is

\r+mresult.toString()+"\n");

Util.substitute(match,subpattern.numsub.mresult.toString());
//ram.writeBytes("the item is \r+temporary.toString()+"\n");

tstring = input.toString();
StringSubstitution newsub = new

StringSubstitution(temporary);
tstring =

Util.substitute(match.stringpatinewsub,tstring);
//ram.writeBytes("the item is

\t"+temporary.toString()+"\n");
tempvec.add((Object)tstring);
//System.out.println(tstring+"\n");
//ram.writeBytes("the replacement's size

is"+replacement.size()+"\n");

};//while ends here

}//treedata for loop ends here

if(tempvec.size()==treedata.size()){
for(int j=0;j<tempvec.size();j++){

treedata.setElementAt(tempvec.elementAt(j),j);
}

}
tempvec.clear();

}f/end of main for l0000000p

vec.clear();

//System.out.println("i am past the main forl000p\n");
if(replacement.size()==treedata.size()){

for(int z=0;z<treedata.size(),z++){
StringBuffer bufferl = new

StringBuffer(replacement.elementAt(z).toString());
buffer1.append(treedata.elementAt(z).toString());
treedata. setElementAt((Object)buffer 1..toStrin 0),z);

}
}
for(int i=0;i<treedata.size();i++){

ramf.writeBytes(treedata.elementAt(i).toString()+"\n");

36

37

ramf.writeBytes("file break 	 \n");
hello= Calendar.getInstance();
now = hello.getTime();
System.out.println("now it is "+ now.toStrin0)+"\n");
treedata.clear();
result.clear();
strrep.clearQ;
replacement.clear();

//integration ends here 	
temp = ram.readLine();

}catch(IOException ioe){
System.out.println(ioe.toString()+"howdy io\n");

//System.out.println("the whole match is !\n"+strbuf.toString()+"\n");

APPENDIX B

CODE LISTINGS

Two code listings containing the pal shell scripts are presented for reference. These text-

processing scripts are later converted into java.

Code Listing 1

This pert script takes the flat file from the ftp-site as input and produces a file containing

the string representation and simultaneously, displays the intermediate processing data-

structures to the user.

#!opt/local/bin/perl
unless(open(howdy,"$ARGV[0]")){
die(" howdy..no luck");

@mainarray=<howdy>,
$lines= @ mainarray;

print("number of lines in t $lines");

//identifying the start of data block

unless(open(howdy2,"grep -n \ —TRANSLATE" $ARGV[0] I")){
die("failed at second howdy");

//cleaning the input for any non-digit characters to extract the start line number

$string = <howdy2>;
$string	 s/[\D];
$string = Sstring +0;

print("\n \$string is $string \n");
close(howdy2);

//cleaning the input for unnecessary space characters

38

39

for(Sminicount=$string;$minicount	 Slines;Sminicount++)
$variab=Smainarray{$minicount];
prnt("Svariab");
Svariab =- tr/A[\t]//d;
$variab =- tr/[\t\n]$//d;

#to check for ";" pattern

if($variab	 /[;]/){

$note = $minicount;
#	 print("\n required number is $note \n");

last;

print("value of note is Snote");

IT

$endlimit = $note;

print("\n the new limits are

$count=$string;
$datacount=0;

string and $endlimit \n");

for($count=Sstring;$count	 $endlimit; $count++){
@dataarray[Sdatacount++]=$mainarray[Scount];
eval("print (\"Smainarray{$count]\")>newfile ;");

print("The phylogenetic data is \n @dataarray \n");

print("chal see you.things done\n ");

Sarraycount=0;
#this loop will colect the trees into the treearray,assuming, that the TREE and tree
are in
//a single line.
foreach $variable (@mainarray){
If ($variable =- AbTREE\b/){

print ("\n \$variable is $variable\n');
@treearray[Sarraycount++]=Svariable;

print("\nTree array is \n @treearray \n");

@try = <file>;

print the contents of the first file are\n @try \n";

@ dataarray2 = @ dataarray;
@ treearray2 = @ treearray;

$temp1 = @ dataarray2;
print the tempi is $templ\n";

@tryl <file2>;
print "contents of the second file are \n. @tryl \n";

$temp2 = @treearray2;
print the temp2 is $temp2 \n";

$index1 = 0;
while($indexl < $temp1){
print "contents are Sdataarray2[Sindexl]\n";
#$index1++;

Stemp2index =0;
chop(Sdataarray2[$index1]),
@temp = split([\t\n\nr]+/,Sdataarray2[$index1]);
if(Stemp[0] eq ")

shift(@temp);

$tsize = @temp;
$tempindex = 0;

while($tempindex < $tsize){
print "the word is $temp[$tempindex] \n";
Stempindex++;
#

chop($temp[1]);
while($temp2index < $temp2){
$treearray2[$temp2index++]	 s/([,\ADStemp[0]([,\AD/$1Stemp[1]S2/;
#$temp2index++;

$var $index *2;

40

while(

print new "\n treearray2Nempindex] \n";

tempindex < $temp2)

41

#	 @array[Svar,$var+1]=$temp[0,1];
#	 print "temp 1 is $temp[1]\n";

$indexl++;

#print "the changed arrays are @tryl \n";
$tempindex=0;

unless(open(new,">newfile2")){
die("cannot open a new file bye\n");

$tempindex++;

Code Listing 2

This pert script has been used to test the regular expression for matching the file names

of the flat files.

#!opt/local/bin/perl

#print("hi the match is ");

$input "src=\"docilib/images/ftp/file.gin" border=0 width=24

height=26> M101c2x3x96c12c55c08";

$count=1;

while($input =~

/M\d{1,3}\D\d{1,2} \TIM{ 1,2} \D\d{1,2}\D\d{1,2}\D\d{1,2}\D\d{1,2}/){

Smatch = $match + $&;

print ("the match is $match \n");

$count +=1;

42

#NEXUS

[MacClade 3.05 registered to MICHAEL DONOGHUE,
HARVARD]
BEGIN DATA;
DIMENSIONS NTAX=28 NCHAR=14;
[!This data set was downloaded from TreeBASE, a prototype relational database
of phylogenetic knowledge. TreeBASE has been supported by the NSF. Harvard
University, and UC Davis. Please do not remove this acknowledgment from the
Nexus file.
TreeBASE 0 1994-1996.
Study reference:
Soltis, D. E., P. S. Soltis, and B. D. Ness. 1989. Chloroplast-DNA variation and
multiple origins of autopolyploidy in Heather micranthia (Saxifragaceae).
Evolution 43:650-656.
Study accession number = S2x3x96c17c06c51
Matrix accession number = M115c2x3x96c17c09c29

FORMAT MISSING.? GAP.- ;
MATRIX

10]
I	 j
Heuchera micrantha_P_404 00000000000000
Heucheramicrantha_P1555 00000000000000
Heuchera_micranthaP1694 00000000000000
Heuchera_micrantha_P_1693 00000000100000
Heuchera_micrantha_P_357 00000000000010
Heuchera_micrantha_P354 00000000000000
Heuchera_micrantha_D344 00000000000001
Heucheramicrantha_D343 00000000000000
Heuchera micrantha_D 1736 00000000000001

APPENDIX C

SAMPLE INPUT FLAT-FILE

The data that is processed by the program is italicized in the sample flat-file listed below.

The italicized block of the file consists of phylogenetic terms and also the representation

of the phylogenetic tree.

43

44

Heuchera_mierantha_D_325 11110000000000
Heuehera_mieranthaD_324 00000000000001
HeucheramicranthaD400 00000000000000
Heuchera_micrantha_D_1572 00000000000000
HeucheramicranthaD398 11110000000000
HeucheramicranthaD397 11110000000000
Heucheramicrantha_D1814 00000000000000
Heuchera_micrantha_D_1809 00000000000001
Heuchera_micranthaD_1767 00000000000001
Heuchera_mieranthaE_407 00000110100000
Heucheramicrantha_E_1542 00000110100000
Heuchera_micrantha_E_389 00000010100000
Heuchera_micrantha_E_1713 00000000000001
Heucheramicrantha_H_1558 00001001000000
HeucheramicranthaH_1949 00000000000000
Heuehera_micranthaM_1578 00000000001100
Heuchera_micranthaM_1641 00000000010000
Heuchera_mierantha_M_1570 00000000001100
HeucheramicranthaM1567 00000000000000

END;
BEGIN ASSUMPTIONS;

OPTIONS DEFTYPE=unord PolyTeount=MINSTEPS ;
END;
BEGIN TREEBASE;
END;
BEGIN TREES;
[!1 trees, starting with TreeBASE accession#: T295:2/3/96:17:10:24]

TRANSLATE
1	 Heuche ra_micrantha_P _404,
2	 Heuchera_micrantha_P _1 555,
3	 Heuchera_micrantha_P _1 694,
4	 Heuchera_micrantha_P_1693,
5	 Heuche ra_micrantha_P _357 ,
6	 Heuchera_micrantha_P _354,
7	 Heuche ra_micrantha_D _344,
8	 Heuchera_micrantha_D _343 ,
9	 Heuche ra_micrantha_DJ 736,
10	 Heucherct_mic rantha_D _325 ,
11	 Heuchera_micrantha_D _324,
12	 He uche ra_mic rantha_D_400,
13	 Heuche ra_micrantha_D_1 572,
14	 Heuche ra_micrantha_D _398 ,
15	 Heuche ra_mic rantha_D _397 ,

45

16	 Heuche ra_micrantha_D _1 814,
17	 Heuche ra_mic ratitha _D _1809 ,
18	 Heuchera_micrantha_D_1767,
19	 Heuchera_micrantha_E_407,
20	 Heuchera_micrantha_E_1542,
21	 Heuchera_micrantha_E_389,
22	 Heuchera_micrantha_E_1713,
23	 Heuchera_micrantha_HJ 558,
24	 Heuchera_micrantha_H_1949,
25	 Heuche ra_micrantha_M _1 578,
26	 Heuchera _micranthct_MJ 641,
27	 He uchera_micrantha_M_1570,
28	 Heuchera_micrantha_MJ 567

•
TREE Fig._4 = [&RJ

((1,12,6,8,16,22,13,3,2,24,28),(11,7,18,9,17),(27,25),26,5,23,(14,15,10),(4,((19,20),21)));
END;
BEGIN MACCLADE;
Version 3.05;
LastModified -1370107628;
Singles 1000&/0;
END;

APPENDIX D

OVERVIEW OF ORO SOFTWARE

ORO, Inc. was a software development company that focused on providing high quality

object-oriented class libraries and toolkits for software developers. It operated for 1.5

years. Currently the ORO name lives on as a www.savarese.org project. ORO (Original

Reusable Objects) is distributed as open source with liberal binary licensing. The

software mainly consists of text processing tools like OROMatcher 2.0, PerlTools 2.0,

Awk Tools and Text Tools that are available for free download.

The guidelines for installation of the software are illustrated on the specified

Internet resource. The latest versions, of most of the software, support java 1.1 later

upgrades of java.

46

REFERENCES

[1] Jiawei Han and Micheline Kamber, Data Mining,
Morgan Kaufmann Publishers, August 2000.

[2] Jaya(TM) 2 Platform, Standard Edition, v1.2.2 API
http://java.sun.com/products/jdL1.2/docs/api/index.html (June - present).

[3] Daniel F. Savarese, www.savarese.org (June - September 2001).

[4] Google 2001, http://www.google.com/search?h1=en&q=%22phvlogenetics%22
(02 June 2001).

[5] Michael Donoghue, William Piel, Mike Sanderson and Mary Walsh,
TreeBASE, A Database of Phylogenetic Knowledge
http://www.herbaria.harvard.edu/treebase/ (January - present).

[6] PERLRE, Perl regular expressions,
http://www.mit.edu:8001/perl/perlre.html, (June - August 2001).

[7] PERL-Practical Extraction and Reporting Language
http://www-2.cs.cmu.edu/People/rgs/perl.html, (June - August 2001).

[8] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger
The AWK Programming Language Addison-Wesley, 1988.

[9] David Till, May 1997. Teach Yourself Perl 5 in 21 days, O'reilly Publications
(May - September 2001).

[10] Carlos Ramirez, (17 September 2001) Perl 5.6.1 Documentation,
http://www.perldoc.com/per15.6.1/pod/perlretut.html, (June - August 2001).

[11] Fermi National Accelarator Laboratory,
perlref - Perl references and nested data structures
http://www.fnal.gov/docs/products!per1/pod.new/5.00503/pod/periref. html
(June 2001).

[12 Nick Moraitakis & Giorgos Zervas, (1999). Per! Reference
http://www.perlreference.com/lang/ (August 2001).

[13] O'Reilly & Associates, Inc. Perl.com , The source of per] (1998-2001)
http://language.perl.com/faq/„ (August 2001).

[14] Kent Landfield, Internet FAQ Archives, Perl FAQ
http://wwwfaqs.org/faqs/perl-faq,/, (August - September 2001).

47

[15] Arnold D. Robbins, et al, AWK Programming Language
http://v‘ww.cl.cam.ac.uk/texinfodoc/gawk_toc.html#SEC2 (June 2001).

[16] Nicholas Reynolds, et al, Help-Site Computer Manuals
http://help-site.com/c.m/prog/lang/awk/ (June 2001), AWK Programming.

[17] Rich Grenyer, et al, The Purvis Lab, Imperial College
http://www.bio.ic.ac.uk/evolve/, (September 2001).

[18] David R. Maddison and W. P. Maddison, (2001) MacClade 4 Home Page,
http://phylogeny.arizona.edu/macclade/macclade.html, (September 2001).

[19] Joe Felsenstein, PHYLIP,
http://evolution.genetics.washington.edu/phylip.html (September 2001).

[20] Huiyuan Shan and Dr. Jason T.L. Wang, TreeSearch
http://aria.njit.edu/—biotool/search_index.html, (September 2001).

[21] Roderic D. M. Page, et al, (4 July 2000)
http://taxonomy.zoology.gla.ac.uk/rod/treemap.html (September 2001).

[22] Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ,
Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM. The RDP-II (Ribosomal
Database Project). Nucleic Acids Res 2001 Jan 1;29 (1):173-4
http://rdp.cme.msu.edu/html/index.html, (September 2001).

[23] Antje Krause, et al, (17 September 2001), SYSTERS Cluster Set Protein
Database Release 3 http://systers.molgen.mpg.de/ (September 2001).

[24] David R. Maddison and Wayne P. Maddison, (1998) The Tree of Life
http://phylogeny.arizona.edu/tree/phylogeny.html (September 2001).

48

	A tool for phylogenetic data cleaning and searching
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Current Research
	Chapter 3: Phylogenetic Data
	Chapter 4: The Tool
	Conclusion
	Appendix A: Code Listing For The Phylogenetic Data Cleaning And Searching Tool
	Appendix B: Code Listings
	Appendix C: Sample Input Flat-File
	Appendix D: Overview of ORO Software
	References

	List of Figures

