
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Spring 2003

Addition of a chain-cell search method and a Van
der Waals force model to a particle dynamics code
Michael J. Sweetman
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Sweetman, Michael J., "Addition of a chain-cell search method and a Van der Waals force model to a particle dynamics code" (2003).
Theses. 667.
https://digitalcommons.njit.edu/theses/667

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.njit.edu%2Ftheses%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/667?utm_source=digitalcommons.njit.edu%2Ftheses%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

ADDITION OF A CHAIN-CELL SEARCH METHOD AND A VAN DER WAALS
FORCE MODEL TO A PARTICLE DYNAMICS CODE

by
Michael J. Sweetman

This project studies the implementation of a computational time saving technique

and adds an additional force model into a discrete element method simulation

code. Both aspects of the project are focused on increasing the versatility of an

existing particle dynamics code by increasing the execution speed and available

force models for simulation.

The first portion of the project consisted of adding a function to the

collision detection mechanism to hash the particles into a spatial grid. This

hashing function allows a search for near neighbor particles to be restricted to

the space immediately adjacent to the particle of interest, thereby allowing for

significant reductions in the amount of time needed to locate near neighbors. It

has been found that the time needed to update the list is reduced to a function of

N1.2 , from a function of N2 , where N is the number of particles in the simulation.

The second portion of the project involves the addition of a Van der Waals

force model to the simulation code. This force becomes significant when

considering small particles, and in some cases it will be even stronger than the

gravitational force. The Van der Waals force is found by integrating the

contribution from each molecule in a particle to the Van der Waals potential

function over the whole particle, thereby obtaining equations that enable the

force to be found by treating the particles as a continuum.



ADDITION OF A CHAIN-CELL SEARCH METHOD AND A VAN DER WAALS
FORCE MODEL TO A PARTICLE DYNAMICS CODE

by
Michael J. Sweetman

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

Department of Mechanical Engineering

May 2003



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

ADDITION OF A CHAIN-CELL SEARCH METHOD AND A VAN DER WAALS
FORCE MODEL TO A PARTICLE DYNAMICS CODE

Michael John Sweetman

Dr. Anthony D. RosatV, Thesis Advisor 	 Date
Associate Chairperson for Graduate Studies and Professor of Mechanical
Engineering, NJIT

Dr. Rong-Yaw Chen 	 Date
Professor of Mechanical Engineering, NJIT

Dr. Zhiming Ji 	 Date
Associate Professor of Mechanical Engineering



BIOGRAPHICAL SKETCH

Author: 	 Michael J. Sweetman

Degree: 	 Master of Science

Date: 	 May 2003

Undergraduate and Graduate Education:

■ Master of Science in Mechanical Engineering
New Jersey Institute of Technology, Newark, New Jersey, 2003

■ Bachelor of Science in Mechanical Engineering
New Jersey Institute of Technology, Newark, New Jersey, 2001

Major: 	 Mechanical Engineering

iv



... to determine, as far as a combination of mathematics and physics will permit,

the influence of friction and cohesion in some problems of statics.

- Charles Augustin de Coulomb

v



ACKNOLEDGEMENT

I would like to express sincere thanks and appreciation to my advisor, Dr.

Anthony Rosato for providing encouragement, support, guidance and friendship

throughout this research.

Special thanks are also given to Dr. Rong Chen and Dr. Zhiming Ji for

serving as members of my committee.

I would also like to thank my parents for their support, and for their help in

the proofing of this paper.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	  1

1.1 Overview 	 1

1.2 History of Granular Science 	 2

1.3 Techniques for Locating Near Neighbors 	 6

1.4 Van der Waals Force Model 	 7

1.5 Outline of Thesis 	 8

2 OVERVIEW OF THE DISCRETE ELEMENT CODE 	  10

2.1 Overview 	  10

2.2 Description of Subroutines 	  13

2.3 Linked-List Structure 	  19

2.4 Force Model 	  34

2.5 Integration Method 	  39

3 CHAIN CELL SEARCH METHOD FOR LOCATING NEAR
NEIGHBORS 	  43

3.1 Overview 	  43

3.2 Creating the Chain-Cell Linked-List 	  44

3.3 Reading From the Chain-Cell Linked-List 	  53

3.4 Implementing the Chain-Cell Linked-List in the Particle
Dynamics Code 	  62

4 RESULTS 	  65

4.1 Validation of Results 	  65

4.2 Reduction in Time to Update List of Near Neighbors 	  66

vii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.3 Reduction in Computational Time 	  74

5 VAN DER WAALS FORCE MODEL 	  82

5.1 Literature Survey 	  82

5.2 Derivation of the Van der Waals Force Model 	  86

5.3 Adapting the Van der Waals Model for Computer Simulation 	  96

5.4 Results of the Addition of the Van der Waals Model 	  99

6 CONCLUSIONS AND FURTHER WORK 	  115

6.1 Chain-Cell Search Method 	  115

6.1 Van der Waals Force Model 	  117

REFERENCES 	  119

viii



LIST OF TABLES

Table 	 Page

2.1 	 List of Near Neighbors 	  22

2.2 The NEBOR Array After One Linked-List Addition 	  24

2.3 The Linked-List After One Addition 	  25

2.4 The NEBOR Array After Two Linked-List Additions 	  27

2.5 The Linked-List After Two Additions 	  27

2.6 The NEBOR Array for the Completed Linked-List 	  27

2.7 The Completed Linked-List 	  28

2.8 The NEBOR Array for the Linked-List After One Addition 	  30

2.9 The Linked-List After One Addition 	  30

2.10 The NEBOR Array for the Linked-List After Two Additions 	  31

2.11 The Linked-List After Two Additions 	  31

2.12 The NEBOR Array for the Completed Linked-List 	  31

2.13 The Completed Linked-List 	  32

3.1 	 Particle Positions and Cell Assignments 	  47

3.2 The Chain-Cell Arrays After the First Particle Has Been Added 	  50

3.3 The Chain-Cell Arrays After the Second Particle Has Been Added 	  51

3.4 The Complete Chain-Cell Arrays 	  52

3.5 	 Cell Numbers for Various Inputs 	  57

3.6 	 Search Order for Near Neighbors of Particle 3 	  60

3.7 	 Complete Search Order for Cell 1 	  61

4.1 	 Number of Cells and Particles for Chain-Cell Search 	  71

ix



LIST OF TABLES
(Continued)

Table 	 Page

4.2 Computational Time for the N-Squared Search and
Chain-Cell Search 	  74

5.1 	 Parameters Used in Test of Van der Waals Model 	  99

x



LIST OF FIGURES

Figure 	 Page

2.1 	 Two particles, with the radius and search radius marked 	  12

2.2 Flowchart of the 3-D Shear code 	  16

2.3 	 Sample system of 12 particles 	  22

2.4 	 The process of adding to the linked-list 	  26

3.1 	 The particle positions with the grid overlaid 	  48

4.1 	 Natural log of CPU time vs. the natural log number of particles for the
update routine using an N-squared search method 	  69

4.2 	 Natural log of CPU time vs. the natural log number of particles for the
update routine using a chain-cell search method 	  70

4.3 	 Natural log of CPU time multiplied by the number of cells vs. the
natural log number of particles for the update routine using a
chain-cell search method 	  72

4.4 	 Computational time versus the number of particles for both an
N-squared search and a chain cell search 	  75

4.5 CPU time for the update routine for an N-squared search as a
percentage of total CPU time vs. the number of particles 	  77

4.6 	 CPU time for the update routine for a chain-cell search as a
percentage of total CPU time vs. the number of particles 	  78

4.7 	 CPU time for all the routines with an N-squared search as a
percentage of total CPU time vs. the number of particles 	  80

4.8 	 CPU time for all the routines with a chain-cell search as a
percentage of total CPU time vs. the number of particles 	  81

5.1 	 The chord theorem 	  87

5.2 	 Integration between a molecule located at z = 0, and a wall
beginning at z = a (Israelachvili, 1992). 	  89

5.3 	 Integration between a particle beginning at z = a and a wall
beginning at z = 0 (Israelachvili, 1992). 	  90

xi



LIST OF FIGURES
(Continued)

Figure 	 Page

5.4 	 Integration between two walls (Israelachvili, 1992) 	  92

5.5 	 The Derjaguin approximation (Israelachvili, 1992) 	  94

5.6 Van der Waals force (N) vs. distance (m) 	  100

5.7 Van der Waals force (N) vs. distance (m) 	  101

5.8 Van der Waals force (N) vs. distance (m) 	  102

5.9 	 Van der Waals force (N) vs. distance (% of radius); points
calculated by the code are shown along with the Van der Waals
theory that includes both attractive and repulsive components. 	  104

5.10 Van der Waals force (N) vs. distance (% of radius); points
calculated by the code are shown along with the Van der Waals
theory that includes only the attractive component 	  105

5.11 Spring force (N) vs. separation distance (m) 	  107

5.12 Total force (N) vs. separation distance (m) 	  108

5.13 Total force (N) vs. time (sec.) 	  109

5.14 Total force (N) vs. time (sec.) for a large number of collisions,
the inset shows the curve detail 	  111

5.15 Velocity (m/s) vs. time (sec) for one collision 	  113

5.16 Velocity (m/s) vs. time (sec) for a large number of collisions,
the inset shows the curve detail 	  114

xii



CHAPTER 1

INTRODUCTION

1.1 Overview

This project investigates two computational aspects of a discrete element method

(DEM) simulation code. The DEM is a method of running computational

"experiments" on particle systems. These simulations often involve lengthy

computational times, thereby placing a priority on computational efficiency. The

first part of this project covers the implementation of an algorithm to improve the

speed with which interacting particles are identified. The second part of this

project investigates adding an additional force model that will allow the DEM

computer code to simulate smaller particles.

The DEM computer code that is used in this project was originally

developed by Drs. Otis Walton and Robert Braun at the Lawrence Livermore

National Laboratory in Livermore, California. The original purpose of the code

was to study uniform shearing flows. It has since been modified for the purpose

of expanding its application to include, among other things, Couette flow (Kim,

1992).

In granular science studies, it is often prohibitively difficult to perform

certain types of studies on systems of particles. Difficulty can be caused by high

temperature, high-pressure, or simply the microscopic size of the particles.

Therefore, computer experiments are often used to assist in the validation of

theoretical models. They provide a very convenient method of directly studying

1



2

the behavior of particles at the micro level in cases where it is nearly impossible

to perform direct experimentation. If the model is accurate, the computer

simulations of the DEM models will often provide a better understanding of the

experimental results. Additionally, computer simulations have been used to

expose weaknesses in continuum models that were not observed with macro

level experimentation (Allen & Tildesley, 1987).

Computer simulations often use very large amounts of computer time and

memory. Therefore, a well-optimized simulation scheme will be able to perform

more intensive or larger simulations than a scheme that is not optimized. In most

cases, the majority of the computational time is used in locating interacting

particles, and calculating the forces between them. This project implements a

method of reducing the time required to locate interacting particle pairs. The

project also expands the investigational possibilities of this code by adding a

force model that will allow more accurate simulations of particles on a smaller

scale than was previously possible with this computer code.

1.2 History of Granular Science

The study of granular materials began when the human race began to collect and

store food. In fact, it appears that Archimedes investigated the behavior of grain

in a helical screw pump (Roberts, 1998). There were also other ancient

attempts, such as the experiments with dry friction performed by Leonardo da

Vinci on piles of sand (Duran, 2000).



3

Later, other researchers provided background for the first studies in

particle technology. One of the most important of these was the work of Charles

de Coulomb (1736-1806) with the friction of dry solids (O'Connor & Robertson,

2003). Later, Rankine (1820-1872) and Reynolds (1842-1912) also built on

Coulomb's earlier work (Duran, 2000).

Particle technology research, however, was not begun in earnest until

relatively modern times. The foundations for the modern studies in particle

technology were laid in the late 19th century with the study of grain behavior in

silos. Isaac Roberts observed, in the process of designing silos, that the internal

friction and the wall friction in a silo limited the pressure on the base of the silo. It

was H.A. Janssen, however, who would provide the first theory of pressure in

silos. Janssen formulated an equation to predict the vertical pressure in silos,

and this equation is still commonly used today. There were also several others

who developed theories and performed experiments during this time period. In

the early 20 th century this work was extended to include the flow of bulk storage

(Roberts, 1998).

Ralph A. Bagnold deserves particular credit for his founding work in the

field of granular science. He was certainly quite a remarkable individual. In

addition to his scientific contributions, he is also remembered as the founder and

commander of the famous Long Range Desert Group, the group of commandos

in the British Army who provided invaluable intelligence and performed many

other daring operations during World War II. While Bagnold was serving as a

soldier for the British Army, in the Sinai Desert and in the Sahara Desert, he



4

became interested in the shapes of the sand dunes. He was intrigued by the

similarity in the shapes of the dunes that he observed in the different deserts. He

began to study the evolution of the sand dunes, and published his findings in

1941, in a book entitled The Physics of Blown Sand and Desert Dunes. This

book is generally considered to be the foundation of most modern studies in

granular science (Underwood, 1998).

Two men: Dr. Andrew W. Jenike and Dr. Jerry R. Johanson considerably

advanced the study of cohesive bulk solid flow from storage bins during the

1950's. These men contributed many things to the field; including the

establishment of flow modes, a radial stress theory, flow or no flow criteria, and

apparatus for the determination of flow properties. One of the significant

developments from these advancements, and the work of others at that time, is

the realization that in many cases it is convenient, if not necessary, to look at

particle technology problems as discrete element problems rather than as

continuum problems. As computers have become more powerful, the use of

discrete element modeling has become both more prevalent and more practical

(Roberts, 1998).

The DEM for granular science is quite similar to the field of molecular

dynamics (MD), and in fact, many of the techniques used in DEM simulations are

adapted from earlier MD simulations. The earliest computer simulation was

carried out at the Los Alamos National Laboratories in 1953. This study also laid

the foundations for the modern "Monte Carlo" method of random number

simulations. The early models were quite simple, but soon became more



5

realistic, and began to include such models as the Lennard-Jones model for

interaction potential (Allen & Tildesley, 1987).

The work has progressed rapidly from these early models. One of the first

fluids to be studied was liquid argon. However, most molecular systems require

more complicated models, which led to the development of the field of molecular

dynamics. Molecular dynamics, in general, refers to simulations that focus on

solving Newton's equations for a system of molecules. Alder and Wainwright

were the first to accomplish this for a pair of perfectly elastic particles. The next

step was to perform a MD simulation on systems which also included the

Lennard-Jones force model (Allen & Tildesley, 1987). From this point, studies

have progressed to include protein and many other biological molecules. This

has facilitated the creation of new drugs, and lead to many advances in gene

technology. Many modern MD simulations are now also beginning to include the

quantum effects in the simulations. Certainly, the awarding of a Nobel Prize for

Chemistry in 1998 for advances in quantum mechanics achieved through the use

of computer modeling, showed that using computational techniques for research

is now widely accepted in the scientific community (Becker, MacKerell, Roux, &

Watanabe, 2001).

Most of the MD simulations use force models for particle contact that are

readily adaptable to granular studies. However, the main difference between the

MD and DEM is that macroscopic particles interact in non-conservative collisions.

Plastic deformation and friction play a large role in determining the behavior of

granular materials, while these forces play little or no role on the molecular level.



6

Therefore, while the fields are similar, the computational techniques and

interpretation of results can be very different (Walton, 1984).

1.3 Techniques for Locating Near Neighbors

The first part of this project was to take a technique used in MD simulations and

adapt it to a computer code that was developed to perform DEM simulations.

The goal of this work was to enable the current code to perform similar

simulations to those currently being performed, while reducing the memory and

computational requirements.

The basic algorithm for each time step in a DEM simulation is as follows:

1. Find all near-neighbor pairs.

2. Calculate the forces acting on each particle.

3. Integrate the equations of motion.

In general, the largest amount of computational effort is spent on locating

interacting particles and calculating the forces on them (Schinner, 1999). Any

reduction in computational time in Steps 1 or 2 will often lead to a significant

reduction in overall computational time.

The technique that was used in this project is adapted from earlier MD

simulations (Allen & Tildesley, 1987). The fundamental idea of this technique is

to reduce the amount of computational time involved in locating near-neighbor

particle pairs. Instead of performing an exhaustive search for near-neighbor

pairs over the entire simulation cell, one would divide this cell into many sub-

cells. The search for near-neighbors would then only be conducted over the cell



7

occupied by the particle of interest, and the adjoining sub-cells. The hashing

function, which has the role of dividing the simulation area into sub-cells and

assigning particles to these sub-cells, can be done very rapidly, and this adds

very little to the overall computational time. Despite the additional overhead

involved, a substantial amount of time is saved by focusing the search for near-

neighbors only in an area where they are likely to be located (Allen & Tildesley,

1987).

1.4 Van der Waals Force Model

On very small systems, such as powder or fine powder systems, forces that can

be safely neglected in DEM simulations of larger particles become significant.

There are three types of forces that can become significant in simulations of

powders. These are the capillary force, the electrostatic force, and the Van der

Waals force.

The capillary forces in dry powders are caused by moisture condensing in

the powder. As the moisture condenses, it causes the powder grains to stick to

one another. In most situations, though not all, the capillary forces are small

enough to be ignored. Similarly, in most cases, the electrostatic forces can be

neglected. This is because the particles are usually in constant contact with

other particles, and in a container that will act as a ground. This has the effect of

causing all the particles to carry a similar and small charge. In this environment,

generally the electrostatic forces will be repulsive, and not very large in

comparison with the other forces.



8

The third type of force is the Van der Waals force. The Van der Waals is

an intermolecular force which does not operate over a very large distance.

However, when the contribution from each molecule is integrated over all the

molecules in a particle, the resultant inter-particle force can be many times

greater than the weight of the particles.

The Van der Waals force can be described by the Lennard-Jones model.

When this potential function is integrated over the volume of two colliding

molecules, the resultant force can be obtained. The resulting equations are not

very computationally expensive. Therefore, this model can be added to the

existing simulation code, thereby expanding the application, without causing an

unacceptable computational expense (Rietema, 1991).

1.5 Outline of Thesis

The remainder of this thesis is organized as follows. Chapter 2 contains an

overview of the code that is used in this project. This outline contains a

description of the Verlet table and the force models used. Chapter 3 contains a

description of the mechanics of the chain-cell search method that is being added

to the simulation code. Chapter 4 presents the results that demonstrate the

effectiveness of the chain-cell search method. Chapter 5 contains a description

of the Van der Waals force model that is also added to the code, and presents

some preliminary results. Chapter 6 presents the conclusions and

recommendations for future study.



9

No literature survey for the whole project is presented. The reason for this

is as follows. The project falls very clearly into two distinct parts. For the first

part, the concepts presented are widely discussed, but generally implemented

without any major alterations. Therefore, a wide ranging literature survey for the

first part is unnecessary. The major works regarding the first part will be

discussed in this section. The second portion of this project has a separate

literature survey that is presented in Chapter 5.

The Verlet table, that is used to keep track of information and reduce

computational time, was first introduced in a paper entitled Computer

"Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-

Jones Molecules (Verlet, 1967). This method is expanded and illustrated in a

book by J.M. Haile (Haile, 1992). The code that is used for this project was

documented by H. Kim, in a dissertation entitled Particle Dynamics Modeling of

Boundary Effects in Granular Couette Flow. Finally, the cell linked-list method,

that was the focus of the project, was originally presented by Allen and Tildesley

in the book Computer Simulation of Liquids (Allen & Tildesley, 1987).



CHAPTER 2

OVERVIEW OF THE DISCRETE ELEMENT CODE

2.1 Overview

The three-dimensional shear code used in this project can be used to simulate a

number of different motions and configurations of particle systems. The code is

set up to allow for either a cubic or a triangular cell, with either open or closed

tops. The properties of the materials, such as friction coefficients, can be set in

the input file.

The general algorithm of the code is as follows:

1. Read input file and initialize parameters.

2. Set initial particle positions by either reading from a file or using

random numbers.

3. Increase particle radii until they reach the desired radius.

4. Update list of near neighbors. (If necessary.)

5. Initialize integration step.

6. Calculate inter-particle forces.

7. Integrate to obtain new particle velocities and positions.

8. Complete the simulation if finished, or repeat from Step 4.

The input file is set up to allow for either triangular or rectangular

boundaries. These boundaries can be either hard particles or periodic

boundaries. The hard boundaries generally will have the same restitution

coefficients and friction coefficients as the other particles. The periodic

10



11

boundaries will move the particle to the opposite side of the simulation cell, when

it passes the boundary, preserving the velocity. The input file is also where the

size and properties of the particles are specified. Two different groups of

particles are allowed, with each group having different properties. This allows for

simulation involving different sizes and types of particles.

The next step the code takes is to assign particle positions. This can be

performed either by calling a random number function, or by reading the particle

positions from a text file. When the particle positions are assigned, the position

represents the position of the particle center. There will usually be overlapping

particles when the radius of each particle is considered. Therefore, the radius of

the particles is increased in steps. After each step, where the radius is

increased, the force routine is called to calculate the inter-particle forces.. These

forces are then used to move the particles apart, allowing for further increase in

the radius. This process continues until the radii of the particles reach the radius

specified in the input file. Once this step is completed, the general simulation

loop begins.

The first step in the simulation is to create the linked-list of near neighbor

particles. The code performs a loop though all particle pairs, checking to see if

the distance separating the particles is less than the search radius. If they are

closer than the search radius, the particle pair is added to the list of collisions.

This list remains generally the same from one time step to the next, provided that

the time step is small. Therefore, the list is only updated when the cumulative

maximum position change from each time step is more than half of the search



12

distance. This is illustrated in Figure 2.1. The two particles in that figure would

be near neighbors (Verlet, 1967).

ee
f 	 • 

%	 ' 	
• 

•
f 	 • f	•

1

•i: ••
••

1 	 ••
1 	 i 	 i
i	 I 	 I
I 	 1 	 I
It

1
	1 	 i

 Search 	 1•• A I•• el 
\

•
• Fe

et
•

•%%

— — — —

Figure 2.1 Two particles, with the radius and search radius marked.

The force routine then uses the linked-list of particles to calculate the inter-

particle forces. The force model used is called a partially-latching spring model,

which employs different tangential and normal friction coefficients. The force

routine also deletes particle pairs that move outside of the search radius from the

linked-list (Walton, 1991).

After the program completes the calculation of the forces, the next step is

to integrate the particle positions and velocities. The integration is performed

with the leap-frog Verlet algorithm (Becker et al., 2001). This algorithm provides

a numerically stable, yet reasonably speedy routine for numerical integration.

After the particle velocities and positions have been integrated, the program

checks to see if a printout of results is needed, or if the run information should be

saved. Then the program checks to see if the maximum time has been reached.

If the maximum time has been reached the program ends, otherwise the time is

incremented by one time step, and the code returns to the update step.

'%. 	 ------e



13

2.2 Description of Subroutines

The following is a description of the subroutines that make up the Three

Dimensional Shear Code. The order in which they are executed is shown in

Figure 2.2

■ BOUND

The bound routine assigns velocity, position, and other parameters for the

boundary particles.

■ DATAIN

Reads the input data from the input file, this file is called i3ds.

■ DATASAVE

This routine takes the data desired for output, formats it, and prints it in

output data files at the time intervals specified in the input file.

■ DELETEM

If the memory in use exceeds a preset threshold, then the deletem routine

is called. This routine reduces the search radius for near-neighbors by ten

percent, and removes near neighbor pairs from the linked-list that would

now be exceeding the search radius.

■ DIAGNOS2

This routine calculates all the long and short term averages otherwise

known as the diagnostic information.



14

■ DUMPREAD

The dumpread routine is used when restarting a previous run. This

routine reads in all the information necessary for restart from a previously

created dump file called d3ds.

■ FINDRAD

This routine increases the particle radius at t=0 until the radius reaches

the value specified in the input file.

■ FORCES

The force routine calculates the inter-particle forces using a partially

latching spring model for the normal force, and an incrementally slipping

tangential friction model for the tangential force.

■ INIT

This routine initializes the general parameters for the simulation. Initial

velocities and positions of the particles are also generated.

■ INITCUMI

This routine initializes the variables needed for short-term averages.

■ INITCUM2

This routine initializes the variables needed for long-term averages.

■ INITSTEP

This routine initializes the variables needed for the integration process.

■ INTEGI

This routine performs the integration for the current time step.



15

■ INTEG2

This routine calculates the coordinates at the end of each time step, and

estimates the velocities at that time step.

■ RAND

This is the random number generator used in the routine. It was

developed with emphasis on portability between different machine

architectures.

■ UPDATE

The update routine loops through all pairs of particles searching for near-

neighbors. When near-neighbor particle pairs are found, they are added

to the linked-list, if they were not already in the list (Kim, 1992).



Initalize parameters. Call Init.
Goto Line 20

Open input and output files.

Read input data. Call Datain.

Check
for restart of

previous
run.

Read run information.
Call Dumpread.

Initalize long and short term averages. Call
lnitcum 1 and In itcum2

Perform radius expansion. Call Findrad.

Begin simulation.

16

Figure 2.2 Flowchart of the 3-D Shear code (Kim, 1992).



From end of
program

Initialize timestep for integration. Call
Initstep.

i
Write run inforamtion.

Line # 20

TrueCheck
if update is

needed.
Call Update.

False

Calculate forces. Call Forces.

Calculate v at time t. Call
Integl.

I

17

Figure 2.2 Flowchart of the 3-D Shear code (Continued) (Kim, 1992).



Calculate diagnostics. Call Diagnos2.

TrueCheck
if t > time for

print out.

Print out results.
Call Datasav2.

Reinitialize Long
term averages. Call

Initcum2.

False

Continue integration,
calculate v at t+1/2dt.

Call Integ2.

Check
for dumpout.

False

True

Goto line #20
Create or open dumpfile,

and write all variables.

Check
if t > time of
simulation.

END
False True

Figure 2.2 Flowchart of the 3-D Shear code (Continued) (Kim, 1992).

18



19

2.3 Linked-List Structure

The discrete element code utilizes a Verlet list to keep track of particle contacts.

When Loup Verlet introduced this method of bookkeeping it was with the

intention of reducing computational time. When Verlet was investigating the

properties of a Lennard-Jones system of molecules, he found that he could

reduce the computation time by a factor of ten by keeping track of collisions,

rather than searching for collisions every time step. He chose a search radius,

and then searched for particles that were within the designated search radius.

When particle pairs were found they were added to the list of neighbors. The

neighbor list was then used each time step for the purpose of calculating inter-

particle forces. As long as the neighbor list was updated before any particle

moved outside of the search radius, no collisions would be missed (Verlet, 1967).

The discrete element code used in this project uses a similar technique to

that employed by Verlet. In addition to keeping track of the near neighbor

particle pairs to reduce the frequency that the update routine is called, this code

also keeps track of certain properties of each collision. These properties are

used by the force routine, which requires information from the previous time step

when calculating the forces. The logic used by the code in this project has been

documented by Walton in a memo (Walton, 1985), by Rosato in class notes

(Rosato, 1989), and by Kim in a dissertation (Kim, 1992).

The linked-list logic uses a number of variables, these variables are as

follows:



20

■ NEBOR(i)

This array contains the memory location of the first near neighbor of

particle i. A value of 0 indicates that no near neighbors have been found

yet.

■ MT1

This variable stores the value of the next available empty memory

location.

■ JDX

This is the subscript used for arrays of 64 bit floating point numbers.

■ IDX

This is the subscript used for arrays of 32 bit integers. On machines

where integers and floating point numbers are allotted the same amount of

memory, idx will have the same value as jdx.

■ NDX(idx)

This array contains the integer value j, which is a near neighbor of particle

i.

■ TFX(jdx)

The x-direction component of the tangential force between particles i and j

from the previous time step. This is a floating point value.

■ TFY(jdx)

The y-direction component of the tangential force between particles i and j

from the previous time step. This is a floating point value.



21

■ TFZ(jdx)

The z-direction component of the tangential force between particles i and j

from the previous time step. This is a floating point value.

■ TM(jdx)

This is the maximum tangential force before the direction of the slip

between particles i and j will change. This is a floating point value.

■ A(jdx)

The virtual overlap, a, between particles i and j. This is a floating point

value.

■ A0(jdx)

The value of a that corresponds to zero normal force. This is a floating

point value.

■ SK(jdx)

This is the unloading spring constant between particles i and j. This is a

floating point value.

■ NEXT(idx)

This is a pointer to the next entry in particle i's linked list. A zero value

indicates the end of particle i's linked list. This is an integer value (Kim,

1992).

The value of idx, the index of integers, is calculated from the value

of jdx, the index of floating point variables, according to the formula

idx = 02or 1 *jdx - i 1 or° .



Figure 2.3 Sample system of 12 particles.

Table 2.1 List of Near Neighbors

Particle I Near-Neighbors (J) of Particle I
1 2,5
2 3,5,6
3 4,6,7
4 7,8
5 6,9,10
6 7,10,11
7 11
8 0
9 10
10 11
11 12
12 0

22



23

On architectures where integers and floating point values are the same length,

i2or1 = 1, and i1 or° = 0, making idx = jdx. On other architectures, including the

Silicon Graphics machines used in this project, integers and floating points have

different lengths. In this case, i2or1 = 2 and i1or0 = 0, which makes

idx = {jdx  * 2)- 1 .

In Figure 2.3, a sample system of twelve particles is shown. A common

convention is to set the value of the search radius equal to the particle radius.

This generally works out to be a convenient value, that results in a large

reduction in computational time, without an unacceptable waste of memory.

Taking the particle radius as the search radius, the resultant list of near

neighbors is shown in Table 2.1. An important point to notice is that the inter-

particle forces need to be calculated only once for each particle pair, since the

force acts with equal magnitude on each particle. Therefore, each particle pair is

only listed once in Table 2.1, and the forces are only calculated once by the force

routine.

The process of generating the linked-list begins before the update routine

is called for the first time. The values of the NEBOR array are all set to zero, and

MT1 is set equal to 1. The update routine is first called during the radius

expansion of the particles. The twelve-particle system, shown in Figure 2.3, will

be used to illustrate the procedure for the first time the update routine is called,

both for the case of different and identical values of idx and jdx. For the first

example, it will be assumed that floating point and integer values are stored in

memory locations of the same length, implying that idx = jdx.



24

The update routine performs a double loop, with the outer loop starting

with particle i = 1, going until i = imax, which is the last free particle, or non-

boundary particle, in the system. For this example, imax = 12. The inner loop

starts at j = i+1 and goes until j = imax. Since the inner loop begins at j= i+1, this

ensures that no particle j, that is added to particle i's linked-list, will ever be

indexed lower than particle i. This prevents particle pairs from being added to

the linked list twice.

With i = 1, the first near neighbor particle j that will be located, is particle 2.

The first step in making an addition to i's linked-list is to check if this is the first

entry to i's linked list. This is done by checking the value of NEBOR(1). Since

NEBOR(1) = 0, this means that this will be the first entry in i's linked-list. The

next available memory location is retrieved by checking MT1, which is currently

1. The value of jdx is then set to 1, and since in this example all memory lengths

are the same, the value of idx is also set to 1. Next the value of NDX(1) is set

equal to the index of the near neighbor, which is 2. Since particle 1 now has a

near neighbor, the value of NEBOR(1) is also set equal jdx. MT1 is now

incremented to 8, to indicate the next empty memory location. Particle 2 has

now been added to particle 1's linked-list, and the structure as it now stands is

shown in Tables 2.2 and 2.3. In these tables, and all following tables concerning

the Verlet table, only the pointer arrays are shown to be filled in. This is because

the other arrays are filled in as needed by the force routine, and are not material

to the process of setting up and reading from the Verlet list.



NDX TF I TM A AO SK NEXT     
2
	 2
	

3
	

4
	

5
	

6
	

7 0

25

Table 2.2 The NEBOR Array After One Linked-List Addition

I 1 2 3 4 5 6 7 8 9 10 11 12
NEBOR(I) 1 0 0 0 0 0 0 0 0 0 0 0

Table 2.3 The Linked-List After One Addition

The next near neighbor that is located for particle 1 is particle 5. First, the

value of NEBOR(1) is checked. The value of NEBOR(1) is 1, indicating that

there is already a near neighbor of particle 1, located at NDX(1). The indexes jdx

and idx are set to 1, and NEXT(1) is checked. The value of NEXT(1) is 0,

indicating that the current end of particle l's linked-list has been reached. Next,

MT1 is then checked to find the next empty memory block. Then, NEXT(1) is set

to MT1, which currently is 8, indicating that the list for particle 1 continues at

memory location 8. Then jdx and idx are set equal to MT1. The value of NDX(8)

is now set to 5, indicating that particle 5 is also a near neighbor of particle 1. The

memory placeholder, MT1, is then incremented to 16, and the second particle

has now been added to the linked-list. The linked-list as it now stands is shown in

Tables 2.4 and 2.5. Also, a flowchart illustrating the process is shown in Figure

2.4.



Next j

Is
Particle j

Particle i's Near
Neighbor?

Add j to i's list at
first open memory

location.

Update MT1 to indicate
first open memory location.

•

26

Figure 2.4 The process of adding to the linked-list.



Table 2.4 The NEBOR Array After Two Linked-List Additions

I 1 2 3 4 5 6 7 8 9 10 11 12
NEBOR(I) 1 0 0 0 0 0 0 0 0 0 0 0

Table 2.5 The Linked-List After Two Additions

NDX TF TM A AO SK NEXT
1 2 2 3 4 5 6 7 8

8 	 5 9 10 11 12 13 14 	 0

Since there are no more near neighbors for particle 1, the search is now

performed for near neighbors of particle 2. As was previously mentioned, the

search for near neighbors of particle 2 starts with particle 3, since particle 2

would already have been added to the list of any near neighbors with a lower

index. Tables 2.6 and 2.7 show the completed linked-list for the twelve-particle

system.

Table 2.6 The NEBOR Array for the Completed Linked-List

I 1 2 3 4 5 6 7 8 9 10 11 12
NEBOR(I) 1 15 36 57 71 92 113 0 120 127 134 0

27



to

Table 2.7 
The Completed Linked-List



29

The next complexity in the organization of this linked-list occurs when

different sized blocks of memory are allotted for integers and floating point

numbers.

This is the case on many computer architectures, including the Silicon

Graphics computers that were used for the simulations in this project. In this

situation, the previously discussed variable indexes, idx and jdx, change values.

The value of i2or1 becomes 2, and i1 or° is changed to 1. The value of idx is

calculated by the formula idx = (i2orl • jdx) - ilor0 , which becomes

idx = (jdx . 2)-1 . The linked-list is structured basically the same way, although

there are some small variations. The array NDX(idx) still contains the index of

the particle j, that is the near neighbor of particle i. The array NEXT(idx) still

contains the pointer that indicates the next entry in the near neighbor list. .

Returning to the example of the twelve-particle system of Figure 2.3,

particle 1 is again the first particle, and the search for near neighbors begins with

particle 2. Particle 2 is again the first near neighbor of particle 1. The location of

the first open memory block is given by MT1, in this case 1. The value of jdx is

set to MT1, and the value of idx is calculated according to the formula

idx = (jdx . 2)-1 = 1. The value of NDX(idx) is set equal to 2, to indicate that

particle 2 is the first near neighbor. The value of NEBOR(1) is set to 1, indicating

that the information on the first near neighbor of particle 1 is located at jdx =1.

The linked-list as it now stands is shown in Tables 2.8 and 2.9.



30

Table 2.8 The NEBOR Array for the Linked-List After One Addition

I 1 2 3 4 5 6 7 8 9 10 11 12
NEBOR(I) 1 0 0 0 0 0 0 0 0 0 0 0

Table 2.9 The Linked-List After One Addition

N DX TF TM A 	 I 	 AO SK NEXT
1 	 2 2 3 4 5 6 7 0
8 14

The next near neighbor that will be located for particle 1 is particle 5. The

value of NEBOR(1) is 1, indicating that this is not the first near neighbor for

particle 1, and the information on this near neighbor is located at jdx =1. The

pointer for integers, idx, is calculated to be 1. The value of NEXT(1) is 0, which

indicates that the end of the linked-list has been reached, and that the entry can

now be added to the linked-list. The value of MT1 is checked to find the next

empty memory location, which at this point is 8, and jdx is set to 8. NEXT(1) is

changed from 0 to the current jdx, indicating the linked-list now continues. The

integer pointer, idx, is calculated from the formula to be 15. The value of NDX(15)

is set to 5, indicating that particle 5 is a near neighbor of particle 1. The value of

NEXT(15) is set to 0, indicating that this is currently the end of the linked-list. All

the other variables associated with this near neighbor pair are floating point

variables, and are indexed with jdx, which is currently 8. The linked-list as it now

stands is shown in Tables 2.10 and 2.11.



31

Table 2.10 The NEBOR Array for the Linked-List After Two Additions

I 1 2 3 4 5 6 7 8 9 10 11 12
NEBOR(I) 1 0 0 0 0 0 0 0 0 0 0 0

Table 2.11 The Linked-List After Two Additions

NDX TF TM A AO SK NEXT
1 	2 2

3 4 5 6 7 8
8 14

15 	 5 9 10 11 12 13 21 	 0

22 28

Setting up the remainder of the linked-list follows closely with the first

example, with the only exception being that jdx and idx are different. The

completed linked-list is shown in Tables 2.12 and 2.13

Table 2.12 The NEBOR Array for the Completed Linked-List

I 1 2 3 4 5 6 7 8 9 10 11 12
NEBOR(I) 1 15 36 57 71 92 113 0 120 127 134 0



)32



33

The completed linked-list is accessed when the force routine calculates

the inter-particle forces. The mechanics of this are quite simple. The force

routine performs one loop starting at particle 1, continuing through the last

particle. It takes the particle and then recalls that particle's linked-list. For the

example of particle 1, with idx = jdx, the first step is to check NEBOR(1). The

value of NEBOR(1) is 1, meaning that the linked list begins with memory location

1, and that jdx is set equal to one. The value of jdx is set equal to idx, and that

enables the recall of all information for the collision between particle 1 and its first

near-neighbor, particle 2.

After the force routine has finished calculating the forces between particle

one and particle 2, the value of NEXT(jdx) is checked. If this value is equal to

zero, the list for this particle is finished, otherwise, the value of NEXT contains

the next near neighbor. In this case, NEXT(1) = 8, indicating that there is another

near neighbor at jdx = 8. This neighbor is particle 5. After the forces have been

calculated between particle 1 and particle 5, the value of NEXT(8) is checked,

and found to be zero, indicating the end of the linked-list. The force routine then

moves to calculate the forces for particle 2.

If the computer system being used sets different lengths of memory for

integer and real values, the process works the same way, except for the fact that

the arrays are addressed with differently valued arguments. Using the above

example, the first near neighbor of particle 1 is particle 2, located at jdx = 1. This

time idx also equals 1, and the arrays are addressed with idx or jdx, for integer

and real valued arrays, respectively. The next near neighbor is found at



34

NEXT(1), which is 8, meaning that jdx = 8 and idx =15. Again these two

arguments are used to access the arrays. Finally, NEXT(15) is found equal to

zero, indicating that the end of the linked-list for particle 1 has been reached.

2.4 Force Model

The normal force model used in this code was developed by Otis Walton. The

model is known as the partially-latching spring model, because it uses a constant

coefficient of restitution, which produces different spring constants for the loading

and unloading portions of the model. The normal force is given as follows:

	F N = Kla = K,x, for loading 	 (2.1)
FN = K2 (a - a0 ) = K2 x2 for unloading

In the above equations, a is the symbol representing the overlap between

the two particles. The symbol a o represents the overlap point at which the force

is set to zero, in order to account for the inelasticity of the collisions (Walton,

1991).

This model allows for a constant coefficient of restitution. The coefficient

of restitution is defined as follows (Beer & Johnston, 1997):

	V 2 — V, 	 V separatione= 	 = 	

	

v,-v 2 	v approach

The total energy of the system is given by:

E=T+V=-1 m(± 2 )+-1 4 2 )
	2 	 2

(2.2)

(2.3)



35

Since the total energy of the system is constant until the energy loss occurs, due

to the inelasticity of the collision, the following equation may be written.

	E = T. =V	 (2.4)

This force model uses different spring constants for the loading and unloading

portions of the collision. This means that the displacement for zero force will be

different for the loading and unloading portions. This leads to the following

equation, valid during the loading portions of the collision:

	

mVa2 = K, xi2 	(2.5)

A similar equation can be derived after the energy loss that will be valid during

the unloading portion of the collision.

	

mV 2 = K2 x22 	(2.6)

These equations can be solved for the velocities.

= X 1 - Vs = x2 K2Va II Ki (2.7)

The above equations then get substituted into Equation 2.2, the equation for the

coefficient of restitution.



VS X2 1Ke== 	
Va

Since the equations were derived from the equation for total energy at values of

maximum energy, x l = x2 , this gives a constant coefficient of restitution (Kim,

1992):

e= .1 1(1
K2

(2.9)

The tangential force model is somewhat more complicated than the

normal force model. The basic principle in this model is that the stiffness of a

virtual spring, in the direction parallel to the tangential force, decreases until

sliding occurs. In each time step, the tangential force is calculated separately in

the direction perpendicular and parallel to the direction of the force in the last

time step. The final result is then combined, and checked to make sure it has not

exceeded the threshold for sliding.

As with the normal force model, the tangential force model also has

different spring constants depending on whether the force is increasing or

decreasing. The equation for the spring constant is:

36

(2.8)

K 0 1[ TT* 7 for T increasing*itiFTA:

KT =
T* — T

rK0 1[  for T decreasing
PFN + T*

(2.10)



37

In the above equation, T is the magnitude of the tangential force from the

current time step. The value of r starts off as zero, and it is changed to the

magnitude of the tangential force whenever the force changes from increasing to

decreasing, or visa versa. The symbol Ko represents the initial tangential

stiffness, p is the coefficient of friction, and y is a fixed parameter that is set

based on the desired behavior for the simulation.

The first step involved in calculating the current tangential force, is to

project the tangential force from the last time step, Told, onto the current tangent

plane. This projection, To, is then normalized, as shown below, to obtain a

starting value of the tangential force in the current time step.

T = 1Toid I To IT,, 	 (2.11)

The surface displacement relative to the previous time step is calculated for both

the parallel and perpendicular directions, with symbols As ia and Asi respectively.

The parameter for maximum tangential force, r, is rescaled by the change in the

normal force as follows, with the superscript n representing the current time step.

T *n = T*" 1 [F,;; 1 F;-1]

	
(2.12)

The spring constant KT is then calculated using the new value of r. Now the

new value of the tangential force can be calculated. This force is calculated first

in the tangential and parallel components, and then these are combined into the

total force. Since the old tangential force was projected onto the current plane,



38

the perpendicular displacement is treated as new, which makes the spring

constant equal to the initial value of Ko. The equations are as follows.

Ti = T+KT As ii
	 (2.13)

Tl =K0As,

Finally, the equations are combined to give the total tangential force for the

current time step n.

T n = +
	 (2.14)

This value is checked to make sure it does not exceed the criteria for sliding. If it

does, the magnitude of the force is scaled back so that it is equal to ,UFN (Walton,

1991).

Both the normal force model and the tangential force model require

information from the previous time step to complete the calculations. The normal

force model saves the spring constant and the value that corresponds to zero

normal force. The tangential force model needs the value of the force from the

previous time step, in order to project the old force onto the current tangent

plane. Also, the tangential force model needs the maximum value of the

tangential force to be carried through from previous time steps. These values

are specific to each colliding pair of particles, and therefore, a linked-list is

necessary to efficiently store the information.



39

2.5 Integration Method

A common numerical integration algorithm is the Verlet integrator. This

integration method is derived from two Taylor series expansions, one forward

from the current time step, and one backward from the current time step. The

two Taylor expansions are shown below, with r being the position, v being the

velocity, F being the force, m being the mass, t being time, and n representing

the time step (Becker et al., 2001).

r„+, = r„ + v n At + 1 HF jAt 2 +0(At 3 )
2 m

rn v nAt + 1NAt 2 (46`t 3 )2 m

(2.15)

(2.16)

Equation 2.15 is added to Equation 2.16 to give an expression for the position at

the new time step, shown in Equation 2.17.

r,,_, 1 = 2r„ - 	 + F Ot t + 0(6,t 2 )
	 (2.17)

Equation 2.16 is subtracted from Equation 2.15 to give an expression for the

velocity at the new time step, shown in Equation 2.18.

V n =
rn÷, —rn ,
	+0(At 2 )

2At

(2.18)

These equations can then be used to form the general integration

algorithm. This algorithm first involves using the current positions to calculate the

current force. Then the current force, current position, and previous position can



40

be used to calculate the position for the next time step. Finally, the positions

from the next and previous time steps can be used to calculate the current

velocity.

The Verlet algorithm has a number of advantages and disadvantages.

The most important advantages, in the context of this project, are that it gives an

accurate approximation of position (0(At4)), and is relatively fast. The main

disadvantage is that the approximation of the velocity is much less accurate

(o(de)). The leap-frog Verlet algorithm was developed to eliminate this

disadvantage, and this is the method used in this project.

In the leap-frog Verlet method, the velocities are calculated at the half time

steps, instead of a full time step, forwards and backwards. This method yields

the following expressions.

rn+1 = rn -1- V n+112 Ai

—
F„

Atv n+112 = v n-112 +
(2.19)

(V n+1/2 	 V n-112)
V =n 

The algorithm to use these equations for integration is as follows; first, the

current position is used to calculate the current force. Then the current force is

used, along with the previous half step velocity, to calculate the velocity a half

step forward. The half step velocity is then used to calculate the position one

2



41

time step forward. Finally, the half step velocities are used to calculate the

velocities for the current time step (Becker et al., 2001).

The choice of the time step is an important matter. A smaller time step will

improve accuracy, but will increase computational time. Therefore, the time step

is calculated automatically according to the following method.

The reduced mass p of two particles is given by the formula:

P 
M 1 M2 
 (2.20)

+ m2

This reduces to 1/2 m for particles that have the same mass. Then the frequency

of the restoration period is taken, since this always has the larger spring

constant.

t = -7( = 	 = 71- 	
117 	 K2 	 2K2

(2.21)

In Equation 2.21, t is the time for the collision, and tv - is the natural frequency.

Also, the assumption has been made that all particles are of uniform mass. Next,

K2 is removed using the coefficient of restitution.

t =ire m
2K,

(2.22)

Finally, At is obtained by dividing by the desired number of time steps.



42

At =
gel/

m
2K 1

n

(2.23)

The number of time steps, n, is then the value that is left as user input. Previous

work has indicated that values of between forty and sixty are reasonable (Kim,

1992).



CHAPTER 3

CHAIN CELL SEARCH METHOD FOR LOCATING NEAR NEIGHBORS

3.1 Overview

Many methods of reducing computational time have been used in MD and DEM

simulations. One of the earliest of these was the Verlet list, which was discussed

earlier (Verlet, 1967). The Verlet list is currently being used in the code for two

purposes, to reduce computation time, and reduce memory usage. Another

method is the cell index, or chain cell method, which was proposed by Allen and

Tildesley (Allen & Tildesley, 1987).

The chain cell method is intended as a replacement for the Verlet table.

The basic problem of the Verlet list, that the chain cell method addresses, is that

for systems of large particles the testing of every particle pair is inefficient. This

method implements a rapid search method based on the location of the particles.

The basic scheme involves placing a grid of cells with edge length M over the

simulation cell. Although M will be kept the same for each dimension in this

project, there is no need to do so. In fact, it is likely to be more efficient to have a

different value for M for each dimension, if the shape of the general simulation

cell does not approximate a square or a cube (Hockney & Eastwood, 1999).

Provided that M is larger than the search radius for near neighbors, the search

for near neighbors only needs to be performed in the particle's cell, and

immediately adjacent cells. This results in an updating routine that scales

according to 
N

P
-N

P , where Np is the number of particles, and Alc is the number
N,

43



44

of cells. A complete search of all particle pairs would scale according to N;

(Allen & Tildesley, 1987).

3.2 Creating the Chain-Cell Linked-List

The cell index method quickly sorts the particles into the given cells using a

relatively simple algorithm. The variables in the algorithm are as follows. The

number of cells in the grid in one direction is given by M. The cell inverse, or

CELLI, is the inverse of the cell edge length. The value of CELLI is found by

taking the real value of the integer M. The total number of cells, NCELL, is equal

to M2 in a two dimensional system, or M3 in a three dimensional system. The

variable ICELL is used to denote the cell number in which particle i is located.

The value of ICELL is determined by the following equation:

ICELL =1+ INT(RX(I)* CELLI) + INT(RY(I)*CELLI)*M + INT(RZW*CELLI)*M 2

(3.1)

There are also three arrays that the program uses. The first, CELL(i),

catalogs which cell particle i is placed into. The second array, HEAD(ICELL) ,

returns the particle i, which is the head of the chain of cell ICELL. The third

array, LIST(i), returns the next particle in the linked-list of particle i. The first

array, CELL(i), is merely a convenience, which enables the force routine to work

through the linked-list in order of the particle index. If the force routine, or any

other routine, which needs to use the linked-list, is designed to work through the



45

particles in order of which cell it is positioned in, then the array CELL(i) is

unnecessary.

The second and third arrays are the main part of the linked-list. These

arrays together form the chain of particles for each cell. The code that is used to

create these two arrays is very rapid, and consequently can be run every time

step. The algorithm involves the following steps each time it is run.

1. Zero the arrays LIST, HEAD, and CELL.

2. Begin the loop over all particles from 1 to the number of particles.

3. Calculate which cell number (ICELL) particle i is located in.

4. Set LIST(i) = HEAD(ICELL).

5. Set HEAD(ICELL) = i.

6. End the loop.

7. END.

As previously stated, the code that performs these steps is quite rapid.

The FORTRAN code is shown below.

DO 100 ICELL = 1, NCELL

CELL (ICELL) =0

HEAD (ICELL) =0

LIST(ICELL)=0

100 CONTINUE

DO 200 I = 1 ,N

ICELL = 1 + INT((RX(I))*CELLI)

+ INT((RY(I))*CELLI) * M

+ INT((RZ(I))*CELLI) * M *

LIST(I) = HEAD(ICELL)

HEAD(ICELL) = I

200 CONTINUE



46

It is important that the arrays, HEAD and LIST, are zeroed before the

search routine is run each time. This is because these two arrays together form

the linked-list for each cell, and it is possible that outdated information will be left

in the list if it is not cleared before each run.

The array HEAD(i) contains the highest indexed particles in cell i, a zero

value indicates that the cell is empty. This is the first array called when retrieving

information from the linked-list. To find the next highest indexed particle in a cell,

the array LIST(i) is called. The array LIST(i) will return the next highest indexed

particle in the same cell as particle i. A zero value will indicate that there are no

more particles in the same cell.

An example of creating the linked list, and retrieving information from the

list will be given. The example will be given for a two-dimensional system in

order to make the array small enough to be presented in a table format.

However, the mechanics of the procedure are identical for three dimensions, with

the only difference being the equation to determine the cell number containing

the particle. For two dimensions, an abbreviated form of Equation 3.1 is used, as

follows:

ICELL = I+ INT(RX(I)*CELLI)+ INT(RY(I)* CELLI)* M	 (3.2)

The particle positions that will be used in this example are listed in Table 3.1.



Table 3.1 Particle Positions and Cell Assignments

Particle
Number X Position Y Position

Expected
Cell Number

1 0 0 1
2 0.1 0 1
3 0.1 0.15 1
4 0.25 0 2
5 0.99 0.99 25
6 0.26 0 2
7 0.27 0.26 7
8 0 0.27 6
9 0 0.87 21
10 0.2 0.3 7
11 0.1 0.5 11
12 0.43 0.54 13
13 0.1 0.7 16
14 0.9 0.2 10
15 0.11 0.65 16
16 0.1 0.4 11
17 0.1 0.57 11
18 0.6 0 4
19 0.2 0 2
20 0.11 0.23 6
21 0.29 0.76 17
22 0.31 0.56 12
23 0.57 0.87 23
24 0.43 0.32 8
25 0.85 0.38 10

47



10.8
■

0 0.60.2 0.4

■ •

•

•
•
•

♦ ♦ •
♦

♦ ♦

•
•

♦
•

•

•

a AL. • ■■ A

X Axis

1

0.8

0.2

0

I

Figure 3.1 The particle positions with the grid overlaid.

48

0.6

1>-
0.4



49

The constants that define the grid size must first be set. The example will

have twenty-five particles, so Np = 25. The total computational area will be a unit

cell. This unit cell will be divided into five cells on each axis, therefore M = 5. The

total number of cells, NCELL, is equal to M2, so NCELL = 25. Finally, the value

of cell inverse, ICELL, is 5. The particle positions are listed in Table 3.1, and

these positions are graphed with the grid overlaid in Figure 3.1.

The first thing the code does is clear the arrays HEAD, LIST, and CELL.

After performing this, the code begins a loop over all of the particles, assigning

the particles to the cells. The first particle, particle number 1, has coordinates of

(0,0). This value of ICELL is calculated according to Equation 3.2, as follows:

ICELL =1+ Hsi* * CELLI)+ INT(O*CELLI)*M =1 (3.3)

This means that particle 1 is assigned to cell number 1. The next step is

set LIST(i) = HEAD(ICELL). The variable i represents the position in the loop

running over all the particles, which is the particle number. Therefore, this

means that LIST(1) = HEAD(1). Since all the arrays were initialized to zero,

there is no change here. Next, HEAD(ICELL) is set equal to i, therefore HEAD(1)

= 1. Finally, the cell assignment of particle i is recorded in the array CELL, so

CELL(1) =1. The linked list, as it stands after the first particle is added, is shown

in Table 3.2. Only the first element of each array is shown, since all other values

are still zero.



50

Table 3.2 The Chain-Cell Arrays After the First Particle Has Been Added

I 	 LIST(I) HEAD(I) CELL(I)
1 	 0 	 1 	 1

The code then increments the loop by one, and moves on to

particle two. The coordinates for this particle are (0.1, 0). The value of ICELL is

calculated as follows.

ICELL = 1 + INT(0.1* CELLI) + INTO* CELLI)* M

ICELL = 1 + INT(0.1* 5)+ INT(O* 5)* 5
(3.4)

ICELL = 1 + 1NT(0.5)+ INT(0)* 5 = 1

Since the value of ICELL for particle 2 is also 1, this means that particle 2

becomes the second particle assigned to cell 1. The linked-list is then updated,

first by setting LIST(I) = HEAD(ICELL), so LIST(2) = HEAD(1). The value of

HEAD(1) was set equal to one in the previous iteration of the loop, at the time

indicating that particle 1 was the highest indexed particle in cell 1. Since a higher

indexed particle has now been found in cell 1, this means that particle 1 is no

longer the highest indexed particle in cell 1. Particle 2's pointer will now point to

particle 1, as the next highest indexed particle in cell one. Next, the array HEAD

is updated to indicate that particle 2 is the highest indexed particle in cell 1. This

is done by setting HEAD(ICELL) = i, therefore HEAD(1) = 2. Finally, the cell

where particle 2 is assigned is stored in the array CELL, by setting CELL(2) = 1.

The linked-list, as it stands after the first two particles have been assigned, is



51

shown in Table 3.3. Again, only the first part of the arrays are shown, as all other

values are zero.

Table 3.3 The Chain-Cell Arrays After the Second Particle Has Been Added

LIST(I) HEAD(I) CELL(I)
1 	 0 	 2 	 1
2 	 1 	 0 	 1

This process continues until all the particles have been assigned to

a cell. At that point, the linked-list will be complete. The completed linked-list is

shown in Table 3.4. This linked-list is designed to be used directly by the force

routine, and the processes of creating it is rapid enough that it can be run every

time step.



Table 3.4 The Complete Chain-Cell Arrays.

I 	 LIST (I) HEAD(I) CELL(I)
1 	 0 	 3 	 1
2 	 1 	 19 	 1
3 	 2 	 0 	 1
4 	 0 	 18 	 2
5 	 0 	 0 	 25
6 	 4 	 20 	 2
7 	 0 	 10 	 7
8 	 0 	 24 	 6
9 	 0 	 0 	 21
10 	 7 	 25 	 7
11 	 0 	 17 	 11
12 	 0 	 22 	 13
13 	 0 	 12 	 16
14 	 0 	 0 	 10
15 	 13 	 0 	 16
16 	 11 	 15 	 11
17 	 16 	 21 	 11
18 	 0 	 0 	 4
19 	 6 	 0 	 2
20	 8 	 0 	 6
21 	 0 	 9 	 17
22 	 0 	 0 	 12
23 	 0 	 23 	 23
24 	 0 	 0 	 8
25 	 14 	 5 	 10

52



53

3.3 Reading From the Chain-Cell Linked-List

The force routine needs to be able to retrieve from the linked-list all particle pairs

that are near neighbors, in order to calculate the forces between interacting

particles. This is a relatively straightforward process, which is essentially a

reversal of the process of creating the list. Since the particles are free to move,

they can and often do interact with particles in neighboring cells. However, since

the length of the cell sides is set to be at least equal to the sum of the particle

diameter and the search radius, the particle will not interact with any particles

that are not in its own cell, or adjacent cells.

The first step of reading from the linked-list is performed once only, at the

beginning of the simulation. This step involves mapping the cells to their

neighboring cells. This mapping is then used by the update routine to find

neighboring cells when searching for near neighbors. The mapping function that

was adapted for this project was originally written by Allen and Tildesley, and

published electronically as an appendix to the book Computer Simulation of

Liquids (Allen & Tildesley, 1981).

The general structure of the mapping function is as follows. First, a

loop is made over all the cells for the purpose of finding the neighboring cells.

Next, all the neighboring cells are found, and the numbers are recorded in an

array. The loop is then incremented to go to the next cell.

The array which holds the numbers of the adjoining cells is called

MAP(imap). In a three dimensional simulation each cell will have twenty-six

adjoining cells. For simplification purposes, all the cells were included in their



54

own mapping. This makes the process of reading from the mapping easier, as

there is no need to treat the current cell any differently than the adjoining cells.

Therefore, the size of the mapping is twenty-seven times the number of cells.

The MAP array is structured as follows. Each cell has a block of twenty-

seven memory locations, each containing the index of a neighboring cell. The

entries for the first cell are the first entries in the array, followed by the entries for

the second cell, and the third cell, etc. This array is addressed by finding the

location for the first entry for a cell, and then reading the next twenty-seven

locations. The equation for finding the location of the beginning of the twenty-

seven entries is imap = 27(CELL -1). The locations in the array MAP are then

MAP(imap+1) through MAP(imap+27).

The neighboring cells may be on the opposite side of the general

simulation cell if periodic boundaries are being used. Therefore, the mapping

function must account for this. This causes some complications in calculating the

index of the neighboring cells. Basically, the algorithm must be able to identify

cells that are on the edge of the simulation cell, and then flip to the other side of

the cell when needed.

Identifying neighboring cells is done by modifying the loop that runs over

all of the cells. Instead of being a single loop, this is changed to be a composite

of three recursive loops. With M being equal to the number of cells in each

direction, the three loops go from one to M for each of the three directions. This

accounts for all of the cells, and also accounts for where each cell is in relation to

the edges. With IX, IY, and IZ being used to denote the number of the cell for



55

each direction x, y, and z respectively, the cell number ICELL is calculated

according to Equation 3.5 (Allen & Tildesley, 1981).

ICELL = 1+ MOD(IX -1 +M,M) + MOD(IY -1 + M,M) * M 	 (3.5)

+ MOD(IZ -1 +M,M) *M 2

The function MOD(a,b) is a remainder function which returns the integer

remainder of a/b. Using the remainder function ensures that when the edge of

the general simulation cell is passed in any one direction, the code will flip to the

other side of the general simulation cell.

After the cell number is calculated, the place in the array MAP is

calculated, and then the twenty-seven entries for the cell are calculated. These

numbers are calculated by passing different values for IX, IY, and IZ to Equation

3.5. The FORTRAN code that performs this operation is shown below.

icell(ix,iy,iz) = 1 + mod ( ix - 1 + m, m)
+ mod ( iy - 1 + m, m) * m
+ mod ( iz - 1 + m, m) * m * m

Do 50 iz = 1,m

Do 40 iy = 1,m

Do 30 ix = 1,m

imap = ( icell ( ix, iy, iz) -1 ) * 27

map(imap +1 ) icell( ix - 	 1, iy - 	 1, iz - 	 1 	 )
map(imap +2 ) = icell( ix - 	 1, iy - 	 1, iz )

map(imap +3 ) icell( ix - 	 1, iy - 	 1, iz + 	 1 	 )
map(imap +4 ) icell( ix - 	 1, iy , iz - 	 1 	 )
map(imap +5 ) = icell( ix - 	 1, iy , iz )

map(imap +6 ) = icell( ix - 	 1, iy , iz + 	 1 	 )
map(imap +7 ) = icell( ix - 	 1, iy + 	 1, iz - 	 1 	 )
map(imap +8 ) icell( ix - 	 1, iy + 	 1, iz )

map(imap +9 ) = icell( ix - 	 1, iy + 	 1, iz + 	 1 	 )
map(imap +10) = icell( ix , iy - 	 1, iz - 	 1 	 )
map(imap +11) = icell( ix , iy - 	 1, iz )



56

map(imap +12) = icell( ix iy - 	 1, iz + 	 1 	 )
map(imap +13) icell( ix , iy , iz 1 	 )
map(imap +14) = icell( ix , iy , iz + 	 1 	 )
map(imap +15) icell( ix iy +	 1, iz - 	 1 	 )
map(imap +16) icell( ix , iy + 	 1, iz )
map(imap +17) icell( ix iy +	 1, iz + 	 1 	 )
map(imap +18) icell( ix +	 1, iy 1, iz - 	 1 	 )
map(imap +19) icell( ix +	 1, iy 1, iz )
map(imap +20) = icell( ix +	 1, iy - 	 1, iz +	 1 	 )
map(imap +21) icell( ix + 	 1, iy , iz - 	 1 	 )
map(imap +22) = icell( ix + 	 1, iy , iz )
map(imap +23) = icell( ix + 	 1, iy , iz + 	 1 	 )
map(imap +24) icell( ix + 	 1, iy + 	 1, iz - 	 1 	 )
map(imap +25) = icell( ix + 	 1, iy + 	 1, iz )
map(imap +26) icell( ix + 	 1, iy + 	 1, iz + 	 1 	 )
map(imap +27) icell( ix, iy, iz )

30 continue

40 continue

50 continue

Table 3.5 shows the results of the above code for a simulation cell with M

= 5. The first row contains the first iteration of all three of the loops. This is IX =

1, IY =1, and IZ =1. As expected, this is the first cell, and ICELL will return a

value of 1. Then the value of imap, the location in the array MAP is found. The

second line in Table 3.5 contains the first neighboring cell. This is found from IX

= 0, IY =0, and IZ =0. Since cell 1 is an edge cell in all three directions, it is

expected that this neighboring cell will be on the opposite side of the general

simulation cell in all three directions. This is the case as shown in Equation 3.6,

where the value of ICELL is calculated to be 125. The remaining mapping for the

first cell is shown in Table 3.5.

ICELL = 1+ MOD(0 -1+ 5,5) + MOD(0 -1+ 5,5)*5 	 (3.6)
+MOD(0-1+5,5)*5 2 =1+4+(4*5)+(4*25)=125



IY 	 I 	 IZ Cell NumberIX
1 	 1 	 1 	 1 	 1 	 1
0 	 1 	 0 	 1 	 0 	 1 	 125
0 	 1 	 0 	 1 	 1 	 1 	 25
0 	 1 	 0 	 1 	 2 	 1 	 50
0 	 1 	 1 	 1 	 0 	 1 	 105
0 	 1 	 1 	 1 	 1 	 1 	 5
0 	 1 	 1 	 1 	 2 	 1 	 30
0 	 2 	 1 	 0 	 1 	 110
0 	 1 	 2 	 1 	 1 	 1 	 10
0 	 2 	 2 	 1 	 35
1 	 1 	 0 	 1 	 0 	 1 	 121
1 	 1 	 0 	 1 	 21
1 	 1 	 0 	 1 	 2 	 1 	 46
1 	 1 	 1 	 1 	 0 	 1 	 101
1 	 1 	 1 	 1 	 1 	 1 	 1
1 	 1 	 1 	 1 	 2 	 1 	 26
1 	 1 	 2 	 1 	 0 	 1 	 106
1 	 1 	 2 	 1 	 1 	 1 	 6
1 	 1 	 2 	 1 	 2 	 31
2 	 1 	 0 	 1 	 0 	 1 	 122
2 	 1 	 0 	 1 	 1 	 1 	 22
2 	 1 	 0 	 1 	 2 	 1 	 47
2 	 1 	 1 	 1 	 0 	 1 	 102
2 	 1 	 1 	 1 	 1 	 1 	 2
2 	 1 	 1 	 1 	 2 	 1 	 27
2 	 1 	 2 	 1 	 0 	 1 	 107
2 	 1 	 2 	 1 	 1 	 1 	 7
2 	 1 	 2 	 1 	 2 	 1 	 32

Table 3.5 Cell Numbers for Various Inputs

57



58

Retrieving the list of near neighbors from the linked-list by the force

routine, involves looping over all the cells, then calculating forces in order of

particle position. The mechanics of this method involve four recursive loops

described below.

■ The outermost loop starts at cell 1, it moves through the cells, one cell at a

time.

o The next loop picks the primary particle for which near neighbors are

found.

■ The next loop moves from the cell of the primary particle,

through the neighboring cells.

• The innermost loop moves through all the particles in the

neighboring cells.

• The innermost loop reads the HEAD and LIST arrays to

move through all the particles in the cell that it is

assigned from the above loop. It completes when it

reaches the end of the chain for the given cell.

■ The loop finding neighboring cells of the primary particle moves

to the next cell when the innermost loop completes.

o The loop picking the primary particle moves through the HEAD and

LIST arrays until it reaches the end of the chain for the cell passed

down from the first loop.

■ The outermost loop starts at cell 1 and is incremented by one until the last cell

is reached.



59

Using the example given when the creation of the list was demonstrated in

Table 3.4, the first cell to check for near neighbors is cell one. The head of the

chain of cell one is retrieved by checking the array HEAD(1). The value of

HEAD(1) is 3, which means that particle 3 is the highest indexed particle in cell 1,

and this particle becomes the primary particle for which near neighbors are

found. The first near neighbor of particle 3 is found by checking LIST(3). The

value of LIST(3) is 2, meaning that particle 2 is the next highest indexed particle

in cell 1 after particle 3. Additional near neighbors are found by checking the

LIST variable for each additional near neighbor. The next neighbor is found to be

particle 1, because LIST(2) = 1. The LIST variable is checked for particle 1, and

LIST(1) = 0, indicating that the end of the chain has been reached for cell 1 at

particle 1.

The neighboring cells must also be checked for near neighbors of particle

3. For particle 3, located in cell 1, the neighboring cells are cells 2, 6, and 7. Cell

2 has particle 19 at the head of the chain, but no other particles in the cell. Cell 6

is empty, but cell 7 has particle 20 heading the chain, and particle 6 is the only

other cell in the chain. This completes the search for near neighbors of particle

3, which heads the chain of cell 1. The search order is demonstrated in Table

3.6. At this point only the two innermost loops have been incremented. In this

table, the left column represents the outermost loop.



Table 3.6 Search Order for Near Neighbors of Particle 3

Cell Primary Particle
Cell Number Neighboring Cells Particles in Cell

1 	 3 1

2
6

..••• 	 7

3
2
1

19
0

20
6

The next step is for the second loop to increment the primary particle.

This is done by checking the LIST variable for the current primary particle,

particle 3. The value of LIST(3) is 2, so particle 2 becomes the new primary

particle. The search for near neighbors for particle 2 proceeds in the same

manner as before, except for the search in cell 1. Since particle 2 has already

been checked against particle 3, there is no need to check again. After the loop

has been completed for particle 2, LIST is again checked for the next particle.

LIST(2) = 1, so the process is again repeated for particle 1. LIST(1) = 0,

indicating that particle 1 is the last in the chain of cell 1. At this point the

outermost loop will increment by one, and the process will be repeated for every

cell. The complete search order for cell 1 is shown in Table 3.7. This process

repeats for each cell until all cells have been checked.

60



Primary Particle
Cell Number Neighboring Cells Particles in CellCell

1 	 ; 	 3 	 1 	 3
2

2 	 19
6 	 0• -.

'
• 7 20

6• •
2 	 1 	 • 	 2

2 	 19

i 	 4 	 1 	 06
7 	 20

I	 1 	 1
4 	 i. 	 !
i 	 . 2 	 i 	 19

6 	 0I 	 I.i
4 	 .

7 	 20
i 	 f 	 :

6

6

Table 3.7 Complete Search Order for Cell 1

61



62

3.4 Implementing the Chain-Cell Linked-List in the

Particle Dynamics Code

The method described in the previous sections of this chapter cannot be added

to the existing simulation code as described. The main reason for this is that the

force model requires information about each collision be stored and carried to the

next time step. The linked-list method, described by Allen and Tildesley, does

not allow for this. The information the force model needs is currently stored in a

Verlet table, which was also designed to save computational time. These two

methods can be combined to take the best time saving features from each

method, but the amount of memory required will become unwieldy for very large

systems (D'Azevedo, 1994).

With the force model used in this project, a Verlet table is needed to

efficiently store the information about each colliding pair of particles that is

carried from the previous time step. In addition to enabling the efficient use of

memory, the Verlet table reduces computational time by reducing the amount of

time spent searching for colliding particles. This is accomplished by finding the

particles that are colliding, and particles that are not colliding, yet are within a

search radius, and adding all of them to the Verlet table. Then the search for

colliding particles, that is performed every time step, needs only to be performed

within the Verlet table. The exhaustive search, performed over all particle pairs,

is performed only when a particle has moved outside of the search radius (Verlet,

1967).



63

The cell linked-list method is designed to eliminate entirely the need to

perform an exhaustive search over all particle pairs, and eliminate the need for a

Verlet table, in order to save memory. This is done by hashing all the particles

into cells, and using only a few arrays to save this hashing in a linked-list. The

hashing is designed to be performed rapidly enough that it can be run every time

step (Allen & Tildesley, 1981).

However, this cell linked-list method doesn't allow for the efficient storing

of information about the colliding particle pairs. The code used in this project

requires that information be stored about each collision, therefore it is necessary

to use the Verlet table. The cell linked-list method can be combined with the

Verlet table to further reduce computational time.

The cell linked-list method then acts as a rough search that narrows the

location where near neighbors of a particle can be located. The update routine

then uses the linked-list, created by the cell linked-list method, to find near

neighbors to add to the Verlet table. This table is then used by the force routine

to calculate inter-particle forces for a number of time steps. For larger systems,

combining the two methods will save much more computational time than the

Verlet method alone (D'Azevedo, 1994).

The main drawback to this approach is that the memory usage is quite

high. This is because the cell linked-list method adds arrays to the memory, in

addition to those already used by the Verlet table. Of the two systems, the Verlet

table is generally much more memory intensive than the cell linked-list method.

This is because the list of neighbors for each particle can grow rather large. Lists



64

consisting of seventy neighbors for each particle are not unusual. However,

memory will only be a problem for very large systems, because memory

requirements for both of these methods scale linearly with the number of

particles. If memory usage becomes an issue, reducing the search radius will

reduce the amount of memory needed, but this will increase the computational

time (D'Azevedo, 1994).



65

CHAPTER 4

RESULTS

4.1 Validation of Results

The chain cell search method described in the previous chapters was tested in a

number of different ways. First, the search method had to be validated. Second,

the overall computational time for a particular simulation was recorded. Finally,

the computational time averages for the different sections of the program were

obtained.

First, the search method was validated by checking that it was searching

the desired cells. This was verified on a very small system that could be checked

by hand. Next, the code containing the chain cell search method was checked to

make sure it would generate the same particle trajectories that were generated

by a similar code, using an exhaustive search over all particle pairs, or an N-

squared search.

Although similar codes, using different search techniques, should

theoretically compute the same trajectories, it would not be unexpected for there

to be some differences caused by round-off errors. This is because computers

store and process data in finite sizes, therefore, all arithmetic that is not done

with exact numbers is subject to truncation error. Particularly, the order in which

arithmetic operations are performed will have an effect on the final result, even if

the order of operations has no theoretical effect. This error will then propagate



66

exponentially over time, increasing to the point where there is great divergence

from the theoretical trajectory (Becker et al., 2001; Haile, 1992).

Considering that the order in which arithmetic operations are performed

during the simulation can affect the result, it would not be unexpected to find that

different trajectories are calculated for the same system of particles if different

search methods are used. In this project, the force routine uses the near

neighbor list to find interacting particles. The force is calculated between the

particle pair, and then the force is added to the total force for each particle.

Different search methods will have the neighbor list ordered differently, and as a

result, the total force will be summed in different orders for the respective search

methods, thereby introducing truncation error.

A test of the chain-cell search method was performed by setting up a

sample simulation of twenty thousand particles allowed to free fall in a box. This

simulation was performed twice, once with a code using an N-squared search

and the second time with a code using a chain-cell search. It was found, that for

simulations up to the size of twenty thousand particles, the trajectories that were

calculated by the different codes were the same for at least 1.5 seconds of real

time.

4.2 Reduction in Time to Update List of Near Neighbors

The time saved by implementing the linked-list method is in the process of

updating the list of near neighbors. Therefore, a system of testing the code was

implemented to show the amount of time that was saved in the update routine.



67

As previously mentioned, the update routine is not called at every time

step. It is only called when any particle moves more than half of the search

radius. In order to get an idea of how much CPU is spent in the update routine,

as compared to the rest of the code, the intrinsic timing function was called for

the update, force, integration, and diagnostic subroutines each time the update

routine was called. The CPU times returned for the force, integration, and

diagnostic routines were then divided by the number of time steps since the

update routine had last been called. This was to correct for the fact that the

update routine is called far less than any of the other routines. The results were

averaged over 0.2 seconds of real time. As before, the simulation allowed a

number of particles to fall freely in a box.

According to the theory presented by Allen and Tildesley, the time needed

to update by checking all possible particle pairs is proportional to the number of

particles squared (Allen & Tildesley, 1987). Using N as the number of particles,

and t as time, the following equation may be written.

t oc N 2 	(4.1)

Inserting a constant k:

t = kN 2 	(4.2)

Taking the natural log of both sides of the equation:

1110= ln(N 2 )+1n(k) 	 (4.3)



68

Finally, bringing the exponent out of the natural log:

110= 21n(N)+ 1n(k) (4.4)

This would suggest that the slope of a graph of the natural log of the CPU time

for the update routine, against the natural log of the number of particles would

have a slope of approximately 2. This graph is shown in Figure 4.1. The slope

of the linear trend line placed through the data is 2.0375. This value is in close

agreement with the theory (Allen & Tildesley, 1987).

Figure 4.2 shows the same graph as Figure 4.1, except it is for the chain-

cell search method. Here the slope of the trend line equals 1.2085, indicating

that the chain-cell search method has indeed changed the dependence of CPU

time from being dependent on N-squared, to a much lower exponent.



2 	 4 	 6 	 8	 10 	 1 2

y = 2.0375x - 24.669
R2 = 1

Ln (Number of Particles)

0

2

-10

-12

4

6

8

Figure 4.1 Natural log of CPU time vs. the natural log number of particles for the update routine using an N-squared
search method.



2 	 4 	 6 	 8	 10 	 1 2

y = 1.2085x - 21.683
R2 = 0.9931

0

2

4

6
E

a. 8

C
J -10

-12

-14

-16

Ln (Number of Particles)

Figure 4.2 Natural log of CPU time vs. the natural log number of particles for the update routine using a chain-cell search
method.



71

Allen and Tildesley also give a formula for estimating the time for the

chain-cell method. They suggest that CPU time is proportional to the number of

particles multiplied by the number of particles per cell (Allen & Tildesley, 1987).

t cc 
(N)(N)
	

(4.5)
ncell

Using a similar method as before, this can be rearranged as follows:

ln(t * ncell) = 2 ln(N)+ ln(k) 	 (4.6)

The graph of this equation is shown in Figure 4.3. The data fell into two distinct

groups, each with its own apparent trend line. The reason for this is that the

number of cells used in the trials was not picked in the same way for each

simulation. There is not any general rule for picking the number of cells, it is left

to the user. In these trials, for the simulations up to 10,000 particles, the number

of cells was held constant. For the simulations above 10,000 particles, the

number of cells was scaled upwards at a rate somewhat approximating the

number of particles. The number of cells is shown in Table 4.1.

Table 4.1 Number of Cells and Particles for Chain-Cell Search

Number of
Particles

Number of
Cells

1000 47952
2000 47952
4000 47952
10000 47952
15000 893952
20000 1124864
25000 1135680
30000 1124864
35000 1135680
40000 1124864



y = 1.1938x - 7.59
R2 = 0.9351

GOO 	 2.000 	 4.000 	 6.000 	 8.000 	 10.000 	 12.

y = 1.0557x - 9.7491
R2 = 0.9972

D00

6

5

4

u)
CT) 3
0

15

IC13 2

En
F 1a)
E

iz oC_, 0.

1

2

3

In(Number of Particles)

Figure 4.3 Natural log of CPU time multiplied by the number of cells vs. the natural log number of particles for the update
routine using a chain-cell search method.



73

As can be seen in the graph, the relationship suggested by Allen and

Tildesley is not apparent. The slope of the graph would be 2, according to Allen

and Tildesley, but one section of the graph has a slope of 1.1938, while the other

section has a slope of 1.0557.

While this result does not agree with the proportion proposed by Allen and

Tildesley, it is not unexpected. The proportion t oc (ATP) , fails to take into
ncell

account that at some point there will certainly be a diminishing return in CPU time

reduction for additional cells added. It can be intuitively understood, and is

indicated by Figure 4.3, that t is more heavily dependent on the number of

particles, than on the number of cells. The conclusion is supported by Hockney

and Eastwood who say that t oc (N ,i )(N) ,&, 
(NXN)

 . Here Nn is the subset of the
ncell

total number of particles N that are checked each time step by the chain-cell

search. The value of Nn can be estimated by dividing N by the number of cells,

but in practice the value of Nn can differ significantly from that estimation (Allen &

Tildesley, 1987; Hockney & Eastwood, 1999).



74

4.3 Reduction in Computational Time

The chain-cell search method was further tested by running a number of

simulations. The goal of these simulations was to compare the overall

computational time of a DEM simulation with an N-squared search method

against simulations using a chain cell search method. The results of this are

shown in Figure 4.4 and Table 4.2.

One point to remember when viewing the results presented in this section,

is that the chain-cell search method is being benchmarked against a code

employing a Verlet table. The Verlet table also provides substantial

improvements in computational time (Verlet, 1967). Therefore, any reductions in

CPU time are in addition to those realized by the Verlet table.

Table 4.2 Computational Time for the N-Squared Search and Chain-Cell Search

Number of
Particles

Time in Hours
for the

N-Squared
Method

Time in Hours
for the

Chain-Cell
Search Method

Percent
Improvement

1000 1.60 1.55 2.8%
2000 3.27 3.09 5.4%
4000 7.01 6.59 6.0%
10000 20.73 17.62 15.0%
20000 60.44 40.79 32.5%
30000 138.48 98.88 28.6%
40000 304.08 209.24 31.2%



• N-Squared Search

III Chain-Cell Search Method

y = 6E-12x3 - 1E-07x2 + 0.003x - 2.3745
R2 = 0.9998

y = 4E-12x3 - 8E-08x2 + 0.0021 x - 0.6396
R2 = 0.9999

350.00

300.00

L
LS 

250.00

O_c
N
E 200.00

I .

WIC0= 150.00
Co
5Q.
E
o 100.00
0

50.00

0.00
0
	

5000
	

10000
	

15000 	 20000 	 25000 	 30000
	

35000
	

40000
	

45000

Number of Particles N

Figure 4.4 Computational time versus the number of particles for both an N-squared search and a chain cell search.



76

The results shown in the previous table and figure are for a number of

simulations that were run for 1.5 seconds, with a varying number of particles. As

can be seen from the data, it would rarely be worth the extra complexity in the

programming of the simulation to implement a chain-cell search for any

simulation with less than 1,000 particles. For simulations of intermediate size,

1,000 to 10,000 particles, it probably is indeed worth the added effort, as the

CPU time savings range from between approximately 5% and 15%. For

simulations larger than 10,000 particles, an algorithm of this nature is almost

mandatory, as the magnitude of time will generally be so large that even a small

percentage savings would be quite beneficial.

Another way of looking at the results of adding the chain-cell search

method, is to look at the time spend updating the linked-list, as compared to the

time spent in the rest of the code. This data is presented in Figures 4.5 and 4.6.



30.00%

25.00%
• •

• •
20.00%

0

15.00%

a_
•

10.00%

•

•

5.00% •

•
•

0.00%
0 20000 	 25000

Number of Particles
5000
	

10000
	

15000 30000
	

35000
	

40000
	

45000

Figure 4.5 CPU time for the update routine for an N-squared search as a percentage of total CPU time vs. the number of
particles.



10000 450005000 15000 20000 	 25000 30000 35000 40000

•
• •

•

•
• •• ••

0.12%

0.10%

0.02%

0.00%
0

0.08%

0.04%

Number of Particles

...,Figure 4.6 CPU time for the update routine for a chain-cell search as a percentage of total CPU time vs. the number of 	 03

particles.



79

In Figure 4.5, it can be seen that for the N-squared search, the percentage

of total time spent updating the list of near neighbors steadily grows, as the

number of particles increases to around 25%. This is contrasted with Figure 4.6,

for the chain-cell search, where the updating, as a percentage of total time,

remains nearly constant at 0.1%. Clearly, the chain-cell search method is an

effective method of searching for near neighbors that scales well as the number

of particles increases.

In Figures 4.7 and 4.8, the percentages of total time are shown for all the

subroutines, for the N-squared search and the chain-cell search, respectively. In

Figure 4.7, the percentage of total time decreases for all the routines except

update, as the number of particles increases. This is largely because the time for

update is increasing dramatically. In Figure 4.8, by comparison, the percentage

of total time stays relatively constant as the number of particles increases.



5000 10000 15000 20000 	 25000 30000 35000 40000 45000

70.00%

60.00%

50.00%

4:12
`---- 40.00%a)
E
i=
D 30.00%a.
0

20.00%

10.00%

IN 111
II

Et
MI

CI IIVI
Si li

A A
A A A

•
• • • •

x x x *

•

x x

A

x

A
A A

••
•

x x x

0.00%
0

• Update

El htegration

A Diagnostics

x Force

Number of Particles

Figure 4.7 CPU time for all the routines with an N-squared search as a percentage of total CPU time vs. the number of
particles.



Number of Particles

80.00%

70.00%

60.00%

50.00%
0

N
40.00%

a.
30.00%

20.00%

10.00%

x X x x x x

XX X X

II m la III

M MI m

A

M

A AA A A A A A

M

A

, 	 Ak AL ■ A■

5000 	 10000 	 15000 	 20000 	 25000 	 30000 	 35000 	 40000 	 45000
0.00%

0

• Update

El Diagnostics

A Force

X Integration

Figure 4.8 CPU time for all the routines with a chain-cell search as a percentage of total CPU time vs. the number of
particles.



CHAPTER 5

VAN DER WAALS FORCE MODEL

5.1 Literature Survey

In many particle simulations, the dominant forces are the gravitational force and

the particle contact forces. However, as the particles become smaller, other

forces begin to dominate the interactions between particles. These forces

include the capillary, or surface tension force, the electrostatic force, and the Van

der Waals force. Of these forces, the Van der Waals force is often the most

significant. This is because the surface tension force, while significant in liquids,

liquid suspensions, and drying powders, generally has little effect on dry powders

(Rietema, 1991). The electrostatic force is also generally insignificant when

compared to the Van der Waals force in powders, and usually it can be safely

ignored for particles larger than 111.m (Yang, Zou, & Yu, 2000). However, the

literature is somewhat contradictory on this point, as it has been experimentally

shown that in some situations the electrostatic force can become significant in

particles sized larger than 1 gm (Hayden, Park, & Curtis, 2003). Therefore, in

general, the Van der Waals force is the only force that will affect very fine dry

powders, however, this assumption must be used with caution.

The Van der Waals force is a very short range force that exists between

molecules. This force is caused by the instantaneous fluctuations in the charge

of individual atoms and molecules (Arunachalam, Marlow, & Lu, 1998). The

resultant force between a pair of particles is found by integrating the molecular

82



83

potential over the whole particle, and then differentiating the resulting potential

function with respect to the distance between the particles. This integration was

first performed by Hamaker (Hamaker, 1937, cited in lsraelachvili, 1992), but it

has also been performed by lsraelachvili and by Rietema, and is shown in the

next section (lsraelachvili, 1992; Rietema, 1991). Xie has also performed

integration similar to Israelachvili. Although he was chiefly concerned with the

effect of gas absorption, he formulated a similar model (Xie, 1997). An

interesting phenomenon that occurs with this force, and other short range

intermolecular forces, is that the resultant force from the whole particle is much

less dependent on distance than the intermolecular force. Consequently, the

resultant Van der Waals force between particles acts over a much greater

distance than the force between the molecules of which the particles consist

(lsraelachvili, 1992). The result of this force is that very small particles attract

each other. This restricts the movement, affects the packing, and results in the

formation of agglomerates (Yu, Feng, Zou, & Yang, 2003).

The model that is used in the theoretical derivation of the Van der Waals

force is that of a perfectly round hard sphere, and it contains a strong repulsive

component that dominates as the particles move closer together (Rietema,

1991). This model, however, contains a number of problems. First, it contains a

singularity when the particles touch, which is physically unrealistic. Second, the

model is strongly dependant on both radius and separation distance, so the

model is strongly affected by surface asperities. The third problem, which is



84

largely a result of the second problem, is that accurate predictions for the

average force are difficult to obtain (Rietema, 1991).

The first problem, the singularity at particle contact, is most often handled

by picking a maximum force, and not allowing the force to go above that value,

by maintaining a minimum separation distance. The problem then becomes one

of selecting a maximum force. Rietema finds the maximum force by using the

Lennard-Jones potential function as a model for the Van der Waals potential.

This results in a model that has a clear maximum attractive force, and that value

can be used to find a minimum separation distance (Rietema, 1991).

The second problem concerns how to handle surface asperities. Closely

related to this problem, is the question of how to handle particle deformation.

The actual attractive force will generally be much less than predicted by the hard

sphere model, because the force due to surface asperities will often dominate the

interaction. A common correction for the effect of the surface asperities is to

substitute the diameter of the asperities into the model instead of the particle

diameter (Castellanos, Ramos, Valverde, & Watson, 2000; Rietema, 1991).

lsraelachvili suggests calculating the diameter to use in the model based on the

experimentally determined adhesion force (lsraelachvili, 1992).

There is also a very strong repulsive component to the Van der Waals

force that acts at very small distances. However, it is likely that this repulsive

component of the Van der Waals force doesn't play a very large role in the

particle interaction. This is because the surface asperities will deform as a result

of the particle contact, and this contact force will balance the adhesion force



85

(Rietema, 1991). Forsyth and Rhodes, among others, have presented a model

that incorporates the asperities and deformation into the theoretical derivation

(Forsyth & Rhodes, 2000).

Yang, Zou, and Yu present another approach to this problem, that is easily

adaptable to computer simulation. This model incorporates all the usual forces

present in a DEM simulation, the normal contact force and the tangential force.

In addition to these forces, the simulation incorporates a Van der Waals force

model. The Van der Waals force model uses a diameter smaller than the particle

diameter to account for asperities. The model also has a minimum separation

distance. It is assumed that the particles begin deforming according to a non-

linear spring-dashpot model at the minimum separation distance. This contact

force will then act to balance the Van der Waals force (Yang et al., 2000).

The third main problem is that the results produced by the above models

can vary widely from each other and from reality. There are a number of causes

for this, including the assumptions that are used to produce the models. The

principle assumption, which is incorporated into most models, is that the

contribution from each molecule to the force exerted by the particle is additive,

thereby allowing integration over the entire particle. This is not actually the case,

although in general it is a good approximation (Israelachvili, 1992).

The error introduced by the above assumption is small compared with the

uncertainty introduced by the surface asperities. Even if models are developed

which accurately account for the effects of the surface asperities, the fact

remains that there is usually great variation in the sizes of the asperities.



86

Consequently, there will also be great variations in the cohesive forces of

similarly sized particles (Rietema, 1991). This was demonstrated in experiments

concerning particle pickup velocity. Pickup velocity is the flow velocity required

for a stream to pick up a particle initially at rest. It was shown that in particle

sizes where the Van der Waals forces dominated, there was a much higher

variation in pickup velocity than in regions where other forces dominated

(Hayden et al., 2003).

5.2 Derivation of the Van der Waals Force Model

This section describes the derivation of the model that describes the Van der

Waals force. The two particular situations that are of interest in this project are

the force between a flat plate and sphere, and the force between two spheres.

The derivation will be presented as follows. First, the outline of the derivation will

be sketched. Next, the potential function will be found for the cases of a sphere

and a flat plate, and two flat plates. Then these potential functions will be used to

find the force between a sphere and a flat plate, and between two spheres.

The model that describes the Van der Waals potential between two

molecules is the Lennard-Jones model. This model is shown below in Equation

5.1.

Vs, = Css

( 	 6 \	- 1 	 rss,

	6 	 122r /

(5.1)

The symbols Css and rss are material constants, and r is the radius of the

molecule. To find the potential between two particles, Equation 5.1 must be



87

integrated across the volume of the particles with respect to the molecule

densities, represented by p, the number of molecules per unit volume.

= fdp, IVssdp2 	
(5.2)

VI	 V2

Finally, the force between the two particles can be found by differentiating the

potential function, Equation 5.2, with respect to the distance between the

particles, denoted by a (Rietema, 1991).

F = (um )

as
(5.3)

A

Figure 5.1 The chord theorem (Israelachvili, 1992).

Before beginning the actual derivation, a special relationship, known as

the "chord theorem" will be derived. This relationship is a geometric relationship,

valid for all spheres, that relates the area of the surface of a plane, located a

distance a from the edge of a sphere to the distance a, for a sphere with a radius



88

R. This area is used in the derivation of the Van der Waals force model as the

effective contact area between two large spheres. The dimensions are marked in

Figure 5.1. From the Pythagorean theorem:

(Ac (AO ± (m)Z (AD)2 0302 0302 ± (pc )2 	 (5.4)

Putting Equation 5.4 in terms of the circle dimensions:

4R 2 =a 2 +2x 2 + (2R - a) 2 	(5.5)

Equation 5.5 is then simplified and solved as follows:

x 2 = (2R - a)a c 2Ra
	 (5.6)

In situations where R is much larger than a, the approximation that x2=2Ra can

be made. The effective interaction area can then be given by:

a2 = 7t (2R - a)a 2aRa	 (5.7)

The integration of Equation 5.1 can be accomplished by breaking the

equation into two sums, and integrating each sum separately. This integration is

illustrated and performed for a number of situations by Israelachvili (Israelachvili,

1992). Each part of Equation 5.1 is of similar form, and can be arranged into the

form:

w(r )= C—
rn

(5.8)



89

Figure 5.2 Integration between a molecule located at z = 0, and a wall beginning
at z = a (lsraelachvili, 1992).

The first situation that will be integrated is that of a single molecule near a

wall composed of like molecules, as illustrated in Figure 5.2. The distance

between the molecules is denoted by r. The element that will be integrated is a

ring, of radius x, thicknesses of dx and dz, and a volume of 2gx dx dz. The

number of molecules per unit volume is denoted by p, therefore, the number of

molecules in the ring will be 27tpx dx dz. The integral is as follows:

z=cD 	 x=co xdr

	

w(r) = 27rpC f dz J  
n

z=a x=0 (z 2 ± x2 )2

(5.9)



90

This integral can be found in integral tables (Selby, 1969), and after the first

integration the result is:

w(r)=  271PC  zr dz
(n-2) -I z n-2

Z=a

for n> 2
(5.10)

Finally, the result is:

2,rpCw(r) , , 	 , 	 ,
(n- 2An - 3)an-3

for n> 3
(5.11)

Figure 5.3 Integration between a particle beginning at z = a and a wall
beginning at z = 0 (Israelachvili, 1992).

This result can now be used to find the interaction potential for an

interaction between a sphere and a flat plate. This situation is shown in Figure



91

5.3. The form of the potential function is the same as in Equation 5.8. The

interaction potential between a molecule and a flat plate is given in Equation

5.11. This potential, when integrated over a sphere, will give the interaction

potential between a sphere and flat plate. Using the chord theorem, from

Equation 5.7, to give the interaction area, and integrating the potential across the

sphere, the equation becomes:

w(r) =
271-2p 2C ziR (2R- z)z dz

- 2)(n -3) 3) z (a + n-3

(5.12)

Restricting this to the situation where R is much larger than the interaction area,

the equation may be simplified as follows:

2g 2 p 2C z= 	2Rz dz
3

\
-w (r) =

- 2)(n - 3) zJ= 0 (a + z ) n

(5.13)

Finally, the solution to the integral is as follows (Selby, 1969):

471-2 p 2 CR
w(r) = , 	 , 	 for n> 5

- 2py/-3-4p-5)ot' s

(5.14)

Next, the integration will be performed for the situation of two flat plates.

Obviously, the interaction potential between two infinite plates will be infinite,

therefore, it is necessary to consider the interaction potential per unit surface

area. The interaction will be found for a flat surface of unit area with another flat

surface of infinite area. The situation is illustrated in Figure 5.4. The area that

will be integrated is a thin sheet of unit area and a thickness of dz. The



92

interaction energy can then be found from Equation 5.11. The interaction energy

is:

27z-pC (pdz) 
w(r) = 

(n - 2)(n - 3)a n-3

(5.15)

Figure 5.4 Integration between two walls (Israelachvili, 1992).

The integral then becomes:

(5.16)
w(r) =



That can be solved for the interaction potential as follows:

2irp 2C
w(r)= , 	 ,

(n 2Rn -3Rn -4)a -4
for n > 4

(5.17)

Now the forces caused by the interaction need to be found. The first case

for which this will be done is the sphere and the flat plate. First, the interaction

potential Vim, given in Equation 5.1, needs to be substituted into the solution to

the integration, given in Equation 5.14. The resulting equation, which expresses

the potential between the particles is:

2	 2 	6C„pR	 r
U . = 71- 	 [1-1- 	 " 1

6a	 420a6

(5.18)

The Hamaker constant can be defined as follows:

A =K 2 p2C„	 (5.19)

This allows Equation 5.18 to be simplified.

U = 
AR

[- 1 + 
 r„6

m 	1
6a	 420a 6

(5.20)

The force between the plate and the sphere is found by differentiating Equation

5.20 with respect to the distance separating them, according to Equation 5.3.

93



F = aUm AR[i 	
as 6a 2 	60a6

94

(5.21)

Figure 5.5 The Derjaguin approximation (lsraelachvili, 1992).

The other relationship desired is the force between two spheres. This is

obtained through the use of the Derjaguin approximation (Derjaguin, 1934, cited

in lsraelachvili, 1992). This approximation is obtained as follows, and is

illustrated in Figure 5.5. Assuming two spheres, of diameter R1 and R2, are

separated by a distance a, which is much smaller than the radius of both

particles, the force between the particles can be found by integrating the force

between circular areas at a distance of Z = a +z1 +z2 away from each other. The

areas that will be integrated are circles of dimension 270( dx, and are assumed to



95

be flat. The assumption that the area is flat allows for the force between the

spheres to be written in terms of the force between flat plates.

The force can be given by:

Z =co

F (a) spheres = f2ladrf(Z)plates
Z =a

(5.22)

From the chord theorem:

x2 2R1 z 1 = 2R2 z 2
	 (5.23)

This relation can be used to equate dx to dZ.

x 2 1 	 1Z=a+z,+z 2 =a+— —+
2 R1 R2

(5.24)

Differentiating Equation 5.24.

dZ =( —1 + —1 xdx
	 (5.25)

R2

Substituting Equation 5.25 into 5.22 yields:

(

F(a) 
27r R,R 

2 f(Z)dZ
1 + R2 )Z=a

(5.26)

The remaining integral in Equation 5.26 is equal to the interaction energy

between two flat plates. The equation can now be written to relate the force

between two spheres to the interaction energy between two flat plates.



R1 R2 F(a)spheres = 	
+ R 

wka) plates
2 

96

(5.27)

For two spheres of equal radius this reduces to:

AR 	 r 6

F (a ) spheres = IrRw(c r) = 	  1 	 "
12a 2 	60a 6

(5.28)

5.3 Adapting the Van der Waals Model for Computer Simulation

In the previous section the model for the Van der Waals force was derived for the

various situations that will be encountered in a computer particle dynamics

simulation. The two equations of interest are Equation 5.21, which expresses the

force between a sphere and a wall, and Equation 5.28, which expresses the

force between two spheres. These equations need to be incorporated into the

particle dynamics code. In order to do this, the Van der Waals force model

needs to be combined with a contact force model that will counteract the Van der

Waals model when the particles come into contact.

A common convention is to include only the attractive portion of the Van

der Waals force. This is the approach taken in most of the literature reviewed in

Section 5.1. The reasoning for this is that in practice the force generally remains

attractive until the particle contact forces balance it. This is caused mostly by the

effects of the surface asperities, as explained below.

Although the model assumes that the interaction is happening between

perfectly round spheres, in reality, the surfaces are rough and have



97

imperfections. Therefore, there are three separate reactions combining to form

the overall attractive force; the interaction between the two particles themselves,

between the particles and the asperities, and between the two asperities. The

result of this is that as the particles move closer together, the force between the

asperities becomes repulsive and the asperities deform, and that deformation

brings the forces into balance (Rietema, 1991; Yu et al., 2003). Since the

asperity interaction is often dominant, this gives rise to another common

convention of substituting an asperity diameter for the particle diameter

whenever it appears in the model (Israelachvili, 1992; Rietema, 1991; Yang et

al., 2000; Yu et al., 2003).

One point that can be easily observed about the equations is that there is

a singularity when the particles touch. This singularity is generally handled by

picking a minimum separation distance and not allowing the particles to move

closer than the separation distance. A contact force model is then used to

calculate the forces as the particles press against the separation distance. In

many cases however, the separation distance is chosen somewhat arbitrarily

(Israelachvili, 1992; Yang et al., 2000).

Rietema, however, suggests using the repulsive portion of the Van der

Waals force model to find the minimum separation distance. This provides an

estimate that is in the general range of other values used (Rietema, 1991).

Generally, the chosen minimum separation distance is between 0.1 and 1 nm

(Israelachvili, 1992; Xie, 1997; Yang et al., 2000).



98

This also helps to solve the problem of adding the Van der Waals force

model to the code in this project. The normal force model that will be used with

the Van der Waals force model is the partially latching spring model, given in

Equation 2.1. This model has a constant coefficient of restitution, and as a

result, it uses different spring constants for loading and unloading. However, the

model will not properly release particles under an externally applied force. This

can be handled however, if the minimum separation distance is chosen to

coincide with the point of zero force. In order to simplify the calculations, the Van

der Waals force will be held constant at any distance less than the minimum

separation distance, and the particles allowed to pass the minimum separation

distance. Since this distance is generally very small in comparison to the virtual

overlap that will occur between the particles during the application of the spring

force, this will have very little effect on the calculations.

Therefore, the following model is proposed for the total normal force on

the particle pairs, with R representing the radius of the asperities:

a > a c„,,,f 	F(a)= 0

Particle - Particle F(a) = 	 (1
12a 2 	60a6

6AR 	 r6 

F (a) =
(5.29)

a ci,„ff > a > a m .
6

Particle - Wall F (a) = 	 2 1 	
r, 

6	6a 	 60a
	AR 	 s

a min > a > 0 	 F(a)= 0
For loading 	 F(a) =

a < 0
For unloading F(a)= —K 2 (a — ao



99

5.4 Results of the Addition of the Van der Waals Model

The results of adding the Van der Waals force model were illustrated by running

a simulation where two particles collided and separated once. In order to simplify

the situation, and isolate the effects of the collision, the effect of gravity was not

included in this simulation. The material constants and simulation parameters

are shown in Table 5.1.

Table 5.1 Parameters Used in Test of Van der Waals Model

Parameter Value

Time step 2.82 x 10-10 s
Spring constant 1 x 10-7 N/m

Coefficient of restitution .95
Mass of particle with unit

radius.
5026 kg

Coefficient of friction .1
Hamaker constant 1 x 10-15 J

Acceleration of gravity 0
Radius 3.175 x 10 -5 m

Initial velocity 0

The first three graphs presented, Figures 5.6-8, show the force calculated

by the Van der Waals force model during the collision of two particles versus the

separation distance a. These three graphs show the same information, however,

the scale of the horizontal axis is reduced by a factor of ten on each succeeding

graph. All of these values were calculated by the particle dynamics code

according to the combined model shown in Equation 5.29.



Separation Distance (m)

Figure 5.6 Van der Waals force (N) vs. distance (m).

-1.0 -081.0E-08 	 2.0E-08 	 3.0E-08 	 4.0E-08 	 5.0E-08 	 6.0EE-08
000E100 	

0.0 7.1

1 00E-05

1 50E-05

2 00E-05

-2 50E-06

-3 00E-06

-3 50E-05

-4 00E-05

4 60E 06



5.00E 	 06-	

0.0E+0C 4.0E-09
	

5.0E-09 	 6.0E-09-1 .0 E-09 1 .0E- 	 2.0E-09
	

3.0E-09

-5.00E-06 	

1 .00E-05

-1 .50E-05

-2.00E-05 	

-2.50E-05 	

-3.00E-05 	

3.50E-05 	

-4.00E-05 	

4.50E 06

Separation Distance (m)

Figure 5.7 Van der Waals force (N) vs. distance (m).



Separation Distance (m)

Figure 5.8 Van der Waals force (N) vs. distance (m).

10 0.0E+00-1.0 -101.0E-10 	 2.0E-10 3.0E-10 	 4.0E-10 5.0E-10 	 6.0E

-5.00E-06 	

1 00E-05

_1 50E-05

2 00E-05

-2 50E-05

3 00E-05

3 50E-05

-4 00E-05

4.50E OS



103

Figure 5.9 shows the force calculated by the simulation, calculated

according to the model given in Equation 5.29, along with the theoretical values

calculated by the theory given in Equation 5.28. Figure 5.10 shows values

calculated according to the model given in Equation 5.29 graphed along with the

same theory as Equation 5.28, albeit neglecting the repulsive component.

Neglecting the repulsive component of Equation 5.28, and choosing a minimum

separation distance based on experimental data is another common way of

developing a Van der Waals force model. The values in Figures 5.9 and 5.10

were graphed against the distance given as a percentage of the particle radius.



0 	
-0.0005% 0.0005 	 0.0010% 	 0.0015% 	 0.0020%0.0000%

-2 00E-05

-3 00E-05

-4 00E-05

00E 05

Separation Distance (% of Radius)

Simulation Results
- Complete Theory

Figure 5.9 Van der Waals force (N) vs. distance (% of radius); points calculated by the code are shown along with the
Van der Waals theory that includes both attractive and repulsive components.



0.0005 	 0.0010% 	 0.0015% 	 0.00120
0 	

5% 0.0000

-1.00E-05 	

-2 00E-05

-3 00E-05

-4.00E-05 	

6 ooi 06

Separation Distance (% of Radius)

Simulation Results
Attractive Theory

-o.

Figure 5.10 Van der Waals force (N) vs. distance (% of radius); points calculated by the code are shown along with the
Van der Waals theory that includes only the attractive component.



106

The spring force is shown in Figure 5.11. The effect of the different spring

constants for loading and unloading can be clearly observed in the two distinct

curves on the graph. In this figure the separation distance is given as a negative

value as there is overlap. Figure 5.12 shows the total force graphed against the

separation distance. The contact force has a much larger magnitude, but it acts

over a smaller distance. Figure 5.13 shows the total force versus the collision

time, and as expected, the curve is roughly symmetric around the peak value of

the force.



5 00E-04

4 00E-04

3 00E-04

1 00E-04

C 	 l
-6.0E-11 	 -5.0E-11 	 -4.0E-11 	 -3.0E-11 	 -2.0E-11 	 -1.0E-11

	
0.0E+00

Separation Distance (m)

Figure 5.11 Spring force (N) vs. separation distance (m).



6.0E 04

-1.0 E-1 0 	 -5.0E-11 	 0.0E+00 	 5.0E-11 	 1 .0E-1 0 	 1 .5E-1 0 4.0E-10

Separation Distance (m)

Figure 5.12 Total force (N) vs. separation distance (m) for one collision.



Time (sec.)

•
I
0

Spring force as
particles
overlap.

•
•
•

•

The particles
separating

under Van der
Waals force.

The particles
approaching

under Van der
Waals force.

e ,

•

: 	 :E-05

__. 	

-11'1.16.84E-05 	 6.84E-05 : 	 6.86E-05 6.86

6.0E-04

5.0E-04

4.0E-04

2  3.0E-04
Nf-2ou_

Tri
0 2.0E-04
I-

1.0E-04

0.0E+00

6.8

-1.0E-04

E-05

Figure 5.13 Total force (N) vs. time (sec.) for one collision.



1 10

In order to verify that the simulation is generating realistic results, given

the model proposed in Equation 5.29, the simulation was allowed to continue for

some time after the first collision. Since the particles had no initial velocity and

the spring model dissipates energy, it would be expected that the particles would

be unable to escape the Van der Waals attraction. Therefore, they would begin to

oscillate with the force decreasing in magnitude with each oscillation. This

behavior was exhibited, and is graphed in Figure 5.14. This is a graph of total

force versus time. Since the magnitude of the spring force is much greater than

that of the Van der Waals force, the only quantity visible on the graph is the peak

value of the spring force, and this value does decrease steadily with time.



6.00E-04

5.00E-04

4.00E-04

,.,-- 3.00E-04
0
20U

wi
c, 2.00E-04
I-

1.00E-04

0.00E+00
0.00

-1.00E-04

--4V---44--ick--,

NWUp Ilyp y y i t, ._ , 	 ...... 	 . 	 ._.	 f	 e 	_

E+00 2.00E-05 4.00E-05 6.00E-05 .00E-05 	 1.00E-04 	 1.20E-04 	 1.40E-04 	 1.60

Time (sec.)

Figure 5.14 Total force (N) vs. time (sec.) for a large number of collisions, the inset shows the curve detail.



112

The velocity of the particles was also studied. In the test, the particles

were started with no velocity, but were under a slight Van der Waals attractive

force. Since the particles that collided were under equal but opposite forces the

entire time their absolute velocities were also of equal magnitude, but of opposite

direction. Therefore, in the following graphs the velocity of only one of the

particles is shown.

Figure 5.15 graphs the velocity versus time during one collision. First, the

particles are moving together under an attractive Van der Waals force. Then,

when the spring force activates, the particles rapidly slow to a stop, reverse

direction, and begin moving rapidly away from one another. Finally, the particles

begin to slow, as they are separating under an attractive Van der Waals force.

Figure 5.16 shows the velocity profile throughout multiple collisions. Since

the spring force dissipates energy, the particles move away from one another

with less kinetic energy than they collided with. Also, since all of the original

kinetic energy was from the Van der Waals force, the particles should not be able

to escape the attractive Van der Waals force. This behavior is exhibited in Figure

5.16. It can be seen from the inset graph that the particles eventually stop

moving away from one another, and begin again to move towards each other,

albeit with less energy each oscillation. The main graph shows that the

oscillations eventually decrease to a negligible value.



1.00E-02

8.00E-03

6.00E-03

4.00E-03

....-.

N0 2.00E-03
cn

sE
>,' 0.00E+00

0 6..—
O
N -2.00E-03
>

-4.00E-03

-6.00E-03

-8.00E-03

-1.00E-02

The velocity
changes direction
due to the spring

force.

- 	 6.81E-05 	 6.82E-05 	 • .83E-05 6.84E-05 ;.85E-05 	 6.86E-05 	 6.87E-05 	 6.88 -0 	 . ; 	 • 	 6.90

Particles move
together pulled
by the Van der
Waals force.

The particles separate with
decreasing velocity under

the attractive Van der
Waals force.

Time (sec.)

Figure 5.15 Velocity (m/s) vs. time (sec) for one collision.



A I 	 i 	 II,
All■INIA■A■ A= IM
■■∎llINVAIIIIIIIIIIIII
IIIIIIIIIINIAMIIIMII AIWA
W■■IIIIIIIINIMr 	r 	r

	F	 r 	

1.00E-02

8.00E-03

6.00E-03

4.00E-03

Li 2.00E-03a)U)
E.

0.00E+00
0 0.00.-
0

	

IT,) -2.00E-03 	

E+00 	 2.00E-05 	 4.00E-05 	 6.00E-05 E-05 1.00E-04 	 1.20E-04 1.40E-04 	 1.60E-04

-4.00E-03

-6.00E-03

-8.00E-03

-1.00E-02

Time (sec.)

Figure 5.16 Velocity (m/s) vs. time (sec) for a large number of collisions, the inset shows the curve detail.



115

CHAPTER 6

CONCLUSIONS AND FURTHER WORK

6.1 Chain-Cell Search Method

In a particle dynamics simulation, the amount of time spent finding colliding

particle pairs can often be the most computationally expensive part of the

simulation. Therefore, various methods can be applied to reduce the time spent

on this task. One of the first tools for reducing the amount of time spent locating

near neighbors was introduced by Verlet, and this method is known as the Verlet

list (Verlet, 1967). Another method shown by Allen and Tildesley is called the

chain-cell search method (Allen & Tildesley, 1987).

This project studied the combination of both of the above mentioned

methods. It was found that a substantial time savings could be achieved using

the chain-cell search method combined with the Verlet list compared with a

simulation using only a Verlet list. Using only the Verlet list, the computational

time spent updating the list of neighbors is proportional to the number of particles

squared (N2). The computational time savings is realized as a result of lowering

the power to which N is raised. In this project the time to update was found to be

dependent on N I-2 .

Therefore, there are a number of factors to keep in mind when considering

use of the chain-cell search method. First, it only reduces the time spent

updating the neighbor list. Therefore, if the time spent updating the neighbor list

is small then the time savings will be minimal. Second, the size chain-cell mesh



116

must be scaled to the largest particle in the system. For a system with many

different sized particles, the effectiveness can be reduced, as the mesh size must

be increased to fit the largest particle. This difficulty can be mitigated for systems

with only a few large particles by ignoring large particles when sizing the mesh,

and performing a separate search over all particles checking for interaction with

only the large particles. This second search will scale proportionally to

(Nlarge)(Np), and it will, therefore, only help when there are a very small number of

large particles. Finally, linked-lists can grow quite large, therefore the amount of

available memory, rather than computational time, may become a limiting factor

when considering how large to make a simulation.

One further technique that may result in additional savings, which was not

explored in this work, is adapting the chain-cell method to multiprocessing.

Symmetric multiprocessing (SMP) allows for the execution of a computer

program on several processors simultaneously. The chain-cell search method is

adaptable to multiprocessing (Sullivan, Mountain, & O'Connell, 1985).

There are a number of significant factors to consider when adapting a

program for multiprocessing. First, it makes little sense to adapt a code for SMP

unless significant portions of the entire code can be adapted for SMP. Therefore,

unless the force model and integration method can also be processed in parallel,

the search method should not be adapted for SMP. This however, is generally

not a problem as most force and integration methods are adaptable to SMP.

Second, while SMP reduces the time to execute a program by using multiple

processors, it increases the absolute computational time, because there is



117

significant additional overhead involved in the job of dividing the execution

between the processors. Finally, adapting a code for SMP increases the

complexity, which increases the likelihood of introducing errors into the code

(D'Azevedo, 1994).

6.2 Van der Waals Force Model

A model for calculating the Van der Waals force between micrometer-sized

particles was introduced and added to a particle dynamics code. It was shown

that the particle dynamics code was accurately simulating the force model

introduced. A substantial amount of additional work is needed to validate the

model before useful experimentation with the model can begin.

In developing the model, the principles explained by Rietema were

followed. These included the assumption that the Van der Waals force is

additive, and therefore, it can be integrated over a particle to obtain a resultant

force between particles (Rietema, 1991). In developing the computer model the

work of Yang, Zou, and Yu was followed. Their study simulated the packing of

particles using a Van der Waals model with a non-linear spring-dashpot collision

model. In this project the partially latching spring model was substituted for the

spring and the dashpot (Yang et al., 2000).

Therefore, this model must be tested to show that it gives reasonable

predictions concerning the packing of particles. There have been theoretical

studies done on xerographic toner with continuum models that will likely be

useful in validating the model. The behavior exhibited by the xerographic toner is



118

similar to that of wet sand, in that the cohesion between the grains can be

dominant over the effect of gravity (Castellanos et al., 2000).

Since there is a very large deviation in behavior in particles that are in the

micrometer size range, it is unlikely that exact equations can be formulated to

predict the packing behavior. This deviation has been exhibited experimentally in

studies on particle pickup velocity (Hayden et al., 2003). However, particle

packing in this size region has not been studied very extensively, and it is likely

that numerical simulations will be useful in enhancing the understanding of

particle dynamics.



REFERENCES

Allen, M. P., & Tildesley, D. J. (1987). Computer Simulation of Liquids. Oxford:
Clarendon Press.

Allen, M. P., & Tildesley, J. (1981). Routines to Construct and Use Cell Linked-
List Method. Available: http://www.ccl.net/cca/software/SOURCES/
FORTRAN/allen-tildesley-book/f.20.shtml [February 8, 2003].

Arunachalam, V., Marlow, W. H., & Lu, J. X. (1998). Development of a picture of
the van der Waals interaction energy between clusters of nanometer-
range particles. Physical Review E, 58(3), 3451-3457.

Becker, 0. M., MacKerell, A. D., Jr., Roux, B., & Watanabe, M. (Eds.). (2001).
Computational Biochemistry and Biophysics. New York: Marcel Dekker,
Inc.

Beer, F. P., & Johnston, E. R. J. (1997). Vector mechanics for engineers:
dynamics. New York: WCB McGraw-Hill.

Castellanos, A., Ramos, A., Valverde, J. M., & Watson, P. K. (2000). Avalanches
in fine, cohesive powders. Physical Review E, 62(5), 6851-6860.

D'Azevedo, E. F. (1994). A New Shared-Memory Programming Paradigm for
Molecular Dynamics Simulations on the Intel Paragon (ORNUTM-12890).
Oak Ridge, TN: Oak Ridge National Laboratory.

Derjaguin, B. V. (1934). Kolloid Zeits, 69, 155-164.

Duran, J. (2000). Sands, Powders, and Grains. An Introduction to the Physics of
Granular Materials. New York: Springer.

Forsyth, A. J., & Rhodes, M. J. (2000). A Simple Model Incorporating the Effects
of Deformation and Asperities into the van der Waals Force for
Macroscopic Spherical Solid Particles. Journal of Colloid and Interface
Science, 223(1), 133-138.

119



120

Haile, J. M. (1992). Molecular Dynamics Simulation: Elementary Methods. New
York: John Wiley & Sons, Inc.

Hamaker, H. C. (1937). Physica, 4, 1058-1072.

Hayden, K. S., Park, K., & Curtis, J. S. (2003). Effect of particle characteristics on
particle pickup velocity. Powder Technology, 131(1), 7-14.

Hockney, R. W., & Eastwood, J. W. (1999). Computer simulation using particles.
Philadelphia: Institute of Physics Publishing.

Israelachvili, J. N. (1992). Intermolecular & Surface Forces. New York: Harcourt
Brace & Company, Publishers.

Kim, H.-J. (1992). Particle Dynamics Modeling of Boundary Effects in Granular
Couette Flow. , New Jersey Institute of Technology, Newark, New Jersey.

O'Connor, J. J., & Robertson, E. F. (2003). Charles Augustin de Coulomb,
[internet]. Available: http://www-gap.dcs.st-and.ac.uk/-history/
Mathematicians/Coulomb.html [Charles Augustin de Coulomb, March 27,
2003].

Rietema, K. (1991). The Dynamics of Fine Powders. New York: Elsevier Applied
Science.

Roberts, A. W. (1998). Particle Technology - Reflections and Horizons: An
Engineering Perspective. Trans IChemE, 76(A), 775.

Rosato, A. D. (2001). Linked List Logic. Class notes for ME 624 Microlevel
Modeling in Particle Technology .

Schinner, A. (1999). Fast Algorithms for the Simulation of Polygonal Particles.
Granular Matter, 2(1), 35-43.



121

Selby, S. M. (Ed.). (1969). CRC Standard Mathematical Tables: Seventeenth
Edition (17th ed.). Cleveland, Ohio: The Chemical Rubber Co.

Sullivan, F., Mountain, R. D., & O'Connell, J. (1985). Molecular Dynamics on
Vector Computers. Journal of Computational Physics, 61(1), 138-153.

Underwood, J. R. (1998). Ralph A. Bagnold: Soldier, Explorer, and Scientist.
Available: www.weru.ksu.edu/symposium/proceedings/underwoo.pdf
[2002, September 14}.

Verlet, L. (1967). Computer "Experiments" on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules. Physical
Review, 159(1), 98-103.

Walton, 0. R. (1984). Application of Molecular Dynamics to Macroscopic
Particles. International Journal of Engineering Science, 22(8-10), 1097-
1107.

Walton, 0. R. (1985). Linked-list near-neighbor arrays in 2DSHEAR. Unpublished
notes.

Walton, 0. R. (1991). Numerical simulation of inclined chute flows of
monodisperse, inelastic, frictional spheres. Paper presented at the Second
U.S.-Japan Seminar on Micromechanics of granular Materials, Potsdam,
NY.

Xie, H.-Y. (1997). The role of interparticle forces in the fluidization of fine
particles. Powder Technology, 94(2), 99-108.

Yang, R. Y., Zou, R. P., & Yu, A. B. (2000). Computer simulations of the packing
of fine particles. Physical Review E, 62(3), 3900-3908.

Yu, A. B., Feng, C. L., Zou, R. P., & Yang, R. Y. (2003). On the relationship
between porosity and interparticle forces. Powder Technology, 130(1-3),
70-76.


	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 2003

	Addition of a chain-cell search method and a Van der Waals force model to a particle dynamics code
	Michael J. Sweetman
	Recommended Citation


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Overview of the Discrete Element Code
	Chapter 3: Chain Cell Search Method for Locating Near Neighbors
	Chapter 4: Results
	Chapter 5: Van Der Waals Force Model
	Chapter 6: Conclusions and Further Work
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)


