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ABSTRACT

DISCRETE ELEMENT SIMULATION AND NONLINEAR DYNAMIC
ANALYSIS OF PARTICLES IN A SIMPLE LATTICE STRUCTURE

by
Liam E. Buckley

The study of particles interacting in lattice structures allows for insight into the

complex interactions of granular flow, and the adaptation of such structures to

mechanical apparatuses to handle the separation of bulk particulate matter.

Applying methods of computer analysis to the interactions taking place within the

particle-lattice system provides a particle level methodology to the study of the

phenomenon taking place, as well as a stepping stone for future design of related

devices.

A two prong approach is presented to the study of such particle-lattice

systems. The first approach is composed of adapting an existing discrete

element computer code to handle the geometry and peculiars of a particle

traveling through a simple triangular lattice system. This discrete element code

has been shown in previous research to accurately represent the interactions of

such complex systems as a vibrating granular bed, and has been successful in

predicting convective transport and other dynamical properties. The second

approach, nonlinear dynamic analysis, applies the geometry of the lattice

structure and attempts to wrap the physical particle-lattice interaction into a

simple mapping function. Finally, a comparative analysis of the two previously

mentioned methods of study is performed to physical experiments on an exact

replica of the particle-lattice structure at hand.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The triangular lattice structure that is investigated in this work is an adaptation of

the device first introduced by Sir. Francis Galton to investigate the Central Limit

Theorem [1]. A planar surface is arranged with staggered pins normal to its

surface, and small particles are dropped through the field of pins producing a

normal distribution of particles as they exit the system, see Figures 1.1 and 1.2.

Figure 1.1 Example lattice structure.
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Figure 1.2 Example exit distribution of particles.

The triangular lattice, or Galton's, board has been used to investigate

many problems that relate both to statistically determinable sequences and

systems that appear to be chaotic in nature. In all of these subsequent

investigations, the Law of Large Numbers comes into play. That is, the mean

value of a measurable quantity tends to be bounded by a singular value which

approaches its "true value" as the number of observations increases. In this

work, the notion of the Law of Large Numbers is used to investigate the dynamic

properties and diffusive nature of a particle traveling through a triangular lattice

structure, i.e. a Galton's board, by using a series of models capable of both

simulating the physical interactions within the lattice structure and mimicking the

dynamic nature using a nonlinear approach which is thought to be a unique

approach to this problem.
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1.2 Objective

There are three main objectives accomplished in this work:

• Creation of models capable of accurately predicting the dynamic nature

of a particle traveling through a lattice structure

• Validation of the methodology used through qualitative comparison to

published work and experimental observation.

• To broaden the understanding of the dynamic nature and phenomenon

taking place within the lattice structure.



4

1 .3 Literature Survey

In an effort not to produce redundant research and to gain insight from the vast

knowledge base available in the area of Galtons board, a survey of the available

literature is appropriate.

One of the most influential and interesting sources of information

pertaining to the diffusive nature observed in Galtons board is that of Bridgewater

et al. [2]. In a paper appearing in 1969, Bridgewater et al. published results of

experiments performed on a cylinder packed with glass spheres. Particles of

varying size, but always smaller than those of the packing material, were allowed

to percolate down from the center of the cylinder and through the packing

medium which would then strike a plate covered in a layer of retarding grease. In

this manner, the exit location of the percolating particles was noted within

concentric circles about the center of the packed cylinder. Bridgewater et al.

then modeled the diffusion process taking place within the packed cylinder to the

cylindrical diffusion equation:

where Er represents axial diffusion and n the number of particles within the radius

rat time t.
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A solution of Equation 1.1 assuming that no particles are within the cylinder at

time t<0 and that the number of particles within the cylinder is fixed for all time is

given as:

where No is the total number of particles within the cylinder and N is the number

of particles within a given radius r.

Oshman [3] published a thesis which included experimentally determined

diffusion coefficients for varying particle materials traveling through a Galton

Board in 2002. Oshmans work was largely an adaptation of Bridgewater et al.'s

packed cylinder to that of a Cartesian coordinate system where he made the

direct relation of r in (1.2) to displacement in the horizontal direction.

Sergeev et al. presented a paper in 1988 where he undertook a statistical

mechanics approach to the diffusive nature of a particle traveling in a lattice

structure [4]. A comparative Equation of (1.2) is derived where time in (1.2) is

replaced with displacement in the vertical direction. Sergeev et at further derive

a theoretical value for the diffusion equation based upon the packing factor of the

lattice structure and the diameters of the particle and pins:

where D„ is the diffusion or trickle coefficient and d1 and d2 are the diameters of

the pins and particles respectively.
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In 1992, Hoover and Moran [5] modeled the particle pin interactions in a

Galton board using an isokinetic method. They produced results which led to the

discovery of strange attractors within the triangular lattice structure. Lue and

Brenner in a separate paper investigated the notion of strange attractors of the

triangular lattice structure in 1993 where they provided limiting cases based upon

the collision parameters, namely the restitution coefficient, where the distribution

of the particles exit position is not Gaussian [6]. Lue and Brenner further suggest

that the notion of a random process taking place within the Galton Board is not

true, but rather that the system is a deterministic one governed by Newton's

Equations of Motion.

Similar papers have been published [7,8,9] to those of Bridgewater et al.

where the size of the pins and particle are varied in order to gain insight into the

driving mechanism behind the diffusive nature of Bridgewater et al.'s packed

cylinder. In one of particular interests is that of Bruno et al. where the material

and size of the percolating particle was determined not to have as great of an

effect on the diffusion as that of the make up of the Galton board lattice.
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1.4 Arrangement of Thesis

The arrangement of this thesis is as follows: Chapter 1 is an introduction to the

work to be presented, Chapter 2 introduces the geometry and models used to

study the dynamic nature of a particle traveling through a lattice structure,

Chapter 3 introduces and reviews the dynamic and statistical properties that are

of concern, Chapter 4 presents the results generated using both of the models

presented in Chapter 3 and includes a discussion and conclusion. The following

figure is a roadmap of this thesis.
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CHAPTER 2

GEOMETRY OF LATTICE STRUCTURE AND MODEL METHODOLOGY

2.1 Introduction and Lattice Structure Geometry

2.1.1 Introduction

This chapter serves to introduce the reader to the geometry and the two methods

used to study a particle traveling through a lattice structure. Section 2.2

introduces the discrete element analysis used and highlights the physical force

model that was employed to simulate the pin particle collision. Section 2.3

presents the discrete nonlinear dynamic model that was developed to simulate

the pin-particle collisions, and provides an example of the computations

necessary to model the system.

2.1.2 Lattice Structure Geometry

The geometry of the lattice structure studied in this work is based upon the

Galton board located in the Granular Science Laboratory at the New Jersey

Institute of Technology. A schematic of the board is presented in Figure 2.1. The

dimension s is defined by the step size of the columns and rows, s/2 is the

staggered positioning or offset of the (n+1) row of pins. The step size s used for

the triangular lattice structure in this research was 0.396875 cm. The diameter of

the pins was 0.15875 cm. The diameter of the particle falling through the lattice

structure was 0.3175 cm. The width and height of the entire lattice structure was

39.29075 cm. Figure 2.2 is a 3-dimensional representation of a particle traveling

through the lattice structure studied.

9
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Figure 2.2 3-Dimensional image of a particle traveling through a lattice structure.
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2.2 Discrete Element Analysis

2.2.1 Introduction
Discrete Element Analysis is an adaptation of the more widely known analytical

tool Molecular Dynamics. Molecular dynamics refers to the solution of an N-body

problem by solving the equations of motion using non-energy-dissipation models.

Consider the collision of two spheres, in a molecular dynamic simulation the

collision of the two spheres would result in no energy loss. That is,

Molecular dynamic analysis has been used for many years to solve

several interesting problems in both chemistry and biology, but more recently it

has been adapted to handle the dissipative nature of physical contact in solids.

The adapted version of the molecular dynamics model has come to be known as

discrete element analysis. Discrete element analysis is similar to molecular

dynamics by the fact that they are both concerned with the solution of an N-body

problem, but discrete element analysis incorporates energy dispersion models in

the solution. Again consider the collision of two spheres, in a discrete element

simulation the collision of the spheres would result in an energy loss. That is,

where the energy lost would depend upon the nature of the spheres. In most

mechanical models of particle collisions the energy loss due to a collision is

proportional to a restitution coefficient, where the restitution coefficient is given as
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and u and v refer to the velocities of the two colliding spheres before and after

contact, respectively.

2.2.2 Discrete Element Force Model

A major part of any discrete element simulation is the force model used. The

force model depicts the nature of the phenomenon being studied, in this case

collision or contact between two spheres. The energy-dissipative force model

used in this research to simulate the collision of particles in a lattice structure is

as follows.

Figure 2.3 Force model for particle collisions.
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Where the initial collision, or compression period of the colliding particles

is modeled using the linear spring Kid and the unloading or expansion period of

the particles is modeled using the linear spring K2. This model, which was

originally termed the "partially latching spring model" is based on the work of

Walton and Braun [10], where they showed that it can approximate the behavior

observed in experiments and finite element calculations of colliding spheres. As

mentioned previously, the amount of energy dissipated, or lost, during a collision

is proportional to the restitution coefficient e. A brief derivation of e and the

energy lost from the above model follows [11]. Consider the collision of two

spheres of mass m1 and m2 with velocities v1 and v2. From the above force

model (Figure 2.3), the equations of motion for the two spheres are

where
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2.2.3 Computer Simulations Using Discrete Element Analysis

The computer implementation of a discrete element simulation amounts to

integrating the equations of motion for particles over many thousand time steps

using a suitable numerical method. A brief flow chart of a computer program

using discrete element analysis follows.
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Figure 2.4 Example flowchart of a discrete element analysis program.

The discrete element code used in this study was adapted from previous

codes supplied by Dr. Otis R. Walton [12]. The code named 3dshear, is a

Fortran implementation of the above algorithm. Although not shown in the above

flowchart, 3dshear is a complex code containing several functions which search

for collisions, calculate particle positions, calculate particle velocities, calculate

particle forces, update link lists of near neighbors, determine boundary
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conditions, and integrate the equations of motion of all particles in the system.

Discrete element simulations are an important asset to the study of such systems

as lattice structures because of their ability to provide a complete time-history of

a particles dynamical nature while it interacts with the lattice system.

2.3 Nonlinear Dynamic Analysis

2.3.1 Introduction

In this section, an attempt to predict the dynamic nature of a particle traveling

through a lattice structure using a nonlinear dynamic model is made. The model,

developed by Dr. Denis Blackmore of the Mathematical Sciences Department at

New Jersey Institute of Technology [13], wraps the physical phenomenon taking

place during the pin-particle interactions into a mapping function capable of

predicting relatively accurate representations of the particles trajectory. Further,

the model provides reasonable measures of the diffusion coefficient and other

dynamical properties. It is beyond the scope of this work to go into a full

mathematical formulation and proof of the discrete nonlinear dynamic model due

to the rather complicated and lengthy process so a brief description is presented

instead.

2.3.2 Simple Rectangular Lattice Arrangment

In an attempt to develop a more complex model of a triangular lattice system, the

fundamental approach of the model is laid out in a simpler rectangular

arrangement. It is assumed in this rectangular model that all the rows and

columns of pins have an equal spacing s creating a regular rectangular lattice,

see Figure 2.5.
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Figure 2.5 Rectangular lattice system.

By assuming an interest in only the distribution of the spheres as they exit

the lattice structure, the rows and columns of pins may be extended infinitely,

thus creating an iterative approach to calculating the position of the sphere

traveling through the regular rectangular lattice system. The assumption of only

being interested in the exit distribution allows one to create a mapping function

F.R.-4R, which has iterates F" that represent the position of the sphere as it

moves past the (n+1) row of pins. The horizontal, or x-direction of the sphere, is

unchanged if the sphere does not come into contact with a pin, thus the mapping

function F is the identity function at most points within the realm defined by R.
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In order to mimic, or model, the collision of the sphere and pin in an

appropriate and reasonably accurate manner, an investigation of the contact and

separation phenomenon taking place should be completed. It is known from

previous studies [1,14] that there is approximately a 50% chance that the ball will

bounce to the left or to the right of the pin after contact if the collision takes place

relatively close to the center of the pin. The direction of the particles separation

can to a certain degree of confidence be accurately construed as a function of

the particles original contact point [14]. In this sense, it may be assumed that an

appropriate means of mathematically modeling the direction and phenomena of

separation is a sine function which incorporates a ratio of the relative position of

the particle to the pin center and the sum of the particle's radius and the pin's

radius. The separation function can be fined tuned further if a variable (c > 0) is

included to control the amplitude of the sine function, in essence depicting the

mechanical and dynamic proprieties of the two colliding materials, see Figure

2.6. The contact model can thus be summarized as

where x is defined as the particles local position relative to a pin, and a as the

difference between the particle radius and that of the pin radius. It is seen in the

above formulation that if Ix1 is greater than or equal to a then no contact occurs

and the particle travels on to the next row of pins.
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Figure 2.6 Depiction of contact model.

As can be seen from Figure 2.6, if the model bounces to the left of the pin

center the contact model returns a negative value which implies a bounce or

separation to the left, similarly if contact occurs on the right side of the pin center
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the contact model returns a positive value implying a separation to the right. If

contact occurs in the region of the pins center the model returns a null value

implying no directional separation which under perfect conditions would be a

reasonable assumption.

Incorporating the contact model into the mapping function F develops the

following iterative relationship,

2.3.3 Triangular Lattice Structure

It is now possible to build upon the framework set forth in the rectangular lattice

model, and formulize a more complex triangular system. The geometry of the

triangular lattice is such that the rows and columns are separated from each

other by a distance s, but in comparison to that of the rectangular model the next

row of pins is offset in the x-direction by an interval of s/2 from that of the

previous row, see Figure 2.7.
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Figure 2.7 Triangular lattice system.

This configuration of pins matches that of the Galton Board previously

described in section 2.1.2, see Figure 2.2. As with the rectangular discrete

dynamical model presented in the previous section, interest lies solely in the

position of the particle in the x-direction as it moves past the (n+1) row. The

solution starts by defining a mapping function G having iterates Gn that define the

trajectory of the particle. The mapping function can formally be defined as
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It can be seen that the mapping function G is actually just an adaptation of the

rectangular mapping function F, and may be construed as merely a phase shift in

the rectangular contact model. The formulation of G may be summarized as

where m is bound by the number of rows and n by the number of columns in a

row.

An illustrative example of how the discrete dynamical model works is

presented. Assume a triangular lattice structure of the form defined by Figure

2.7. The problem begins by assuming a random starting position P(x,y) for the

particle defined by an x-coordinate and a y-coordinate. The values for all y-

coordinate positions in P are prescribed by the nature of the lattice structure.

The model makes no attempt to define the particles trajectory in the vertical

direction, but rather assumes a discrete step in the vertical direction defined by

the height of each row in the lattice structure.



Figure 2.8 Example triangular lattice.

The problem starts by determining whether a collision will occur based upon the

value of a, which was defined as the particle radius plus the pin radius.

Since the absolute value of the x-coordinate relative to the colliding pin is less

than a it is determined a collision occurs.

23

Now a separation distance is calculated using the contact model.



Where as stated before, c is a constant that attempts to mimic the physical and

dynamical properties of the two colliding spheres. For this example's sake

assume c = a, then

And finally a new x position is calculated using the mapping function.

The process repeats now for the second row of pins, the new position of the

particle is (0.0037,0.0039) m. The relative location of the particle in the x-

direction to any possible pin that it can collide with is -0.0002 m, the only pin in

the second row. It is seen again that the particle and pin collide, so the contact

model is employed and yields

And the mapping function yields the new x-coordinate,

2.3.4 Computer Implementation of the Discrete Dynamic Models

The implementation of the presented discrete dynamical models is a rather

simple process. First a triangular or rectangular lattice system is defined using

algorithms for the placement of pins in the discrete element simulations (see
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Appendix A). After the geometry of the Galton Board is defined, a Monte-Carlo

approach is taken to orient the particle near the center pin in the top row of rigid

scatterers. Using a Monte-Carlo method of locating the particle drop position

allows for a nearly infinite number of possible simulation runs. Next, a test is

performed to determine if the particle collides with the center pin. If contact

occurs, the appropriate separation equation based upon the lattice geometry is

used to account for the phenomenon of the actual collision. If no contact occurs

the horizontal position of the ball is unchanged. An incremental step equal to the

spacing distance of rows is added to the particles vertical position to account for

travel in the direction of gravity. The process is repeated until the user specified

number of rows has been accounted for. The following flowchart (Figure 2.4)

provides an illustration of the computer code. Computer code for the triangular

nonlinear dynamic model is presented in Appendix A.
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Figure 2.9 Flowchart of a nonlinear discrete dynamic model.



CHAPTER 3

DYNAMIC AND STATISTICAL PROPERTIES

3.1 Introduction

This chapter introduces the dynamic and statistical properties which were studied

during this work. The primary dynamic quantities studied were the diffusion of

the particle in the lattice structure and velocities of the particle in both the

horizontal and vertical directions. Statistical properties studied included

histograms of the particle positions as they exited the lattice structure, average

residence time, and the correlation time of the particle.

3.2 Dynamic Properties

3.2.1 Diffusion Coefficient

The primary dynamic concern when analyzing the data produced by both the

discrete element and the discrete nonlinear dynamic simulations was the

particles diffusion within the lattice structure. Experimentally observing a particle

or sphere traveling through a Galton Board one notes it's chaotic and random

procession. Diffusion can be thought of as the spread of the particle through the

lattice system and is an important transport phenomenon associated with the

non-uniformity in the composition of the system being studied. Two methods

were employed in order to determine the diffusion coefficient in the discrete

element simulations, mean square displacement and velocity autocorrelation.

The diffusion mechanism was calculated in the discrete nonlinear dynamic

27
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simulations by making use of the exit position histogram (discussed later in

section 3.3.2) and the mean square displacement method.

3.2.2 Mean Square Displacement

The mean square displacement method of determining the diffusion coefficient

relies upon the Einstein expression for self-diffusion. A brief derivation of the

Einstein relation is presented [111. Suppose at time t = 0 a particle is located

within a small volume centered at r = 0. At time t the probability of finding the

particle at r is denoted by Gs(r,t), which obeys a diffusion equation by
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Thus the self-diffusion coefficient D can be computed from the mean square

displacement as

If the process being studied is ergodic the ensemble average in the mean square

displacement can be replaced by a time average. Equation (3.5) can be further

simplified by expanding it by its vector components yielding

For the cases mentioned in this work, only the diffusion in the horizontal direction

was studied. Reducing (3.6) to only contain diffusion along the x-axis yields

Thus the diffusion coefficient in the horizontal direction is given by

As can be seen from Equation (3.8), the self-diffusion coefficient in the horizontal

direction is proportional to the limiting slope of the mean square displacement as

t approaches infinity. Since the discrete dynamic model makes no attempt to

correlate time to the particle's trajectory, time is replaced in (3.8) a step in the

height of the board.
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3.2.3 Velocity Autocorrelation

Autocorrelation is a method used in signal processing and time series analysis to

determine the correlation of a signal with itself. Consider the function denoted by

z(t), the autocorrelation function of z(t) is given as

Equation (3.9) can be thought of as the product of the function z(t) with itself at

time t and at time (t+T) averaged over a certain number of experiments. As with

the mean square displacement, (3.9) can be simplified if the process being

studied is ergodic and is given as

The diffusion coefficient is related to the autocorrelation function by the relation

where the vector v is the velocity vector of the particle. Again assuming an

ergodic process, (3.11) can be simplified by expanding it by its components and

substitution of (3.10).

As with the mean square displacement, this research was only concerned with

diffusion in the x direction, thus (3.12) reduces to
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As seen from (3.11), the diffusion coefficient is proportional to the integral of the

velocity autocorrelation function.

3.2.4 Computer Implementation of the Mean Square Displacement and

Velocity Autocorrelation

Both the mean square displacement and autocorrelation function were

implemented using the same basic algorithm to carry out the calculations. For

this reason only the algorithm for the velocity autocorrelation is shown below.
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The integral of the velocity autocorrelation was completed using a basic

trapezoidal method. The limiting slope of the mean square displacement was

calculated using Microsoft Excel and a linear fit at the trailing end of the mean

square displacement versus time shift T curve. It is important to note that one

must average the computed values of both MSD and VACF over all the

simulations completed in order to accurately calculate a diffusion coefficient.

Further, the number of simulations performed has a direct influence upon the

accuracy of the calculated diffusion coefficient. For this reason the value

calculated using the VACF method was approximated by determining a

convergence time and ignoring the residual chaotic tail in the VACF vs. Tau

curve. Although it has been suggested that this chaotic tail may have a

contribution to the diffusion coefficient [15], it was determined by the author that

integrating only up to the approximate convergence produces more realistic

results. This dependence upon a convergence time and the number of

experiments has little bearing upon the value calculated by means of the MSD

method [15] so the value calculated should approximate the "true" diffusion

coefficient with fewer simulations. Computer codes for both the mean square

displacement and velocity autocorrelation methods are included in Appendix B
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3.3 Statistical Quantities

3.3.1 Introduction

From a statistical standpoint two specific quantities come to mind when dealing

with particles traveling through a lattice system, distributions and averages. The

fundamental distributions of concern are the particles exit trajectory and

residence time. From an average perspective, the primary concern lies with

velocities and residence time and how they relate to theoretical and experimental

values.

3.3.2 Exit Distribution

The exit distribution is a collection of several particle positions as they exit the

lattice structure grouped into similar horizontal regions. The exit distribution of

particles has been a topic of such systems as lattice structures for many years

and provides a rather unique perspective into the mixing phenomenon that is

taking place, it allows one to look at the process and determine if it follows a

Gaussian distribution or some other form.

It has also been shown in previous work [2] that the distribution of

particles as they exit such systems is directly related to the diffusion coefficient

and can be calculated from such distributions using the following equation:
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t = time,

D„ = Diffusion Coefficient In the X-Direction,

r = Horizontal Distance.

Equation (3.14) can be further simplified making use of the identity for the

number of particles within a given radius,

This method of calculating the diffusion coefficient was used to correlate

the constant c in the discrete nonlinear dynamic analysis presented in the

previous section to the diffusion coefficient.

3.3.3 Averages

Three primary averages were considered in this work, x-velocity, y-velocity and

residence time. The x-velocity and y-velocity for each simulation ran during the

discrete element analysis were computed and compared to those experimentally

determined by Oshman [3]. X-velocity was determined using the following

formula:
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where V, is the horizontal velocity component, r is the distance traveled in the x-

direction from its starting point and t is the residence time, or the time the particle

is resident in the lattice structure. The vertical component of velocity was

calculated in the same manner,

where Vy is the horizontal velocity component, H is the distance traveled in the y-

direction and t is the residence time.

A theoretical maximum value of Vy can be calculated making use of the

potential and kinetic energy equations and is given as

where g is the gravitational constant. In a similar manner a theoretical minimum

value for the residence time can be calculated as

Residence times in the discrete element model were calculated by making use of

the time-history available from the output of the simulations and then averaging

over the total number of simulations.



CHAPTER 4

RESULTS, DISCUSSION AND CONCLUSION

4.1 Introduction

4.1.1 Introduction

This chapter reviews the results of the completed simulations for both the

discrete element model and the nonlinear dynamic model. Due to the length of

computer processing time it takes to run the discrete element model, only two

case studies were performed. One case study for a 90° lattice angle, and one for

a 70° lattice angle relative to the horizontal axis. All results for the discrete

nonlinear model represent a 90° lattice angle. The following figure provides a

road map to the presentation of the results.
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Figure 4.1 Roadmap of discrete element and discrete nonlinear
dynamic results.
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4.2 Discrete Element Results

4.2.1 Results for the 90 ° Lattice Angle

Table 4.1 lists the parameters used during this study for a lattice angle of 90 ° , the

dimensions of the pins and particle represent actual dimensions of the Galton

Board located in the Granular Science Laboratory at NJIT and are equivalent to

the values used by Oshman [3].

The easiest results to both generate and interpret are those of the

particles trajectory in the lattice structure and the histogram of particle exit

positions. Figure 4.2 is a sample trajectory of a particle falling through the lattice

structure. The residence time for this particle was 6.84 seconds. Figure 4.3 is a

histogram of 1500 particle exit positions.
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The plot of MSD vs. Time Shift T is shown in Figure 4.4 for all 1500 simulation

runs, The graph of VACF vs. Time Shift 'r is Shown in Figure 4.5. The respective

Diffusion coefficients for each method are summarized in Table 4.3.





4.2.2 Results for the 70 ° Lattice Angle

Table 4.4 lists the parameters used during this study for a lattice angle of 70° .

42

Figure 4.5 is a sample trajectory of a particle falling through the lattice structure.

The residence time for this particle was 7.52 seconds. Figure 4.6 is a histogram

of 1500 particle exit positions.
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Figure 4.7 Histogram of 1500 particle exit positions for a 70 ° lattice angle.



Table 4.5 summarizes the time averages for the 70 ° board angle.
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The plot of MSD vs. Time Shift t is shown in Figure 4.7 for all 1500 simulation

runs, the graph of VACF vs. Time Shift t is Shown in Figure 4.8. The respective

Diffusion coefficients for each method are summarized in Table 4.6.
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Figure 4.9 VACF vs. Time Shift t for a 70° lattice angle.
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4.3 Discrete Nonlinear Dynamic Results

4.3.1 Results for the 90 ° Lattice Angle

Figure 4.7 is an example of a normal trajectory from the Discrete Nonlinear

Dynamic simulations (C=0.4).

Figure 4.10 Example trajectory from the discrete nonlinear dynamic model.

Figure 4.8 represents two trajectories for which the constant C produces a

periodic trajectory (C=0.08 and C=0.015)
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Figure 4.9 is a histogram of 10000 particle exit positions where the constant

C=0.42 produces nearly normal distributions. Figure 4.10 is a histogram of 1000

particle exit positions where the constant C=0.015 produces non-normal results.
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Figure 4.11 Is an Example MSD vs. Vertical Shift plot for the Discrete Nonlinear

Dynamic Simulations (C=0.3).

Figure 4.12 is an example r2 vs. In(No/(No-N)) used in the radial method to

calculate diffusion. Figure 4.13 is a plot of the constant C vs. the slope of r 2 vs.

In(No/(No-N)) which is proportional to the diffusion coefficient.
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Table 4.7 Summarizes' the values of the slope over various constant C values.
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4.4 Discussion and Conclusion

4.4.1 Discussion

The discussion follows the same format as the presentation of the results,

essentially following the same roadmap laid out in Figure 4.1. As can be seen

from Figures 4.2 and 4.5, the trajectories of the particle traveling through the

lattice structure for 90° and 70° degrees, respectively, for the discrete element

model appear to be chaotic in nature and thus the model represents actual

observations quite well. This result, although trivial in nature, has serious

consequences when the nonlinear model results are discussed. Figure 4.8, a

sample trajectory from the discrete nonlinear model, represents a trajectory for

which the dynamics failed to produce random walks. The resulting exit

distribution of particles in cases such as this produce U-shaped curves (see

Figure 4.10) instead of the desired bell shaped curve usually associated with a

normal distribution for which the Galton board is known to produce [1,4,7,8,9,14].

The periodic trajectories, which are evident in Figure 4.8, were predicted in [13]

and are also prevalent in the work of Lue and Brenner [6] for which they

associate particular elasticity and pin density envelopes with periodic regimes. It

is possible to avoid these periodic regimes following the scheme laid out in [13]

for bounding the constant C. Equation 4.1 predicts at which values of C normal

distributions become prevalent,
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Where as with the equations presented in Chapter 2, a is equivalent to the sum

of the pin and particle radii. Table 4.8 is a parametric tabulation of (4.1), note

that s+2a=1.27 cm.

As can be seen from Table 4.8 the first appropriate value of C is greater than 0.2.

In the sense of elasticity, the constant C seems to correspond to the

dimensionless restitution coefficient. Further proof of the correlation between C

and the restitution coefficient e can be drawn from the functionality of the

constant C. Looking back at section 2.3.2 the primary role of C was to restrict

the amplitude of the nonlinear contact model in order to approximate different
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material types, although a direct relation is cautioned due to the nonlinearity and

lack of a time equivalent in the model. Further discussion on selection of an

appropriate value for C follows when diffusion is discussed.

The histograms of the two trial cases performed in the discrete dynamic

model appear to be nearly normal in shape, although Figure 4.3, the histogram

for the 90° board angle, raises questions in the tails of the distribution. The lack

of particles in the further regions of the Galton board may be due to the obliquity

of the board, i.e. the driving gravity field may have restricted significant

development of the expected random walk thus bounding the distribution.

Unfortunately experimental data is lacking at this board angle to draw any

conclusion on the accuracy of the distribution.

Calculated time averages for the discrete element model appear to be in

line with those of the values experimentally observed by Oshman [3], further they

fall within the theoretical approximations presented in Chapter 3 (maximum y-

velocity=2.79 m/s, minimum residence time=0.14 seconds). The correlation

times, which are a function of the particles velocity history, also seem to be

plausible based upon the chaotic trajectories and the similarities in the two

values at both board angles.

The calculated values of the diffusion coefficient for the discrete element

model have two implications. The first being that they both are relatively close to

the values experimentally observed by Oshman [3] (1.68 cm/s 2 for steel particles

at a 70° board angle), and the second is that they are within a close

approximation of each other. The first implication reveals that the discrete
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element model is capable of accurately predicting the diffusive nature of the

lattice structure, the second gives credence to the two separate methods used to

calculate diffusion and the theory behind them. The values of the diffusion

coefficient calculated using the discrete nonlinear model are slightly harder to

interpret. The lack of a time basis in the nonlinear model results in a non-time

based diffusion coefficient, although the slopes presented in Table 4.7 fall within

range of those predicted by Oshman [3]. Further, the slope of the mean square

displacement curve in 4.11 is proportional to that of the curves in Figures 4.4 and

4.7. This proportionality is an important point due to the linear relationship

between velocity, displacement and time, it can be shown that the slope of the

MSD curve in Figure 4.11 would be equivalent to that of a time based curve and

thus diffusion can be calculated by assuming a proper time value for the

residence time (t).

In a similar fashion a diffusion coefficient for the values reported in Table 4.7 can

be calculated using (4.3),

The problem now lies in the selection of a constant C value to properly mimic the

system.

Before selecting a C value, a discussion on the effect of the width and

height of the board is relevant. A reasonable question to ask is what effect the
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dimensions of the board have upon the values calculated, particularly that of the

diffusion coefficient. A parametric approach was taken to this problem where the

height of the board was varied as 1h, 2h, 3h, 4h, 5h and 6h, where h is equal to

the height of the Galton board at NJIT (h=0.3929075 m). It was found that the

normalized standard deviation (normalized by the height of the board i.e.

1,2,3...N), which is proportional to the diffusion coefficient, remained constant

over all board heights. The width of the board was increased accordingly as to

avoid bounding the resulting distribution. Results from this study are plotted in

Figure 4.14. The same train of thought applies to the number of particle drops

that make up the histograms. A similar study to that of the varying board height

was performed using successive number of particle drops to test if the system

was truly ergodic. The results of the ergodicity test yielded similar results, which

are plotted on Figure 4.15. An analogous study was performed with the discrete

element model which resulted in the same conclusion.
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Figure 4.18 Standard deviation as a function of the number of particle drops.
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Now that it has been shown that the diffusion coefficient remains constant

over varying board heights an appropriate value for the constant C can be

chosen. One method of choosing C is to compare the slopes of the r 2 vs.

In(No/(No-N)) plot to those experimentally derived for various material types by

Oshman [3]. An example of a selection of C is to compare Oshman's [3] slope

value for stainless steel to that of the varying slopes based on C. For stainless

steel at an angle of 70 ° Oshman [3] reports a slope of 48.61 cm 2 . A best guess

then at the value of C for steel particles and steel pins (if C is proportional to the

restitution coefficient then C will be dependant upon the two materials in contact)

based upon the values in Table 4.7 is approximately 0.3. It should be noted here

that the distributions of particle exit positions and thus the slopes of r 2 vs.

In(No/(No-N)) are somewhat skewed due to the poor modeling capabilities for

collision in the neighborhood of x = ±a and x = 0, i.e. near the ends and center of

the pins. If Oshmans [3] reported values for residence time are used in this

example case (t=7.218 seconds) diffusion can be calculated using (4.3),

In a similar fashion, Equation (4.2) and Figure 4.11 the MSD vs. Vertical Shift plot

for C=0.3 can be used to calculate the diffusion coefficient,
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Table 4.9 is a summary of the results for both models with a comparison to

experimental values [3].

As a final note for this section, an explanation for the deviation of the

values in Table 4.9 is given. Looking at the two different models a vast

difference in approach to calculating the trajectory of a particle traveling through

a triangular lattice structure is seen, but there is a common link between the

models. The common link is that of the idea of "Small Causes, Large Effects"

[14]. In the discrete element model the small causes for the final position of the

particle as it exited the lattice structure are due to theoretical calculations of

particle collisions and the particles initial starting point. In the same manner the
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small causes in the discrete nonlinear model are due to the initial starting position

and the nonlinear contact model. In the physical experiments performed by

Oshman [3],which were heavily referenced in this work, there could of been

nearly an infinite number of small causes due to such things as vibration,

material surface roughness and deviations in the nominal dimensions of the pins.

The sheer fact that the calculated quantities previously presented were within the

same order of magnitude, let alone such close approximation is a credit to both

of the models.

4.4.2 Conclusion

The main objectives listed in Chapter 1 have been completed. The framework

for future study of particles traveling through a lattice structure has been created

using two independent modeling methodologies which span the spectrum of

modeling capabilities from high resolution (discrete element model) to time

effective (discrete nonlinear). A quantitative comparison of the results generated

using both models was completed using both experimental and published works

pertaining to the Galton board concluding in a relative measure of confidence for

both models. Finally, the knowledge base of information pertaining to Galton's

board was expanded, although by a small measure.

The coupling of the presented models allows for a two pronged approach

to the study of lattice-particle systems by providing a model that can predict long

term averages in a relatively short time period. One example is diffusion, which

requires several thousand observations and a model capable of accurately

depicting the physical phenomena taking place. The need for the two models is
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highlighted in each of their individual advantages and shortcomings. The

discrete element model provides a time-history of the particles dynamic nature,

but its downfall is that it takes approximately 24 hours to generate a single

particle trajectory. This limits its ability to generate enough results to predict

quantities such as diffusion, which are dependant upon the number of

observations. The discrete nonlinear model provides a means of generating

several thousand particle trajectories in a relatively short period of time but

requires a measure of comparison to determine the appropriate constant C.

Figure 4.16 provides a hierarchy of both of the models capabilities.
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Future work based upon this study should include several facets, enveloping

almost all of the work presented. For the discrete element method most of the

work to be performed should be done on the effectiveness of the computer code.

For the discrete nonlinear model, most of the work should pertain to accurately

depicting the contact and separation of the pin-particle collision in the regions of

the pin center and ends. Further, the knowledge of the discrete nonlinear

dynamic model should be expanded to understand its dependence on the lattice

angle, particle size, and lattice arrangement. In all future work, the methodology

undertaken should match that of the dual model method outlined here and may

take the following form;

• First, a system will be defined with the geometry and material parameters

clearly defined.

■ Both the discrete element model and the discrete nonlinear model will be

adapted to reflect the new geometry and material properties.

■ Both models will be run for a small number of particle drops and the

results will be compared to each other to show agreement in the model

results.

■ The discrete nonlinear model once shown to predict long term behavior

based on the above comparison will provide any future investigation of the

long term behavior in the lattice structure, while the discrete element

model will provide insight into the dynamic nature.



APPENDIX A

DISCRETE NONLINEAR MODEL FOR A TRIANGULAR LATTICE

The following code is a C++ implementation of the discrete nonlinear model

presented in Chapter 2 for a triangular lattice. The random number generator

was adapted from [16].
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APPENDIX B

MEAN SQUARE DISPLACEMENT AND VELOCITY AUTO CORRELATION

COMPUTER PROGRAMS

The following codes are C++ implementations of the mean square displacement

and velocity autocorrelation algorithms presented in Chapter 3.
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