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ABSTRACT
FACE RECOGNITION USING KERNEL
PRINCIPAL COMPONENT ANALYSIS

By
Timothy Kevin Larkin

Current methods of face recognition use linear methods to extract features. This
causes potentially valuable nonlinear features to be lost. Using a kernel to
extract nonlinear features should lead to better feature extraction and, therefore,
lower error rates. Kernel Principal Component Analysis (KPCA) will be used as
the method for nonlinear feature extraction. KPCA will be compared with well

known linear methods such as correlation, Eigenfaces, and Fisherfaces.
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CHAPTER 1

INTRODUCTION

Face recognition is the task of matching an unlabeled image of a face, to a face
in a set of labeled face images. The main advantage of face recognition as a
biometric is that it requires no interaction from the subject. This allows a subject
to be identified without their consent or knowledge. In light of September 11,
2001, this has become a very valuable tool. Face recognition systems are being
deployed throughout airports and city streets [7] in order to help law enforcement
personnel to locate potential threats.

Unfortunately the task of face recognition, while simple for humans, is
rather complex for computers. Commercial systems that have been used to date
have been less than successful because of too many shortcomings [9]. By
providing too many false positives, the systems become useless because
security personnel have too much to check and eventually they will ignore them.

There are numerous variations in images of faces that can increase the
difficulty of face recognition. All the variations can affect the image in different
ways and cause recognition to be inaccurate. One of these variations is due to
lighting. Variation in lighting can often drastically change one’s appearance
depending on the source of the light. As stated in [10], “the variations between
the images of the same face due to illumination and viewing direction are almost
always larger than the image variations due to change in face identity.” Lighting

changes depend on two factors: one is the direction of the light and the other is









a hairstyle, or wearing a simple disguise. It could also be the result of something
more drastic, like plastic surgery.

Face recognition also has many ethical problems. Because cameras are
becoming less expensive, they are being placed in increasingly more places.
Face recognition allows law enforcement to not only see what is happening, but
who is doing it. This might raise fears of a “Big Brother” type of society where the
government knows where individuals are at all times. There are also complaints
that the current inaccuracies do more harm than good. The American Civil
Liberties Union (ACLU) has made public their opinions about current systems [8].
The belief is that if security personnel rely fully on inaccurate systems, then
potentially obvious warnings will be overlooked. While this is true for inaccurate
systems, a system that is accurate would be invaluable to law enforcement.

Face Recognition can also be used for security clearance, which does not
have the same ethical issues as using it for locating individuals in a crowd.
Besides its shortcomings and ethical issues, face recognition has enough

positive qualities to warrant its study.

1.1 Objective
The objective of this paper is to determine if using the nonlinear Kernel PCA
(KPCA) method as described in [3] will provide better accuracy in face
recognition than traditional linear methods such as PCA [1] and FLD [2]. These

various methods will be presented along with their respective results.



1.2 Background Information

The results were gathered based on testing against two different databases,
using two different testing strategies on each database for a total of four result
sets for each of the four algorithms. This first method of testing was to split the
database into two halves. The first half is the training set and the second half is
the testing set; this will be called the random testing strategy. The random
strategy was designed to see how the algorithms will perform on a small set of
training images, which does not contain all possible variations of the subjects.
The second testing strategy is to use the leave-one-out strategy [2]. In this
strategy, all the images are in the training set except the image currently being
tested. This gives a larger training set, with more images trained per subject,
making the task of recognition easier than with the random testing strategy.

The first database is the AT&T face database [4]. This database
comprises ten images of each of 40 different subjects, for a total of 400 images.
Each image is 92 x 112 pixels in size for a total of 10,304 pixels. For the random
testing strategy, the test and training sets are equal halves, each containing five
images of all 40 subjects, for a total of 200 images each. For the leave-one-out
strategy, there are 399 training images and one testing image. Each subject is
trained with ten images, except the testing subject, who only has nine training
images; the tenth image is used for testing. All images were scaled by a factor of
1/16, for time considerations. Figure 1.5 is a snapshot of all the images in AT&T

database.






The second database is the Yale face database [4]. This database
contains 165 images of 15 subjects, each in 11 varying conditions. Each image
started out at a size of 320x243 pixels. These images contained a lot of white
space in the background and the faces were not centered. Because of this, they
were cut to the size of 174x242 pixels and converted to 256 color grayscale PGM
files, with each face centered within the image. The different conditions include
facial expressions (happy, surprised, winking, sleepy, sad), lighting direction
(center, right, left), and occlusions (glasses, no glasses). For the random testing
strategy, four images of each of the 15 subjects were randomly chosen as the
testing images, for a total of 60 testing images. This leaves seven images per
subject for training for a total of 105 training images. For the leave-one-out
method, each subject had 11 training images except the testing subject, who had

ten training images with the 11"

image being used for testing. All images were
scaled by a factor of 1/36, for speed considerations. Figure 1.6 has some

examples of the images that were resized and converted.






Table 1.1 Results of the Eigenfaces Method Using Different Sized Images

Image Scale Error Rate

1/4 10.5%
1/16 8.0%
1/36 11.0%
1/64 9.5%
1/100 8.0%
1/144 10.0%
1/196 20.0%

The error rate is the number of incorrectly classified test images divided by
the total number of test images. Because the variations in size cause changes in
accuracy, it was necessary to make all tests on one database to use the same
size images.

All coding was done using Matlab from Mathworks, which provides
powerful matrix and image manipulation tools that made coding and testing much

easier.



CHAPTER 2

CURRENT METHODS

There are currently numerous ways to approach the problem of face recognition.
One of the simplest methods is correlation or the nearest neighbor method.
While correlation may work fairly well in idealized conditions, it does have a
number of serious drawbacks, most important of all being a large recognition
time. Recognition time is the time required to classify a test image. The
Eigenfaces method uses Principal Component Analysis (PCA) to transform an
image into a lower-dimensional subspace while still retaining the face differences
in the new lower-dimension space. By lowering the dimension, the cost of
performing the recognition is significantly reduced when compared with
correlation. One of the problems with Eigenfaces is that it does not take class-
specific information into account and thus it maximizes the scatter over all of the
classes [2], where a class is all the images of a particular subject and scatter is
the variations between images or sets of images. In doing so, it retains
differences in facial expression and lighting that should be ignored for the
purpose of face recognition. The Fisherfaces method seeks to correct this
problem by using the Fisher Linear Discriminant (FLD) to select the principal
components such that “the ratio of the between-class scatter and the within-class
scatter is maximized” [2]. This chapter will present the three algorithms in detalil
and present the results for each one, using both databases and both testing

strategies.
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2.2 Eigenfaces
The Eigenfaces method as posed in [1], attempts to use dimension reduction to
greatly improve upon the speed of recognition. With correlation, finding the
nearest neighbor (training image least distance from the test image) means
computing distances in the width x height dimension, which for even small
images, is an expensive operation. Using PCA, the Eigenfaces method extracts
the principal components from the covariance matrix by finding its largest
eigenvalues. Let M be the number of images in the training set, and let vectors
My, [, M3,...,My be the images in the training set. Note that each T’ is a vector of

width x height dimension. We also define

1 M
Y=—>»>T, 2.2
R (22)

which is the average over all the image in the training set. Then we define the

covariance matrix as

1 M
C=EZ<D”<D£, (2.1)
n=l1

where @, =T, - W and the superscript T denotes transpose. Once the covariance
matrix has been calculated, the next step is to compute the eigenvalues and
eigenvectors. A value M' is chosen for the number of components to be used.
The M’ eigenvectors with the largest corresponding eigenvalues are used as the
principal components. This new lower dimension is known as “face space”. The
eigenvectors are known as “Eigenfaces” due to their resemblance to human
faces. Below are some examples of the average image and Eigenfaces

generated from the AT&T and Yale databases.
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18.00%
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Figure 2.11 Experimental results for the random testing strategy using the AT&T
database.

Figure 2.12 shows one of the test images that was incorrectly classified
along with the five nearest training images. The second nearest match was in
fact correct, but the other four were not. Out of the 17 incorrect images in this
test, only 10 had the correct match somewhere in the five nearest matches. This

example was done using 40 components.
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4.00%
3.50%
3.00%
2.50% +

2.00% |
1.50%
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Figure 2.14 Experimental results for the leave-one-out testing strategy using the
AT&T database.

As with the AT&T database, the different testing strategies for the
Eigenfaces method on the Yale database performed about equal to the
correlation method. For the random testing strategy, Eigenfaces had an error
rate of 15.0%, incorrectly matching ten out of the 60 test images. Figure 2.15is a

graph showing the performance using an increasing number of components.
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Figure 2.15 Experimental results for Eigenfaces method using the random
testing strategy on the Yale database.

For the leave-one-out strategy, an additional step was taken. It has been
shown that ignoring the three highest ranked eigenvectors helps reduce error
from variations in lighting [2]. This happens because the first three eigenvectors
tend to account for most of the variations from lighting. The method was done
along with the normal algorithm. While the normal version performed equal with
correlation, leaving out the first three components improved the accuracy
considerably. Leaving out the first three components achieved an error rate of
10.9% (18/165), while using them achieved an error rate of 16.9% (28/165).
Figure 2.16 shows the performance of both Eigenfaces methods and how they

perform with an increasing number of components.
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Overall, the Eigenfaces method performed as well and in some cases,
better than, the correlation method. Its main advantage over the correlation
method is space and time. Instead of storing whole images, only the projected
vectors need to be stored for the purpose of recognition. This makes it more
feasible to store for each subject many different variations, such as lighting and
facial expressions. With both databases, the images that correlation incorrectly

classified, the Eigenfaces method also misclassified.

2.3 Fisherfaces
While the Eigenfaces method is about as accurate as the correlation method and
is much faster, there is still much room for improvement. The Fisherfaces
method proposed in [2] seeks to improve upon the Eigenfaces method. One of
the main problems with the Eigenfaces method is that it “yields projection
directions that maximize the total scatter across all classes”; thus, it “retains
unwanted variations due to lighting and facial expression” [2]. The Fisherfaces
method tries to correct this by selecting a covariance matrix “in such a way that
the ratio of the between-class scatter and the within-class scatter is maximized”

[2]. The between-class scatter is defined as

Sp =ZN.' (i = 1, _/u)T (2.3)

and the within-class scatter is defined as

Sy = () — 1) (2.4)

i=l xeX,
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The performance of the Fisherfaces algorithm on the AT&T databases
using both testing strategies, were slightly worse than the Eigenfaces and
correlation methods. Using the random testing strategy, the lowest error rate that
was achieved was with 39 components and that was 9.5%. Figure 2.21 shows

the performance using an increasing number of components.

30.00%
25.00%
20.00%
15.00%

Error Rate

10.00% |-
5.00% |-

0.00% +—
10 20 30 35 39

Number of Components

Figure 2.21 Experimental results for the Fisherfaces algorithm using the random
testing strategy. It reaches its lowest error rate at 39 components with an error
rate of 9.5%.

The results for Fisherfaces using the leave-one-out strategy were similar
to those of the random strategy. The results were slightly worse than the other
algorithms, achieving the lowest error rate of 2.0% using 39 components. Figure
2.22 shows the performance of the Fisherfaces algorithm using the leave-one-out

strategy.
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16.00%
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12.00% |-
10.00%
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0.00%

Error Rate
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Figure 2.22 Experimental results for the Fisherfaces method using the leave-
one-out testing strategy. The lowest error rate was at 39 components, which was
2.0%.

Upon examining the results of the Fisherfaces experiments, it becomes
clear that this method does a very good job of separating the different classes. In
the cases that classification is correct, all of the nearest neighbors to the test
image will also be from the correct class. This also means that when a test image
is incorrectly classified, it will have nearest neighbors that are all of the same
incorrect class. Figure 2.23 is an example of an incorrectly classified test image.
In this case, the first ten nearest matches were all from the same incorrect class.
It was not until the 15™ match that the correct classification was found. What this
shows is that the images within the classes are more tightly clustered, which

should lead to better recognition rates.
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Fisherfaces performed considerably better than the other algorithms when
testing on the Yale database. This is as expected as Fisherfaces was designed
to handle within-class variations better than the other algorithms. Using the
random testing strategy with only ten components, the Fisherfaces algorithm had
a low error rate of 11.7%, which is 4% lower than the other algorithms. Figure
2.25 shows the results of the random testing using an increasing number of

components.

18.00% 7
16.00% +
14.00% +
12.00% +
10.00% |
8.00% 1
6.00% +—
4.00% +—
2.00% +—
0.00% -+

Error Rate

10 20 30 40
Number of Components

Figure 2.25 Experimental results for the Fisherfaces method using the random
testing strategy.

With the leave-one-out strategy, Fisherfaces performed slightly better than
the Eigenfaces method when the first three components are ignored. The error
rate of 10% was achieved using 20 components. Figure 2.26 shows the results

for the leave-one-out testing strategy.
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Overall, the Fisherfaces algorithm performed as well and, in the case of
the Yale database, better than the Eigenfaces and correlation methods. This is
because the algorithm was designed to take advantage of the known within-class

differences to extract features that better represented the classes.



CHAPTER 3

KERNEL PCA

3.1 Description
PCA attempts to extract linear features from the input data set by means of “an
orthogonal transformation of the coordinate system” [6] in which the data is
described. Because PCA is a linear technique, it ignores any possible features
that exist in nonlinear feature space [6]. Kernel Principal Component Analysis
(KPCA) “computes the principal components of the data set mapped nonlinearly
into some high dimensional feature space F’ [3]. Using the algorithm as

described in [3], the feature space is calculated in the following way. Given a set
of centered observations(zzlxi =0), X, where k=1...M, the traditional way of

formulating the covariance matrix using PCA is

1 & T
C=—AZij_xj. (3.1)

j=1
Now the nonlinear feature space F must be defined. F is related to the input
space by a possibly nonlinear map

®: RV F. (3.2)

The covariance matrix in F can now be defined as

M=

C=—2 ®(x)®(x)" - (3.3)

1
M
We then determine each eigenvalue A and corresponding eigenvector V of c,

1

J

which satisfy

33
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AV =CV. (3.4)

All solutions of V with A# O lie in the span ®(x4), ... , ®(xm). There also exists
coefficients a; such that

V= iaid)(x,.) (3.5)

The M x Mkemel matrix K= (Kj: Ij=1,2,...,M) is then defined with
k;=(@(x) ®(x,), (3.6)
where e denotes dot product. Thus the KPCA problem is determining k to satisfy
MiKa=k’e, (3.7)
where a denotes the column vector with entries o,...,,, To find the solutions of
(3.7), one solves
MAia =ka. (3.8)
Once this equation has been solved, the images can be projected into the lower-
dimensional space, using the top M' eigenvectors. Then the testing images are
projected into the lower-dimension space and using the nearest neighbor
method, they are classified.
To compute the dot products, kernel representations are used. Kernel
representations are functions that allow the value of the dot product in F to be
computed without carrying out the map ® [3]. There are a number of different

kernels that can be used. First is the Polynomial kernel defined as

k(x,y) = (x-y)*, (3.9)
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where d is the degree and when d is equal to one, this algorithm will be
equivalent to the Eigenfaces method. Other possible functions are the radial

basis function (RBF)

2
k(x,y)= eXP(—”x—_—yz"—) , (3.10)
20

Where o is a constant, and the sigmoid kernel
k(x,y) = tanh(w(x - y) +©), (3.11)
where © and w are constants.

For the purposes of testing, only the polynomial, using degrees two
through six, and the RBF kernel functions were used. The scaling on the images
when used with the KPCA became very important. As the degrees of the
polynomial kernel function got larger, so did the values. Eventually the values
reached infinity at which point the calculations returned imaginary values for the
eigenvectors. For the RBF kernel function, if the value for o was too large or too
small, the exp function would return ones and zeroes, which causes the

eigenvector calculations to be incorrect.

3.2 Results
The performance of the KPCA algorithms on the AT&T database using both
testing strategies was slightly worse than the Eigenfaces and correlation
algorithms. With the random testing strategy, the lowest error rate achieved was
8.5% which used the RBF kernel function and 80 components. Figure 3.1 shows
the performance for the kernel functions using the random testing strategy on the

AT&T database.
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—e— Degree 2 —s— Degree 3 Degree 4 -+ Degree 5 —x— Degree 6 —e— RBF
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Figure 3.1 Experimental results using KPCA with the random testing strategy on
the AT&T database.

The RBF function had the lowest error rates with the second degree
polynomial being close to it. From then on, the higher the degree, the larger the
error rate.

The leave-one-out testing strategy yielded similar results to the random
testing strategy. The lowest error rate of 1.5% was achieved using the RBF
kernel function and 40 components. This error rate is equivalent to the error rate
achieved by the Eigenfaces algorithm. Figure 3.2 shows the results for the KPCA

algorithm using the leave-one-out testing strategy on the AT&T database.
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Figure 3.2 Experimental results for KPCA on the AT&T database using the
leave-one-out testing strategy.

The nearest matches for KPCA were similar to those of the Eigenfaces
method. The classes are not as closely clustered as they were with the
Fisherfaces method. Figure 3.3 shows an example of an incorrect classification
and its five nearest neighbors. The features that seem to have the largest effect
are the hair, skin color, and pronounced cheek bones. In the training image that
is correct (5M), the subject is tilting her head in the same way that she is in the

test image.
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The results of the leave-one-out strategy on the Yale database are very
similar to what they were on the AT&T database. Once again the RBF kernel
function had the lowest error rate, with the second-degree polynomial having the
second lowest, and then getting worse as the degree increased. Figure 3.4
shows error rates using all the kernel functions and an increasing number of

components.

1 —e— Degree 2 —=—Degree 3 Degree 4 - Degree 5 —x—Degree 6 —s— RBFJ
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Figure 3.4 Experimental results for KPCA on the Yale database using leave-one-
out testing strategy.

Figure 3.5 is an example of lighting causing complications for the KPCA
algorithm. Like the Eigenfaces algorithm, KPCA does not deal well with extreme
light changes. Examining the results in Figure 3.5, it would seem that the shadow
played a large part in classification, as it looks the same in all the images and

accounts for a large percentage of the image.






CHAPTER 4

SUMMARY

Kernel PCA provides a way to extract nonlinear features. This should have led to

improved recognition rates over classical linear-based algorithms. Both tests on

the AT&T database showed that at best, the KPCA algorithm achieved equal

error rates with the Eigenfaces method, but not better. Tables 4.1 and 4.2 show

the best results for each of the algorithms on the AT&T database.

Table 4.1 Results of Random Testing on the AT&T Database

Method Components Error Rate
Correlation N/A 8.0%
Eigenfaces 90 8.0%
Fisherfaces 35 9.5%

KPCA-RBF kernel 190 8.5%
KPCA-Degree 2 190 9.0%

Table 4.2 Results of Leave-One-Out Testing on the AT&T Database

Method Components Error Rate
Correlation N/A 2.5%
Eigenfaces 30 1.5%
Fisherfaces 39 2.0%

KPCA-RBF kernel 40 1.5%
KPCA-Degree 2 40 1.75%

In both tests, the lowest error rates were achieved using the Eigenfaces

method. Because the AT&T database contains only small variations, the

Fisherfaces method was not able to improve on the Eigenfaces method, and in

this case, it was slightly worse.
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Testing on the Yale database led to the same outcome as the testing on
the AT&T database. Once again the KPCA algorithm was only able to achieve
equal error rates with its linear counterpart. In the case of the Yale database, it
becomes obvious that the Fisherfaces does a much better job of handling more
extreme variations in the images, especially changes due to lighting. Tables 4.3
and 4.4 show the best results achieved by each algorithm for the tests done on

the Yale database.

Table 4.3 Results of Random Testing on the Yale Database

Method Components Error Rate
Correlation N/A 16.6%
Eigenfaces 20 15.0%
Fisherfaces 10 11.6%

KPCA-RBF kernel 30 16.6%
KPCA-Degree 2 30 16.6%

Table 4.4 Results of Leave-One-Out Testing on the Yale Database

Method Components Error Rate
Correlation N/A 16.9%
Eigenfaces 80 16.9%

Eigenfaces w/o o
First 3 eigenvectors 130 10.9%
Fisherfaces 20 10.3%
KPCA-RBF kernel 140 16.9%

KPCA-Degree 2 140 17.6%
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4.1 Future Work

The databases used in these experiments are both small and contain a large
number of faces per subject, which makes the task of recognition easier. They
also do not contain any large facial occlusions, such as scarves or hats. Using a
larger database with more varied images of each subject might result in different
outcomes.

Since Fisherfaces performed the best of all the algorithms on the Yale
database, it would make sense to pursue nonlinear generalizations of Fisher's
discriminant as described in [6]. Using class knowledge would allow the kernel to

extract nonlinear features that better represent the classes.



APPENDIX A

CODE

This appendix contains the code listings required to replicate the results put forth

in this paper. Below is an explanation of what each of the included files does.

Eigenfaces_load.m: takes an input training set of images and the number of

components to use and returns the highest ranked eigenvectors.

Eigenvectors.m: computes eigenvectors of the given covariance matrix.

Find_nearest.m: finds the training image nearest to the given test image and

returns the id number and the distance.

Fisher_load.m: Takes an input of training images and number of components

and uses the Fisherfaces algorithm to compute eigenvectors.
Kernel.m: computes kernel representation using given kernel function.
Loo.m: creates leave-one-out test data from a given set of images.
Run_cor.m: runs correlation algorithm and outputs results.

Run_eigenfaces.m: runs the Eigenfaces method and outputs results.

Run_fisher.m: runs Fisherfaces algorithm and output results.

Run_KPCA.m: runs KPCA algorithm and outputs results.

Split_string.m: splits a given string on given delimiter and returns both halves of

string.
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function [psi, vecs, fs] = eigenfaces_load
(Images, I, vector_length)

o0 o°

o

Purpose: The functions take as parameters the column

% vector matrix of all the training images, the
% number of vectors to use and the size of the
% images.

%

% Inputs:

% Images: Column vectors of training images

% I: the number of vectors to use

% vector_length: size of images.

%

% Outputs:

% psi: the mean image image of training set.

% vecs: eilgenvectors

% fs: training images projected into facespace.

%
% get the number of Images
numberofimages = size(Images,2);

% calculate the average face.
psi=mean (Images')"';

% allocate space for array A
A = zeros(size(Images,l), numberofimages) ;

% calculate the difference from the average face for all
images.
for i=1:numberofimages
A(:,1) = Images(:,1i) - psi;
end;

% compute eigenvectors.
vecs = eigenvectors(A, I);

% allocate space for facespace array.
fs = zeros (numberofimages,I);
% calculate all points in I dimension space (facespace).
for i = l:numberofimages

fs(i,:) = project_image(vecs, Images(:,i)-psi, I);
end;
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function [Vectors] = eigenvectors (A, numvecs, Psi)
Purpose: computer eigenvectors by using Turk & pentlands
trick to speed up computation.

o oP

%

% Inputs:

% A: images matrix

% numvecs: vectors to use
% psi: average matrix

oe

o

Outputs:
Vectors: first numvec eigenvectors
Based on code by Matthew Dailey 2000

o0 oe

% Check arguments
if nargin ~= 2

error ('usage: eigenvectors(A,numvecs,psi)');
end;

nexamp = size(A,2);

% compute the eigenvectors of the covariance

% matrix,using a little trick from Turk and Pentland
L = A" * A;

% fprintf(l, 'Calculating eigenvectors of L...\n');
[Vectors,Values] = eig(L);

% Sort the vectors/values according to size of eigenvalue
[Vectors,Values] = sortem(Vectors,Values) ;

% Convert the eigenvectors of A'*A into eigenvectors of
A*AY
Vectors = A*Vectors;

% Get the eigenvalues out of the diagonal matrix and
% normalize them so the evalues are specifically for
cov(A'), not A*A'.

Values = diag(Values);
Values Values / (nexamp-1);

Normalize Vectors to unit length, kill vectors corr.
to tiny evalues

o0 oo



num_good = 0;
for i = l:nexamp
Vectors(:,1i) = Vectors(:,1i)/norm(Vectors(:,1i));
if values (i) < 0.00001
% Set the vector to the 0 vector; set the value

Values (i) = 0;

Vectors(:,1) = zeros(size(Vectors,l),1);
else

num_good = num_good + 1;
end;

end;
if (numvecs > num_good)
fprintf (1, 'Warning: numvecs is %d; only %d

exist.\n',numvecs,num_good) ;

numvecs = num_good;
end;

Vectors = Vectors(:,l:numvecs) ;

to
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function [answer, minvalue]=find_nearest (Images, test_image)

O° P 0P O° O° O 0P P P J° P 9P o°

o

Purpose: find the nearest neighbor to test_image
in Images.

Inputs:
Images: matrix of training images
test_image: test image.

Outputs:
Answer: the location in Images of the nearest
neighbor
minvalue: the distance between test & match

numberofimages = size(Images,2);
image_size = size(Images,l);

answer = 0;
minvalue = 9999999999999999999999999999;
min dist=0;

for i = 1l:numberofimages

% create array to hold distance calculations
dist = zeros(image_size,l);

% calcuate the distance at each point.
for j = l:image_size
dist(j,1) =
(Images (j,i) - test_image(j,1l)) *
(Images(j,1) -test_image(j,1l));
end;

% compute the overall distance and store it.
min_dist = sqgrt(sum(dist));

if min_dist < minvalue
minvalue = min_dist;
answer = 1i;

end;

end;



function [psi, vecs, fs] = fisher_load
(Images, I, vector_length, ids)

P 0P

o

Purpose: calculate eigenvectors via Fisherfaces method.

o

oe

Inputs:
Images: matrix of images
I: number of vectors to use
Vector_length: size of images
ids: labels of images.

A 00 o° 0P of

o°

Ouputs:
psi: mean image
vecs: eilgenvectors
fs: images in Facespace

oP o o°

oP

% set some variables that will be needed later on.
numofclasses = max(ids) ;
numofimages = size(Images,2);

% get total scatter for N - c points.
psi = mean(Images')';

% allocate space for array A
A = zeros(size(Images,l), numofimages) ;
% calculate the difference from the average face for all
% images.
for i=1:numofimages
A(:,1) = Images(:,i) - psi;
end;

% get the eigen values, vectors & average
vecs_pca = eigenvectors (A, (numofimages - numofclasses));

% allocate space for within class scatter
s_w = zeros(vector_length, numofclasses};
psi_w = zeros(vector_length, numofclasses);

ipc = [1;
for i=1:numofclasses
count = 0;

temp=0;



clear('temp') ;
for j=1:numofimages

if ids(j) == i,
count = count + 1;
temp(:,count) = Images(:,3);
end
end
psi_w(:,1) = mean(temp')"';
ipc (i) = count;
end
X w = zeros(size(Images,l), size(Images,l));
for i = l:numofimages
temp = Images(:,1) - psi_w(:,ids(1));
X W = X W + (temp * temp');
end;

S_W = vecs_pca' * x_w * vecs_pca;

% compute the between class scatter.!
class_psi = mean(psi_w')"';

x_b = zeros(size(Images,l), size(Images,l));
for i = l:numofclasses
cdiff = (psi_w(:,1) - class_psi);

temp = ipc(i) * (cdiff * cdiff');
X_b = x_ b + temp;

end;

s_b = vecs_pca' * x_b * vecs_pca;

% compute final eigen vectors based on the scatter
% matrices.

temp = (s_b/s_w);

new_temp = ((temp') * (vecs_pca'));
[vecs,vals,psi_n] = pc_evectors( new_temp , I );
vecs = ((vecs') * (vecs_pca'))';

% calculate the facespace points for all of the training
% images.

fs = zeros(numofimages,I);
for i = l:numofimages
fs (i, :)= project_image(vecs, (Images(:,1) - psi),I);

end;
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function [k] = kernel(a, b, kernel_ type, kernel_param)

o

Purpose: computer kernel representation

o° 0P

oe

Inputs
a: image vector
b: support wvector

o

oe

% Kernel_ type: poly or rbf

% kernen_param: type specific parameter
%

% Ouputs:

oP

k: kernel representation

switch kernel_type
case 'poly'
k = ((a' * b)+1l)."kernel_param;
case 'rbf'
for i=1l:size(a,?2),
for j=l:size(b,2),
k(i,j) =
exp (-norm(a(:,1i) - b(:,3j))"2/kernel_param) ;
end
end
end



function [train,trainids, test, testid]=1oo (Images,ids, 1)

o0 o

oe

Purpose: create a training set and a testing set
by removing the ith values from Images
for use by leave on out strategy

o° o

oe

% Inputs:
% Images: images matrix
% ids: image labels
% i: element to remove
%
% Outputs
% train: training images
% trainids: training image labels
% test: test image
% test_id: test image id
noi = size(Images, 2);
if i==1,
train = Images(:, 2:noi);
trainids = 1ds(2:noi);
else
if i==noi,
train = Images(:, l:noi-1);
trainids = ids(l:noi-1);
else
train = Images(:, [1:1i-1 i+l:noi]l);
trainids = ids([1l:1i-1 i+1:noil);
end
end
test = Images(:,1i);

testid = ids(1i);
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function run_cor(train_file, test_file, scale)

oe

o

Purpose: run correlation procedure and print out
the number of errors.

o0 oe

oe

o

Inputs
train_file: listing of files to use for training
test_file: images to use for testing
scale: scale of images.

o o0 o° o°

[

% load training data.
[Images,w,h,ids]=1load_training(train_file, scale);
[test_images,w,h, testids]=1load_training(test_file, scale);

% get the number of items in the test file.
numberofimages = linecount(test_file);

wrong = 0;
% loop over all the images in the test set.
for i = 1l:numberofimages
test_image test_images(:,1i);
current_id testids (i) ;

[answer, distance] = find_nearest(Images, test_image);

if current_id ~= ids (answer)
wrong = wrong + 1;

fprintf (1, 'correct id = %d (%d) : ', current_id, 1i);
fprintf (1, 'matched id = %d (%d)\n',
ids (answer) ,answer) ;
end;
end;
% output results
fprintf (1, 'percent incorrect: %d / %d = ', wrong,

numberofimages) ;
fprintf(1l, '%.2£%%\n', (wrong/numberofimages) * 100);



function run_eigenfaces(train_file, test_file, I, scale)

o° of

Purpose: run Eigenfaces algorithm

%

% Inputs:

% train file: list of training files
% test_file: list of testing images
% I: number of vectors to use

% scale: scale of images

% load training data.
Images,w,h,ids]=1ocad_training(train_file, scale);
[test_images,w,h,test_ids] = load_training(test_file,
scale) ;

% get the number of items in the test file.
numberofimages = linecount(test_£file);

% prepare Eigenfaces and facespace
[psi,ef_vecs, facespace] = eigenfaces_load(Images,I,w*h);

% writejpg(psi, 'ef_half_mean.jpg',w,h,1);

wrong = 0;
% loop over all the images in the test set.
for i = l:numberofimages

test_image = test_images(:,1i);

current_id = test_ids (1) ;

[answer, distance] = nearest_neighbor

(facespace,project_image (ef_vecs, (test_image-psi),I) );

if current_id ~= ids (answer)
wrong = wrong + 1;

fprintf (1, 'correct id = %d (%d) : ', current_id, 1i);

fprintf (1, 'matched id = %d (%d)\n',
ids (answer) , answer) ;
end;
end;

% output results

fprintf (1, '(vectors used: %d) ', I);
fprintf (1, 'percent incorrect: %d / %d = ', wrong,
numberofimages) ;

fprintf (1, '%.2f%%\n', (wrong/numberofimages) * 100);
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function run_fisher(train_file, test_file, I, scale)

oe

o

Purpose: run Fisherfaces method.

oo

oe

inputs:

training = name of file containing list of training files
testing = name of file containing list of testing files

I = the number of eigen vectors to use.

o0 P o

o

% load training data.

[Images,w,h,ids]=1load_training(train_file, scale);

[test_images,w,h, test_ids] =
load_training(test_file, scale);

numofimages = size(test_images, 2);

[psi,vecs, fs] = fisher_load(Images,I,w*h, ids);

wrong = 0;
% loop over all the images in the test set.

for i = l:numofimages
% read in images and reshape it as needed.
test_image = test_images(:,1i);

current_id = test_ids(i);

% find the nearest neighbor in facespace.
[answer, distance, close] = nearest_neighbor
(

fs, project_image(vecs, (test_image-psi),I) );

% check if answer 1s correct.

if current_id ~= ids (answer)
wrong = wrong + 1;
fprintf (1, 'correct id = %4 (%d) : ', current_id, 1i);
fprintf (1, 'matched id = %4 (%d)\n',
fprintf (1, '%d (%d)\n\n', ids(close(5,2)), close(5,2));
end;
end;

% output results

fprintf(l, ' (vectors used: %d) ', I);
fprintf (1, 'percent incorrect: %d / %d = ', wrong,
numofimages) ;

fprintf (1, '%.2f%%\n', (wrong/(numofimages)) * 100);



function run_kpca

(training file, testing_file, kt, kp,

o0 of

based on code by Bernhard Schoélkopf

oe

o°

Purpose: KPCA face recognition.

o

oP

Inputs:

o o°

o

kt: kernel type “poly” or “rbf”
kp: kernel parameter

I: number of vectors to use
scale: scale of images.

o0 0P

oP

% load images.

I,

training file: list of training files
testing_file: list of testing files

scale)

56

[patterns,w,h,train_ids]=load_training(training_file, scale)

7

[test_patterns,

w,h, test_ids]=load_training(testing_file, scale);

% number of vectors to use.
ev_start = 0;
ev_end = 200;

Q

% set up some vars.

test_num = size(test_patterns,2);
train_num = size(patterns,2);
max_ev=train_num-1;

% set up the size
cov_size = train_num;

%*********************************'k************************

* ok Kk kK

% carry out Kernel PCA
% this checks out with other code.

%*****-k****************************************************

* k Kk k%

K=kernel (patterns, patterns,kt, kp);

% set up unti vector that is NxN/N

unit = ones(cov_size, cov_size)/cov_size;
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% centering in feature space!
K n = K - unit*K - K*unit + unit*K*unit;

% solve for eigen values

[evecs,evals] = eig(K_n/cov_size);

[evecs, evals] sortem(evecs, real (evals)) ;
evals = real(diag(evals));

% normalize the vector
for i=l:max_ev,

evecs(:,1) = evecs(:,1)/sqgrt(evals(i));
end

% for max_ev=ev_start:ev_end,
max_ev=1;
%*********************************************************

% feature Projections
%*********************************************************

% unit wvector
unit_train = ones(train_num,cov_size)/cov_size;

% allocate space for K
K _train = zeros(train_num, cov_size);

% run kernel function
K_train = kernel (patterns, patterns,kt, kp):

% center the data.

K_train n = K_train - unit_train*K - K_train*unit +
unit_ train*K*unit;

% allocate space

features = zeros(train_num, max_ev);

% project

features = K_train n * evecs(:,l:max_ev);

Q

% unit vector
unit test = ones(test_num,cov_size)/cov_size;



% allocate space for K
K_test = zeros(test_num,cov_size);

% K_test = (test_patterns)' * patterns;
K_test=kernel (test_patterns, patterns,kt, kp);

% center the data.
K test_ n = K_test - unit_test*K - K_test*unit +
unit_ test*K*unit;

% allocate space for K
test_features = zeros(test_num, max_ev);

% project
test_features = K_test_n * evecs(:,l:max_ev);

Q

% allocate space for the arrays.
images=zeros (max_ev, train_num) ;
test_images=zeros (max_ev, test_num) ;

Q

% reshape the features
images = features';
test_images = test_features';

% use nearest neighbor to find match.
count = 0;
for i=1:test_num,

[answer, loc] = find_nearest(images, test_images(:,1));
% fprintf (1, 'answer=%d\n', loc);
if test_ids (i) ~= train_ids (answer),
count = count + 1;
fprintf (1, '%d(%d) = %$d(%d)\n', test_ids (i), i,
train_ids (answer) , answer) ;
end
end
$fprintf(l, ' (vectors used: %d) ', max_ev);
$fprintf (1, 'percent incorrect: %d / %d = ', count,

train_num) ;
$fprintf (1, '%.2f%%\n', (count/train_num) * 100);

fprintf (1, '%d,%.2f\n', max_ev, (count/test_num) * 100);
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function [firsthalf, secondhalf]l=
split_string(p_string,p_delim)

o

purpose: plit a string into two halves
based on the delimiter.

00 6P o0

o

Inputs:
p_string: string to be split
p_delim: delimiter

P o0 of

o

Outputs:
firsthalf: string before delimiter
secondhalf: string after delimiter

o o

find the location of the delimiter.
_delim = strfind(p_string,p_delim);

o°

o)

% make sure that the delimeter was found
if isempty(n_delim)

error('Delimeter was not found in string');
end;

firsthalf = p_string(l:n_delim-1);
secondhalf = p_string(n_delim+1l:length(p_string));
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