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ABSTRACT

FACE RECOGNITION USING KERNEL
PRINCIPAL COMPONENT ANALYSIS

By
Timothy Kevin Larkin

Current methods of face recognition use linear methods to extract features. This

causes potentially valuable nonlinear features to be lost. Using a kernel to

extract nonlinear features should lead to better feature extraction and, therefore,

lower error rates. Kernel Principal Component Analysis (KPCA) will be used as

the method for nonlinear feature extraction. KPCA will be compared with well

known linear methods such as correlation, Eigenfaces, and Fishertaces.
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CHAPTER 1

INTRODUCTION

Face recognition is the task of matching an unlabeled image of a face, to a face

in a set of labeled face images. The main advantage of face recognition as a

biometric is that it requires no interaction from the subject. This allows a subject

to be identified without their consent or knowledge. In light of September 11,

2001, this has become a very valuable tool. Face recognition systems are being

deployed throughout airports and city streets [7] in order to help law enforcement

personnel to locate potential threats.

Unfortunately the task of face recognition, while simple for humans, is

rather complex for computers. Commercial systems that have been used to date

have been less than successful because of too many shortcomings [9]. By

providing too many false positives, the systems become useless because

security personnel have too much to check and eventually they will ignore them.

There are numerous variations in images of faces that can increase the

difficulty of face recognition. All the variations can affect the image in different

ways and cause recognition to be inaccurate. One of these variations is due to

lighting. Variation in lighting can often drastically change one's appearance

depending on the source of the light. As stated in [10], "the variations between

the images of the same face due to illumination and viewing direction are almost

always larger than the image variations due to change in face identity." Lighting

changes depend on two factors: one is the direction of the light and the other is
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the intensity. Intensity can cause images to become washed out if it is high, or if

the intensity is too low then the images will appear very dark, causing many

features to become indistinguishable. Figure 1.1 shows some examples of

lighting changes from the Yale face database [4].

Another variation is due to facial expression. Different facial expressions can also

cause changes to the face that could result in incorrect classification. Different

expressions cause different portions of the face to become distorted. Figure 1.2

shows some examples of a subject with different expressions from the Yale

database.
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Occlusion can also cause problems with face recognition. This could be the

result of extra clothing worn during winter, such as hats and scarves, or

something as simple as glasses. Figure 1.3 has examples of occlusion occurring

from glasses from the AT&T face database [5].

Another possible problem may be caused by the angle the face is at relative to

the camera. The face might be tilted in any number of directions as well as in

varying degrees. Figure 1.4 has some examples of variations due to face tilts

from the AT&T database.
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a hairstyle, or wearing a simple disguise. It could also be the result of something

more drastic, like plastic surgery.

Face recognition also has many ethical problems. Because cameras are

becoming less expensive, they are being placed in increasingly more places.

Face recognition allows law enforcement to not only see what is happening, but

who is doing it. This might raise fears of a "Big Brother" type of society where the

government knows where individuals are at all times. There are also complaints

that the current inaccuracies do more harm than good. The American Civil

Liberties Union (ACLU) has made public their opinions about current systems [8].

The belief is that if security personnel rely fully on inaccurate systems, then

potentially obvious warnings will be overlooked. While this is true for inaccurate

systems, a system that is accurate would be invaluable to law enforcement.

Face Recognition can also be used for security clearance, which does not

have the same ethical issues as using it for locating individuals in a crowd.

Besides its shortcomings and ethical issues, face recognition has enough

positive qualities to warrant its study.

1.1 Objective

The objective of this paper is to determine if using the nonlinear Kernel PCA

(KPCA) method as described in [3] will provide better accuracy in face

recognition than traditional linear methods such as PCA [1] and FLD [2]. These

various methods will be presented along with their respective results.



5

1.2 Background Information

The results were gathered based on testing against two different databases,

using two different testing strategies on each database for a total of four result

sets for each of the four algorithms. This first method of testing was to split the

database into two halves. The first half is the training set and the second half is

the testing set; this will be called the random testing strategy. The random

strategy was designed to see how the algorithms will perform on a small set of

training images, which does not contain all possible variations of the subjects.

The second testing strategy is to use the leave-one-out strategy [2]. In this

strategy, all the images are in the training set except the image currently being

tested. This gives a larger training set, with more images trained per subject,

making the task of recognition easier than with the random testing strategy.

The first database is the AT&T face database [4]. This database

comprises ten images of each of 40 different subjects, for a total of 400 images.

Each image is 92 x 112 pixels in size for a total of 10,304 pixels. For the random

testing strategy, the test and training sets are equal halves, each containing five

images of all 40 subjects, for a total of 200 images each. For the leave-one-out

strategy, there are 399 training images and one testing image. Each subject is

trained with ten images, except the testing subject, who only has nine training

images; the tenth image is used for testing. All images were scaled by a factor of

1/16, for time considerations. Figure 1.5 is a snapshot of all the images in AT&T

database.
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The second database is the Yale face database [4]. This database

contains 165 images of 15 subjects, each in 11 varying conditions. Each image

started out at a size of 320x243 pixels. These images contained a lot of white

space in the background and the faces were not centered. Because of this, they

were cut to the size of 174x242 pixels and converted to 256 color grayscale PGM

files, with each face centered within the image. The different conditions include

facial expressions (happy, surprised, winking, sleepy, sad), lighting direction

(center, right, left), and occlusions (glasses, no glasses). For the random testing

strategy, four images of each of the 15 subjects were randomly chosen as the

testing images, for a total of 60 testing images. This leaves seven images per

subject for training for a total of 105 training images. For the leave-one-out

method, each subject had 11 training images except the testing subject, who had

ten training images with the 11 th image being used for testing. All images were

scaled by a factor of 1/36, for speed considerations. Figure 1.6 has some

examples of the images that were resized and converted.
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The reason for using two different databases was to test how the different

algorithms performed over different types of data. The images in the AT&T

database have a small range of variation in them. The images have slight angle

changes, small expression changes, and occlusion changes due to glasses

being worn only sometimes by certain subjects. The images in the Yale

database have much larger variations due to facial expression and lighting.

As noted above, the images in both databases were scaled down from

their original size for speed considerations. Note that not only does scaling down

the images change the speed of recognition, it also impacts the effectiveness.

Table 1.1 shows the error rates for the Eigenfaces algorithm using the random

testing strategy, 40 components, and differently scaled images from the AT&T

database.
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The error rate is the number of incorrectly classified test images divided by

the total number of test images. Because the variations in size cause changes in

accuracy, it was necessary to make all tests on one database to use the same

size images.

All coding was done using Matlab from Mathworks, which provides

powerful matrix and image manipulation tools that made coding and testing much

easier.



CHAPTER 2

CURRENT METHODS

There are currently numerous ways to approach the problem of face recognition.

One of the simplest methods is correlation or the nearest neighbor method.

While correlation may work fairly well in idealized conditions, it does have a

number of serious drawbacks, most important of all being a large recognition

time. Recognition time is the time required to classify a test image. The

Eigenfaces method uses Principal Component Analysis (PCA) to transform an

image into a lower-dimensional subspace while still retaining the face differences

in the new lower-dimension space. By lowering the dimension, the cost of

performing the recognition is significantly reduced when compared with

correlation. One of the problems with Eigenfaces is that it does not take class-

specific information into account and thus it maximizes the scatter over all of the

classes [2], where a class is all the images of a particular subject and scatter is

the variations between images or sets of images. In doing so, it retains

differences in facial expression and lighting that should be ignored for the

purpose of face recognition. The Fisherfaces method seeks to correct this

problem by using the Fisher Linear Discriminant (FLD) to select the principal

components such that "the ratio of the between-class scatter and the within-class

scatter is maximized" [2]. This chapter will present the three algorithms in detail

and present the results for each one, using both databases and both testing

strategies.

10
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2.1 Correlation

The correlation method uses a Euclidian distance between the training and test

images in height x width dimension. To do this, the training images are converted

into column vectors of size height x width. Each test image is then converted into

a column vector of the same size and the label of the training image that is the

nearest in the image space, is used as the label for the test image. Using the

random testing strategy with the AT&T database, the correlation method

performed with 92% accuracy, classifying 16 out of 200 incorrectly. Using the

leave-one-out method and the AT&T database, correlation performed with 97.5%

accuracy, incorrectly classifying ten of the 400 images. When using both

methods, the images that resulted in errors mostly had features that were similar

to other subjects. In particular, subject 40 and subject 5 closely resemble each

other. Some others had similar facial hair and glasses. Figures 2.1 — 2.4 are

examples of the incorrectly classified images using the random testing strategy.
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With the Yale database, using the random testing strategy, correlation had

83.3% accuracy, incorrectly classifying ten of the 60 test images. With the leave-

one-out strategy, correlation had 83% accuracy, incorrectly matching 28 of 165

test images. When examining the error images for both methods, it becomes

obvious that lighting accounts for most of the error. 90% (9/10) of the errors using

the random testing strategy, and 93% (26/28) for the leave-one-out strategy,

were due to lighting changes. Figures 2.5 and 2.6 are examples of the incorrectly
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classified images from the Yale database using the leave-one-out testing

strategy.

Although correlation is fairly accurate in simple situations, it does have

some disadvantages. It requires a large training set, and variations in lighting

cause problems. This could be solved by having training images that have

examples of all possible lighting conditions, but this would be difficult to obtain as

well as requiring a large amount of storage space. More images would also

cause larger recognition times because there would be that many more images

to compare against [2].
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2.2 Eigenfaces

The Eigenfaces method as posed in [1], attempts to use dimension reduction to

greatly improve upon the speed of recognition. With correlation, finding the

nearest neighbor (training image least distance from the test image) means

computing distances in the width x height dimension, which for even small

images, is an expensive operation. Using PCA, the Eigenfaces method extracts

the principal components from the covariance matrix by finding its largest

eigenvalues. Let M be the number of images in the training set, and let vectors

be the images in the training set. Note that each rib is a vector of

width x height dimension. We also define

where On = r,, - LP and the superscript T denotes transpose. Once the covariance

matrix has been calculated, the next step is to compute the eigenvalues and

eigenvectors. A value M 1 is chosen for the number of components to be used.

The M 1 eigenvectors with the largest corresponding eigenvalues are used as the

principal components. This new lower dimension is known as "face space". The

eigenvectors are known as "Eigenfaces" due to their resemblance to human

faces. Below are some examples of the average image and Eigenfaces

generated from the AT&T and Yale databases.
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Once the principal components are chosen, the learning set is projected

into the new lower-dimension space and is stored; these are the values that will

be checked against during the recognition step. When an image is being tested,

it is first projected into the lower-dimension space and then checked against the

training set projections, and the nearest neighbor is used as the match.

The performance of the Eigenfaces method on the AT&T database

matched or exceeded that of the correlation method, but did it in much less time.

The correlation took about 2 minutes to classify 200 images using the random

testing strategy on the AT&T database, while the Eigenfaces method only took

about ten seconds. For the random testing strategy using 90 components, the

Eigenfaces method had an error rate of 8% which is exactly the error rate of the

correlation method. Figure 2.11 shows the error rates as the number of

components is increased.
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Figure 2.12 shows one of the test images that was incorrectly classified

along with the five nearest training images. The second nearest match was in

fact correct, but the other four were not. Out of the 17 incorrect images in this

test, only 10 had the correct match somewhere in the five nearest matches. This

example was done using 40 components.
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Figure 2.13 is another example using 40 components, that shows the

correct answer nowhere in the five nearest training images. It is not until the 17 th

nearest match, that the correct classification is found. The nearby images were

all similar in appearance. Subject 2, who appears in matches one, two, and five,

has similar hair and facial structure. Subject 15, who appears in matches three

and four, has a similarly shaped head as well as similar eyes. The skin color in all

five incorrect matches is also close to the test subject.
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For the leave-one-out strategy, the Eigenfaces method outperformed the

correlation method. Using 40 components, the Eigenfaces method incorrectly

classified six out of the 400 images for an error rate of 1.5%. All of the test

images that were incorrectly classified using the leave-one-out strategy with the

Eigenfaces method were also incorrectly matched using the correlation method.

All involved subjects looked similar enough that their features could not keep the

classes separate in the M 1 dimension space. Figure 2.14 is a graph showing the

error rates using an increasing number of components.



20

As with the AT&T database, the different testing strategies for the

Eigenfaces method on the Yale database performed about equal to the

correlation method. For the random testing strategy, Eigenfaces had an error

rate of 15.0%, incorrectly matching ten out of the 60 test images. Figure 2.15 is a

graph showing the performance using an increasing number of components.
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For the leave-one-out strategy, an additional step was taken. It has been

shown that ignoring the three highest ranked eigenvectors helps reduce error

from variations in lighting [2]. This happens because the first three eigenvectors

tend to account for most of the variations from lighting. The method was done

along with the normal algorithm. While the normal version performed equal with

correlation, leaving out the first three components improved the accuracy

considerably. Leaving out the first three components achieved an error rate of

10.9% (18/165), while using them achieved an error rate of 16.9% (28/165).

Figure 2.16 shows the performance of both Elgenfaces methods and how they

perform with an increasing number of components.
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Figure 2.17 shows an example of one of the incorrect classifications and

its five nearest matches, when using the Eigenfaces method and leave-one-out

testing strategy.
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The subject in the test image only wears glasses for one of the pictures in

the database, which means that none of the training images have him wearing

glasses, so the nearest matches are to subjects who are wearing glasses who

also have a similar appearance. The subject who appears in the first, third, and

fifth image has similar features, which accounts for the matches without glasses.

Figure 2.18 is an example of another incorrect match using the Eigenfaces

method on the Yale database. This time, the correct subject appears twice in the

first five matches. Hair and skin color seemed to be the most decisive features

for this image. The first match has similar skin tone; the second subject has

similar hair as well as facial hair. The third match is the correct subject. What is

interesting is that it matched the only image of the subject with glasses.
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Overall, the Eigenfaces method performed as well and in some cases,

better than, the correlation method. Its main advantage over the correlation

method is space and time. Instead of storing whole images, only the projected

vectors need to be stored for the purpose of recognition. This makes it more

feasible to store for each subject many different variations, such as lighting and

facial expressions. With both databases, the images that correlation incorrectly

classified, the Eigenfaces method also misclassified.

2.3 Fisherfaces

While the Eigenfaces method is about as accurate as the correlation method and

is much faster, there is still much room for improvement. The Fisherfaces

method proposed in [2] seeks to improve upon the Eigenfaces method. One of

the main problems with the Eigenfaces method is that it "yields projection

directions that maximize the total scatter across all classes"; thus, it "retains

unwanted variations due to lighting and facial expression" [2]. The Fisherfaces

method tries to correct this by selecting a covariance matrix "in such a way that

the ratio of the between-class scatter and the within-class scatter is maximized"

[2]. The between-class scatter is defined as
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where X is the set of all classes, p i is the average image for class Xi, N1 is the

number of images in class Xi, p is the average of the training images, and c is the

number of classes. Once these are computed, the Eigenfaces method is used to

create the component matrix Wpca, using an M 1 value of N — c. Then the FLD

matrix is computed as follows:

Once Copt is found, the images in the learning set are projected into the lower-

dimension space, as was done with the Eigenfaces method. The images below

are some examples of the Fisherfaces created via this algorithm.
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The performance of the Fishertaces algorithm on the AT&T databases

using both testing strategies, were slightly worse than the Eigenfaces and

correlation methods. Using the random testing strategy, the lowest error rate that

was achieved was with 39 components and that was 9.5%. Figure 2.21 shows

the performance using an increasing number of components.

Figure 2.21 Experimental results for the Fishertaces algorithm using the random
testing strategy. It reaches its lowest error rate at 39 components with an error
rate of 9.5%.

The results for Fishertaces using the leave-one-out strategy were similar

to those of the random strategy. The results were slightly worse than the other

algorithms, achieving the lowest error rate of 2.0% using 39 components. Figure

2.22 shows the performance of the Fisherfaces algorithm using the leave-one-out

strategy.
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Upon examining the results of the Fishertaces experiments, it becomes

clear that this method does a very good job of separating the different classes. In

the cases that classification is correct, all of the nearest neighbors to the test

image will also be from the correct class. This also means that when a test image

is incorrectly classified, it will have nearest neighbors that are all of the same

incorrect class. Figure 2.23 is an example of an incorrectly classified test image.

In this case, the first ten nearest matches were all from the same incorrect class.

It was not until the 15 th match that the correct classification was found. What this

shows is that the images within the classes are more tightly clustered, which

should lead to better recognition rates.



Figure 2.24 is an example of the same testing subject as in Figure 2.23,

but in this case the image was classified correctly. In this case, the first nine

nearest matches are from the same correct class. The nearest images are not

only correct, but they also contain different variations such as lighting, tilts, facial

expressions, and glasses.
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Fishertaces performed considerably better than the other algorithms when

testing on the Yale database. This is as expected as Fisherfaces was designed

to handle within-class variations better than the other algorithms. Using the

random testing strategy with only ten components, the Fisherfaces algorithm had

a low error rate of 11.7%, which is 4% lower than the other algorithms. Figure

2.25 shows the results of the random testing using an increasing number of

components.

Figure 2.25 Experimental results for the Fisherfaces method using the random
testing strategy.

With the leave-one-out strategy, Fisherfaces performed slightly better than

the Eigenfaces method when the first three components are ignored. The error

rate of 10% was achieved using 20 components. Figure 2.26 shows the results

for the leave-one-out testing strategy.
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Figure 2.26 Experimental results for leave-one-out strategy using Fisherfaces.

Even with examples of the more extreme variations of the Yale database,

the Fisherfaces algorithm still managed to keep the classes more tightly

clustered than the other algorithms. Figure 2.27 shows an example of a correctly

classified image and its five nearest matches when using the leave-one-out

strategy.
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Again, in the case that an image was incorrectly classified, it was matched

to numerous images of the same incorrect class. Figure 2.28 shows one such

example where the same test subject that appeared in Figure 2.27 is incorrectly

classified using the leave-one-out strategy.

To contrast this, Figure 2.29 shows the five nearest neighbors for the

same test image except using the Eigenfaces method. What is seen is that the

test image is nearest to all images that have a right light source.
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Overall, the Fishertaces algorithm performed as well and, in the case of

the Yale database, better than the Eigenfaces and correlation methods. This is

because the algorithm was designed to take advantage of the known within-class

differences to extract features that better represented the classes.



CHAPTER 3

KERNEL PCA

3.1 Description

PCA attempts to extract linear features from the input data set by means of "an

orthogonal transformation of the coordinate system" [6] in which the data is

described. Because PCA is a linear technique, it ignores any possible features

that exist in nonlinear feature space [6]. Kernel Principal Component Analysis

(KPCA) "computes the principal components of the data set mapped nonlinearly

into some high dimensional feature space F' [3]. Using the algorithm as

described in [3], the feature space is calculated in the following way. Given a set

of centered observations(I m i x, = 0 ), Lk, where k=1...M, the traditional way of

formulating the covariance matrix using PCA is

Now the nonlinear feature space F must be defined. F is related to the input

space by a possibly nonlinear map
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where • denotes dot product. Thus the KPCA problem is determining k to satisfy

where a denotes the column vector with entries a, ,•••, amp To find the solutions of

(3.7), one solves

Once this equation has been solved, the images can be projected into the lower-

dimensional space, using the top M 1 eigenvectors. Then the testing images are

projected into the lower-dimension space and using the nearest neighbor

method, they are classified.

To compute the dot products, kernel representations are used. Kernel

representations are functions that allow the value of the dot product in F to be

computed without carrying out the map (1) [3]. There are a number of different

kernels that can be used. First is the Polynomial kernel defined as
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where d is the degree and when d is equal to one, this algorithm will be

equivalent to the Eigenfaces method. Other possible functions are the radial

basis function (RBF)

where 0 and ware constants.

For the purposes of testing, only the polynomial, using degrees two

through six, and the RBF kernel functions were used. The scaling on the images

when used with the KPCA became very important. As the degrees of the

polynomial kernel function got larger, so did the values. Eventually the values

reached infinity at which point the calculations returned imaginary values for the

eigenvectors. For the RBF kernel function, if the value for a was too large or too

small, the exp function would return ones and zeroes, which causes the

eigenvector calculations to be incorrect.

3.2 Results

The performance of the KPCA algorithms on the AT&T database using both

testing strategies was slightly worse than the Eigenfaces and correlation

algorithms. With the random testing strategy, the lowest error rate achieved was

8.5% which used the RBF kernel function and 80 components. Figure 3.1 shows

the performance for the kernel functions using the random testing strategy on the

AT&T database.
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The RBF function had the lowest error rates with the second degree

polynomial being close to it. From then on, the higher the degree, the larger the

error rate.

The leave-one-out testing strategy yielded similar results to the random

testing strategy. The lowest error rate of 1.5% was achieved using the RBF

kernel function and 40 components. This error rate is equivalent to the error rate

achieved by the Eigenfaces algorithm. Figure 3.2 shows the results for the KPCA

algorithm using the leave-one-out testing strategy on the AT&T database.
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The nearest matches for KPCA were similar to those of the Eigenfaces

method. The classes are not as closely clustered as they were with the

Fisherfaces method. Figure 3.3 shows an example of an incorrect classification

and its five nearest neighbors. The features that seem to have the largest effect

are the hair, skin color, and pronounced cheek bones. In the training image that

is correct (5 th), the subject is tilting her head in the same way that she is in the

test image.



38

The performance of KPCA on the Yale database was about equal to the

Eigenfaces and correlation Algorithms. The random testing strategy showed that

the kernel function used, and the number of components used, played little part

in the results as most of the error rates quickly converged to 16.7% after ten

components. Table 3.1 shows the results for KPCA using the random testing

strategy on the Yale database.
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The results of the leave-one-out strategy on the Yale database are very

similar to what they were on the AT&T database. Once again the RBF kernel

function had the lowest error rate, with the second-degree polynomial having the

second lowest, and then getting worse as the degree increased. Figure 3.4

shows error rates using all the kernel functions and an increasing number of

components.

Figure 3.5 is an example of lighting causing complications for the KPCA

algorithm. Like the Eigenfaces algorithm, KPCA does not deal well with extreme

light changes. Examining the results in Figure 3.5, it would seem that the shadow

played a large part in classification, as it looks the same in all the images and

accounts for a large percentage of the image.
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Overall, the testing of the two databases using the two different strategies,

KPCA performed about equally with the Eigenfaces method. This may have

occurred because with the given training sets, the linear methods were able to

capture most of the useful features; thus, the nonlinear extraction was not able to

capture any new and useful features and the recognition rates were not any

higher. As Figure 3.5 shows, the KPCA algorithm did not handle the lighting very

well. This could be partly solved by better cutting of the images to remove more

of the background as well as clearing any background pixels.



CHAPTER 4

SUMMARY

Kernel PCA provides a way to extract nonlinear features. This should have led to

improved recognition rates over classical linear-based algorithms. Both tests on

the AT&T database showed that at best, the KPCA algorithm achieved equal

error rates with the Eigenfaces method, but not better. Tables 4.1 and 4.2 show

the best results for each of the algorithms on the AT&T database.

In both tests, the lowest error rates were achieved using the Eigenfaces

method. Because the AT&T database contains only small variations, the

Fisherfaces method was not able to improve on the Eigenfaces method, and in

this case, it was slightly worse.
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Testing on the Yale database led to the same outcome as the testing on

the AT&T database. Once again the KPCA algorithm was only able to achieve

equal error rates with its linear counterpart. In the case of the Yale database, it

becomes obvious that the Fisherfaces does a much better job of handling more

extreme variations in the images, especially changes due to lighting. Tables 4.3

and 4.4 show the best results achieved by each algorithm for the tests done on

the Yale database.
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4.1 Future Work

The databases used in these experiments are both small and contain a large

number of faces per subject, which makes the task of recognition easier. They

also do not contain any large facial occlusions, such as scarves or hats. Using a

larger database with more varied images of each subject might result in different

outcomes.

Since Fishertaces performed the best of all the algorithms on the Yale

database, it would make sense to pursue nonlinear generalizations of Fisher's

discriminant as described in [6]. Using class knowledge would allow the kernel to

extract nonlinear features that better represent the classes.



APPENDIX A

CODE

This appendix contains the code listings required to replicate the results put forth

in this paper. Below is an explanation of what each of the included files does.

Eiqenfaces Roads:: takes an input training set of images and the number of

components to use and returns the highest ranked eigenvectors.

Eigenvectorss: computes eigenvectors of the given covariance matrix.

Find nearests: finds the training image nearest to the given test image and

returns the id number and the distance.

Fisher loads: Takes an input of training images and number of components

and uses the Fisherlaces algorithm to compute eigenvectors.

Kernels: computes kernel representation using given kernel function.

Loo.m: creates leave-one-out test data from a given set of images.

Run cors: runs correlation algorithm and outputs results.

Run eigenfacess: runs the Eigenfaces method and outputs results.

Run fishers: runs Fishertaces algorithm and output results.

Run KPCAs: runs KPCA algorithm and outputs results.

Split strings: splits a given string on given delimiter and returns both halves of

string.
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num_good = 0;
for i = 1:nexamp

Vectors(:,i) = Vectors(:,i)/norm(Vectors(:,i));
if Values(i) < 0.00001

% Set the vector to the 0 vector; set the value to 0.
Values(i) = 0;
Vectors(:,i) = zeros(size(Vectors,1),1);

else
num_good = num_good + 1;

end;
end;

if (numvecs > num_good)
fprintf(1,'Warning: numvecs is %d; only %d

exist.\n',numvecs,num_good);

numvecs = num_good;
end;

Vectors = Vectors(:,1:numvecs);
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function [answer, minvalue]=find_nearest(Images,test_image)
0

0

% Purpose: find the nearest neighbor to test_image
in Images.

0
0

% Inputs:
Images: matrix of training images
test_image: test image.

0

% Outputs:
Answer: the location in Images of the nearest

neighbor
minvalue: the distance between test & match

0

numberofimages = size(Images,2);
image_size = size(Images,1);

answer = 0;
minvalue = 9999999999999999999999999999;
min_dist=0;

for i = numberofimages
% create array to hold distance calculations
dist = zeros(image_size,l);

% calcuate the distance at each point.
for j = 1:image_size

dist(j,1) =
(Images(j,i) - test_image(j,1)) *
(Images(j,i) -test_image(j,1));

end;

% compute the overall distance and store it.
min_dist = sgrt(sum(dist));

if min_dist < minvalue
minvalue = min_dist;
answer = i;

end;
end;
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function run_cor(train_file, test_file, scale)
00
0
0

% Purpose: run correlation procedure and print out
% the number of errors.
00

% Inputs
train_file: listing of files to use for training
test_file: images to use for testing
scale: scale of images.

0
0

00

% load training data.
[Images,w,h,ids]=load_training(train_file,scale);
[test_images,w,h,testids]=load_training(test_file, scale);

% get the number of items in the test file.
numberofimages = linecount(test_file);

wrong = 0;
% loop over all the images in the test set.
for i = l:numberofimages

test_image = test_images(:,i);
current_id = testids(i);

[answer, distance] = find_nearest(Images, test_image);

if current_id -= ids(answer)
wrong = wrong + 1;
fprintf(1,'correct id = %d (%d) : , current_id, i);
fprintf(1,'matched id = %d (%d)\n',

ids(answer),answer);
end;

end;

% output results
fprintf(l, 'percent incorrect: %d / %d = , wrong,

numberofimages);
fprintf(l, '%.2f%%\n', (wrong/numberof images) * 100);
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function run_fisher(train_file, test_file, I, scale)
00

% Purpose: run Fisherfaces method.
0
0

% inputs:
% training = name of file containing list of training files
% testing = name of file containing list of testing files
% I = the number of eigen vectors to use.
00

% load training data.
[Images,w,h,ids]=load_training(train_file,scale);
[test_images,w,h,test_ids] =

load_training(test_file,scale);
numofimages = size(test_images, 2);

[psi,vecs,fs] = fisher_load(Images,I,w*h, ids);

wrong = 0;
% loop over all the images in the test set.
for i = 1:numofimages

% read in images and reshape it as needed.
test_image = test_images(:,i);
current_id = test_ids(i);

% find the nearest neighbor in facespace.
[answer, distance, close] = nearest_neighbor
(fs, project_image(vecs,(test_image-psi),I) );

% check if answer is correct.
if current_id -= ids(answer)

wrong = wrong + 1;
fprintf(1,'correct id = %d (%d) : 	 current_id, i);
fprintf(1,'matched id = %d (%d)\n',
fprintf(1,'%d (%d)\n\n', ids(close(5,2)), close(5,2));

end;
end;

% output results
fprintf(l, '(vectors used: %d) 	 I);

fprintf(l, 'percent incorrect: %d / %d = , wrong,
numofimages);

fprintf(l, 1 %.2f%%\n', (wrong/ (numofimages)) * 100);
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