
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2003

Towards digital library service integration Towards digital library service integration

Prateek Shrivastava
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shrivastava, Prateek, "Towards digital library service integration" (2003). Theses. 638.
https://digitalcommons.njit.edu/theses/638

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F638&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F638&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/638?utm_source=digitalcommons.njit.edu%2Ftheses%2F638&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TOWARDS DIGITAL LIBRARY SERVICE INTEGRATION

by
Prateek Shrivastava

Digital Library Service Integration (DLSI) aims to provide a systematic approach in

integrating the services and collections of National Science and Digital Library. The

National Science and Digital Library collections can share the services among themselves

in a totally integrated environment. Collections as such will require no change to plug

into the DLSI architecture. Collections will keep using the services of NSDL in the

similar manner as before. These services will in turn pass few parameters to the services

of DLSI. With the help of these parameters, wrappers will fetch the details and priority of

the users. These wrappers will be using the services of Search and Discovery module,

Metadata Management services, and Access Management services. Users will see a

totally integrated environment. They will see their digital library system just as before. In

addition to that, they will find some extra link anchors on the document. These links

serve to provide the supplemental information or arrange the information in the user

preferred way. For this matter, the DLSI maintains basic user's information and

preferences. Other contributions include incorporating collaborative filtering for

customizing large sets of links, and advance lexical analysis tool to identify the objects of

interest in a document.

TOWARDS DIGITAL LIBRARY SERVICE INTEGRATION

by
Prateek Shrivastava

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

May 2003

APPROVAL PAGE

TOWARDS DIGITAL LIBRARY SERVICE INTEGRATION

Prateek Shrivastava

Dr. Michael Bieber, Thesis Advisor 	 Date
Associate Professor, Information Systems Department.
College of Computing Science, NJIT

Dr. Il Im, Committee Member 	 Date
Assistant Professor, Information Systems Department.
College of Computing Science, NJIT

pi. Y. F Brook Wu, Committee Member	 Date
Assistant Professor, Information Systems Department.
College of Computing Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Prateek Shrivastava

Degree:	 Master of Science

Date:	 May 2003

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer and Science,
New Jersey Institute of Technology, Newark, NJ, 2003
GPA: 3.91

• Bachelor of Engineering in Electrical and Electronics,
Karnataka Regional Engineering College, Surathkal.
Mangalore University, India, 1999
GPA: 3.5

Major:	 Computer Science

iv

I dedicate this thesis to my Dad, Mom, Brother, and Sister-in-Law

v

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Dr. Michael Bieber, who not

only served as my research supervisor, providing valuable and countless resources,

insight, and intuition, but also constantly gave me support, encouragement, and

reassurance. Special thanks are given to Dr. Il Im, and Dr. Yi-fang. Brook Wu for

actively participating on my committee.

I also gratefully acknowledge support from National Science Digital Library for

giving us this opportunity, and National Science Foundation for funding the research

project of which this thesis is a part.

I would also like to thank Nkechi Nnadi, Xin Chen, Himanshu Shah, and Dong-ho

Kim for their special support to the project.

vi

TABLE OF CONTENTS

Chapter	 Page

I INTRODUCTION 	 1

	

1.1	 Objective 	 1

	

1.2	 Background Information 	 2

I.2.1 History of NSDL 	 2

1.2.2 History of Digital Library Service Integration 	 3

2 DIGITAL LIBRARY SERVICE INTEGRATION 	 4

	

2.I	 Core Concept 	 4

2.I.1 Lexical Analysis 	 7

2.I.2 Filtering and Rank Ordering 	 8

	

2.2	 DLSI at NSDL 	 I1

	

2.3	 DLSI with other repositories 	 I2

3 DESIGN AND IMPLEMENTATION 	 16

	

3.I	 Wrappers 	 I6

3.1.1 Search and Discovery 	 18

3.1.2 Access Management 	 24

3.1.3 Metadata Management 	 28

4 FUTURE ENHANCEMENTS 	 39

5 CONCLUSIONS 	 41

APPENDIX A XML schema format for validating OAIPMH requests 	 43

APPENDIX B XML schema for validating Unqualified Dublin Core metadata 	 56

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX C HTML to XML conversion 	 58

REFERENCES 	 79

viii

LIST OF TABLES

Table	 Page

3.1	 Description of I5 Element types of Dublin Core 	 31

ix

LIST OF FIGURES

Figure Page

2.1 A mockup of a digital library document with DLSI support 	 6

2.2 HyNIC repository without DLSI Integration 	 14

2.3 HyNIC repository integrated with DLSI 	 15

3.I DLSI Architecture 	 17

3.2 NSDL Search Page 	 18

3.3 NSDL Search page with DLSI link 	 19

3.4 Relationship Analysis tool within web page 	 20

3.5 Role of SDLIP in integrating DLSI search and discovery wrapper with NSDL
Search and discovery wrapper 	 23

x

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to develop a service level infrastructure for digital libraries

for integrating collections and services, and automatically generating links among related

elements within them. When the DLSI service is plugged in with NSDL, collection

providers just need to provide their content to the NSDL repository. On call, the DLSI

will issue some commands through the wrappers to the services or collections, which will

return the output in a certain format. The DLSI also automatically fetches the data from

the repository and seamlessly integrate it with other collections and services. The

developers at the collection provider's end will be responsible for managing the data such

as adding new data to the collection, purging irrelevant data, and modifying the existing

data. The DLSI will always fetch the most recent records from the collection using date

stamp and additional parameters. These developers can also plug in additional services

such as user-declared hypermedia links and guided tours referencing any repository

element of their choice.

This infrastructure is called as DSLI (Digital Library Service Integration) ([Bieber

et. al]). The DLSI when formally launched can form the core of a vibrant virtual

educational system by supporting a broad range of services. It will be like "One Library,

Many Portals". As a further clarification, it means that over a period of time DLSI will

fetch the data from different collections all over the world and present it to the user in a

single document. Thus for users, it is one library that they are accessing, but the contents

1

2

come from a variety of sources. The DLSI as a service also uses other NSDL services.

Three services that DLSI will be using are: Search and Discovery module, Access

management service, and Metadata management service.

1.2 Background Information

1.2.1 History of NSDL

([http://nsdl.org/tag.4b5181e81f2bd62a.render.userLayoutRootNode.uP?uP_root=root&u

P_sparam=activeTab&activeTab=7]):

National Science Digital Library officially launched its portal www.nsdl.org on

December 3, 2002. Initial Development of National Science Digital Library (NSDL)

program began in late 1995 with an internal concept paper for the National Science

Foundation (NSF) Division of Undergraduate Education. In I996, NSF released a report

about ways to improve undergraduate science, technology, engineering, and mathematics

(STEM) education. It recommended establishing a national digital library that would

constitute an online network of learning environments for improving teaching and

learning for STEM education at all levels. Beginning in 1998, two rounds of prototype

projects were supported through special initiatives conducted under the auspices of the

multi-agency Digital Libraries Initiative - Phase 2 (DLI-2) program. The NSDL program

held its first formal funding cycle during fiscal year 2000.

To date, 119 projects have been funded to create collections and services for

teacher and learners at all levels, and perform targeted research in digital libraries and

their application to education. The NSDL program is an unusual program for NSF in that

its projects are engaged in building an enterprise much larger than the object of any one

3

grant. Most of these projects focus on collection and service development, while the Core

Integration project is providing organizational and managerial functions of the digital

library. The NSDL is emerging as a center of innovation in digital library as applied to

education, and community center for groups focused on digital-library-enabled science

education. Mission of NSDL is to build a comprehensive online source for science,

technology, engineering, and mathematics education.

The National Science Foundation predicts that over the time National Science

Digital Library will become the world's largest library of science, technology,

engineering, and mathematics information resources and services, as well as an online

network of learning environments and resources.

1.2.1 History of Digital Library Service Integration:

The project started with building of Dynamic Hypermedia Engine in the Collaborative

and Hypermedia laboratory at NJIT. The third version of Dynamic Hypermedia Engine

was released during the NSDL initial launch conference in December 2002 at

Washington D.C. The concept of DLSI started even before this engine was launched. The

concept of wrappers, which form an integral part of the DLSI project, was initiated in

Fall 2002. This wrapper forms the core of all the utilities provided by the DLSI. The

DHE is another integral part of the DLSI. DHE renders the anchors, also known as links,

to the web page on World Wide Web on the fly. It is also capable of generating other

hypermedia services within the application if basic material is provided by the resource

owner.

CHAPTER 2

DIGITAL LIBRARY SERVICE INTEGRATION

2.1 	 Core Concepts

The entire functionality of Digital Library Service Integration revolves around four

modules. They are:

1. Dynamic Hypermedia Engine

2. Core Integration Wrapper

3. Lexical Analysis Tool

4. Collaborative Filtering

This chapter will describe how users will interact with DLSI environment. It will also

explain how and where each of the modules is used in the user's navigation as he/she

continues through the journey within the DLSI environment. It will also describe the

DLSI infrastructure as a whole. It also explains the use of text analysis both to

supplement the links generated based on the system structure, and to supplement search

services. It also describes how collaborative filtering will customize the set of links

returned for each user. The users will interact with the DLSI in the same way as they

were previously interacting with their digital library before. It's just they need to launch

their digital library resource through DLSI system which as of now is this interface

(http://hynic.njit.edu/) . Through this system, they'll see additional link anchors in their

page. When they click on one of these supplemental anchors, users are presented with a

list of relevant links.

4

5

Figure 2.1 shows a mockup of a digital library document, superimposing two

possible sets of links for different elements: the concept "Plant Pathology" and the

document as a whole. If the user clicks on the anchor DLSI added to "Plant Pathology,"

DLSI would generate corresponding list of links with direct access to nine functions in

different collections and services relevant for this concept. If the user clicks on the

document information icon (in the top right-hand corner), DLSI would generate the

corresponding list of links to seven functions relevant for this document. The DLSI also

would filter and rank order the set of links generated to a specific user's preferences and

current task.

As Figure 2.I illustrates, DLSI automatically generates link anchors over

elements of the display screen, for which relevant services apply. For example, if a user

had created a comment about a document element or the element is the subject of a

guided tour, DLSI would place a link anchor over that element. Selecting the anchor

would display a list of relevant links DLSI has found for that element, including the link

to the comment or tour. The system marks entire screens and documents as a link anchor

if services apply to these as a whole. (Figure 2.1 illustrates this with an icon in the top

right-hand side of the screen.) For example, if the screen is part of a guided tour, or a

comment or discussion thread refers to it, then selecting the icon would lead to a list of

links leading to these.

6

Figure 2.1 A mockup of a digital library document with DLSI support.

Description: DLSI would automatically add link anchors, including an icon in the top right-hand corner for
the document as a whole. Choosing one prompts DLSI to generate a list of links. The figure superimposes
two possible sets of links for different elements: the concept "Plant Pathology" and the document as a
whole. Each link shows a display label describing the link, and the service or collection it leads to. Most
services and collections now are part of the NSF's National Science Digital Library system, and will
eventually be integrated through DLSI.

7

At this stage, it is also important to know that DLSI generates link anchors in two

ways. Initially, HTML, Word, or PDF are parsed through the wrapper. Wrapper on the

understanding of the structure of the document and its contents uses relationship analysis

to mark the tags of the user's interest and puts a link on it. Most of the anchors should be

identified in this manner, as this is the fastest way to parse a screen. This is the primary

method used by the DLSI. More details on this are provided in the 'Design and

Implementation' chapter.

2.1.1 Lexical Analysis

Another way to generate the link anchors is the use of lexical analysis. Lexical Analysis

determines "Element of Interest" using Noun Phrase Extractor. It then supplements this

element with the anchor tag. The DLSI wrappers perform another minor lexical analysis

when they parse documents and display screens to determine additional "elements of

interest", which the Integration Manager will supplement with DLSI link anchors. Noun

Phrase Extractor works this way: Tokenization is first performed on the document or

display screen. It then uses the WordNet lexical database

[http://www.cogsci.princeton.edu/~wn/] to assign part-of-speech tags to tokens. Finally, a

morphological and syntactic rule base is used to parse sentences and extract noun

phrases. The Noun Phrase Extractor extracts noun phrases in their root forms (this takes

care of morphological changes) from returned documents. These root form noun phrases

are then separated into two lists of phrases: those that are in the master thesaurus file and

those that are not. Any found in the master thesaurus will be made into supplemental link

anchors. All noun phrases found will be used for automatic concept hierarchy generation.

8

Glossaries and thesauri developed by domain experts are highly useful in

identifying meaningful keywords in documents. So far, Lexical Analysis group has

collected thesaurus entries from Medical Subject Headings (MeSH, available at National

Library of Medicine [http://www.nlm.nih.gov/mesh/download_mesh.html]), and ASIS

Thesaurus of Information Science [http://www.asis.org/Publications/Thesaurus

/isframe.htm] . The project team plans to collect many more in the future. These entries

are combined to form an integrated master file supplied to the Noun Phrase Extractor

when searching for noun phrases. Keywords and key phrases from participating

collections and services also will be added to this integrated master file.

Once, the "Elements of Interest" are fetched by parsing the page through wrapper

and by doing Lexical Analysis, it needs to sort the links out in preference with the user.

This is important, as parsing the page and Lexical Analysis could return back hundreds of

results. Therefore, the need for Filtering and Rank Ordering the links arise.

2.1.2 Filtering and Rank Ordering

The number of potential links that DLSI could generate for a particular element on a

screen could vary from several to well over a hundred, resulting in the well-known

hypermedia problem of cognitive overload (Conklin 1987; Halasz I988; Thüring et al.

I995). With a large number of links, filtering and ordering them is critical for effective

use. Filtering and rank ordering in DLSI poses several challenges. First, it should be

customized to each user's needs. Second, it should dynamically re-organize as the users

advance through the system. Third, for the same user, support for multiple needs must be

9

possible. A user may have several different tasks or needs and the links should be re-

organized depending on the user's current task.

The DLSI incorporates collaborative filtering to filter information based on

people's evaluations or behaviors. It generates recommendations using the following

algorithm (Kostan et al., I997; Herlocker et al., I999; Im & Hars, 2001):

Step 1: Calculate degree of similarity ("similarity index") between the current user and

other users.

Step 2: Identify a group of people ("reference group") who appear to share common

interests with the current user. Their evaluations (or clickstreams) will be used for

generating recommendations for the current user.

Step 3: Calculate estimated evaluations for items that the current user has not seen (or

evaluated). An estimated evaluation predicts the current user's evaluation on an item.

Step 4: Rank order the items according to the estimated evaluations and select the top n

items to recommend to the current user.

Collaborative filtering can customize the link set for each user. Two different

data in DLSI can be used for Collaborative Filtering — users' direct evaluations (user-

entered ratings) and indirect evaluations (click vs. non-click) on links generated by DLSI.

Users' direct evaluation is continuous data and indirect evaluation is binary data — visit

(click) vs. non-visit (non-click). Special Collaborative Filtering algorithms for users'

click stream data can predict the probability of a user's next click (Breese et al., I998;

Weiss & Indurkhya, 200I). This algorithm can be applied to DLSI to rank order the links

based on the "probability of click" (predicted relevance) of each link in a link set. The

probabilities are calculated based on the past behaviors of other users. Users' click data

10

can be collected automatically while users' direct evaluations need to be entered by users.

In this research, users' click data will be used as the primary data to filter the links

generated by DLSI. Users' direct evaluations will supplement this (Freund et al., 1998).

An interface is currently under development to collect direct evaluations.

In DLSI, each element class and instance of a class is assigned unique ID number,

which makes Collaborative Filtering integration possible. (Wrappers maintain unique IDs

on the documents they parse and their elements.) The Collaborative Filtering engine has

a separate database that stores users' click streams. Mutiple needs or multiple contexts of

a user can be supported with Collaborative Filtering by combining the Collaborative

Filtering algorithm with other context information, such as current task (Good et al.,

1999; Im & Hars, 2001). It has been shown that the accuracy and optimal configurations

of Collaborative Filtering system vary depending on user's needs (Im & Hars, 200I).

Collaborative Filtering treats different tasks separately and provides different

recommendations depending on the user and his/her current task.

In order to support mutiple contexts, the interface intends to ask users to

optionally enter their current task. They can choose one from a predefined list or add a

new one if it is not in the list. (DLSI's user preference module—part of the Integration

Manager—will manage this.) Thus, the link order very likely will vary for the same user

across task contexts. It is expected that rank ordering will improve user performance

because it reduces the time in searching for appropriate links. Collaborative Filtering and

Rank Ordering should also lead the user to his/her choice of item faster the before.

11

2.2 DLSI at NSDL

The NSDL consists of I19 projects of which most of them are collections. The DLSI is

not counted towards collections. It is basically a service that will operate on the

collections that reside in the NSDL repository. The positive aspect of DLSI is that, it will

not be operating in isolation. The DLSI, in co-ordination with other services of NSDL

can bring in lot of advantages to the collection and service provider. The benefits that

collections will derive by integrating with DLSI are:

• Users of a collection or service will have direct access to related collections and

services through DLSI linking. In effect, this enlarges the feature set of a given

collection or service. Users will now have anchor tags leading to the information

he/she wants from a wide gamut of collections.

• Collections and services will gain much wider use, because DLSI linking will

lead users of other services and collections to them. This will be quite

advantageous for the collection providers.

• It is known fact that people don't use the web search effectively. Also, if

presented with thousands of search results, the user tends to get lost. The DLSI

helps the users in a way by providing the anchor tags in accordance with their

preferences. In this way the user does not feel lost. The DLSI uses the services of

search and discovery module of NSDL to fetch the objects of desire and converts

it into the anchor tags.

• Similarly, users will become aware of a service or collection from seeing its links

included in DLSI's list of links when using other collections and services.

12

• Within a particular service or collection, DLSI gives the user direct, context-

sensitive access to relevant features that the service or collection provides. This

streamlined access will enable users possibly to bypass a series of menus or steps

to reach a desired feature.

• Collection's metadata will get a much wider scope. This metadata in conjunction

with <Meta> tag will enable the collection to be accessed from wide array of

other collections. In this way it will optimize the use of metadata.

2.3 DLSI with Other Repositories

Apart from providing services to NSDL's collections, the DLSI can also integrate with

other services and collections. If the collection or service has an appropriate application-

programming interface (API), then it usually is quite easy to parse the output displays and

detect the elements within it. If the collection or service provides adequate metadata in

tags or metadata as collection in Dublin Core Format (which is becoming increasingly

prevalent with XML), parsing can take advantage of these and be straightforward. OAI

Parsing can be performed on the existing metadata repository to fetch the metadata. If

displays follow a well-defined template or format, which is the case with many services,

then parsing also should be relatively easy. Otherwise, if a document's content is

unstructured and without embedded metadata, then DLSI may have to rely solely on

lexical analysis to identify elements of interest within it. Also, if the document has proper

HTML or XML tags (for e.g. all the open tags are properly closed), then it becomes quite

easy to parse those pages to fetch the information.

13

Currently, the project team is working on a project, which will integrate the NJIT

Highlander system with the "Shibboleth"- ([Marlena Erdos and Scott Cantor]) The

Access Management System of NSDL. The integration will be discussed in detail in the

Design and Implementation Chapter.

One more system under development in the Collaborative Hypermedia

Laboratory in NJIT that will finally integrate with NSDL is the HyNIC repository. This

repository will also be using the services of DLSI. This repository houses the conference

proceedings, conference papers, conference posters, books, book chapter, journals, thesis,

technical report, news article, pre-prints, and other such related collections. The metadata

for all the records in the repository is the Dublin Core Metadata Element Set

([http://dublincore.org/documents/dces/]) . Dublin Core will be further discussed under

the topic of Metadata Management Information. This repository has the required

Application Programming Interface (API), which makes it really easy for the DLSI to

parse the output screen before it being displayed to the user. The users of the repository

will be using the system just as before. They will be provided with an additional anchor

tags generated with the DLSI. The connection of the repository with the NSDL server

will be established with the help of Open Archives Initiatives (OAI) Server. Metadata

Management service will harvest the metadata collection using the Open Archives

Initiative Protocol for Metadata Harvesting (OAIPMH). This protocol will be explained

in detail in the Metadata Management section.

14

Figure 2.2 HyNIC Repository without DLSI Integration.

Description: This is the figure of HyNIC repository that is currently under development in the
Collaborative Hypermedia Laboratory, NJIT. It is developed for the SIGWEB arm of Association of
Computing Machinery (ACM).

15

Figure 2.3 HyNIC repository integrated with DLSI.

Description: In this screen, it can be seen that the user has the option to parse the search result page. A new
search button has been included in this page. The text before it says, "Search with DLSI". If the user clicks
on this button, then system will consider parsing the result page.

CHAPTER 3

DESIGN AND IMPLEMENTATION

3.1	 Wrappers

Wrappers form the integral part of the DLSI project as a whole. Wrappers are potentially

the hardest part of the project to implement. This is due to the intricacies involved in its

interaction with the services of NSDL. The wrapper will implement three different types

of protocols, namely, Security Assertion Mark Up Language (SAML), Open Archives

Initiatives Protocol for Metadata Harvesting (OAIPMH), Simple Digital Library

Interoperability Protocol (SDLIP), and Hyper Text Transfer Protocol (HTTP).

Wrappers serve three purposes:

• A wrapper connects collections and services with the Integration Manager, and

thus indirectly with other collections and services.

• A wrapper receives output produced by its collection or service. This output can

include documents and screens for display on the user's Web browser. The

wrapper parses the output to detect all elements of interest within it. The wrapper

then creates a message in DLSI's protocol containing the display output and the

list of elements and their classes/kinds, and passes this message to the DLSI

Integration Manager.

• A wrapper translates incoming requests from other systems from DLSI's protocol

format into the format its collection or service expects.

16

17

The importance and location of wrappers will become clearer if displayed

diagrammatically. The location of wrapper within the DLSI Infrastructure is shown as

below:

Figure 3.1 DLSI Architecture.

Description: The above figure shows the design view of DLSI. White boxes within the shaded portion
represent Dynamic Hypermedia Engine and the wrappers. They both together constitute the DLSI. Below
the wrappers are the services and collections of NSDL or any other library in general. Services in turn use
other collections.

18

In the following subsections, let's explain each of the wrappers in detail.

3.1.1 Search and Discovery

The NSDL already has a search facility within its system. Its functionality, in brief, can

be explained in two lines. It takes the Search Query provided by the user as input. It

searches the metadata for this query and returns the result back to the user. The following

diagram shows the search page of NSDL:

Figure 3.2 NSDL Search page.

([http ://nsdl. org/tag . a 143 7ade4 1 ac 8 e f2 sender.userLayoutRootNode.uP?uProot=root&uP_sparam=activeT
ab&activeTab=2])

Description: This page doesn't give user an option for Filtering and Rank Ordering their links.

19

The main disadvantage in this search is that it does not give the weighted

relevance on each of the page. To overcome this obstacle, DLSI will be using the services

of Filtering and Rank Ordering. The diagram below shows, how user will get the option

for Filtering and Rank ordering the links.

Figure 3.3 NSDL Search page with DLSI link.

Description: This page has an additional button. If the user wants the links to be filtered and rank ordered,
he/she clicks on that.

Another disadvantage in search and discovery service of NSDL is that

relationship analysis of all the links and results is missing. To overcome this, DLSI

wrappers will harvest all the links from the search result page of the NSDL, do a

relationship analysis on that and will pass back the result to the user. Now the difference

is that the user will see additional anchor tags on the page. This is entirely user's choice.

20

If the user prefers to do a relationship analysis on the links, he/she will click on the

button. Wrappers will also pass the result to the Filtering and Rank Ordering module to

rank order the pages. This exchange of data will take place with the help of XML. The

object to be used here is MSXML2.ServerXMLHTTP.

Figure 3.4 Relationship Analysis tool within the web page.

Description: This picture shows the small button-type links (marked by arrow) on the right side of the page.
These links appear after relationship analysis has been done.

MSXML2.ServerXMLHTTP enables user to establish HTTP connection between

files or objects on different Web servers. The ServerXMLHTTP object offers

functionality similar to that of the XMLHTTP object. Unlike XMLHTTP, however, the

ServerXMLHTTP object does not rely on the Winlnet control for HTTP access to remote

21

XML documents. ServerXMLHTTP uses a new HTTP client stack. Designed for server

applications, this server-safe subset of Winlnet offers the following advantages:

• Reliability—The HTTP client stack offers longer uptimes. Winlnet features that

are not critical for server applications, such as URL caching, auto-discovery of

proxy servers, HTTP/1.1 chunking, offline support, and support for Gopher and

FTP protocols are not included in the new HTTP subset.

• Security—The HTTP client stack does not allow a user-specific state to be shared

with another user's session. ServerXMLHTTP does not provide support for

certificates.

The ServerXMLHTTP object is commonly used to:

• Receive XML documents from an Active Server Pages (ASP) page on a local or

remote Web server (HTTP GET).

• Post XML documents to an ASP page on a local or remote Web server (HTTP

POST).

• Post and receive response XML documents from an ASP page (HTTP POST).

The ServerXMLHTTP open method makes the connection between servers and the send

method sends the request. With ServerXMLHTTP, the usual sequence is to call open, set

any custom header information through setRequestHeader, call send, and then check

one of the four response properties.

ServerXMLHTTP offers additional benefits for transporting XML data:

• ServerXMLHTTP maintains state, so transactional XML data can be used in

applications that require real-time responses.

22

• ServerXMLHTTP allows you to serve the response object as a stream or

Document Object Model (DOM) object. As a stream, this offers considerable

performance benefits when moving data through the HTTP protocol.

ServerXMLHTTP offers some backward compatibility with XMLHTTP. Source code

(JScript, Visual Basic Scripting Edition, Visual Basic, or C++) that uses the XMLHTTP

component can be easily modified to use the new ServerXMLHTTP component. The

maximum number of instances that can exist simultaneously within a single process is

5,460. A similar limitation applies to the XMLHTTP component. However, other factors,

such as available memory, CPU processing capacity, or available socket connections can

further -it the number of instances that can be active simultaneously. Partition the

server application into multiple processes if this limit becomes a bottleneck. The

IServerXMLHTTPRequest interface inherits from IXMLHTTPRequest and extends it

with the following four new methods: getOption, setOption, waitForResponse,

setTimeouts.

All the details above were described to convert the returned search page into

XML format and send it to Filtering and Rank Ordering Module. The following describes

a way to send a search query to the Search and Discovery module of NSDL.

Search and Discovery module uses Simple Digital Library Interoperability

Protocol (SDLIP) ([A. Paepcke, R. Brandriff et. al, http://www-diglib.stanford.edu

/~testbed/doc2/SDLIP]) to request searches to be performed over information sources.

The DLSI Search and Discovery service, and other clients use SDLIP to request searches

to be performed over information sources. The result documents are returned

synchronously, or they are streamed from service to client as they become available.

23

Implementations can be constructed over HTTP or CORBA based transports. In fact, any

search service can be accessible through both kinds of transports at the same time.

Figure 3.5 Role of SDLIP in integrating DLSI search and discovery wrapper with
NSDL Search and discovery server.

Description: The diagram shows the protocols between service-to-service and service-to-collection. It also
depicts the role of Filtering and Rank Ordering module.

It must be noted that the information to be served to the user need not be transferred

using SDLIP protocol. A form is made especially for that. The user will populate the field

by entering the search query and on submission; a procedure will be called which will

link the DLSI to the Search and Discovery server at NSDL's end. It will transfer the

query using SDLIP and get back the result.

24

SDLIP has the following goals:

• Simplicity for both client and server side implementations

• Implementations possible via both distributed object technology, such as

CORBA, and via HTTP

• Support for stateful and stateless operation at the server side

• Support for dynamic load balancing in server implementations

• Support for thin clients, such as handheld devices

3.1.2 Access Management

The DLSI will be maintaining user's preferences and privileges. The DLSI is using the

services of Access Management wrapper for this. Access management service of NSDL

is connected to the User Profile server of NSDL. The NSDL maintains a unique profile

for each of the user. If the user logs in through the DLSI interface, then as soon as he/she

logs-in to www.nsdl.org, DLSI access management wrapper will fetch the user details

and pass it on to the Collaborative Filtering Engine which maintain all the user's profile.

Collaborative Filtering Engine expects the following parameters to be passed from

Access Management Wrapper:

• User-Id.

• Task-Id.

• Source (IP or URL)

• Access Time

• User Agent (User Browser)

• Referrer

25

• Link-Id.

Only User-Id will be provided by the Access Management Service of NSDL. Other

parameters will be created by the DLSI Access Management wrapper. Output from the

Collaborative Filtering Engine to Access Management Module is:

• Link-Id. (Sorted)

The method which Access Management Service of DLSI follows to fetch or generate

these parameters depends upon the way the user logs into the NSDL's website

(www.nsdl.org). Access Management in NSDL is maintained by Shibboleth ([Erdos,

Marlena, and Cantor, Scott]).

The following explains in detail the entire flow, from the user's initial point of

contact through the "Shibboleth Attribute Requester" better known as SHAR to the

parsing of attributes about the user to the DLSI.

1) The user makes an initial request for a resource protected by a Shibboleth

Indexical Reference Establisher (SHIRE).

2) The SHIRE obtains the URL of the user's Handle Service (HS), or redirects the

user to a "Where Are You From? (WAYF)" service for this purpose.

3) The SHIRE or WAYF asks the HS to create a handle for this user, redirecting the

request through the user's browser.

4) The HS returns an opaque handle for the user that can be used by the SHAR to get

attributes from the appropriate Attribute Authority at the origin site. The SHIRE,

after performing impersonation checks, passes on the handle (and Attribute

Authority information, and organization name) to the SHAR.

26

5) The SHAR asks the Attribute Authority for attributes via an "Attribute Query

Message" AQM message.

6) It receives attributes back from the Attribute Authority via an "Attribute

Response Message" ARM message.

7) It passes the attribute of the user to DLSI using Security Assertion Markup

Language "SAML" protocol.

Shibboleth uses SAML formats and binding protocols whenever possible and

appropriate. Of particular note: Shibboleth uses the SAML query and response protocol

and formats for the AQM and ARM messages, interacting with DLSI, and Shibboleth

uses SAML's attribute statement and assertion format.

Currently, the DLSI team is discussing with team at Columbia University to test-

implement Shibboleth structure with NJIT Highlander account. In this collaboration,

DLSI will act as "Origin Site" for NJIT. The deployment will be with Shibboleth 8.0.

([http ://marsalis.internet2.eduicgi-bin/viewcvs.cgi/*checkout*/shibboleth/DEPLOY-

GUIDE-ORIGIN.html?rev=HEAD&content-type=text/html]).

There are four primary components to DLSI in Shibboleth: the Attribute

Authority (AA), the Handle Service (HS), the directory service, and the local sign-on

system (SSO). The AA and HS have already been explained above. The AA and HS

come along with Shibboleth and an open-source WebISO solution Pubcookie can be

obtained from www.pubcookie.org. It is the responsibility of origin site to provide the

directory. Shibboleth is able to interface with a directory exporting an LDAP interface

containing user attributes, and is designed such that programming interfaces to other

repositories are readily implemented. Shibboleth relies on standard web server

27

mechanisms to trigger local authentication. A.htaccess file can be easily used to trigger

the local WebISO system or the web server's own Basic Authorization mechanism, which

will likely utilize an enterprise authentication system, such as Kerberos [http://

web.mit.edu/kerberos/www/].

From the DLSI's point of view, the first contact will be the redirection of a user to

the handle service, which will then consult the SSO system to determine whether the user

has already been authenticated. If not, then the browser user will be asked to authenticate,

and then sent back to the target URL with a handle bundled in an attribute assertion.

Next, a request from the Shibboleth Attribute Requester (SHAR) will arrive at the AA

which will include the previously mentioned handle. The AA then consults the Attribute

Release Policies (ARP's) for the directory entry corresponding to the handle, queries the

directory for these attributes, and releases to the SHAR all attributes the SHAR is entitled

to know about that user. To understand this procedure more clearly, let us take an

example. Let NJIT be the origin site. WAYF ("Where Are You From?") service at NJIT

can be the Highlander service. It redirects the user to the known address for the handle

service of NJIT, which will be part of DLSI. Two important requirements for Shibboleth

to work from the Origin Site are:

• Shibboleth is known to work on Linux and Solaris, but should function on any

platform that has a Tomcat implementation.

• It is recommended that a web server must be deployed that can host Java servlets

and Tomcat, although not explicitly necessary, as Tomcat can still host without it.

When the set up is done, DLSI users become part of an organization which agrees to

exchange attributes of the user using SAML protocol and abide by common set of

28

policies and protocols. If origin site also becomes part of the club, it dramatically expands

the number of targets and origins that can interact without defining bilateral agreements.

To install Shibboleth, the following softwares are needed:

• Apache 1.3.26+

• Tomcat 4.1.18+ Java server

• Sun J2SE v 1.4.1_01 SDK

• mod_jk: It can be built against Apache which generally requires gcc or

g++compiler

• An enterprise authentication mechanism: Ideally, this will be a WebISO or SSO

system such as Pubcookie. The minimal requirement is for the web server to be

able to authenticate browser users and supply their identity to the Handle Server.

• An enterprise directory service: Shibboleth currently supports retrieving user

attribute information from an LDAP directory.

A complete installation guide can be found at:

http://marsalis.internet2.edu/cgi-biniviewcvs.cgi/*checkout*/shibboleth/DEPLOY-

GUIDE-ORIGIN.html?rev=HEAD&content-type=text/html

3.1.3 Metadata Management

Metadata is supposed to be the most important of any repository. The NSDL maintains

exhaustive metadata collection. For the DLSI to mark anchor tags all over the document

by identifying elements of interest, it need to first check the metadata related just to that

document. At this stage of the project, NSDL does not support that. Alternately, this can

be implemented is that, DLSI metadata wrapper harvest the entire metadata repository

29

and then check on that to fetch the metadata of interest. Metadata for a particular

document is of real interest for the DLSI, as it can get so much information out of it. This

is the best way to know to know about the document's field of study. The entire

procedure of metadata harvesting is explained below.

Let us start with the definition of metadata. Metadata is usually defined as "data

about data" ([http://metamanagement.comm.nsdlib.org/overview.html#what]) but it may

be far more useful to say that it consists of standardized descriptions of resources,

whether digital or physical, that aid in the discovery and retrieval of those resources.

Libraries have been creating metadata for centuries, in the form of book catalogs, card

catalogs and, more recently, online catalogs. In a similar fashion, for over a century,

indexing and abstracting agencies have been creating metadata describing journal articles

to aid in their discovery and retrieval. A prescribed set of possible descriptive statements

is known as a metadata "format" or schema.

There are many "flavors" of metadata differing in basic purpose (administrative,

structural or descriptive), depth and richness, or specificity for a particular domain. There

is no "one-size-fits-all" metadata solution, although there are ways to "translate" one

schema into another, similar to the ways one language can be translated into another. In

addition (as will be discussed in greater detail later), there are ways to mix and match

metadata statements from different recognized metadata schemas in order meet the

unique blend of needs of a particular project

Metadata allows the precise description of resources (and the sharing of such

descriptions) in relatively small and discrete packages of information called metadata

records, without the necessity of involving the resources themselves in the transaction.

30

For example, in the networked environment of the Web, metadata records describing

resources useful in education can be gathered up (harvested) from geographically

distributed resource repositories without affecting the location of the resources they

describe. These harvested metadata records can be assembled in metadata repositories

where they can function as an online catalog of distributed teaching and learning

resources. The primary reason for this in the NSDL context is for resource discovery.

The NSDL Standards Working Group has determined that the Dublin Core set of

15 elements, their associated element refinements plus the three IEEE elements

recommended by the DC Education Working Group (when available), will be the

standard set used by the NSDL metadata repository.

The Working Group has also identified eight different metadata formats that can

be accommodated by the NSDL metadata repository, based on the availability of

crosswalks from those formats to Dublin Core. Projects using any of these eight formats

in a standard manner can be assured that their metadata will be usable by NSDL.

Though NSDL supports eight different formats of metadata, DLSI at this stage

supports only Dublin Core ([www.dublincore.org]) format. The Dublin Core metadata

standard is a simple yet effective element set for describing a wide range of networked

resources. The Dublin Core standard comprises fifteen elements, the semantics of which

have been established through consensus by an international, cross-disciplinary group of

professionals from librarianship, computer science, text encoding, the museum

community, and other related fields of scholarship.

Another way to look at Dublin Core is as a "small language for making a

particular class of statements about resources" ([Baker]). In this language, there are two

31

classes of terms--elements (nouns) and qualifiers (adjectives)--which can be arranged into

a simple pattern of statements. The resources themselves are the implied subjects in this

language. In the diverse world of the Internet, Dublin Core can be seen as a "metadata

pidgin for digital tourists": easily grasped, but not necessarily up to the task of expressing

complex relationships or concepts. The Dublin Core metadata element set is a standard

for cross-domain information resource description. Elements can be in simple dublincore

format or qualified dublincore format. Currently, DLSI supports only simple dublincore

format. Dublin Core elements are outlined as follows ([http://dublincore.org

/documents/dces/])

Table 3.1 Description of 15 Elements types of Dublin Core.

Element Name: Title

Label: Title

I Definition: A name given to the resource.

I Comment: Typically, Title will be a name by which the resource is formally known.
Element Name: Creator

I Label: Creator

I Definition: An entity primarily responsible for making the content of the resource.
Comment: Examples of Creator include a person, an organization, or a service. Typically, the name

of a Creator should be used to indicate the entity.
Element Name: Subject

I Label: Subject and Keywords

I Definition: A topic of the content of the resource.
Comment: Typically, Subject will be expressed as keywords, key phrases or classification codes

that describe a topic of the resource. Recommended best practice is to select a value
from a controlled vocabulary or formal classification scheme.

Element Name: Description

Label: Description
Definition: An account of the content of the resource.
Comment: Examples of Description include, but are not limited to: an abstract, table of contents,

reference to a graphical representation of content or a free-text account of the content.

32

Element Name: Publisher

Label: Publisher
Definition: An entity responsible for making the resource available
Comment: Examples of Publisher include a person, an organization, or a service.

Element Name: Contributor

Label: Contributor
Definition: An entity responsible for making contributions to the content of the resource.
Comment: Examples of Contributor include a person, an organization, or a service. Typically, the

name of a Contributor should be used to indicate the entity.
Element Name: Date

Label: Date
I Definition: A date of an event in the lifecycle of the resource.

Comment: Typically, Date will be associated with the creation or availability of the resource.
Recommended best practice for encoding the date value is defmed in a profile of ISO
8601 [W3CDTF] and includes (among others) dates of the form YYYY-MM-DD.

Element Name: Type

Label: Resource Type

I Definition: The nature or genre of the content of the resource.
Comment: Type includes terms describing general categories, functions, genres, or aggregation

levels for content. Recommended best practice is to select a value from a controlled
vocabulary (for example, the DCMI Type Vocabulary [DCT1]).

Element Name: Format

Label: Format
Definition: The physical or digital manifestation of the resource.
Comment: Typically, Format may include the media-type or dimensions of the resource. Format

may be used to identify the software, hardware, or other equipment needed to display or
operate the resource. Recommended best practice is to select a value from a controlled
vocabulary (for example, the list of Internet Media Types [MIME] defining computer
media formats).

Element Name: Identifier

Label: Resource Identifier

I Definition: An unambiguous reference to the resource within a given context.
Comment: Recommended best practice is to identify the resource by means of a string or number

conforming to a formal identification system. Formal identification systems include but
are not limited to the Uniform Resource Identifier (URI) (including the Uniform
Resource Locator (URL)), the Digital Object Identifier (DOI) and the International
Standard Book Number (ISBN).

Element Name: Source

Label: Source
Definition: A Reference to a resource from which the present resource is derived.
Comment: The present resource may be derived from the Source resource in whole or in part.

Recommended best practice is to identify the referenced resource by means of a string
or number conforming to a formal identification system.

33

Element Name: Language

Label: Language
Definition: A language of the intellectual content of the resource.
Comment: Recommended best practice is to use RFC 3066 [RFC3066] which, in conjunction with

ISO639 [ISO639]), defines two- and three primary language tags with optional sub-tags.
Element Name: Relation

I Label: Relation
Definition: A reference to a related resource.
Comment: Recommended best practice is to identify the referenced resource by means of a string

or number conforming to a formal identification system.

Element Name: Coverage

Label: Coverage
Definition: The extent or scope of the content of the resource.
Comment: Typically, Coverage will include spatial location (a place name or geographic

coordinates), temporal period (a period label, date, or date range) or jurisdiction (such as
a named administrative entity). Recommended best practice is to select a value from a
controlled vocabulary (for example, the Thesaurus of Geographic Names [TGN]) and to
use.

Element Name: Rights

Label: Rights Management
Definition: Information about rights held in and over the resource.
Comment: Typically, Rights will contain a rights management statement for the resource, or

reference a service providing such information. Rights information often encompasses
Intellectual Property Rights (IPR), Copyright, and various Property Rights. If the Rights
element is absent, no assumptions may be made about any rights held in or over the
resource.

It must be remembered that Metadata can be harvested from the repository using Open

Archives Protocol for Metadata Harvesting (OAIPMH). Now lets talk about OAIPMH in

detail, as this is very important to understand whosoever plans to harvest the metadata

repository.

The Open Archives Initiative (OAI) ([http://openarchives.org]) announced the

Open Archives Initiative Protocol for Metadata Harvesting (OAIMH) v2.0

([http://www.openarchives.org/OAI/openarchivesprotocol.html]) . OAIPMH provides an.

34

application-independent interoperability framework based on metadata harvesting. There

are two classes of participants in the OAI-PMH framework:

• Data Providers administer systems that support the OAI-PMH as a means of

exposing metadata; and

• Service Providers use metadata harvested via the OAI-PMH as a basis for

building value-added services.

The DLSI's metadata management wrapper will act as a Service Provider. It will be

harvesting the repository to fetch elements of interest. So it will act as a harvester

(harvester is a client application that issues OAI-PMH requests. A harvester is operated

by a service provider as a means of collecting metadata from repositories). At this stage,

DLSI does not have capability of selective metadata harvesting. It has to harvest the

entire repository and then filter the result to get the relevant metadata for the document.

This can be achieved with the use of <dc : document . id> type tag for all the records.

Another project known as HyNIC project for SIGWEB is to be integrated into the NSDL.

It will act as a repository (A repository is a network accessible server that can process the

OAI-PMH requests). With all the items in a repository, a Unique Identifier is associated.

OAIPMH will request this unique identifier for extracting the metadata. The format of the

unique identifier must correspond to that of the URI (Uniform Resource Identifier)

syntax. Unique identifiers play two roles in the protocol:

• Response: Identifiers are returned by both the List Identifiers and List

Records requests.

35

• Request: An identifier, in combination with a metadataPref ix, is used in the

GetRecord request as a means of requesting a record in a specific metadata

format from an item.

The DLSI will be fetching a record from the repository. A record is metadata

expressed in a single format. A record is returned in an XML-encoded byte stream in

response to an OAI-PMH request for metadata from an item. A record is identified

unambiguously by the combination of the unique identifier of the item from which the

record is available, the metadataPref ix identifying the metadata format of the

record, and the datestamp of the record.

The DLSI metadata management wrapper can also do selective harvesting.

Harvesters may specify set membership as criteria for selective harvesting. To specify

set-based selective harvesting, a setSpec is included as the value of the optional set

argument to the ListRecords and Listldentifiers requests, thereby specifying selective

harvesting of records from items within the respective set. When a setSpec is used as an

argument, the response must include:

• The records corresponding to the metadataPrefix argument, or headers thereof in

the case of deleted records, available from those items in the set specified by the

setSpec;

• The records corresponding to the metadataPrefix argument, or headers thereof in

the case of deleted records, available from those items in sets that are descendant

from the specified set.

Harvesters may use datestamps to harvest only those records that were created, deleted,

or modified within a specified date range.

36

HTTP Request Format: It must be known that OAI-PMH requests are expressed as

HTTP requests. OAI-PMH requests must be submitted using either the HTTP GET or

POST method. URLs for GET requests have keyword arguments appended to the base

URL, separated from it by a question mark (?) . For example, the URL of a

GetRecord request to a repository with base URL that is http : //www.

moorlandschool . co .uk/earth/ might be:

http://www.moorlandschool.co.uk/earth?verb=GetRecord&identifier=oai%3AarXiv.org

%3Ahep-th%2F990 1 00 1 &metadataPrefix=oai_dc

Submitting the same request using HTTP POST method would use just the base URL as

URL. The format of POST can be:

POST http://www.moorlandschool.co.uk/earth HTTP/1.0

Content-Length: 100

Content-Type: application/x-www-form-urlencoded

Verb=GetRecord&identifier=oai%3AarXiv.org %3Ahepth%2F9901001&metad

ataPrefix=oaidc

HTTP Response Format: Although DLSI wrappers will not use HTTP response format,

it is mentioned because it will be implemented by HyNIC repository. All responses to

OAI-PMH requests must be well-formed XML instance documents. Encoding of the

XML must use the UTF-8 representation of Unicode. Character references, rather than

entity references, must be used. Character references allow XML responses to be treated

as stand-alone documents that can be manipulated without dependency on entity

declarations external to the document. The XML data for all responses to OAI-PMH

requests must validate against the XML Schema. HyNIC repository's successful reply to

the GetRecord request is shown below:

37

<?xml version="1.0" encoding="UTF-8" ?>
<OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/ "

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance "
xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/
http://hynic.njit.edu/reply/OAI-PMH.xsdll >

<responseDate>2003-04-22T19:20:30Z</responseDate>
<request verb="GetRecord" identifier="oai:arXiv.org:hep-th/9901001"

metadataPrefix="oai_dc">http://hynic.njit.edu </request>
<GetRecord>

<record>...</record>
</GetRecord>

</OAI-PMH>

The code for XML schema format for validating Responses to OAI-PMH Requests is

provided in the APPENDIX.

Protocol Requests and Responses in Detail: GetRecord verb is used to retrieve an

individual metadata record from a repository. It requires the following arguments:

• i dent i f i e r a required argument that specifies the unique identifier of the

item in the repository from which the record must be disseminated.

• metadataPref ix a required argument that specifies the met adataPref ix

of the format that should be included in the metadata part of the returned record .

A record should only be returned if the format specified by the

metadataPref ix could be disseminated from the item identified by the value

of the identifier argument. The metadata formats supported by a repository and

for a particular record can be retrieved using the ListMetadataFormats

request.

• badArgument - The request includes illegal arguments or is missing required

arguments.

38

• cannotDisseminateFormat - The value of the metadataPref ix

argument is not supported by the item identified by the value of the

identifier argument

• idDoesNotExi st - The value of the identifier argument is unknown or

illegal in this repository.

XML Schema for validating Unqualified Dublin Core metadata associated with the

reserved oai_dc metadataPrefix will be shown in the APPENDIX

This design and implementation section has covered the entire implementation of

DLSI wrappers which will interact with the Core Services of NSDL and fetch the

required result and feed the Dynamic Hypermedia Engine. The output from the engine

will finally be diverted to the user.

CHAPTER 4

FUTURE ENHANCEMENTS

This is not the end of the project as There will be several modifications involved. The

NSDL itself is an involving entity currently. The NSDL was launched in December 2002.

There are still several issues that remain to be addressed and several possibility remains

to be explored. Workgroups have been formed for the development of services and

collections. Whosoever continues to work on this project, need to become a member of

these communities. The suggestions are to become member of:

• Access Management Workgroup.

• CI Technical Infrastructure Workgroup

• Metadata Management Workgroup

• Metadata Repository Workgroup

• Search and Discovery Workgroup

Person who will continue from here need to have the knowledge of all the protocols

which are used in communication with the Core Integration services of NSDL. The

present version of transferring data from wrappers to collaborative filtering engine and

wrapper to lexical analysis tool is XML-RPC. It is also important to know the versions of

the protocols and engines currently used. Currently, these are the versions of the products

which are contributing to the successful development of the wrappers:

1. Dynamic Hypermedia Engine- version 3.0

2. Shibboleth- version 1.0

3. Security Assertion Markup Language- version 1.0

39

40

4. Open Archives Protocol for Metadata Harvesting- version 2.0

5. Dublin Core Metadata Element Set- version 1.1

6. Simple Digital Library Interoperability Protocol- This is not released version yet.

It is used to transfer controls from Search wrapper to the Search and Discovery

server of NSDL.

As these softwares continue to evolve, there will be need to make the wrappers

compatible with the latest version.

Another future enhancement can be implementation of test-bed for integrating the

NJIT's Highlander's authorizing system with the Access Management server of NSDL.

For this, there is need to implement the "Origin Site" server which will transfer user's

parameters.

Currently, XML is the format in which wrappers, lexical analysis search engine,

and Collaborative and Filtering engine communicate between each other. It is also

necessary to develop a new protocol for the interoperability between the wrappers,

Lexical Analysis, and Collaborative and Filtering Engine. The basis of this can be XML.

CHAPTER 5

CONCLUSION

This thesis provides a systematic approach towards the integration of "Digital Library

Service Integration" with the "National Science Digital Library". The DLSI infrastructure

aims to form the core of vibrant educational community by supporting a wide range of

services functioning in co-ordination with the services of NSDL. These services are

performed with the help of wrappers. The wrappers will do all the hard work. It will

seamlessly pass the search parameter, user parameter, user's action etc. to other services

which will be using it for their functionality. These wrappers will enable DLSI as a whole

to serve the community. The data providers can easily plug their application with the

DLSI without any major modifications. The protocol used for communication with the

wrappers will always follow Open Source standard. It will standardize the method of

writing wrappers.

As it has been seen, the wrappers have too many functions to perform. Wrappers

also perform complex processes before delivering the outcome to the Dynamic

Hypermedia Engine that parses the page before showing it to the user. Thus, the overall

time of processing increases. A theory also needs to be designed which will provide a

good compromise between the users requirements and the speed. This can also be taken

up as a future work. Future is bound to see better softwares, extreme performance

machines and processors, and better Internet connectivity. Then, speed won't be a

limitation for the project.

41

42

This project should be taken forward with the end user's reaction in mind. The

success of any software depends upon the level of acceptability with the end user. It still

needs to be seen, how an end user reacts to it. It should always be kept in mind that the

end user should not be lost in his quest for information on the web.

This project is bound to improve the life of general internet user who always feels

lost when thrown at him a hundreds of pages of search result containing thousands anchor

tags. It must be kept in mind that most of these links are irrelevant to the information he

or she is seeking on the web.

APPENDIX A

XML Schema Format for Validating Responses to OAI-PMH Requests

The following code represents different element types in the XML response document. It

has been broken up into complex type which describes the elements and attributes, and

simple type which enumerates the type of variables which can be used in the reply.

The following elements are represented in complex type:

• OAI-PMH type

• Request type

• OAI-PMHError type

• Identify type

• ListMetaDataFormat type

• ListsSets type

• GetRecord type

• ListsRecords type

• Listldentifiers type

• Record type

• Header type

• Metadata type

• About type

• Resumptiontoken type

• Description type

• Metadataformat type

43

• Set type

The following elements are represented in simple type:

• Verb type

• OAI-PMHErrorcode type

• Identifier type

• Status type

• UTCdatetime type

• Email type

• DeletedRecord type

• Granularity type

• Metadataprefix type

44

<schema targetNamespace="http://www.openarchives.org/OAI/2.0/ "

xmlns:oai="http://www.openarchives.org/OAI/2.0/ "

xmlns="http://www.w3. org/2 001/XMLSchema"

elementFormDefault="unqualified"

attributeFormDefault="unqualified">

<annotation>

<documentation>

XML Schema which can be used to validate replies to OAI-PMH requests.

</documentation>

</annotation>

<element name="OAI-PMH" type="oai:OAI-PMHtype"/>

<complexType name="OAI-PMHtype">

<sequence>

<element name="responseDate" type="dateTime"/>

<element name="request" type="oai:requestType"/>

<choice>

<element name="error" type="oai:OAI-PMHerrorType" 	 maxOccurs="unbounded"/>

<element name="Identify" type="oai: IdentifyType"/>

<element name="ListMetadataFormats" type="oai:ListMetadataFormatsType"/>

<element name="ListSets" type="oai:ListSetsType"/>

<element name="GetRecord" type="oai:GetRecordType"/>

<element name="ListIdentifiers" type="oai: ListIdentifiersType"/>

<element name="ListRecords" type="oai:ListRecordsType"/>

</choice>

</sequence>

</complexType>

45

46

<!-- defining requestType, indicating the protocol request that led to the response -->

<!-- element content is BASE-URL, attributes are arguments of protocol request attribute-values

are values of arguments of protocol request -->

<complexType name="requestType">

<simpleContent>

<extension base="http://hynic.njit.edu/response ">

<attribute name="verb" type="oai:verbType" use="optional"/>

<attribute name="identifier" type="oai: identifierType" use="optional"/>

<attribute name="metadataPrefix" type="oai:metadataPrefixType use="optional"/>

<attribute name="from" type="oai:UTCdatetimeType" use="optional"/>

<attribute name="until" type="oai:UTCdatetimeType" use="optional"/>

<attribute name="set" type="oai:setSpecType" use="optional"/>

<attribute name="resumptionToken" type="string" use="optional"/>

<extension>

</simpleContent>

</complexType>

<simpleType name="verbType">

<restriction base="string">

<enumeration value="Identify"/>

<enumeration value="ListMetadataFormats"/>

<enumeration value="ListSets"/>

<enumeration value="GetRecord"/>

<enumeration value="Listldentifiers"/>

<enumeration value="ListRecords"/>

<restriction>

</simpleType>

<!-- defining OAI-PMH error conditions -->

<complexType name="OAI-PMHerrorType">

<simpleContent>

<extension base="string">

<attribute name="code" type="oai:OAI-PMHerrorcodeType" use="required"/>

<extension

</simpleContent>

</complexType>

<simpleType name="OAI-PMHerrorcodeType">

<restriction base="string">

<enumeration value="cannotDisseminateFormat"/>

<enumeration value="idDoesNotExist"/>

<enumeration value="badArgument"/>

<enumeration value="badVerb"/>

<enumeration value="noMetadataFormats"/>

<enumeration value="noRecordsMatch"/>

<enumeration value="badResumptionToken"/>

<enumeration value="noSetHierarchy"/>

</restriction>

</simpleType>

<!-- defining Identify container -->

<complexType name="IdentifyType">

<sequence>

<element name="SIGWEB" type="string"/>

<element name="http://hynic.njit.edu" type="URL"/>

47

<element name="HTTP 1.1">

<simpleType>

<restriction base="string">

<enumeration value="2.0"/>

</restriction>

</simpleType>

</element>

<element name="ps27@njit.edu " type="oai:emailType" maxOccurs="unbounded"/>

<element name="earliestDatestamp" type="oai:UTCdatetimeType"/>

<element name="deletedRecord" type="oai:deletedRecordType"/>

<element name="granularity" type="oai:granularityType"/>

<element name="compression" type="string" minOccurs="0" maxOccurs="unbounded"/>

<element name="description" type="oai:descriptionType" minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</complexType>

<!-- defining ListMetadataFormats container -->

<complexType name="ListMetadataFormatsType">

<sequence>

<element name="metadataFormat" type="oai:metadataFormatType" maxOccurs="unbounded"/>

</sequence>

</complexType>

48

<!-- defining ListSets container -->

<complexType name="ListSetsType">

<sequence>

<element name="set" type="oai:setType" maxOccurs="unbounded"/>

<element name="resumptionToken" type="oai:resumptionTokenType"

minOccurs="0"/>

</sequence>

</complexType>

<!-- defining GetRecord container -->

<complexType name="GetRecordType">

<sequence>

<element name="record" type="oai:recordType"/>

</sequence>

</complexType>

<!-- defining ListRecords container -->

<complexType name="ListRecordsType">

<sequence>

<element name="record" type="oai:recordType"

maxOccurs="unbounded"/>

<element name="resumptionToken" type="oai:resumptionTokenType"

minOccurs="0"/>

</sequence>

</complexType>

49

<!-- defining ListIdentifiers container -->

<complexType name="ListIdentifiersType">

<sequence>

<element name="header" type="oai:headerType"

maxOccurs="unbounded"/>

<element name="resumptionToken" type="oai:resumptionTokenType"

tninOccurs="0"/>

</sequence>

</complexType>

<!-- defining basic types used in replies to

GetRecord, ListRecords, ListIdentifiers -->

<!-- defining recordType -->

<!-- a record has a header, a metadata part, and

an optional about container -->

<complexType name="recordType">

<sequence>

<element name="header" type="oai:headerType"/>

<element name="metadata" type="oai:metadataType" minOccurs="0"/>

<element name="about" type="oai:aboutType"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

<!-- defining headerType -->

50

51

<!-- a header has a unique identifier, a datestamp, and setSpec(s) in case the item from which the record is

disseminated belongs to set(s). The header can carry a deleted status indicatating that the record is deleted. -

->

<complexType name="headerType">

<sequence>

<element name="identifier" type="oai:identifierType"/>

<element name="datestamp" type="oai:UTCdatetimeType"/>

<element name="setSpec" type="oai:setSpecType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="status" type="oai: statusType" use="optional"/>

</complexType>

<!-- defining identifierType -->

<simpleType name="identifierType">

<restriction base="anyURI"/>

</simpleType>

<simpleType name="statusType">

<restriction base="string">

<enumeration value="deleted"/>

</restriction>

</simpleType>

<!-- defining metadataType -->

<!-- metadata must be expressed in XML that complies with another XML Schema -->

<!-- metadata must be explicitly qualified in the response -->

<complexType name="metadataType">

<sequence>

<any namespace="##other" processContents="strict"/>

</sequence>

</complexType>

<!-- defining aboutType -->

<!-- data "about" the record must be expressed in XML -->

<!-- that is compliant with an XML Schema defined by a community -->

<complexType name="aboutType">

<sequence>

<any namespace="##other" processContents="strict"/>

</sequence>

</complexType>

<!-- defining resumptionToken - with 3 optional attributes can be used in ListSets, ListIdentifiers,

ListRecords -->

<complexType name="resumptionTokenType">

<simpleContent>

<extension base="string">

<attribute name="expirationDate" type="dateTime"

use="optional"/>

<attribute name="completeListSize" type="positivelnteger"

use="optional"/>

<attribute name="cursor" type="nonNegativelnteger"

52

53

use="optional"/>

</extension>

</simpleContent>

</complexType>

<!-- defining descriptionType used for description-element in Identify and for setDescription element in

ListSets-->

<!-- content must be compliant with an XML Schema defined by a community -->

<complexType name="descriptionType">

<sequence>

<any namespace="##other" processContents="strict"/>

</sequence>

</complexType>

<!-- defining UTCdatetime -->

<!-- datestamps are day or seconds granularity -->

<simpleType name="UTCdatetimeType">

<union memberTypes="date dateTime"/>

</simpleType>

<!-- defining stuff used for Identify verb only -->

<simpleType name="emailType">

<restriction base="string">

<pattern value="\S+@(\S-FV)+\S+"/>

<restriction>

</simpleType>

<simpleType name="deletedRecordType">

<restriction base="string">

<enumeration value="no"/>

<enumeration value="persistent"/>

<enumeration value="transient"/>

</restriction>

</simpleType>

<simpleType name="granularityType">

<restriction base="string">

<enumeration value="YYYY-MM-DD"/>

<enumeration value="YYYY-MM-DDThh:mm:ssZ"/>

</restriction>

</simpleType>

<!-- defining stuff used for ListMetadataFormats verb only -->

<complexType name="metadataFormatType">

<sequence>

<element name="metadataPrefix" type="oai:metadataPrefixType"/>

<element name="schema" type="URL"/>

<element name="metadataNamespace" type="URL"/>

</sequence>

</complexType>

<simpleType name="metadataPrefixType">

<restriction base="string">

<pattern value="[A-Za-z0-9_!'$\(\)\-F\-\.*]+"/>

</restriction>

54

</simpleType>

<!-- defining stuff used for ListSets verb -->

<complexType name="setType">

<sequence>

<element name="setSpec" type="oai:setSpecType"/>

<element name="setName" type="string"/>

<element name="setDescription" type="oai:descriptionType"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

<!-- defining setSpecType -->

<simpleType name="setSpecType">

<restriction base="string">

<pattern value="([A-Za-z0-9_!3\(\)\+\-\.*])+(:[A-Za-z0-9_!'$\(\)\-F\-\.*]+)*"/>

</restriction>

</simpleType>

</schema>

55

APPENDIX B

XML Schema for Validating Unqualified Dublin Core Metadata

The following code represent the XML Schema for unqualified Dublin Core:

<schema targetNamespace="http://www.openarchives.org/OAI/2.0/oai_dc/ "

xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/ "

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns="http://www.w3.org/2001/XMLSchema "

elementFormDefault="qualified" attributeFormDefault="unqualified">

<import namespace="http://purl.org/dc/elements/1.1/ "

schemaLocation="http://hynic.njit.edu/response/metadata.xsd"/>

<element name="dc" type="oai_dc:oai_dcType"/>

<complexType name="oai_dcType">

<choice minOccurs="0" maxOccurs="unbounded">

<element ref="dc:title"/>

<element ref="dc:creator"/>

<element ref="dc:subject"/>

<element ref="dc:description"/>

<element ref="dc:publisher"/>

<element ref="dc:contributor"/>

<element ref="dc:date"/>

<element ref="dc:type"/>

<element ref="dc:format"/>

56

<element ref="dc:identifier"/>

<element ref="dc:source"/>

<element ref="dc:language"/>

<element ref="dc:relation"/>

<element ref="dc:coverage"/>

<element ref="dc:rights"/>

</choice>

</complexType>

<schema>

57

APPENDIX C

HTML to XML Conversion

To convert the HTML code to XML, the project takes the help of)(PATH service already

implemented at http://www.html2xml.com/Html2XmlConvert.asp . The code gets the

URL the user wants to retrieve and then it calls the services of html2xml.

<html>

<head><title>HTML code browser</title>

<hta:application id="codebrowser"

border="thin"

borderstyle="normal"

caption="yes"

maximizebutton="yes"

minimizebutton="yes"

showintaskbar="yes"

singleinstance="no"

sysmenu="yes"

windowstate="normal"

>

<style>

body {

border: none;

margin: 1;

font-family: Arial;

font-size: 10pt,

}

58

td {

font-family: Arial;

font-size: 10pt;

}

</style>

<script>

var firstTime=true;

function getHTML()

{

if (!firstTime)

1

setTimeout("source.value=ifrl.document.a11(0).outerHTML,",100); // Leave 0.1

// seconds to let the onload script of the destination page complete

window.open(document.all.ifr1.src);

}

firstTime=false;

1

function getContent(url)

{

document. all. ifr 1 .src=url;

}

<script>

</head>

<body scroll=no bgcolor=buttonface>

59

<table height="100%" width="100%" cellspacing=1 cellpadding=0><tr>

<form onsubmit="getContent(this.ur1.value);return false;">

<td>Address:</td>

<td width="100%">

<input type=text name=ur1 style="width: 100%;">

</td>

<td>

<input type=submit value="Get HTML">

</td>

</form>

</tr>

<tr><td height="100%" colspan=3>

<textarea style="height: 100%; width: 100%;" name="source" readonly> </textarea>

</td>

</table>

<iframe id=ifr1 src="about:blank" onload="getHTML();" style="display: none"> </iframe>

</body>

</html>

60

61

Another way to parse the HTML is page is through command line. This command

line parsing technique is implemented using C programming language.

The code sample below is a part of the C program written to parse the HTML page.

void Parselnline(CleanDocImpl* doc, Node *element, uint mode)

{

Lexer* lexer = doc->lexer;

Node *node, *parent;

if (element->tag->model & CM_EMPTY)

return;

if ((nodeHasCM(element, CM_BLOCK) II nodelsDT(element)) &&

!nodeHasCM(element, CM_MIXED))

InlineDup(doc, NULL);

else if (nodeHasCM(element, CM_INLINE))

PushInline(doc, element);

if (nodeIsNOBR(element))

doc->badLayout I= USING_NOBR;

else if (nodeIsFONT(element))

doc->badLayout I= USING FONT;

/* Inline elements may or may not be within a preformatted element */

if (mode != Preformatted)

mode = MixedContent;

while ((node = GetToken(doc, mode)) != NULL)

{

/* end tag for current element */

if (node->tag = element->tag && node->type = EndTag)

{

if (element->tag->model & CM_INLINE)

Popinline(doc, node);

FreeNode(doc, node);

if (!(mode & Preformatted))

TrimSpaces(doc, element);

/*

if a font element wraps an anchor and nothing else

then move the font element inside the anchor since

otherwise it won't alter the anchor text color

*1

if (nodeIsFONT(element) &&

element->content && element->content — element->last)

{

Node *child = element->content;

if (nodeIsA(child))

1

child->parent = element->parent;

child->next = element->next;

62

child->prev = element->prev;

if (child->prev)

child->prev->next = child;

else

child->parent->content = child;

if (child->next)

child->next->prev = child;

else

child->parent->last = child;

element->next = NULL;

element->prev = NULL;

element->parent = child;

element->content = child->content;

element->last = child->last;

child->content = child->last = element;

for (child = element->content; child; child = child->next)

child->parent = element;

}

1

element->closed = yes;

TrimSpaces(doc, element);

TrimEmptyElement(doc, element);

return;

63

/* <u>...<u> map 2nd <u> to </u> if 1st is explicit */

/* otherwise emphasis nesting is probably unintentional */

/* big and small have cumulative effect to leave them alone */

if (node->type	 StartTag

&& node->tag == element->tag

&& IsPushed(doc, node)

&& !node->implicit

&& !element->implicit

&& node->tag && (node->tag->model & CM_INLINE)

&& !nodeIsA(node)

&& !nodeIsFONT(node)

&& !nodeIsBIG(node)

&& !nodeIsSMALL(node)

&& !nodeIsQ(node)

{

if (element->content != NULL && node->attributes = NULL)

{

ReportWarning(doc, element, node, COERCE_TO_ENDTAG);

node->type = EndTag;

UngetToken(doc);

continue;

ReportWarning(doc, element, node, NESTED_EMPHASIS);

64

else if (IsPushed(doc, node) && node->type == StartTag &&

nodeIsQ(node))

{

ReportWarning(doc, element, node, NESTED_QUOTATION);

}

if (node->type == TextNode)

{

/* only called for 1st child */

if (element->content == NULL && !(mode & Preformatted))

TrimSpaces(doc, element);

if (node->start >= node->end)

1

FreeNode(doc, node);

continue;

}

InsertNodeAtEnd(element, node);

continue;

}

/* mixed content model so allow text */

if (InsertMisc(element, node))

continue;

/* deal with HTML tags */

if (nodeIsHTML(node))

65

{

if (node->type	 StartTag 11 node->type 	 StartEndTag)

{

ReportWaming(doc, element, node, DISCARDING UNEXPECTED);

FreeNode(doc, node);

continue;

}

/* otherwise infer end of inline element */

UngetToken(doc);

if (!(mode & Preformatted))

TrimSpaces(doc, element);

TrimEmptyElement(doc, element);

return;

1

/* within <dt> or <pre> map <p> to
 */

if (nodeIsP(node) &&

node->type StartTag &&

((mode & Preformatted) 11

nodelsDT(element)

DescendantOf(element, CleanTag_DT)

node->tag = LookupTagDef(CleanTag_BR);

66

MemFree(node->element);

node->element = tmbstrdup("br");

TrimSpaces(doc, element);

InsertNodeAtEnd(element, node);

continue;

}

/* ignore unknown and PARAM tags */

if (node->tag == NULL II nodeIsPARAM(node))

1

ReportWarning(doc, element, node, DISCARDING_UNEXPECTED);

FreeNode(doc, node);

continue;

1

if (nodeIsBR(node) && node->type == EndTag)

node->type = StartTag;

if (node->type — EndTag)

{

/* coerce </br> to
 */

if (nodeIsBR(node))

node->type = StartTag;

else if (nodeIsP(node))

1

if (!DescendantOf(element, CleanTag_P))

{

CoerceNode(doc, node, CleanTag_BR);

67

TrimSpaces(doc, element);

InsertNodeAtEnd(element, node);

node = InferredTag(doc, "br");

continue;

1

}

else if (nodeHasCM(node, CM_INLINE)

&& !nodeIsA(node)

&& !nodeHasCM(node, CM_OBJECT)

&& nodeHasCM(element, CM_INLINE))

{

/* allow any inline end tag to end current element */

PopInline(doc, element);

if (!nodeIsA(element))

{

if (nodelsA(node) && node->tag != element->tag)

{

ReportWarning(doc, element, node, MISSING_ENDTAG_BEFORE);

UngetToken(doc);

}

else

{

ReportWarning(doc, element, node, NON_MATCHING_ENDTAG);

FreeNode(doc, node);

}

if (!(mode & Preformatted))

68

TrimSpaces(doc, element);

TrimEmptyElement(doc, element);

return;

}

/* if parent is <a> then discard unexpected inline end tag */

ReportWarning(doc, element, node, DISCARDING_UNEXPECTED);

FreeNode(doc, node);

continue;

} /* special case </tr> etc. for stuff moved in front of table */

else if (lexer->exiled

&& node->tag->model

&& (node->tag->model & CM_TABLE))

{

UngetToken(doc);

TrimSpaces(doc, element);

TrimEmptyElement(doc, element);

return;

}

}

/* allow any header tag to end current header */

if (nodeHasCM(node, CM_HEADING) && nodeHasCM(element, CM_HEADING))

{

if (node->tag == element->tag)

(

69

ReportWarning(doc, element, node, NON_MATCHING_ENDTAG);

FreeNode(doc, node);

}

else

{

ReportWarning(doc, element, node, MISSING_ENDTAG_BEFORE);

UngetToken(doc);

}

if (!(mode & Preformatted))

TrimSpaces(doc, element);

TrimEmptyElement(doc, element);

return;

/*

an <A> tag to ends any open <A> element

but is mapped to

*/

/* if (node->tag	 doc->tags.tag_a && !node->implicit && IsPushed(doc, node)) */

if (nodelsA(node) && !node->implicit &&

(nodelsA(element) II DescendantOf(element, CleanTag_A)))

{

/* if (node->attributes == NULL) */

if (node->type != EndTag && node->attributes NULL)

{

node->type = EndTag;

70

ReportWarning(doc, element, node, COERCE_TO_ENDTAG);

/* PopInline(doc, node); */

UngetToken(doc);

continue;

}

UngetToken(doc);

ReportWarning(doc, element, node, MISSING_ENDTAG_BEFORE);

/* Popinline(doc, element); */

if (!(mode & Preformatted))

TrimSpaces(doc, element);

TrimEmptyElement(doc, element);

return;

}

if (element->tag->model & CM_HEADING)

{

if (nodeIsCENTER(node) II nodeIsDIV(node))

{

if (node->type != StartTag && node->type != StartEndTag)

{

ReportWarning(doc, element, node, DISCARDING_UNEXPECTED);

FreeNode(doc, node);

continue;

}

71

ReportWarning(doc, element, node, TAG_NOTALLOWEDIN);

/* insert center as parent if heading is empty */

if (element->content == NULL)

{

InsertNodeAsParent(element, node);

continue;

}

/* split heading and make center parent of 2nd part */

InsertNodeAfterElement(element, node);

if (!(mode & Preformatted))

TrimSpaces(doc, element);

element = CloneNode(doc, element);

InsertNodeAtEnd(node, element);

continue;

}

if (nodeIsHR(node))

{

if (node->type != StartTag && node->type != StartEndTag)

{

ReportWarning(doc, element, node, DISCARDING_ UNEXPECTED);

FreeNode(doc, node);

continue;

}

72

ReportWarning(doc, element, node, TAG_NOT_ALLOWEDIN);

/* insert hr before heading if heading is empty */

if (element->content == NULL)

{

InsertNodeBeforeElement(element, node);

continue;

}

/* split heading and insert hr before 2nd part */

InsertNodeAfterElement(element, node);

if (!(mode & Preformatted))

TrimSpaces(doc, element);

element = CloneNode(doc, element);

InsertNodeAfterElement(node, element);

continue;

}

}

if (nodeIsDT(element))

{

if (nodeIsHR(node))

{

Node *dd;

if (node->type != StartTag && node->type != StartEndTag)

73

ReportWarning(doc, element, node, DISCARDING UNEXPECTED);

FreeNode(doc, node);

continue;

}

ReportWarning(doc, element, node, TAG_NOT_ALLOWEDIN);

dd = InferredTag(doc, "dd");

/* insert hr within dd before dt if dt is empty */

if (element->content = NULL)

{

InsertNodeBeforeElement(element, dd);

InsertNodeAtEnd(dd, node);

continue;

1

/* split dt and insert hr within dd before 2nd part */

InsertNodeAfterElement(element, dd);

InsertNodeAtEnd(dd, node);

if (!(mode & Preformatted))

TrimSpaces(doc, element);

element = CloneNode(doc, element);

InsertNodeAfterElement(dd, element);

continue;

74

}

}

/*

if this is the end tag for an ancestor element

then infer end tag for this element

*1

if (node->type = EndTag)

{

for (parent = element->parent;

parent != NULL; parent = parent->parent)

1

if (node->tag — parent->tag)

{

if (!(element->tag->model & CM_OPT) && !element->implicit)

ReportWarning(doc, element, node, MISSING_ENDTAG_BEFORE);

PopInline(doc, element);

UngetToken(doc);

if (!(mode & Preformatted))

TrimSpaces(doc, element);

TrimEmptyElement(doc, element);

return;

}

}

}

75

/* block level tags end this element */

if (!(node->tag->model & CM_INLINE) &&

!(element->tag->model & CM_MIXED))

if (node->type != StartTag)

{

ReportWarning(doc, element, node, DISCARDING_UNEXPECTED);

FreeNode(doc, node);

continue;

}

if (!(element->tag->model & CM_OPT))

ReportWarning(doc, element, node, MISSING_ENDTAG_BEFORE);

if (node->tag->model & CM_HEAD && !(node->tag->model & CM_BLOCK))

{

MoveToHead(doc, element, node);

continue;

}

/*

prevent anchors from propagating into block tags

except for headings hl to h6

*1

if (nodeIsA(element))

{

if (node->tag && !(node->tag->model & CM_HEADING))

76

Popinline(doc, element);

•else if (!(element->content))

DiscardElement(doc, element);

UngetToken(doc);

return;

}

}

UngetToken(doc);

if (!(mode & Preformatted))

TrimSpaces(doc, element);

TrimEmptyElement(doc, element);

return;

}

/* parse inline element */

if (node->type == StartTag node->type == StartEndTag)

if (node->implicit)

ReportWarning(doc, element, node, INSERTING_TAG);

/* trim white space before
 */

if (nodeIsBR(node))

TrimSpaces(doc, element);

77

InsertNodeAtEnd(element, node);

ParseTag(doc, node, mode);

continue;

}

/* discard unexpected tags */

ReportWarning(doc, element, node, DISCARDING_UNEXPECTED);

FreeNode(doc, node);

continue;

}

if (!(element->tag->model & CM_OPT))

ReportWarning(doc, element, node, MISSING_ENDTAG_FOR);

TrimEmptyElement(doc, element);

78

}

REFERENCES

1. Bhaumik, Anirban, Deepti Dixit, Roberto Galnares, Manolis Tzagarakis, Michalis
Vaitis, Michael Bieber, Vincent Oria, Aparna Krishna, Qiang Lu, Firas
Aljallad, Li Zhang (2001). Integrating Hypermedia Functionality into
Database Applications. Developing Quality Complex Database Systems:
Practices, Techniques and Technologies, Becker, Shirley (ed).

2. Bhaumik, Anirban, Deepti Dixit, Roberto Galnares, Manolis Tzagarakis, Michalis
Vaitis, Michael Bieber, Vincent Oria, Aparna Krishna, Qiang Lu, Firas
Aljallad, Li Zhang, "Towards Hypermedia Support for Database Systems,"
Proceedings of the 34th Hawaii International Conference on System Sciences,
IEEE Press, Washington, D.C., January 2001.

3. Galnares, R. (2001). Augmenting Applications with Hypermedia Functionality and
Metainformation. Ph.D. Thesis, New Jersey Institute of Technology, Newark,
NJ 07102.

4. Bieber, Michael, Roberto Galnares and Qiang Lu. (2001). Service Integration for
Virtual Communities. Web Engineering Workshop, International World Wide
Web 10 Conference, Hong Kong, May 2001.

5. http://nsdl.org/tag.4b5181e8112bd62a.render.userLayoutRootNode.uP?uProot=ro
ot&uP_sparam=activeTab&activeTab=7 Date accessed: 04/03/2003.

6. http://www.cogsci.princeton.edu/~wn/ Date accessed: 04/15/2003.

7. http://www.nlm.nih.gov/mesh/download_mesh.html Date accessed: 04/08/2003.

8. http://www.asis.org/Publications/Thesaurus/isframe.ht Date accessed: 04/08/2003.

9. Erdos, Marlena, and Cantor, Scott. Shibboleth-Architecture DRAFT v05.

10. http://dublincore.org/documents/dces/ Date accessed: 04/12/2003.

11. http ://nsdl.org/tag.a1437ade41ac8ef2.render.userLayoutRootNode.uP?uP root=roo
t&uP sparam=activeTab&activeTab=2 Date accessed: 04/14/2003.

79

80

12. A. Paepcke, R. Brandriff, G. Janee, R. Larson, B. Ludaescher, S. Melnik, and S.
Raghavan. "Search Middleware and the Simple Digital Library Interoperability
Protocol", D-Lib Magazine, 5 (3), 2000.
http://www.dlib.org/dlib/march00/paepcke/03paepcke.html.

13. www.dublincore.org Date accessed: 04/21/2003.

14. http://metamanagement.comm.nsdlib.org/overview.html#what

Date accessed: 04/21/2003.

15. Baker, Thomas. A Grammar of Dublin Core.

16. http://dublincore.org/documents/dces/ Date accessed: 04/21/2003.

17. http://marsalis.internet2.edu/cgi-bin/viewcvs.cgi/*checkout*/shibboleth/DEPLOY-
GUIDE-ORIGIN.html?rev=HEAD&content-type=text/html

Date accessed: 04/22/2003.

18. http://openarchives.org Date accessed: 04/22/2003.

19. http://www.openarchives.org/OAI/openarchivesprotocol.html

Date accessed: 04/22/2003.

20. http://web.mit.edu/kerberos/www/ Date accessed: 04/21/2003.

	Towards digital library service integration
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Digital Library Service Integration
	Chapter 3: Design and Implementation
	Chapter 4: Future Enhancements
	Chapter 5: Conclusions
	Appendix A: XML Schema Format for Validating Responses to OAI-PMH Requests
	Appendix B: XML Schema for Validating Unqualified Dublin Core Metadata
	Appendix C: HTML to XML Conversion
	References

	List of Tables
	List of Figures

