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ABSTRACT

COMPARATIVE STUDIES OF NETWORK TRAFFIC
IN ACTUAL AND EMULATED WIRELESS NETWORKS

by
Curtis Salley Jr.

Wireless networks are becoming more popular in all types of environments from home

office, to business infrastructure, to mobile computing. As more of these networks

flourish, so does the attraction for hackers. The thesis examines the bandwidth of wireless

networks and the effects of intrusions in three different scenarios. First, it looks at a

wireless network that is connected to a wired infrastructure. Next, the thesis examines a

wireless ad hoc network and how bandwidth plays a valuable part in the communication

with neighboring nodes. And finally, the thesis attempts to simulate a wireless network

by using a bandwidth configuration method on a dynamic switch.

The thesis looks at the three different scenarios in two ways. First, it examines the

bandwidth utilization without any intrusion attempts. This was done in order to obtain a

baseline for analysis. Secondly, it introduces intrusions into the scenarios and examines

the effects. Data is collected for both types of scenarios and compared to determine if

there is a noticeable effect on the utilized bandwidth.



COMPARITIVE STUDIES OF NETWORK TRAFFIC
IN ACTUAL AND EMULATED WIRELESS NETWORKS

by
Curtis Salley Jr.

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

May 2003



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

COMPARATIVE STUDIES OF NETWORK TRAFFIC
IN ACTUAL AND EMULATED WIRELESS NETWORKS

Curtis Salley Jr.

Dr. Constantine Manikopoulos, Thesis  Advisor	 Date
Associate Professor, Department Electrical and Computer Engineering, NJIT

Dr. George Antoniou, Committee Member	 Date
Professor, Department of Computer Science, Montclair State University

Dr. Bin He, Committee Member	 Date
Senior scientist, XPRT Solutions Inc.



BIOGRAPHICAL SKETCH

Author:	 Curtis Salley Jr.

Degree:	 Master of Science in Computer Engineering

Date:	 May 2003

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education

• Master of Science in Computer Engineering
New Jersey Institute of Technology, Newark, NJ, May 2003

• Bachelor of Science in Computer Engineering
New Jersey Institute of Technology, Newark, NJ, August 2001

Major:	 Computer Engineering



To my beloved wife Danielle

v



ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Constantine Manikopoulos, who

not only served as my research advisor, providing valuable and countless resources,

insight, and guidance, but also constantly gave support, encouragement, and reassurance.

Special thanks goes to the many graduate students who worked side by side with me

during my research.

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

2 NETWORK INTRUSION SIGNATURES AND ANALYSIS 	 2

2.1 The TCPdump tool 	 2

2.2 The Mitnick Attack 	 5

2.3 Fragmentation 	 8

2.4 ICMP 	 10

2.5 Denial of Service 	 14

2.6 Summary 	 15

3 NETWORK SETUP AND TESTING 	 I7

3.1 Initial Network Setup 	 17

3.2 Testing With Background Traffic 	 19

3.2.I	 HTTP Traffic 	 19

3.2.2	 FTP Traffic 	 20

3.3.3	 Client Server Traffic 	 21

4 DATA COLLECTION 	 24

4.1 Baseline Background Traffic 	 24

4.2 Attack Traffic 	 26

4.2.I	 Node Identification 	 27

4.2.2	 Bandwidth Consumption 	 29

5 DATA ANALYSIS AND COMPARISON 	 31



TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.1 Analysis of Background and Attack Traffic in Same Scenario 	  3I

5.1.1 Infrastructure Network 	  31

5.I.2 Ad hoc Network 	  33

5.1.3 Dynamic-Link Switch Network 	  35

5.2 Comparison of the Different Scenarios 	  37

6 CONCLUSION 	  38

7 USER MANUAL 	  39

APPENDIX A INFRASTRUCTURE NETWORK 	  43

APPENDIX B AD HOC NETWORK 	  44

APPENDIX C DYNAMIC-LINK SWITCH NETWORK 	  45

REFERENCES 	  46



LIST OF FIGURES

Figure	 Page

2.I Sample Packet 	 4

2.2 Attacker and Victim Nodes 	 7

2.3 Smurf Attack 	 12

2.4 Tribe Flood Network Attack 	 I3

3.1 Infrastructure Setup 	 17

3.2 Link Info 	 18

3.3 Server Program 	 21

3.4 Client Program 	 22

3.5 Client Server Communication 	 23

4.1 Windump 	 25

4.2 Ethereal 	 26

4.3 File name request 	 27

4.4 Scan Options 	 28

4.5 File Locator 	 28

4.6 FLOODz Interface 	 29

5.1 Infrastructure Background Data 	 32

5.2 Infrastructure Attack Data 	 32

5.3 Ad hoc Background Data 	 34

5.4 Ad hoc Attack Data 	 34

5.5 Dynamic-Link Switch Background Data 	 36

ix



LIST OF FIGURES
(Continued)

Figure	 Page

5.6 Dynamic-Link Switch Attack Data 	  36

x



CHAPTER 1

INTRODUCTION

The objective of this thesis is to show the effects of intrusion attempts on wireless

networks. Bandwidth analysis is used to determine how the network is impacted. First, I

explain the tools used to understand network traffic. Then, different types of attacks are

examined and their signatures are identified in the traces. Next, I demonstrate what was

done during my research and the type of analysis used.

Normal traffic is captured in order to give a baseline for comparison. Then attack

traffic is added and more traffic is collected to determine the effects. There are many

different types of attacks used during the simulations and their effects are different on the

network. There are several wireless setup tested including a simulated network using a

dynamic-link switch. I examine three different types. The first type that is examined is

infrastructure. This is a setup where you have wireless network as a subnet in a wired

environment. This allows nodes in the wireless subnet interact with the nodes in the

wired subnets. Secondly, I examined a wireless ad hoc network. In this setup the access

point is not used as the central point of communication for nodes. The nodes seek each

other out and communicate independently. And the final network topology used was a

dynamic-link switch, which can simulate a wireless network. Varying the available

bandwidth during testing does this.

Comparisons are done between the three different setups with respect to the

difference between their baseline and attack traffics.
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CHAPTER 2

NETWORK INTRUSION SIGNATURES AND ANALYSIS

2.1 The TCPdump Tool

In this chapter I will present many different aspects of Intrusions, Intrusion Signatures,

and Analysis. The beginning will be broader to give a general flavor of the subject. Then

I will tighten the focus to give a deeper understanding on a given topic. This will be

shown in a clear format within the progression of this paper.

This being graduate level work I will not get too involved in the basics. I just

want it to be understood that the foundation upon which the theory is about to be

represented is TCP/IP. I do not have a mastery of this subject, yet my understanding is

adequate enough to carry on an intelligent conversation/paper. With this foundation laid,

I will now start relevant information on my topic.

TCP dump and Windump are tools that help people understand the traffic on the

network. It is important to understand these items because they are the foundation that

will help you get a quick understanding of other commercial tools that may be available.

The focus at this point is on the UNIX TCPdump. The command used to run it is

tcpdump. This command reads the traffic from the network interface, usually the default

interface, and displays it on the screen. The problem with this simple format is that there

is a lot of information that will show on the screen and it can be very hard to follow

because of the rapid change. For this reason there are many different commands that can

change this default display.

Filters could be used to enable tcpdump to only collect the data desired. For

example, say we were only interested in TCP records. We can just specify that we want

2
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TCP. What the filter does, or has the option to do, is check the field(s) in the IP datagram

that we may want checked and look specifically for what we want, in this case TCP. The

command to do this is tcpdump 'tcp'. This is just an example of one specific field. This

process can easily become very complex, as well as restrictive, when different

combinations of fields and traits are sent. TCPdump also has a way of letting us know

that a filter is stored in a file. This is good because now we do not necessarily have to

write the total command. The option is -F filename. This filename is where the filter is

located.

Again the default behavior of TCPdump is to put the output onto the screen. If

someone is here and looking for a specific record this may be acceptable. But, most of the

time there is no one physically monitoring this information; it is data being collected for

later analysis. During this period we may want data to be collected in binary format,

sometimes called raw output. In fact, the screen output has been converted from binary

format to a human-readable format. For the purpose of analysis binary format is best

because it stores all data, not only data for the screen output. The command to collect

data in a binary format is tcpdump -w filename. To read this data, use the command

tcpdump -r filename.

Another option that must be considered is the amount of data tcpdump will

collect. The entire datagram is not collected usually. This is mainly due to the great

volume this would generate. The header is normally what is collected. The standard

number of bytes is 68. The reason for this number is shown in the picture below.
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Figure 2.1 Sample Packet

The length can be set by the command tcpdump -s length, where length is the number of

bytes.

Now I will describe three types of TCP intrusion attempts. The first is a port scan.

There are many different reasons why this may be done. The main reason, however, has

be determined to be that someone may want to know if a particular host, or group of

hosts, have a service. Once this service is found on a host, a hacker may try to exploit the

possible weakness of this service. The fact that the ports are being scanned is obvious

from the TCPdump. A hacker that attempts this believes that no one is monitoring this

network or that the host being attacked has no way of being traced back. A person who

reads the TCPdump and understands how TCP works can easily notice this act.

The second TCP attack is another scan. The reason I call these attacks TCP

attacks is because this is the protocol on which they travel and, in fact, the strange

behavior from normal behavior of TCP is the signature that helps categorize them as

such. In the example in one the books, a look at the TCPdump may show a host is trying

to see that hosts on a particular subnet(s) has telnet available. But again, with an

understanding of TCP one can notice something is wrong. TCP has a 3-way handshake



5

before a connection is made. During this process no information, in the form of data

packets, is sent. The TCPdump in this case has 4 data packets with each scan. These

packets are not dropped instead they are added/included to the data after the connection is

complete. This is a way of going around an Intrusion Detection System. Because data is

only checked after the connection is complete.

The third is the concept of hijacking a TCP session. TCP is considered to be a

safe protocol by many. This is mainly because of the need to establish a session and other

parameters needed in order for the exchange of data to occur. Yet there is software that

can sniff this session and take it over. It is easy for them to see users IDs and passwords

that are encrypted. Once a session is established the only items needed to authenticate a

host is IP number, port numbers, sequence numbers, and acknowledgement numbers. A

sniffer can easily monitor the session and get this information and take over the session.

2.2 The Mitnick Attack

Now I will give a short review of one of the most famous system intrusions. This was

when Kevin Mitnick successfully hacked into Tsutomu Shimomura's system. There were

two different techniques used in this attack. They were SYN flooding and TCP hijacking.

The SYN flooding was a method used in order to stop a host from transmitting. While

this was done TCP hijacking was used to allow Mitnick to assume the identity of that

host. The key was that he noticed a trust relationship between two computers. Once he

saw this fact, he used it to exploit that relationship to the best of his ability.

Earlier in the paper I mentioned TCP hijacking so anyone reading should be able

to follow that concept at this point. I mentioned the establishment of connections earlier,
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but now I will explain a little more in order to help others follow my explanation of this

attack just in case they do not fully understand TCP. A connection in TCP is established

via a 3-way handshake. The sender sends a SYN packet. The receiver replies with an

ACK. Then the sender replies to this reply and a connection is formed. These

connections, or sessions, are kept in a database. The size of this database is limited. Once

the database is full it cannot create any more sessions. Therefore when SYN flood is

setup by an attacker they try their best to create as many requests for the connection as

possible. The key is that they do not want to complete the connection, just flood the

queue. Of course each connection has a certain time limit. Once this time limit is reached

the connection, or attempt, is dropped. The key is, however, in the fact that once the

queue is full it can be kept full.

Mitnick was smart. He did not want to be found. His code included a fake source

address and destination address. He even went a step further to make sure that the address

that he created was one that was routable to, but not active. What would happen is that

when an address is entered the program would automatically ping it to make sure it was

routable, but not active. Before he began his complex attack he did a lot of "intelligence

gathering", called recon probes. Again, his program would send a SYN. If the host

responded, he would send a RESET. Then he would decrement by one and do it again.

The purpose of this was to get an understanding of the sequence number generator. With

this understanding, he could then predict the behavior and take the place of the machine.

In this particular case 128,000 was added to the sequence number to create the next one.
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Figure 2.2 Attacker and Victims Nodes

A problem that allowed this attack to work is the fact that things were only checked once,

usually during startup of the connection. Mitnick took the name of the computer and the

system did not notice the change of IP addresses. A way to tell that spoofing is going on

is when a route or MAC address changes during a TCP session. Also the TTL could be

another indication. If it changes dramatically during the session spoofing may be

occurring. Yet, this was a TCP attack. The IP address remained the same. Once Mitnick

took over the appearance of the host, a server in this case, the key was only to generate

the correct sequence numbers.

He sent a SYN packet to the host. The host is supposed now to respond with an

ACK. He could not see this ACK because it went to the correct server. Under normal

operation the server would have noticed that it never sent a SYN packet. Therefore it

would send a RESET packet to the host. This is where the SYN flooding comes in. The

true server is flooded and cannot respond to the SYN. The trusted connection, the ghost
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server, then sends a UNIX command that tells the host to trust all computers and users of

these computers. Once this command is sent, a FIN is sent to end the connection. The

attack is now complete and Mr. Mitnick can log on to any computer. He did clear some

of the SYN's that were flooding the true server. This was done in case other people tried

to logon to the server and got an error message he knew it would arouse suspicion.

This attack could have been prevented at many steps along the way. A firewall,

with the proper configuration or a good packet-filtering router is an easy ways to prevent

this. Also it is good to verify all information about the connection periodically during the

connection, not just once. In looking at the TCPdump, we could have noticed the initial

sequence number incremented by one, which is not done by a sequence number

generator. Other obvious things were mentioned earlier.

2.3 Fragmentation

It has been said that fragmentation has been used to both hide and carry probes and

attacks. Not all Intrusion Detection Systems and packet-filtering devices reassemble

packets. So if the signature is carrier over several datagrams they may not be detectable.

This is the reason I will discuss fragmentation at this time.

Fragmentation is normally done when an IP datagram is traveling through the

network (Internet) and the MTU of the router/network is smaller that the packet. At this

point the packet must be broken down into pieces. Each of these fragments must reach

their destination. As these fragments travel they can come across a network with even a

smaller MTU and be fragmented again. It is up to the final destination to reassemble the

packet. Each fragment must carry specific information in order to allow the reassembly to
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occur correctly. Some of these important parts include the fragment IP, the offset, and the

length of data being carried by the fragment. All fragments, except the last, must also

carry a more fragment (MF) bit to tell the destination that more data is coming. All this

information is in the IP header.

The first fragment will carry the protocol information. So devices attempting to

block fragments will block this first datagram but let the others through. This is because

the device does not keep fragment ID. They look at each fragment individually and do

not associate them with previous ones. Although this is not necessarily good practice,

economically and time wise this is the better choice. To operate the other way would

mean that each fragment must be examined and stored, which cost money. Then

fragments must either be allowed or rejected, which takes more time and resources.

TCP dump can be used to view fragmented datagrams. The book shows an

example of an ICMP echo request that was sent using three fragmented Ethernet packets.

The word frag in the output to let you know that the packet is a fragment. Each piece has

the same id, letting you know they are part of the same original datagram. A + is used to

let you know that the more fragment flag was set and there are other fragments to follow.

The last fragment has no +, yet it does have offset, as does the second one. TCPdump

does have an option not to fragment a datagram (DF). When this is set a fragmented

datagram is not allowed on the network. If one is no the network it is dropped. Either way

an ICMP error message is sent back to the sender letting them know the MTU of their

network so that the datagrams use that number at their maximum from the beginning.

Fragmentation has opened the door for many to carry out malicious acts. Some

Intrusion Detection Systems cannot be configured to handle fragmentations. A good one,
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however, correctly maintains the state, reassemble fragments and then gives you some

sort of assessment. I will describe two of the most famous ones when I discuss Denial of

Service. For now I will give a simple example. The TCP header can be fragmented in

order to try to avoid detection. The book gave an example of a fragment tcp packet of 16

bytes. (We know the minimum is the 20-byte header.) The next packet had 4 bytes, the

rest of the header. Then a final fragment followed with data. Some detection systems will

not reassemble this packet, allowing it to go though.

2.4 ICMP

I chose to add the discussion on ICMP to my paper to give a good, well-rounded feel of

the different ways that intrusions can occur. This is another simple protocol that was

created in order to have a way to relay error conditions and grant simple request. It has

been altered, however, for negative purposes and the effects have been seen on some

networks. I chose not to get too deep in the theory of ICMP because many generally

know it. I will give a review of mapping, then discuss the normal activity, and finally

malicious activity.

When planning the strategy of an attack, mapping is a very crucial part. The main

purpose, usually, of an attacker is to find live host in the network that you want to attack.

This is important because if mapping is not done, a lot of unnecessary traffic can be

generated on the network causing attention that could have a negative effect for the

attacker. Echo request is the most common mappings used. The echo reply comes back

from the target if they receive the request. An example of this is ping. Knowing this most

administrators have blocked ping. This alone is not good enough because of some TCP
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examples I have shown earlier. This mapping can be done using not only host addresses

individually, but also broadcast addresses of networks, subnetworks, and routers when

trying to find their subnet mask.

Normal activity for ICMP consists of actions and responses to these actions and

error messages. Host unreachable is an example of an error message generated in

response to a request to find a specific host for the IP address given. A router sends this

response because the host obviously cannot. When a requested port on a host is not

listening a port unreachable message is sent back to the requesting host. An

administration-prohibited message may be sent to a host who tries to access another host

but they are not on the access list of the router that needed to give this passage. A router

may send a redirect if it determines that there is a more optimal path to the desired

destination. Need to fragment is another ICMP message that is sent when a desired host

cannot be reached because the datagram is too large and fragmentation cannot be done.

This message is sent back to the sending host along with the MTU of the network so the

datagram can be of that size or smaller when they are generated. And the final one I will

discuss is the time-exceeded in-transit. This is generated in response to a TTL value that

is lower that the thresholds of the current/next hop.

Now I will give examples of malicious attacks. The first one is the Smurf attack,

which is displayed below:
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Figure 2.3 Smurf Attack

As shown in the picture a malicious host with the broadcast address of local network of

vitcim.com created the ICMP echo request. All the hosts on this network will respond to

victim.com. If there are a lot of host on this network then victim.com  will be

overwhelmed, causing a denial-of-service.

Another attack is Tribe Flood Network (TEN). This is also a denial-of-service

attack. The difference with this attack is that distributor host are recruited for the attack.
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Figure 2.4 Tribe Flood Network Attack

For this attack there is a TNF master and daemon hosts. The different hosts are instructed

by the master to attack a victim via echo replies. These attacks can actually be UDP

flood, a TCP SYN flood, an ICMP echo request flood or a Smurf attack. The ICMP

identification number field in the header of echo reply gives which action to take. The

data portion is the part that sends the arguments.

The WinFreeze attack is characterized by the flooding of ICMP redirect

messages. As the host attempts to reset their routing table it becomes overwhelmed and

the performance of the host goes down. Loki is the final one I will discuss in this section

and is probably the worst of the ones mentioned. It uses ICMP as a tunneling protocol to

install Loki server. Once installed it will respond to Loki clients. These clients could send

request for passwords, files, etc.
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2.5 Denial of Service

Almost two years ago this was a very important topic. The main reason for this was the

shut down of major Internet sites such as eBay and CNN. The main focus of these attacks

is to stop the normal operations of the system. Spoofing is a key factor because it makes

finding the true attacker very hard. By spoofing I mean creating a false source address.

The denial of services will be explained in two categories. The first is brute-force attacks

and the second contains well-known attacks with elegant kills.

Brute-force attacks are well known by many major Internet companies.

Precaution should and can be taken by all, so if these attacks affect today's companies

then they are partially to blame themselves. I say this because the remedies are published,

easy to understand, and implemented by most. The key ones represented are Smurf and

Echo-Chargen. I will not go into detail about Smurf because this was done earlier. Echo-

Chargen is an attack that focuses on UNIX systems and uses them as amplifiers. It is

described as being similar to an audience at a tennis match or ping-pong. UDP port 7 is

used. This port echoes back whatever it receives. UDP port 19 is also used. You can send

this port a character and it responds with a random string of characters. This port is a

character generator. That's how the name Echo-Chargen was formed for this attack. A

back and forth would go on consuming more bandwidth and CPU cycles as time

continues. This can be prevented by not allowing packets to go to either of these ports.

Now I will discuss attacks that have a little more finesse. The first of these

is the Teardrop. It exploits the point that the protocol stack is not the greatest at math,

particularly negative numbers. Fragmentation is the medium used to cause havoc. What

happens is that, for example, a fragment is sent with 20 bytes and offset of 0. The next
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fragment is also 20 bytes with an offset of I0. In this case the operating system would

have to rewind. The negative number can possibly be translated into large positive

numbers. This may cause the operating system to write over information in other parts of

the memory. If this is done a couple times, the system will be corrupted.

The Ping of Death is another attack with finesse. It also is a one-packet kill like

Teardrop. Although they are packets of size one, they travel in about 30 datagrams. The

code to get this to work is:

ping -1 65510 target.ip.address

This will crash an unsuspecting system. The key to get this to work is to create a packet

that is of larger size than is allowed in an ICMP packet. This size is any number greater

than 65,535. Because of fragmentation the larger ICMP packet can be sent. The receiver

will not realize until total reassembly that the packet is too large. In fact, the last fragment

is what can cause the problem. This is because if the offset is correct then it will be

allowed to continue reassembly no mater how many packets are contained in this last

fragment. The overflow can possibly cause the system to crash as well as other problems.

2.6 Summary

In this chapter I showed different aspects of attacks and signatures. The purpose was to

bring to light a beginning of understanding so that some that may not know much, or

anything, about what an attack or intrusion is and how it is carried out can have a little

knowledge. I learned a lot about this subject and I hope to carry on my interest via

research and study in other classes. I started with a general understanding of TCPdump

and the attacks that manipulate TCP, especially "The Mitnick Attack". Then I discussed
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how fragmentation is used to help disguise attacks by spreading them over several

datagrams. Another protocol used to masquerade attacks is ICMP. I explained this and

showed a couple of examples as well. The next subject was Denial of Service. Many

attacks seem to fall under this category and I only listed a few. This could have been the

subject of the paper by itself because of the number and effects of the attacks that have

been tried and still exist. Finally I discussed intrusion detection systems.

Overall this paper is a good summary of the many different aspects of the subject.

This is, however, is not meant to be the overall summary of the entire different topic that

could fall under the category of intrusions and detection. Hopefully enough explanation

was given to the different topics I did choose to discuss. If they're any gaps to fill please

feel free to seek myself or read the references cited at the end of this paper. Thank you.



CHAPTER 3

NETWORK SETUP AND TESTING

3.1 Initial Network Setup

The initial setup of the wireless network began with two laptops. They were used to

verify connectivity both between each other and the wired network. The laptops came

with Windows 95 already installed and this was sufficient for the tests that needed to be

done at this stage of the project. D-Link wireless equipment was used and the access

point was the first thing that was connected to the already existing wired network. A new

subnet was created in order to distinguish the wireless network from the wired when

necessary. A layer three switch was the tool used to inter-network the different subnets.

The design of the network was one in which the access point, which is the

pathway through which the laptops communicate with the wired subnets, was connect to

a hub, which connected to the layer three switch. Then the switch would forward packets

to what ever network necessary (see Figure 3.I).

Figure 3.1 Infrastructure Setup

17
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Internet Protocol addresses were assigned to each of the laptops. The subnet was

already created and I made sure that the addresses given fell within the correct range. The

D-Link software was next installed on the laptops in order to configure the wireless

cards. This configuration was needed to enable communication with either the access

point, which was connected to the wired network, or with each other. The D-Link

products that were chosen followed the IEEE 802.I1b standard. After the software was

installed I went into the D-Link control utility to set the SSID. This is what the wireless

cards used to verify that they are part of the correct network.

Under the configuration tab I made sure that the mode chosen is Infrastructure

and the SSID is Coe259. The transmittal rate is set to fully automatic to allow flexibility

regarding the flow of data. To verify that I can reach neighbor nodes I sent out ICMP

ping packets. This is done from the laptops to all the nodes in the network. Once this test

completed successfully from close proximity, I send a continuous ICMP ping (ping —t)

and test the distance limitation of the laptops with respect to the access point. Under the

Link Info tab of the D-Link control utility I can see both the link quality and signal

strength (see Figure 3.2).

Figure 3.2 Link Info
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From the computer lab I could go about I00 feet. Even when the link quality and

signal strength was very low, there was no loss of ICMP ping packets. Once I stepped out

of range, however, I was not able to communicate with the other nodes. This was a great

test because it showed that the way to test packet loss was not just based on the distance

the laptop was away from the access point, unless I stepped out of range completely.

Once this was done for the two laptops another was added to increase the amount of

nodes in the wireless environment. The same types of test were ran on the new node as

well.

3.2 Testing With Background Traffic

In order to determine the effects of the attack traffic on the network there must be a

baseline to represent the normal flow of traffic. I use background traffic to represent this

necessary information. Three forms of background traffic were used and I tested each to

verify that they would be sufficient and that they were compatible with what I want to do

regarding the behavior of normal traffic flow. FTP, HTTP, and Client Server were the

three choices selected.

3.2.1 HTTP Traffic

In the wired network background traffic was used in a similar manner in which I intended

to us it. One such traffic was HTTP. This was generated via a request for a file that

resided on a remote computer. The request was made through a web browser and the file

was a picture, either bitmap or jpeg. It was rather simple to generate this traffic. All that

was needed to be done was it input the ip address of the remote computer that has the
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desired file and the file name. This information was put into the web browser address line

and when go was pressed, or enter, the image was retrieved and displayed on the screen.

There were many images available and I wanted a continuous stream, so I created

a script that would constantly request these image files. The script would request images

one after the other with minimal delay all the way to about 100 different images. Then it

would delete the images and start the request all over again. This would continue until I

stopped the script. The script was created using a program call recorder, which allowed a

user to either capture keyboard strokes and mouse clicks, or create a script in notepad.

For this traffic, I created a program in notepad because it was much easier.

This script seemed to work very well, but it did not allow you use the computer

for other tasks once it was started. The traffic seemed okay and the overall this process

was not bad. There was no user involvement once the script was started which allowed

for consistent results each time it was ran.

3.2.2 FTP Traffic

Another form of traffic that was generated across the network was ftp. This setup was

very similar to HTTP traffic. The same files were requested from remote computers, just

in a different manner. To test this type of traffic I used the DOS prompt to transfer files

one by one. There were no problems with this task. Again, I tested the range to ensure

that the traffic could travel even at the edge of link availability within the wireless

network. Overall the tests were a success. Next I created a script to automatically run the

ftp traffic. It worked in a manner similar to the HTTP script I had generated for the

previous test. The files were transferred over the network, deleted, and then they were
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requested again. Minimum delay was used to generate higher amounts of traffic on the

network.

3.3.3 Client Server Traffic

Automatic background traffic generation is very important because the focus can be

placed on other factors that may be more relevant to your research. A Ph.D. candidate,

Jun Li, had created a program that used Pareto's distribution to determine the message

length. This was client server program in which the client sent messages to the server and

the server would return messages to the client. The range and size of the messages varied,

which made for a good example of traffic that would normally travel in a computer

network environment.

There were two programs, client and server, that worked in conjunction with each

other. The server program had to be running before the client program was started. To

start the server program was simple. All that was required was that the user specified on

which port the server would be listening, figure 3.3 show an example of this.

Figure 3.3 Server Program



Once the server program was started the client program then had to be started.

There were a few more steps in getting this program started. There were a series of 5

questions that had to be answered before traffic was generated across the network. First

the IP address of the server program needed to be inserted. Next, the port on which the

server was listening had to be specified. After that there were three questions regarding

the parameters that needed to be set in order for the Pareto Distribution message pattern

to be set. Figure 3.4 shows the sequence along with a sample users input.
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Figure 3.4 Client Program

The directions are rather simple and very user friendly. Once all the requested

information is given, message packages of random size are sent to the server. Then the

server responds with random message packets of its own. This communication between

the client and server continues until it is stopped by the user. The great thing about this

program is that it is scalable. There are many different ways this can be setup. One

example is where you can have many clients talk to one server. Another is where you can

have several servers on different nodes or even on the same node listening at different
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ports. In order to generate more traffic more clients could be added. Figure 3.5 shows a

sample of communication between the two programs. Here we see the information that is

received by the server. The same type of information is generated on the client side.

Figure 3.5 Client Server Communication



CHAPTER 4

DATA COLLECTION

In order to determine the effects of intrusions on the network, I had to first collect data.

This data fell into two categories, baseline traffic and attack traffic. The baseline was

needed as a frame of reference that would be used to determine if the attack traffic could

be noticed. It would represent the normal traffic that would occur on the network. The

collection of data was done in all three scenarios, infrastructure, ad hoc, and dynamic

switch. Attack traffic was also captured in the same manner the baseline traffic was

captured. The comparison of the two different types of traffic would occur, not only

within the scenario collected, but also with the other scenarios.

4.1 Baseline Background Traffic

The baseline traffic would represent the normal traffic that occurs across the network. In

a live network environment, this would be file transfer traffic, HTTP traffic, Internet

traffic, etc. As stated in chapter 3, I tested three different types of traffic on the network. I

collected the data on each network type and compared them side-by-side. The traffic that

seemed to be the most useful was the client server traffic. There were many reasons it

was a better choice and the mains ones were mentioned earlier. They included scalability

and ease of use.

The way in which traffic was collect was rather simple. I would run a program

called Windump and it would listen for incoming packets and collect all the data that

came. It would run in the background and needed no assistance once started. One simple
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Figure 4.1 Windump

command had to be executed in order for the data collection to begin. Figure 4.I shows

an example of the necessary command. The key was to specify the file that would store

the data. The program would be started, and then I would start the client and server

programs on the nodes that would be involved in the data collection. Data collection

would go on for some while before being stopped.

It was important to make sure that traffic was being sent and received by each

node that participated in my research. This is what made the client server programs so

important. I created a server on one node and made all the other nodes clients. In this

manner all the nodes would be communication. The clients would send information to the

server and the server would then return some information to the client. This two-way

communication would continue until I stopped it.

The next step was to read the data and get statistic from it. I used a program

named Ethereal to read the information that was collected by Windump. Figure 4.2

showed the main screen of Ethereal. All the important packet information could be found



here. This included source address, destination address, sequence number, time, etc.

Ethereal also offered summary statistics such as packet count, average packets/sec,

average bytes/sec, elapsed time, etc. The information obtained from the data that was

collected was sufficient to determine the baseline for my comparison. This test was

repeated for all the scenario types.

26

Figure 4.2 Ethereal

4.2 Attack Traffic

Once the baseline was established, I worked on the different type of attacks that I would

attempt to use. I thought of several approaches. Attacks come in many forms and fall

under many categories, but the one I chose to focus on was Denial of Service in the form

of bandwidth consumption. In order to implement the attack I had to use two steps. The
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first step was to determine what nodes were reachable and available for attack. The

second step was the actual attack itself.

4.2.1 Node Identification

In this, the first step, I represented a hacker who wanted to know what nodes were

available to be accessed. This information could have been found in many different ways.

I could have determined just the IP addresses of the nodes, what operating system they

were running, what ports were open, etc. All of the above choices seemed very valuable;

therefore I made them all available to be chosen. This was done through a script I created

which asked a few simple questions regarding the type of information that you wanted to

capture. The script not only asked you what information you wanted, but it also saved the

information in several different files.

The script was created through a program called recorder and used the services of

two other programs called Nmap and Windump. The recorder program would have to be

started by the user and then the correct script would have to be loaded. It started off by

asking you for a name that would be used label all the files that would be collected as

shown in Figure 4.3. All the screens were similar to this one. The user would input the

Figure 4.3 File name request
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information in the box provided and then pressed OK. The next screen would ask for the

ip address of the network or particular node you would like to explore. The user would

input the necessary information again and pressed OK. Then it would give the user a list

of options regarding the type of scan it they would like to perform. Figure 4.4 shows this

screen and as you can see there are eight different choices to choose from. The next

screen would vary depending of the type of scan you had chosen.

Figure 4.4 Scan Options

After a few more screens that helped to better define the type of attack that was

done, the script displayed a final screen, which gave the location of the different files that

were saved (see Figure 4.5).

Figure 4.5 File locator

Each file held different information. The Nmap_output file held the results of the scan

that was done. The scenario file held all the information that you requested to be done in
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the attack. The Windump=1file held all the packets that came to the node, which were the

results of the Windump program. All the different files still had the same name just

different extensions. The information that was collected was then used for the next step

of the attack process.

4.2.2 Bandwidth Consumption

Now that all nodes were identified with the necessary information, the next step of the

attack process was to use this information to attempt to create a denial of service to the

node, or nodes in question. There were many different tools available for me to use to

generate enough traffic to get the results I wanted. My main package of choice, after

many tests, was called Devine Intervention. This one package had many different tools

that generated attacks in many different forms. It could attack a specific port of a node

and could send packets of variable sizes in specified amounts, etc.

I used a tool named FLOODz from the Devine Intervention package. In this tool I

am able to specify the ip address of the victim, the packet size, and the number of threads

I would like to have sent. Figure 4.6 shows what the interface looks like. It is a rather

Figure 4.6 FLOODz Interface
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simple program that is began by pressing start and ended by pressing halt, which is in the

same position as start once the program is started. Packets of the size specified are

continuously sent to the designated ip address causing the result of a lot of traffic being

sent to the specified host. I ran this program in all three different scenarios and the data

was collected. At the same time this program was running, the background server client

programs were running. Therefore, the data is a combination of both background and

attack traffic. The key now would be to determine if the results would show any

difference on the bandwidth of the network.



CHAPTER 5

DATA ANALYSIS AND COMPARISON

5.1 Analysis of Background and Attack Traffic in Same Scenario

Two types of data were collected for each scenario. The first type was the baseline

network traffic and the second type was attack and baseline traffic. The baseline network

is a representation of what the normal traffic pattern would look like during normal

operation. This would be the bar by which the attack traffic would be measured. An

analysis of each type of traffic is done for each scenario and finally a comparison is done

between the different scenarios.

5.1.1 Infrastructure Network

The first network on which I collected data was the infrastructure network. This network,

which is shown in Appendix A, had one of the nodes in the wireless network setup as the

server while the other nodes represented clients and sent messages to the server. The

server would then answer with messages of variable length. Figure 5.I below shows a

sample data time plot. As you can see, the data remained relatively consistent throughout

this period of the test and was in line with what I expected. There were no changes while

the client server programs were running. The server node was on a wireless laptop, so I

roamed the hallways near the lab to test the range. At no time did I go outside the range.

The lowest I let the signal strength and link quality get was 6%. No packets were dropped

and there was no delay noticed during the analysis of this data collected. The average

traffic was 23 kbps, while the maximum value was 1.4 Mbps. It can easily be seen in the
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figure that the traffic follows the same pattern through the collection, with only a few

packets going far away from the average.
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Figure 5.1 Infrastructure Background Data

Figure 5.2 Infrastructure Attack Data

The attack traffic was collected in the same manner that the background traffic

was collected. As stated in Chapter 4, I used the FLOODz program to implement the

attack. Figure 5.2 shows the results of the data collected from the attack. Looking at the
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figure there are two main things to notice. The first is that the average traffic was 1.8

Mbps. This average is very high compared to the background traffic and is a strong

indication that there is suspicious traffic on the network. The second is the gaps in the

data pattern. These gaps represent a loss of data throughput. The periods between 0 and

54 seconds and between 440 and 473 have 0 or minimum through put of bits. The attack

was so effective that it inhibited the flow of data during these, as well as other, periods.

5.1.2 Ad hoc Network

This network functioned without the use of an access point or communication with other

networks. The network setup, which is in Appendix B, shows that the individual nodes

interacted with each other independently. Each node scanned the different channels every

5 seconds for other nodes that had the same SSID. This was the determining factor on

whether they could interact or not. Unlike when the wireless laptops were in

infrastructure mode, there is not a link quality and signal strength meter to determine the

values of these parameters. This made roaming a little more difficult.

Data was collected in the same manner it was collect for infrastructure. The only

difference in this scenario is the amount of nodes that was generation the traffic. In both

data collections there were only a total of three nodes. One of the nodes was the server

while the other two nodes were the clients. Figure 5.3 shows that the data was somewhat

consistent. The average was about 12 kbps, which is half that of infrastructure. But this

was to be expected due to the reduced number of nodes. I roamed the halls with the

server in the same manner used with the infrastructure scenario and tried to say within the
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same bounds. Again the data was consistent throughout the collection and there were no

surprises with the background traffic.

Figure 5.3 Ad hoc Background Data

Figure 5.4 Ad hoc Attack Data

The attack also came from two nodes going to one. As Figure 5.4 shows, after 240

seconds the throughput goes to 0. This continues for a while and eventually comes back

up (which is not shown in this figure). The attack crippled the ad hoc network for a
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period of time showing that it was not as robust I would have expected. Others attempts

at attacks using fewer packets eventually showed the same results.

5.1.3 Dynamic-Link Switch

In this network setup, which can be seen in Appendix C, the Dynamic-Link switch served

as the gateway through which the different networks communicated. Software is

supposed to be able to configure the bandwidth that is specified by the user. The problem

with this setup is that there must be a problem with the program because through

numerous experiments I was not able to determine the correct bandwidth that was setup

to be allowed through the switch.

The way the switch worked, in order for packets to be allow through they had to

have enough tokens to cover the total number of bits in the packet. There were three

items that were configurable. They were the arrival rate of the packets, the number of

tokens that could be held in the token buffer, and the number of bytes a token can

support. The allowable bandwidth was supposed to be a simple multiplication of the

arrival rate and the number of bytes per token.

Figure 5.5 show the data collected when I attempted to run only background

traffic. This data was for the most part consistent with what I noticed the past. The

average rate was 2I kbps, and since the setup was similar to the infrastructure setup, it

did not bother me that the numbers were close. After this data was collected I then

attempted to collect data for the attack traffic. This data is shown in Figure 5.6. I noticed

the gaps in the test and tried to do some bandwidth calculations to allow a high

bandwidth throughput. This is where the problems started with this scenario. My
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calculations did not agree with the results I received. I checked with others who were

working with the switch and they were having similar problems. We concluded that there

is currently no way to determine, definitely, the allowable bandwidth once configured.

Figure 5.5 Dynamic-Link Switch Background Data

Figure 5.6 Dynamic-Link Switch Attack Data

Due to this conclusion I could not determine if the switch if functioning correctly or not

in this scenario. Yes, just looking at the data I can see that a possible attack has occurred

just from the variance from the background data and the attack data. But the accuracy of

the data and the possibilities is not sufficient to come to a definite conclusion.
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5.2 Comparison of Different Scenarios

In each if the scenarios it can easily be determined from the data collected that an attack

has occurred. The variance in the data from the background traffic to the attack traffic

shows that something did occur. More bandwidth was utilized in each of the scenarios

and the data seemed to be consistent, at least in the first two networks. Overall the

variance from background data to attack data was similar in all three different network

setups, which was satisfying. They were not exactly the same, but they were not different

by an obscure amount. The scenarios are consistent. More needs to be done with the

dynamic-link switch, however, to ensure that it is correct in achieving its main purpose,

bandwidth configuration.



CHAPTER 6

CONCLUSION

The research was a success. The goal was to determine if network intrusions had

bandwidth effects of three different types of network setups. These setups were

infrastructure, ad hoc, and dynamic-link switch. Through data analysis it was determined

that the effects could be seen in all three different setups. There is some question on the

validity of one network setup, dynamic-link switch, due to the fact that I was not able to

confirm that the bandwidth configuration worked correctly. Keeping that in mind, the

results were still consistent with what was found in the other network setups.
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CHAPTER 7

USER MANUAL

This is a simple user manual that can be used to guide you through the many different

steps I've done during this research. There are three different parts. The first part is setup.

This involves making sure that the different both have the correct IP addresses and can

communicate with each other. If you know the network to which the node belongs, check

the IP address to ensure it is part of that network. This can be done from MSDOS.

On the command line of MSDOS type ipconfig. This will give you the IP address

of the node. If the address is part of the correct network then try to ping the other nodes in

the same network and in other networks to ensure connectivity. If it is not part of the

correct network then you must give the node the correct address. This is done by pressing

the right button of the mouse while it is over the my network places icon on the desktop.

This brings up a list of options that can be selected. Click the work properties and this

brings up a window. In this window there is an icon, which is labeled Local Area

Connection. Right click this icon and again select properties. This action will bring up

another window with at least one, maybe more, tab.

Under the general tab there are several components that can be selected. Highlight

the component that reads Internet Protocol (TCP/IP). Then click the properties button in

this window. Again another window will show which will allow you to change the IP

address. Click the radio button next to the statement Use the following IP address. Input

the correct IP address, subnet mask, and default gateway that will allow it to be part of

the network. Once this is done click the okay button to close the windows, the first

39



40

window that was opened must be closed by pressing the X in the top right corner. Once

again go to MSDOS and attempt to ping nodes in the same network and other networks.

The next step is to start the client server programs. Both if these programs are

started from MSDOS. Find the location of the programs and get to that directory in

MSDOS, the names client.exe and server.exe. Type the name of the program you would

like to start, please remember that the server program must be started before the client

program. If you type client and press enter on the keyboard, it will start the client

program. This program will ask you several questions such as the IP address of the

server, the port on which the server is listening, etc. The questions are rather simple and

easy to follow. If you type server and press enter on the keyboard the program will only

ask on what port would you like to listen.

In order to collect data Windump must be started to capture all the packets. This is

also started in MSDOS. The command line should be pointing to the directory in which

the program windump.exe is located. Then you must type "windump —i2 —s 6000 —w

c:\folder\filename.tcpdump" . In this example folder represents the folder that will store

the file and filename represents the name of your file. Once you press enter on the

keyboard, the program will start listening for any traffic that will come to the node. To

stop the program, which can be done at any time you must press Ctrl + C. The data will

be automatically stored in the file specified. To read the data you must open a program

called ethereal and load the file from the location where it's stored. The ethereal program

either has a shortcut on the desktop or in the programs menu of the windows start icon.

The next item explained is using the scan script I created using recorder. To use

this script is rather easy. The only problem is that in order to transport it to another node
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involves a little manipulation of the program. It is currently setup on one of the nodes and

the instructions give below apply to this computer. The instructions will be the same for

any other node you transport it to, but you must make sure that the same folders exist in

the same areas on the new node. The recorder program can be retrieved from either the

shortcut on the desktop or under programs in the windows start menu. Once the program

is open you must press the load button. This will allow you to find the program you

would like to run. This will automatically bring up a folder called Curtis. In this folder

there is a program titled Nmap scenario. Click on this program and press ok. This will

load the program into the recorder application.

Pressing the replay button starts the script. This will start the first of many

windows in which you will have to put information. The first window will request the

filename in which all the other files will be saved. The next screen asks you the IP

address of the network you would like to scan. Then there are several screens that will

follow requesting information regarding what type of scan you would like to run. In order

to understand the many different possibilities of attacks that are available, read the help

file of the Nmap program, which has a short cut on the desktop. The last screen of the

program gives you the location and names of the different files that are created. This will

help you find the files when you are ready to retrieve them.

Now the program works on its own to complete the requested scan. It does this by

opening and starting windump, opening and starting Nmap, and saving all the scenario

information to the appropriate files. Once the scenario has stopped you must press Ctrl +

C to stop windump. All the files that were created are now available for your viewing.
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These files contain the tcp data in windump, the scenario setup information, and the

results of the scenario.

The last part of the experimentation involved using the data gathered from the nap

scenario to attempt other kinds of attacks. There are many different types of attacks that

can be attempted and I leave the choices up to you. So far I believe that there are about

200 attacks available, please see the professor, for your use. Many of them seek for

weaknesses in the operating systems that are present on the nodes. The choice is yours;

just remember to start windump before implementing the attack to ensure that you collect

the data. Running background traffic is also an option and if chosen should be started

prior to any attack attempts.



APPENDIX A

INFRASTRUCTURE NETWORK

This is the first network that was tested in research. There are four different networks

Inter-connected by a layer 3 switch. The wireless network is connected via an access

point. This unit is connected to a hub, which is then connected to the layer 3 switch.
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APPENDIX B

AD HOC NETWORK

This network setup features the different laptops interacting with each other without the

use of an access point. The laptops scan the different channels every 5 seconds in search

of another laptop with the same SSID so they can communicate.
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APPENDIX C

DYNAMIC-LINK SWITCH NETWORK

This network setup uses a computer with a dynamic-link software that in suppose to

inter-connect different networks. The switch should also be configurable it order for the

user to set the desired bandwidth. All the different networks connect to a port in an

Ethernet card on the switch.
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