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ABSTRACT

FEEDBACK ALGORITHM FOR SWITCH LOCATION:
ANALYSIS OF COMPLEXITY AND APPLICATION TO NETWORK DESIGN

by
Yuriy S. Polyakov

An accelerated feedback algorithm to solve the single-facility minisum problem is

studied with application to designing networks with the star topology. The algorithm, in

which the acceleration with respect to the Weiszfeld procedure is achieved by

multiplying the current Weiszfeld iterate by an accelerating feedback factor, is shown to

converge faster than the accelerating procedures available in the literature. Singularities

encountered in the algorithm are discussed in detail. A simple practical exception

handling subroutine is developed. Several applications of the algorithm to designing

computer networks with the star topology are demonstrated. Applications of the

algorithm as a subroutine for multi-switch location problems are considered. Various

engineering aspects involved in acquiring and processing coordinates for geographic

locations are discussed. A complete algorithm in pseudocode along with the source code

listing in Mathematica 4.1 is presented.
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CHAPTER 1

INTRODUCTION

1.1 Location Science and Fermat-Weber Problem

Finding the optimal location of a switch on a network with star topology can be

considered as a special case of much more general problems in operations research,

usually referred to as facilities location problems. The problems address the question of

where to locate an object (or objects) called a facility (switch, in our case). The facility

will interact with a group of other objects that have fixed locations, called existing

facilities (users, in our case). A concept of distance between the facility to be located and

the existing facilities will contribute to a performance measure. This will lead to an

objective function that can be used to evaluate a trial location of the facility. The choice

of locations may be restricted.

Location science has been developing in three main areas. The first (Love et al.,

1988) and the oldest category includes the continuous models which allow facility

locations to be anywhere on the plane or a subset of the plane. The second type (Love et

al., 1988) has evolved out of modern practice and stems from the application of

mathematical programming to solving location-allocation problems. These are known as

discrete models; the possible locations are specified in advance and are finite in number.

The third type (Handler et al., 1979) of location models is based on graph and network

theory. In this thesis, an algorithm of the first category will be developed and extensively

studied.

1



2

The location problems are usually divided in two classes: single-facility and

multi-facility problems. Single-facility problems are used to locate a single facility in

some configuration, for example, one data switch on a network. Multi-facility problems

are more complex and involve two or more facilities to be simultaneously located. A

multi-switch network is a good example of a case when a multi-facility problem could be

successfully applied. Single-facility problems are often used as subroutines in solving

multi-facility location-allocation problems (Brimberg et al., 2000; Levin & Ben-Israel,

2001).

Another important classification of facilities location problems is based on the

optimality criterion. Locations problems are usually either minisum or minimax. The first

type of location problems is used if it is necessary to minimize the sum of weighted

distances from a facility(ies) to a set of existing facilities. Locating a data switch or

locating a warehouse for a multi-store company are situations when one deals with

minisum problems. Minimax location problems are used if it is necessary to find such a

position for a facility(ies) that the farthest distance from it(them) to any existing facility is

minimal. Locating an emergency service when the latest time of arrival must be

minimized is a good example of a minimax problem.

The optimal location of a data switch on a network can be found by solving the

continuous single-facility minisum (also referred to as Fermat-Weber) problem, which is

thoroughly studied in the literature (Love et al., 1988). For the data switch case, the

problem is to place a switch on the plane so as to minimize the sum of "weighted"

distances from the switch to a set of fixed planar points (users). If the distances are given

by the 1p norm, the problem is formulated as follows:



where W(S) is the total "weighted" distance;

where n is the number of fixed demand points (users);

wi is the "weight" (demand) of the i-th user; i =1,..., n;

= (ail , a i2 ) is the given location of the i-th user (demand point);

S = (x 1 , x2 ) is the unknown location of the data switch.

The distance between any S, P E R 2 is given by

The "weight" is thought to be proportional to the demand of user i and incorporates cost,

bandwidth, network flow, and other factors. wilp (S, Pi ) is related to the cost of servicing

a request of user i by the switch.

1.2 History of Fermat-Weber Problem

Problem formulated in Equation (1.1) has a long history of research (Love et al., 1988;

Zacharias, 1931). The first recorded efforts at solving locations problems are associated

with Fermat in the early 17 th century. In his essay on maxima and minima Fermat wrote,

"Let he who does not approve of my method attempt the solution of the following

problem: Given three points in the plane find a fourth point such that the sum of its

distances to the three given points is a minimum". Before 1640 Torricelli observed that

the circles circumscribing the equilateral triangles constructed on the sides of the triangle,

exterior to the triangle, intersect at the optimal point. In 1834 Heinen proved that the

Torricelli property was not general; if the three points result in a triangle with one angle

equal to or greater than 120°, the vertex of this angle is the minimizing point. In his

Doctrine and Application of Fluxations (1750), Simpson generalized the problem to

3
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obtaining the point that minimizes the "weighed" sum of distances from the three given

points. Weber (1909) incorporated this problem into location theory in his influential

treatise on the theory of industrial location.

This early research could not anticipate the iterative mathematical perspective

enabled by the advent of the electronic computer. This fact explains why most of the

research related to facility location is relatively recent, starting in 1950s — 1960s. The

only exception is the monumental paper by E. Weiszfeld, now known as Andrew

Vaszonyi, published in 1937 that became the basis for a lot of research in location science.

The fact that the paper was written in French, submitted from Prague, and published in a

Japanese journal left the results of the paper virtually unknown for over 20 years.

1.3 Weiszfeld Iterative Algorithm

The most common method for solving the problem is based on a one-point iterative

algorithm, which was originally developed in Weiszfeld (1937) for Euclidian distances

(p = 2 ). The method was rediscovered by Miehle (1958), Kuhn & Kuenne (1962),

Cooper (1963), and Professor Verkhovsky (approx. 1978) many years later and has

become one of the most frequently used methods to solve the single-facility minisum

location problem.

One can obtain expressions for the Weiszfeld Iterative Algorithm (WIA) by

writing the total weighted distance W(S) for p=2, which corresponds to straight-line or

Euclidian distances. Then the partial derivatives ∂W(S)/∂xk , where k = 1 or 2, are set to

zero:
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After rewriting, the obtained equations can be used iteratively to approach the optimal

center location and the following formulas can be derived for the next (r+ 1) iterate (Love

et al., 1988; Weiszfeld, 1937):

where S^(r) = (.4 r) , ) is the point obtained in the previous iteration.

The WIA is readily extended to 4, distances (Love et al., 1988; Brimberg & Chen,

1998). Differentiating W(S) with respect to xk and setting the partial derivatives to zero,

one obtains

After substituting (xk — aik) = sign (xk — aik)|xk — aik| and isolating xk on the left-hand

side, one has

Equation (1.4) is usually referred to as the generalized Weiszfeld procedure (Brimberg &

Chen, 1998). Sometimes, a hyperbolic approximation is used to avoid division by zero

and thus Equation (1.4) has a slightly different look (Love et al., 1988):
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A detailed study of this singularity and hyperbolic approximation is provided later in the

thesis.

A lot of research has been conducted to study various aspects and improve the

WIA. However, the recent publications show that this problem is far from being

exhausted. Brimberg and Love (1992, 1993) recently proved the convergence of the

generalized WIA with 1 S p 2 . It was shown in Uster et al. (2000) that the convergence

in the case of p > 2 can be achieved by introducing a step size factor depending on p.

The problem of singularities in the WIA is discussed for both Euclidian (Brimberg, 1995;

Chandrasekaran et al., 1989) and 1p distances (Brimberg & Chen, 1998).

1.4 Newton Bracketing Method

An alternative approach to solve the problem formulated in Equation (1.1) is the Newton

Bracketing method (Levin & Ben-Israel, 2002b). In contrast to the Weiszfeld procedure

that approximates the value of the optimal location, the Newton Bracketing approach,
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based on the directional Newton method (Levin & Ben-Israel, 2002a), works by

narrowing the bounds on the minimum value of W(S).

An iteration begins with an interval [L^(r) ,U (1, called a bracket, containing the

minimum value of W(S), which will be referred to as Kim that is, L^(r) Wmin U(r) • If

the bracket is sufficiently small, that is, U^(r) — p for an acceptable tolerance p > 0 ,

then S^(r) is declared optimal and the computation stops. Else, value M^(r) inside the

bracket is selected, such as

and one directional Newton iteration (Levin et al., 2002b) is applied for solving

After that two cases are possible

The initial bracket [L^(0),U^(0)] is given by:
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Information on when the Newton Bracketing method can be applied and other

further details specific to this approach can be found in Levin & Ben-Israel (2002a,

2002b).

1.5 Acceleration of the Weiszfeld Iterative Algorithm

Accelerating the convergence of descent methods such as the WIA usually involves

selecting alternate step sizes (Cohen, 1981). The first attempt was based on the

Steffensen's iteration (Katz, 1974). The method is not globally convergent, though it may

be used to accelerate the local convergence for the WIA. At the same time, the

acceleration effect achieved in Katz (1974) is reduced because the Steffensen's iteration

involves additional complexity.

Drezner (1992) applies a variable factor A to multiply the step size of the WIA

for Euclidian distances (p = 2 ). In this case, the WIA is proven to converge only if

1 A< 2 (Ostresh, 1978). At the same time, the value of 2 , which is recalculated at each

iteration, may exceed two (Drezner, 1992). It was also shown in Drezner (1992) that the

number of iterations produced by the variable A. method is insignificantly reduced, as

compared to that yielded by the method with constant A =1.8 . As recalculating 2 at

each iteration significantly increases the algorithm complexity, the overall acceleration,

as compared to 2 =1.8 , is questionable.

Another approach (Drezner, 1995) is based on the assumption that the differences

between points obtained in two consecutive iterations form a geometric series, and the

limit of this series is the next iterate. Despite some non-converging cases, which could be

rectified by replacing a special parameter with the value corresponding to A =1.8 , the
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procedure (Drezner, 1995) yields a significant reduction in the number of iterations, as

compared to A. =1.8 , for low values of n. At the same time, this approach almost doubles

the complexity of each iteration, and so the overall acceleration is not clear. Acceleration

of the generalized WIA for lp distances was studied in (Frenk et al., 1994; Brimberg et

al., 1998).

1.6 Objectives of the Thesis

This thesis is focused on studying an accelerated algorithm for the case of Euclidian

distances ( p =2 ) and is a further development of the ideas suggested by Professor

Verkhovsky and the results obtained in Verkhovsky and Polyakov (2002a, 2002b). The

idea is to multiply the current WIA iterate by a so-called feedback factor, which is the

ratio of the current WIA iterate and the previous iterate value resulting from the

accelerated algorithm. The goal is to demonstrate that this method can reduce the number

of iterations and be faster than the existing procedures for solving the minisum problem.

As the iteration complexity of this algorithm is very close to that of the WIA, it can easily

be used in practical applications, specifically in finding the optimal location of a data

switch on a network with the star topology. Several possible computer-related

applications of the studied algorithm are also discussed. In addition, the algorithm is

applied to solving the Multi-Switch Location Problem (MSLP) since the single-switch

location problem can be used as a subroutine to solve the MSLP. In this case, the single-

switch problem is applied for each iteration and the overall complexity of the MSLP

strongly depends on the computational complexity of the single-switch problem.



CHAPTER 2

FEEDBACK ALGORITHM FOR SINGLE-SWITCH LOCATION PROBLEM

2.1 Acceleration Technique

To accelerate the WIA, the Weiszfeld iterate is multiplied by a feedback factor and,

therefore, this algorithm will be referred to as Feedback Algorithm for Switch Location

(FASL). Feedback accelerators are thoroughly studied in Verkhovsky (1976a, 1976b,

1976c, 1976d, 1977, 1978) and Veroy (1985).

Two kinds of approaches are considered here (Verkhovsky & Polyakov, 2002a;

2002b): first, if the factor is the same for both x 1 and x2 ; second, if the factors are

different for x1 and x2 .

In the first case, proposed by Professor Verkhovsky, the factor that gave the most

acceleration was found to be

where y * is the factor itself,

fw (a) is the next WIA iterate for coordinate a determined by Equation (1.3),

t is some parameter,

and r is the iteration number.

Multiple calculations showed that there is no static t that always yields the least

number of iterations. In fact, t varied from -1 to 4 or more. In addition, the acceleration

increase was on the average less significant than for the approach described below. One

10
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of the calculations clearly demonstrating absence of a static value for optimal t is

presented in Table 2.1.

Table 2.1 Optimal Value of t When the Same Factor is Used for Both Coordinates

Number of
demand points

1st run 2nd run 3rd run

10 0.75 >2 -0.25
15 1.25 1.5 0.75
20 1 >2 0
25 1.25 1.5 0.75

Intervals for random number generation: [0,200] for a l , [0,100] for a, and (0,100] for w.

In the second case, the factor that yielded the least number of iterations is

expressed as

where X,._, is the coordinate ( x 1 or x2 ) for the previous iterate. It was experimentally

found that t approximately equal to one (it was always in the range from 0.96 to 1.07) is

the optimal value in all cases, except when the optimal center location coincides with one

of the demand points (discussed later). Numerous computer experiments demonstrated

that this method gives a significant acceleration. At each iteration, the WIA iterate is

adjusted in the direction to the optimal location. The fact that factor y has different

values for the x- and y-coordinates allows the FASL to follow a converging sequence that

forms a curved trajectory. The accelerated next iterates are given by
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In all further calculations presented in this thesis Equation (2.1) will be used. The

important feature of this acceleration method is its simplicity, which should make it

attractive for various implementations that involve solving the single-facility minisum

problem.

2.2 Special Cases in the FASL and Behavior of the Cost Function

Singularities and cases when the found location coincides with one of the demand points

are now considered. Suppose an iterate equal to one of the demand points is obtained.

Although this situation usually takes place only for multi-facility problems, it may also

occur, at least theoretically, in a single-facility problem with Euclidian distances. There

are several ways to deal with this singularity. The most common approach is to use a

hyperbolic approximation (Love at al., 1988; Uster & Love, 2000).

1/2
In this case, each absolute term Iql in Equation (1.2) is replaced with (q 2 +s) ,

where 8 is a small positive number. The approximation is always larger than the original

term, but approaches the original term as ∂→0 . Approximated Equation (1.2) is

described as follows:

and the problem formulated in Equation (1.1) for WH(S), the approximated total

"weighted" distance, can be formulated as
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Difference between WH(S) and W(S) satisfies the following inequality (Love et al.,

1988):

where X is a coordinate.

For Euclidian distances, this singularity can easily be avoided using the idea

suggested by Professor Verkhovsky in Verkhovsky & Polyakov (2002b). Suppose that

S^(r) = Pm . Equation (1.3) for xk(r+1) can be rewritten as:

This expression can then be represented in the following equivalent form:

If l2(S^(r) , Pm ) is equal to zero, one has xk(r+1) = amk . The same approach can be extended

to lp distances.

Another special case may occur when the found center location coincides with

one of the demand points. In this case, a special test is commonly used to find out

whether the demand point is optimal (Love et al., 1988).
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According to the test, W(S) is minimized at the s th existing facility location

(as1, as2 ) 	 and only if (Love et al., 1988):

However, if the point is not optimal, this test does not provide any clue as to what

direction the algorithm should take to look for the optimal location. To this end, Professor

Verkhovsky (Verkhovsky & Polyakov, 2002b) developed a special subroutine, the so-

called kick-out procedure, the pseudo-code for which is given below:

1) If S = P i then remove Pi and rerun the procedure.

2) If S = P, again then

{

 Pi is optimal. stop.)

else

{Consider a neighborhood of Pi :

if W(Pi) is smaller than Win each of the neighboring points then

{ Pi is optimal. stop.)

else

{Suppose Smin = (f , g) - point corresponding to the smallest W.
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Restart the procedure from the beginning with the new starting values of x

and y.}

}

Most of the steps above are self-explanatory. The final step (last "if-else" clause)

is run to determine if Pi gives the minimal cost compared to its neighbors. If not, the next

starting point is taken in the direction of the point that gave the least sum. It is noteworthy

that one can achieve a reduction in the complexity of the comparison S=P i by

presorting the demand points lexicographically and then applying binary search to

compare the values of the x-coordinate for the i-th demand point and the current iterate.

As demonstrated in (Brimberg & Chen, 1998), it is very unlikely for a current

iterate to coincide with one of the demand points. This event becomes less and less

probable with increasing the accuracy of calculations. To gain a better understanding of

when and why singularities may occur, one can look at a three-dimensional plot of the

total "weighted" cost W(S). If 1 p 2 , 1p norm is a convex function and it can easily be

shown that W(S) is also a convex function (Love et al., 1988). As the result, it has one

global minimum and thus looks like on the three-dimensional plot in Figure 1.1 (it is an

actual plot for some randomly generated input data). The only time the WIA (and thus the

FASL) does not converge (Love et al., 1988; Weiszfeld, 1937) is when the iterate, on its

way to the global minimum, coincides with one of the demand points and the gradient is

undetermined. When one deals with real values, the probability of this singularity is

related to the accuracy of computations: the higher the accuracy, the less is the
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probability. Therefore this event can be expected to occur very rarely, for example, if

double precision arithmetic is used.

Figure 2.1 Total "weighted" cost function for a set of randomly generated points with
associated random weights.

While the subroutines discussed above may be more useful in situations when the

singularity is fairly common, for example, in a multi-facility problem, for this case a

simpler idea can be used. The idea is to trap division by zero; and if that happens, to

restart the FASL with new values for the initial coordinates. Adding some positive

constants to both the x- and y- coordinates should avoid the singularity in the next run.

This idea can be applied over and over until starting points that avoid the singularity are

found. Since this event is very unlikely, the normal FASL would run in a great majority
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of the cases. Therefore, almost no extra complexity to handle these special cases will be

introduced.

In addition, a bound or stopping rule is required to terminate the FASL. For this

purpose, there exist various approaches, such as: rectangular bounding method (Uster &

Love, 2002), acceptable deviation from a calculated bound on the optimal value of the

objective function (Love et al., 1988), difference between two successive values of the

objective function etc. For simplicity, the distance between two consecutive points will

be used as the stopping parameter, which will be referred to as E .

The studied FASL converged in all the calculations that were run to

experimentally check the convergence of the accelerated algorithm. However, in cases

when the optimal location coincided with one of the demand points, the convergence took

much longer than the WIA. It was noticed that in these cases the procedure starts to

oscillate around the optimal value while the amplitude of this oscillation around the

optimal location decreases extremely slowly. This results in a slow convergence. To

remedy this situation, the following statements were introduced:

When an iterative procedure oscillates around the optimal point approaching it slowly,

taking the average may be helpful to come faster to the optimal point. Calculations

showed that this correction fixes the slow convergence issue and gives approximately the

same number of iterations as the uncorrected algorithm for all other cases. In addition,

many calculations were run where the optimal location for a specific configuration was

calculated using both the corrected FASL and the built-in Mathematica 4.1 function

FindMinimum, an alternative (non-WIA) procedure to find local minimums, which uses
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various methods due to Brent: the conjugate gradient in one dimension, and a

modification of Powell's method in several dimensions. No noticeable deviations in the

obtained results were found.

2.3 Complete Version of the FASL

The complete algorithm for the FASL listed in Appendix A is now studied. It is a

common practice to start the Weiszfeld-like procedures at the center of gravity for a

particular system (Love et al., 1988). Thus steps 1 and 2 are used to initialize the

coordinates using this idea. In step 3 the values for these coordinates are copied into some

local variables x and y. Step 4 is used to set the iteration counter to zero.

Next goes the code that is run for every iteration. The first part of every iteration

is the for loop that is used to calculate the next WIA iterate for a given point. This step

exactly follows the Equation (1.3) broken into simple parts. However, inside that loop the

exception handling, discussed in detail in the previous section, is also run. The idea is to

add some small numbers ∂1 and ∂2 to the starting values x 1 and x2 and rerun the procedure

if division by zero is encountered. In step 14 the values for the coordinates obtained in

the iteration V — 2 are saved. These values are then later used to handle the situations

when the iterate oscillates around a demand point (discussed above). Step 15 is used to

save the values obtained in the iteration V — 1. In step 16 the acceleration technique

described in Equation (2.1) is applied. As the stopping criterion, the Euclidian difference

between the current iterate and the previous one was used. If that difference is less than

the specified accuracy z, at step 17 the algorithm stops and the optimal location value is

displayed. And the final step in every iteration is accelerating the convergence of the
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FASL in cases when the iterate oscillates around the demand point. Equation (2.2) is

applied in this case.

2.4 Source Code for the FASL Implementation in Mathematica 4.1

The full source code for the FASL and initialization of the variables is provided in

Appendix B. In this program the output is written to both the monitor and a text file. In

the calculations the built-in N function, which gives the real value of an expression using

a machine precision, was used. The machine precision is usually 16 digits (double

precision).

The program starts with opening the output file. Then the FASL itself is defined.

The code looks almost exactly the same as the algorithm discussed in the previous

section. The only differences are related to specifics of the Mathematica programming

language. To catch the division by zero exception, built-in Check function with

Power::infy as the handled exception is used. If the exception occurs, a special message

is displayed saying that a division by zero occurred and that the procedure is about to

restart with a new starting point. After that, a variable iDone, which controls whether the

algorithm has found the optimal point, is set to 0. If no exception occurs, the FASL

continues in normal mode. It is noteworthy that the built-in Mathematica Module

function is used to declare local variables.

After the FASL definition, the program runs the initialization part. For anybody

interested in running more experiments, several lines that are used to randomly generate a

set of two-dimensional points and weights associated with them are included. At the end
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of the initialization portion, the coordinates for the center of gravity are calculated using

the built-in function Sum.

As seen at the end of the source code, the FASL is run in a While loop, and is

executed only once if no division by zero occurs. However, if the exception occurs, the

iDone variable gets reset to 0 (see above) and the FASL is rerun starting with a new

initial point.



CHAPTER 3

COMPLEXITY AND CONVERGENCE ANALISYS

3.1 Other Acceleration Methods

To evaluate performance of the FASL, it was compared with the WIA and two

acceleration procedures described below. Most of the existing accelerating methods can

be reduced to the following formula:

where x'k is the accelerated next iterate, 	 is the acceleration factor, xk(r-1) is the

previous iterate, and fw,(xk(r-1) ) is the WIA next iterate.

It is easy to see that 2 =1 corresponds to the WIA approach. 2 =1.8 was found

to be the optimal value when 2 is constant (Drezner, 1992). Two accelerating procedures

dealing with variable 2 are reported in (Drezner, 1992; 1995). The procedure in Drezner

(1995) looks faster, simpler, and, therefore, more practical. Therefore the FASL will be

compared with this procedure. Before comparing the results of the calculation series

with the FASL, the procedure (Drezner, 1995) is briefly described.

This acceleration method is based on Aitken's 4 2 Process (Burden et al., 1981)

and an accelerated next iterate xr) is described using the following formula:

where

xk(r-1) •is the previous iteration;
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xk(r+1) isthe next iterate after xk(r) calculated using the WIA, and is equal to

fw,(xk(r));

For consistency, it is better to write Equation (3.2) the following way

It should be noted that every iteration in the procedure described in Equation (3.2)

requires calculation of two sequential iterates by Equation (1.3). As the result, the

complexity of every iteration is almost doubled. Consequently, to get the actual number

of iterations, as compared to the FASL, the number of iterations obtained in this approach

has to be multiplied by a factor of two. Mathematically, it will be expressed by

introducing a parameter c related to complexity. Accordingly, for the procedure

formulated in Equation (3.2) c is equal to 2 and 1 for all other algorithms, where the

additional acceleration complexity can be neglected.

3.2 Computer Experiments

First, a typical problem where weights and coordinates were uniformly generated in a

closed interval [0,1] was considered. In all calculations, as well as for the uniform

generation of random numbers, Mathematica 4.1 was used. Classical cases when n=5, 10,

50, 100, 500, and 1000 (Drezner, 1992; 1995) were taken. For every n one hundred
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problems was run, which should be enough to analyze the overall behavior and trends. As

the stopping parameter e =10 -5 was used.

Table 3.1 Comparison of the Accelerating Procedures for Points Generated in [0,1]
in Terms of the Number of Iterations

Number
of points

A=1 (c=1) A=1.8 (c=1) A' (c=2)* FASL (c=1)
Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg.

n=5 5 362 47.45 7 262 32.61 6 208 33.66 6 236 27.05
n=10 7 140 31.09 5 99 19.78 6 180 22.9 5 94 16.93
n=50 6 40 15.32 4 30 8.01 6 30 10.3 4 23 7.6

n=100 7 23 13.45 4 24 6.53 4 18 8.1 3 12 5.95
n=500 7 14 11.01 3 7 4.91 4 10 6.28 3 7 4.43

n=1000 7 15 10.25 3 7 4.66 4 8 5.9 3 7 3.96

* - c = 2 accounts for almost double complexity for each iteration.

The results summarized in Table 3.1 show that, on the average, the FASL

provides better performance than any other procedure for any value of n. The acceleration

is 5%-17% compared to the next fastest algorithm, where 2 is constant and equal to 1.8.

It is noteworthy that the acceleration of the FASL in Table 3.1 compared to the classical

Weiszfeld procedure, that is 2 =1, increases for higher n. Thus at this point it can be

suggested that the more is the number of demand points, the better is the acceleration the

FASL provides. In all the calculations, the FASL converged to the same optimal points as

did the other procedures.

Then another classical case was considered, in which demand points were

distributed randomly, using the uniform distribution function built in Mathematica 4.1,

over a 100x 100 square. The weights were randomly selected between 1 and 100. The

same values of n and the number of problems for each n were taken. In this case, the

stopping parameter e =10-3 was used.



Table 3.2 Comparison of the Accelerating Procedures for the 100x 100 Square
Case in Terms of the Number of Iterations

Number
of points

A=1 (c=1) A=1.8 (c=1) A' (c=2 * FASL (c=1
Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg.

n=5 6 288 40.9 6 184 29.53 6 338 30.5 6 171 23.14
n=10 7 111 26.1 5 71 16.36 6 118 18.96 4 64 13.79
n=50 10 29 15.5 4 22 7.91 6 32 10.18 5 21 7.54

n=100 9 24 13.4 4 25 6.7 6 28 8.58 3 20 6.29
n=500 8 15 11 3 6 4.89 4 12 6.18 3 7 4.46

n=1000 7 13 10.4 3 7 4.7 4 10 6 3 7 4.14

* - c = 2 accounts for almost double complexity for each iteration

The acceleration is 5%-22% compared to the next fastest algorithm, where 2 is

constant and equal to 1.8. The results summarized in Table 3.2 show exactly the same

behavior as in Table 3.1: the FASL is the fastest. In addition, the same trend, the more is

the number of demand points, the better is the acceleration provided by the FASL, is also

true. The magnitude of acceleration compared to other methods is approximately the

same as in Table 3.1. Subsequently there are enough grounds to say that the behavior

demonstrated in Tables 3.1 and 3.2 should hold true for most of the cases. Again, in all

the calculations, the FASL converged to the same optimal points as did the other

procedures. Therefore in all 1200 cases the FASL demonstrated good and fast

convergence.
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CHAPTER 4

APPLICATIONS OF THE FASL TO NETWORK DESIGN

The single-facility problem can be used in many applications. Finding the optimal

location of a warehouse for a multi-store company, location of various service providing

centers, location of emergency services are among many possible implementations for the

FASL. In this thesis, the focus will be placed on the applications related to

communication networks design.

4.1 Minimizing Transmission Costs

A straight-forward implementation is minimizing cable length on a network. For

simplicity, a simple one-floor Ethernet CAT 5 network with attic space above the ceiling

is considered. The objective is to find such a position for a hub or switch that will

minimize the cable length used. Places for network connections and the number of

connections at each place are given.

This problem can be easily solved using the FASL. At first, the coordinates of

each of the demand points where network connections need to be present are obtained.

The weights are set based on the number of connections per each demand point. For

example, if two connections are coming to a demand point i, the weight in this case

would be equal to 2, that is wi = 2 . Since there are no significant constraints to paths of

the cables in the attic space, this problem can be reduced to straight-line distances, that is

p = 2 . The objective is to minimize the ∑wil2(S,Pi) , which is exactly what the FASL
i=1

was designed for. In practical settings, other factors, like power source availability,
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vertical distance from the ceiling to a plate in a wall for specific connections, would have

to be considered. However, the idea would still be the same.

Problems, like the one mentioned above, are usually not cost-efficient because

CAT 5 cable costs are very low compared to the labor costs. However, the same strategy

with partially different "weight" criteria can be applied to other related more practical

situations:

• statewide, nationwide, or global fiber buildouts of various network infrastructures

where too much extra cable could be very expensive;

• finding an optimal position for a fiber switch connecting several buildings using

fiber optic cables;

• finding an optimal position of a cable company data switch used to provide TV

and Internet access to the surrounding area (the idea is to maximize the number of

residential and business demand points for a specific switch, that is to minimize

cable distances for the bulk of the potential customers);

• minimizing cable lengths when dealing with distances, where attenuation effects

become significant.
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4.2 Minimizing Link Costs:

Application of the FASL to Designing Large Networks

Another very important application of the FASL is minimization of link costs in

designing an interstate, nationwide, or a global network where each cable spans many

miles. A hypothetical problem is now considered. The data provided here is for

illustration purposes only, but the ideas can be applied to many situations, as described at

the end of the section. A company is designing a nationwide WAN and has decided in

which cities access to the WAN will be provided. The objective is to find an

approximately optimal position for the data center, so that the costs would be minimized.

The data center would be placed in a big city that is nearest to the calculated optimal

position to provide better human and technical resource availability. It may be possible

that the data center location would coincide with one of the WAN access points. A

simplified drawing on the next page shows the cities that will need to have access to the

data center.

Speeds available for the connections to the data center and their prices per mile:

ISDN: 1.5$/month;

T1 : 7$/month;

T3: 30$/month.

Suppose that P1, P6, P7, P10, and P13 need to have Ti connections. P2, P3, and P4 need

to have ISDN connection. All other demand points are going to use T3. Offices P6, P7,

P11, and P12 need to have redundant connections to the data center. The weight for an

ISDN connection will be considered as the unit weight. Then weights for Ti and T3 are 4

and 20 correspondingly.



Figure 4.1 Map describing a problem where a data center location needs to be found for a nationwide WAN.
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The table for all the demand points is given below.

Table 4.1 Distance and Weight Table for All the Demand Points

City Code ' Weight Lat. Long V H
Seattle P1 4 47.606°N 122.331°W 6337 8896
Portland P2 1 45.524°N 122.675°W 6799 8915
San Francisco P3 1 37.775°N 122.418°W 8495 8721
Los Angeles P4 1 34.052°N 118.243°W 9212 7877
Salt Lake City P5 20 40.761°N 111.890°W 7576 7066
Phoenix P6 8 33.448°N 112.073°W 9133 6748
Denver P7 8 39.739°N 104.984°W 7501 5897
San Antonio P8 20 29.424°N 98.493°W 9226 4063
Chicago P9 20 41.850°N 87.650°W 5994 3425
Boston P10 4 42.358°N 71.060°W 4422 1249
New York P11 40 40.714°N 74.006°W 5003 1405
Washington D.C. P12 40 38.895°N 77.037°W 5623 1583
Baltimore P13 4 39.290°N 76.613°W 5399 1653
Miami P14 20 25.774°N 80.194°W 8351 528

In cases where redundant connections are necessary, the corresponding weights are

multiplied by a factor of two. Now one gets to the most important question in this

problem: dealing with coordinates.

It is relatively simple to find approximate Lat/Long coordinates of any point on

the globe. To do that, one can use a simple mapping software, for example, Microsoft

Streets & Trips. For this problem only free online tools are used, so that this experiment

could be easily recreated. www.topozone.com  was used as the source for the Lat/Long

coordinates. This site gives the coordinates for all cities in the US; and since extreme

accuracy is not required, the coordinates of the downtowns would be good enough for

this problem. However, the problem that is faced is how to use those coordinates for the

calculations?
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The Earth is known to have a curved surface. Since Lat/Long system is highly

dependent on these curvatures, neither latitude and longitude, nor its direct coordinate

transformations, can be used in the calculations. Fortunately, in 1950s Mr. Jay K. Donald

at AT&T Long Lines developed a V&H (Vertical and Horizontal) coordinate system to

simplify rating and billing associated with Private Line Service and Message

Telecommunications Service. He used a complex algorithm that projects the curvature of

the Earth onto a flat plane. As the result he created a 10,000 x 10,000 grid, so called

"V&H grid", for North America. A map showing this grid is displayed on Figure 4.2.

Later this V&H coordinate system became a de facto standard in the telecommunications

industry. More information on the V&H coordinate system can be found in Vertical and

Horizontal Coordinates (2003).

There are many software packages that convert from Lat/Long to V&H and vice

versa: Telcordia™ V & H Calculation (VHCALC) at http://www.trainfo.com/products 

services/tra/catalog_details.html#V%20&%20H%20Calculation%20(VHCALC), V&H

Tools by Stopwatch Maps at http://www.stopwatchmaps.com/services/products/software/

vhtools.htm, and others. For this experiment, a free online conversion tool available at

http://www.tuketu.com/dsl/lat-lon-form.htm was used. The calculated V&H coordinates

for the cities of the problem are given in Table 4.1.



Figure 4.2 V&H coordinate system used in telecommunications industry.
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Finally the data presented in Table 4.1 was loaded into the FASL Mathematica

program described in the previous section. As the stopping criterion the distance e =10-2

was used, which is more than enough since the original data was given in integers. The

calculated optimal location is (1802, 5695). After converting it to Lat/Long, the optimal

location becomes approximately 39.1833°N/78.342°W. By looking at the map, for

example, Streets & Trips or www.topozone.com, it can be seen that this location is close

to Winchester, VA, and the closest big city is Washington D.C. As a result western

suburbs of Washington D.C. would be the optimal location for placing the data center. A

three-dimensional plot of the total cost function for this case is given in Figure 4.3.

Figure 4.3 A 3D plot for the cost function of the data center location problem.
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It is noteworthy that the calculated optimal location for the data center is far from

obvious. One would expect that configuration described in Table 4.1 would give a value

for the optimal location somewhere close to the middle of the United States. In fact, the

center of gravity (3115, 6650), or 38.508°N/87.858°W, is close to the border of Illinois

and Indiana, and the closest big city is Evansville, IL (38.090°N/89.938°W). The distance

between Evansville and Washington D.C. found using

http://www.airways.com/java/coordcalc.html is 609 miles and the total cost of placing the

data center in Evansville, IL, is 6% higher than for Washington, D.C. For a big project,

especially one involving fiber optic buildouts, differences like this could cost millions

and millions of dollars.

In real applications, the cost is rarely linearly proportional to the distance and

straight-line distances are usually not possible. In fact, the cost usually depends on the

infrastructure of the provider of leased lines, like Qwest, WorldCom, etc. However, the

same ideas as illustrated above can be applied to this and the following practical cases:

• Building a large fiber network by a company like Sprint or Qwest when costs of

fiber buildout per foot are usually significant and star topology is used. In this

case Lat/Long coordinates for the demand points could be easily obtained using

some simple GPS devices and the same procedures as described above can be

applied for the further steps.

• Building a large wireless network with some central location where distances and

"weights" would be related to number of hops, representing the cost of a

connection.

• Any other network where star topology is used.
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4.3 Flow-Based Optimization of Single Switch Location

Another type of a problem where the FASL can be applied is finding the optimal location

for a switch on a network with the star topology when the costs are determined by the

flows between pairs of users. A network of seven users with known coordinates for each

user and known flows for each logical connection between a pair of users, for example,

connection AC shown on Figure 4.4, will now be considered.

Figure 4.4 Single-switch network with star topology.
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The following coordinates are given: A(1.02, 2.03), B(3.40, 3.20), C(5.20, 2.81), D(7.34,

1.50), E(4.50, 0.50), F(2.34, 0.81), G(0.51, 1.20). The flows are given in Table 4.2.

Table 4.2 Flows for a Single-Switch Problem with the Star Topology

E F G
A 0 3 1 4 5 4 5
B 1 0 6 8 1 3 3

5 2 0 6 5 2 3
D 1 2 5 0 2 4 1
E 4 3 1 4 0 3 4
F 1 3 4 4 5 0 2
G 1 3 4 5 6 7 0

For simplicity, the cost function that is linearly dependent on the flow for a given link

will be considered. Furthermore, for any link the cost function is given to satisfy the

following equation:

where Cik is the cost function and Wk is the flow between user i and k. Then the

minimization problem for this case can be formulated as:

This problem cannot be directly solved using the single-switch algorithm studied

in this paper and some preliminary mathematical rearrangements need to be made. The

same idea as in O'Kelly (1986) will be used



Therefore Equation 4.1 becomes

which is the standard Fermat-Weber problem (Equation 1.1) and can be solved using the

FASL where By, which is the sum of all inflows and outflows coming to or going from a

user v, is used as "weight".

For point A (letters and numbers will be used interchangeably in indexes), for

example, the following is obtained

that is left to do now is run the FASL for the initially given user locations and calculated

"weights". The result obtained using the FASL gave S(3.43, 1.67) as the optimal position

for the switch that would minimize the total cost based on the link flows.

There is another approach for solving this problem. In the classical Fermat-Weber

case, "weights" are considered as some demand from a user to a switch per unit of

distance. Since only flows on the links are given, Professor Verkhovsky suggested to

calculate the demand from a specific user to the switch as the sum of all the flows coming

to or going from the user. In the case of this hypothetical problem this demand (total

flow) is equal to the sum of all link flows in the same row as that user (outflow) plus the
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sum of all link flows in the same column as that user (inflow), except for the flow from

the user to itself, which does not go through any network link.

If the cost function is linearly dependent on the flow, both of these approaches are

identical. However, when the linear dependence is not present, the first approach can no

longer be used because the cost for transmission from one user to another is no longer

equal to the sum of the costs from the first user to the switch and from the switch to the

second user. At the same time, network flows can still be added up to yield the total flow

for a user and thus the second approach is still feasible.



CHAPTER 5

FASL AS A SUBROUTINE FOR MULTI-SWITCH NETWORK PROBLEMS

5.1 Two-Switch Location Problem

In real situations, and especially in large networks, single-switch networks are used less

often than more complex multi-switch networks. However, in these cases the multi-

switch network can often be partitioned into clusters with a single switch each. One

criterion for partitioning, for example, can be associating the users with the nearest

switch. The studied FASL can then be solved for each cluster individually. Three

approaches for solving the two-switch location problem where no inter-switch interaction

is present will be discussed in this thesis. For a more exhaustive review and analysis of

most of the existing methods, both heuristic and exact, to solve the multi-switch location

problem the reader is referred to Brimberg et al. (2000).

A good example of the two-switch location problem with no inter-switch

interaction is locating two earth stations (switches) that are shared by several small

companies and are installed, configured, and maintained by some telecommunications

provider. Traditional non-expensive "dishes" usually provide low throughput, cannot

always guarantee a good quality, and are usually limited to simultaneous communication

with only one or two satellites. While being acceptable for residential customers, these

devices are often not feasible when a higher throughput, better quality, and simultaneous

multi-satellite communication are needed. Earth stations are built to address these issues.

However, bringing more complexity to the communication devices makes them more

expensive and thus less affordable for a lot of smaller companies. To address this issue,
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telecommunications companies found a niche where they purchase, install, configure, and

maintain earth stations that are then shared by many small companies. Henceforth,

finding the optimal location of earth stations to minimize the costs is a serious concern

for these telecommunications companies.

Professor Verkhovsky proposed the following general formulation for this type of

problems (Verkhovsky & Polyakov, 2003):

1) Consider locations of n users which are specified by coordinates P, = (a il, a il),

i=1,...,n. Each user is characterized by a "volume" of incoming and outgoing

communication flow w i ("weight" of i-th user's flow).

2) Let in be the number of switches, Gk be a set of all users P, connected with the k-th

switch Ck, and (uk, vk) be the coordinates of Ck.

3) f(wi, Pi, Ck) is a cost function for the transmission link connecting the i-th user Pi and

k-th switch Ck.

4) The objective is to minimize the total cost of all links and all switches:

where qk ∑iєGk  wi is the cost of the k-th switch as a function of all outgoing and

incoming flows.

For simplicity, the two-switch problem when the switching costs can be neglected

and the cost function satisfies the Fermat-Weber problem (Equation 1.1) will be

considered. In this case Equation 5.1 becomes
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It is noteworthy that this problem does not only involve solving the location problem to

find the optimal switch positions, but it also needs to determine the optimal partition

(GI , G2 ). For this reason, two stages are usually present in each iteration of this kind of

problems: location and reassignment.

The first approach, originally discovered in Cooper (1963) and further studied in

Levin & Ben-Israel (2001), is based on the idea that assigning users to the nearest switch

results in total cost reduction. Initially a random partition is inputted. Then for every

iteration optimal switch locations for each of the clusters are computed using the FASL.

After that users are reassigned to the nearest switch if the current distance between a

specific user and the switch is more for the current cluster than for the other one. This

idea is applied over and over until no more reassignments are possible. The actual

Cooper's algorithm, similar to the one presented in Levin & Ben-Israel (2001), is listed

below:

While no more reassignments are possible do:
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The same idea has been successfully applied to multi-switch location problems (Cooper,

1963; Levin & Ben-Israel, 2001). As was demonstrated in those papers, this heuristic

algorithm does not always yield the optimal solution.

The second considered algorithm (Ostresh, 1973; Drezner, 1984), which will be

referred to as the Drezner algorithm, is based on the fact that the optimal partition

consists of two non-overlapping clusters and a theorem stating that one of the straight

lines going through all possible pairs of users must provide the optimal partition. The

proof of this theorem relies on proportionality between the cost function and the distance,

thus limiting this solution to cases when this proportionality is present. Therefore, for

example, in a problem where the economy of scale would be considered, this algorithm

might no longer work.

The main idea of this algorithm is to rotate a line going through each user point,

used as a pivot, in such a way that after each rotation only one of the remaining users is

reassigned from one cluster to another. For each user point selected as a pivot, this can be

easily accomplished by calculating the angles that the n-1 straight lines going through the

pivot and the remaining points make with the abscissa axis. Then the angles are sorted

and for each rotation two single-switch problems are solved. It is obvious that n(n-1)

different partitions are going to be considered and for each case the single-switch

problem needs to be solved. Sorting only by angles creates a potential issue when two

user points lie on the same straight line. Special resolution for this situation would have

to be used (Love et. al., 1988).

Drezner (1984) also suggested to use an effective lower bound for the minimum

value of the objective function (total cost) for a single-switch algorithm, such as FASL. If
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the value of the minimal bound is higher than the currently calculated minimum value of

the total cost function, then the FASL does not need to be run. Both summands for the

lower bound can easily be obtained because they represent one-dimensional single-

facility minisum location problems which are known to be solved by finding the median

point (Love et al, 1988). Expression for the this lower bound is given below:

where S0 = (x0 , yo ) is the center of gravity for this single-switch problem.

The interesting feature of this algorithm is that it provides the exact solution,

which cannot be guaranteed for most of the existing algorithms to solve the multi-switch

location problem. At the same time it comes at its price resulting in the complexity of

O(n^2 ) single-switch location problems that need to be solved. However, this is much

less compared to the exhaustive approach where all possible partitions, 0(2n-1 ), would

have to be considered. Unfortunately, this approach cannot be easily extended to more-

than-two switch location problems since partitions are divided into non-overlapping

Voronoi clusters (diagrams), which can no longer be separated by one simple straight line,

like in the two-switch location case. Rosing (1992) demonstrated that problems with up

to six switches can be solved using this approach.

The third approach was proposed by Professor Verkhovsky (Verkhovsky &

Polyakov, 2003). It is in some sense similar to the previous (Drezner) algorithm in that it
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rotates a straight line, although it has two major differences which will be discussed later

in the thesis. At first a generalized clustering algorithm on which the Verkhovsky

algorithm is based is formulated below:

1.Find a center of rotation R.

2. Convert all points/users to the polar system of coordinates (a, r)where R is the center

of the coordinate system.

Comment: All points are also divided into the ones above and below the horizontal line

going through R.

3. If a>180° then a:= a — 180°, (a,r):=(a, r, below), else (a,r):=(a, r, above).

4. Lexicographically sort all points: Let U 1 : =r1,flag1 ); U2 : = (a2 , r2 , flag2 ). If

a1 < a2 , then U1 < U2; if al = a2 and r1<r2, then U1 < U2; if al = a2 and r1= r2 and

flag1=above, then U1 < U2.

5. Rotate straight line L around R for all x between 0° and 180°. Let i = 	 n. If (a

x and flag; = above) or (al > x and flag; = below), then Uk belongs to cluster G2; else Uk

belongs to cluster G 1 .

The algorithm is very similar to the Drezner algorithm, though in this case the

rotation pivot is known and thus only n rotations need to be made. The question is what

should the pivot point be to result in the optimal or close-to-optimal solution? Professor

Verkhovsky suggested to use the optimal switch location for the single-switch problem

solved for all n users. Since this suggestion cannot be mathematically verified, the

algorithm cannot be considered exact and thus its accuracy compared to Cooper's
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algorithm will be discussed. As some calculations showed situations with "fugitives", for

which the cost function value for the current cluster is higher than if the user would be

placed into the other cluster, Cooper's algorithm is suggested as the last step to send the

"fugitives" where they belong. Complete algorithm for the two-switch Weber location

problem is presented below:

Step 1: Solve the single-switch minisum problem for all n users

to find Co , the pivot for rotation.

Step 2: Do steps 2 — 4 of the clustering algorithm with Co used instead of R.

Step 3: For all points i with flag; = above, add their Cartesian coordinates to cluster G 1 .

The rest of the points are added to cluster G2.

Step4: Let hmin be an arbitrary large number, GO 1 := G1i GO2 := G2.

For all users i = 1,...,n do the following (rotate the line L)

{

Step 4a: Let x := .If flagi = above, then reassign the point i from cluster G 1 to

G2.

Else reassign the point i from cluster G2 to G1 •

Step 4b: Compute



Step 5: {"Fugitive" handling after the main algorithm is complete}

Let count := 1;

While count > 0 {reassignments were done in the previous step or the this

part is called the first time}

{	 count := 0;

Ci, G01, C2, GO2 is the final solution for the two-switch location problem.

The lower bound of the objective value introduced for the Drezner algorithm can also be

successfully employed in this case.

Before the complexity of the three algorithms above is discussed in detail, it is

important to mention the main differences between the Drezner and Verkhovsky

algorithms. First, it is obvious that the Verkhovsky algorithm is much faster since

approximately n different partitions are considered compared to n(n-1) for Drezner's.

Second, the Drezner algorithm was designed with a convex cost function proportional to

the weight in mind. At the same time, the idea used in the Verkhovsky algorithm can be

applied to any general cost function and some results demonstrating that are presented in
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(Verkhovsky & Polyakov, 2003). Therefore the Verkhovsky algorithm should be

appropriate for many practical problems for which the Drezner algorithm could not even

be considered due to the constraints in the algorithm formulation.

5.2 Computer Experiments and Optimizations

More than one hundred experiments with coordinates for the users and the associated

weights generated using uniform random distribution on the interval (0,1) were run. The

three algorithms discussed above, Cooper's, Drezner's, and Verkhovsky's, were

compared. Experiments were run for values of n ranging from 15 to 1000. The results

obtained here are similar to the results discussed in (Veroy, 1989; Verkhovsky &

Polyakov, 2003).

As could be expected, both the Cooper and Verkhovsky algorithms did not always

yield the optimal solution, which obviously was always provided by the Drezner

algorithm. However, in most of the cases when non-optimality occurred the deviations of

the minimum total cost calculated using the Verkhovsky algorithm from the exact

solution was of order 0.1%, which was often remedied by the reassignment-location steps

run after the main part of the algorithm. At the same time, the Cooper algorithm

sometimes resulted in the minimal values of the objective function that were as far as 7%

higher than the exact solution. Therefore, the same kind of accuracy as provided by the

Verkhovsky algorithm can only be achieved after several different random partitions are

used to initialize the Cooper algorithm.

Now the complexity of each algorithm in terms of the number of the single-switch

location problems will be analyzed and discussed. It is obvious that the highest
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complexity is attributed to the Drezner algorithm since 0(n 2 ) location problems need to

be solved. Though providing exact solutions, this algorithm becomes non-feasible for a

powerful modern workstation when the number of users exceeds 50-100.

As seen from the algorithm itself, the complexity of the Verkhovsky algorithm is

0(n) plus the additional iterations of the Cooper algorithm executed after the main part.

In approximately 40% of the computations, this number of additional steps was zero (no

single-switch location problems needed to be solved). For other situations, the maximum

number that was usually seen was not higher than three. Therefore the complexity of this

algorithm is 0(n). It is noteworthy that the number of these reassignment-location steps

slowly increased for higher values of n. For example, when n < 25, no reassignments

were usually necessary. However, when n was about 250, two or three steps were

sometimes needed.

The best performance was demonstrated by the Cooper algorithm. Usually up to

10 iterations was enough to solve problems with up to 250 users. At the same time, to

compensate for the deviations this algorithm would need to be restarted several times.

For the Verkhovsky algorithm, Professor Verkhovsky suggested a special

Fibonacci optimal search developed in (Veroy, 1989) that can be applied to any discrete

periodic bimodal function. The Fibonacci search was mathematically proven to be an

optimal algorithm for finding a minimum (or maximum) of any discrete periodic

bimodal function, which means that no algorithm to provide a smaller asymptotical

complexity, that is to be faster, can be developed for such a function and only slower or

same-complexity algorithms are possible. The function that is suspected to demonstrate

the bimodal behavior is h(x), total cost for a specific partition determined by the current
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angle x of rotation, formulated in Equation 5.3. Therefore, modality of this function and

applicability of the Fibonacci search were studied.

Before the results are discussed, it seems reasonable to list the Fibonacci search

algorithm developed in (Veroy, 1989). Two situations are possible: (a) if the number of

users is equal to some Fibonacci number F„; (b) if it is not equal to any Fibonacci number.

For simplicity of notation x(i) = xi .

(a) Optimal algorithm if n = F„:

1. If F„= 1, then hr = h 1 and xr = xi ; stop.

2. Select an integer Lo arbitrarily, Ro = Lo + Fu-1. (in most cases Lo = 1 is easier to

work with).

3. Compute e (Lo ) and e (Ro ) , where e (t) = h (x t ) .

6. While Ik >1, repeat step 5.

7. hr= temp, stop.

(b) Optimal algorithm if F u-1 < n < F„.



49

Let T be the period of the periodic bimodal function h(x).

The algorithm is the same except for the following two modifications:

In step 2 set L = 1.

In step 4 add the following:

If e (L0 ) e (R0 ) , then select arbitrary Ft, — n fictitious points x(i) for

else select arbitrary Fu — n fictitious points x(i) for R0 +1— Ft, i R0 —17 where

Comment: In other words, the remaining points needed to reach Fu are set to the

same value as L o if e (L0 ) e (Ro ) and Ro otherwise.

To check if the Fibonacci optimal search algorithm can be applied in this case, the

function h(x) was extended to also include h (x — T) = h (x) for the Fibonacci algorithm

to work properly. Complexity analysis in (Veroy, 1989) showed that the search is

O(logn) .

In the same experiments as used above, bimodality of h(x) and applicability of the

Fibonacci search were checked. For values of n < 50, function h(x) rarely demonstrated

bimodal behavior and thus the Fibonacci search was sometimes stopping at a value of

h(x) which was up to 7% higher than the optimal. For values of n > 50, function h(x)



50

usually had several local minimums, but the overall behavior was bimodal and thus the

Fibonacci search always returned a value of h(x) that was not more than 0.5% higher than

the optimal. In addition to that, the Cooper algorithm that is run after the main part of the

Verkhovsky algorithm usually compensated for these small deviations by running

additional one or two reassignment-location steps. As the result, the accelerated

Verkhovsky algorithm demonstrated a better accuracy compared to the Cooper algorithm

although only 1 — 4 times as many reassignment-location iterations were needed. To

achieve the same accuracy, the Cooper algorithm would have to be run for several

random initial partitions. Thus for n > 50 the accelerated Verkhovsky algorithm is the

preferred method to solve the two-switch location problem. The obtained results seem to

be in a good agreement with Veroy (1989) and Verkhovsky & Polyakov (2003).



CHAPTER 6

CONCLUSIONS

The Feedback Algorithm for Switch Location in which the current Weiszfeld iterate is

multiplied by the feedback factor shows the better performance than the existing

accelerating procedures for the single-facility minisum problem. The complete algorithm

including this acceleration technique and handling of singularities is presented.

Computer-related applications of the single-facility minisum problem are thoroughly

discussed. Aspects of working with coordinates for geographical locations are paid

special attention to.

Due to its simplicity, the FASL can be used for a wide range of practical

computer-related location problems involving minimization of links costs. Finding an

optimal location for a data switch on a network is a good example of a case when the

algorithm can be successfully applied. In addition, the FASL can be used as a subroutine

for the multi-switch location problem. A brief discussion of how this can be

accomplished is presented.
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APPENDIX A

FEEDBACK ALGORITHM FOR SWITCH LOCATION

The complete version of the Feedback Algorithm for Switch Location in pseudocode is
presented.

Notations and definitions

(All algebraic notations (but not numbers, not parenthesis, and not other punctuation

marks), must always be in italics);

n — number of users, (integer);

V — number of iterations;

Points (users): P(k) = [al (k),a2(k)], k=1,..,n;

Center (switch): S = (x,y);

"Weights" of links: w(k), k=1,..,n;

Total weighted distance of all links (Criterion): W(x,y);

The goal is to find with accuracy z>0 such a location of the center S=(x,y) that minimizes

W(x,y).

Algorithm for the FASL procedure
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{Iteration starts}

For k from 1 to n do {

If division by zero exception is not triggered, then proceed further.

Else

53

Go to Step 3. {Rerun the procedure with the new values for x and y }
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APPENDIX B

FASL IMPLEMENTATION IN MATHEMATICA 4.1

A complete listing of the source code in Mathematica 4.1 for the algorithm described in

Appendix A is presented.

(* declare the file to write output to *)

SetDirectory["DACS Research\Center Location Algorithm\Mathematica files"];

strm1 = OpenWrite["resultsabbrev.txt"];

(* evaluates the initial values for x1 and x2 *)

FASL[x1_, x2.1 :=

(

declare local variables *)

(* initialization *)

iV = 0;

While[True,
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For[k =1,

Check[

r = N[w[[k]]/d],

Print["Explanation: The current iterate coincides with one of

the demand points.\nRestarting with different initial conditions."];

WriteString[strm1,

"The current iterate coincides with one of the demand \

points.\nRestarting with different initial conditions."];

iDone = 0;

Return[],

Power::infy

1;
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I; (* end of module *)

);

(*---INITIALIZATION STARTS 	  *)
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n = 20;

z = 1.00 10^(-6);

(* random generation for test purposes *)

(*

fa[x_] := {Random[Integer, {al min, al max}], Random[Integer, {a2min, a2max}]};

fw[x_] := Random[Integer, {wmin, wmax}];

a = Array[fa, n];

w = Array[fw, n];
*)

Print["Initial Conditions:\n a = ", a // N, 	 w= ", w // N, "\n"];

WriteString[strm1, "Initial Conditions:\n a = ", a // N, 	 w= ", w // N,

"\n"];

wSum = N[Sum[w[[i]], {i, 1, n}11;

x1 = N[Sum[a[[i, 1]] w[[i]], {i, 1, n}]/wSum];

x2 = N[Sum[a[[i, 2]] w[[i]], {i, 1, n}]/wSum];

(* 	 INITIALIZATION ENDS	 *)

iDone = 0;

While[iDone = 0,

iDone++;

FASL[x1, x2];

If[iDone == 0,

x1 = x1 + 0.5;

x2 = x2 + 0.5;

];

1;

Close[strm1];
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