
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Spring 2003

Soft fault detection using MIBs in computer
networks
Sachin Arora
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Arora, Sachin, "Soft fault detection using MIBs in computer networks" (2003). Theses. 609.
https://digitalcommons.njit.edu/theses/609

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/609?utm_source=digitalcommons.njit.edu%2Ftheses%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

SOFT FAULT DETECTION USING MIBs IN COMPUTER NETWORKS

by
Sachin Arora

To improve network reliability and management in today's high-speed communication

system, a statistical anomaly network intrusion detection system (KIDS) has been

investigated, for network soft faults using the Management Information Base (MIBs)

traffic parameters provided by Simple Network Management Protocol (SNIMP), for both

wired and wireless networks. The work done would be a contribution to a system to be

designed MIB Anomaly Intrusion Detection, a hierarchical multi-tier and multi-

observation-window Anomaly Intrusion Detection system. The data was derived from

many experiments that had been carried out in the test bed that monitored 27 MIB traffic

parameters simultaneously, focusing on the soft network faults. The work here has been

focused on early detection, i.e., detection at low values of the ratio of fault to background

traffic. The performance of this system would be measured using traffic intensity

scenarios, as the fault traffic decreased from 10% to 0.5% of the background.

SOFT FAULT DETECTION USING MIBs IN COMPUTER NETWORKS

by
Sachin Arora

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree in

Master of Science in Computer Engineering

Department of Computer Engineering

May 2003

APPROVAL PAGE

SOFT FAULT DETECTION USING MIBs IN COMPUTER NETWORKS

Sachin Arora

Dr. Constantine Manikopoulos, Thesis Advisor	 Date
Associate Professor, Department Electrical and Computer Engineering, NIT

Dr. George Antoniou, Committee Member 	 Date
Professor, Department of Computer Science, Montclair State University

Dr! Bin He, Committee Member	 Date
Senior scientist, XPRT Solutions Inc.

BIOGRAPHICAL SKETCH

Author:	 Sachin Arora

Degree:	 Master of Science

Date:	 May 2003

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering
New Jersey Institute of technology, Newark, NJ, 2003

• Bachelor of Engineering in Electronics
University of Nagpur, India, 2000

Major:	 Computer Engineering

"To my Parents who are a constant source of support and encouragement."

v

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to Dr. Constantine N. Manikopoulos for

serving as a Thesis Advisor and providing the much needed directions with this research.

I would like to express my gratitude towards my family and Suvarcha Malhotra

for their insurmountable support and patience.

I would like to thank my family and Suvarcha Malhotra for their insurmountable

support and patience.

I used CONEX Laboratory, Room 410B Faculty Building at NJIT to do this

research and would like to thank my colleagues, Ranjit Salunkhe, Olufemi Taint, Pablito

Lake and Jun Li for their cooperation and assistance throughout the entire course of this

research.

vi

TABLE OF CONTENTS

Chapter	 Page

1	 INTRODUCTION 	 1

1.1	 Network Management 	 2

1.2	 Classification of Faults and Fault Management 	 2

1.2.1	 Types of Faults 	 2

1.2.2	 Types of Fault Management 	 3

2 SIMPLE NETWORK MANAGEMENT PROTOCOL AND MANAGEMENT

INFORMATION BASE 	 5

2.1 Simple Network Management Protocol 	 5

2.2 BIB Information Structure 	 7

2.2.1	 BIB Object Identifiers 	 7

2.2.2	 MIB-II (RFC 1213) 	 8

2.3 Promise of MIB based Anomaly Detection 	 9

3 IMPLEMENTATION 	 11

3.1 Simulation of Internet traffic on a wired network 	 11

3.2 Simulation of Internet traffic in a wireless network using a wired

environment 	 13

3.2.1	 Installation of MANET Emulator (Dynamic Topology Switch) 	 14

3.2.2	 Features of Dynamic Topology Switch 	 15

3.2.3	 Dynamic Topology Switch software 	 15

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.2.4	 Mobile network parameters that can be emulated using the

Dynamic Topology Switch 	 17

3.2.5	 Limitation of Dynamic Topology Switch 	 19

3.2.6	 The proposed test bed for collection of MIB Data in wireless

networks 	 20

3.2.7	 Second test bed proposed for collection of MIB Data in wireless

networks 	 21

4 EXPERIMENT - DATA GENERATION AND COLLECTION 	 23

4.1 Procedure 	 23

4.2 The Traffic Monitor 	 27

5 CONCLUSION 	 31

REFERENCES 	 32

viii

LIST OF FIGURES

Chapter 	 Page

1.1 Proactive and Reactive Fault Management 	 4

2.1 SNMP Managed Configuration 	 6

2.2 The MIB OVID Tree 	 8

2.3 M1B-II Sub Tree 	 9

3.1 Test Wired Network 	 12

3.2 Sample network implementing the Dynamic Switch with 5 NICS 	 14

3.3 Components of the software of Dynamic Topology Switch 	 16

3.4 Two-state Markov chain for packet drop process 	 17

3.5 A Leaky Bucket Token Buffer Model 	 18

3.6 Emulation of MANET using the Dynamic Topology Switch 	 20

3.7 Another Test bed to emulate wireless network 	 22

4.1 Background servers receiving packets from the corresponding clients 	 25

4.2 Background clients sending out packets to the corresponding servers 	 25

4.3 Fault traffic server program receiving packets 	 26

4.4 Fault traffic client sending out packets to Fault traffic server 	 26

4.5 Network map as detected by WhatsUp Gold 	 28

4.6 SNMP Viewer 	 29

4.7 Traffic monitoring using WhatsUp Gold 	 30

ix

CHAPTER 1

INTRODUCTION

Today's communication network is still not very stable and reliable. Failures, hard or

soft, happen every once in a while. In order to have a bright future for the network, the

Internet, failures have to be dealt, soft or hard. Network intrusion detection aims to

protect networks and computers from malicious network-based attacks. Intrusion

detection techniques can be partitioned into two complementary trends: misuse detection,

and anomaly detection. Misuse detection systems model the known attacks and scan the

system for the occurrences of these patterns. Anomaly detection systems, flag intrusions

by observing significant deviations from typical or expected behavior of the systems or

users. The basic assumption of anomaly intrusion detection is that an intruder's behavior

will be noticeably different from that of legitimate users.

This research aims at designing a detector, the MIB Anomaly Intrusion Detection

(MAID) system. In defending against network faults/DOS attacks, achieving early

detection and warning is of paramount significance. The corresponding experimental

results demonstrate that MAID can reliably detect soft faults with traffic anomaly

intensity as low as 1% of the typical background traffic intensity, far below the intensity

level that causes harm, thus generating an effective early warning.

1

2

1.1 Network Management

Network management is a broad term, as defined by ISO/OSI Specific Management

Functional Areas (SMFA), includes the following five functional areas: fault

management, accounting management, configuration management, performance

management and security management. Fault management is one of the most important

aspects of network management. Fault management is the detection of a problem, fault

isolation and correction to normal operation. The word "detection" is divided into three

parts: (a) whether there is a fault occurring, (b) if so, what kind of fault occurs, (c) where

the location of the fault is.

Traditional fault management emphasizes detection and processing hard network

faults and alarms. This method is necessary but when network alarms are captured,

filtered and analyzed, service and network failures are already present. Therefore,

traditional fault management is more reactive in nature. Since network performance

degradations are signatures of network faults and are preludes to service failures, being

able to detect them early and automatically enables timely and rapid fault containment

and correction, through which serious network and service failures can be avoided. This

approach complements the traditional fault management.

1.2	 Classification of Faults and Fault Management

1.2.1 Types of Faults

Network faults can be classified into two categories:

Hard failures, in which the networks, or some of its elements, are not able to

deliver any traffic at all. It may consist of links or nodes failures. Soft failures,

3

network/service anomaly or performance degradation in various performance parameters,

i.e., decrease in bandwidth, increase in delay, etc.

All, the system administrators as well as the users, can easily notice a hard fault.

However, defining and otherwise characterizing and detecting soft faults are difficult.

Wireless networks are particularly vulnerable to soft faults in that they have much lower

bandwidth than their wired counterparts, while they are more prone to overloads, noise,

congestion, etc.

Once detected, hard faults are corrected. Soft faults, however, are generally

tolerated in the short term and may be monitored for longer-term trends. The goal of fault

management is to address both hard and soft faults to maintain consistent network

performance.

1.2.2 Types of Fault Management

The ways to manage the fault can be categorized as either reactive or proactive. The

reactive fault management system waits for a problem and then troubleshoots it, i.e. you

react to the problem after it has occurred. The proactive management system preset

critical operational thresholds, such as network utilization. This is where you are

monitoring components and the system provides a root cause alarm for the problem at

hand and automatic restore processes are in place where it is possible to minimize

downtime. The work done here contributes towards designing a Proactive Fault Detection

[12,13,14,15] system.

Figure 1.1 Proactive and Reactive Fault Management.

Proactive detection of network failures and performance degradations is a key to rapid

fault recovery and thus robust networking, and has been receiving increasing attention

lately. Proactive network performance and fault management is concerned with

performance monitoring/analysis and fault detection capable of detection soft network

and service faults automatically and adaptively in the midst of networks performance

fluctuation and evolutions.

CHAPTER 2

SIMPLE NETWORK MANAGEMENT PROTOCOL AND

MANAGEMENT INFORMATION BASE

2.1	 Simple Network Management Protocol

Network management system contains two primary elements: a manager and agents. The

Manager is the console through which the network administrator performs network

management functions. Agents are the entities that interface to the actual device being

managed. Bridges, Hubs, Routers or network servers are examples of managed devices

that contain managed objects. These managed objects might be hardware, configuration

parameters, performance statistics, and so on, that directly relate to the current operation

of the device in question. These objects are arranged in what is known as a virtual

information database, called a management information base (BIB). Simple Network

Management Protocol (SNMP) [18,19] allows managers and agents to communicate for

the purpose of accessing these objects. The relationship between the management station,

the agent, and the MIB is shown in the following figure.

5

6

Figure 2.1 SNMP Managed Configuration.

An SNMP-compliant MIB contains definitions and information about the

properties of managed resources and the services that the agents support. The manageable

features of resources, as defined in an SNMP-compliant MIB, are called managed objects

or management variables (or just objects or variables).

A management station gets and sets objects in the MIB, and an agent notifies the

management station of significant but unsolicited events called traps. All message

exchanges between the management station and its agents take place using the Simple

Network Management Protocol (SNMP), which uses the UDC layer in the network layer

stack.

7

Managers invoke an SNMP client on their local computer, and use the client to

contact one or more SNMP servers, that run on remote machines. SNMP uses a fetch-

store paradigm. A separate standard for a Management Information Base defines the set

of variables that SNMP servers maintain as well as the semantics of each variable.

2.2 MIB Information Structure

The structure of management information (SMI), an SNMP standard described in the

RFC 1155, defines the structure of the M1B information and the allowable data types.

The SM1 identifies how resources within the MIB are represented and named. The

philosophy behind SM1 is to encourage simplicity and extensibility within the MIB.

The SNMP specification includes a template, known as an Abstract Syntax Notation One

(ASN.1) OBJECT TYPE macro, which provides the formal model for defining objects

and tables of objects in the MIB.

2.2.1 MIB Object Identifiers

Each object in the M1B has an object identifier (01D), which the management station

uses to request the object's value from the agent. An OID is a sequence of integers that

uniquely identifies a managed object by defining a path to that object through a tree-like

structure called the OID tree or registration tree. When an SNMP agent needs to access a

specific managed object, it traverses the OID tree to find the object. Each one of the

nodes on the tree is assigned a label consisting of an integer and a quick description.

8

Figure 2.2 The MIB OID Tree.

The Identifiers (names) for the MIB objects are issued from this tree. The

identifier of an object (the OID, Object ID) is a series of integers guiding through the tree

from the root to the leaf where the object resides (for example all objects in mib-2 would

start with 1.3.6.1.2.1...). The text part of each node helps to recognize what the string of

number stands for.

Thus object name:

iso_org_dod_internet_mgmt_mib2_interfaces_ifTable_ifEntry_ifOperStatus is easier to

understand than 1.3.6.1.2.1.2.2.1.8, the same in the number format.

2.2.2 MIB-Il (RFC 1213)

MIB has been developed further into MIB-2 to support more standard objects and groups,

and it has it's own node on the tree. Eleven groups are referenced in the original MIB-Il

document (RFC 1213) [17].

9

One of these, CBOT (ISO Common Management Information on top of TCP/IP), is no

more used because this project was abandoned. The 10 remaining groups describe the

most basic information needed to manage a TCP/IP Internet.

Below is the development of the BIB Node:

Figure 2.3 MIB-II Sub Tree.

2.3 Promise of MIB based Anomaly NID

In network intrusion detection (NID) systems, gathering the network traffic data needed

to evaluate the security status of the network is a significant portion of the overall

processing burden. However, many networks already deploy SNBP network

management, thus BIB objects are available to collect data, in many network elements.

By enlisting the BIBS objects, MAID promises a lower overhead approach for analysis by

the anomaly detection engine. The network manager queries the agents and retrieves the

value of BIB objects to perform monitoring functions.

10

The advantages of this approach are:

• If an SNBP agent already is operating at the node, as is likely, the collection of

local information needs little in additional resources.

• A large number of traffic related performance parameters are readily available, as

needed for network intrusion detection.

• The standardized representation of the data collected in each node facilitates data

exchange between nodes.

• It can be extended to collect additional data relative to network activities.

• It does not depend on the operating system.

• There are several object and parameter groups in standard MIB II that collect

information on different layers and protocols, e.g., IP, ICMP, UDP, TCP, etc.

The limitation of this approach is that it is geared to handle traffic related

parameters, it is basically a NID system, so it is not sufficient by itself to detect escalation

of privilege, buffer overflow, etc., the type of attacks that a host intrusion detection (HID)

system would detect.

CHAPTER 3

IMPLEMENTATION

3.1	 Simulation of Internet Traffic in Wired Network

A stand-alone network was constructed for the purpose of carrying out actual attack

experiments in a controlled environment. The network topology is shown in Figure 3.1. It

comprised of four network subnets, connected by a layer 3 switch. One subnet

constructed and delivered the background traffic, fashioned to follow some desired

traffic, according to a chosen distribution. In these experiments, traffic with self-similar

characteristics that emulated Internet type traffic was constructed, as the background

traffic of a given intensity. Another subnet consisted of attack stations of various

operating systems, mainly Windows and Linux. The attack and background network

traffics were directed toward the victim stations that comprised another subnet. There

was also a wireless victim subnet that was not utilized here. The Layer 3 switch provided

the routing functionality needed for communication from one network segment to another

11

Figure 3.1 Test Wired Network.

The names of the subnets (Virtual LANs) describe by themselves what their function was

in the test bed.

The Traffic segment had been set up to generate background traffic. All clients

sitting in this segment generate traffic, which hit the victim segment.

The System/Victim segment had been setup to receive random patterns of

predetermined traffic from both the traffic and devices residing directly within the

System/Victim network.

The Wireless segment had been setup to compliment the existing setup, which

had been configured. Since wireless technology is utilized in various environments, an

13

opportunity was introduced to add the technology into the multiple networks and study

various findings. In order to initiate the solution, an access point had been selected to

connect into the environment.

The Attack segment had been setup to send different types of attacks including

random patterns of the fault traffic.

Bany actual network experiments had been carried out focusing on the Denial of

Service (DOS) class of attacks, including UIDP, ICMP and TCP flooding attacks. These

scenarios ranged from modest (10%) to small (0.5%) values of the ratio of attack to

background, R=(AIB), traffic intensity. The purpose was to evaluate the performance of

BAID, as the ratio R became small, to almost insignificant levels.

3.2	 Simulation of Internet Traffic in a Wireless Network,
in a Wired Environment

Wireless mobile ad hoc networks differ from wired networks in that their topologies are

highly dynamic and their links can have a relatively high bit error rate. These properties

make it difficult to conduct controlled, repeatable experiments with routing and other

protocols in a wireless ad hoc network environment. The dynamic topology switch

emulates a wireless mobile ad hoc network using standard Ethernet physical connections.

Traditional switches for wired networks, such as Ethernet switches, ATB

switches, and IP routers, rely on multiple access control (BAC) or Internet protocol (IP)

address information to determine forwarding and the emulated connectivity cannot be

altered without altering MAC or IP level addressing. Further, conventional commercial

switches cannot emulate the effects of packet loss or data rate limitations. Thus, a wired

network and a traditional switch cannot be used directly to emulate a mobile ad hoc

14

network. The above problem calls for a solution where a standard wired network uses a

BANET emulator [8] to create equivalent conditions that mimics a wireless ad hoc

network.

3.2.1 Installation of MANET EMULATOR (Dynamic Topology Switch)

• The operating system used to build this software switch was Linux Redhat 7.0,

kernel version 2.2.16.

• It had multiple network interfaces, either by using multiple interface cards and/or

multiple-port interface cards/PCI Extender Card. An example block diagram of

the network that may be built using this software switch is shown below.

Figure 3.2 Sample network implementing the Dynamic Switch with 5 NICS

• The installation required a kernel recompilation [3].

15

3.2.2 Features of Dynamic Topology Switch

The dynamic topology switch emulates a BANET using standard Ethernet or

other wired physical connections and requires no changes to the network's hosts.

The basic concept of operation for the dynamic topology switch is to control the

connectivity of "mobile" nodes using the central hub in a star network. The dynamic

topology switch can switch traffic between any set of connected hosts, based on a local

switch connectivity table that can change dynamically. The switch is transparent to all the

other nodes at and above the BAC layer. All incoming frames are switched based solely

on the input interface and the switch connectivity table information. The switch does not

alter the BAC frame or IP datagram information in anyway and, in particular, it does not

add any address information of its own to the BAC frame or IPA datagram. Hosts receive

packets from all current neighbors, including packets not addressed to the host.

3.2.3 Dynamic Topology Switch Software

The software can be divided into three parts:

(i) User space program

(ii) Broker program

(iii) Kernel space program

16

Figure 3.3 Components of the software of Dynamic Topology Switch.

The user space program is responsible for interactions with users. The kernel space

program handles kernel interruptions and received packets. The broker program contains

a character device driver, which is used to exchange information between user space and

kernel space. The user space program first translates user inputs or command files into

the proper command format. The translated commands are written into the character

device in the broker program. The broker is a module that can be loaded in superuser

mode. The broker creates a character device and sets all network interfaces to

promiscuous mode during initialization. The broker program also maintains the switch

connectivity table and token buffer queues. It continues to listen for input/output

interrupts from the character device and calls the proper procedures to handle requests

from the user space program. This allows users to use commands or input files to control

the dynamic topology switch as a function of time. The broker is also responsible for

moving outgoing packets into the proper buffers of the network devices.

The kernel space program deals with packet capture and dynamic forwarding.

Once a packet is captured, the kernel procedure enters the dynamic switch block if the

character device driver is loaded. The kernel space program looks up the outgoing port(s)

17

for each incoming packet in the switch connectivity table via the broker program. The

switch does not examine packets, but they are duplicated if necessary so that one

incoming packet can be delivered to multiple output ports. The kernel space program

forwards packets to the proper devices using the sending procedure in the broker

program.

3.2.4 Mobile Network Parameters that can be Emulated Using the Dynamic
Topology Switch

Packet drop Rate

Bobile ad hoc networks are implemented using wireless communications where packet

drops due to bit errors may be likely. In the dynamic topology switch, the packet drop

rate for each connected channel can be controlled. It uses a two-state discrete-time

Barkov model, for packet drops, as shown below.

Figure 3.4 Two-state Barkov chain for packet drop process.

In the two-state Barkov model, a channel can be in one of two possible states, "good" or

"bad." The state transition diagram is shown in Figure 3.4. The probability of dropping a

18

packet, i.e., the probability of a packet error, is different in each state. PG is the

probability of dropping a packet while in the good state and PBS, PB > PG, is the

probability of dropping a packet while in the bad state. Given a present state, a channel

may transfer to the other state or stay in the present state with certain probabilities. P1 and

P2 are the transition probabilities of staying in the good and bad states, respectively.

(II) Constrained capacity

The capacity of wireless links may be less than the capacity of the wired links used in the

test bed. Constraints on available bandwidth are based on a leaky bucket token buffer

model.

Figure 3.5 A Leaky Bucket Token Buffer Bodel.

In the leaky-bucket token buffer model, no packet can be sent unless there is a token in

the token buffer or a new token arrives. There is an upper bound on the size of the token

buffer. A token arrival rate of r tokens per second, a token buffer size of B tokens, and an

allowable transmission size of bytes per token are used to determine the bandwidth

19

constraint. The equation below specifies the maximum allowable data rate, where C is the

transmission rate or emulated capacity.

3.2.5 Limitation of Dynamic Topology Switch

• The link layer effects cannot be emulated, since the dynamic switch software did

not alter BAC layer information while transmitting packets from one interface to

another.

• The other issue, which this software did not take care of, was scalability. The

network size was limited due to operating system limitations. Only 11 nodes

could connect to the dynamic switch, thus a wireless network with only 11 nodes

talking to each other.

20

3.2.6 The proposed test bed for collection of MIB Data in wireless networks

Figure 3.6 Emulation of BANET using the Dynamic Topology Switch.

Keeping in mind the scalability issue, the above network test bed was proposed.

Here we would have used just two interfaces on the dynamic switch, with each port being

a part of different subnets (10.10.10.0 and 11.11.11.0). A hardware switch acting as a

layer 2 hub could be connected to each interface. Nodes could be attached to this

hardware switch.

The same client server paradigm [4,5,6,7] could be used to simulate internet

traffic (background and attack traffic). A background and fault server could be run on

each subnet with their corresponding clients running on the other subnet. This way all

21

clients on one subnet would be talking to their corresponding server on the other subnet,

through the wireless channel emulated by the dynamic switch. SNBP (MIB-II) based

data collection could have been done on both the servers.

This proposed test bed could have removed the scalability limitation, of the

dynamic switch software, to some extent.

3.2.7 Second test bed proposed for collection of MIB Data in wireless networks

Due to the limitations faced during the use of software switch, another network test bed

was considered to simulate internet traffic and collect BIBS data.

This time, Virtual LAN (VLAN) technology is used to create logically separate

LANs on the same physical switch. Each port of the switch is assigned to a VLAN. The

communication between switches and routers take place through trunking. For two nodes

on two different VLANs to communicate, the data must travel from the switch to the

router and back again to the switch. In this way, the nodes are like mobile users and the

switch and router act as the base stations.

For this architecture using a hardware switch, there is no limit on the number of

nodes that act as wireless nodes. Moreover, the hardware switch can be cascaded to

support more nodes. An example network using this test bed scheme is shown below.

Hardware switch consists of three components:

VLAN routing, traffic control, and packet error rate. The first two components are

becoming the Linux standards. We can use them directly and focus on the design of the

channel simulator.

A random packet dropper function can be added to the Linux kernel of the router

machine, to simulate channel simulator with packet error rate. By setting different packet

drop probabilities, the router acts as a wireless channel.

To simulate Traffic control, we can use a new linux package called Linux

advanced routing (zproute2), which contains a traffic control mechanism (tc). The traffic

control system sends packet to filters and queues to implement flow control and

bandwidth allocation.

CHAPTER 4

EXPERIMENT - DATA GENERATION AND COLLECTION

Understanding the nature of network traffic is critical in order to properly design and

implement computer networks. Ethernet traffic exhibits self-similar [1,2,9] properties.

Self-similarity means that an object is composed of sub-units and sub-sub-units on

multiple levels that (statistically) resemble the structure of the whole object.

Self-similarity describes the phenomenon where a certain property of an object is

preserved with respect to scaling in space and/or time. The background and fault (attack)

traffic generated during the experiments done here followed two distributions in order to

generate self-similar traffic, namely Careto and Weibull distributions.

4.1 Procedure

All experiments and data collection were done on the wired network as shown in Figure

4.1. The network test bed was operated using the Client — Server paradigm, with the

management station running in the server. The management station collected 27 traffic

parameters corresponding to four MMIB groups: IF, IC, TCC and UDC, for each network

element monitored, i.e., 9 parameters from the Interface Group, 6 from the IP Group, 4

from the UDC Group, and 8 from the TCC Group. For example, the UDC group consisted

of the udpinDatagrams, udpinNoPorts, udpinErrors and udpOutDatagrams parameters.

The selection of the specific subset of the traffic parameters is based on their relevance to

the network traffic and their inter-relationship, derived from domain knowledge as well

as from some correlation studies.

23

24

Background and fault traffic were generated with different intensities to simulate

the real-time internet traffic. For this purpose, two client server programs were run, one

to simulate background traffic and the other to simulate fault traffic (attack traffic). The

background and fault traffic servers were ran on a victim machine in the Victim ULAN,

background traffic clients were ran on the traffic subnet and a fault traffic client on the

Attack ULAN.

The background traffic clients generated packets of sizes that followed the Pareto

distribution. The rate at which the packets were generated followed the Weibull

distribution.

The fault traffic model generated network fault traffic in a periodic pulse. The

time period in seconds was given as the input.

The size of the packet could follow any of the following distribution: Exponential

Distribution, Constant Distribution or Pareto Distribution. The packet rate could follow

any of the following distribution: Exponential, Constant, Pareto or Weibull Distribution.

The figures on the next two pages show an example of running background traffic

servers/clients and fault traffic server/client programs.

25

Figure 4.4 Fault traffic client sending out packets to Fault traffic server.

In conducting the attack, one client in the "Attack VLAN" sends the attack

packets to the "System/Victim VLAN". The attack packet length is 100 bytes with a

constant distribution, while the attack packet rate will vary according to the different

attack intensity scenarios.

27

For each simulation scenario, network traffic was collected over a duration of 10

hours. The data were recorded periodically, with a period of one second.

4.2	 The Traffic Monitor

The data collection throughout this research was carried out using a commercially used

IpSwitch, Inc. network management tool, called WhatsUp Gold [10].

WhatsUp Gold, a graphical network mapping, monitoring and notification

solution that helps keeping the network up and running, is a very useful tool to monitor a

wide range of devices, applications, and services for network problems. With WhatsUp

Gold one can easily filter through events and locate the log data for any type of network

event by searching on event type, IP address or device name. This saves time, provides

more flexibility, and also gives users more control since they can pinpoint information

without having to sort through a flood of event data.

WhatsUp Gold automatically detects the devices and hosts in a network and then

creates a network map. It polls all the systems in the network with a polling frequency

that can be set by the user. With the auto discovery wizard, it creates an accurate

representation of the network based on information contained in the host computer or on

the network. Auto discovery was used to create a map of the test bed (figure 3.1) as

shown below.

28

Figure 4.5 Network map as detected by WhatsUp Gold.

Links between SNBC enabled devices provided color-coded indication of their up

or down status. Links, which were down and attribute the outage to a specific device

interface, could be seen using this tool. Devices with multiple interfaces are fully

supported in network mapping, monitoring and alert notification - allowing accurate

depiction of the network topology and to pinpoint network problems down to a device's

interface, either physical or virtual.

In this research, this tool was used to monitor SNMP enabled devices for

acceptable ranges of specific BIB variables. The SNBCUiew feature of this tool

displayed the status of interfaces on a device and let us view MIB values. BIB traffic

data could also be graphed to show throughput in real-time.

29

The SNBP Uiewer displayed an icon for each interface on the device .A Typical example

is as shown below.

Figure 4.6 SNMP Uiewer.

The first icon from the left gave the MIB parameters for the System Group, the

second one gave the loop-back interface information, and the third one gave the MIB

parameters associated to the actual ethernet interface on the computer.

The following snapshot shows the WhatsUp Gold monitor the 27 MIB parameters

monitored during this research.

Figure 4.7 Traffic monitoring using WhatsUp Gold.

30

CONCLUSION

After monitoring background and fault traffic on wired network, it is proposed that

similar collection of BIB data can be done on a wireless network as well. This paper has

proposed two test beds to emulate a wireless model in a wired environment and facilitate

similar collection of MIB data. The data collected using both wired and wireless network

test beds may be used for experimentation purposes for the development of the fault

detection system, which would be a part of the final anomaly network intrusion detection

system.

31

REFERENCES

[1] Kihong Cark, Gitae Kim, and Bark E. Crovella, On the Effect of Traffic Self-
Similarity on Network Cerformance. In Proceedings of SPIE International
Conference on Performance and Control of Network Systems, November, 1997.

[2] Walter Willinger, Feldmann, Gilbert A.C., and Kurtz T.G, The Changing Nature
of Network Traffic: Scaling Chenomena, ACM Computer Communication Review,
vol. 21, pp. 5-29, Apr. 1991.

[3] Subhasish Ghosh, Compiling and Installing a Linux Kernel, published in Issue 61
of Linux Gazette, July 2001.

[4] Documentation on Linux Networking available on
http://www.redhat.com/docs/manuals/linux/ (4 Bay 2003)

[5] Rob Tougher, Linux Socket Crogramming In C++, published in Issue 74 of Linux
Gazette, January 2002.

[6] Gent Hito, A chronicle of how the In software team ported the IP*Works! Internet
Toolkit from Delphi to Kylix. Article ID: 26793, published on September 21,
2001.

[7] Example code for Linux sockets available at
http://alf.fei.tuke.sk/pai/examples.html (7 Bay 2003)

[8] Tao Lin, Scott F. Bidkiff and Jahng S. Cark, Local Computer Networks, 2002.
Proceedings. LCN 2002. 27th Annual IEEE Conference on , 2002 Page(s): 791 —

791.

[9] Will Leland, Burad Taqqu, Walter Willinger, and Daniel Wilson, On the Self-
Similar Nature of Ethernet Traffic (Extended Uersion), IEEE/ACM Transactions
on Networking, Vol. 2, No. 1, pp. 1-15, February 1994.

[10] Documentation on WhatsUp Gold — Network Bonitoring Tool, available at
http://www.ipswitch.com/Support/whatsup/guide/v700/WUG7TOC.html

[11] Tammy Fox ,Network Configuration Using the Command Line, available at
http ://www.linuxheadquarters.com/howto/networking/networkconfig.shtml
(30 April)

[12] Croactive and Adaptive Detection of Network/Service Anomalies, available at
http://www.ece.rice.edu/—zpjian/ELEC531/index.html (10 Bay 2003)

32

33

[13] Cynthia S. Hood, Intelligent Agents for Croactive Fault Detection, Illinois
Institute of Technology.

[14] Cynthia S. Hood, Croactive Network Fault Detection, Department of Computer
Science and Applied Bath, Illinois Institute of Technology, Chicago, IL 60616.

[15] Barina Thottan, Properties of Network Faults, Bell Laboratories, Holmdel, NJ.

[16] 802.1Q ULAN implementation for Linux, available at
http://www.candelatech.comi—greear/vlan.html (15 Bay 2003)

[17] Banagement Information Base for Network Banagement of TCCIIP-based
internets:	 (RFC 1213), available at
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1213.html (21 Jan 2003)

[18] Simple Network Banagement protocol, available at
http://www.synapse.de/ban/HTBLIC_TCC_IPIEng/Ptcp103.html (15 Bay 2003)

[19] Overview of SNOB and BIB, available at
http://www.et.put.poznan.pl/snmp/intro/iovervi4.html (15 Bay 2003)

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 2003

	Soft fault detection using MIBs in computer networks
	Sachin Arora
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Simple Network Management Protocol and Management Information Base
	Chapter 3: Implementation
	Chapter 4: Experiment - Data Generation and Collection
	Chapter 5: Conclusion
	References

	List of Figures

