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ABSTRACT

INTEGRATING TOLERANCES IN G AND M CODES
USING NEURAL NETWORKS

by
Vijay Kumar Sundareshan

Continuous integrated solutions from CAD down to the preparation of NC programs were

developed in the recent years. However, if tolerances should be considered, the

interaction of human experts is still necessary. A way to fill this gap in the production

process is shown in this thesis. The study builds a relationship between the given design

tolerances and including these tolerances in machining by generating respective G and M

codes. The study focuses on physical phenomena and their inter-relationship while

manufacturing. For example how the speed of machining, torque, power, depth of cut,

etc. influences machining under specified tolerances. Artificial neural networks (ANN)

have been used to generate required outputs because of their capability to learn from a

given set of data points. Four different kinds of neural networks, as a module, have been

used, with different kinds of learning rules (algorithms) depending on the type of inputs

and outputs. The whole model incorporates retrieval of tolerances from a CAD software

and running the algorithms for (i) Dimensional tolerance analysis, (ii) Control of feed

rate, spindle speed, depth of cut and cutting forces, (iii) Propagation of errors in multi-

stage machining, and (iv) Vectorization of geometrical tolerances. Machining processes

would include (i) Milling, (ii) Turning, and (iii) Drilling. Then the corresponding outputs

are interpreted and analyzed to generate G and M codes. This study has shown how ANN

can revolutionize NC machine manufacturing. A case study illustrates the effectiveness

of the proposed method.
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CHAPTER 1

INTRODUCTION

The automatic generation of NC programs as a part of the production process is

nowadays state of the art. A number of different systems are available in the market.

They can be distinguished into universal programming systems, integrated CAD systems

and workshop-systems depending on the degree of integration [1]. However, they still

require more or less user interaction to enter technological data as feed, cutting speed,

way of clamping, etc. Determination of the process parameters is up to now largely based

on empirical knowledge. Attaining specific shape and position tolerances is mostly not

predictable. In most cases the selection of cutting parameters will be based on

recommendations of the cutting tool manufacturers [2].

On the other hand, modern production processes require more then ever a

complete manufacturing control. A minimization of production costs and a maximum of

quality is a duty for every enterprise. One must assign tolerances as small as necessary

but as large as possible. This basic tolerance principle is valid today more than ever. A

system, that is able to support the designer and the manufacturing planner as early as

possible in the product planning process, is required. Also on the economic point, interest

is great at gaining precise cost relevant information.

The basic process of planning for NC programming is clarified by the scheme

represented in Figure 1.1 (according to Mischo). After reading the work-piece data from

a CAD system, the work-piece is interpreted knowledge-based. A blank is selected in the

next step, the situation of clamping is examined and the applicable technologies are

determined. In the last step the actions must be sequenced and details must be

1
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determined. A postprocessor now generates the NC code required for

manufacturing. In the point of determination of details, the production parameters

influencing the accuracy of the result are determined. Some of the systems used in

practice ask in this case the user. The user can now select the production parameters

according to his experience and knowledge, hoping they will give him the expected

results. However, this procedure has only a small benefit in sense of an automation of the

production process. Other systems choose all production parameters stand-alone. An

adjustment 	 to 	 tolerances 	 defaulted 	 by

the design does not happen in this case. The reason for that is also, that possibilities to

define tolerances that meet the requirements of a CAD system do not exist in the

most systems up to now. An approach to this is the vectorial tolerance representation [4].
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Figure 1.2 Concept for generating NC programs.

In order to gain information about the interdependence between production

parameters and attainable accuracy a package of experiments should be carried out. In an

experimental circuit from machining - measuring - evaluation (Figure 1.3), technological

and economical knowledge can now be collected and prepared. Costs and data structures
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of the manufacturing process can correspondingly stored in a database. It is important to

separate between random error and systematic error in the step of evaluation. The

modification of the NC programs based on the won results closes the experimental

circuit. The experimental results in the ANN (Artificial Neural Network) database are

now evaluated and summarized.

Figure 1.3 Experimental circuit.

In the next step, it is necessary to evaluate and concentrate the collected raw data.

Random errors can be extracted in this way. In addition, it is possible to recognize

dependencies and regularities (Figure 1.5). In particular the interaction between

individual variables must be determined in sense of an effective experimental evaluation.

It is a good idea to structure the data in form of a "feature" and use it to generate
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G and M codes for machining. The feature describes the parameters decisive for

Figure 1.5 Some Physical Phenomena and their Inter-relationship.



CHAPTER 2

LITERATURE REVIEW AND CURRENT PRACTICE

Tolerance is a way to establish within what limits a deviation of measures is allowed to

accept a part or a product. There are various methods to calculate the minimal and

maximal tolerances with the help of standard tables. So the importance of tolerance

combined with tables can be seen. If the designer makes a mistake in the table and the

manufacturer makes the part then might get a part, let's say a shaft, which would not fit

in the hole resulting in wastage of manpower, material, time and most importantly

money.

Typical dimensional tolerances in precision metalworking industries have

decreased by three orders of magnitude since World War II, from 0.002" in the 1940s to

20-millionths of an inch in the mid-1990s. Some industries now produce features to

tolerances of 2-millionths of an inch. But as dimensional tolerances have decreased, a

new quality issue has arisen: Factors of part geometry and surface roughness, once so

subtle that they could previously be ignored, are becoming increasingly important. A flat

surface that undulates by a mere 10-millionth of an inch may now throw off the accuracy

of a part.

Mass production and assembly lines, a vital basis for our modern economy and

high standard of living, are founded fundamentally on the subtle concept of producing

components within narrow tolerance limits. Tolerances allow for the achievement of

acceptable variation in complex assemblies despite variability in the individual

components. In fact, Hounshell (1984) shows that it was largely the inability to

6



7

manufacture components consistently within narrow limits that held back the widespread

use of interchangeable parts and, hence, mass production from its modern beginning in

the late eighteenth century to the early twentieth century.

Consider the present day machines used for manufacturing. The latest trend in

manufacturing is the NC machines that have reached incredible levels of progress since

they first started out in 1951. In recent years the development of NC machines has

reached high levels of accuracy and reliability.

But then the available literature concerning CNC programming seems not to

comprehend all the problems that can be encountered in such programming. Thus, most

studies have focused on the importance of tolerance analysis and have attempted to

highlight the significance of tolerance in manufacturing.

Lately CNC machine manufacturers like GE –Fanuc (Charlottesville, Virginia),

Makin (Mason, Ohio), Mitsubishi(Vernon Hills, Illinois), etc. are starting to focus on

the importance of maintaining the manufactured part within the tolerance limits. These

state-of-the-art CNC machine manufacturers have been doing considerable research in

high speed machining (HSM), better production, reduction of cycle lead time and not to

mention increased accuracy. These machines have the capability to machine directly from

the curves, known as the NURBS (Non Uniform Rational B Splines) interpolation. That

exchange heretofore has been envisioned as being from one CAD/CAM system to

another. But now it also can include an appropriately capable CNC, which brings up the

first limitation of linear interpolation—accuracy.
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In a conventional NC contour programming process, once the underlying surface

geometry is created, the CAM system is going to analyze that geometry, apply a user-

specified tolerance and then go about generating line segments joined end-to-end to

create the final tool path. The tolerance—sometimes referred to as maximum chordal

deviation—means that no point on the line segment will fall further from the reference

geometry than the specified value, measured perpendicular to the line segment. So before

the part program ever gets out of the CAD/CAM department, the tool path has already

deviated from the ideal geometry.

That raises the second, and larger, issue—the tradeoff between accuracy and data

volume. If the intent is to machine a smooth contour, a visibly faceted tool path is

unacceptable in that it is obviously inaccurate and will require laborious hand finishing

that degrades final accuracy even more. So the NC programmer sets the tolerance small

to keep the line segments short and make the path as accurate and smooth as possible.

But since each line segment corresponds to a block in the part program—expressed as an

X-Y-Z coordinate "go-to"—the contouring program swells to enormous size.

Now two more issues arise. First, the gargantuan program probably won't fit in

the CNC memory, which necessitates some sort of external memory buffer at the

machine tool or DNC link to drip feed the program to the CNC a little at a time. And

second, in tight curves large numbers of go-to points will be clustered extremely close

together, meaning more blocks for the CNC to process per unit of feed. These two factors

form a tag-team that can significantly hamper the speed of the cutting process because the

program can't be transferred to the CNC fast enough and/or the blocks can't be executed
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fast enough by the CNC to keep up with a desirable programmed feed rate. If the data

stream intermittently runs dry for either reason, the feed is going to progress in fits and

starts, which degrades surface finish, tool life, and maybe accuracy too if the tool is

deflecting in an uncontrollable manner. And so the whole program feed rate is run slower

than necessary, or the tolerance is set larger than desired, to avoid these problems.

At least, those are major issues with older controls. Newer high end CNC's have

much larger memories, can achieve very high block processing speeds, and apply

sophisticated look-ahead capabilities that scan ahead in the program for abrupt changes in

cutter path direction. Real-time control algorithms not only see the turns coming, but also

lower the feed rate in order to keep the cutter on path and avoid moments of data

starvation. These features go a long way to alleviating the accuracy-vs.-data compromise

necessitated by linear interpolation. Still, even with these extraordinarily capable CNC's,

dense clusters of data points in the part program will significantly reduce the average real

feed rate due to block processing limitations and because the control system must execute

many abrupt local changes in path direction as it "corners" from each line segment to the

next. The accuracies of such capabilities are becoming increasingly well documented in

high speed machining applications. Indeed, Siemens claims that "in existing applications,

accuracies of 0.5 micron with feeds of 400 ipm were reached" with NURBS interpolation

on that company's much-touted 840D control.

But curve interpolation can also be used simply to go flat-out faster than ever

before, since the CNC interpolates the original curve at the CNC's interpolation rate. How

much faster? It's hard to say at this point, and many machine tool builders are asking
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themselves the same question hence getting a tantalizing insight into the issue in the

demo area of machine tool builder Makino (Mason, Ohio).

Makino CAD/CAM applications engineer Jeff Wallace believes that NURBS

interpolation will result in feed rates being boosted by "at least 30 percent and maybe as

much as 50," and has been conducting cutting tests to bear out that hypothesis. To

demonstrate, Mr. Wallace showed us the curvy test part being cut on one of Makino's

high speed machining centers fit with a GE-Fanuc M C control. To see just how fast the

machine could contour the foot-long, P20 piece, the path was programmed at a feed rate

of 999 ipm and the feed rate override was set at 200 percent. When planar (X-Z) cuts

were first executed in a conventional linear interpolation mode, the actual feed rate

topped out at about 650 ipm. Then Mr. Wallace switched over to a NURBS

representation of the same path, leaving all other parameters unchanged, and immediately

the feed began breaking 1,000 ipm at its fastest moments.

That's not going to happen on just any machine tool, of course. But it does

nonetheless illustrate the potential of curve interpolation that has captured the attention of

high speed machine builders worldwide.

Some of the company characteristics are highlighted:

1) GE-Fanuc: They are one of the leading manufacturers of CNC machines. Whether

it's a multi-axis high-speed, high-precision machine, a simple three-axis machine, or a

transfer line, GE Fanuc has a control solution to meet the application requirements. From

their traditional CNC products to the latest software enhanced OpenFactory systems,
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solutions are - faster and easier than ever. Much work has been done especially on

NURBS interpolation and in their machines the control reads a very different G-code

than that to which machine shops are currently familiar. Rather than the X-Y-Z

coordinates of a conventional program block, the NURBS data includes the control

points, weights, and knot vectors required to define the curve. The control builder

contends that this method of representing curved cutter paths "results in a reduction of

program size of 1/10th to 1/100th of a comparable linear interpolation part program and

significantly improves the fundamental accuracy issues."

2) MAKINO: Makino was the first to bring high-speed spindle technology

commercial market. Today, Makino machines and processes are cutting time-to-market

for production machinery companies all over the world. With Makino's solutions, not

only are the manufacturers cutting metal faster, but you are cutting time to market, too.

But cutting time means much more than cutting metal faster. It means having the ability

to quickly respond to changing market demands. Makino solutions have that flexibility

built in, allowing the company to take on many different parts.

SOFTWARES:

There are different types of software available in the market presently. Let us have a look

at a few of them.

CNCez: It is a world class real-time 3-D simulator for computer numerical controlled

utilizing the openGL engine for exceptional real time rendering and and 3-D visualization

of tool-cuts. Unlike common CNC simulators, it provides real time control over view-

point change and light properties. A user-defined pre-processor for customized G-codes

and a macro language for custom cycles.

An interactive tool library editor allows the creation and 3-D preview of the

customized tools. A tool turret —editor allows direct manipulation of the current tool
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turret. An interactive work-piece property allows the user to specify dimensions, material

properties, coloring as well as creating material library.

There are numerous other companies that provide CAD/CAM technology like the

famous GIBBS system.

GIBBS CAM: Continuing in the GibbsCAM tradition of delivering power, speed and

efficiency without sacrificing ease of use, GibbsCAM 2000 incorporates several new

enhancements designed to make NC programming faster and easier through powerful

functionality. Most notable are the Wizards technology, Generation II Tool-path Engine,

CATIA and VDA-FS CAD interoperability options, and the Reporter.

As a summary, these publications have provided insight into the importance of the

tolerances in manufacturing as a quality issue. However, there is a lack in respecting the

design tolerances when it comes to manufacturing of parts (even complex surfaces) and

further work needs to be done.

This research would focus on expanding the horizons in present CNC machines

and to enable manufacturers to machine parts within the desired dimensional and

geometric tolerances. After exploring various avenues, this research chose ANN as a

strong tool to generate NC codes because of its learning abilities.



CHAPTER 3

RESEARCH OBJECTIVES

The research will focus on building a prototype for the inclusion of tolerance in an NC

machine.

The proposal is, let us assume a designer allocates dimensions (with the tolerance)

for a component, and say 15 mm with tolerance of 0.005 mm and geometric tolerance for

angularity of 45 degrees and 0.002 degrees. Subsequently, while manufacturing the

manufacturer would be prompted to enter the tolerances in the NC machine. There would

be a program that would automatically generate the G and M codes for the NC machine.

By the optimal allotment of tolerances a manufacturing unit can accentuate its time, cost

and quality. All the three are vital elements for the successful functioning of the unit.

The G and M codes would be generated for the following processes-

1) Milling

2) Turning

3) Drilling

The whole module would try to incorporate the following manufacturing

processes for given design tolerance:

1) Machining processes

2) Machines

3) Tools

4) Machining parameters

5) Process capability

13



CHAPTER 4

PROPOSED METHODOLOGIES

The research would focus on expanding the horizons in present CNC machines and to

enable manufacturers to machine parts within the desired dimensional and geometric

tolerances. After exploring various avenues, this research chose ANN as a strong tool to

generate NC codes because of its learning abilities.

1) The tolerances are obtained from the CAD system by a command IGES out.

2) Once the tolerances are obtained it is fed into a generic algorithm which would

convert these files into two parts;

a) Geometric tolerances

b) Dimensional tolerances

3) Then these tolerances are fed into a neural network.

4) The philosophy of the neural network can be summarized as follows-

It would have a set of rules within the network. This is done by assigning specific

weights to each neuron and that neuron would be activated as per the information

received by it. The network would then work out the "error" by comparing the

information received with the set of rules already present within the system.

Subsequently the network would do the required compensation to the information

received to it.

5) The neural network would be an unsupervised type of network. It would consist of

three layers, viz.,

a) Input layer

14
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b) Hidden layer

c) Output layer

The input layer consists of input PE (processing elements). These neurons would

just receive information from the environment and transfer it to the intermediate PE's in

the intermediate layer. It would be done with the use of a sigmoid function.

Next, the intermediate neurons would transfer the weighted information into the

output PE's which in turn would transfer it back to the environment, the weighted

difference. The output would again have to be fed into a generic algorithm which would

change it into G and M codes for CAM machining purposes, these can also be changed

into a text file later on if necessary.

The inputs to the neural network would be in the form of sigmoid function.

This paper would deal with understanding of the ANN (artificial neural networks) used

for generating G and M codes. First , dealing with the basics of ANN and subsequently

the use of numerical analysis in understanding the geometry of surfaces and tool path

generation.

This thesis would deal with neural networks for the following:

1) Dimensional tolerance analysis and control

2) Control of feed rate, spindle speed, depth of cut and cutting forces.

3) Propagation of errors in multi step machining

4) Geometrical tolerance control using vectorization

The procedures would be discussed in more details in the following chapters.
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4.1 Neural Networks

Neural networks are composed of simple elements operating in parallel. These elements

are inspired by biological nervous systems. As in nature, the network function is

determined largely by the connections between elements. Neural network can be trained

to perform a particular function by adjusting the values of the connections (weights)

between elements. (Figure 4.1)

Commonly neural networks are adjusted, or trained, so that a particular input

leads to a specific target output. Such a situation is shown below. There, the network is

adjusted, based on a comparison of the output and the target, until the network output

matches the target. Typically, many such inputltarget pairs are used, in this supervised

learning, to train a network.

Figure 4.1 Neural Network.
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Batch training of a network proceeds by making weight and bias changes based

on an entire set (batch) of input vectors. Incremental training changes the weights and

biases of a network as needed after presentation of each individual input vector.

Incremental training is sometimes referred to as "on line" or "adaptive" training.

Neural networks have been trained to perform complex functions in various fields

of application including pattern recognition, identification, classification, speech, vision

and control systems.

Today, neural networks can be trained to solve problems that are difficult for

conventional computers or human beings. Throughout the toolbox emphasis is placed on

neural network paradigms that build up to or are themselves used in engineering,

financial and other practical applications.

The supervised training methods are commonly used, but other networks can be

obtained from unsupervised training techniques or from direct design methods.

Unsupervised networks can be used, for instance, to identify groups of data. Certain kinds

of linear networks and Hopfield networks are designed directly. In summary, there are a

variety of kinds of design and learning techniques that enrich the choices that a user can

make.

The field of neural networks has a history of some five decades but has found

solid application only in the past fifteen years, and the field is still developing rapidly.

Thus, it is distinctly different from the fields of control systems or optimization

where the terminology, basic mathematics, and design procedures have been firmly

established and applied for many years.
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4.2 Aspects of Neural Networks in Neural Networks

The first area is the approximation theory. If K is a compact set in le, for some n, then it

is proved that a semi linear feed-forward any continuous function in C (K) to any

required accuracy.

The second area considered is that of learning algorithm. A detailed analysis of

an algorithm (the delta rule) will be given. Indeed, computation has inspired considerable

advances in this branch of mathematics (Taylor, 1993). The structure of classification

space can be analyzed using statistical decision theory (Amari, 1990).

DENSITY AND APPROXIMATION:

It has been proved that a multilayer perceptron can separate any finite sets of points in Rn

Let us describe this a little more carefully. Let A and B be two finite sets in Ri

Figure 4.2 Density and Approximation.

`A' might consist of the points labeled "o" and B contains points labeled "x". Assume to

wish the network to produce output 1 for the points in A and 0 for points in B. Clearly it

is possible to construct a finite set of polygons P1 Pk such that
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Ac Q : =UPS for j=1, . . ...,k

Each Pi consists of a finite intersection of half spaces. It can be thus be obtained

by a network computing the logical AND function which is linearly separable. The union

to include A can then be obtained by a network computing the OR function: OR is also

linearly separable. This approach is natural and simple but it is difficult to take it too far.

As before, assuming the inputs as vectors in R. The output y of the network is a vector in

Rm, where m<< n (in many cases m=1). The network then computes a function g: Re->

Rm which is regarded as an approximation to some other function f: R i---÷ Rm .

"This paper proposes a perception with back propagation to calculate any

deviations in tool path. It has been proved by Cybenko (1989), Hornik et al (1989) and

Funahashi (1989) that one hidden layer is sufficient for approximation. Before explaining

the way the neural network functions mathematics of surfaces needs to be understood,

since the diagram divides each surface on the part diagram and represents it by an

equation."

4.3 Mathematics of surfaces

Looking at the geometry of the surfaces rather closely, as it is the essence of the inputs

into the neural networks. This would not only fill in for geometrical tolerances but also

dimensional tolerances. But as a foresight there might be a problem for representing

intersecting surfaces and complex surfaces, hence this paper stresses on how to correctly

represent the surfaces by their equations.
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I) INTRODUCTION: Now let us briefly discuss the different forms of representation of

surface equations.

The parametric form of a surface equation is

These are vectors and can be represented in multi-dimension. If the value of u is

fixed and v is varied, the point P traces a curve in the surface. The partial derivative

bpl8v is a vector tangent to the curve. Similarly, keeping v fixed and u varying then the

partial derivative of p w.r.t. u would be a tangent to the above curve. The normal to this

plane (also to the surface) can be calculated by the cross product of the partial

derivatives.

This defines a curve frame. Similarly, a surface frame with the required tolerance can be

defined.

II) SURFACE CURVATURE: The curvature of a surface is rather more complicated

than the curvature of the curve, since the curvature of a path across a surface depends on

that path as well as on the surface itself. Different paths passing through the same point in

different directions will have different normal curvatures, but it is found that the normal

curvature takes on the maximum and minimum values for two directions, which are

always at right angles to each other. There are two useful scalar measures of curvature.

One is mean curvature (J) and gaussian curvature K.
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Appropriate knowledge of the co-ordinate system and the non-Cartesian co-

ordinate system is essential.

III) PARAMETRIC CURVES AND SURFACES: Trying to introduce parametric

geometry of free form curves and surfaces, the primary reason to choose parametric

representations in this context is that it is possible to express curves and surfaces in terms

of linear combinations of scalar functions of the parameters, with vector-valued

coefficients. This is appropriate as pointed out by Forrest [16], 'shape is independent of

frame of reference'.

Various curves can be defined like,

1) Cubic curves.

2) Cubic B-spline curve.

3) Composite cubic curve.

4) Bezier curve. Etc.

IV) SURFACElSURFACE INTERSECTION: As discussed earlier the CAD system

(AUTO CAD) has solid modellers in which the object being designed is represented by

means of a unified data structure in the computer.(Requicha & Voelcker, Pratt ). This

structure must contain details of all the face, edges and vertices of the object. This paper

proposes the use of different methods for the evaluation of equation of the surfaces and

intricacies in the neural network to give the right output for these inputs.
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1) Define the surface according to its control limits. Determine whether a given point

X,Y and Z lies on the surface. When the surface is implicitly defined as f(X,Y,Z) = 0 it is

only necessary to substitute X,Y and Z to determine whether or not they satisfy the

equation. In the parametric case, however, points can be computed easily, which do lie on

the surface. A search procedure must be used to determine whether X,Y,Z is a point on

the surface, but this is clearly much more cumbersome than the implicit function.

2) MARCHING METHOD: This technique generates a sequence of points on or near the

required intersection curve by stepping from the current point in a direction controlled by

the local differential geometry of the surface or surfaces involved. Jordan, Lennon and

Holm [I I] developed an algorithm of this kind for directly displaying a curve f(x,y)=0.

From a given start point (xo,yo) the algorithm steps into one of the neighbouring eight

points of the square grid, using the signs of the partial derivatives to select the quadrant

moved to, and stepping to the position within that quadrant for which the value of

f(x + 8x,y+6y) is smallest.

These methods work well for straight lines and conics, but run into troubles with

more complex curves. Finding suitable starting points and termination conditions become

harder.

A second class of marching methods may be thought of as repeatedly solving a

umber of simultaneous equations, one of which is a step constraint. For intersecting

surfaces, the surface created by the intersection of these two surfaces can be considered

as another surface. A similar concept is used in numerically controlled machining using

programs such as APT( Faux and Pratt[6]). Here the cutting tool is driven by in contact
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with a part surface and a drive surface which correspond to the two intersecting surfaces,

while a sequence of 'pseudo-check surfaces' is used provide step constraints.

Now dealing with how the neural network is going to do such complex

mathematical calculations?

The network that this paper is going to study is called 'On interval weighted three-layer

neural network'.

In solving application problems, the data sets used to train an ANN may not be

hundred percent precise but within certain ranges. Representing data sets with intervals,

have interval neural networks. By analyzing the mathematical model, categorize general

three-layer ANN training problems into two types. One can be solved by finding

numerical solutions of non-linear systems of equations. The other can be transformed into

non-linear optimization problems.

Proposed algorithms:

1) For extraction of tolerances from CAD software-

Description of data in tolerance information (Table 4.1).

The below-mentioned variable names would be used in the programs for the

tolerance extraction from CAD software.

The processes considered in the research are-

1) Milling



2) Turning

3) Drilling

These processes have a fixed upper and lower dimensional tolerances which are

generally used in the industries. [Doyle] (Table 4.2)
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LTL= Lower tolerance limit

LSR= Lower surface roughness

USR= Upper surface roughness

ALGORITHM:

1) Input N.

2) Read N.

3) Input I.

4) Read I.

5) Input the dimension and Dim. Toil for I.

6) Read D(I) andT(I).

7) Open "part1DIM.DXF"

8) Read X1,X2,Y1,Y2.

9) Link I and D(I),T(I).

10)Store in DDIM.DXF

11) 1=I+1

12) Is 1=N

13) If yes goto 15.

14) If no goto 5.

15) End

25

Now algorithm for geometric tolerances:



1) Input N.

2) Read N.

3) Input I.

4) Read I.

5) Input the dimension and Geometric Tol for I.

6) Read D(I) andl(I).

7) Open "part1DIM.DXF"

8) Read X1,X2,Y1,Y2.

9) Link I and D(I),l(I).

10)Store in GDIM.DXF

11) I=I+1

12) Is 1=N

13) If yes goto 15.

14) If no goto 5.

Conditions for geometric tolerances: CSA standards
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Equation (a)- Virtual condition shaft implies worst mating boundary.

Conditions for dimensional tolerances : CSA SlANDARDS

Table 4.3 CSA standard tolerances

And so on.

Run CAGl (Computer Assisted Geometric Tolerance). [G.Abdou and R.Cheng]

lhis module would recreate the part drawing in AUlOCAD with specific reference to

the tolerances.

4.4 Douglas Peucker Method for Line Approximation

lhis method is suggested for use on complex parts. It is a powerful tool, which can

drastically reduce the generated data curve depending on the error tolerances. lhe DP

line simplification algorithm was originally proposed in [5]. John Hershberger and Jack

Snoeyink have implemented it in C in [6] as a package named DPSimp:

DPSIMP is a Douglas-Peucker line simplification algorithm implementation by John

Hershberger and Jack Snoeyink. They analyze the line simplification algorithm reported

by Douglas and Peucker and show that its worst case is quadratic in n, the number of

input points. The algorithm is based on path hulls, that uses the geometric structure of
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the problem to attain a worst-case running time proportional to nlog2(n), which is the

best case of the Douglas algorithm.

SlEPS IN DP LINE APPROXIMAlION:

1) Generate the data as an array.

2) Approximate the line.

3) Simplify the line.

4) Inject line approximation in original data.

5) Get an array with new points.

6) Store it in DPHULL.h.

ALGORIlHM FOR CONVERSION OF DIMENSIONS AND lOLERANCES INlO

BINARY FORM :

1) Open DDIM.DXF.

2) Read I,D(I),l(I)

3) Convert D(I),l(I) into binary DIGIlS.

4) Store in BIN1.DXF

5) Open GDIM.DXF

6) Read D(I),l(I),I.

7) Convert D(I), l(I) into binary digits.

8) Store in BIN1.DXF.

9) Link BIN.DXF and BIN.DXF for each I.
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10) Store it in B1N3.DXF.

Now the values of B1N3.DXF are fed into the neural network.

4.5 Interpolation

NC machine tools are point driven. Curves (including straight lines) are generated by

defining key points on the curve. In the case of lines for example, the end points must be

specified. To generate an arc, the end points plus the location of the center point must be

specified. Free form curves are generated by specifying control points which may not be

on the curve.

lhe process of generating a curve given specific key points is called interpolation.

Most NC control hardware is programmed at the factory to do linear and circular

interpolation. Many controllers are able to do helical interpolation (circular motion in X-

Y with simultaneous linear in Z). Some controllers are also able to generate tool paths

which follow conic sections other than the circle (ellipse, parabola, hyperbola). Special

controllers have been designed to generate curves which interpolate cubic and higher

order polynomial equations. These latter types of controllers are not common. Higher

order curves (all but lines and circles) are generally approximated by straight lines or arc

segments.

Standard controllers can be used to generate complex curves using either linear or

circular interpolation. In linear interpolation points on the complex curve are first

calculated then a program is created which drives the tool from point to point in a straight

line. lhe desired curve can be approximated to any degree of accuracy by using a
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sufficient number of points. Circular interpolation is similar except arcs are generated

between the calculated points.

LINEAR INlERPOLAlION OF CURVES:

Curves may be approximated by a series of straight-line segments. lhere are two

methods for defining the maximum error when using a line to approximate a curve. Both

tolerances specify the maximum deviation allowed between the straight line

approximating curve and the desired programmed curve.

1. Inner lolerance: lhe error is on the part side. Undercutting results from this type of

tolerance.

2. Outer lolerance: lhe error is on the tool side. Excess stock is left with this type of

tolerance.

Both tolerances may be specified and have different values. Either however, not both

tolerances may be zero.

If the curve to be approximated is an arc, the following equation can be derived to

determine the number of approximating lines needed for a specified inner andlor outer

tolerance.
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which yields:

Example:

How many lines does it require to approximate a 5 in diameter circle to an inner tolerance

of .05 inches and an outer tolerance of 0.0 inches?

From the above equation then:

For this circle then the minimum number of chords needed is:

Since the number of chords must be an integer, the calculated value must be rounded up.

lhe correct answer is 16 chords are needed to approximate this circle to the specified

tolerances.

Moving Circle Interpolation: A free form curve may be approximated by creating arcs

between given points on the curve. lhis technique is known as the moving circle

interpolation method. Free form curves created by this technique are smooth. lhey have

both zero order (end points touch) and first order (arcs are tangent) continuity.

Given a set of points (pi to pn ) to be connected by a smooth curve, moving circle

interpolation may be accomplished as follows.
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1. Select the first three points (pi, P2, p3) and determine the center of the arc that passes

through these points.

2. Construct (machine an arc using G2 or G3) an arc through the first two points (pi, p2).

Use the center points coordinates for your I and J values.

3. Drop the first point and select the next point (p4). Determine the center of a second arc

passing through these three points (p2, p3, p4).

4. Construct an arc through the first two (p2 , p3) of the three points. Using the calculated

center of the arc as your I and J values again.

5. Repeat this process with the succeeding points.

6. Construct the arc through the last three points.

An Algorithm for Finding the Center of an Arc :

Given: lhree points that lie on an arc P1, P2, P3

Find: lhe center of the specified arc

1. Connect points P i and P2 with a line La

2. Connect points P2 and P3 with a line Lb

3. Determine the coordinates (Pa, Pb) of the center of each line.

4. Determine the slopes (m a, mb) of lines La and Lb



5. Determine the slopes of line L1 and L2 perpendicular to L a and Lb passing through

points Pa and Pb.

6. Determine the equations for lines L1 and L2

L1NEAR INlERPOLAlION ALGOR1lHM

lo approximate a zero of a continuous function f(x) on an interval [a,b] where f(a) and

f(b) have opposite signs.

1NPUl:

a - left endpoint of interval

b - right endpoint of interval

MAX1lS - maximum number of iterations to allow

TOLEi - tolerance to stop iterating

1. input a, b, lOLER, MAX1lS

2. set xi = a

set xi = b

set yL = f(xL)

set yR = f(xR)
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3. iepeat for N from 1 to MAX1lS

b. 1F ym and yi have opposite signs, then

set xL1 = Am

set ye = ym

otherwise

set xis = Am

set yid = ym

c. print N, Am, ym, IAi - xL1

d. IF IAi - ALI < TOLER or ymi < lOLER, then

stop (method converged to within tolerance)

otherwise

repeat loop 3 until N = MAX1lS

34

4. Stop (maximum number of iterations exceeded).



lwo quantities u and v have opposite signs if their product is negative.
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CHAPTER 5

FRAMEWORK OF NEURAL NETWORKS

lhe ANN module used represents the following and gives the desired output which

would be useful to generate G and M codes.

• Dimensional tolerance analysis and control.

• Control of feed rate, spindle speed, depth of cut and cutting forces.

• Propagation of errors in multi step machining.

• Geometrical tolerance control using vectorization.

5.1 Optimization of Process Chains by Neural Networks

In this system customer's requirements are handled by quality control charts. lhese

charts may be used not only for the required (e.g. dimensional tolerances, surface finish

of the end product) parameters but also for the "internal" ones (e.g. quality of rough

cutting). In the paper, process optimization based on adaptive process models trained by

reinforcement learning technique and quality control charts is proposed.

Introduction

In the continuously growing international competition quality and cost issues are of

fundamental importance. In manufacturing, quality features of products are usually

measurable physical parameters. Customer's requirements are specified by quality

control charts using tolerances.
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"INTERNAL" PARAMETERS

Products are manufactured in successive operation steps, e.g. on a production line. Each

operation has some input and some output parameters. During an operation the set of the

physical parameters of a work-piece are changed. The modification of these parameters

can be considered as a parameter flow in the production line. (Figure 5.1.)

Figure 5.1 "Internal" Parameters (D2) and End-product Parameters (ia , D3).

Output parameters of an operation can be

• Input parameters of the neAt operation or

• Parameters of the end-product.

Concerning input and output parameters of an operation, the following cases can be

distinguished:

• some input parameters are terminated,
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• some input parameters become without any changes output parameters,

• new output parameters are generated which were not present at the previous steps

of the production.

The customer sets requirements usually on a part of the end-product parameters only.

lhis fact does not follow that only these parameters are to be controlled during

production. Other, not directly specified parameters are called as "internal" parameters.

lo minimize the production cost, these parameters are also subjects of process control.

CONTROL CHART PARAMETERS

lhis 1SO 9000 standard applies quality control charts for describing quality parameters

(Pham & Oztemel, 1996). Five of the most important parameters are :
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enough and in the case of characteristic data. lhe above five parameters are subject of

control during the production.

OPEiAlION MODELS - iE1NFOiCEMENl LEARN1NG

Artificial neuronal networks (ANNs) proved to be applicable for process modeling

(Monostori et al., 1996). In batch learning, a set of training data is necessary and used

during the learning phase. lo get this data set, eAtensive and costly eAperiments are to be

performed. For continuous learning, the reinforcement learning approach can be

advantageously used, which moreover does not need the concrete target values of the

network, but only some indication of its functioning (Nuttin et al., 1995).

PiOCESS MODELS BASED ON SlAlISlICAL PAiAMElEiS OF PHYS1CAL

QUANlIlIES: Usual process models employ values of physical parameters on their

inputs and outputs (Westkamper, 1995). Here, the use of their mean values and standard

deviations is proposed. By the way, the new model can be created also on the base of the

ordinary, value based model, namely in two steps. (Figure 5.2)

Figure 5.2 Creation of the New Model on the Base of the Ordinary, Value Based

Model.
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Firstly, the training (input and output) data sets including the above statistical

measures are created. Secondly, the new model learns the mapping between these data

sets. In the first step the required mean values and deviations are determined. According

to these values, input data for the ordinary model are generated. On the base of the

outputs of the ordinary model mean values and deviations of the output parameters can be

calculated. With this method the demanded training data set of the new model can be

built. By learning of this new data set the ANN can be initialized. To increase its

precision the reinforcement learning is responsible.

SEllING OF OPEiAlION AND CHAil PAiAMElEiS:

In order to reach a global optimum,

1. ielations among input, output and operation parameters (e.g. tool type, feed rate)

have to be determined for every operation by using artificial neural networks.

2. Right control charts and process parameters have to be selected along the process

chain (Osanna et al., 1996).

lhe model introduces a concept for quality-oriented, comprehensive modeling of

machining processes. It incorporates a large number of variables grouped into input,

output and in-process categories. Fundamental features of the concept are the ability to

learn from eAperience, and the fleAibility in realizing various, task dependent mappings

with their inherent model building capability.
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INTRODUCTION

Very intensive research activities are conducted all over the world for the modeling of

machining processes. Process models are considered as abstract representations of

processes linking causes and effects or transforming process inputs into outputs. lhey

can be classified in two groups: fundamental or micro models and applied or macro

models. Our goal is to develop a framework for applied modeling, which is able to

manage the cutting processes in their whole compleAity.

Paragraph 2 outlines the complicated relations between some physical phenomena

of the cutting process. In paragraph 3 classical models are reviewed. A large number of

input and output parameters are listed in paragraph 4, which are needed to handle the

multivariable character of the cutting process. ANN model is proposed as the basic

element of the cutting model framework described.

PHYSICAL PHENOMENA AND THEIR INTERRELATIONSHIPS

Because of the complicated relationships between the phenomena incorporated into the

cutting model, the machining process is hard to be decomposed [11] (Figure 5.3).
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have been inaccurate and of limited validity, due to the complexity of the object (for

instance: tool wear depends on the independent input parameters and some output

parameters such as cutting force variation, process stability etc.) and the limitation of the

applied approximation. It must be emphasized, that although the deterministic approach

helps to answer and understand the basic principles of metal cutting processes, it is

important to develop other methods which is able to handle the compleAity of cutting,

process uncertainty and are able to transform the information into knowledge [13]. To

describe the complete machining system [11], one of the most important questions is to

determine the input-output features.

To determine all the important input and output parameters, first, the main groups (Figure

5.4), the relevant parameters and their notations and units were determined. Among the

parameters are continuous variables and logical "OR" decisions. The proposed model

refers to the tool path length where the cutting parameters are not changed. If some

parameters change the model is used appropriately.

Figure 5.4 Operation Model.
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establishing an empirical relationship between the tool life "l" and cutting parameters:

cutting speed "va ", feed "f' and "a" depth of cut (turning operation). For the deterministic

tool life model l= f(vc  , f, a) empirically values of the eAponents are necessary.

lhe first shear plane model of the cutting process, (F c=A*Ta ictg(1) +tg(4 +co )]), which is

based on pure theoretical aspects, was developed by Merchant. lhe generally used

cutting force model (F c=ki*h i-m*b) developed by Kinzle is based on stress theory and

empirical work too. ("kid", "h", "b" denote the cutting force constant, the chip thickness

and the width of chip, respectively).

The models in the applied group may be structured as an eAponential empirical formula:

Table 5.1 Linearization of Process Engagement Conditions

(Cutting feature "I", depth of cut "ap", width of cut "ae") lhe compleA transformation

matriA of the linearized model is demonstrated in table 5.1. It must be emphasized that

some cutting features (chip breaking, process stability, tool breaking) could not be

characterized by this deterministic empirical model. In general, these types of models
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have been inaccurate and of limited validity, due to the compleAity of the object (for

instance: tool wear depends on the independent input parameters and some output

parameters such as cutting force variation, process stability etc.) and the limitation of the

applied approAimation. It must be emphasized, that although the deterministic approach

helps to answer and understand the basic principles of metal cutting processes, it is

important to develop other methods which is able to handle the compleAity of cutting,

process uncertainty and are able to transform the information into knowledge [13]. lo

describe the complete machining system [11], one of the most important questions is to

determine the input-output features.

lo determine all the important input and output parameters, first, the main groups (Figure

5.4), the relevant parameters and their notations and units were determined. Among the

parameters are continuous variables and logical "Oi" decisions. lhe proposed model

refers to the tool path length where the cutting parameters are not changed. If some

parameters change the model is used appropriately.

Figure 5.4 Operation Model.
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Some parameters can be used as input and as output variables, as well. lhis is the

way to follow the changes of these variables along the process. If, e.g., I is one of these

variables: 'input means the state of the variable before and output  after the cutting process.

The neAt list shows the parameters incorporated in the investigations.

1. lhe tool geometry group consists of:

o Micro parameters:

■ Previous machining:

■ Ground: Fine machined "OR" Not fine machined

■ "Oi" Not ground.

■ Edge radius (43 Ala m]

o Macro parameters:

■ Monolith:

■ lool length to be used (llf)[mm]

• Group: N "Oi" H "Oi" W

■ Throw away insert:

■ Positive "OR" Negative

■ Type of chip breaker: None "OR" "OR" PM "Oi" PF "Oi"

Pi "Oi" MF "Oi" Mi "Oi" QM "Oi" QF "Oi" Qi

■ Inscribe circle diameter (d){mm]

■ Edge length (lf)[mm]

• Insert thickness (S)[mm]

■ Orthogonal rake angle (yo){° ]
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■ Orthogonal clearance angle (a )[° ]

■ Inclination angle (A, )[° ]

■ Cutting edge angle (lc )[° ]

■ Include angle (c )[° ]

■ Edge number:

■ Single edge:

■ Corner radius (r6 )[mm]

■ "Oi" Multiple edge:

■ Width of fuzette (r8 )[mm]

■ lool diameter (ds)[mm]

■ Cutter half cone angle (q)s)[ °

■ Distance of the corner radius center from the

rotation aAis (Ca)[mm]

■ Distance of the corner radius center from the

tool tip (Ca)[mm]

■ Number of cutting edges (Z0[.]

■ iun out - radial - average (uut)[mm]

■ iun out - radial - deviation (Ca) [mm]

■ iun out - aAial - average (µ a) [mm]

■ iun out - aAial — deviation (6a)[mm]

2. The work piece material group consists of:

0 Surface layer:



■ Pre-produced: "Oi" Casted "Oi" Drawn "Oi" iolled "Oi"

Forged

■ "Oi" Machined: iough "Oi" Fined "Oi" Finished

o Heat treatment: Normalized "Oi" lempered "OA" Quenched

o Ingredients:

■ Impurities (S%)[%]

■ Carbonising:

■ Normal hardening (CN%)[%]

■ Precipitation hardening (CK%)[%]

o Material parameters:

■ MaAimum tensile strength (RM)[Pas]

■ 0.2 tensile strength (AM  o.2)[Pas]

■ Modulus of elasticity (E)[Pas]

■ IA 	 )[Pas]

• Vickers hardness (HViooN)[HV]

■ Impact energy (KC)[KC]

o Cutting speed constant (Cc )[]

o Main cutting constant (k 1 )[]

o Main cutting force eAponents:

• (XF)[]

• (IF)[]

• (ZF)[]

3. lhe tool material group consist of
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o Coating:

■ Not coated

■ "OA" Coated

■ Temperature of the coating: Very law "OR" Low "OA"

High

■ Structure of crystallographic:

■ Monocrystal

• "OA" Policiystal

■ Porosity (VP)[%]

o Cutting ability:

■ lool life constant (C T)[]

■ lool life eAponent (ZT)[]

o Ingredients:

■ Impurities (S%)[%]

■ Carbonizing:

■ Normal hardening (CND%)[%]

■ Precipitation hardening (CK%)[%]

o Material parameters:

■ MaAimum tensile strength (R M)[Pas]

■ 0.2 tensile strength (AM 0.2)[Pas]

■ Modulus of elasticity (E)[Pas]

■ 11 	 )[Pas]

■ Vickers hardness (HViooN)[HV]
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■ Impact energy (KC)[KC]

4. The relative setting group consists of:

o tool path length (L)[mm]

o Surface first curvature of the work piece (pi)[llmin]

o Surface second curvature of the work piece (p 2)[1lmm]

o Immersion (contact) angle (cps )[° ]

o Depth of cut (tool aAis direction) (Vp2)[rnm]

o Depth of cut (perpendicular to the tool aAis) (ae)[mm]

o Velocity (cutting speed along the p ' ) (vf)[mlsec]

o Velocity (cutting speed along the p2) (vf)[mlsec]

o Velocity (cutting speed along d s) (vf)[mlsec]

o Single edge:

■ Feed per work piece revolution (L){mm]

o Multiple edge:

■ Feed per tool revolution (L)[mm]

5.	 lhe accuracy/tolerances group consists of:

o positioning accuracy projected to the first surface curvature (Vp 1)[mm]

o positioning accuracy projected to the second surface curvature (Vp2)[nm]

o Main spindle run-out (radial) (erad)[t m]

o Main spindle run-out (aAial) (eax)[u, m]

o Average of the surface curvature pi along machining length (u6GM1)[1lmm]

o Deviation of the surface curvature p i along machining length

(6GM1)[1lmm]
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o Average of the surface curvature p2 along machining length (uGM2)[1lmm]

o Deviation of the surface curvature 132 along machining length

(6GM2)[1/mm]

o Surface roughness along pi (Ra2)[11 m]

o Surface roughness along p2 (Ra2)[11 m]

6. lhe cooling/lubrication group consist of

o No cooling

o "OR" Cooling

■ Solid

■ Graphite: lhere is "OR" lhere is no graphite

■ "OR" Sulphides: There is "OR" There is no sulphide

■ "OR" Plastic material: lhere is "OR" lhere is no plastic

material

■ "OR" Fluid

■ Media — coolant: Water "OR" Oil "OR" Spirit "OR" Others

■ Ingredients - lubrication: "OR" Oils "OR" Petroleum "OR"

Graphite "OR" Sulphite

■ Cooling method:

■ Mist

• Pressure (PD[Pas]

■ Volume (Ve)[m3 ]

• Volume rate (Ql)[m3lsec]

■ "OR" Flooding



• Pressure (PD[Pas]

• Volume rate (QD{m3lsec

■ "OR" Inside

• Pressure (PD[Pas

■ Volume rate (QD{m3lsec

• Media volume divided by ingredient — ratio (V%)[%]

■ Gas

■ Media — coolant: Air "OR" Nitrogen

■ Ingredients - lubrication: "OR" Oils "OR" Petroleum

■ Media volume divided by ingredient — ratio (V%)[%]

7. lhe chip group consists of:

o Chip thickness:

■ lheoretical chip thickness (h){mm]

■ lheoretical maAimum of the chip thickness (he ..)[mm]

■ Measured chip thickness (h)[mm]

■ Measured maAimum of the chip thickness (Mc max)[mm]

o Chip form:

■ chip ratio (space for chipltheoretical volume of the chip) (K)[]

8. lhe tool-wearing group consists of:

o Wearing:

■ Average flank wear (VB)[mm]

■ MaAimum Llank wear (VB,,,.)[mm]

■ lotal removed volume by this tool (V c)[mm 3 ]
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o lool breakage: Broken "OR" Not broken

9. lhe monitoring group consist of:

o Force:

■ Along pi:

■ Alteration (max-min) (A F)[N]

■ Trend (inclination of the line) (m Cc)[]

■ Average (p, F)[N]

■ Along p2:

■ Alteration (max-min) (A FOUNT]

■ lrend (inclination of the line) (m FOR

■ Average (1, Ff)[N]

■ Normal force:

■ Alteration (max-min) (A FAN]

■ lrend (inclination of the line) (m Bp )[]

■ Average OA FAN]

o Cutting power:

■ Cutting power on the main spindle:

■ Alteration (max-min) (A P)[W]

■ lrend (inclination of the line) (m Pc)[]

■ Average (A, P)[W]

■ Cutting power on the feed engine:

■ Alteration (max-min) (A Pf[W]

■ lrend (inclination of the line) (m Pf)[]
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■ Average (p. Pf)[W]

o lemperature:

■ Alteration (max-mm) (A T)[C° ]

■ Trend (inclination of the line) (ml)[]

■ Average (1 T)[ C° ]

COMPARISON AMONG CUTTING PROCESS MODELLING METHODS

Physical/empirical approach: lheoretical recognition and empirical experience

determine this type of basic models. Their coefficients are defined with the help of

multiple regression calculations. The model structure used can be regarded as input for

the regression calculation as well as the basic experimental data.

Neural network approach: In the field of neural networks various net structures and

training methods are used. Neural networks possess most of the following characteristics

[14]:

o powerful parallel computing and mapping structure,

o strong abilities of learning and self-organization,

o strong abilities to store and retrieve knowledge by content rather than by

address,

o feasibility for hardware implementation and real-time control,

o few prior assumptions or specific requirements for modeling.
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TRANSFORMATIONS OF THE CUTTING MODELS

Learning capability is the reason why a neural network based cutting model is proposed

in the paper. lhere are techniques as well to transform the knowledge of one of these

models to the other model and vice-versa. One useful knowledge transformation method

can be done with the help of input, output data pairs. If one of these models and the

boundaries (min and max bounds of the parameters) of its use are given, a set of input-

output data pairs can be calculated. Based on these data pairs:
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o Structure and weights of the ANNs can be learnt,

o empirical function fitting can be calculated by minimal squares method,

5.3 Framework of an ANN based cutting model

lhe proposed neural network based cutting model has input and output parameters from

the data set presented above. It is to be seen that there are two types of parameters:

decision variables (e.g. whether there is or there is no cooling) and continuous variables

(e.g. Ioung modulus).

ANNs can successfully handle continuous variables. lo handle the validity of an

ANN model the possible intervals for each parameter have to be given. A set of minimum

and maximum vector pairs can be used to determine the validity of an ANN.

In the case of a single vector pair: one of the vectors consists of minimum and the

other of maximum values of parameters. The ANN is useful when each variable of the

input vector - given by the user - is above the related minimum and below the related

maximum parameters of the given data pair.

But one vector pair determines only one field of validity that's why the storing of

a set of min. and max. data pairs is needed to determine several fields of validity.



Figure 5.5 The use of Neural Network based cutting model.

lo build up this model new data sets have to be given to be learnt by the ANN. The

building up process consists of three steps:

1. Determination of the related ANN, based on the decision variables of the

new data set.

2. ANN learning, based on the new data set, which consists of data from

previous learning and the new data set given by the user.

3. Storing of:

1. the enlarged min. and max. limits of the cutting model validity

2. the data pairs used for learning.

The use of the proposed cutting model involves three steps (Figure 5.):
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4. Determination of the relevant input, output variables, the related ANN and

the limit of the use of this ANN, based on the decision variables. This step

is a selection of a leaf on a tree built by the decision variables.

5. Information of the user if the model could be used on the parameter field

requested by herlhim. The model is valid if there is a single vector pair

among the set of minimum and maximum vectors where the ANN is valid.

6. The ANN estimation of the related output variables based on the given

input variables.

Figure 5.6 Function Approximation Using Neural Networks.
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This model is large to manage the whole cutting process by a large number of

decisions and continuous input and output variables, but at one factory, usually, only a

part of this model is needed.

5.4 Propagation of errors in multi step machining

A state space model is developed to describe the dimensional variation propagation of

multistage machining processes. A complicated machining system usually contains

multiple stages. When the work piece passes through multiple stages, machining errors at

each stage will be accumulated and transformed onto the work piece. Differential motion

vector, a concept from the robotics field, is used in this model as the state vector to

represent the geometric deviation of the work piece. The deviation accumulation and

transformation are quantitatively described by the state transition in the state space

model. A systematic procedure that builds the model is presented and an experimental

validation is also conducted. The validation result is satisfactory.

lhis model has great potential to be applied to fault diagnosis and process design

evaluation for complicated machining processes. This state space model is then

represented as input to the neural network that would give an estimate of the error

propagating through the work piece. This estimation would be useful for the generation

of G and M codes. Refer to the appendix for a detailed explanation of the ANN output.

Four inputs and four outputs are considered with one hidden layer.
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The outputs are then interpreted using a post processor desigened in VisualBasic.

Given below is the Nomenclature of terms that will be used frequently in this

related discusson:

lhese would represent the fixture co-ordinate system. The fixture coordinate

system is divided into two parts

1) Nominal fixture coordinate system

2) Actual fixture coordinate system

3) Homogenuous transformation matrix

4) Identity matrices

NOMENCeAlURE
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5.5 Work piece geometric deviation:

Machining process is used to remove materials from the work piece to obtain higher

dimensional accuracy, better surface finishing, or more complicated surface form which

cannot be obtained by other processes. A complicated machining process is usually a

"multistage" machining process, which refers to a machining process where a part will be

machined through different setups when it passes through this process. It is not necessary

that a multistage machining process contains multiple machining stations. If there are

different setups on only one machining station, this machining process is still considered

as a multistage machining process. When a work piece passes through certain stage of a

multistage machining process, the machining error and fixturing error of this stage will be

accumulated on the work piece. lhese errors will again affect the machining accuracy of

the following stages if the datum used by following stage is produced at current stage.

Since the work piece carries all the machining error information, a representation of

accuracy of a work piece is required to study the complicated interaction of errors among

different stages.

Work piece Geometric Deviation Representation

lo regulate the deviations of part features, people developed standards for geometric

dimensioning and tolerancing (ISO 1101 (1983) or ANS1 I14.5(1982)). However, these

conventional geometric tolerances are originated from the hard gauging practice. They

are not suitable for the working principle of Coordinate Measurement Machine (CMM)

that is now a standard measurement equipment for machining process. In addition, the

representation of part feature in the conventional geometric tolerances does not conform

to the part representations used in CADlCAM systems. Recently, some researchers [10]
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proposed a vectorial dimensioning tolerancing (VD&T) strategy. lhe principle of VD&T

is based on the concept of substitute elements or substitute. A substitute feature is an

imaginary geometrical ideal feature (e.g., plane, circle, line) whose location, orientation,

and size (if applicable) are calculated from the measurement data points of the work piece

surface. Substitute features are represented by the location vector, orientation vector, and

size(s). The location vector indicates the location of a specified point of the substitute

feature. The substitute orientation vector is a unit vector that is normal to the substitute

plane or parallel to the substitute axis (cylinder, cone, etc). lhe size is available for some

features. For example, the diameter is the size of a circular hole. The VD&T work piece

feature representation follows the working principle of CMM and CADlCAM systems.

lhe measurement data from CMM can be analyzed and compared with the design model

directly. lhe difference between the true feature and the design requirement can be

feedback to the manufacturing process directly. It is a better tolerancing method for

manufacturing process control [11].

lhis paper adopts a vectorial feature representation proposed by Iau [12, 13].

The difference between his representation and the ordinary vectorial representation is in

the orientation representation. Instead of using a unit direction vector, he used a vector

that consists of three Euler rotating angles to represent the orientation of the substitute

feature. lhe representation of using unit direction vector makes it difficult

to designate tolerance on the orientation for a general 3D geometric element. Moreover,

the direction vector representation violates certain functional requirements that VD&l

intends to capture. Another advantage of angular representation of orientation is that

there are many mathematical tools available in the fields of robotics and kinematics for
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this representation. Therefore, in this paper, a location vector and a vector that consists of

three rotating Euler angles are used to represent a work piece feature. Since the size of a

feature is usually formed at one machining stage, it is not considered in the following

derivation.

eet us look at a few corollaries which are used to develop the model. Refer to the

appendix for the proofs of these corollaries.



5.6 Geometrical tolerance control using vectorization:

Geometrical dimensioning and tolerancing currently depends on 1SO standards (ISO

286, 1SO 1101, ISO 8015, ISO 5459,etc.).However, ambiguity and absence of a sound

mathematical representation of the conventional tolerance scheme have fostered the use

of vectorial tolerance description methods for tolerance zones.
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Figure 5.7 Vectorial lolerancing of a Conical Feature.

A conical feature can be represented in x, y and z Cartesian co-ordinates by using VD

and T (vectorial dimensioning and tolerancing). The co-ordinates of the cone's apex

(point RP), the cone normal no and the cone angle a are easily accessible in 3-D CAD

systems. lopological elements like the circles of the cone and the faces(with diameters

D and d) and the connector point CP (center of bigger end face, functionally important in

many cases) can be retrieved from the nominal CAD-model too. The cone's deviation

position is limited by the vector (8x,s5y,Oz). The orientation tolerances are represented by

the vector (px,py,pz). The component px equals to zero since rotation about the x-axis

will be the only remaining degree of freedom. The cone angle is limited by the value 6a.

Using the attribute mechanism of CAD-system the vectorial tolerance parameters can be

attached to the nominal cone surface.
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One problem of Vectorial dimension and tolerancing (VD and T) is it's

completely new drawing indication (proposed by [Henzold95]). An example of this kind

of drawing indication which mainly depends on the concept of substitute elements is

shown in Figure 5.7.
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The permissible deviation in dimension, form and orientation are particularly included in

a table (Table 5.4). Trying to transfer this new kind of tolerance symbolic into the shop

Lloor would probably end in confusion. Furthermore, designers would have to throw

away their hard gained knowledge of dimensioning and tolerancing.

A connection of GD and T and VD and T 

This contribution focuses on those tolerances related to conical surfaces; however this

can be extended to other features and surfaces. Besides dimensional tolerances like Cone

angle, cone diameter, etc. geometrical tolerances are even considered (Table 5.5) may

occur in connection with cones and other technical drawings. Some of these tolerances

will be related to the cone generator line (like straightness) or a planar section curve (like
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roundness). Parallelism may be employed to limit deviation one cone end face related to

the second end face or another plane at the same workpiece.

Table 5.5 Symbols for Geometric lolerances

In the concept of VD and T the profile form tolerance of the surface plays an

important role in the concept of converting conventional tolerances into vectorial

tolerances. Unlike other form tolerances the profile tolerances of surfaces and lines may

be related to datums. lhis means that the location of a resultant tolerance zone which

belongs to special profile tolerances can be fixed in Euclidean space by theoretical exact

dimensions. lhat is the profile tolerances combine characteristics of form tolerances (like

the limitation of form deviations) and location tolerances (like tolerance zones fixed by

datums).
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CONVERSION INTO APPROPRIATE CONVENTIONAL CONE TOLERANCES 

The extraction of mathematically sound tolerance zone in euclidean space is the first step

towards VD and T. The evaluation of different kinds of conventional cone tolerancing

has led to those combinations which serve the best for both, the conversion of task and

control of functions which conical parts have to fulfill.

Two different dimensioning and tolerancing schemes for cone are introduced on

the basis of 1SO 3040 standards. lhe first scheme is more helpful in VD and T technique,

where the offset approach is used. lhis kind of cone tolerancing is more appropriate for

conversion purposes compared to the second scheme which involves cone angle

tolerancing techniques.

In Figure 5.9, the offset approach is combined with relative vectorial tolerancing

approach to control both form and orientation of the cone surface. The direction e1 and

e2 must be considered as unidirectional. This means that the dimensional tolerance exists

in two form elements: one form element which has to be controlled by tolerance (left

cone end face) and the second one that establishes the related datum (left cylinder end

face). lhe measuring dimension of L1 and e2 is well defined in contrast to two-point-

dimensions.

The tolerance zone shown on leLt in the figure below is well located and oriented

in 3-D space: the position of the zone is fixed by the theoretical exact dimension e

referring to datum B. Furthermore, the orientation vector of the tolerance zone has to be

coaxial to the datum A.
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Figure 5.9 Related Profile Tolerance Zone as Converter Input.

The described tolerance zone is the starting point for the examination of possible

vectorial positions and orientations that the nominal conical feature can occupy within the

tolerance zone. Then the vectorial tolerance parameters and interferences are obtained by

mathematical functions, examined from the derived worst case deviations.

WORST DEVIATIONS WITHIN THE CONVENTIONAL CONE TOLERANCE 

ZONE 

In this section two kinds of deviations within the cone tolerance zone explained above are

examined. The worst case orientation 8 according to figure 5.10 will be determined first.

The pivot of the rotation coincides with the connection point CP. From the functional

point of view CP will be the most important reference element of the conical face. The

vectorial tolerance scheme applies the apex of the cone as the main location of the item of

the face, too. If the orientation vector N of the tapered face will be altered during the
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visualization of a deviation, the orientation position of RP also has to be altered to keep

the connection point CP invariant.

The radial distances of the offset faces b in (1) is determined by the tolerance

value tpf of the profile tolerance. The orientation vector n may deviatefrom the nominal

orientation vector no within the limits n pluslminus 6.

Figure 5.10 Worst Case Orientation Deviation Related to Connection Point CP.

To keep the connection point CP at it's correct position a movement RP along the

y-(ARP) x-axis (ARP) must be guaranteed during CAD-visualization.



The variable r3 in (2) means the virtual height of the non-truncated cone. The

second example of deviation within the cone tolerance zone according to figure 5.9 is

shown in figure 5.11. The greatest cone angle a can be calculated as given in (3)

If there is no variation of the connection point CP allowed the reference point RP

has to be moved along the x-axis (ARP) during the deviation simulation. The upper limit

of the target vectorial tolerance parameter 'cone angle' will be set to a max=a I . The lower

limit and the other vectorial tolerance parameter (like position tolerance) can be

calculated in a similar way as demonstrated.



CHAPTER 6

CASE STUDY

Fig 6.1 Major Design specification.

The experimental set up is shown in figure 6.1 and table 6.1. The above mentioned

methodology was applied and the results are explained. First, the tolerances are fixed

with respect to datums [8], the machining operations are described in table 6.2, and

secondly, the geometric tolerances are represented in terms of a vector for the ANN

input. The process capability [9] is calculated using the control charts (refer ANN 1). The

various machine control parameters are represented by ANN 2 and the output is

discussed. lhe output of the ANN (refer ANN 3) creates a vectorial space for

geometrictolerance and the propagation of error in multi stage machining using state

space modeling [1O].After feeding the inputs in the neural networks the following results

(graphs) were generated:

Refer to the appendix for inputs, outputs and learning rules.
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Table 6.1 Description of lolerance Requirement (refer figure 6.1)
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Table 6.2 Description of the Operations
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ANN OUTPUT 3 
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Figure 12. Vericut using Prolengineer for Workpiece Model.

1
	

EMS Error

0

—5 Network We 	 5



ANN OUTPUT 2

76



ANN OUTPUT 3
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Figure 12. Vericut using Prolengineer for Workpiece Model.
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CHAPTER 7

ANALYSIS OF RESULTS AND SCOPE FOR FUTURE WORK

lhe ANN output 1 represents UTL, LTL, UTL-u, .t-LTL. Observe how the UTL-u is

within limits where desired is O.5 and actual is O.125O and u-LTL is 1.OO (above O.5).

lhe ANN was trained for 5O,OOO sets of data with one passlall.

The ANN output 2 represents the empirical formula for f, a, Kx,u (these are the

inputs) and Cc , Pc, Ra , t (these are the outputs). Observe that "f' (node 1) inLluences the

output most and depending on the input see the corresponding output. Hence, the feed

rate, spindle speed and the depth of cut with respect to tolerances after the ANN has been

trained for 5O,OOO sets of data for machining (milling, turning and drilling). Three of the

hidden-layer 1 neurons (6, 7 and 8) reacted strongly to the output.

The ANN output 3 just gives the vectorial space for parallelism of surface M and

A (input 1), relative distance between S, M with respect to rough datum surface D (input

2), distance between slot S and A (input 3) and parallelism between S and A (input 4).

See node 1O and 11 which is the output for trained data set, these are the outputs for

vectorial space for parallelism of surface M and A (input 1) and relative distance between

S, M with respect to rough datum surface D (input 2). Both of them were linearly

separable in the data space and are most inLluential so care has to be taken while

considering the rough datum surfaces especially for multi-stage machining.

Previous comparisons of neural networks and linear predictors have shown that

neural networks sometimes can give better results. However, the data sets used were not

particularly long, so the statistical significance of these comparisons may be

questionable. In the studies a feed-forward neural network, with a single hidden layer was
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used. Quickprop was used for training as it has faster convergence than standard

back-prop. For the neural network, trial and error showed that four hidden units and a

linear output unit gave best results. This architecture was fixed prior to training.

Finally, all the outputs can be used to generate G and M codes using a post-

processor.

The spikes in the ANN OUTPUT 2 (objective function) mean that it is possible to do

better than use a linear predictor for this data set. The general nonlinear methods of

neural networks and local approximation did well and can be expected to be near optimal

as the data set size increases. Some progress in understanding the role of each hidden unit

in the neural network predictor was obtained. earger data sets for ANN 3 will be

necessary for determining errors in multi-stage machining. Data sets for machine control

parameters shows the best output with interaction at each level, but could get better if the

number of PE's in the hidden layers are optimized. Data points can be entered into the

trained neural networks to get the expected output.

eooking at the conclusions of the case study it is clear that future work must

continue in order to optimize the neural network performance by means of reducing the

number of hidden layers for the network representing the cutting speed parameters. A

more efficient algorithm could be developed for obtaining the target values for the

networks.

The data sets for obtaining rough datum lines and vectorial representations of

geometrical tolerances could be increased for better results.
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APPENDIX

OUTPUTS

Please find the attached copy of the CD which includes all the ANN outputs and the post
NC-processor outputs for G&M codes.
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