
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 2002

A method for developing in-silico protein
homologs
Susan McClatchy
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Biostatistics Commons, and the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
McClatchy, Susan, "A method for developing in-silico protein homologs" (2002). Theses. 599.
https://digitalcommons.njit.edu/theses/599

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=digitalcommons.njit.edu%2Ftheses%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/599?utm_source=digitalcommons.njit.edu%2Ftheses%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.



ABSTRACT

A METHOD FOR DEVELOPING
IN-SILICO PROTEIN HOMOLOGS

by
Susan McClatchy

Computational methods for identifying and screening the most promising drug

receptor candidates in the human genome are of great interest to drug discovery

researchers. Successful methods will accurately identify and narrow the field of

potential drug receptor candidates. This study details one such method.

The method described here begins with the assumption that novel drug

receptors have high sequence similarity to established drug receptors. The

similarity search program FASTA3 aligns translated sequences of the human

genome to known drug receptor sequences and ranks these alignments by

measuring their statistical significance. Query results returned by FASTA3 are

assembled into "in-silico proteins" or artificially generated homologs of known

drug receptors. A second similarity search program, BLASTP, aligns in-silico

proteins with a protein database, and also ranks alignments based on statistical

significance. A potentially valuable in-silico protein identifies its generating drug

receptor as the top-ranking result returned from the BLASTP search, and may

represent a new family member of a particular group of drug receptors.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The completion of a draft sequence of the human genome in June of 2000

[International Human Genome Sequencing Consortium, 2001] amplified efforts

aimed at detection of genes serving as receptors for drugs. These efforts have

produced a multitude of promising new candidate drug receptors that must be

filtered thoroughly to find those best suited for new drug development.

Ultimately, those genes whose products make the best leads for drug

development must undergo rigorous experimental screening and analysis. Prior

to experimentation, computational methods may be employed to screen and

identify those genes most likely to serve as leads. This thesis details one

computational method for identifying and screening novel drug receptor genes.

The project described here aims to define and implement a procedure for

finding new members of any protein class, although it will focus on drug

receptors. This procedure creates in-silico proteins, or artificial homologs, from

query results obtained by searching a translation of the human genome with

known drug receptor sequences, using the similarity search program FASTA3.

An in-silico protein is verified if the BLASTP similarity search program finds that

it has highest similarity to the known drug receptor from which it was derived.

1
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Potential new members of a particular family of drug receptors may be found

among these verified in-silico proteins.

1.2 Background Information

A concise definition of a drug receptor begins with the drug receptor model

[Hardman, et. al., 20021 According to this model, a drug binds to a specific

receptor to form a drug-receptor complex, leading to some alteration of

physiological function. A drug with therapeutic value causes some desired

alteration of function, while undesired changes remain at an acceptable

minimum. In pharmaceutical parlance the phrase "drug target" is commonly

used in place of the phrase "drug receptor". The two phrases will be used

interchangeably from here on.

Most of the targets of marketed drugs are proteins whose role in biological

pathways may or may not be known. A focused search for new genomic drug

targets may include a hunt for relatives of genes involved in disease pathways,

or relatives of genes whose products are known to bind drugs therapeutically.

Computational searches for new drug targets frequently rely on methods for

identifying relatives by gene or protein sequence homology or protein structural

similarity.

These computational searches lie at the beginning of a continuum that

includes target screening, identification and validation [Branca, 2001 and
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Swindells & Overington, 2002]. Methods such as gene sequence and gene or

protein expression data mining provide minimal confidence, while experimental

methods, such as in vivo functional studies of genes inserted the mouse genome

(knockout mice), provide maximal confidence in the validation of a target.

Computational methods offer correlation between a supposed target and its role

in disease or therapy, while experimental methods imply direct causation

[Federsel, 2001]. The value of computational methods lie in their capacity to

screen large numbers of genes at once, eliminating many as poor candidates and

decreasing the labor required further downstream, where targets must be

validated in laboratory studies.

Correlative methods include use of gene expression microarrays to

identify genes with differential messenger RNA (mRNA) expression in various

states. A simple example of expression analysis would note differences in gene

expression between diseased and healthy tissue, or between treated and

untreated tissues. Serial Analysis of Gene Expression (SAGE) identifies genes

and quantifies gene expression by joining several short segments, or tags, of

mRNA from different genes. The joined tags are sequenced, identified, and

counted to create an expression profile for genes known and unknown.

Mining of expressed sequence tag (EST) databases may be used to identify

novel genes. Expressed sequence tags are partial sequences of complementary

DNA produced from reverse transcription of messenger RNA, and represent

genes expressed in a particular tissue under certain conditions. Expressed
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sequence tags may also be used to detect single nucleotide polymorphisms

(SNPs) in disease genes. Single nucleotide polymorphism association studies

compare disease and control populations, and compare allele frequency or

genetic variation between two groups.

Proteomics methods involve proteins rather than genes, and include

techniques for structural homology and mining of protein expression data. Using

the assumption that sequence similarity denotes structural similarity, homology

models may be generated for an unknown protein with high sequence similarity

to a well-characterized protein. For low sequence similarity, threading methods

are used. These structure-based methods may be useful in identifying likely

binding sites for drugs.

Protein expression data report on differential expression of a gene's final

product rather than the intermediary mRNA. Differential protein expression, like

differential gene expression, may be used to evaluate tissues in a disease state

versus a normal state. However, difficulties in purifying proteins hamper this

more direct means of measuring expression levels.

Most searches for new drug targets utilize sequence similarity search

programs. Resources such as HMMER and Pfam employ profile hidden Markov

models (HMMs) of protein domains or conserved regions to find new protein

family members [Bateman, et. al., 2002]. Hidden Markov models, originally

applied to speech recognition, define the probability of a given sequence of states
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and symbols [Durbin, et al., 2001]. An HMM may describe, for example, the

probability that a given sequence of amino acids (symbols) forms either an alpha

helix or a beta pleated sheet (state). Profile HMMs best describe multiple

alignments of protein family members, and are better suited to finding new

members fitting a particular profile than are pairwise alignment tools such as

FASTA and BLAST.

Programs like BLAST and FASTA measure the statistical significance of a

local alignment between two sequences, rather than simply measuring percent

sequence identity. Evaluating an alignment by percent sequence identity alone

fails to recognize that short sequences may have very high sequence identity

simply by chance [Wood & Pearson, 1999]. These latter two programs were used

extensively to create in-silico proteins, and are described in further detail.

1.2.1 FASTA

In aligning sequences, FASTA creates a lookup table to rapidly locate identities

between two sequences [Lipman & Pearson, 1985]. The name and position of

each residue is maintained in the table, and offset values calculated for each pair

of identical residues. An example follows.
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Example 1.1 Position offsets for identical residues are calculated and stored in a
lookup table.

The lookup table indicates that for Sequence 1, A is found at Positions 1, 3

and 6, R at Position 4 and G at 5. Positions of residues in Sequence 2 are

compared to those in Sequence 1. So, the R at Positions 1 and 3 of Sequence 2 is

found at Position 4 of Sequence 1, A at Position 5 is found at Positions 1, 3 and 6

of Sequence 1, and G at Position 4 found at Position 5 in Sequence 1. For each

pair of identities, an offset value is calculated. For example, the R at Position 1 in

Sequence 2 matches the R at Position 4, with an offset of 4 - 1 = 3. The R at

Position 3 also matches with the R at Position 4 of Sequence 1, with an offset of 1.

The G at Position 4 has an offset of 1 with respect to the G in Sequence 1. The A

at Position 5 has offset values of -4, -2 and 1. An offset of 1 would have 3 identical

residue matches (R, G, and A in both sequences) while other offset values would

have one or no matches.

This example describes a lookup table for length ktup = 1. Another typical

value for the FASTA parameter ktup is 2. In this case, FASTA would create a

lookup table for pairs of residues, such as R G or G A in the two sequences

above.
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The algorithm proceeds with a diagonal method, placing each sequence

on either the horizontal or vertical axis of a dot-matrix plot. Diagonal lines in the

plot indicate identities having the same offset. The score for each diagonal is

increased for each identity and decreased for each mismatch. The highest scoring

diagonals represent areas of greatest local similarity, and are selected for re-

scoring using an amino acid substitution matrix such as PAM-250. The use of a

substitution matrix takes into the account the greater likelihood of an amino acid

substitution, rather than an insertion or deletion. Matrices like PAM-250 also

account for greater likelihood of conserved substitution, where one amino acid

replaces another of similar character. The matrix would give a higher score to the

replacement of one hydrophobic amino acid with another, for example, and a

lower score to replacement of a hydrophobic with a hydrophilic residue.

Substitution matrices are defined further in the discussion of the BLAST

program.

For each of the highest scoring diagonals, a subregion, or initial region, of

maximal similarity is located. If compatible, initial segments may be joined to

form a single optimal alignment.

Alignment scores in FASTA are scaled to correct for the length

dependence of similarity scoring. Statistical significance of these scores is

calculated from the distribution of alignment scores of unrelated sequences

[Pearson, 1998]. After parameter estimation for location and scale, similarity
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scores for FASTA follow an extreme-value distribution. The statistical

significance of length-corrected alignment scores may be calculated from this

distribution. The expectation value (e-value) in FASTA provides a measure of

statistical significance of alignment scores.

1.2.2 Basic Local Alignment Search Tool (BLAST)

The BLAST family of programs performs sequence similarity searches by finding

similar segments between query and subject, and computing the statistical

significance of the alignment of these segments. The basic unit of BLAST output

is the High Scoring Pair (HSP), or "hit". The following discussion of algorithms

and statistics refers to the BLASTP program, which compares protein queries

against protein databases [Altschul, et a1.,1997].

The BLAST program begins by creating a list of equal-length high-scoring

words between two sequences that meet parameters for score threshold T and

word length W. Like FASTA, scores are calculated from substitution matrices,

though they are not corrected for length. The BLAST program extends these

words and attempts to find segments of maximal cumulative score, or HSPs.

For each HSP, BLAST reports a raw score S calculated from a substitution

matrix, and a score normalized by statistical parameters and K that describe the

"scale" and "location" of the distribution of alignment scores [Pearson, 19981

These two parameters are calculated from a random model providing
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background frequency Pi for each amino acid position in a protein, and a score sii

for alignment of two amino acids using a given substitution matrix. Equation 1.1

defines the expected score for two random amino acids.

Normalization of raw scores with parameters As and K allows score

comparison of alignments using different substitution matrices. Normalized

scores S' are reported in bits, and are calculated from the equation:

The program reports an expectation value, or e-value, which describes the

probability that the bit score S' occurs by random chance. An e-value of 0.01, for

example, says that you can expect to see an equal or higher score by chance in 1

out of 100 alignments. Equation 1.3 defines calculation of the e-value.
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The values m and n represent lengths of two protein sequences, and their

product the size of the effective search space, or space of all possible solutions.

When applied to a protein database, the value n represents the length, or number

of residues, in the database. The BLAST program reports those HSPs with e-

values less than the default cutoff of 10.

1.2.3 E-value Thresholds

Determination of a threshold or cutoff for e-values is subjective, depending on

the investigator's concern for either a false-positive (Type I) or false-negative

(Type II) error. Higher e-value thresholds invite more of the former, and lower

thresholds more of the latter type of error. Since e-value increases linearly with

database size (see Equation 1.3), the choice of smaller databases offers

proportionally smaller e-values and greater sensitivity in the search for

homology. Typical e-value cutoffs for small-scale homology searches may be

from 0.001 to 0.01, while for large-scale searches involving thousands of

sequences, thresholds may typically be set from 10 -20 to 10-6.

1.2.4 Reference Sequence Project (Refseq)

The Refseq project at the National Center for Biotechnology Information (NCBI)

contains a non-redundant set of reference sequences for genomic contigs

(overlapping collections of DNA sequences or clones), mRNA and proteins for

humans and other organisms including mouse and rat. Curated Refseq records
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contain information compiled from multiple sources, so that each record

provides current knowledge of known genes. The value of Refseq lies in the

curation and review of each record and the non-redundancy of the database. For

the implementation of this project, all known drug target protein sequences were

retrieved from the Refuse protein database, RefseqP.

1.2.5 Draft Sequence of the Human Genome

Shortly after completion of sequencing and assembly, a draft version of the

human genome was made publicly available. The draft is the product of 20

international sequencing centers, and at present is in an 85% finished, highly

accurate state. Sequencing work continues, and periodic updates or "freezes"

occur frequently. The final version of the human genome sequence is projected

for completion in April of 2003. The genome may be searched at public websites

including GenBank at the National Center for Biotechnology Information and the

University of California Santa Cruz Genome Bioinformatics sites.

The draft genome produced by the International Human Genome

Sequencing Consortium employed a strategy known as hierarchical shotgun

sequencing. In this method, genomic DNA is fragmented and inserted into a

cloning vector, commonly a bacterial artificial chromosome (BAC). The set of

cloned DNA fragments represents a genomic library, which are organized into a

physical map spanning the entire genome. Selected BAC clones are sequenced

with the random shotgun strategy, and clone sequences assembled into the full
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genome sequence after filtering for cross-species contaminant data and merging

sequence data from overlapping clones [International Human Genome

Sequencing Consortium, 20011

Because the human genome is composed of at least 50% repeated

sequence, assembly requires screening for known repetitive sequences. In the

genome assembly described here, the RepeatMasker program from Washington

University was employed to screen for annotated repetitive sequences and low

complexity regions. The sequence output of this program shows a series of N's in

place of repetitive sequences and low complexity regions.

Translation of DNA sequence data into protein sequence data may be

performed automatically in the following way. Each transcribed three-nucleotide

DNA codon is translated into a single amino acid using a codon table. A sliding

window produces three different reading frames in both forward and reverse

directions by advancing the frame one nucleotide at a time. A six-frame

translation results from reading all three frames in each of two directions. To

differentiate protein coding from non-coding regions, the procedure finds start

codons, which start the process of translation, and stop codons, which terminate

translation. A six-frame translation provides DNA sequence translation between

two start codons, between a start and a stop codon, and between two stop

codons. Functional genes are characterized by the presence of a sequence of

nucleotides that are transcribed into at least one start codon and stop codon.

Transcription of a gene produces open reading frames (ORFs), frames consisting



13

of a series of codons without stop codons that may potentially be translated into

protein. Figure 1.1 gives a graphical representation of a six-frame translation.

Searching a translation of the genome, rather than genomic DNA itself, is

preferable for a number of reasons. Sequence similarity measured by percent

sequence identity alone is inferior to similarity determined from substitution

matrices such as the PAM-250 matrix, which recognizes conservative

substitutions of one amino acid for another with like properties [Wood &

Pearson, 1999]. Amino acid sequence searches offer much greater sensitivity than

DNA searches as a result of the use of substitution matrices. In addition,

searching a translation of the entire genome sequence allows detection of novel

genes. A direct search of a protein database will find homologs of already known

genes, not as yet unidentified ones.



CHAPTER 2

DEVELOPING IN-SILICO PROTEINS

2.1 Problem Statement

With a draft of the human genome now completed, attention has turned to

analyzing genes and their protein products, particularly for disease relevance

and drug discovery. While newer tools like gene expression arrays and EST

databases have identified many gene products as potential targets, they have

also inundated pharmaceutical laboratories with a backlog of targets to screen

through much more laborious and costly procedures [Federsel, 2001]. A new

challenge has arisen in "prioritizing the proteome" [Swindells & Overington,

2002] and in identifying the most likely new drug targets. Computational means

can identify and screen potential targets and produce the best candidates for the

laboratory, thereby streamlining drug discovery and eliminating much of the

labor involved in target validation.

The procedure implemented here identifies genes with target potential,

using targets of marketed drugs to start the search. It is based on the assumption

that novel targets will have high sequence similarity to established drug

receptors.

14
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2.2 Procedure for Creating In-silico Proteins - An Overview

Creation of in-silico drug target homologs entails these steps:

1. Identify all known targets of marketed drugs.

2. Retrieve accession numbers and sequences of all known targets from a

protein database.

3. Query the translated human genome with all target protein sequences.

4. Assemble hits to the translation into in-silico proteins.

5. Check in-silico protein similarity to the original drug target sequence by

querying the protein database in step 2 with in-silico sequences.

This procedure for creating in-silico proteins is based on one developed by

Jeff Yuan at Merck Research Labs. Jeff devised a means for generating in-silico

gene homologs, or "working genes." Alex Elbrecht recognized the utility of this

procedure in generating in-silico protein homologs for drug targets or other

protein classes, and supervised the work described in the following pages. Bruce

Bush, also of Merck Research Labs, provided the genome translation and a Perl

script used in steps 3 and 4 above to assemble in-silico proteins from FASTA3

hits.



CHAPTER 3

IMPLEMENTATION

3.1 Identifying Known Drug Targets

In the absence of a comprehensive and commercially available list of known

drug targets, a list was compiled from Goodman & Gilman's The Pharmacological

Basis of Therapeutics, the Investigational Drugs Database, and DrugBank (see

refs.). Target names extracted from these three resources were used as queries to

two protein databases, Swissprot and RefseqP. The compiled list of drug targets

is shown in Table A.1.

3.2 Protein Sequence Retrieval

Both Swissprot and RefseqP provide protein annotation, sequence data and links

to literature. In many cases, simply evaluating the list of protein names returned

for a text query was sufficient to determine which retrieved proteins fit the

description for a given drug target. In other cases, a review of the annotation

from both databases thinned the number of proteins retrieved. For example,

annotation mentioning a protein's role in disease or the fact that it

therapeutically bound a drug identified it as the desired receptor.

16
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In many cases, a selected protein had multiple transcript variants and

isoforms. When annotation did not designate a specific variant or isoform as a

target, all splice variants and isoforms were included.

The final list contained 377 RefseqP accession numbers representing

known human therapeutic drug target proteins. Amino acid sequences for each

of these 377 accession numbers were retrieved from the RefseqP database.

3.3 Searching the Translated Human Genome

Drug target sequences were queried against a six-frame translation of the April

2002 human genome assembly released by the UCSC Human Genome Project,

also known as Golden Path. The assembly was repeat-masked, or screened for

repetitive sequences or low complexity regions. Known repetitive sequences and

regions of high uncertainty are represented by strings of X's in the translation.

The FASTA3 program was employed to search the translation. When

compared to other similarity search programs including BLAST, FASTA3 is, in

general, more accurate [Pearson, 1998] and more sensitive to detection of

homologs [Jeff Yuan, manuscript in preparation].
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3.4 In-silico Protein Assembly

Hits to the translated genome, which represent open reading frames, were

assembled into in-silico proteins if FASTA3 had assigned an e-value less than 1.0.

This cut-off e-values was chosen through the experience of Jeff Yuan, who has

found relevant FASTA3 hits with e-value slightly less than 1.0. The ORFs were

sorted by chromosome, by index number and by orientation (forward or

reverse). Regions between ORFs are represented by four dashes (—). The

procedure assembled 55,465 in-silico proteins from the FASTA3 output. Sample

FASTA3 output and in-silico protein sequence are shown in Figure B.1.

3.5 Verifying In-silico Proteins

Once assembled, all in-silico proteins were searched against the RefseqP human

protein database using ungapped BLAST set to return only the topmost hit. Since

BLAST ranks hits by increasing e-value, the first hit in most cases will have the

highest similarity to the query sequence. Comparing the accession numbers of

the generating protein and the first hit is a simple and quick task. If the first

BLAST hit for an in-silico protein was its generating protein, the in-silico protein

was considered a verified target homolog. Later, a modification of this procedure

included reporting of several hits, since identical e-values may appear for

transcript variants producing identical proteins. This modification is described

further along with results.
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3.6 Parsing BLAST reports

Each in-silico protein returned a BLAST report, resulting in 55,465 individual

reports. In most of these reports, the generating drug target was not the top hit

for that in-silico protein. Since initially only the top hit is considered valid in this

procedure, most of these reports were overlooked in favor of those returning the

generating target as the top hit.

A BLAST report parser, written in the Pearl programming language, was

employed to scroll through each file and compare the RefseqP accession number

of an in-silico protein's generating target with that of the top hit. If the accession

numbers were identical, the parser extracted additional information from the file,

including the name of the hit, HSP lengths and e-values, and bit scores. The

parser code, which relies on the Bioperl module BPlite, is shown in Section C.1.

Sample parsed BLAST output is shown in Section C.2.

3.7 Results

The procedure described above produced 55,465 in-silico proteins representing

377 drug targets. Of these 55,465 in-silico proteins, 1,203 (2.17%) successfully

found their generating drug target as the topmost hit returned from BLAST.

Figure 3.1 compares the number of drug targets with the number verified

in-silico proteins. Of 377 targets, 54 failed to generate any in-silico proteins that in

turn found them as first BLAST hit, and 109 targets had exactly one in-silico
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protein finding self. In most of these one-hit cases, the in-silico protein represents

the actual target itself. The remaining 214 targets had two or more in-silico

proteins that were more similar to them than to any other protein in the RefseqP

database.

A review of the 54 drug targets with no in-silico protein top hits to self

revealed that splice variants of many of these 54 appeared first in BLAST reports.

In some cases the longest of a set of variants returned the lowest e-value. Since

raw alignment scoring is cumulative (Equation 1.1), longer splice variants may

return higher scores and lower e-values simply as a function of their length.

Figure B.2 shows one example. In other cases, a set of splice variants from a

single gene coded for identical proteins. While the target generating an in-silico
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protein may not have appeared first, it may have appeared further down the list

and may have had the same é-value as the first hit listed. An example is shown in

Figure B.3.

A review of the 109 drug targets with one in-silico protein top hit to self

revealed that some of these verified in-silico proteins were located on a different

chromosome than the drug target that generated them. In most of these cases, as

in the case above, BLAST returned the longest of a set of splice variants, or one of

several identical proteins as top hit.

In-silico proteins for drug targets having no top hits to self, as well as those

having in-silico proteins located on different chromosomes than self, were

BLASTed again and the top six or twelve hits reported. Listing of the top twelve

hits was required only for a set of identical fibroblast growth factor receptors

(FGFR2), which have a dozen identical proteins from as many splice variants.

Others had a maximum of six splice variants and required reporting of only the

top six hits.



Figure 3.2 Revised BLAST report summary for in-silico proteins. These BLAST
reports returned either 6 or 12 hits in order to capture equal e-values for multiple
splice variants.

After testing the top six or twelve BLAST hits for lowest e-value, nine

drug targets having no in-silico protein top hits to self remain. Peroxisome

proliferative activated receptor (PPAR) gamma, isoform 1 (Refseq accession

number NP 61972b) demonstrates the BLAST program's assignment of lowest e-

value to longest splice variants. In three of the BLAST reports for PPAR gamma,

other variants of PPAR including alpha and delta received the lowest e-value.

PPAR gamma received higher e-value scores than these variants in spite of the

fact that its sequence had fashioned the in-silico proteins. The other eight drug

targets returned similar results or failed to generate successful in-silico proteins

for reasons that can only be revealed by a thorough analysis of their sequence

and relationships to other proteins.
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The number of targets having one in-silico protein finding self increased

from 109 to 130 as a result of examination of several hits instead of only the first.

Most of these in-silico proteins represent the sequence of the actual target itself.

The remaining 238 drug targets had two or more in-silico homologs that

identified them as the hit with lowest e-value, some of which may represent

novel targets.



CHAPTER 4

CONCLUSIONS

This procedure for generating in-silico protein homologs from genomic sequence

data is shown to be effective given the following summary of results. Greater

than two percent of in-silico proteins generated have highest similarity to their

generating target as measured by BLAST e-value. A very simple measure of the

success of this procedure is the existence of at least one verified in-silico protein

homolog per drug target. If successful, the procedure should at a minimum

produce one in-silico homolog representing the sequence of the generating drug

target itself. Only 9 of 377 drug targets were unable to generate verified in-silico

homologs.

Another measure of this procedure's effectiveness is the existence of

multiple in-silico homologs representing the same drug target. As shown by

Figure 3.2, 238 drug targets have more than one verified in-silico protein. Some of

these in-silico proteins may represent novel genomic targets that have as yet not

been found or characterized. Thorough analysis and review of these in-silico

homologs is required in order to locate potential new targets. Once located, other

procedures such as microarray expression or EST analysis may be employed for

further screening.
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Of the 130 drug targets having only one verified in-silico homolog,

approximately 10% generated in-silico homologs located on chromosomes other

than their own, indicating an error rate of —10% in the procedure. Longer splice

variants accumulated higher BLAST raw scores and lower e-values than their

shorter counterparts, effectively drawing in-silico proteins generated by shorter

variants nearer to themselves. For these cases, more rigorous algorithms than

those used by BLASTP, especially those that correct for query sequence length,

may be employed to refine alignments and to find the generating target at its

correct location within the genome.

The procedure as detailed requires input of a set of protein accession

numbers and some file manipulation. Aside from this, very little user

intervention is needed. No decision needs to be made by the user regarding e-

value cutoffs, nor any criteria established to determine the validity of a hit. An

automatic e-values cutoff of 1.0 for FASTA3 results during in-silico protein

assembly is liberal enough to include homologous sequences, yet exclusive

enough to produce in-silico proteins of adequate specificity. No e-value cutoff is

required for BLAST results, since only the top-ranking hits are evaluated. The

output of the procedure, a set of in-silico protein homologs, is a valuable

collection that potentially contains new genomic drug targets. Once complete,

the set requires analysis and further study in order to determine whether novel

targets have been discovered.
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The procedure itself may be applied to any group or subgroup of proteins.

In upcoming work this procedure will be utilized to create in-silico homologs of

disease-related proteins, which will also be studied for identification of novel

drug targets.



APPENDIX A

KNOWN HUMAN DRUG TARGET PROTEINS

Table A.1 shows the compiled list of 377 human drug target proteins. This list

does not include drug metabolizing proteins.
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APPENDIX B

FASTA3 AND BLASTP OUTPUT

Appendix B gives examples of BLASTP and FASTA3 program outputs and in-

silico protein sequences.
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APPENDIX C

BLAST PARSER CODE AND SAMPLE OUTPUT

Appendix C shows Pearl code for the BLAST parser employed to retrieve data

from BLASTP output files. Sample BLAST parser output follows.

Section C.1 Pearl code for BLAST parser.
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