New Jersey Institute of Technology

Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

Fall 1-31-2004

Thermochemical properties of small oxygenated sulfur hydrocarbons and kinetics - reaction pathways of methylthiomethyl radical with oxygen

Fei Jin New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemistry Commons

Recommended Citation

Jin, Fei, "Thermochemical properties of small oxygenated sulfur hydrocarbons and kinetics - reaction pathways of methylthiomethyl radical with oxygen" (2004). Theses. 586. https://digitalcommons.njit.edu/theses/586

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

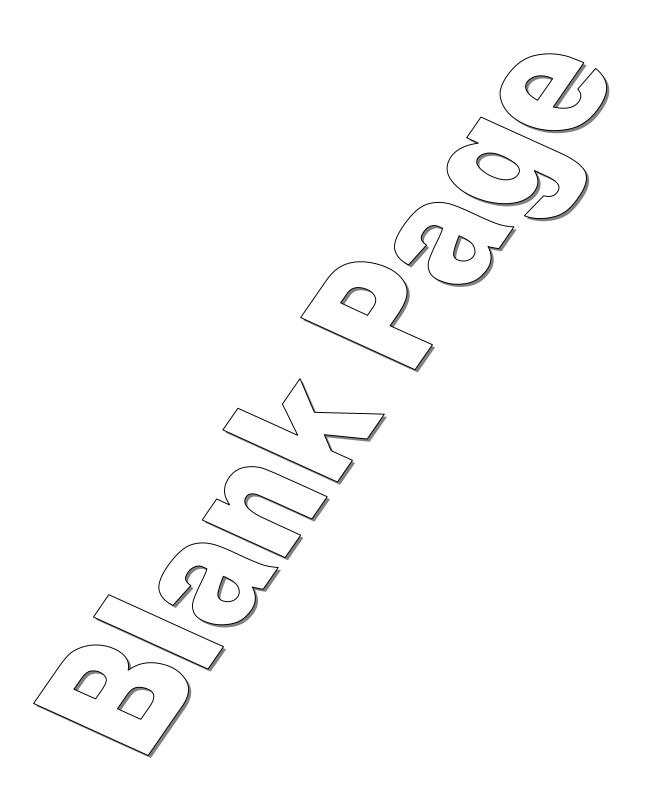
Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

THERMOCHEMICAL PROPERTIES OF SMALL OXYGENATED SULFUR HYDROCARBONS

AND


KINETICS - REACTION PATHWAYS OF METHYLTHIOMETHYL RADICAL WITH OXYGEN

by Fei Jin

The thermochemical properties on CH₃SCH₂OOH and the corresponding two radicals resulting from loss of H atom: CH₃SCH₂OO· and C·H₂SCH₂OOH are important to understand the stability, reaction paths and kinetics of reactions of dimethyl sulfide and other sulfur hydrocarbons (sulfides) in the atmosphere and combustion processes. Thermochemical properties for species and transition states in the methylthiomethyl radical (CH₃SC·H₂) + O₂ reaction system are analyzed to evaluate reaction paths and kinetics under these conditions. Isodesmic working reaction are employed to determine the enthalpies of formation ($\Delta H_{\rm f}^{\rm o}_{298}$) using density functional (B3LYP/6-311G(d,p)) and complete basis set extrapolation (CBS-QB3) computational methods. Entropy (S°298) and heat capacities $C_p(T)$ ($300 \le T/K \le 1500$) are determined using geometric parameters and vibration frequencies obtained at B3LYP/6-311G(d,p) level of calculation. Quantum Rice-Ramsperger-Kassel(QRRK) analysis is used to calculate energy-dependent rate constants, k(E) and master equation is used to account for collisional stabilization of adduct and isomer. The methylthiomethyl radical adds to oxygen to form a methylperoxy racial with a 37.82 kcal/mol well depth. The peroxy radical can undergo dissociation back to reactants, isomerize via hydrogen shift (TS1, E_a=17.06kcal/mol) to form a hydroperoxide methyl radical C·H₂SCH₂OOH, decompose via hydrogen transfer (TS2,

 E_a =37.79kcal/mol) to form CH₃SC(=O)H plus OH radical, or the peroxy radical can also attack the sulfur atom via TS3 (E_a =32.92kcal/mol) to form CH₃S(=O) + CH₂O. The C·H₂SCH₂OOH isomer can decompose via TS4 (E_a =24.09kcal/mol) to form CH₂O+CH₂S+OH, or through a four-member ring transition state (TS5, E_a =30.77kcal/mol) to form 1,3-Oxathietane + OH.

Structures and thermochemical properties on Sulfenic Acids (RSOH R = CH₃, CH₃CH₂, CH₂=CH₃) and their radicals are determined by CBS-QB3 calculation. Molecular structures and vibration frequencies are calculated at B3LYP/6-311G(d,p) levels. $\Delta H_{\rm f}^{\rm o}{}_{298}$, S^o₂₉₈ and C_p(T) for the concerned species are calculated in this study. Enthalpies of formation are determined using the $\Delta H_{\rm rxn(298)}^{\rm o}$ and known enthalpies in each of different working reactions. Contributions to entropy and heat capacity from internal rotation are also determined.

THERMOCHEMICAL PROPERTIES OF SMALL OXYGENATED SULFUR HYDROCARBONS AND KINETICS - REACTION PATHWAYS OF METHYLTHIOMETHYL RADICAL WITH OXYGEN

by Fei Jin

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Applied Chemistry

Department of Chemistry and Environmental Science

January 2004

APPROVAL PAGE

THERMOCHEMICAL PROPERTIES OF SMALL OXYGENATED SULFUR HYDROCARBONS AND KINETICS - REACTION PATHWAYS OF METHYLTHIOMETHYL RADICAL WITH OXYGEN

Fei Jin

Df. Joseph W. Bozzelli, Thesis Advisor Distinguished Professor of Chemistry, NJIT

Date

Dr. Lev N. Krasnoperov, Committee Member Professor of Chemistry, NJIT

Date

Dr. Tamara M. Gund, Committee Member Professor of Chemistry, NJIT

Date

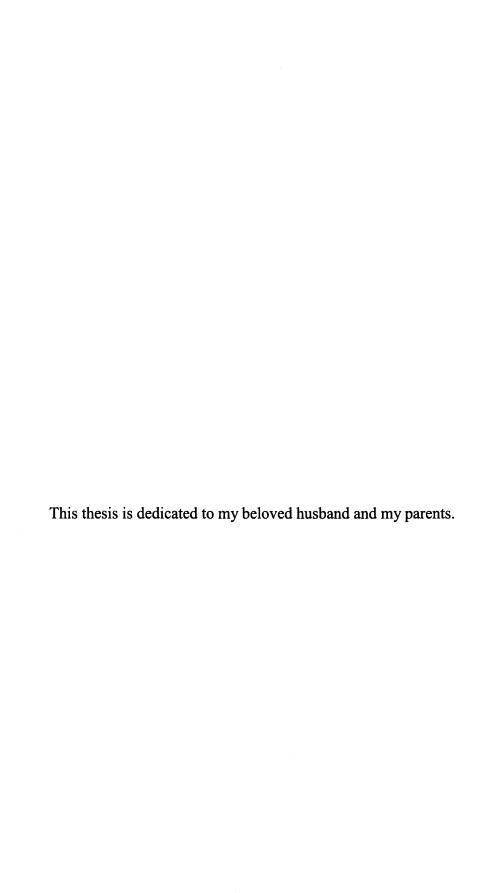
BIOGRAPHICAL SKETCH

Author: Fei Jin

Degree: Master of Science

Date: January 2004

Undergraduate and Graduate Education:


- Master of Science in Applied Chemistry,
 New Jersey Institute of Technology, Newark, NJ, USA, 2004
- Master of Science in Physical Chemistry, Liaoning Normal University, Dalian, P.R. China, 2002
- Bachelor of Science in Chemical Education, Liaoning Normal University, Dalian, P.R. China, 1999

Major: Applied Chemistry

Presentations and Publications:

Fei Jin, Joseph W. Bozzelli,

"Thermochemistry and Reaction Paths for Dimethyl Sulfide Radical with O₂" Pre-prints of papers, Fuels Chemistry, American Chem Soc, Anaheim, California, March 2004.

ACKNOWLEDGMENT

I would like to express my deepest appreciation to my advisor, Dr. Joseph W. Bozzelli, who not only served as my research supervisor, providing remarkable guidance, valuable resources, but also constantly gave me support and encouragement throughout the whole research. I also want to extend my thanks to Dr. Lev N. Krasnoperov and Dr. Tamara M. Gund for serving as committee members for this research project. I am particularly appreciative of their effort in reviewing my work.

Special thanks are attributed to Dr. Chiung-Ju Chen, Dr. Hongyan Sun and Dr. Li Zhu who provide assistance and suggestions during my studies.

TABLE OF CONTENTS

Cł	apte	r		Page
1			OYNAMIC AND KINETIC ANALYSIS ON HIOMETHYL RADICAL WITH OXYGEN	1
	1.1	Introd	uction	1
	1.2	Calcul	ation Method	3
		1.2.1	Enthalpies of Formation ($\Delta H_{\rm f}^{\rm o}_{298}$)	4
		1.2.2	Entropy (S^{o}_{298}) and Heat Capacities ($C_{p}(T)$, $300 \le T/K \le 1500$)	5
		1.2.3	High-Pressure Limit A Factors (A) and Rate Constant (k_{∞})	5
		1.2.4	Quantum Rice-Ramsperger-Kassel Analysis with Master Equation	6
	1.3	Result	s and Discussion	6
		1.3.1	Geometries and Vibrational Frequencies	7
		1.3.2	Rotational Barrier	10
		1.3.3	Enthalpies of Formation ($\Delta H_{\rm f}^{\rm o}_{298}$)	14
		1.3.4	Bond Energies	18
		1.3.5	Entropy and Heat Capacity	18
		1.3.6	Group Values and Group Estimation	20
		1.3.7	Hydrogen Bond Increment Group Value for Radicals	20
		1.3.8	Thermochemical Kinetic Analysis of the Reaction	22
		1.3.9	QRRK Calculation Results	27
	1.4	Summ	arv	32

TABLE OF CONTENTS (Continued)

Cl	napte	r		Page
2	INT	ERNAI	RES, THERMOCHEMICAL PROPERTIES, L ROTATION BARRIERS AND ENERGIES	34
	OF S	SULFE	NIC ACIDS, ETHENETHIOL AND SULFENIC ESTER	34
	2.1	Introd	uction	34
	2.2	Calcu	lation Method	35
	2.3	Result	ts and Discussion	36
		2.3.1	Geometries and Vibrational Frequencies	36
		2.3.2	Enthalpies of Formation ($\Delta H_{\rm f}^{\rm o}_{298}$)	39
		2.3.3	Rotational Barrier	49
		2.3.4	Bond Energies	56
		2.3.5	Entropy S^o_{298} and Heat Capacity $C_p(T)(300{\le}T/K{\le}1500)$	57
	2.4	Summ	nary	60
ΑI	PEN	DIX A	THERMOCHEMICAL CALCULATION RESULTS	61
ΑF	PPEN	DIX B	RATE CONSTANTS IN QRRK CALCULATIONS	67
RF	FERI	ENCES		70

LIST OF TABLES

Tab	le	Page
1.1	Vibration Frequencies and Moments of Inertia	. 8
1.2	$\Delta H_{\rm f}^{\rm o}_{\rm 298}$ for Species in Working Reactions	14
1.3	Total Energies at 298K	15
1.4	Reaction Enthalpies at 298K and Calculated Enthalpies of Formation	16
1.5	Bond Energies	18
1.6	Ideal Gas- Phase Thermodynamic Properties	19
1.7	Group Value	21
1.8	HBI Group Values for CH ₃ SCH ₂ OO· and C·H ₂ SCH ₂ OOH Radicals	21
1.9	High-Pressure Limit Rate Constants as Input Parameters for QRRK-Master Equation Calculations	25
2.0	Resulting Rate Constants in QRRK Calculations	26
2.1	Vibration Frequencies and Moments of Inertia	38
2.2	Total Energies at 298K	40
2.3	Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Methanesulfenic Acid and Its Radicals	42
2.4	Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Ethanesulfenic Acid and Its Radicals	43
2.5	Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Ethenesulfenic Acid and Its Radicals	46
2.6	Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Ethenethiol and Its radicals	47
2.7	Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Sulfenic Ester and Its Radicals	48
2.8	Bond Dissociation Energies	50

LIST OF TABLES (Continued)

Tabl	le	Page
2.9	Ideal Gas- Phase Thermodynamic Properties	. 58
A.1	Total Energies Standard Compounds at 298K	. 61
A.2	$\Delta H_{\mathrm{f}\ 298}^{\mathrm{o}}$ for Species in Working Reactions	61
A.3	Internal Rotation Contribution to Entropy and Heat Capacity	62
B.1	Calculated Reaction Parameters at P=0.001 atm	67
B.2	Calculated Reaction Parameters at P=0.01 atm	67
B.3	Calculated Reaction Parameters at P=0.1 atm	68
B.4	Calculated Reaction Parameters at P=10 atm	68
B.5	Calculated Reaction Parameters at P=100 atm	69

LIST OF FIGURES

Figure	e P	age
1.1	Structures and geometrical parameters for all species	9
1.2	Potential barrier for internal rotation about the C—S bond of CH ₃ SCH ₂ OOH, CH ₃ SCH ₂ OO· and C·H ₂ SCH ₂ OO	10
1.3	Potential barrier for internal rotation about the S—C bond of CH ₃ SCH ₂ OOH, CH ₃ SCH ₂ OO· and C·H ₂ SCH ₂ OO	11
1.4	Potential barrier for internal rotation about the C—O bond of CH ₃ SCH ₂ OOH, CH ₃ SCH ₂ OO· and C·H ₂ SCH ₂ OO	12
1.5	Potential barrier for internal rotation about the O—O bond of CH ₃ SCH ₂ OOH, CH ₃ SCH ₂ OO· and C·H ₂ SCH ₂ OO	13
1.6	Potential energy diagram CH ₃ SC·H ₂ +O ₂	24
1.7	$CH_3SC \cdot H_2 + O_2 \rightarrow Products \ log k \ vs \ pressure \ at 298K \dots$	27
1.8	$CH_3SC \cdot H_2 + O_2 \rightarrow Products log k$ vs pressure at 1000K	28
1.9	$CH_3SC \cdot H_2 + O_2 \rightarrow Products log k$ versus temperature at 1 atm	28
1.10	$CH_3SC \cdot H_2 + O_2 \rightarrow Products log k$ versus temperature at 100 atm	29
1.11	CH ₃ SCH ₂ OO· Dissociation logk vs. temperature at 1 atm	30
1.12	CH ₃ SCH ₂ OO· Dissociation logk vs. pressure at 1000K	31
1.13	C·H ₂ SCH ₂ OOH Dissociation logk vs. temperature at 1 atm	31
1.14	C·H ₂ SCH ₂ OOH Dissociation logk vs. temperature at 1000 K	32
2.1	Structures and geometrical parameters	36
2.2	Potential barrier for internal rotation about the C—S bond of CH ₃ SOH, CH ₃ SO·, and C·H ₂ SOH	50
2.3	Potential barrier for internal rotation about the S—O bond of CH ₃ SOH and C·H ₂ SOH	50
2.4	Potential barrier for internal rotation about the C—C bond of CH ₃ CH ₂ SOH, CH ₃ CH ₂ SO·, C·H ₂ CH ₂ SOH and CH ₃ C·HSOH	51

LIST OF FIGURES (Continued)

Figure		Page
2.5	Potential barrier for internal rotation about the C—S bond of CH ₃ CH ₂ SOH, CH ₃ CH ₂ SO·, C·H ₂ CH ₂ SOH and CH ₃ C·HSOH	. 52
2.6	Potential barrier for internal rotation about the S—O bond of CH ₃ CH ₂ SOH, C·H ₂ CH ₂ SOH and CH ₃ C·HSOH	. 53
2.7	Potential barrier for internal rotation about the C—S bond of CH ₂ =CHSOH, CH ₂ =CHSO· and CH ₂ =CHSH	. 54
2.8	Potential barrier for internal rotation about the C—O bond of CH ₂ =CHOSH, and CH ₂ =CHOS·	. 55
2.9	Potential barrier for internal rotation about the S—O bond of CH ₂ =CHSOH and CH ₂ =CHOSH	. 56

CHAPTER 1

THERMODYNAMIC AND KINETIC ANALYSIS ON METHYLTHIOMETHYL RADICAL WITH OXYGEN

1.1 Introduction

Dimethyl sulfide (DMS) has been recognized as the main natural source of sulfur in the atmosphere [1]. It emitted into the atmosphere over the global oceans has a range of effects upon atmospheric composition (mediated through various oxidation products) that may be significant with regard to issues as important as climate regulation. The roles played by DMS oxidation products are diverse and complex. Components of the chemistry are, in many instances, not well understood.

At present, the main step of the DMS oxidation in the atmosphere is the reaction with OH [2] radical during daylight and the reactions with NO₃ [3] radical and Cl [4] radical, these reactions will lead to the formation of the CH₃SC·H₂ radical.

The CH₃SCH₂OO peroxy radical (methyl-thiol-methyl peroxy radical) is then (immediately) formed through reaction with oxygen in the atmosphere. This is an important intermediate in the atmospheric degradation of dimethyl sulfide [5,6]. The CH₃SCH₂OO· peroxy radical is produced through the association the CH₃SCH₂ radical with O₂:

$$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SCH_2OO \cdot$$

It is believed that the reaction of the CH₃SCH₂OO· with the HO₂ radical will lead to the following products:

$$CH_3SCH_2OO + HO_2 \rightarrow CH_3SCH_2OOH + O_2$$

Wallington et al suggested this reaction would be the dominant one for reaction with HO2 an it could play a significant role in the atmospheric degradation of DMS. The rate constant was estimated as $k = 5 \times 10^{-12} \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$, which will lead to an atmospheric lifetime of 3 minutes for the CH₃SCH₂OO· radical.

There are no studies on the overall kinetics of the complex process involved in the di-methyl sulfide radical reaction with O_2 and there are not studies of the kinetic parameters to the varied reaction paths for either the chemical activated or the dissociation of the thermally stabilized dimethylsulfide peroxy radical.

The thermochemical properties of the species in the reaction of CH₃SC·H₂ + O₂ have been studies by several research groups. Stella et al. have reported thermochemical data for CH₃SCH₂OOH ($\Delta H_f^{\circ}_{298}$ =-28.4kcal/mol) and CH₃SCH₂OO·($\Delta H_f^{\circ}_{298}$ = 6.51kcal/mol) at the CCSD(T)/cc-Pvtz//MP2/6-31G(d) level.

McKee have calculated the heat formation of the CH₃SCH₂OO· and CH₃SCH₂O· radicals at the QCISD(T)/6-31+G(2df,p)//MP2/6-31G+d) level of theory, using isodesmic reactions. The values were 5.9kcal/mol and 7.4kcal/mol, respectively.

In this chapter, reaction pathways of the addition of O_2 to $CH_3SC \cdot H_2$ radical are analyzed. CBS-QB3 and density functional methods are utilized to estimate thermodynamic properties ($\Delta H_f^o{}_{298}$, $S^o{}_{298}$ and $C_p(T)$) for reactant $CH_3SC \cdot H_2$, intermediate radicals $CH_3SCH_2OO \cdot$, $C \cdot H_2SCH_2OOH$ and transition states:

TS1: CH₃SCH₂OO Intramolecular hydrogen shift to form a hydroperoxy radical.

TS2: CH₃SCH₂OO Intramolecular hydrogen shift to form CH₃S·CHOOH radical, and CH₃S·CHOOH rapidly dissociates CH₃SC(=O)H + OH.

TS3: CH₃SCH₂OO The peroxy radical attack the sulfur atom form CH₃S(=O) + CH₂O.

TS4: CH_2S-CH_2O-OH β,γ -scission reaction to form a thioformaldehyde plus a formaldehyde and OH.

Isodesmic working reactions are applied to evaluate enthalpies of formation. Contributions to entropy and heat capacities from internal rotation are estimated using direct integration over energy level of the intermolecular rotation potential energy curve, with B3LYP/6-311g(d,p) level of calculation for rotation barrier. Activation energies for the transition states are determined and the kinetic analysis is detailed on the base of the thermodynamic properties.

Quantum Rice-Ramsperger-Kassel (QRRK) analysis [7] is used to calculate the energy dependent rate constant k(E), and master equation analysis is applied to account for collisional stabilization in the $CH_3SC \cdot H_2 + O_2$ adduct and isomers. The thermochemical and kinetic data at relevant pressures and temperatures should be useful to both atmospheric and combustion models.

1.2 Calculation Method

All the calculations were carried out using Gaussian 98 program [8]. The geometry optimization, harmonic vibration frequencies are computed with the B3LPY/6-311G(d,p) level of theory transition state geometries are identified by the existence of only one imaginary frequency.

To improve the accuracy of the calculated values on relative energies we used one the Complete Basis Set series, namely CBS-QB3 [9]. This approach employs B3LYP

geometries as the basis for a series of single point calculations and empirical corrections.

The single point calculations include:

- A large basis set Hartree –Fock calculation at MP4SDQ/CBSB4 level.
- A complete basis set extrapolation at MP2/CBSB3 level.
- Higher level correlation is included at CCSD(T)/6-31+G(d') level.

1.2.1 Enthalpies of Formation ($\Delta H_{\rm f}^{0}_{298}$)

Enthalpies of formation ($\Delta H_{\rm f}^{\rm o}{}_{298}$) for reactant, intermediate radicals and their parent molecule CH₃SCH₂OOH which are necessary to calculate intermediate radicals are estimated using total energies obtained by density functional (B3LYP/6-311G(d,p)) and CBS-QB3 calculations combined with the use of isodesmic working reactions. Total energies are corrected by zero-point vibrational energies (ZPVE), which are scaled by 0.9806 [10] for the B3LYP/6-311G(d,p) level. ZPVE's calculated by CBS-QB3 level of theory are scared by 0.99[9].

$$\Delta H(T) = H_{\text{trans}}(T) + H_{\text{rot}}(T) + \Delta H_{\text{vib}}(T) + RT$$

$$H_{\text{trans}}(T) = 3/2 \text{ RT}; \quad H_{\text{rot}}(T) = 3/2 \text{ RT}$$

$$\Delta H \text{ vib } (T) = Nh \sum (v_i/(\exp(hv_i/k_b T) - 1))$$

where N is Avogadro constant, h is Planck constant, and k_b is Boltzmann constant.

Isodesmic reactions are hypothetical reactions where the number of electron pairs and the bonds of the same type are conserved on both sides of the equation. The working reaction is utilized in way that leads cancellations [11]. For an example, one working reaction for estimation of CH₃SC·H₂ is

$$CH_3SC \cdot H_2 + CH_3OH \rightarrow C \cdot H_2OH + CH_3SCH_3$$

All four compounds in this reaction are estimated using density functional and CBS-QB3 calculations. Since $\Delta H_{\rm f}^{\rm o}{}_{298}$ of three compounds (except CH₃SC·H₂) have been experimentally or theoretically calculated, the unknown $\Delta H_{\rm f}^{\rm o}{}_{298}$ for CH₃SC·H₂ is obtained.

Enthalpy values for the transition state saddle points are estimated by evaluation of $\Delta H_{\rm f}^{\rm o}_{298}$ of the stable radical adduct plus the difference of the total energies with ZPVE and thermal correction between the reactant or product radical species and the transition state.

1.2.2 Entropy (S^{0}_{298}) and Heat Capacities ($C_p(T)$, $300 \le T/K \le 1500$)

Entropies and heat capacities at temperature range from 300K to 1500K were calculated using the rigid-rotor-harmonic-oscillator approximation based on scaled vibrational frequencies and moments of inertia of the optimized BLYP/6-311G(d,p) structures. Contribution to entropy and heat capacity from internal rotation is determined using Pitzer et al's treatment [12] based on rotational barrier height and corresponding moments of inertia for the rotors. SMCPS program was used.

1.2.3 High-Pressure Limit A Factors(A) and Rate Constant (k_{∞})

Thermochemical properties entropy and heat capacity of transition states are calculated by B3LYP/6-311g(d,p) density functional method. Enthalpy values of the transition states are calculated with this B3LYP/6-311g(d,p) method and with CBS-QB3method. High-pressure limit rate constants, k_{∞} , are calculated using the Ea described below and pre-exponential values (A factors). This pre-exponential factor are from entropy differences between reactant and transition state ΔS^{\neq} over the temperature range from

200K to 2000K are used to determine the pre-exponential factor A, via classical, canonical TST for a unimolecular reaction

$$A = (\kappa_b T/h_p) \exp(\Delta S^{\sharp}/R)$$

where h_p is the Planck constant and κ_b is Boltzmann constant, R=1.987cal/(mol K).

These k infinity values are fit by three parameters, A, n, and E_a over the temperature range from 200K to 2000K, expressed by:

$$k_{\infty} = A(T)^n \exp(-E_a/RT)$$

Activation energies of reactions are calculated as follows:

$$E_a = \left[\Delta H_{\rm f}^{\rm o}_{298,\rm TS} - \Delta H_{\rm f}^{\rm o}_{298,\rm reactant}\right]$$

1.2.4 Quantum Rice-Ramsperger-Kassel Analysis with Master Equation

Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculate k(E) with a master equation analysis [13] for falloff in order to obtain rate constants as a function of temperature and pressure. Reduced sets of three vibrational frequencies and their degeneracy plus energy levels of one external rotor are used to yield the ratio of density of states to partition the coefficient, $\rho(E)/Q$ for each adduct (isomer in the chemical activation or dissociation reaction system). Each set of vibrational frequencies and respective degeneracies is computed from fitting heat capacity data, as described by Ritter (CPFIT computer code)[14].

1.3 Results and Discussion

1.3.1 Geometries and Vibrational Frequencies

Figure 1.1 shows the optimized geometric structures of CH₃SCH₂OOH, CH₃SCH₂OO. C·H₂SCH₂OOH and transition states, calculated at B3LYP/6-311g(d,p) level. In the stable molecule and two radicals, the oxygen bonded to the carbon in three structures is almost perpendicular to the plane of the C-S-C. The results with data (in the parenthesis) reported previously by Stella et al, which is at the UMP2/6-31G(d) calculation level, are compared with this work. TS1 for isomerization of CH₃SCH₂OO to C·H₂SCH₂OOH is a six-member ring. The O-H bondlength is 1.17Å and the C-H bondlength is 1.40 Å, both slightly longer than the stable O-H bondlength (0.96Å), and the stable C-H bondlength (1.08Å). TS2 for intramolecular hydrogen shift from CH₃SCH₂OO· to CH₃SC·HOOH has an O-H bondlength of 1.31Å and the C-H bondlength of 1.30 Å, both slightly longer than the stable O-H bondlength, 0.96 Å, and the C-H bondlength 1.08 Å. The TS3 shows a C-S cleaving bond of 2.00 Å and S-O forming bond of 1.90 Å. TS4 for the formation of the CH₂S+CH₂O+OH has S-C lengthening bond 2.04 Å and C-O lengthening bond 1.81 Å. TS5 for 1,3-Oxathietane + OH formation has a four-member ring structure. The dissociating O-O bond is 1.71 Å and the forming C-O bond is 2.00 Å.

Harmonic vibrational frequencies are calculated for the reactant, intermediates and the transition states at the B3LYP/6-311g(d,p) level of theory on the basis of optimized geometries at the same level of theory. The vibrational frequencies and moments of inertia are given in Table 1.1

Table 1.1 Vibration Frequencies and Moments of Inertia

	Moments of inertia	Frequencies (cm ⁻¹)
		i requencies (em)
	(amu Bohr ²)	
CH ₃ SC·H ₂	87.80916	162, 216, 293, 396, 691, 829, 9023, 971,
	226.60564	1035, 1357, 1408, 1467, 1482, 3043, 3125,
	301.98115	3140, 3146, 3273,
CH ₃ SCH ₂ OOH	275.94881	81, 121, 140, 250, 291, 343, 491, 682, 712,
	683.42678	858, 920, 979, 1003, 1042, 1277, 1321,
	841.48374	1363, 1378, 1432, 1466, 1490, 3045, 3047, 3120
CH ₃ SCH ₂ OO·	202.79126	79, 113, 159, 252, 351, 514, 681, 728, 829,
	824.51025	920, 982, 1036, 1146, 1277, 1317, 1368,
	946.42836	1430, 1467, 1480, 3048, 3077, 3135, 3143, 3155
C·H ₂ SCH ₂ OOH	256.86215	71, 134, 170, 263, 290, 329,354, 490, 675,
	650.99354	814, 8566, 906, 996, 1035, 1277, 1317,
	819.68014	1377, 1398, 1430, 3055, 3130, 3159, 3291,
		3749
CH ₃ SCH ₂ OO	275.03807	1642i, 183, 358, 376, 445, 510, 610, 662,
1 -	515.53592	772, 899, 954, 1011, 1019, 1027, 1196,
(TS1)	723.50121	1261, 1300, 1428, 1444, 1565, 3063, 3077,
		3149, 3186
CH ₃ SCH ₂ OO	244.36665	1725i, 57, 103, 148, 248, 421, 589, 684,
(TS2)	668.30811	800, 807, 890, 980, 995, 1091, 1118, 1296,
(152)	802.73542	1359, 1460, 1481, 1976, 3061, 3083, 3150, 3167
	272.93631	1004i□88, 168, 198, 281, 362, 460, 649,
CH ₃ SCH ₂ OO	538.28462	693, 879, 950, 994, 1090, 1178, 1237,
(TS3)	555.73710	1341, 1460.12, 1470, 1496, 3003, 3043,
		3086, 3134, 3154
C·H ₂ S-CH ₂ O-OH	292.67278	828i, 96, 130, 179, 222, 241, 356, 446,
(TS4)	636.78087	516, 794, 882, 902, 947, 1000, 1109, 1189,
	835.91944	1293, 1433, 1442, 2962, 3036, 3121, 3250,
		3802
CH ₂ SCH ₂ O-OH	186.04990	800i, 104, 166, 208, 246, 352, 475, 534,
	750.05334	715, 784, 849, 939, 967, 991, 1074, 1167,
(TS5)	895.75778	1284, 1437, 1511, 3051, 3126, 3131, 3249,
		3794

Radical site is identified by (*), \(\begin{align*} \denotes cyclic component of molecule or transition state structure. \end{align*}

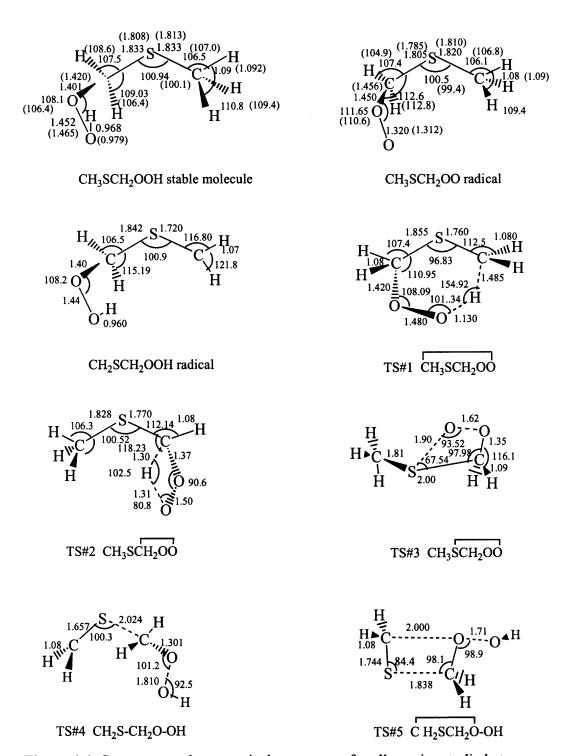


Figure 1.1 Structures and geometrical parameters for all species studied at B3LYP/6-311G(d,p) Distance is present in Å and angles in degrees. The values calculated by Stella, at the UMP2/6-31G(d) level of theory are in the parenthesis.

1.3.2 Rotational Barrier

Potential barrier for internal rotations of the reactant peroxy radical (CH₃SCH₂OO·), hydroperoxide alkyl radical (C·H₂SCH₂OO) and their parent molecule CH₃SCH₂OOH are calculated at the B3LYP/6-311g(d,p) level. Potential energy as function of dihedral angle is determined by varying the torsional angle from 0° to 360° at 15° intervals and allowing the remaining structure parameters to be optimized at B3LYP/6-311g(d,p) level. The barrier of a given rotation is then calculated as the difference between the highest point on the potential energy surface and the corresponding most stable conformer. Potential energy vs. torsion angle diagrams of internal rotations about H-C--S-C; C-S--C-O; S-C-O-O and C-O-O-H are shown for three species in Figures 1.2, 1.3, 1.4 and 1.5.

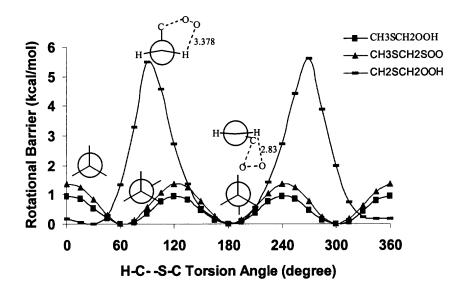
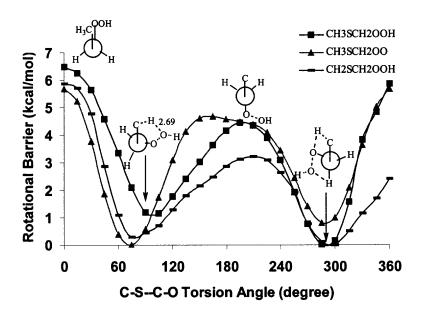
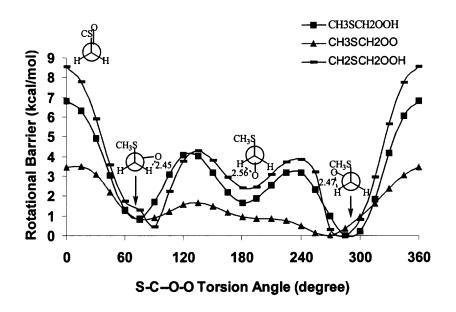



Figure 1.2 Potential barrier for internal rotation about the C—S bond of CH₃SCH₂OOH, CH₃SCH₂OO· and C·H₂SCH₂OO. Points are calculated value at the B3LYP/6-311G(d,p) level.


The calculated rotational barriers vs torsional angle about C—S bond of the three target species shown in Figure 1.2 present the three curves. For CH₃—SCH₂OOH, CH₃—SCH₂OO·, they have three minima and three maxima and indicate 3-fold symmetry with

barriers between 0.96 and 0.55kcal/mol. These two curves represent typical CH_3 —S bond rotational potentials, in which the eclipsed structures are corresponding to the maxima and the staggered structures are corresponding to the minima on the potential curve. The CH_2 —S torsion potential for $C\cdot H_2$ —SCH2OOH radical show A2-fold symmetry. The conformer with dihedral $\angle H$ -C--S-C is 30° or 180° is the most stable because of electrostatic reactions; the O···H interaction [16,17] between H atom in the -CH2- group and the peroxy O atom, with the inter atomic distance of 2.830 Å (dihedral angel is 180°) and 2.890Å (dihedral angel is 30°), which is nearly equal to the van der Waals radii for O and H atom (2.70 Å). But when the dihedral angle approaches 90° and 270°, the interatomic distance is 3.678 Å and 3.222 Å, respectively. The structures with the 2.8 – 2.9Å distances have lower energy by some 5.5 kcal/mol due to hydrogen bonding in those conformers.

Figure 1.3 Potential barrier for internal rotation about the S—C bond of CH₃SCH₂OOH, CH₃SCH₂OO· and C·H₂SCH₂OOH. Points are calculated value at the B3LYP/6-311G(d,p) level.

The calculated rotational barriers about the CS—COO bond of CH₃S—CH₂OOH, CH₃S—CH₂OO· and C·H₂S—CH₂OOH are shown in Figure 1.3. The most stable conformer for three species has the dihedral \angle H-C--S-C≈75°or at 300°, which indicates a gauche preference for this set of 4 atoms. Rotation of three species about this CS—COO bond offers the potential barrier 5.58 kal/mol, 5.10 kcal/mol and 4.54 kcal/mol.

Figure 1.4 Potential barrier for internal rotation about the C—O bond of CH₃SCH₂OOH, CH₃SCH₂OO· and C·H₂SCH₂OOH. Points are calculated value at the B3LYP/6-311G(d,p) level.

The calculated rotational barriers about the RSC—OO bond of CH_3SCH_2 —OOH, CH_3SCH_2 —OO· and $C\cdot H_2SCH_2$ —OOH are shown in Figure 1.4. The conformers with the dihedral angel $\angle S$ -C--O-O ranging from 270° to 290° are the most stable because the electrostatic interactions of the peroxy O atom with the H atom in the $-CH_2$ — and $-CH_3$ group. The conformers with dihedral angle 90° and 180° only have the interaction between peroxy O atom with the H atom in the $-CH_2$ — group. The highest rotation

barriers about the C—O bond of CH₃SCH₂OOH, CH₃SCH₂OO· and C·H₂SCH₂OOH are 5.5, 2.56 and 6.41kcal/mol, respectively.

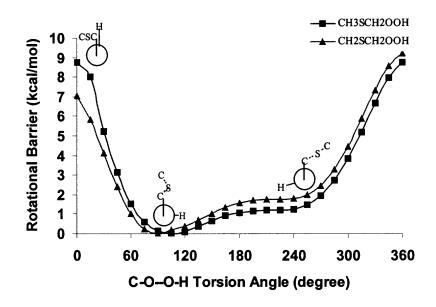


Figure 1.5 Potential barrier for internal rotation about the O—O bond of CH₃SCH₂OOH and C·H₂SCH₂OOH. Points are calculated value at the B3LYP/6-311G(d,p) level.

The calculated rotational barriers about the CSCO—OH bond of CH₃SCH₂O—OH and C·H₂SCH₂O—OH are shown in Figure 1.5. The skew conformations are the most stable in the ∠C-O-O-H dihedral angel ranging from 90° to 105°. The orthogonal conformation allows for greater delocalization of lone pair electrons on two oxygen atoms than do the coplanar conformations (cis and trans); the nearest interatomic distances between peroxy H atom and the S atom correspond to the most stable conformers. CH₃SCH₂OOH conformer has the highest barrier of 8.77kcal/mol. In the C·H₂SCH₂OOH radical, the repulsion between the peroxy H atom the SC group at the dihedral angle of 0° has the highest energy 9.21kcal/mol.

1.3.3 Enthalpies of Formation ($\Delta H_{\rm f}^{0}_{298}$)

The enthalpies of formation ($\Delta H_{\rm f}^{\rm o}_{298}$) are estimated using total energies and calculated $\Delta H_{\rm rxn298}$ for the listed reactions. The total energies are determined at the CBS-QB3 level; scaled ZPVE's and thermal corrections to 298.15K are listed in Table 1.3.

The $\Delta H_{\rm f}^{\rm o}_{298}$ for reactant and intermediates are determined from total energies and isodesmic reactions. All four compounds in each reaction are estimated using density functional and CBS-QB3 calculations. ZPVE's and thermal correction are taken into account. And the enthalpy of reaction ($\Delta H_{\rm rxn}^{\rm o}$) are obtained. Since $\Delta H_{\rm f}^{\rm o}_{298}$ of other three compounds have been experimentally determined or theoretically calculated, the unknown enthalpies of the target species are calculated.

Enthalpies of formation and their corresponding uncertainties for standard species used in the isodesmic working reactions are obtained from evaluation of literature data. The values are listed in Table 1.2.

Table 1. 2 $\Delta H_{\rm f}^{\rm o}_{298}$ for Species in Working Reactions

Species $\Delta H_{\mathrm{f}}^{\mathrm{o}}_{298 \; (\mathrm{kcal/n})}$		Species	$\Delta H_{ m f}^{ m o}$ 298 (kcal/mol)	
CH ₄ [18]	-17.89±0.07	CH ₃ CH ₂ OOH [23]	-39.7±0.3	
$C_2H_6[18]$	-20.04 ± 0.12	CH ₃ OOH [14]	-31.8±0.94	
$C_3H_8[19]$	-25.02±0.12	CH ₃ OO· [15]	2.15±1.22	
CH ₃ SCH ₃ [20]	-8.96±0.48	CH ₃ CH ₂ OO· [25]	-6.5±2.4	
CH ₃ SCH ₂ CH ₃ [21]	-14.42±0.27	$C \cdot H_2 OCH_3$ [26]	0±1	
H· [22]	52.10±0.001	OH· [22]	8.89±0.09	
CH ₃ SCH ₂ O· [31]	7.4	HOO· [27]	3.50±0.5	
C·H ₂ OH [28]	-4.08±0.8	CH ₃ OCH ₃ [29]	-43.99±0.12	

Total energies, ZPVE and Thermal Corrections for the standard species used in the working reactions are listed in Table A.1.

Table 1.3 Total Energies ^a at 298K

Species	B3LYP/	ZPVE ^b	Therm. Corr. c	CBS-QB3	ZPVE d	Therm. Corr. c
	6-311g(d,p)		,			
CH ₃ SC·H ₂	-477.3375846	37.77	3.78	-476.7228244	38.11	3.77
CH ₃ SCH ₂ OOH	-628.3609772	51.71	4.97	-627.5642507	52.19	4.96
CH ₃ SCH ₂ OO·	-627.7321772	44.43	4.66	-626.9281892	44.83	4.22
C·H ₂ SCH ₂ OOH	-627.7118901	42.87	5.11	-626.9152611	43.20	5.15
TS1	-627.7018735	41.36	3.87	-626.9009996	41.76	3.86
TS2	-627.7412102	40.62	4.64	-626.8679646	40.97	4.65
TS3	-627.7442828	42.61	4.57	-626.875727	43.06	4.53
TS4	-627.6857737	41.16	5.01	-626.8768683	41.51	5.02
TS5	-627.670856	42.29	4.65	-626.8662235	42.67	4.64

Total energy calculation based on the geometries optimized at B3LYP/6-311g(d,p) level of theory and ZPVE's and thermal corrections to 298k are included. Units in hartree.

b ZPVE: scaled zero-point energies in kcal/mol. ZPVE is scaled by 0.9806

c Therm.corr.: thermal corrections in kcal/mol
d ZPVE: scaled zero-point energies in kcal/mol. ZPVE is scaled by 0.99

 Table 1.4 Reaction Enthalpies at 298K and Calculated Enthalpies of Formation

	CBS	-QB3	B3LYP/6-31	1g(d,p)
Isodesmic Reactions	$\Delta H^{\rm o}_{\rm rxn}$	$\Delta H_{ m f}^{ m o}_{ m 298}$	$\Delta H^{\rm o}_{\rm rxn}$	$\Delta H_{ m f}^{ m o}{}_{298}$
$CH_3SC \cdot H_2 + CH_3OH \rightarrow C \cdot H_2OH + CH_3SCH_3$	2.49	32.65	-0.12	35.27
$CH_3SC \cdot H_2 + CH_3CH_3 \rightarrow CH_3C \cdot H_2 + CH_3SCH_3$	7.33	30.29	6.01	31.72
$CH_3SC \cdot H_2 + CH_3OCH_3 \rightarrow CH_3OC \cdot H_2 + CH_3SCH_3$	-0.12	35.05	0.42	34.51
$CH_3SCH_2OOH + CH_4 \rightarrow CH_3OOH + CH_3SCH_3$	6.42	-29.29	5.76	-28.63
$CH_3SCH_2OOH + CH_3CH_3 \rightarrow CH_3OOH + CH_3SCH_2CH_3$	3.19	-29.17	3.83	-30.01
$CH_3SCH_2OOH + CH_3CH_3 \rightarrow CH_3CH_2OOH + CH_3SCH_3$	0.57	-28.99	0.65	-29.27
$CH_3SCH_2OOH + CH_3CH_2CH_3 \rightarrow CH_3CH_2OOH + CH_3SCH_2CH_3$	0.017	-29.12	0.36	-29.48
$CH_3SCH_2OO \cdot + CH_4 \rightarrow CH_3OO \cdot + CH_3SCH_3$	5.66	5.42	4.57	6.51
$CH_3SCH_2OO \cdot + CH_3CH_3 \rightarrow CH_3OO \cdot + CH_3SCH_2CH_3$	2.43	5.54	2.64	5.13
$\text{CH}_3\text{SCH}_2\text{OO}$ + CH_3CH_3 \rightarrow $\text{CH}_3\text{CH}_2\text{OO}$ + CH_3SCH_3	-0.456	4.94	-0.84	5.13
$\text{CH}_3\text{SCH}_2\text{OO} + \text{CH}_3\text{CH}_2\text{CH}_3 \rightarrow \text{CH}_3\text{CH}_2\text{OO} + \text{CH}_3\text{SCH}_2\text{CH}_3$	-1.003	4.80	-1.12	4.92
$C \cdot H_2SCH_2OOH + CH_4 \rightarrow C \cdot H_2SCH_3 + CH_3OOH$	5.68	12.51	5.34	12.85
$C \cdot H_2SCH_2OOH + CH_3CH_3 \rightarrow C \cdot H_2SCH_3 + CH_3CH_2OOH$	-0.17	10.46	0.23	10.06

The $\Delta H_{\rm f}^{\rm o}_{298}$ for four species show good consistency at the CBS-QB3 level over the several isodesmic reactions used, with the standard deviation for data on CH₃SCH₂OOH of 0.12kcal/mol. Standard deviations in $\Delta H_{\rm f}^{\rm o}_{298}$ values are 0.36 kcal/mol, 1.44kcal/mol for CH₃SCH₂OO· and C·H₂SCH₂OOH radicals, respectively, where the standard deviation for CH₃SCH₂OOH molecule is 0.12kcal/mol. And 0.36 kcal/mol, 1.44kcal/mol for CH₃SCH₂OO· and C·H₂SCH₂OOH radical. The recommended $\Delta H_{\rm f}^{\rm o}_{298}$ for the target species are an average of the isodesmic reactions at the CBS-QB3 calculation level. The $\Delta H_{\rm f}^{\rm o}_{298}$ are -29.14±0.12kcal/mol, 5.17±0.36kcal/mol and 11.48±1.44kcal/mol for CH₃SCH₂OOH, CH₃SCH₂OO· and C·H₂SCH₂OOH, respectively.

Stella et al [30] has estimated the $\Delta H_{\rm f}^{\rm o}_{298}$ for CH₃SCH₂OOH molecule and CH₃SCH₂OO· radical by heats of atomization using UMP2/6-31G(d) level of calculations with value of -28.4kcal/mol and 6.51kcal/mol, respectively. The CH₃SCH₂OO· radical was calculated relative to the reaction: C·H₂SCH₃ radical plus O₂. McKee [31] has calculated the $\Delta H_{\rm f}^{\rm o}_{298}$ for CH₃SCH₂OO· at the QCISD(T)/6-31+G(2df,p)//MP2/6-31G(d) level of calculation, giving the value of 5.9kcal/mol, in good agreement with the valve of 5.2 kcal/mol. $\Delta H_{\rm f}^{\rm o}_{298}$ for CH₃SC·H₂ obtained from this work, 32.66±0.50 kcal/mol, is 0.5kcal/mol higher than the result of Jefferson's, 32.1±0.7kcal/mol [32].

The accuracy of the enthalpies of formation is controlled by several factors, such as the method and the basis set of the Gaussian analysis; the reliability of the enthalpies of formation of the reference compounds; the uncertainty in the thermal correction; and the choice of the working chemical reactions used in the cancellation of calculation errors.

1.3.4 Bond Energies

CH₃SCH₂—OOH, CH₃SCH₂OO—H, CH₃SCH₂O-OH and H—CH₂SCH₂OOH bond dissociation energies are presented in Table 1.5. They are estimated using $\Delta H_{\rm f}^{\rm o}{}_{298}$ from CBS-QB3 calculation level for CH₃SCH₂OOH molecule and its radicals from this work: plus reference radicals.

Table 1.5 Bond Energies

Reaction series	Bond energy (kcal/mol)
CH_3SCH_2 —OOH \rightarrow CH_3SCH_2 + OOH	65.30
CH_3SCH_2O — $OH \rightarrow CH_3SCH_2O + OH$	45.43
CH_3SCH_2OO — $H \rightarrow CH_3SCH_2OO + H$	86.41
H — $CH_2SCH_2OOH \rightarrow CH_2SCH_2OOH + H$	92.72

1.3.5 Entropy and Heat Capacity

Standard entropy (S°_{298}) and heat capacities ($C_p(T)$, $300 \le T/K \le 1500$) are determined using B3LYP/6-311G(d,p), geometries and harmonic frequencies. The results are summarized in Table 1.6. There are no reported entropy and heat capacity values that we are aware of.

The torsion frequencies are subtracted in the calculation of S°_{298} and $C_{p}(T)$, but we replace their contributions with values from analysis of the internal rotations. TVR represents the sum of the contributions from translations, external rotations and vibrations for S°_{298} and $C_{p}(T)$ by statistical mechanics. The torsion frequency corresponding to the internal rotor is not included in TVR. Instead, I.R. represent the contribution from hindered internal rotations to S°_{298} and $C_{p}(T)$. The calculations are based on optimized geometries and rotational potential curves from B3LYP/6-311G(d,p) data. Symmetry and number of optical isomers are incorporated in estimation of S°_{298} as described in Table 1.6.

Table 1.6 Ideal Gas- Phase Thermodynamic Properties^a

Species and(symmetry #)										
		$\DeltaH_{ m f298}^{ m ob}$	S°298°	$C_{p(300)}^{c}$	$C_{p(400)}^{\ \ c}$	C _{p(500)} c	$C_{p(600)}^{c}$	$C_{p(800)}^{c}$	$C_{p(1000)}^{c}$	$C_{p(1500)}$
CH ₃ SC·H ₂	TVRdi		64.06	14.27	17.30	19.94	22.16	25.70	28.44	32.95
(3)	I.R.		8.00	3.75	3.71	3.68	3.63	3.46	3.26	2.8
rotors # = 2	total	32.66±0.50	72.06	18.02	21.01	23.62	25.79	29.16	31.70	35.75
CH₃SCH₂OOH	TVRdi		69.93	17.21	21.92	26.05	29.48	34.74	38.61	44.70
(3)	I.R. ^e		18.64	7.63	7.82	7.95	8.00	7.80	7.39	6.33
rotors # = 4	total	-29.14±0.12	88.57	24.84	29.74	34.00	37.48	42.54	46.00	51.03
CH₃SCH₂OO·	TVRdi		69.88	16.97	21.41	25.27	28.46	33.30	36.79	42.17
(3)	I.R. ^e		17.42	6.22	5.94	5.64	5.35	4.81	4.39	3.76
rotors # = 3	total	5.17±0.36	88.68	23.19	27.35	30.91	33.81	38.11	41.18	45.93
C·H ₂ SCH ₂ OOH	TVRdik		72.96	18.08	22.20	25.62	28.36	32.48	35.49	40.33
(2)	I.R. °		16.13	8.10	8.63	8.94	9.04	8.80	8.28	6.94
rotors # = 4	total	11.48±1.44	90.47	26.18	30.83	34.56	37.40	41.28	43.77	47.27
TS1	TVRdk		75.94	20.99	26.22	30.50	33.89	38.78	42.14	47.07
(2)	I.R.		0	0	0	0	0	0	0	0
rotors # = 0	total	22.23	77.33	20.99	26.22	30.50	33.89	38.78	42.14	47.07
TS2	TVR ^{d k}		73.49	18.64	23.18	27.01	30.12	34.78	38.07	43.00
(3)	I.R.		11.03	3.91	3.79	3.70	3.59	3.31	3.04	2.59
rotors # = 2	total	42.96	85.91	22.55	26.97	30.71	33.71	38.09	41.11	45.59
TS3	TVR ^{d k}		75.51	20.67	24.86	28.45	31.41	35.95	39.26	44.42
(3)	I.R.		5.25	1.73	1.51	1.36	1.27	1.16	1.10	1.04
rotors # = 1	total	38.09	82.14	22.40	26.37	29.81	32.68	37.11	40.36	45.46
TS4	TVR ^{d k}		76.89	20.96	25.06	28.39	31.05	35.01	37.91	42.58
(2)	I.R.		8.74	3.60	3.54	3.42	3.27	2.98	2.73	2.39
rotors # = 3	total	35.57	87.01	24.56	28.60	31.81	34.32	37.99	40.64	44.97
TS5	TVRd		77.09	21.73	26.21	29.77	32.56	36.66	39.64	44.40
(1)	I.R.		4.40	1.15	1.09	1.06	1.04	1.02	1.01	1.00
rotors # = 1	total	42.25	82.91	22.88	27.30	30.83	33.60	37.68	40.65	45.40

^a Thermodynamic properties are referred to standard state of an ideal gas of pure enantiomer at 1 atm. ^b Units in kcal/mol. ^c Units in cal/(mol K).

^d The sum of contributions from translations, external rotations, and vibrations. ^e Contribution from internal rotation from internal rotation about the S—C2 bond. ^g Contribution from internal rotation about the C—O bond. ^h Contribution from internal rotation about the O—O bond. Symmetry number is taken into account (-1.987ln(symmetry number)). Spin degeneracy contribution for entropy=1.987ln(2) is taken into account. k optical isomer number is taken into account 1.987ln(2)

1.3.6 Group Values and Group Estimation

The C/H2/O/S group is derived from the thermodynamic property data of the target molecule CH₃SCH₂OOH. The group value for Δ $H_{\rm f}^{\rm o}_{\rm 298}$ and C_p of C/H2/O/S are calculated on the basis of

 $(CH_3SCH_2OOH) = (C/H2/O/S) + (C/H3/S) + (S/C/C) + (O/C/O) + (O/H/O)$ and S°_{298} of C/H2/O/S is calculated on the basis of

 $(CH_3SCH_2OOH) = (C/H2/O/S) + (C/H3/S) + (S/C/C) + (O/C/O) + (O/H/O)-Rln(\sigma)+Rln(OI)$

where R=1.987cal/mol K, σ is symmetry number and OI stands for the optical isomer number. Selection of the initial group values is critical to development of group additivity for accurate property estimation. The C/H2/O/S group value derived in this work are listed in Table 1.7

1.3.7 Hydrogen Bond Increment Group Value for Radicals

This method utilizes the thermodynamic properties of the parent molecules incorporated with a H atom bond increment (HBI) to estimate thermochemical properties of radicals where a H atom is removed.

HBI group values for CH_3SCH_2OO and $C\cdot H_2SCH_2OOH$ are derived from thermodynamic property data of CH_3SCH_2OOH molecule and its two radicals. The HBI group for $\Delta H_{\rm f}^{\rm o}{}_{298}$ component reflects the enthalpy change due to loss of a H atom [34] from a stable parent molecule in the form of the R--H bond energy. For example, the bond energy of CH_3SCH_2OO-H is based on the heat of reaction of the following reaction:

Table 1.7 Group Value

Groups	$\Delta H_{\mathrm{f}}^{\mathrm{o}}_{298}^{\mathrm{a}}$	S°298 b	C _p (300) ^b	$C_p(400)^b$	$C_p(500)^b$	$C_p(600)^b$	$C_p(800)^b$	$C_p(1000)^b$	$C_p(1500)^b$
CH ₃ SCH ₂ OOH	-29.14	88.57	24.84	29.74	34.00	37.48	42.54	46.00	51.03
C/H3/S	-10.08	30.41	6.19	7.84	9.40	10.79	13.02	14.77	17.58
S/C/C	11.51	13.15	4.99	4.96	5.02	5.07	5.41	5.73	5.70
O/C/O	-5.5	8.54	3.90	4.31	4.60	4.84	5.32	5.80	6.01
O/H/O	-16.30	27.83	5.21	5.72	6.17	6.66	7.15	7.61	8.43
C/H2/O/S	-8.77	9.39	4.55	6.91	8.81	10.12	11.64	12.09	13.31

Table 1.8 HBI Group Values for CH₃SCH₂OO· and C·H₂SCH₂OOH Radicals

	Bond Energy ^a	S°298 b	C _{p(300)} b	C _{p(400)} b	$C_{p(500)}^{b}$	$C_{p(600)}^{b}$	$C_{p(800)}^{b}$	$C_{p(1000)}^{b}$	Cp ₍₁₅₀₀₎ b
CH ₃ SCH ₂ OO·	86.4	0.11	-0.65	-2.39	-3.09	-3.67	-4.43	-4.82	-5.10
C·H ₂ SCH ₂ OOH	92.7	1.15	0.59	1.09	0.56	-0.08	-1.26	-2.23	-3.76

^aUnits in kcal/mol. ^b Units in cal/(mol K)

^aUnits in kcal/mol. ^bUnits in cal/(mol K) ^c reference [33]

 $(CH_3SCH_2OOH)=(CH_3SCH_2OO\cdot)+(H\cdot)$

 ΔH^{o}_{rxn} = D(CH₃SCH₂OO-H) The bond energy of CH₃SCH₂OO-H can be described as D(CH₃SCH₂OO-H) = (CH₃SCH₂OO·)+52.1- (CH₃SCH₂OOH)

HBI group for heat capacity is more simply described as

HBI
$$C_p(T)$$
 $CH_3SCH_2OO \cdot = C_p(T)$ $CH_3SCH_2OO \cdot - C_p(T)$ CH_3SCH_2OOH

The effects for changes in symmetry between the radical and parent are not included in the HBI group but are included in evaluation of the entropy of each species separately. The HBI group value of S°₂₉₈ is therefore termed intrinsic (Benson) and can be written as

$$\begin{split} HBI(S^{\circ}_{298})CH3SCH2OO \cdot &= S^{\circ}_{298}CH_{3}SCH_{2}OO \cdot + Rln\sigma(CH_{3}SCH_{2}OO \cdot) - \\ \\ S^{\circ}_{298}CH_{3}SCH_{2}OOH - Rln(\sigma) \ (CH_{3}SCH_{2}OOH) \end{split}$$

1.3.8 Thermochemical Kinetic Analysis of the Reaction

1.3.8.1 $CH_3SC \cdot H_2 + O_2 \rightarrow (CH_3SCH_2OO \cdot)^* \rightarrow Products$. A potential energy diagram for the methylthiomethyl radical with O_2 is illustrated in Figure 1.6; energies are calculated at the CBS-QB3 level. Addition of oxygen to the $CH_3SC \cdot H_2$ radical forms an energized adduct which can react to new products.

$$CH_3SC \cdot H_2 \ + \ O_2 \ \rightarrow \ CH_3SCH_2OO \cdot {}^* \rightarrow \ Products$$

Possible reactions for this activated adduct are described as follows:

Rxn1: CH₃SCH₂ OO·*→ reverse reaction back to reactants CH₃SC·H₂ + O₂

Rxn2: Stabilization (CH₃SCH₂OO·* \rightarrow CH₃SCH₂OO·)

Rxn3: Hydrogen atom shift from the methyl group to form an energized hydroperoxide methyl radical:

$$CH_3SCH_2OO \cdot * \rightarrow CH_3SC \cdot HOOH * \rightarrow CH_3SC (=O)H + OH$$

Rxn4: Hydrogen atom transfer from peroxy carbon (TS2)

$$CH_3SCH_2OO \cdot * \rightarrow CH3SC \cdot HOOH \rightarrow CH_3SC(=O)H + OH$$

The CH₃SC·HOOH is unstable and immediately dissociates to CH₃SC(=O)H plus OH radical (TS2)

Rxn5: The oxygen radical on this peroxy radical can also attack the sulfur atom to form a cyclic transition state structure (TS3, a 4-member ring) where the relatively strong S=O bond (near double bond) starts to form; and the weak (SO—OC) peroxide bond in the transition state starts to cleave (ring opening). The initial product from this reaction: a radical intermediate $CH_3S(=O)CH_2O$ · will undergo beta scission (carbonyl formation) resulting in $CH_3S(=O)+CH_2O$

The methylthiomethyl radical ($\Delta H_{\rm f}^{o}_{298}$ =32.66 kcal/mol) adds to O₂ to form CH₃SCH₂OO· peroxy radical ($\Delta H_{\rm f}^{o}_{298}$ =5.17kcal/mol). The transition state for H atom shift from the methyl (CH₃) carbon (6 member ring tst) has a barrier (activation energy) of 17.06 kcal/mol, thus TS1 is below the entrance channel of the reactants. $\Delta H_{\rm f}^{o}_{298}$ for the CH₃SC·HOOH radical in Reaction 4 is estimated on the base of the result of C·H₂SCH₂OOH and their difference of total energy calculated under MP2/6-31G(d,p) level. The activated CH₃SCH₂OO·* adduct crossed TS2, which then undergoes OH elimination to form CH₃SC(=O)H, with the barrier 37.79kcal/mol. Reaction 5 has a barrier of 32.92 kcal/mol.

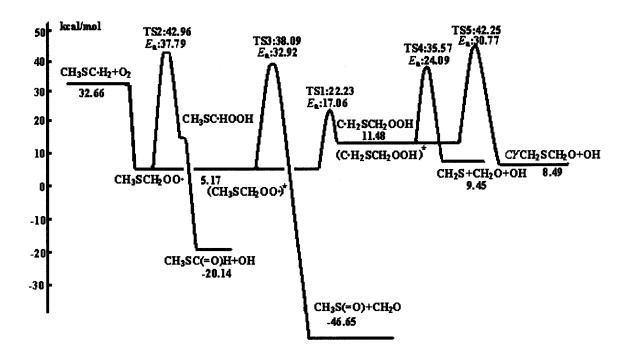


Figure 1.6 Potential energy diagram $CH_3SC \cdot H_2 + O_2$.

1.3.8.2 C·H₂SCH₂OOH* \rightarrow Products. The energized C·H₂SCH₂OOH can undergo four different reactions:

Rxn1: Reverse reaction-back to CH₃SCH₂OO· radical.

Rxn2: Stabilization.

Rxn3: Beta scission reaction to $CH_2=S + C \cdot H_2OOH$ radical. The $C \cdot H_2OOH$ radical has little or no barrier to dissociation cleaving a weak CO—OH bond (ca 45 kcal-mol-1) and forming a strong carbonyl bond (~80 kcal-mol-1) + OH radical. The activation energy of TS4 is 24.1 kcal/mol.

Rxn4: Cyclization forming through TS5 where the sp³ carbon based radical attaches the C-O peroxide oxygen through a four-member ring transition state (TS5) to form 1,3-Oxathietane + OH. The activation energy of TS5 is 30.8 kcal/mol, based on the CBS-QB3 level of theory.

Table 1. 9 High-Pressure Limit Rate Constants as Input Parameters for QRRK-Master Equation Calculations

	Reaction	$A(s^{-1})$	n	$E_{\rm a}$ (kcal/mol)
k_1	$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SCH_2OO \cdot$	5.82E+12	0.00	0.00
k_{-1}	$CH_3SCH_2OO \rightarrow CH_3SC \cdot H_2 + O_2$	4.28E+14	0.00	26.90
k_2	$CH_3SCH_2OO \rightarrow C \cdot H_2SCH_2OOH$	1.22E+07	1.20	17.06
k_{-2}	$C \cdot H_2SCH_2OOH \rightarrow CH_3SCH_2OO \cdot$	7.55E+10	-0.26	10.75
k_3	$CH_3SCH_2OO \rightarrow CH_3SC(=O)H + OH$	8.31E+09	0.92	37.79
k_4	$CH_3SCH_2OO \rightarrow CH_3S(=O) + CH_2O$	1.70E+10	0.53	32.92
k_5	$C \cdot H_2SCH_2OOH \rightarrow CH_2S + CH_2O + OH$	6.45E+13	-0.47	24.09
k_6	C·H ₂ SCH ₂ OOH→CYCH ₂ SCH ₂ O+OH	3.72E+13	-0.70	30.77

Results are calculated using Thermkin Program.

Lennard-Jones parameters: σ =5.54Å, €/k=460 Geometric mean frequency
(from CPFIT, : CH₃SCH₂OO· (904.0cm⁻¹ ×22.5), C·H₂SCH₂OOH(736.9 cm⁻¹ ×23.0)

 k_{-1} , k_{-2} microscopic reversibility MR

 k_2 , k_3 , k_4 k_5 , k_6 fitting with three-parameter modified Arrhenius equation over the temperature range from 200 to 2000 K using THERMKIN (a canonical transition calculation for the rate constant from the thermochemical data on the reactants and corresponding transition state.)

Table 1.10 Resulting Rate Constants in QRRK Calculations Calculated Reaction Parameters at P=1 atm, $k = A(T)^n \exp(-E_a/RT)$ (T=200-2000k)

Reaction	$A(s^{-1})$	n	E _a (kcal/mol)	$k_{298} (s^{-1})$
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SCH_2OO \cdot$	3.697E+64	-17.25	11.64	5.738E+12
$CH_3SC \cdot H_2 + O_2 \rightarrow C \cdot H_2SCH_2OOH$	8.734E+67	-18.52	15.54	7.872E+09
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SC (=O)H + OH$	9.563E+09	0.35	11.82	1.582E+02
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3S(=O) + CH_2O$	3.546E+11	-0.37	8.13	4.435E+04
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_2S + CH_2O + OH$	9.149E+17	-1.97	10.75	7.453E+04
$CH_3SC \cdot H_2 + O_2 \rightarrow CYCH_2SCH_2O + OH$	2.227E+15	-1.65	14.80	1.639E+00
$CH_3SCH_2OO \rightarrow CH_3SC \cdot H_2 + O_2$	8.265E+40	-8.98	32.14	8.269E-06
$CH_3SCH_2OO \rightarrow CH_3SC(=O)H + OH$	3.267E+46	-12.39	43.46	8.275E-17
$\text{CH}_3\text{SCH}_2\text{OO} \rightarrow \text{CH}_3\text{S}(=\text{O}) + \text{CH}_2\text{O}$	1.169E+43	-10.99	38.74	2.069E-13
$C \cdot H_2SCH_2OOH \rightarrow CH_2S + CH_2O + OH$	1.550E+31	-6.39	27.65	9.274E-06
$C \cdot H_2SCH_2OOH \rightarrow CYCH_2SCH_2O+OH$	3.065E+36	-8.60	35.28	1.541E-11

1.3.9 QRRK Calculation Results

 $CH_3SC \cdot H_2 + O_2 \rightarrow Products$: QRRK calculations for k(E) and master equation analysis for fall-off are performed on $CH_3SC \cdot H_2 + O_2$ reaction system and results are list in Table 1.9 and Table 1.10.

In all calculations ΔE_{down} of 830 cal/mol is used. Rate constant at 298Kand 1000K versus Pressure are illustrated in Figure 1.7 and Figure 1.8.

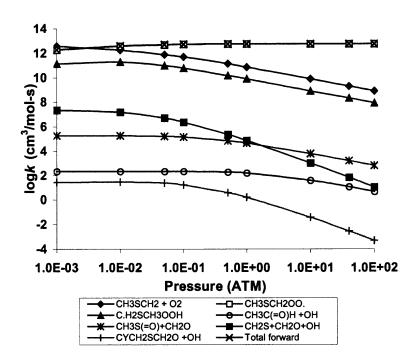


Figure 1.7 $CH_3SC \cdot H_2 + O_2 \rightarrow Products \log k$ vs. pressure at 298K.

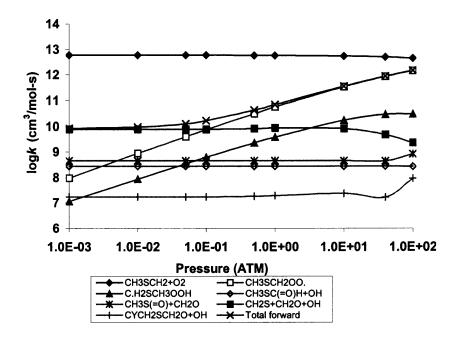


Figure 1.8 $CH_3SC \cdot H_2 + O_2 \rightarrow Products \log k$ vs. pressure at 1000K.

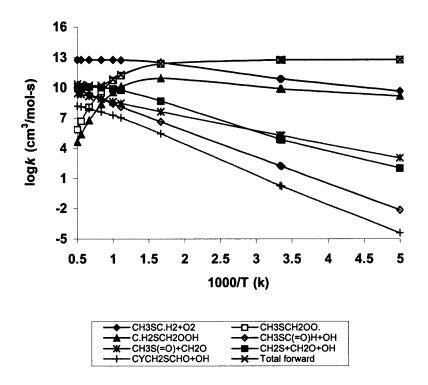


Figure 1.9 $CH_3SC \cdot H_2 + O_2 \rightarrow Products \log k$ vs. temperature at 1 atm.

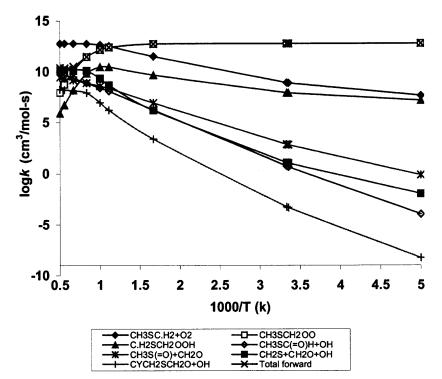


Figure 1.10 CH₃SC·H₂ +O₂ \rightarrow Products logk vs. temperature at 100 atm.

At 298 K, stabilization [CH₃SCH₂OO·] is the dominant reaction over 0.01atm, and the rate constants for CH₃SC(=O)H + OH and CH₃S(=O) + CH₂O products are similar over the entire pressure range at 298K. Dissociation to CH₂S+CH₂O+OH is the major reaction below 0.1atm at 1000K. Plots of calculated rate constants for CH₃SC·H₂ +O₂ at 1atm and 100 atm logk versus 1000/T are illustrated in Figure 1.9 and Figure 1.10. Stabilization to CH₃SCH₂OO· is the dominant reaction below 1100K and this crossover temperature is shifted to 1500K at 100 atm.

Unimolecular Dissociation Reactions of the Stabilized Adducts:

1. CH₃SCH₂OO· Dissociation: Plots of rate constants for CH₃SCH₂OO· dissociation at 1 atm pressure 1000/T and of rate constants at 1000K versus pressure are illustrated in Figure 1.11and Figure 1.12. CH₃SC·H₂ +O₂ and C·H₂SCH₂OOH stabilization are

important at the entire temperature range. At 1000K, CH₃SC·H₂ +O₂ and CH₃SC(=O)H + OH products increase as pressure is increased.

2. C·H₂SCH₂OOH Dissociation: Rate constants for C·H₂SCH₂OOH dissociation at 1 atm pressure versus 1000/T and rate constants at 1000K versus pressure are illustrated in Figure 1.13 and Figure 1.14. Isomerization to CH₃SCH₂OO· is the dominant reaction path at low pressure. The CH₂S+CH₂O+OH products are important at high pressure.

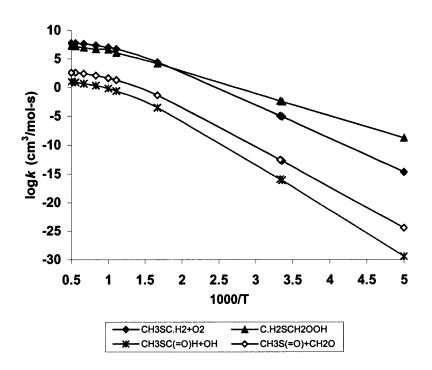


Figure 1.11 CH₃SCH₂OO· Dissociation logk vs. temperature at 1 atm.

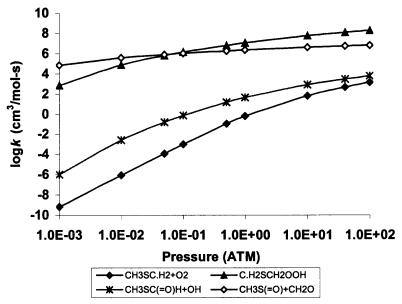


Figure 1.12 CH₃SCH₂OO· Dissociation logk vs. pressure at 1000K.

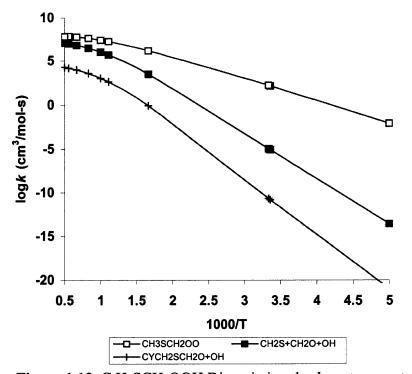


Figure 1.13 C·H₂SCH₂OOH Dissociation logk vs. temperature at 1 atm.

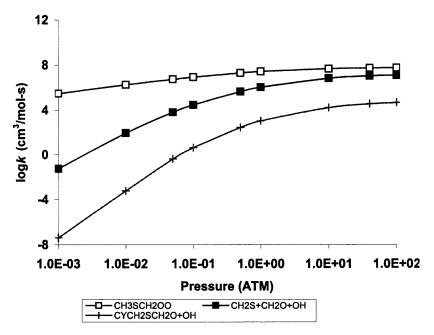


Figure 1.14 C·H₂SCH₂OOH Dissociation logk vs. pressure at 1000K.

1.4 Summary

Thermodynamic Properties of stable radicals and transition states are calculated on the $CH_3SC\cdot H_2 + O_2$ association reaction system using density functional method and CBS-QB3 method. $\Delta H_{\rm f}^{\rm o}{}_{298}$ for stable radicals $CH_3SC\cdot H_2$, $CH_3SCH_2OO\cdot$ and $C\cdot H_2SCH_2OOH$ are estimated using total energies and isodesmic reaction with ZPVE's and thermal correction. The $\Delta H_{\rm f}^{\rm o}{}_{298}$ of transition states are estimated by evaluation of $\Delta H_{\rm f}^{\rm o}{}_{298}$ of the stable radical adducts plus the difference of the total energies with ZPVE's and thermal correction between these radical species and the transition state's

Entropies (S°_{298}) and heat capacities ($C_p(T)$, $300 \le T/K \le 1500$) are determined with BLYP/6-311g(d,p) optimized geometries and frequencies, considering hindered internal rotation contributions to entropy and heat capacity. The thermodynamic

properties of C/H2/S/O group are determined using group additivity analysis. The group increment values for CH₃SCH₂OO· and C·H₂SCH₂OOH are also determined.

Reaction pathway and kinetics are analyzed on the $CH_3SC \cdot H_2 + O_2$ reaction system using QRRK for k(E) and a master equation fall-off. Reaction to products is evaluated versus both pressure and temperature. Stabilization CH_3SCH_2OO is the dominant reaction below 1100K at 1 atm. CH_2S+CH_2O+OH is the major reaction above 1500K.

CHAPTER 2

STRUCTURES, THERMOCHEMICAL PROPERTIES, INTERNAL ROTATION BARRIERS AND ENERGIES OF SULFENIC ACIDS, ETHENETHIOL AND SULFENIC ESTER

2.1 Introduction

Sulfenic acids are organosulfur oxyacids of the form RSOH, where R is an organic moiety [35-37]. These species are important reactive intermediates in the biologically important oxidation of thiols [38,39]. Unlike the more highly oxidized sulfinic and sulfonic acids, which are relatively stable, sulfenic acids are generally unstable and highly reactive compounds [40]. In large part this is due to the high nucleophilicity of the sulfur atom. When considered with the electrophilicity of the organic R group, this nucleophilicity accounts for the tendency of sulfenic acids to undergo self-condensation to form the thiosulfinate [41].

2RSOH
$$\longrightarrow$$
 $\begin{array}{c} O \\ \parallel \\ R-S-S-R + H_2O \end{array}$

The simplest sulfenic acid (CH₃SOH) presumably plays a role in the photochemical oxidative degradation of methanethiol and dimethyl disulfide [42-45]. CH₃SOH has been generated in the gas phase by thermolysis of methyl *tert*-butyl sulfoxide and its structure determined from microwave spectra [46,47].

Experimental thermochemical data ($\Delta H_{\rm f}^{\rm o}{}_{298}$) of methanesulfenic acid CH₃SOH and its cation radical are initially reported as -45.45 and 163.87kcal/mol [48]. Dewar evaluated the reaction enthalpies of decompositions of methanesulfenic acid and its cation radical utilizing collisionally activated dissociation, neutralization reionization, tandem mass spectrometric techniques and MNDO calculations [49]. Turecek et al.

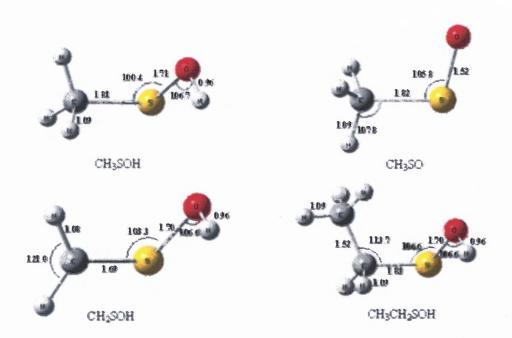
reported the theoretical heat formation of CH₃SOH is -42.82kcal/mol under MNDO method. Atomization method was used to estimate the $\Delta H_{\rm f}^{\rm o}_{298}$ of simple sulfenic acids (CH₃SOH: -35.6kcal/mol) and their radicals (CH₃SO·: -17.8kcal/mol) by Gregory and Jenks [50], and they also concluded that the sulfinyl radical (RSO·) appears to be the best racial stabilizing group of the four radicals (RSO· RSS· ROO· ROS·).

Block [51] studied methanesulfenic acid (CH₃SOH) and found that it was generated in the gas phase by thermolysis of methyl *tert*-butyl sulfoxide. And its structure determined from microwave spectra.

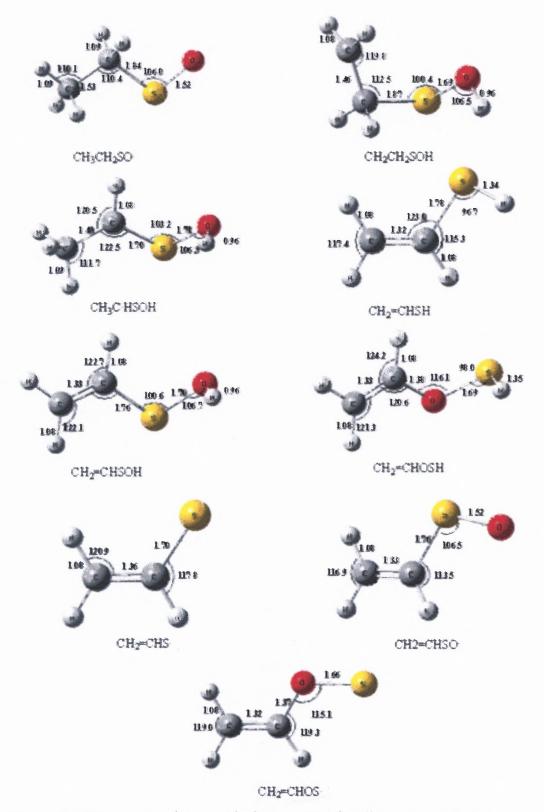
In this chapter, enthalpy ($\Delta H_{\rm f}^{\rm o}{}_{298}$) and heat capacities ($C_{\rm p}(T)$) are determined for the a series of representative sulfenic acids and their radicals using CBS-QB3 method. Enthalpies of formation are evaluated using isodesmic working reactions. Contributions to entropy and heat capacities from internal rotation are estimated, with B3LYP/6-311g(d,p) level calculations for rotation barrier.

2.2 Calculation Method

All the calculations were performed using the Gaussian 98 program suit. The structure parameters are fully optimized at the B3LYP/6-311G(d,p) level of theory. The harmonic vibration frequencies and zero-point vibration energies (ZPVE) are computed at the same level. The total energies are corrected by ZPVE's, which are scaled by 0.99.


Enthalpies of formation ($\Delta H_{\rm f}^{\rm o}_{298}$) are calculated using total energies and isodesmic reactions. Isodesmic reactions are hypothetical reactions where the number of electron pairs and the bonds of the same type are conserved on both sides of the equation; only the relationship among the bonds is altered.

Entropies and heat capacities at temperature range from 300K to 1500K were calculated using the rigid – rotor- harmonic – oscillator approximation based on scaled vibrational frequencies and moments of inertia of the optimized B3LYP/6-311G(d,p) structures.


2.3 Results and Discussion

2.3.1 Geometries and Vibrational Frequencies

The optimized geometries of the target species, obtained at B3LYP/6-311G(d,p) levels of theory, are depicted in Figure.2.1 with geometric parameters. Vibrational frequencies and moments of inertia are list in Table 2.1.

Figure 2.1 Structures and geometrical parameters for all species studied at B3LYP/6-311G(d,p) Distance is present in Å and angles in degrees.

Figure 2.1 Structures and geometrical parameters for all species studied at B3LYP/6-311G(d,p) Distance is present in Å and angles in degrees. (Continued)

For the stable molecules: CH₃SOH and CH₃CH₂SOH, the bond length of S-O is about 1.70Å, much longer than the result (1.63 Å) calculated by McKee [52] under the MP2/6-31+G(d) level, whereas the S-O bondlength in CH₃SO· radical is 1.52 Å which represents the character of partial double bond.

 Table 2.1 Vibration Frequencies and Moments of Inertia

	Moments of	Frequencies (cm ⁻¹)
	inertia (amu Bohr ²)	
CH ₃ SOH	88.20335	187, 287, 408, 686, 728, 975, 980, 1175, 1354,
	231.02327	1449, 1481, 30301, 3112, 3125, 3788
	302.03357	
CH ₃ SO·	67.91437	141, 323, 659, 903, 956, 1000, 1335, 1446,
	218.87298	1463, 3037, 3132, 31334
	275.30467	
C·H ₂ SOH	74.57081	289, 315, 391, 534, 672, 831, 918, 11489,
	213.69217	1395, 3133, 3259, 3759
	278.66335	
CH ₃ CH ₂ SOH	177.79481	118, 201, 278, 371, 429, 638, 719, 778, 974,
	440.36096	1057, 1072, 1169, 1269, 1311, 1412, 1459,
	548.99680	1488, 1506, 3026, 3032, 3068, 3096, 3117,
		3789
CH ₃ CH ₂ SO·	84.09157	59, 208, 212, 367, 658, 767, 980, 999, 1004,
	546.70323	1064, 1249, 1280, 1418, 1471, 1497, 1502,
	608.22638	3033, 3051, 3089, 3102, 3110
C·H ₂ CH ₂ SOH	171.40402	110, 174, 264, 344, 420, 538, 652, 721, 768,
	427.81618	1035, 1074, 1173, 1223, 1263, 1448, 1475,
	528.99931	3034, 3089, 3146, 3251, 3786
CH₃C·HSOH	97.97550	75, 135, 238, 318, 384, 583, 643, 732, 992,
	557.07868	1023, 1097, 1143, 1306, 1405, 1469, 1488,
	614.13046	2988, 3024, 3091, 3156, 3760

 Table 2.1 Vibration Frequencies and Moments of Inertia. (Continued.)

	Moments of	Frequencies (cm ⁻¹)
	inertia	
	(amu Bohr ²)	
CH ₂ =CHSH	36.31178	157, 365, 596, 696, 916, 929, 987, 1067, 1304,
	311.77839	1419, 1659, 2671, 3139, 3171, 3225
	345.55213	
CH ₂ =CHSOH	95.20691	107, 222, 391, 431, 616, 719, 725, 927, 985,
	505.46448	1046, 1175, 1283, 1417, 1642, 3134, 3155,
	571.41962	3221, 3782
CH ₂ =CHOSH	48.03702	68, 283, 292, 449, 704, 724, 873, 944, 982, 993,
	623.51757	1162, 1329, 1414, 1696, 2595, 3151, 3165,
	648.40224	3252
CH ₂ =CHS·	31.58568	401, 465, 765, 933, 966, 1049, 1291, 1359,
	291.24936	1517, 3122, 3134, 3232
	322.83504	
CH ₂ =CHSO·	65.69148	105, 237, 423, 540, 678, 923, 984, 1005, 1021,
	490.52500	1261, 1410, 1608, 3134, 3167, 3223
	556.21648	
CH ₂ =CHOS·	35.07602	110, 281, 458, 698, 769, 900, 965, 982, 1140,
	609.90150	1318, 1410, 1663, 3160, 3176, 3260
	644.97743	

2.3.2 Enthalpies of Formation ($\Delta H_{\rm f}^{0}_{298}$)

The enthalpies of formation ($\Delta H_{\rm f}^{\rm o}{}_{298}$) of the species concerned in this chapter are estimated using total energies and calculated $\Delta H_{\rm rxn298}$ for the listed reactions. The total energies are determined at the CBS-QB3 level; scaled ZPVE's and thermal corrections to 298.15K are listed in Table 2.2.

Table 2.2 Total Energies a at 298K

Species	CBS-QB3	ZPVE ^b	Therm. Corr ^c
CH₃SOH	-513.2741601	32.16	3.42
CH ₃ SO·	-512.6677098	24.75	3.23
C·H₂SOH	-512.6276196	23.56	3.38
CH ₃ CH ₂ SOH	-552.5003207	50.00	4.15
CH₃CH₂SO·	-551.8924374	42.60	4.04
$C \cdot H_2 C H_2 S O H$	-551.8406335	40.94	4.32
CH₃C·HSOH	-551.8548475	41.16	4.37
CH ₂ =CHSH	-476.1645732	31.57	3.27
CH ₂ =CHSOH	-551.2901117	35.35	3.85
CH ₂ =CHOSH	-551.2769922	34.09	3.86
CH₂=CHS·	-475.5394689	25.80	2.87
CH ₂ =CHSO·	-550.6846759	27.93	3.62
CH ₂ =CHOS·	-550.6561673	28.70	3.50

^a Total energy calculation based on the geometries optimized at B3LYP/6-311g(d,p) level of theory and ZPVE's and thermal corrections to 298kare included. Units in hartree.

The $\Delta H_{\rm f}^{\,0}{}_{298}$ for sulfenic acids molecule (CH₃SOH, CH₃CH₂SOH, CH₂=CHSOH), ethenethiol (CH₂=SH), sulfenic ester (CH₂=CHOSH) and their radicals (CH₃SO·, C·H₂SOH, CH₃CH₂SO·, C·H₂CH₂SOH, CH₃C·HSOH, CH₂=CHSO·, CH₂=CHS·, CH₂=CHOS·) are determined from total energies and isodesmic reactions. All four compounds in each reaction are estimated using density functional and CBS-QB3 calculations. ZPVE's and thermal correction are taken into account. And the enthalpy of reaction ($\Delta H_{\rm rxn}^{\,0}$) is obtained. Since $\Delta H_{\rm f}^{\,0}{}_{298}$ of other three compounds have been experimentally determined or theoretically calculated, the unknown enthalpies of the target species are calculated. Enthalpies of formation and their corresponding

^b ZPVE: scaled zero-point energies in kcal/mol. ZPVE is scaled by 0.99

^c Therm.corr.: thermal corrections in kcal/mol.

uncertainties for standard species used in the isodesmic working reactions are obtained from evaluation of literature data. The values are listed in Appendix Table 1.

2.3.2.1 Methanesulfenic Acid (CH₃SOH) and Its Radicals. The reaction enthalpies and $\Delta H_{\rm f}^{\rm o}{}_{298}$ for the methanesulfenic acid and its radicals obtained from the reaction schemes are tabulated in Table 2.3. The results for $\Delta H_{\rm f}^{\rm o}{}_{298}$ show very good consistency over working reactions. The $\Delta H_{\rm f}^{\rm o}{}_{298}$ values for target radicals are based on the $\Delta H_{\rm f}^{\rm o}{}_{298}$ values of the parent molecules in this work. The calculated enthalpy for CH₃SOH is -34.70±0.48 kcal/mol, which is in agreement with the reference data -33.34 kcal/mol by Wang et al.

Comparing with the reference data, the value for CH₃SO· ($\Delta H_{\rm f~298}^{\rm o}$ = -18.95±0.59 kcal/mol) in this work is much larger than the experimental value -14.8 kcal/mol. The $H_{\rm f~298}^{\rm o}$ for C·H₂SOH is 6.44±0.30 kcal/mol. There are no reported $\Delta H_{\rm f~298}^{\rm o}$ values that we are aware of.

The stability of this C·H₂SOH radical can be evaluated, in part, by its ΔH_{rxn} for the following

$$C \cdot H2SOH \rightarrow CH_2=S + OH$$
 $\Delta H_{rxn} = 29.95 \text{kcal/mol}$

2.3.2.2 Ethanesulfenic Acid (CH₃CH₂SOH) and Its Radicals. There is a lack of experimental and theoretical data on the enthalpies of formation of CH₃CH₂SOH and its radicals. We estimate these data using isodesmic reaction listed in Table 2.4. The $\Delta H_{\rm f}^{\rm o}{}_{298}$ values for ethanesulfenic acid are based on the $\Delta H_{\rm f}^{\rm o}{}_{298}$ values of the methanesulfenic acid in this work. The values show good agreement across the isodesmic reaction series with a standard deviation on the order of 0.3kcal/mol. The average $\Delta H_{\rm f}^{\rm o}{}_{298}$ from isodesmic

Table 2.3 Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Methanesulfenic Acid and Its Radicals (kcal/mol)

	CBS	-QB3
Isodesmic Reactions	$\Delta H^{\circ}_{ m rxn}$	$\Delta H_{ m f}^{ m o}{}_{ m 298}$
CH ₃ SOH + CH ₃ OH → CH ₃ OOH + CH ₃ SH	45.19	-34.37
$CH_3SOH + CH_3CH_2OH \rightarrow CH_3SH + CH_3CH_2OOH$	44.98	-34.02
$CH_3SOH + CH_3OCH_3 \rightarrow CH_3OOH + CH_3SCH_3$	38.21	-34.98
$CH_3SOH + CH_3CH_2OCH_3 \rightarrow CH_3OOH + CH_3CH_2SCH_3$	40.95	-35.44
Average value and deviation (reference data)	-34.70±0.48 (-33.34[53], 42.8 [5	54],-45.45 [48],-33.9 [55])
CH_3SO + CH_3OH \rightarrow CH_3SOH + CH_3O	36.93	-19.45
CH_3SO · + CH_3OCH_3 \rightarrow CH_3SCH_3 + CH_3OO ·	56.03	-18.85
CH_3SO · + CH_4 \rightarrow CH_3O · + CH_3SH	34.68	-18.15
CH_3SO + $\text{CH}_3\text{OOH} \rightarrow \text{CH}_3\text{SOH} + \text{CH}_3\text{OO}$	17.82	-18.57
$\text{CH}_3\text{SO} + \text{CH}_3\text{CH}_2\text{OOH} \rightarrow \text{CH}_3\text{SOH} + \text{CH}_3\text{CH}_2\text{OO}$	17.56	-19.30
$\text{CH}_3\text{SO} + \text{CH}_3\text{CH}_2\text{OH} \rightarrow \text{CH}_3\text{SOH} + \text{CH}_3\text{CH}_2\text{O}$	36.92	-19.40
Average value and deviation (reference data)	-18.95±0.59(-16[15]	, -16.7[56], -18.8[41])
\cdot CH ₂ SOH + CH ₃ CH ₃ \rightarrow CH ₃ CH ₂ \cdot + CH ₃ SOH	8.14	6.20
\cdot CH ₂ SOH + CH ₃ OH \rightarrow \cdot CH ₂ OH + CH ₃ SOH	3.30	6.10
\cdot CH ₂ SOH + CH ₃ SH \rightarrow \cdot CH ₂ SH + CH ₃ SOH	2.04	7.12
\cdot CH ₂ SOH + CH ₃ CH ₂ OOH \rightarrow \cdot CH ₂ CH ₂ OOH + CH ₃ SOH	9.84	6.35
Average value and deviation	6.44	1±0.30

Table 2.4 Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Ethanesulfenic Acid and Its Radicals (kcal/mol)

	CBS	S-QB3
Isodesmic Reactions	ΔH°_{rxn}	$\Delta H_{ m f}^{ m o}{}_{ m 298}$
CH ₃ CH ₂ SOH + CH ₃ OH → CH ₃ CH ₂ OOH + CH ₃ SH	43.23	-40.31
CH ₃ CH ₂ SOH + CH ₃ OOH → CH ₃ CH ₂ OOH + CH ₃ SOH	-1.96	-40.64
$CH_3CH_2SOH + CH_3CH_3 \rightarrow CH_3CH_2CH_3 + CH_3SOH$	1.21	-40.18
$CH_3CH_2SOH + CH_3OCH_3 \rightarrow CH_3CH_2OOH + CH_3SCH_3$	36.25	-40.92
Average value and deviation	-40.5	1±0.33
$CH_3CH_2SO \cdot + CH_3OH \rightarrow CH_3CH_2OO \cdot + CH_3SH$	59.89	-24.07
$CH_3CH_2SO \cdot + CH_3OH \rightarrow CH_3O \cdot + CH_3CH_2SOH$	36.03	-24.46
$CH_3CH_2SO \cdot + CH_3OOH \rightarrow CH_3OO \cdot + CH_3CH_2SOH$	16.92	-23.58
$\text{CH}_3\text{CH}_2\text{SO} \cdot + \text{CH}_3\text{CH}_2\text{OOH} \rightarrow \text{CH}_3\text{CH}_2\text{OO} \cdot + \text{CH}_3\text{CH}_2\text{SOH}$	16.66	-24.37
Average value and deviation	-24.1	2±0.34

Table 2.4 Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Ethanesulfenic Acid and Its Radicals (kcal/mol) (Continued)

	CBS	-QB3
Isodesmic Reactions	$\Delta H^{\rm o}_{\rm rxn}$	$\Delta H_{ m f}^{ m o}_{ m 298}$
C·H ₂ CH ₂ SOH + CH ₃ OH → C·H ₂ CH ₂ OH + CH ₃ SOH	-1.14	8.82
$C \cdot H_2CH_2SOH + CH_3CH_2OH \rightarrow C \cdot H_2CH_2OH + CH_3CH_2SOH$	0.61	9.19
$C \cdot H_2CH_2SOH + CH_3OOH \rightarrow C \cdot H_2CH_2OOH + CH_3SOH$	-0.37	9.67
$C \cdot H_2CH_2SOH + CH_3OH \rightarrow C \cdot H_2CH_2OOH + CH_3SH$	44.82	9.00
Average value and deviation	9.17	±0.36
CH ₃ C·HSOH + CH ₃ OH → C·H ₂ OH + CH ₃ CH ₂ SOH	3.97	-0.47
CH ₃ C·HSOH + CH ₃ SH → C·H ₂ SH + CH ₃ CH ₂ SOH	2.71	-1.56
$CH_3C\cdot HSOH + CH_3CH_2OH \rightarrow CH_3CH_2SOH + CH_3C\cdot HOH$	2.27	-0.10
$CH_3C\cdot HSOH + CH_3CH_3 \rightarrow CH_3SOH + CH_3C\cdot HCH_3$	7.24	-0.71
Average value and deviation (theoretical and experiment data)	-0.71	±0.39

reactions are: -40.51, -24.14, 9.17 and -0.71 kcal/mol for CH₃CH₂SOH, CH₃CH₂SOO, C·H₂CH₂SOH and CH₃C·HSOH, respectively.

2.3.2.3 Ethenesulfenic Acid (CH₂=CHSOH) and Its Radicals The calculated reaction enthalpies and $\Delta H_{\rm f}^{\rm o}{}_{298}$ for the ethenesulfenic acid and its radicals calculated over isodesmic working reaction are tabulated in Table 2.5. The value obtained for the heat of formation of the CH₃SOH and CH₃CH₂SOH is used to calculate the heat of formation of CH₂=CHSOH. The recommended $\Delta H_{\rm f}^{\rm o}{}_{298}$ for it is -10.55, with a standard deviation of 0.91 kcal/mol, compatible with the reference data in the parenthesis. $\Delta H_{\rm f}^{\rm o}{}_{298}$ for CH₂=CHSO· radical is 4.52±0.65kcal/mol at CBS-QB3 calculation level.

2.3.2.4 Ethenethiol (CH₂=CHSH) and Its Radicals. Luo and Holmes [58] gave the value of heat formation for CH₂=CHSH (19.8±1kcal/mol) using group equivalents, and group additivity method yield a value of 20.9kcal/mol, which is a little greater than the value of 18.39±1.92 kcal/mol calculated in this work.

Gregory and Jenks obtained the $\Delta H_{\rm f\ 298}^{\rm o}$ for CH₂=CHS· of the value of 46.4kcal/mol under G2 (MP2, SVP) calculation level, which is similar to the result of 46.08±0.51kcal/mol in this work. The values are listed in Table 2.6.

Table 2.5 Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Ethenesulfenic Acid and Its Radicals (kcal/mol)

	CBS-QB3		
Isodesmic Reactions	ΔH°_{rxn}	$\DeltaH^{ extsf{o}}_{ extsf{f}298}$	
$\text{CH}_2 = \text{CHSOH} + \text{CH}_3 \text{CH}_3 \rightarrow \text{CH}_2 = \text{CHCH}_3 + \text{CH}_3 \text{SOH}$	0.57	-9.65	
CH_2 = $CHSOH + CH_3CH_2CH_3 \rightarrow CH_2$ = $CHCH_3 + CH_3CH_2SOH$	-0.63	-10.15	
CH_2 = $CHSOH + CH_3CH_2CH_3 \rightarrow CH_2$ = $CHCH_2CH_3 + CH_3SOH$	0.81	-10.64	
CH_2 = $CHSOH + CH_3OH \rightarrow CH_2$ = $CHOH + CH_3SOH$	-4.91	-11.77	
Average value and deviation (reference data)	-10.55±0.91(-10.	9 [41], -11.8 [41])	
$\text{CH}_2 = \text{CHSO} + \text{CH}_3 \text{OH} \rightarrow \text{CH}_2 = \text{CHCH}_3 + \text{CH}_3 \text{SO}$	1.21	4.98	
$\text{CH}_2 = \text{CHSO} + \text{CH}_3 \text{OH} \rightarrow \text{CH}_2 = \text{CHSOH} + \text{CH}_3 \text{O}$	37.57	4.06	
Average value and deviation (reference data)	4.52±0.65 (6.3 [41])		

Table 2.6 Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Ethenethiol and Its radicals (kcal/mol)

Isodesmic Reactions	CBS-QB3	
	$\Delta H^{\rm o}_{\rm rxn}$	$\DeltaH_{ m f~298}^{ m o}$
CH ₂ =CHSH + CH ₃ OH → CH ₂ =CHOH + CH ₃ SH	-4.68	16.70
$CH_2=CHSH + CH_3CH_3 \rightarrow CH_2=CHCH_3 + CH_3SH$	0.80	18.85
CH_2 = $CHSH + CH_3CH_2CH_3 \rightarrow CH_2$ = $CHCH_3 + CH_3CH_2SH$	-2.92	21.81
CH_2 = $CHSH + CH_3CH_2CH_3 \rightarrow CH_2$ = $CHCH_2CH_3 + CH_3SH$	1.04	18.37
CH_2 = $CHSH + CH_3OCH_3 \rightarrow CH_2$ = $CHOH + CH_3SCH_3$	-11.66	16.23
Average value and deviation (reference data)	18.39±1.92 (19.8±1)	
$\text{CH}_2 = \text{CHS} \cdot + \text{CH}_3 \text{OH} \rightarrow \text{CH}_2 = \text{CHO} \cdot + \text{CH}_3 \text{SH}$	-0.92	46.04
$CH_2=CHS \cdot + CH_3OCH_3 \rightarrow CH_2=CHCH_3 + CH_3S \cdot$	-7.90	45.43
$CH_2=CHS \cdot + CH_3CH_3 \rightarrow CH_2=CHCH_3 + CH_3S \cdot$	8.24	46.68
$\text{CH}_2 = \text{CHS} \cdot + \text{CH}_3 \text{CH}_2 \text{CH}_3 \rightarrow \text{CH}_2 = \text{CHCH}_2 \text{CH}_3 + \text{CH}_3 \text{S} \cdot$	8.471	46.20
Average value and deviation (reference data)	46.08±0.51(46.4)	

Table 2.7 Reaction Enthalpies at 298K and Calculated Enthalpies of Formation for Sulfenic Ester and Its Radicals (kcal/mol)

	CBS-QB3	
Isodesmic Reactions	$\Delta H^{\rm o}_{\rm rxn}$	$\DeltaH_{ m f}^{ m o}{}_{298}$
CH ₂ =CHOSH + CH ₃ OH → CH ₂ =CHOOH + CH ₃ SH	35.18	-2.19
CH_2 = $CHOSH + CH_3OCH_3 \rightarrow CH_2$ = $CHOOH + CH_3SCH_3$	28.20	-2.80
CH_2 = $CHOSH+ CH_3CH_2OCH_3 \rightarrow CH_2$ = $CHOOH + CH_3CH_2SCH_3$	30.94	-3.26
Average value and deviation(reference data)	-2.75±0.54 (-3.8)	
$\text{CH}_2 = \text{CHOS} + \text{CH}_3 \text{OH} \rightarrow \text{CH}_2 = \text{CHOSH} + \text{CH}_3 \text{O}$	27.91	21.52
$CH_2=CHOS \cdot + CH_3OOH \rightarrow CH_2=CHOSH + CH_3OO \cdot$	8.80	22.40
Average value and deviation (reference data)	21.96±0.62 (23.7)	

2.3.2.5 Sulfenic Ester and Its Radicals. Sulfenic ester, CH_2 =CHOSH, is studied in this work, giving the estimated heat of formation, is -2.75 kcal/mol. The value of $\Delta H_{\rm f}^{\rm o}{}_{298}$ for the radical is 21.96kcal/mol, smaller than the value of 23.7kcal/mol obtained by Gregory. The values are listed in Table 2.7.

2.3.3 Rotational Barrier

Potential barrier for internal rotations of all the species are calculated at the B3LYP/6-311g(d,p) level. Potential energy as function of dihedral angle is determined by varying the torsional angle from 0° to 360° at 15° intervals and allowing the remaining structure parameters to be optimized. Each minimum and maximum on the torsional structures is fully optimized.

2.3.3.1 Methanesulfenic Acid and Its Radicals Figure 2.2 shows the rotational barriers about C—S bond. The curves for C-S torsional potential of CH₃SOH, and CH₃SO· are symmetric and show three-fold symmetry with barriers 1.90 and 1.04kcal/mol. The barrier for stable parent is higher than that of the corresponding radical due to reduced steric effect by the loss of hydroxyl H atom. The stable conformers for C·H₂SOH occur when ∠H-C--S-O=45°, which allows an interaction between the O atom and the H atom in the −C·H₂ group, showing the potential barrier 7.71 kcal/mol. The distance between the O and H atoms is 2.89Å at this dihedral.

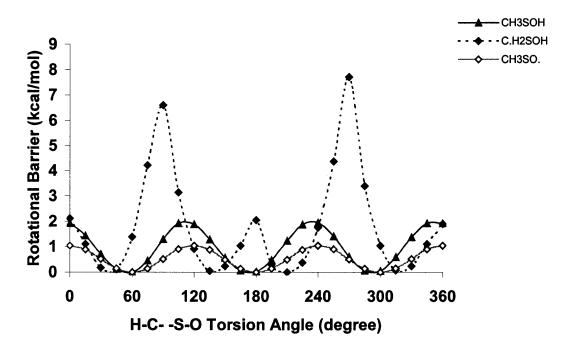


Figure 2.2 Potential barrier for internal rotation about the C—S bond of CH₃SOH, CH₃SO·, and C·H₂SOH. Points are calculated value at the B3LYP/6-311G(d,p) level.

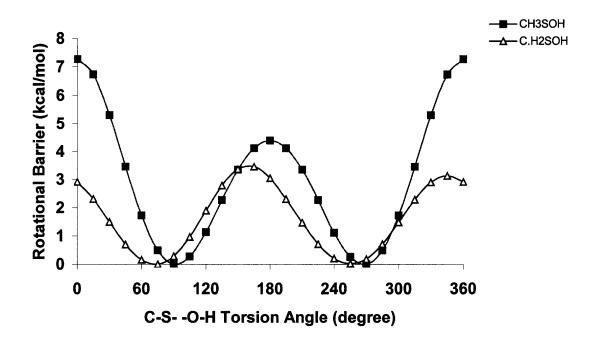
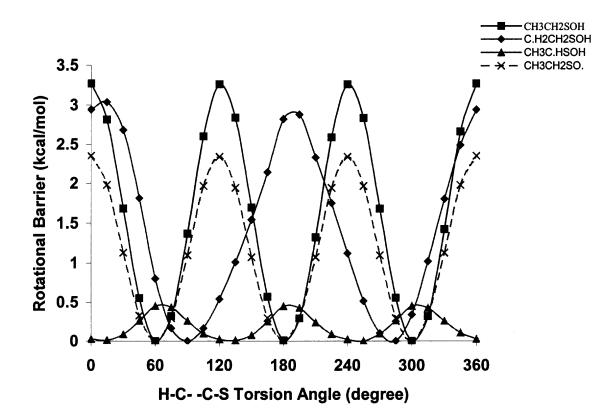
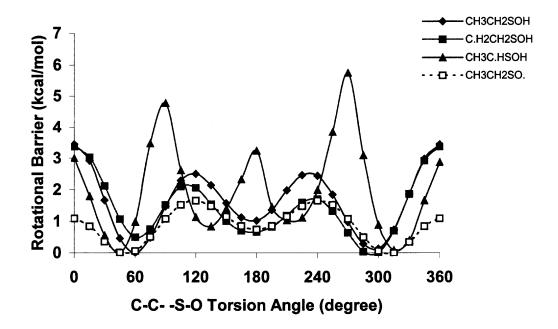
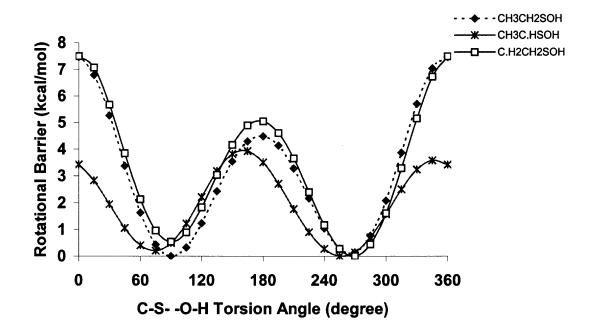



Figure 2.3 Potential barrier for internal rotation about the S—O bond of CH₃SOH and C·H₂SOH. Points are calculated value at the B3LYP/6-311G(d,p) level.


Figure 2.3 shows the rotational barriers about CS—OH bond for CH₃SOH and C·H₂SOH. The conformers with dihedral \angle H-C--C-S=90° are most stable for CH₃SOH; and the conformers with \angle C-S--O-H=75° are stable for C·H₂SOH.

2.3.3.2 Ethanesulfenic acid and its radicals. The calculated rotational barriers about the C—C bond of CH₃CH₂SOH, CH₃CH₂SO·, C·H₂CH₂OOH and CH₃C·HSOH are shown in Figure 2.4. CH₃CH₂SOH, and CH₃CH₂SO· have three minima and three maxima representing typical CH₃—C bond rotational potentials, with the potential barrier 3.26kcal/mol and 2.34kcal/mol, respectively, which are in a range common to methyl group rotations.


Figure 2.4 Potential barrier for internal rotation about the C—C bond of CH₃CH₂SOH, CH₃CH₂SO·, C·H₂CH₂SOH and CH₃C·HSOH. Points are calculated value at the B3LYP/6-311G(d,p) level.

The most stable conformer for C·H₂CH₂SOH has the dihedral ∠H-C--C-S≈ 90° or 285°, at the potential barrier 3.04 kcal/mol. CH₃C·HSOH has three H—SOH eclipsed conformers with barriers 0.45kcal/mol.

Figure 2.5 Potential barrier for internal rotation about the C—S bond of CH₃CH₂SOH, CH₃CH₂SO·, C·H₂CH₂SOH and CH₃C·HSOH. Points are calculated value at the B3LYP/6-311G(d,p) level.

The calculated rotational barriers about the C—S bond of CH₃CH₂SOH, CH₃CH₂SO·, C·H₂CH₂OOH and CH₃C·HSOH are shown in Figure 2.5. There are three conformers in CH₃CH₂SOH, CH₃CH₂SO· and C·H₂CH₂SOH; two are CH₃—O gauche conformers, and one in CH₃—O anti conformer. The difference between the CH₃—O anti conformer and the CH₃—O gauche conformer is 1.03, 0.66 and 0.74kcal/mol for CH₃CH₂SOH, CH₃CH₂SO· and C·H₂CH₂SOH, respectively. The most stable conformer for CH₃C·HSOH has the dihedral ∠C-C--S-O≈ 45° or 330°.

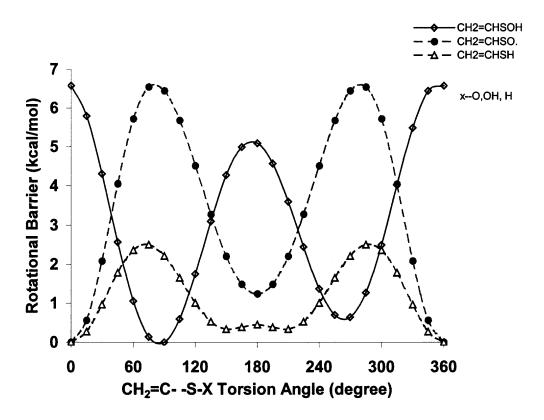


Figure 2.6 Potential barrier for internal rotation about the S—O bond of CH₃CH₂SOH, C·H₂CH₂SOH and CH₃C·HSOH. Points are calculated value at the B3LYP/6-311G(d,p) level.

The three curves for CH₃CH₂SOH, C·H₂CH₂SOH and CH₃C·HSOH show 2-fold symmetry. The stable structures appear when C-S bond is perpendicular to the O—H bond. The potential barriers about S—O bond are 7.51, 7.49 and 3.9kcal/mol for CH₃CH₂SOH, C·H₂CH₂SOH and CH₃C·HSOH. The barriers in the 7kcal/mol range are common in peroxides and hydroperoxides.

2.3.3.3 Ethenesulfenic Acid, Ethenethiol, Sulfenic Ester and Their Radicals. The calculated rotational barriers about the C—S bond of CH₂=CHSOH, CH₂=CHSO·, and CH₂=CHSH are shown in Figure 2.7. For CH₂=CHSOH, due to the interaction between the H atom in the methylene and the hydroxyl H atom, there are 0.64kcal/mol energy difference between the two conformers. The most stable conformer for CH₂=CHSO· is the planar structure (CH₂ group eclipsed with the O atom) because of electrostatic

reactions; the O···H interaction between H atom in the CH₂ group and the O atom. The minimum on the potential curve of CH₂=CHSH correspond to the structure in which the H atom in the thiohydroxyl is anti to beta H atom which is 0.34kcal/mol lower than the gauche structure.

Figure 2.7 Potential barrier for internal rotation about the C—S bond of CH₂=CHSOH, CH₂=CHSO· and CH₂=CHSH. Points are calculated value at the B3LYP/6-311G(d,p) level.

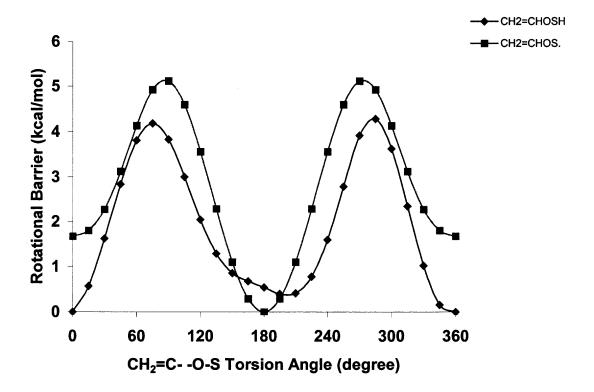
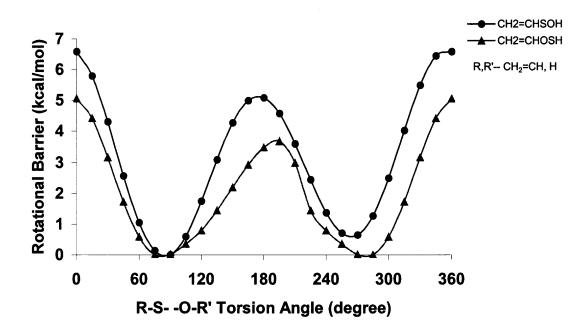



Figure 2.8 Potential barrier for internal rotation about the C—O bond of CH_2 =CHOSH, and CH_2 =CHOS·. Points are calculated value at the B3LYP/6-311G(d,p) level.

Figure 2.8 Shows the twofold rotational barriers about the C—O bond for CH_2 =CHOSH, and CH_2 =CHOS. The = CH_2 —S eclipsed conformer of CH_2 =CHOSH has the lowest energy because of the interaction between the H atom in the CH_2 group and the S atom. There are 1.82kcal/mol energy difference between the two conformers in the CH_2 =CHOS.

Figure 2.9 Potential barrier for internal rotation about the S—O bond of CH₂=CHSOH and CH₂=CHOSH. Points are calculated value at the B3LYP/6-311G(d,p) level.

Figure 2.9 shows the calculated potential curve for rotational barriers about the S—O bond in CH₂=CHSOH and CH₂=CHOSH, with the rotational barrier 6.76 and 5.01kcal/mol. The conformers with dihedral angle \angle R-S--O-R'≈ 90° or 270° are most stable because of the electrostatic interactions.

2.3.4 Bond Energies

Bond dissociation energies obtained by the CBS-QB3 method are shown in Table 2.8. The O-H BDE is quite similar in three sulfenic acids. And S-O BDE drops about 2 kcal/mol for vinyl group substitutes the alkyl group. The C—S bond weakening of 13 kcal/mol for the ethenesulfenic acid is observed because of sp² hybrid resonance.

Table 2.8 Bond Dissociation Energies

Reaction series	Bond energy (kcal/mol)
CH ₃ SO—H → CH ₃ SO + H	67.85 (69)
CH ₃ CH ₂ SO—H →CH ₃ CH ₂ SO + H	68.49
CH ₂ =CHSO—H →CH ₂ =CHSO + H	67.17 (68)
CH_3S — $OH \rightarrow CH_3S + OH$	73.39 (73)
CH_3CH_2S — $OH \rightarrow CH_3CH_2S + OH$	73.5
CH_2 = CHS — $OH \rightarrow CH_2$ = $CHS + OH$	65.84 (67)
H — $CH_2SOH \rightarrow CH_2SOH + H$	93.24
H — $CH_2 CH_2 SOH \rightarrow CH_2 CH_2 SOH + H$	101.78
CH_3 — $SOH \rightarrow CH_3 + SOH$	69.2 (68)
CH_3CH_2 — $SOH \rightarrow CH_3CH_2 + SOH$	68.41
$CH_2=CH$ — $SOH \rightarrow CH_2=CH + SOH$	81.65
CH_3 — $CH_2SOH \rightarrow CH_3 + CH_2SOH$	81.95
$CH_3C(H)H SOH \rightarrow CH_3CHSOH + H$	91.9
CH_2 = CHS — $H \rightarrow CH_2$ = $CHS + H$	79.79
CH ₂ =CHOS—H →CH ₂ =CHOS + H	76.81

Literature data in parenthesis [41]

2.3.5 Entropy S^{o}_{298} and Heat Capacity $C_p(T)(300 \le T/K \le 1500)$

Standard entropy (S°_{298}) and heat capacities ($C_p(T)$, $300 \le T/K \le 1500$) are determined from translation, vibration and external rotation are calculated using the "SMCPS" program [58]. This program utilizes the rigid-rotor-harmonic-oscillator approximation from the frequencies along with moments of inertia on the basis of the optimized B3LYP/6-311G(d,p)structures. Contributions to entropy and heat capacity from internal rotations are determined using direct integration over energy levels of the intramolecular rotation potential energy. The results are summarized in Table 2.9.

 Table 2.9 Ideal Gas- Phase Thermodynamic Properties^a

Species and symmetry #	!	4 770 b	S° ₂₉₈ °	C °	C °	C °	C °	C °	C °	C (
		$\DeltaH^{ m o}_{ m f298}$ b	S 298	$C_{p(300)}^{c}$	$C_{p(400)}^{c}$	C _{p(500)} c	$C_{p(600)}^{c}$	$C_{p(800)}^{c}$	$C_{p(1000)}^{c}$	$C_{p(1500)}$
CH₃SOH	TVR ^{dh}		61.36	12.41	15.04	17.33	19.22	22.17	24.41	28.08
(3)	I.R. ^e		4.90	2.02	1.81	1.61	1.47	1.30	1.20	1.09
	I.R. ^f		2.25	1.50	1.80	1.99	2.13	2.23	2.18	1.86
	total	-34.70±0.48	68.51	15.93	18.65	20.93	22.82	25.7	27.79	31.03
CH ₃ SO·	TVRdih		62.50	12.15	14.42	16.41	18.06	20.63	22.53	25.53
(3)	I.R. ^e		5.38	1.51	1.34	1.23	1.16	1.09	1.06	1.02
	total	-18.95±0.59	69.24 ⁱ	13.66	15.76	17.64	19.22	21.72	23.59	26.55
C·H ₂ SOH	TVRdih		63.63	12.97	15.12	16.75	18.00	19.85	21.26	23.70
(2)	I.R. ^e		2.75	1.75	1.95	2.09	2.19	2.29	2.24	1.94
	I.R. ^f		2.97	1.99	2.12	2.08	1.97	1.72	1.54	1.28
	total	6.44±0.30	69.35 ⁱ	16.71	19.19	20.92	22.16	23.86	25.04	26.92
CH₃CH₂SOH	TVR ^{dh}		63.90	15.31	19.51	23.27	26.43	31.37	35.06	40.95
	I.R ^g		4.28	2.13	2.19	2.09	1.95	1.69	1.50	1.26
	I.R ^e		5.91	2.28	2.30	2.20	2.05	1.76	1.56	1.29
(3)	I.R ^f .		2.24	1.49	1.78	1.99	2.12	2.23	2.19	1.89
	total	-40.51±0.33	76.33	21.21	25.78	29.55	32.55	37.05	40.31	45.39
CH ₃ CH ₂ SO·	TVRdih		63.74	13.31	17.00	20.40	23.30	27.83	31.19	36.41
(3)	I.R ^g .		4.69	2.13	1.99	1.80	1.64	1.42	1.29	1.14
. ,	I.R ^e .		6.71	2.00	1.73	1.53	1.40	1.24	1.16	1.07
	total	-24.12±0.34	76.51 ⁱ	17.44	20.72	23.73	26.34	30.49	33.64	38.62
C·H ₂ CH ₂ SOH	TVRdih		66.54	16.02	19.77	22.87	25.37	29.16	31.99	36.60
(3)	I.R ^g .		3.79	2.19	2.18	2.05	1.89	1.63	1.45	1.23
` '	I.R ^e .		5.89	2.29	2.29	2.18	2.03	1.75	1.54	1.28
	I.R ^f .		2.24	1.49	1.78	1.98	2.12	2.23	2.19	1.89
	total	9.17±0.36	79.84 ⁱ	21.99	26.02	29.08	31.41	34.77	37.17	41.00
CH₃C·HSOH	TVRdih		66.97	15.63	19.25	22.36	24.92	28.87	31.83	36.58
(3)	I.R ^g .		5.65	1.11	1.06	1.04	1.03	1.01	1.01	1.00
` ,	I.R ^e .		5.16	2.09	2.22	2.29	2.32	2.23	2.05	1.66
	I.R ^f .		2.85	1.93	2.12	2.14	2.07	1.85	1.65	1.35
	total	-0.71±0.39	82.01 ⁱ	20.76	24.65	27.83	30.34	33.96	36.54	40.59

Table 2.9 Ideal Gas- Phase Thermodynamic Properties. (Continued)

cies and symmetry #		o h	CD 6	C 6	C 6	C 6	C 6	C C	G 6	
		$\DeltaH^{ m o}_{ m f298}^{ m b}$	S° ₂₉₈ °	$C_{p(300)}^{c}$	$C_{p(400)}^{c}$	$C_{p(500)}^{c}$	$C_{p(600)}^{c}$	$C_{p(800)}^{c}$	$C_{p(1000)}^{c}$	$C_{p(1500)}$
CH ₂ =CHSH	TVR ^{dh}		62.03	13.36	16.32	18.83	20.89	24.11	26.51	30.31
(2)	I.R ^e .		3.97	2.18	2.05	1.87	1.70	1.47	1.33	1.15
	total	18.39±1.92	66.00	15.54	18.37	20.7	22.59	25.58	27.84	31.46
CH ₂ =CHSOH	TVR ^{dh}		65.56	15.20	18.72	21.59	23.87	27.26	29.73	33.68
(2)	I.R ^e .		5.18	2.19	2.31	2.33	2.28	2.08	1.86	1.49
	I.R ^f .		2.34	1.58	1.87	2.06	2.16	2.21	2.11	1.76
	total	-10.55±0.91	73.08	18.97	22.90	25.98	28.31	31.55	33.7	36.93
CH ₂ =CHOSH	TVR ^{dh}		65.38	14.94	18.45	21.39	23.77	27.39	30.02	34.07
(2)	I.R ¹ .		5.46	2.24	2.32	2.30	2.22	1.96	1.74	1.40
	I.R ^f .		3.17	1.96	2.16	2.25	2.25	2.11	1.91	1.54
	total	-2.75±0.54	74.01	19.14	22.93	25.94	28.24	31.46	33.67	37.01
CH ₂ =CHS·	TVRdih		61.68	13.05	15.67	17.87	19.66	22.35	24.31	27.38
(2)	I.R ^e .		0	0	0	0	0	0	0	0
	total	46.08±0.51	63.06 ⁱ	13.05	15.67	17.87	19.66	22.35	24.31	27.38
CH ₂ =CHSO·	TVRdih		67.30	15.16	18.23	20.76	22.78	25.76	27.88	31.15
(2)	I.R ^e .		4.71	2.08	2.18	2.27	2.32	2.30	2.17	1.78
	total	4.52±0.65	73.39 ⁱ	17.24	20.41	23.03	25.10	28.08	30.05	32.93
CH ₂ =CHOS·	TVRdih		66.27	14.45	17.60	20.22	22.32	25.43	27.63	31.00
(2)	I.R¹.		5.26	2.16	2.28	2.33	2.31	2.15	1.94	1.55
	total	21.96±0.62	72.91 ⁱ	16.61	19.88	22.55	24.63	27.58	29.57	32.55

^a Thermodynamic properties are referred to standard state of an ideal gas of pure enantiomer at 1 atm.

The torsional frequencies are excluded in the calculation of entropies and heat capacities. Instead, a more exact contribution from hindered rotations about the C—S, S—O bonds are calculated.

b Units in kcal/mol. ^c Units in cal/(mol K). ^d The sum of contributions from translations, external rotations, and vibrations. ^e Contribution from internal rotation about the C—S bond. ^f Contribution from internal rotation about the C—C bond. b Symmetry number is taken into account(-1.987ln(symmetry number)). Spin degeneracy contribution for entropy=1.987ln(2) is taken into account. ¹Contribution from internal rotation about the C—O bond.

2.4 Summary

Thermodynamic properties of methanesulfenic acid, ethanesulfenic acid, ethenesulfenic acid,

APPENDIX A

THERMOCHEMICAL CALCULATION RESULTS

Total energies, ZPVE's and Thermal Corrections and $\Delta H_{\rm f}^{\rm o}_{298}$ for the standard species used in the working reactions are listed in Table A.1. and Table A.2.

Table A.1 Total Energies Standard Compounds at 298K

Species	B3LYP/	ZPVE	Therm.	CBS-QB3	ZPVE	Therm.
	6-311g(d,p)		Corr.			Corr.
CH ₄	-40.48619662	27.44	2.39	-40.4061759	27.71	2.39
C_2H_6	-79.77888387	45.77	2.78	-79.6261347	46.21	2.78
C_3H_8	-119.0742063	63.37	3.44	-118.8503724	63.98	3.44
CH ₃ SCH ₃	-477.9860076	46.42	3.68	-477.3706417	46.82	3.67
CH ₃ SCH ₂ CH ₃	-517.2817659	64.04	4.49	-516.5957527	64.62	4.49
$C \cdot H_2OH$	-115.0547796	22.93	2.68	-114.8838669	23.15	2.68
CH ₃ CH ₂ OOH	-230.1528196	51.00	4.10	-229.8188427	51.49	4.10
CH₃OOH	-190.8519933	33.47	3.34	-190.5895531	33.79	3.34
CH ₃ OO∙	-190.2250891	26.33	3.00	-189.9547064	26.59	3.00
CH ₃ CH ₂ OO∙	-229.5264038	43.82	3.76	-229.1844081	44.24	3.76
C·H ₂ OCH ₃	-154.3398094	40.31	3.37	-154.7469275	40.70	3.37
CH ₃ OCH ₃	-154.9888967	48.78	3.31	-154.7469275	49.25	3.31

Table A.2 $\Delta H_{\rm f}^{\rm o}_{298}$ for Species in Working Reactions

Speceies	$\DeltaH_{ m f}^{ m o}_{ m 298~(kcal/mol)}$	Speceies	$\DeltaH_{ m f}^{ m o}_{ m 298~(kcal/mol)}$
CH ₄	-17.89±0.07	CH₃CH₂OOH	-39.7±0.3
C_2H_6	-20.04 ± 0.12	CH ₃ OOH	-31.8±0.94
C_3H_8	-25.02±0.12	CH₃OO·	2.15±1.22
CH ₃ SCH ₃	-8.96±0.48	CH ₃ CH ₂ OO∙	-6.5±2.4
CH ₃ SCH ₂ CH ₃	-14.42±0.27	CH ₃ CH ₂ OH	-56.12±0.2
H·	52.10±0.001	OH·	8.89±0.09
CH₃OH	-48.08±0.05	CH₃SH	-5.40 ± 0.14
CH ₃ OCH ₃	-43.99±0.12	CH ₃ O·	4.10±1.0
CH ₃ CH ₂ OCH ₃	-51.73 ± 0.16	CH₃·	34.82 ± 0.2
C_2H_5 ·	28.80±0.50	CH₃CH₂O·	-3.9±1.27
$C \cdot H_2 SH$	36.3±2	C·H₂OH	-3.97±0.22
C·H₂CH₂OH	-5.70±0.85	C·H ₂ CH ₂ OOH	11.2±2.1
CH₃C·HCH₃	21.0±0.7	·SOH	-0.5±2

Table A.3 Internal Rotation Contribution to Entropy and Heat Capacity Units: cal/(mol K)

Species		S°298	C _{p(300)}	C _{p(400)}	C _{p(500)}	C _{p(600)}	C _{p(800)}	C _{p(1000)}	C _{p(1500)} c
CH ₃ SC·H ₂	CH₃-SC·H₂	5.042	1.896	1.663	1.488	1.37	1.224	1.147	1.066
	$CH_3S-C\cdot H_2$	2.955	1.851	2.054	2.187	2.257	2.242	2.106	1.729
CH ₃ SCH ₂ OOH	CH ₃ -SCH ₂ OOH	5.461	1.45	1.289	1.193	1.136	1.076	1.049	1.02
	CH ₃ S-CH ₂ OOH	5.658	2.149	2.258	2.322	2.333	2.21	2.014	1.62
	CH₃SCH₂-OOH	5.639	2.162	2.264	2.326	2.335	2.211	2.015	1.621
	CH₃SCH₂O-OH	1.885	1.873	2.01	2.106	2.193	2.299	2.309	2.069
CH ₃ SCH ₂ OO·	CH ₃ -SCH ₂ OO·	5.248	1.736	1.509	1.364	1.269	1.157	1.102	1.044
	CH ₃ S-CH ₂ OO·	5.789	2.176	2.285	2.335	2.315	2.148	1.942	1.554
	CH3SCH ₂ -OO·	6.388	2.308	2.147	1.944	1.761	1.504	1.352	1.166
C·H ₂ SCH ₂ OOH	C·-H ₂ SCH ₂ OOH	3.098	1.918	2.122	2.23	2.266	2.173	1.989	1.61
	C·H ₂ S-CH ₂ OOH	5.762	2.215	2.313	2.331	2.265	2.045	1.823	1.461
	C·H₂SCH₂-OOH	5.456	2.122	2.208	2.289	2.331	2.3	2.153	1.764
	C·H ₂ SCH ₂ O-OH	1.817	1.854	1.991	2.086	2.172	2.288	2.317	2.11
TS1	No internal rotor	0	0	0	0	0	0	0	0
TS2	CH ₃ -SCH ₂ OO	5.248	1.736	1.509	1.364	1.269	1.157	1.102	1.044
	CH ₃ S-CH ₂ OO	5.789	2.176	2.285	2.335	2.315	2.148	1.942	1.554
TS3	CH ₃ -SCH ₂ OO	5.248	1.736	1.509	1.364	1.269	1.157	1.102	1.044
TS4	CH ₂ S-CH ₂ OOH	5.264	1.372	1.221	1.144	1.102	1.057	1.034	1.013
	CH ₂ SCH ₂ O-OH	3.476	2.233	2.318	2.283	2.174	1.92	1.699	1.377
TS5	CH ₂ SCH ₂ O-OH	1.817	1.854	1.991	2.086	2.172	2.288	2.317	2.11

		Distanc	e matrix (((angstroms) For CH35CH2OOH				
		1	2	3	4	5		
1	С	0.000000						
2	S	1.832159	0.000000					
3	С	2.826899	1.832937	0.000000				
4	0	3.645867	2.752460	1.409808	0.000000			
5	0	3.364771	3.169152	2.315209	1.450046	0.000000		
6	H	3.422334	3.118179	2.751687	1.881681	0.968449		
7	H	1.090302	2.383338	3.780005	4.562598	4.240112		
8	H	1.090594	2.442723	3.049307	4.081137	3.902450		
9	H	1.088403	2.440719	2.986561	3.416293	2.721693		
10	H	2.728051	2.421048	1.093090	2.070115	2.533534		
11	H	3.708572	2.399324	1.091379	1.971924	3.224452		
		6	7	8	9	10		
6	H	0.000000						
7	H	4.108672	0.000000					
8	H	4.184419	1.773451	0.000000				
9	H	2.779369	1.780934	1.786718	0.000000			
10	H	3.208561	3.790382	2.601546	2.825599	0.000000		
11	H	3.627558	4.583296	3.819439	4.025185	1.791246		
		11						
11	H	0.000000						

Distance matrix (angstroms) For CH3SCH2OO

		1	2	3	4	5
1	С	0.000000				
2	5	1.828035	0.000000			
3	С	2.792511	1.804821	0.000000		
4	0	3.302798	2.721984	1.458290	0.000000	
5	0	3.231695	3.382978	2.299231	1.319871	0.000000
6	H	1.090137	2.374149	3.742679	4.263902	4.238076
7	H	1.090252	2.440265	3.001896	3.694434	3.445465
8	H	1.089034	2.435053	2.970190	2.967568	2.612855
9	H	2.890758	2.439728	1.089575	2.060745	2.352878
10	H	3.750808	2.369308	1.089269	2.036921	3.135961
		6	7	8	9	10
6	H	0.00000				
7	H	1.779528	0.000000			
В	H	1.779189	1.787457	0.000000		
9	H	3.920247	2.694524	3.115955	0.000000	
10	H	4.605441	3.964709	4.005739	1.804837	0.000000

		Distance	matrix ((angstroms) For	CH2SCH2OOH	
		1	2	3	4	5
1	С	0.000000				
2	ຮ	1.729950	0.00000	00		
3	С	2.780211	1.84180	0.000000		
4	0	3.527469	2.75061	l3 1.404210	0.00000	
5	0	3.269417	3.21910	2.307901	1.449755	0.00000
6	H	3.207263	3.14913	31 2.744259	1.887871	0.968792
7	H	1.079847	2.41684	15 3.793383	4.551679	4.254413
8	H	1.079459	2.46282	2.838338	3.344688	2.722133
9	H	2.750204	2.42148	36 1.091920	2.070029	2.489290
10	H	3.669066	2.39318	32 1.091091	1.977793	3.220985
		6	7	8	9	10
6	H	0.000000				
7	H	4.059382	0.00000	00		
8	H	2.821488	1.88655	0.00000		
9	H	3.149603	3.78260	2.543902	0.00000	
10	H	3.645904	4.59863	3.866937	1.796638	0.000000

		Distance	TS1			
		1	2	3	4	5
1	С	0.000000				
2	ສ	1.824708	0.00000	00		
3	С	2.796504	1.93067	70 0.000000		
4	H	1.084990	2.49810	9 3.137693	0.00000	
5	H	1.081761	2.45441	11 3.736843	1.843816	0.000000
6	H	3.750766	2.47068	37 1.084191	4.145908	4.617798
7	H	2.970790	2.50990	1.084505	2.918224	4.031183
8	0	3.027132	2.72771	1.428402	3.530442	3.797357
9	0	2.557436	3.18668	37 2.349452	2.829801	3.281076
10	H	1.484580	2.53250	7 2.472216	1.943878	2.144796
		6	7	8	9	10
6	H	0.00000				
7	H	1.815000	0.00000	00		
8	0	2.035757	2.08829	0.000000		
9	0	3.285687	2.48281	1.484274	0.00000	
10	H	3.494855	2.67822	2.041094	1.139966	0.000000

		Distance	matrix	(angstroms) For	TS2	
		1	2	3	4	5
1	С	0.00000				
2	ຣ	1.828454	0.0000	00		
3	H	1.352374	2.6433	72 0.000000		
4	H	1.085426	2.4662	B4 1.990183	0.000000	
5	0	1.403389	2.7792	82 1.880695	2.112806	0.000000
6	0	2.122025	3.4758	25 1.315731	2.842973	1.610222
7	С	2.840377	1.8985	06 3.230576	3.834288	2.951342
8	H	2.842845	2.4635	50 2.773416	3.919725	2.764938
9	H	3.763063	2.4301	25 4.094031	4.697922	4.025709
10	H	3.148163	2.4763	48 3.756849	4.083766	2.886244
		6	7	8	9	10
6	0	0.00000				
7	С	3.434852	0.0000	00		
8	H	2.749119	1.0843	76 0.000000		
9	H	4.400473	1.0845	80 1.790139	0.00000	
10	H	3.717751	1.0827	72 1.781306	1.791598	0.000000

		Distance	matrix (an	gstroms) For	TS3	
		1	2	3	4	5
1	С	0.000000				
2	ຣ	1.887544	0.000000			
3	0	2.997004	2.087255	0.000000		
4	С	3.111506	2.288021	2.266644	0.000000	
5	0	3.817115	2.790626	1.666110	1.346173	0.000000
6	H	1.085703	2.438809	2.699623	3.089369	3.559996
7	H	1.085138	2.452197	3.630315	4.118219	4.713319
8	H	1.086884	2.477653	3.789728	3.237183	4.236955
9	H	2.697444	2.618226	2.673171	1.087084	2.094995
10	H	3.833602	2.825556	3.187936	1.084893	2.057762
		6	7	8	9	10
6	H	0.000000				
7	H	1.778442	0.000000			
8	H	1.791346	1.785150	0.000000		
9	H	2.509804	3.777342	2.649405	0.00000	
10	H	4.009783	4.810836	3.755324	1.854358	0.000000

		Distance	matrix (angstroms) For		TS4	
		1	2	3	4	5
1	С	0.00000				
2	ສ	1.657469	0.00000	0		
3	С	2.835735	2.024299	9 0.000000		
4	0	3.542783	2.82705	7 1.301010	0.00000	
5	0	3.006359	3.13115	6 2.428002	1.811961	0.000000
6	H	3.958760	4.03039	5 3.013322	2.087818	0.967067
7	H	1.083191	2.38630	5 3.857776	4.614421	4.004652
8	H	1.083941	2.38644	4 2.820352	3.294578	2.355224
9	H	2.680921	2.471340	0 1.098350	2.050710	2.598377
10	H	3.589035	2.42307	4 1.098715	1.994727	3.472865
		6	•	7 8	9	10
6	H	0.00000				
7	H	4.950568	0.00000	0		
8	H	3.231899	1.88364	4 0.000000		
9	H	3.173431	3.65369	6 2.451386	0.000000	
10	H	3.975818	4.50237	7 3.779996	1.829643	0.000000

		Distance	matrix ((angstroms) For	T S 5	
		1	2	3	4	5
1	С	0.000000				
2	S	1.773850	0.00000	00		
3	С	2.427881	1.83793	0.00000		
4	0	2.000477	2.48667	73 1.434198	0.00000	
5	0	3.680697	4.00934	15 2.393221	1.707726	0.000000
6	H	1.082370	2.47516	3.289161	2.614893	4.232737
7	H	1.082543	2.48759	7 2.826998	2.382886	3.850397
8	H	2.952570	2.46813	14 1.091996	2.089661	2.658721
9	H	3.342527	2.46370	1.088830	2.095649	2.507679
10	H	3.892762	4.37691	.5 2.987369	2.018048	0.967459
		6		7 8	9	10
6	H	0.000000				
7	H	1.856079	0.00000	10		
8	H	3.960735	2.96883	16 0.000000		
9	H	4.051678	3.87768	12 1.799379	0.000000	
10	H	4.206582	4.19867	73 3.479392	3.005171	0.000000

APPENDIX B RATE CONSTANTS IN QRRK CALCULATIONS

Table B.1 Calculated Reaction Parameters at P=0.001 atm, $k=A(T)^n \exp(-E_a/RT)$ (T=200-2000K)

Reaction	$A(s^{-1})$	n	E _a (kcal/mol)	$k_{298} (s^{-1})$
CIT COTT OF	C 540T : C0	10.60		1.0455 12
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SCH_2OO \cdot$	6.549E+68	-19.60	10.49	1.845E+12
$CH_3SC \cdot H_2 + O_2 \rightarrow C \cdot H_2SCH_2OOH$	3.282E+66	-19.11	10.64	1.289E+11
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SC (=O)H + OH$	4.661E+08	0.73	11.10	2.167E+02
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3S(=O) + CH_2O$	3.253E+08	0.49	6.05	1.887E+05
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_2S + CH_2O + OH$	2.148E+12	-0.48	5.06	2.231E+07
$CH_3SC \cdot H_2 + O_2 \rightarrow CYCH_2SCH_2O + OH$	2.693E+11	-0.58	11.58	2.759E+01
$CH_3SCH_2OO \rightarrow CH_3SC \cdot H_2 + O_2$	1.610E-10	5.89	15.93	1.613E-06
$CH_3SCH_2OO \rightarrow CH_3SC(=O)H + OH$	2.522E-41	12.65	20.83	6.610E-24
$CH_3SCH_2OO \rightarrow C \cdot H_2SCH_2OOH$	1.139E+04	1.55	14.62	3.445E-03
$CH_3SCH_2OO \rightarrow CH_3S(=O) + CH_2O$	1.760E-39	12.85	15.34	1.700E-17
$C \cdot H_2SCH_2OOH \rightarrow CH_3SCH_2OO \cdot$	1.052E-08	5.13	4.70	1.003E+02
$C \cdot H_2SCH_2OOH \rightarrow CH_2S + CH2O + OH$	5.108E-76	25.31	-2.66	1.654E-09
$C \cdot H_2SCH_2OOH \rightarrow CYCH_2SCH_2O + OH$	5.683-116	36.63	-5.76	1.353E-18

Table B.2 Calculated Reaction Parameters at P=0.01 atm, $k=A(T)^n \exp(-E_a/RT)$ (T=200-2000K)

Reaction	$A(s^{-1})$	n	$E_{\mathbf{a}}$	$k_{298} (s^{-1})$
			(kcal/mol)	
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SCH_2OO \cdot$	6.396E+68	-19.24	11.19	3.766E+12
$CH_3SC \cdot H_2 + O_2 \rightarrow C \cdot H_2SCH_2OOH$	1.665E+69	-19.60	12.37	1.901E+11
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SC (=O)H + OH$	4.668E+08	0.73	11.10	2.167E+02
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3S(=O) + CH_2O$	4.654E+08	0.44	6.12	1.861E+05
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_2S + CH_2O + OH$	2.155E+14	-1.06	6.10	1.540E+07
$CH_3SC \cdot H_2 + O_2 \rightarrow CYCH_2SCH_2O + OH$	3.240E+11	-0.60	11.59	2.838E+01
$CH_3SCH_2OO \rightarrow CH_3SC \cdot H_2 + O_2$	3.208E+06	1.24	21.22	5.183E-06
$CH_3SCH_2OO \rightarrow CH_3SC(=O)H + OH$	9.003E-43	13.84	19.32	3.228E-21
$CH_3SCH_2OO \rightarrow C \cdot H_2SCH_2OOH$	1.252E+08	0.42	16.06	3.513E-03
$CH_3SCH_2OO \rightarrow CH_3S(=O) + CH_2O$	9.324E-23	8.25	19.27	2.789E-15
$C \cdot H_2SCH_2OOH \rightarrow CH_3SCH_2OO \cdot$	1.538E+11	-0.82	10.03	1.408E+02
$C \cdot H_2SCH_2OOH \rightarrow CH_2S + CH2O + OH$	7.905E-06	3.65	14.93	7.868E-07
$C \cdot H_2SCH_2OOH \rightarrow CYCH_2SCH_2O+OH$	2.041E-22	7.60	16.17	3.385E-14

Table B.3 Calculated Reaction Parameters at P=0.1 atm, $k=A(T)^n \exp(-E_a/RT)$ (T=200-2000K)

Reaction	$A(s^{-1})$	n	$E_{\rm a}$	$k_{298} (s^{-1})$
			(kcal/mol)	
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SCH_2OO \cdot$	2.741E+67	-18.47	11.61	5.264E+12
$CH_3SC \cdot H_2 + O_2 \rightarrow C \cdot H_2SCH_2OOH$	2.750E+70	-19.61	14.39	5.984E+10
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SC (=O)H + OH$	5.782E+08	0.70	11.14	2.149E+02
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3S(=O) + CH_2O$	8.691E+09	0.07	6.81	1.404E+05
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_2S + CH_2O + OH$	4.029E+17	-1.97	8.51	2.359E+06
$CH_3SC \cdot H_2 + O_2 \rightarrow CYCH_2SCH_2O + OH$	2.904E+13	-1.16	12.67	1.730E+01
$CH_3SCH_2OO \rightarrow CH_3SC \cdot H_2 + O_2$	4.838E+05	1.95	22.09	7.575E-06
$CH_3SCH_2OO \rightarrow CH_3SC(=O)H + OH$	9.078E-38	13.26	20.39	1.812E-18
$CH_3SCH_2OO \rightarrow C \cdot H_2SCH_2OOH$	4.203E+05	1.35	15.81	3.521E-03
$CH_3SCH_2OO \rightarrow CH_3S(=O) + CH_2O$	3.010E-15	6.73	22.29	6.588E-14
$C \cdot H_2SCH_2OOH \rightarrow CH_3SCH_2OO \cdot$	1.067E+23	-4.34	13.81	1.498E+02
$C \cdot H_2SCH_2OOH \rightarrow CH_2S + CH_2O + OH$	1.467E+35	-8.21	27.34	6.540E-06
$C \cdot H_2SCH_2OOH \rightarrow CYCH_2SCH_2O+OH$	2.838E+39	-10.40	34.17	5.371E-12

Table B.4 Calculated Reaction Parameters at P=10 atm, $k=A(T)^n \exp(-E_a/RT)$ (T=200-2000K)

Reaction	$A(s^{-1})$	n	$E_{\mathbf{a}}$	$k_{298} (s^{-1})$
			(kcal/mol)	
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SCH_2OO \cdot$	1.120E+60	-15.56	11.13	5.811E+12
$CH_3SC \cdot H_2 + O_2 \rightarrow C \cdot H_2SCH_2OOH$	1.280E+62	-16.46	15.64	8.212E+08
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SC (=O)H + OH$	1.337E+11	0.05	13.08	3.956E+01
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3S(=O) + CH_2O$	2.677E+11	-0.28	9.24	6.267E+03
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_2S + CH2O + OH$	6.058E+12	-0.29	11.58	1.032E+03
$CH_3SC \cdot H_2 + O_2 \rightarrow CYCH_2SCH_2O + OH$	6.232E+12	-0.76	16.26	3.905E-02
$CH_3SCH_2OO \rightarrow CH_3SC \cdot H_2 + O_2$	8.786E+36	-7.48	31.72	8.374E-06
$CH_3SCH_2OO \rightarrow CH_3SC(=O)H + OH$	2.498E+44	-10.99	44.43	2.549E-16
$CH_3SCH_2OO \rightarrow C \cdot H_2SCH_2OOH$	3.114E+19	-2.89	19.95	3.522E-03
$CH_3SCH_2OO \rightarrow CH_3S(=O) + CH_2O$	1.810E+39	-9.34	38.83	2.628E-13
$C \cdot H_2SCH_2OOH \rightarrow CH_3SCH_2OO \cdot$	4.367E+17	-2.38	13.03	1.510E+02
$C \cdot H_2SCH_2OOH \rightarrow CH_2S + CH_2O + OH$	1.774E+25	-4.24	26.76	9.640E-06
$C \cdot H_2SCH_2OOH \rightarrow CYCH_2SCH_2O + OH$	1.831E+29	-5.90	34.39	1.750E-11

Table B.5 Calculated Reaction Parameters at P=100 atm, $k=A(T)^n \exp(-E_a/RT)$ (T=200-2000K)

Reaction	$A(s^{-1})$	n	E_{a}	$k_{298} (s^{-1})$
			(kcal/mol)	
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SCH_2OO \cdot$	5.692E+53	-13.34	10.03	5.819E+12
$CH_3SC \cdot H_2 + O_2 \rightarrow C \cdot H_2SCH_2OOH$	2.570E+52	-13.30	14.41	8.251E+07
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3SC (=O)H + OH$	6.652E+09	0.50	13.87	4.775E+00
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_3S(=O) + CH_2O$	6.769E+08	0.56	9.67	6.624E+02
$CH_3SC \cdot H_2 + O_2 \rightarrow CH_2S + CH_2O + OH$	1.184E+01	3.30	10.35	1.088E+01
$CH_3SC \cdot H_2 + O_2 \rightarrow CYCH_2SCH_2O + OH$	4.616E+02	2.39	15.54	4.723E-04
$CH_3SCH_2OO \rightarrow CH_3SC \cdot H_2 + O_2$	9.819E+31	-5.73	30.87	8.386E-06
$CH_3SCH_2OO \rightarrow CH_3SC(=O)H + OH$	1.584E+38	-8.56	43.95	3.054E-16
$CH_3SCH_2OO \rightarrow C \cdot H_2SCH_2OOH$	4.448E+16	-1.92	19.36	3.522E-03
$CH_3SCH_2OO \rightarrow CH_3S(=O) + CH_2O$	2.135E+33	-7.15	38.05	2.711E-13
$C \cdot H_2SCH_2OOH \rightarrow CH_3SCH_2OO \cdot$	1.302E+15	-1.55	12.44	1.510E+02
C·H ₂ SCH ₂ OOH→ CH ₂ S+CH2O+OH	7.724E+18	-2.11	25.34	9.678E-06
$C \cdot H_2SCH_2OOH \rightarrow CYCH_2SCH_2O+OH$	5.802E+20	-3.04	32.56	1.773E-11

REFERENCES

- [1] Charlson, R. J.; Lovelock, J.E.; Andreae, M. O.; Warren, S. G., *Nature* 1987, 326, 655.
- [2] Hynes, A. J.; Wine, P. H.; Semmes, D. H., J. Phys. Chem. 1986, 90, 4148.
- [3] Butkovskaya, N. I.; LeBras, G., J. Phys. Chem. 1994, 98, 2582.
- [4] Resende, S. M.; Almeida, W. B. De, J. Phys. Chem. A, 1997, 101, 9738.
- [5] Lovelock, J. E.; Maggs, R. J.; Rasmussen, R. A., Nature 1972, 237, 452.
- [6] Saltzman, E. S.; Cooper, W. J., in Biogenic Sulfur in the Environment, *American Chemical Society*, Washington, DC **1989**.
- [7] Dean, A. M., J. Phys. Chem. 1995, 89, 4500.
- [8] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M.C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.
- [9] Montgomery, J. A. Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A., *J. Chem. Phys.* **1999**, *110*, 2822.
- [10] Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
- [11] Hehre, W. J.; Ditchfield, R.; Radom, L., J. Am. Chem. Soc. 1970, 92, 4796.
- [12] Pitzer, K. S.; Gwinn, W., J. Chem. Phys. 1942, 10, 428.
- [13] Sheng, C.; Bozzelli, J. W.; Dean, A. M.; Chang, A. Y., J. Phys. Chem. A 2002, 106, 7276.

- [14] Ritter, E. R., J. Chem. Inf. Comput. Sci. 1991, 31, 400.
- [15] Stella, M. R.; Wagner, B., Phys. Chem. Chem. Phys. 1999, 1, 2953.
- [16] Yoshida, H.; Harada, T.; Murase, T.; Ohno, K.; Matsuura, H., J. Phys. Chem. 1997, 101, 1731.
- [17] Tsuzuki, S.; Uchimaru, T.; Tanabe, K.; Hirano, T., J. Phys. Chem. 1993, 97, 1345.
- [18] Cox, J. D.; Pilcher, G., Thermochemistry of Organic & Organometallic Compounds; Academic Press: London, New York, 1970.
- [19] Pedley, J. B.; Naylor, R. D.; Kirby, S. P., *Thermochemical Data of Organic Compounds*, 2nd ed.; Chapman and Hall: London: New York, 1986.
- [20] Voronkov, M. G., Dokl. Phys. Chem. (Engl. Transl.), 1989, 307, 650-653.
- [21] Hubbard, W. N., Waddington, G., Rec. Trav. Chim. Pays/Bas, 1954, 73, 910.
- [22] Stull, D. R.; Prophet, H., *JANAF Thermochemical Tables*, 2nd ed.;U.S. Government Printing Office: Washington, DC, 1970.
- [23] Chen, C.-J.; Bozzelli, J. W., J. Phys. Chem. A, 2000, 104, 4997.
- [24] Lay, T. H.; Bozzelli, J. W., J. Phys. Chem. A, 1997, 101, 9505.
- [25] Knyazev, V. D.; Slagle, I. R., J. Phys. Chem. A, 1998, 102, 1770.
- [26] Atkinson, P.; Baulsh, D. L.; Cox, R. A.; Hampson, R. F. Jr.; Kerr, J. A.; Rossi, M. J.; Troe, J., J. Phys. Chem. Ref. Data, 1999, 28,191.
- [27] Fisher, E. R.; Armentrout, P. B., J. Chem. Phys. 1990, 94, 4396.
- [28] Berkowitz, J., Ellison, G. B.; Gutman, D., J. Phys. Chem., 1994, 98, 2744.
- [29] Pilcher, G.; Pell, S.; Coleman,. Trans. Faraday Soc. 1964, 60, 499.
- [30] Stella, M. R.; Wagner, B. D., Phys. Chem. Chem. Phys. 1999, 1, 2953-2959.
- [31] McKee, M. L., Chemical Physics Letters 1994, 231, 257.
- [32] Jefferson, A.; Nicovich, J. M.; Wine, P. H., J. Phys. Chem. 1994, 98, 7128.
- [33] Bozzelli, J. W., Handout New Jersey Institute of Technology. 2003.
- [34] Lay, T. H.; Bozzelli, J. W.; Dean, A. M.J. Phys. Chem. 1995, 99, 14514.

- [35] Barrett, GC. Structural chemistry. In: Patai S, ed. The Chemistry of Sulphenic Acids and Their Derivatives. Chichester: John Wiley and Sons; 1990, 1.
- [36] Hogg DR. Chemistry of sulphenic acids and esters. In: Patai S, ed. The Chemistry of Sulphenic Acids and Their Derivatives. Chichester: John Wiley and Sons; 1990, 361-402.
- [37] Iley J.; Bassindale AR. *The Chemistry of Sulphenic Acids and Their Derivatives*. Chichester: John Wiley and Sons; **1990**,101-186.
- [38] Capozzi, F.; Modena, G., The Chemistry of the Thiol Group, 1974, 785.
- [39] Allison, W. S. Acc. Chem. Res. 1976, 9, 293-299.
- [40] Hogg, D. R.; Rashid, M. A. M., J. Chem. Res. (S) 1988, 160-161.
- [41] De Maria, P. In *The Chemistry of Sulphenic Acids and Their Derivatives*; S. Patai, Ed.; John Wiley & Sons: Ltd.: New York, **1990**, 293-310.
- [42] Hatakeyama, S.; Akimoto, H., J. Phys. Chem. 1983, 87, 2387-2395.
- [43] Balla, R. J.; Heicklen, J. J. Photochem. 1985, 29, 297-310.
- [44] Singleton, D. L.; Irwin, R. S.; Cvetanovic, R. J. Can. J. Chem. 1983, 61, 968-974.
- [45] Graedel, T. E., Rev. Geophys. Space Phys. 1977, 15. 421.
- [46] Block, E.; O'Connor, J., J. Am. Chem. SOC. 1974, 96, 3929-3944.
- [47] Penn, R. E.; Block, E.; Revelle, L. K., J. Am. Chem. SOC. 1978, 100, 3622-3623.
- [48] Turecek, F.; Brabec, L.; Vondrak, T.; Hanus, V.; Hajicek, J.; Havlas, Z., Collect. Czech. Chem. Commun. 1988, 53, 2140-2158.
- [49] Dewar, M. J. S.; Thiel, W., J. Am. Chem. Soc. 1977, 99, 4899.
- [50] Gregory, D. D.; Jenks, S. W., J. Org. Chem. 1998, 63, 3859-3865.
- [51] Block, E.; O'Connor, J., J. Am. Soc. 1974, 96, 3929.
- [52] McKee, L. M., J. Am. Chem. Soc. 1998, 120, 3963-3969.
- [53] Wang, L.; Zhang, J., Journal of Molecular Structure (Theochem) 2002, 581, 129
- [54] Turecek, F.; Drinkwater, E., McLafferty, W. F., J. Am. Chem. SOC. 1989, 111, 7696-7701.

- [55] Turecek, F., J. Phys. Chem. 1994, 98, 3701.
- [56] Stella, M. R.; Fernando, R. O. Chemical Physics Letters, 2003, 367, 489-494.
- [57] Luo, Y.; Holmes, J., J. Phys. Chem. 1992, 96, 9568-9571.
- [58] Sheng, C. Ph.D. Dissertation, Department of Chemical Engineering, New Jersey Institute of Technology, **2002**.