
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Summer 2004

Surface treatment of ferrous alloys with boron
Naruemon Suwattananont
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Materials Science and Engineering Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Suwattananont, Naruemon, "Surface treatment of ferrous alloys with boron" (2004). Theses. 583.
https://digitalcommons.njit.edu/theses/583

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.njit.edu%2Ftheses%2F583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/583?utm_source=digitalcommons.njit.edu%2Ftheses%2F583&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.



ABSTRACT

SURFACE TREATMENT OF FERROUS ALLOYS WITH BORON

by
Naruemon Suwattananont

Boronizing is a thermo-chemical surface hardening treatment in which boron atoms

diffused into the metal substrate form the metallic boride layer, providing high hardness,

corrosion resistance, and 3-10 times increasing service life. This type of surface

treatment is widely used in many applications.

The purpose of this work was to investigate the structures and properties of

boronized ferrous alloys. Three types of steels, AISI 1018 (plain low carbon steel), AISI

4340 (high strength alloy steel), and AISI 304 (austenitic stainless steel), were used for

this study. The boronized AISI 1018 and AISI 4340 demonstrated the saw-tooth structure

with average 75-76 pm and 57-58 AM in depth, respectively. On the other hand, the

narrow and flatten boride layer with average 10-11 1.1.111 was observed in the boronized

AISI 304. The microhardness of boride layer in AISI 1018 and AISI 4340 was detected in

the range of 1400-2200 HV and 1800-2200 HV, respectively, while that in AISI 304 was

about 400-700 HV. Moreover, unboronized steels showed the improved corrosion

resistance in acid and oxidation resistance at high temperature rather than unboronized

steels.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The purpose of this work is to study the processing and characteristics of boromzed

steels. Three types of steel, AISI 1018, AISI 4340, and AISI 304, are investigated. AISI

1018, plain low carbon steel, is widely utilized in many applications due to the low cost;

therefore, after boronizing the steel properties are improved beneficial to the industry.

Like AISI 1018, AISI 4340, high strength alloy steel, is chosen to study due to the need

of better properties in aerospace industries. Finally, AISI 304, austenitic stainless steel

(18Cr8Ni), is used to compare the results of boromzed AISI 1018 and boronized AISI

4340, according to general uses in the industries and good properties in corrosion and

oxidation at high temperature.

1.2 Background Information

Boromzing is a well-known thermo-chemical surface hardening treatment today. The

boron atoms diffused into the metal substrate can form the metallic boride layer on the

metal surface, providing high hardness, corrosion resistance, and 3-10 times increasing

service life 111 . Boronizing can complement the technology gap between conventional

heat treatment and chemical/physical vapor deposition; therefore, it is used to replace

many applications in carburizing, nitriding, and carbonitriding 121 . However, only the

pack and paste boronizing techniques are able to process in many applications while

1



other techniques, such as the liquid and gas boromzing techniques, are incapable of the

application because of toxicity problems.

Furthermore, the process can be applied to the irregular surfaces or the specific

areas of a surface. The high-volume production applications are also available to process

as first demonstrated in the European automotive industry [31 . As mentioned earlier,

boronizing fills out the gap between low and high technology; hence the process provides

low procedure cost but high quality products, which is beneficial for the commercial

section. In addition, boromzing can combine with other heat treatments to produce the

multi-component boride layers that have the better properties. The combination of

excellent wear resistance, corrosion resistance in acid, and oxidation resistance at high

temperature is one of the attractive features for the industrial application.

1.3 The Trend of Surface Treatment with Boron

The trend of surface treatment with boron can be classified into three categories:

1. The advanced boronizing techniques

In the last ten years, the novel techniques were used to produce an efficient boride

layer on the substrate surface as discussed below:

The laser surface modification 141 was used to form the boride layer on 41Cr4

medium carbon steel. Although this method reduced the hardness of the boride layer, it

reduced the hardness gradient between the boride layer and substrate. As a result, it

caused the increasing wear resistance in comparison with that of the conventional

method.

2
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The fluidized bed reactor was used to form the boride coating 0.5%wt. C steel 151 ,

nickel alloy [61, and nonferrous materials In. For this method, the process could get the

adequate thickness and improved wear and oxidation resistances.

Plasma Transferred Arc process (PTA) technique, with using boron and

chromium diboride powders, was used to form iron-boron [8] and iron-chromium-boron [91

coatings. Both coatings presented high hardness and excellent wear resistance.

Spark Plasma Sintering (SPS) technique 1101 was able to avoid the drawbacks of

pack boromzing that took several hours during the boromzing and of plasma-assisted

boromzing that provided a high degree of porosity on the boride layer.

The plasma-assisted boromzing of ferrous materials was formed under BC13—H2—

Ar atmosphere 1111. The treatment parameters and discharge conditions helped

eliminating the porosity of the boride layer. The plasma activation of Ar-H2-BF3

atmosphere was also used to avoid the processing corrosion " 21 .

The D.C.-plasma boromzing technique combined with PVCVD process achieved

the deposition of boride layer at low temperature (873 K) 1131 .

The plasma paste boromzing [14] technique was processed on AISI 304. The

boronizing paste had consisted of amorphous boron and borax under gas mixture of

Ar:H2 (2 : 1).

The ion implantation technique was processed on iron and AISI M2 steel along

with using a high current density, low-energy, and broad-beam ion source " 51 . The

process provided thick boride layer while the boronizing temperature was at 600 °C for

iron and at 700 °C for steel.
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2. The conventional boromzing technique

In spite new boronized techniques have been studied, many conventional

techniques, such as pack boromzing and salt bath, are still widely used to study on many

steels and their properties: in ductile iron 1161 , AISI W1 steel [171 , AISI 316L stainless steel

[181, AISI W4 steel 1191, WC-Co steel [201, 99.5% purity nickel [211, chromium-based low

alloy steels [221, and etc.

3. Multi-component surface treatment

The multi-component of boronizing has widely been studied to improve the

mechanical properties, corrosion, and oxidation resistances:

Chromizing and boronizing treatment was combined to increase the high

oxidation resistance [231 .

Boro-nitriding of steel US 37-1 1241 was studied by combining two processes of

pack boromzing and gas nitriding to produce the boride, nitride and boro-nitride layer

with pore-free and excellent adherence.

Vanadium boride coatings on steel 1251 consisted of the thermo-diffusion of

vanadium and followed by boron. The microhardness of KB 2 was at 23600 MPa.

B-C-nitriding in a two-temperature-stage process was achieved to improve the

boromzing embrittlement [261. The complex (B- C- N) diffusion layers (borocarbonitrided

layer) [27] were formed on chromium and nickel-based low-carbon steel. Despite the

Borocarbonitriding reduced the depth of iron boride zone, it decreased microhardness

gradient across the layer so that it resulted in the low brittleness of the boride layer.

The two-step treatment carburizing followed by boronizing on medium-carbon

steel was fotmd to increase wear resistance and to decrease microhardness gradient 1281.
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The simultaneous boromzing and aluminizing produced tmder the gas phase

reaction of paste mixtures 1291 was studied. The boroalutninized layers of C3, C5XHM,

X12, and X 1 8H9T steels [301 were investigated. The resulting complex diffusion layers

could be separated into three groups: the needle-shaped layer with aluminium dissolved

into iron boride, the layer showing conglomerates of boride and aluminium phases, and

the layer with rich aluminium phases on the external surface.

The one-step boroaluminizing heat treatment was studied on 2.25Cr—Mo steel [311

by means of pack cementation technique using a B/A1 boronizing powder. Three distinct

regions were fotmd in the coatings: first, an outer Al-rich layer region, second, a

transition region containing A1 and Fe, and third, an inner layer region containing mostly

B and Fe. The boroaluminizing improved the oxidation and hot corrosion resistance.

The multi-component of Ni4B3, (Fe,Ni)B, and (Fe,Ni)2B borides [32] was produced

by combining the electrochemical nickel deposition and plasma boronizing to increase

the wear and corrosion resistance of surface.



CHAPTER 2

BORONIZING

2.1 Boronizing (Boarding)

Boronizing is a thermo-chemical surface hardening process that boron atoms diffuse into

a base metal (steel) and form the hard metallic boride layer on the surface. The process

can be applied to both ferrous and nonferrous materials by heating well-cleaned materials

in the temperature range of 700 - 1000°C (1300 - 1830°F) for several hours. The process

provides the metallic boride layer about 20-300 gm thick. The resulting metallic boride

layer yields the outstanding properties of high hardness, good wear and corrosion

resistance, and moderate oxidation resistance at high temperature. Although many metals

and alloys can be boromzed, aluminium and magnesium alloys cannot be boromzed due

to their low melting points. In addition, copper alloy is unable to form the stable boride

phase [33] .

During boronizing, boron atoms diffuse and subsequently absorb into the metallic

lattice of the component surface. As a result, an interstitial boron compotmd is formed

with either a single-phase boride or a poly-phase boride layer. Several characteristics of

the boride layer, including the morphology, the growth, and the phase composition,

depend on the elements in the substrate materials (Table 2.1).

6
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Table 2.1 The Microhardness and Constitution of Boride Layers on Various Substrates
Formed after Boronizing [331

2.2 Boronizing of Ferrous Materials

The boride layer formed on iron and steel can be of either a single phase or double-phase,

corresponding to a definite composition from Fe-B phase diagram (Appendix A). Fe2B is

obtained for the single-phase layer, while the double-phase layer consists of an exterior

phase of FeB and interior phase of Fe2B, whereas the morphology of the boride layer is a
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saw-tooth structure as shown in Figure 2.1. The saw-tooth structure helps improving the

mechanical adherence at the Fe2B/substrate interfaces.

Figure 2.1 The saw-tooth structure of boride layers with exterior layer FeB and interior
layer Fe2B of AISI 1018.

Because FeB phase is more brittle than Fe2B phase, the formation of Fe2B phase

is expectedly preferred than that of FeB phase. In addition, it is observed that Fe2B forms

a surface under the high compressive stress, while FeB forms a surface under the high

tensile stress. However, the boronizing process avoids having the coincidence of Fe 2B

and FeB phases, which causes to the crack formation at the FeB/Fe2B interface of double-

phase layer. The crack formation leads to the spalling and even the separation of double-

phase layer under the applied mechanical strain or the thermal/mechanical shock.

Fortunately, the annealing process can decrease the occurrence of FeB phase after

boronizing treatment rile.

The characteristics of the Fe 2B phase include [341 :

• Composition with 8.83 wt% boron

• Body-centered tetragonal crystal structure (a5.078A, c4.249A)

• Density of 7.43 g/cm 3

• Microhardness of about 18-20 GPa
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• Yotmg's modulus of 285-295 GPa

• Thermal expansion coefficient of 7.65x10 1°C in the range 200-600 °C, and

9.2x10-6 /°C in the range 100-800 °C

The characteristics of the FeB phase include [34] :

• Composition with 16.23 wt% boron

• Orthorhombic crystal structure (a=4.053A, b=5.495A, c=2.946A)

• Density of 6.75 g/cm3

• Microhardness of about 19-21 GPa

• Young's modulus of 590 GPa

• Thermal expansion coefficient of 23x10 -6 /°C in the range 200-600 °C

2.3 Boronizing of Nonferrous Materials

Refractory metals, titanium, nickel, cobalt and their alloys can be boromzed by using

special techniques such as gas and plasma boromzing, instead of conventional boronizing

techniques. Since the salt bath and conventional powder boromzing techniques are

inapplicable for titanium and refractory metals because of the oxidation on the substrate

and the corrosion from the activator that cause the porosity in the boride layer 1331 .

Therefore, the heat treatment for refractory and titanium metals is required to be operated

tmder high vacuum and high purity argon atmosphere, or with the gas (H2 -BC13)

boronizing technique.

For the refractory metal and titanium, the process is prepared at the temperature

above 1000 °C for —10-15 hr [331. The resulting boride layer is about 50 pm thick with

high microhardness values (Table 2.1). However, the boride layer of tantalum, ttmgsten,
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niobium, molybdenum, and nickel metal does not show the strong saw-tooth structure as

seen in titanium and cobalt metal 1341. Furthermore, the saw-tooth structure in nonferrous

materials is not manifestly when compared to that in ferrous materials (low/medium

carbon alloy).

2.4 The Mechanism of Boronizing Process

The boronizing process consists of two reactions:

1. The initial stage takes place between boron medium and component surface.

The nuclei are formed as the ftmction of boronizing temperature and time and are

followed by the growth of boride layer [34] . In case of ferrous materials 135•361, Fe28

nuclei are first formed and grow a thin boride layer at the defect points of the metal

surface, macrodefects (surface roughness, scratches, etc.) and microdefects (grain

botmdaries, dislocation, etc.). If the active boron medium is excess, the rich boron

product phase, such as Fe8, will form and grow on the Fe28 phase.

2. The second stage is a diffusion-controlled process, which the thickness of

bride layer is formed tmder a parabolic time law:

x2 = kt

where x as the thickness of the bride layer, k as a constant depending on the

temperature, and t as the boronizing time 1341. In case of ferrous materials, boron atoms

prefer to diffuse in the [001] crystallographic direction and form the body-centered

tetragonal lattice of Fe28 to achieve the maximum atomic density along this direction 135-
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361. The growth of Fe2B is columnar aggregates of crystals, which exhibits the saw-tooth

morphology. For the double phase, the columnar growth of FeB prefers to grow in the

[002] crystallographic direction and the saw-tooth structure of FeB is lower than that of

Fe2B.

2.5 Effects of Alloying Elements

The prominent saw-tooth structure of boride layer is well observed in pure iron,

unalloyed low-carbon steel, and low alloy steels. When the alloying elements and/or

carbon contents in the substrate steel are increased, the thickness of the boride layer is

reduced. In addition, the smooth interface may be observed instead of the saw-tooth

structure illustrated in Figures 2.2 and 2.3. Another effect of alloying elements (except

nickel, cobalt, and manganese), which retard the boron diffusion into the substrate, is to

increase the proportion of FeB constitution I33] . For example in boronized stainless steel,

the consequence of alloying elements leads to the thin smooth interface with almost

100% FeB formation of boride layer.

Figure 2.2 The effect of steel composition on the morphology and thickness of the boride
layer.
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Figure 2.3 The effect of percent alloying elements on the boride layer thickness 121 .

Carbon, Silicon, and Aluminum is insoluble in the boride layer. During the

boronizing, the boride layer will drive carbon and silicon away from the surface to the

substrate matrix and forms the precipitation of iron silicoboride (FeSi 0.480.6 or FeSi82)

and iron carboboride (Fe23(8,C)6 and Fe3(8,C) beneath and/or between the boride saw-

teeth structure. The contents of silicon and aluminium (larger than 0.8%) tmderneath the

boride layer can form a soft ferrite phase, which has a low load-carrying capacity 1371 .

Under the high surface pressure, the failure can occur due to the hard boride layer

penetrating into this soft ferrite region.

Nickel will restrict the solubility of boron atoms in iron by diffusing into the

boride layer and by precipitating Ni38 from the boride layer at the Fe28/substrate

interface. The result is the reduction of boride-layer thickness and saw-tooth structure.

Although nickel may slightly reduce the microhardness value of the boride layer, nickel

helps impeding the formation of Fe8 1371 .
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Chromium is a modifier for the structure and properties of boride layer. The

solubility of chromium in the Fe28 phase causes the replacement from iron to chromium

and forms (Fe,Cr)8 and (Fe,Cr)28 on the surface. The incorporation of chromium may

increase the microhardness of boride layer but it causes boron to diffuse along the grain

boundaries. The diffusion leads to the decreasing of boride layer thickness and the

increasing of the smooth boride layer/substrate interface r371. Chromium also promotes

the formation of rich boron product phase, such as Fe8, to the boride layer.

Manganese, Tungsten, Molybdenum, and vanadium are typically to reduce the

boride thickness and flatten out the saw-tooth morphology.

2.6 Advantages and Disadvantages of Boronizing

Advantages:

• The boronized steels can provide the extremely high hardness, compared with

other treatments and other hard materials as listed in Table 2.2 and Figure 2.4.

• The combination of a high surface hardness and a low surface coefficient of

friction in boromzed steel provides the outstanding of wear mechanisms,

including adhesion, tribooxidation, abrasion, and surface fatigue.

• The surface hardness of boromzed steel can retain at high temperature.

• The process can be applied to a variety of metals and alloys.

• 8oromzed surfaces of ferrous materials have a high corrosion-erosion resistance

in dilute acid and alkali media and are available in the industrial applications.

• 8oromzed surfaces have a moderate oxidation resistance (up to 850 °C or 1550

°F).
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• 8oromzed surfaces are resistant to the attacks by molten metals.

• The boromzed steels can increase the fatigue life and the service performance

tmder the normal application and oxidation or corrosion environment.

Disadvantages:

• The technique is inflexible and rather labor-intensive. Therefore, the process is

less cost-effective than other thermo-chemical treatments.

• The boride thickness cannot be well controlled because the thickness growth

depends on the substrate composition and the consistency of boromzed powder

composition.

• The formation of boride layer increases the dimension of the base metal. The

removal of the boride layer in order to meet the closer tolerance requirements is

required to use the diamond lapping, since the conventional grinding causes the

fracture of the layer.
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Table 2.2 The Surface Hardness of 8oromzed Steels Compares to Other Treatments and
Hard Materials [21
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2.7 Application of Boronized Products

The conclusive boromzed parts have been widely used in a variety of industrial

applications as shown in Table 2.3.



CHAPTER 3

BORONIZING PROCEDURE

3.1 Pack Boronizing

The pack boromzing or solid state boronizing technique is the most widely favored

technique due to the simplicity and economy. The process involves the embedding of the

metals/alloys into the boronizing powder mixture that consists of three substance groups

[33] :

• Boron source: Boron carbide (134C), ferroboron, and amorphous boron

• Activator: Na8F4, KBF4, (NH4)3BF4, NH4CI, Na2CO3, BaF2, and Na2B407

• Diluent: SiC, Al203

In the heat-resistant container, the well-cleaned and smooth metals/alloys are

packed in the boromzing powder mixture with 10-20 mm thick and 50-100 mm deep, and

covered by a container lid. The heat treatment is processed in the furnace. After

reaching the boronizing temperature and time, the container is then removed from the

furnace and allowed to cool down at room temperature. To avoid the adverse effect of

oxygen on boromzing, the boronizing treatment should be performed tmder the

protective-gas atmosphere, such as Ar, N2, H2, or mixture of Ar-N2-H2. The protective-

gas must be maintained after boronizing until the process is cooled down to 300 °C (570

°F)

Using the above procedure, the boronizing powder mixture can be reused about 5-

6 times by blending in 20-50% with the new powder mixture [2] .

17
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3.2 Paste Boronizing

The paste boromzing technique is practical for the large components or partially or

selectively required part of components. The boromzing paste consists of 55%84C (grain

size 200-240pm) and 45%cryolite (Na3AIF6) 1301, or the traditional boromzing powder

mixture (84C-SiC-KBF4) with the binder, such as nitrocellulose/ butyl acetate,

methylcellulose, or hydrolyzed ethyl silicate 1331 . The method to apply the paste can be

dipping, brushing, or spraying with the thick layer about 1-2 mm and is processed under

the protective-gas atmosphere. After the heat treatment, the boromzing paste is removed

by blast cleaning, brushing or washing.

3.3 Liquid Boronizing

The liquid boromzing or salt bath boromzing technique is performed in the borax-based

salt melts (Na284O7) with and without electrolysis at the temperature above 900 °C 1331 .

The technique is suitable for the complex body. The component must resist to the thermal

shock of immersion and removal from the bath to prevent the component deformation

and cracking. After treatment, the excess melting salt must be removed from the

component, causes the high cost and time consuming. The maintenance cost is also high

because the process requires the salt recharging for the appropriate viscosity to prolong

the boromzing reaction. The corrosive fume from the reaction creates another problem to

the technique.

• Electroless liquid boronizing: The common salt bath is 30-70% Borax-84C

and the reaction is enhanced by replacing 20% 84C with ferroaluminium because of the
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effective reductant. For the nickel alloy, the bath is composed of 75%wt KBF4 - 25%wt

KF, operating at temperature below 670 °C.

• Electrolytic liquid boronizing: The component is attached to a cathode,

while the graphite is acted as an anode. Both of them are immersed in the molten borax

at 940 °C and the current (0.15A/cm 2) is passed to them. At the liquid state, Borax is

decomposed to sodium ions (Nat) and tetraborate (134072). The reaction is as followed:

3.4 Gas Boronizing

The gas boromzing technique is a diffusion process of some gas media, such as diborane

(82H6) or boron chloride (BC13). This method is tmavailable for the industry concerned

by the toxic and the explosion of gas media. The BC13-H2 gas mixture has previously

been attempted to boronize the steel, but the high concentration of BCl3 causes the

corrosion on the substrate and results the poor adherent layers. To improve the

technique, the dilute (1:15) BC13-H2 gas mixture is commonly used at 700- 900 °C and

under the pressure of about 67 kPa 1391 . Moreover, the replacing of a carrier-reductant gas

of 75%N2 and 25%H2, rather H2, can reduce the BC13 concentration. As a result, it avoids

FeCl3 (corrosion) and diminishes the Fe8 formation. As well, this process can be used

with titanium and its alloys.
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3.5 Plasma Boronizing

The plasma boromzing technique is not yet available in the commercial application

because of the same problems as occurred in the gas boromzing technique. The gas

mixtures of 82H6—H2 and BCl3-H2-Ar are used in this technique. Additionally, theBC13-

H2-Ar gas mixture exhibits good features of controlling an amotmt of BC13 concentration.

The resulting features reduce the discharge voltage and increase the microhardness of the

boride layer 1401. Despite the porosity of double-phase boride layer is observed,

increasing the BC13 concentration can minimize it. This technique is widely applied to

the refractory metals because of the high-efficient deposition of the boride layer, which is

higher than that of the pack boronizing technique. By this technique, the process can be

operated at the low temperature —600 °C (1100 °F) and in the short time, which helps

saving in energy and gas consumption. The conventional pack boromzing technique,

however, cannot operate at such low temperature.

3.6 Fluidized Bed Boronizing

The fluidized bed boromzing technique is a recent innovation of boromzing. The bed

materials, coarse-grained silicon carbide and boromzing powder mixture, are served as a

faster heat-transfer medium through which an oxygen-free gas (N2-H2) flows. The high

heating rate and high flowing rate provide the rapid boronizing, meaning the shorter

operation time. Because of the temperature tmiformity, the process can also produce the

reproducibility, good tolerances, and tmiform finishing mass-products. Finally, this

technique achieves the low operating cost for the mass production of boromzed parts.

However, the major disadvantage is the exhaust gases (fluorine compotmds) that must be
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completely eliminated by using the CaCO3 absorber to avoid the environmental

problems.

3.7 Multi-component Boronizing

The multi-component boromzing technique is the process that combines the diffusion of

boron and one or more metallic element(s), including aluminium, chromium, vanadium,

and silicon, into the substrate surface. Some multi-component boronizing systems are

illustrated in Table 3.1. The multi-component boromzing can be classified into three

types [331 :

• Type 1: simultaneous boromzing and metallizing

• Type 2: boromzing followed by metallizing

• Type 3: metallizing followed by boronizing
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The attracting result from this process is an improvement of mechanical

properties and oxidation resistance as stated below:

• Boroaluminizing — the compact layer provides good wear and corrosion

resistance, especially in humid environments

• Borosiliconizing — the FeSi is formed on the boride-layer surface that

increases the corrosion-fatigue strength of component.

• Borochromizing — this treatment provides the better oxidation resistance than

boroaluminizing, gives the uniform layer, improves the wear resistance, and increases the

corrosion-fatigue strength.

• Borovanadized and borochromvanadized — the layer will have ductility with a

high microhardness (>3000HV at 15g load), which helps reducing the spalling tmder the

impact loading condition.



CHAPTER 4

PROPERTIES OF BORONIZED STEELS

After boronizing, steels will have the desirable properties on the surface, including the

increasing wear resistance, corrosion resistance, and 3-10 times increasing service life.

4.1 Toughness

The boride layer provides the good bonding with the base metal, which can ensure that

tmder load, the flaking or the peeling will not happen. However, the toughness of the

boromzed steel relies on its boride layer thickness, cross-section area, and mechanical

properties. In the bending test, the boronized sample with the boride-layer thickness of

150-200 p.m has 4% elongation without cracking i l l.

4.2 Adhesion Resistance

The boromzed surfaces show neither accretion nor wear of material as well as having

hardly any tendency to cold-weld 1371 . Consequently, this property is used in the cold-

metal working (chipless shaping) as a tool to form the metals. Without the non-lubricant,

the boronized layers do not have an appreciable change at 300 °C in order to protect the

environment by reducing the lubricant.

4.3 Abrasive Wear Resistance

High microhardness provides high wear resistance. Some resulting properties of

boronized steels are shown in Figures 4.1 and 4.2.
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Figure 4.2 The comparison of wear resistance between boronized steels and non-
boronized steel 121 .
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4.4 Corrosion Resistance in Acids

Boromzed carbon and alloy steel have the increasing corrosion resistance in HCI, H2SO4,

and H3PO4. The boronized austenitic stainless steel improves the corrosion resistance in

CI as shown in Figure 4.3.



CHAPTER 5

EXPERIMENTAL PARTS

5.1 Description of Experiments

The steel samples (AISI 1018, AISI 4340, and AISI 304) were chosen to boronize at 850

°C for four hours tmder the argon atmosphere. The boride layer of boromzed steel

samples was characterized in terms of phase identification, thickness, morphology, and

microhardness. The corrosion resistances of both tmboronized and boronized steel

samples were observed as well as the oxidation resistance. The experimental flow chart

was illustrated in Figure 5.1.
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5.2 Experimental Procedures

The experimental procedures were described as below:

5.2.1 Sample Preparation

AISI 1018, AISI 4340, and AISI 304 samples were cut in the dimension of 10 x 10 x 3

mm, 12 x 12 x 7 mm, and 12 x 10 x 6 mm, respectively. The chemical composition of

sample steels was shown in Table 5.1. Firstly, the samples were grinded with the 120,

220, 400, and 600-grit sand papers. The samples, then, were cleaned with acetone in the

ultrasonic bath for 5-10 minutes and dried in the air.

5.2.2 The Procedure of Boronizing Heat Treatment

The boromzing heat treatment procedures can be classified into three steps.

5.2.2.1 The Preparation of Boronizing Powder Mixture. 	 The boronizing power

mixture was prepared by mixing together 1% w/w KBF4 (potassium tetrafluoroborate,

99% min (assay), typically >99.5% (assay) of Alfa Aesar), 5% w/w Al203 (aluminum

oxide powder, 99.99%, 20-30 micron of Atlantic Equipment Engineers), and 94% w/w

84C (boron carbide, 240 grit, technical grade of Electro Abrasives Corporation). KBF4

and Al203 were first mixed in the mortar to break the powder cluster and followed by
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gradually adding a small quantity of 84C to prevent the segregation of KBF4 and Al203

powder from 84C into the gradients. After all substances were mixed in the mortar, the

boronizing powder mixture was mixed again in the blender to be confident that the

component was well homogeneous.

5.2.2.2 The Packing of Boronizing Powder. The boromzing power mixture was

dried at 250 °C for two hours in the box furnace (ThermoLyne model 48015). The well-

cleaned sample steels were embedded in the boronizing power mixture contained in

inconel crucible. After the boromzing powder mixture was filled full in the crucible, the

crucible should be tapped until the powder mixture was densely packed. It was to

prevent the air trap among the powders. Sequentially, the crucible full-filled with powder

mixture was degassed overnight (approximately 12 hours) in the desiccator that

connected to the vacuum system.

5.2.2.3 The Boronizing Heat Treatment. The crucible containing the boromzing

powder mixture and the embedded sample steels was dried for two hours at 250 °C in the

furnace. After that, the crucible lid was covered tightly. Then, the furnace temperature

was increased to 850 °C and was held for four hours in the argon atmosphere (Argon

(99.999%) of SOS Gases) with the flow rate 60 psi. After reaching the required

temperature and time, the furnace was cool down to 300 °C tmder the argon atmosphere

and the furnace was switched off. When the furnace was cool down to the room

temperature, the boromzed sample steels were removed from the crucible and were

cleaned with the methanol in the ultrasonic bath.
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5.2.3 Characterization of Boride Layers

The boride layers were analyzed with three aspects as follows.

5.2.3.1 Phase Identification. The X-ray Diffraction Method (XRD) was used to

investigate the tmboromzed and boromzed sample steel phases of AISI 1018, AISI 4340,

and AISI 304. XRD Philips (PW3040 MPD DY715) was used tmder the system

condition as followed: the XRD wavelength utilized was Cu K-a 1 (1.5405980 A) at 45

kV and 40 mA; the '/2" divergence slit, '/2" anti-scatter slit, and 15 cm mask were chosen

to detect the XRD spectrum; the 20 scan range was from 20-100° with step size of 0.020

and 2.70 times per step. The specimen phase was analyzed by using X'Pert high score

software.

5.2.3.2 Morphology and Thickness. The outer surface of boromzed sample steels

was observed by using optical microscopy. The AxioTech Microscope of Carl Zeiss with

10x eyepiece lens and 20x, 50x, 100x objective lens was used to investigate with

Differential Interference Contrast (DIC), Darkfield, and Brightfield methods. The

resulting microstructure images have been taken by using the digital camera (Pixelink

PL-A662).

The cross-sectional specimen was used to examine the thickness and morphology

of the boride layers penetrating into the steel substrates. The boronized sample steels

were motmted with the epoxy resin (EpoxyMotmt of Allied High Tech Products, Inc.) in

the two-part motmting cups. The mixing ratio of part A (resin) and part B (hardener) was

100:30 by weight. After motmted, the specimens were placed in the desiccator and

degassed tmder the vacuum system for 10 minutes. They were then left to cure overnight
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at room temperature and thereafter were removed from the mounting cups and continued

with the grinding and polishing procedures.

The grinding and polishing machine (MetPrep3 from Allied High Tech Products,

Inc.) was deployed. The grinding and polishing procedures are demonstrated in the Table

5.2.

After grinded and polished, the specimens were cleaned with water in the

ultrasonic bath until all substances remaining from the polishing procedure was

completely eliminated. They were dried with the air blower. To observe the morphology

and thickness of boride layers, the AISI 1018 and AISI 4340 specimens would be etched

by the etching solution of 0.5g picric acid (98% picric acid of Aldrich), 12.5g sodium
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hydroxide (>98%(assay) sodium hydroxide of Fluka), and 25m1 distilled water at 35 — 40

°C for one minute, while AISI 304 specimens were etched in 3% nitric acid. After

etching the specimens were washed with water in the ultrasonic bath. It should not have

any etching solution left on the specimen surface because the etching solution caused the

distortion of the image color.

After that, the morphology microstructure of boride layers was observed with the

optical microscope and the microstructure images were taken. The thickness of the

boride layer was measured by using AxioVision Software Version 4.1 of Carl Zeiss. The

measurement of each saw-tooth structure depth was randomly examined. Subsequently,

the distribution and average value of thickness depth were calculated by using the

statistic operation.

5.2.3.3 Microhardness. The microhardness of boronized sample steels (AISI

1018, AISI 4340, and AISI 304) was determined at every boride-layer depth by using

LM700 Microhardness Tester with the Vickers indenter of Leco. The relationship

between the Vickers microhardness and the boride layer depth was observed.

5.2.4 Corrosion Testing

The corrosion resistances of tmboronized and boromzed sample steels (AISI 1018, AISI

4340, and AISI 304) were investigated by a continuous weighting method. The weight

loss of the specimen was continuously detected as a ftmction of time. The 5%, 10%, 15%

w/w hydrochloric acid (HC1) were used as corrosive media. The setting equipment for

this experiment was illustrated in Figure 5.2.
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From Figure 5.2, the specimen was htmg down from the balance (Analytical

Balance GR-202 of A&D) with platinum wire and immersed in hydrochloric acid

solution for 24 hours. The specimen weight was detected every 36 seconds and

automatically stored in computer.

5.2.5 Oxidation Resistance Testing

The oxidation resistance of tmboromzed and boromzed steels (AISI 1018, AISI 4340, and

AISI 304) was investigated at 600 °C for 2, 4, 6, 8, 10, 12 hours in the box furnace. The

weighted specimen was placed inside the ceramic boat and then put into the furnace.

Periodically every two hours, the specimen was removed from the furnace, cooled down

at room temperature, and weighted. The weight gains of specimen were detected with

respect to the soaking time.



CHAPTER 6

RESULTS AND DISCUSSION

6.1 Characteristics of Boride Layer

The analysis of boride layer shows the major characteristics into four aspects.

6.1.1 Boride Surface

After the boronizing heat treatment, the sample surface was seen in dark grey color,

which was a color of iron-boron compound (FeB and Fe 2B). The image of specimen's

surface before and after boronizing heat treatment was illustrated in Figures 6.1, 6.2 and

6.3. From these figures, it was indicated that the boride layer that occurred during the

boronizing process increased the roughness of specimen's surface. Consequently, the

roughness might be the problem of low specimen tolerance.
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a) The specimen surface before boronizing 	 b) The specimen surface after boronizing

Figure 6.3 The image of AISI 304 specimen surface before and after boronizing.

6.1.2 Phases Present in the Boride Layer

To detect the occurrence of boride-layer phases on the boromzed specimen, the XRD

pattern of unboronized specimen was used as a background phase. The different boride-

layer phases deposited on the specimen surface after boronizing were shown in Table 6.1.
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The XRD patterns of AISI 1018, AISI 4340, and AISI 304 were shown in Figures 6.4,

6.5, and 6.6, respectively.

Figure 6.4 The XRD pattern of AISI 1018 before and after boronizing (P-unboronized
specimen, B-boronized specimen).
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Figure 6.6 The XRD pattern of AISI 304 before and after boronizing (P-unboronized
specimen, B-boronized specimen).
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6.1.3 The Morphology and Thickness of Boride Layer

The saw-tooth structure or the needle-like structure of boride layer penetrating into the

substrate matrix was observed on the cross-sectional specimen. The microstructure image

of inward Fe2B phase and outward FeB phase was exhibited in brown color and blue

color, respectively. The average boride-layer thickness of AISJ 1018, ATSI 4340, and

AISI 304 was shown in Table 6.2. The distribution of the boride-layer thickness and the

cross-sectional specimen morphology were also shown in Figures 6.7, 6.8, and 6.9.

Figure 6.7 The saw-tooth morphology and the distribution of the boride-layer thickness
on AISI 1018.



Figure 6.9 The saw-tooth morphology and the distribution of the boride-layer thickness
on AISI 304.

According to the chemical composition of steels in Table 5.1, it was seen that the

boride-layer thickness was inverse to the alloying elements in the sample steels. The

increasing of alloying elements caused the decreasing of boride-layer thickness. AISI

1018, plain carbon steel without alloying elements, demonstrated the saw-tooth structure

with 75 — 76 [tam in depth, while AISI 4340, high strength alloy steel, had more alloying

elements than AISI 1018, showing the shorter saw-tooth structure of boride layer (57 - 58

Inn). In case of AISI 304 (austenitic stainless steel), the narrow (10 -11 Jim) and smooth

boride layer was detected, which was the effect on the high quantities of chromium and

nickel as alloying elements in AISI 304 steel substrate.
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6.1.4 Microhardness

The microhardness of boride layer related to the amount of boron atoms that diffused into

the substrate, in terms of the depth from the external surface. The fact that microhardness

decreased as the depth from the surface increased was observed and illustrated in Figures

6.10, 6.11, and 6.12. Moreover, it was shown that the decline of microhardness became

larger on going towards to the bulk of the substrate.

Figure 6.11 The plot between the microhardness and the depth of boride layer in AISJ
4340.
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Figure 6.12 The plot between the microhardness and the depth of boride layer in AISI
304.

6.2 Corrosion Testing

The corrosion resistance testing of boronized specimen was investigated in 5%, 10%, and

15% w/w hydrochloric acid, compared with that of unboronized specimen in 5% w/w

hydrochloric acid. The unique technique (continuous weighting method) was used to

investigate the results of corrosion resistance. For AISI 1018, the boronized sample was

able to resist in 5% w/w hydrochloric acid but it could not protect the substrate from the

acid corrosion in 10% and 15% w/w hydrochloric acid as shown in Figure 6.13. For AISI

4340, the boronized steel also enabled to protect the substrate from the corrosive media

as shown in Figure 6.14. Especially, AISI 304, which usually could not persist in

hydrochloric acid, was able to resist in hydrochloric acid as shown in Figure 6.14.
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Figure 6.15 The corrosion tests of unboronized and boronized specimen (AIST 304) in
HC1 solution (B-boronized specimen, P-unboronized specimen).
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6.3 Oxidation Resistance Testing

The oxidation resistance of boronized and unboronized specimens was determined at 600

°C for 12 hours. In case of AISI 1018 illustrated in Figure 6.16, the experimental result

showed that the oxidation resistance of boronized specimen was higher than that of

unboronized specimen about three times. In case of AISI 4340 illustrated in Figure 6.17,

during the beginning of experiment the oxidation resistance of boronized specimen was

higher than that of unboronized specimen; however, after 8 hours the oxidation resistance

of boronized specimen seemed constant while the unboronized specimen inclined

continuously. In case of AISI 304 illustrated in Figure 6.18, the results showed the better

oxidation resistance of boronized specimen than that of unboronized specimen.

Figure 6.16 The oxidation test of boronized and unboronized specimen (AISI 1018) at
600 °C for 12 hours (B-boronized specimen, P-unboronized specimen).



Figure 6.17 The oxidation test of boronized and unboronized specimen (AISI 4340) at
600 °C for 12 hours (B-boronized specimen, P-unboronized specimen).
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Figure 6.18 The oxidation test of boronized and unboronized specimen (AISI 304) at 600
°C for 12 hours (B-boronized specimen, P-unboronized specimen).



CHAPTER 7

CONCLUSION

The boronized specimens of AISI 1018, AISI 4340, and AISI 304 were successfully

prepared by the pack boromzing technique. The investigation of structure and properties

of boride layer in ferrous alloys was concluded as followed:

1. AISI 1018, plain low carbon steel, showed the saw-tooth structure with the

depth of about 75 — 76 1.1111. The boride layer was consisted of an outer FeB phase layer

and an inner Fe28 phase layer. The microhardness was obtained in the range of 1400-

2200 HV.

2. Similar to AISI 1018, AISI 4340, high strength alloy steel, also demonstrated

the saw-tooth structure with the depth of about 57 - 58 gm. Fe8 and Fe28 phase were

detected as a boride layer on the substrate. The microhardness was recorded in the range

of 1800-2200 HV.

3. Unlike AISI 1018 and AISI 4340, the narrow and flatten boride layer (10 — 11

gm) was observed instead of the saw-tooth structure, as a result of alloying elements,

particularly chromium and nickel in AISI 304. The microhardness of boride layer in

AISI 304 was about 400-700 HV.

4. The new tmique technique was used to evaluate the corrosion resistance and

boromzed sample steels showed the ability of the boromzed coating to protect the

substrate.

5. The boromzed specimens also showed the improved of oxidation resistance at

high temperature rather than the tmboromzed specimens.
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CHAPTER 8

FUTURE WORK

Since the pack boronizing is the simplest boronizing technique to tmderstand the basic

principle required for advance research on developing boromzed steel, other boronizing

techniques are planned to study and yet realize the optimized properties.

1. The gas and plasma boronizing utilizes the gas medium, rather than the solid

powder in the pack boromzing method, with appropriate and controllable procedures to

produce the optimized properties.

2. The multi-component boromzing is expected to construct the complex phase

boride-layer that in general yields the desired properties.

3. The boromzing process for transition metals and their corresponding

properties, which are deployed in extremely hard-surface applications, will be

investigated.
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APPENDIX B

Fe2B XRD DATA

The crystallography data and XRD pattern of Fe28 are as followed:

Name and formula

Reference code:	 00-003-1053

PDF index name:	 Boron Iron

Empirical formula:	 BFe2
Chemical formula: 	 Fe2B

Crystallographic parameters

Crystal system:	 Tetragonal
Space group:	 14/mcm
Space group number: 	 140

a (A):	 5.0990
b (A):	 5.0990
c (A):	 4.2400
Alpha (°):	 90.0000
Beta (°):	 90.0000
Gamma (°):	 90.0000

Volume of cell:	 110.24
Z:	 4.00

RIR:

Status, subfiles and quality

Status:	 Marked as deleted by 1CDD
Subfiles:	 Inorganic

Alloy, metal or intermetalic
Common Phase

Quality:	 Blank (B)

Comments

Deleted by:	 Deleted by 36- 1332. Source of Unit Cell Data: powder diffraction.

References

Primary reference: 	 The Dow Chemical Company., Private Communication
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