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ABSTRACT

FLUIDIZATION OF AGGLOMERATES OF NANOPARTICLES
UNDER DIFFERENT FORCE FIELDS

by
Jose A. Quevedo

Nanoparticles are the focus of many research activities, and in the near future

they will be handled in large amounts by industry. Fluidization is a very important

unit operation which is applied in several industrial processes.

In the present work, fluidization experiments with agglomerates of

nanoparticles were done under different force fields: (1) gravity force or

conventional fluidization; (2) a magnetic force field, which uses magnetic

particles under the influence of a magnetic field; and (3) a centrifugal force,

generated by a rotating frame that simulates higher gravity conditions.

Among the significant results with agglomerates of nanoparticles,

conventional fluidization was possible by separating out large agglomerates from

the bed; the movement of magnetic particles at the bottom of the fluidized bed

enhanced the fluidization by increasing the bed expansion and avoiding the

bypass of gas through the bed under the form of bubbles; fluidization of the

agglomerates in a rotating fluidized bed was accomplished under different

simulated gravity conditions, which allowed to fluidize the agglomerates under

higher than normal gas flow conditions. Theoretical approaches for the

estimation of the agglomerate size and the bed pressure drop were included.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The study of the fluidization phenomena is a focus of attention in many industries

and it has been a subject of research for a very long time. The most significant

application of the fluidization technique is found in catalytic cracking of heavy

hydrocarbons in refineries. The fluidization regime implies high rates of mass

and heat transfer and involves a mixture of solid particulates in a fluid medium.

Therefore, its application in processes that depend on the use of particulates as

either reactants or catalyst and high rates of transport is very common.

The fluidization process is characterized by the presence of a fluid phase

and a solid phase, which interact in terms of momentum, heat and mass transfer

depending on the application and materials involved. There are several types of

fluidization, but they can be classified by the continuous phase involved in the

process; thus, there is liquid phase fluidization and gas phase fluidization. The

material that is fluidized is a powder which can be defined as a finely divided

solid. The particle primary sizes can vary from thousands of micrometers to a

very few nanometers; however, due to strong cohesive forces, small particles

tend to group together, forming agglomerates of about several micrometers or

larger. Many industrial applications already exist that use fluidization of

millimeter and micron size particles. However, since the uses of nanoparticles

1
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are relatively new, few fluidization applications exist and the behavior of the

nanoparticles agglomerates is not well known.

The fluidization of agglomerates of nanoparticles has become of great

interest recently because current research on the production of these

nanoparticles is underway and the handling of these powders in large quantities

will be a major concern for industries in the near future. Actually, in the

production process of these powders, fluidization is used for removal of residual

reactants from the particles or to change their surface properties by coating

them. In addition, agglomerates of nanoparticles are used in several applications

such as sealants, paints, coatings, printing inks, toners, adhesives, gels, catalyst

carriers, stabilizer agents. Many other potential applications are in development.

The present work is focused on the gas fluidization of agglomerates of

nanoparticles, particularly fumed silica. Different fluidization methods were

applied, such as conventional fluidization, in which fluidization of agglomerates

takes place only by passing gas through them at high velocities. 0ther methods

involve the use of external forces to break up the cohesion between particles,

such as the movement of magnetic particles under the presence of an oscillating

magnetic field. Another external force is a high centrifugal force field generated

by a rotating frame.
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1.2 How Nanoparticles are Produced

The powders used in the experiments of the present work were produced by

Degussa Corporation (Mangold et al., 1999). They use the pyrogenic process,

which has been developed for large scale synthesis of nanoparticles. The fumed

silica nanoparticles formation reaction is:

The SiCI4 is vaporized at a temperature of about 90°C, and then it is mixed with

hydrogen and oxygen; this gaseous mixture is then ignited and burned in a

combustion chamber of a water cooled flame reactor. After the cooling off of the

reaction gases, the pyrogenic silica is separated from the hydrogen chloride

gases in a filter unit. The pyrogenic silica is then treated in a deacidification unit

for a very short time (20 to 30 seconds) at a moderate temperature of about

600°C with steam and air.

In general, the same principle is applied for the production of

nanoparticles of oxides of other materials such as titanium, using as a raw

material a chlorinated compound. The nanoparticles studied in this research are

Aerosil® R974, Aerosil® R972, Aeroxide® Titanium Dioxide P25, Iron 0xide, and

Aeroxide® Aluminum 0xide C. Their primary particle size is about 12 to 21 nm,

and they form agglomerates of about several tenths or hundreds of microns.
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1.3 Previous Studies About Fluidization of Nanoparticles

Many of the fluidization principles already known apply to the fluidization of

agglomerates of nanoparticles; however, these agglomerates of nanoparticles

have a very low density based on a fractal porous structure, characteristics that

are different from agglomerates of micron size particles. The lower density and

irregular shape give agglomerates of nanoparticles a different hydrodynamic

behavior reflected in a very low minimum fluidization velocity and high bed

expansion.

For example, the Ergun equation for the pressure drop across packed

spheres and the Stokes equation for the terminal velocity have been used by

many researchers to estimate the fluidization behavior, but in combination with

parameters that represent the bed voidage and shape of the particles

(sphericity). Stokes, in 1851, derived an equation for the viscous resistance to

the motion of a single spherical particle falling in an infinite fluid; a force balance
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approach was used in this derivation which included the drag force which

characterizes the interaction between the solid sphere and the fluid medium.

Among previous research work in fluidization, Richardson & Zaki (1954)

had shown the existence of an exponential relationship between the porosity of

the bed and the ratio of the gas and the settling velocities. Their result is

important because it allows the estimation of the size of the particles based on

gas velocity and bed voidage data. The Richardson & Zaki equation, applied to

the fluidization of agglomerates of nanoparticles has been studied by Nam et al.

(2004). Nam et al. used fractal dimension theory to estimate the number of

primary particles in typical agglomerates; by selecting an appropriate Richardson

& Zaki index, the agglomerate size was estimated.

Wang et al. (2000) studied the conventional fluidization of agglomerates of

nanoparticles. They found that the gas velocity corresponding to the minimum

fluidization velocity for different kinds of nanoparticles was about 1 cm/s but not

larger than 10 cm/s, very low values when comparing to micron size particles. In

addition, elutriation of agglomerates of nanoparticles could be seen at even these

small gas velocities.

In order to solve the elutriation problem, the fluidization of agglomerates of

nanoparticles is being enhanced by applying external forces, like magnetic

particles moving under the effects of a magnetic field, vibration of the bed,

fluidization assisted by sound, or fluidization under high gravity forces simulated

by a rotating fluidized bed. All these methods have been previously applied to

micron-size particles.
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For vibrated assisted fluidization, Nam et al. (2003) have shown

experimental data regarding the enhancement of the fluidization of agglomerates

of nanoparticles by reducing the minimum fluidization velocity, increasing bed

expansion, decreasing elutriation to almost zero, and increasing the stabilization

of the fluidized bed by extending the settling time after the vibration is turned off.

Research on the magnetically assisted fluidization and the fluidization in a

rotating frame are the object of study in the present work. Previous research on

magnetically assisted fluidization has only been done with all magnetic particles

and a mixture of magnetic and non-magnetic particles. However, in all of these

previous studies the magnetic particles were fluidized wheras in this study the

magnetic particles remained at the bottom of the bed and simply served to break

up the interparticle forces of the large nanoagglomerates.

The rotating fluidized bed is a technology that has been used for several

applications in the past and it is still in development. Filtering of soot gases from

a diesel combustion machine was done in a rotating fluidized bed unit, due to its

capacity to accept high flow rates; moreover, past experiments on gas-solid

fluidization of micron size particles (Qian et al., 2001), and coating and/or

granulation of fine powders were carried out in a rotating fluidized bed giving

good results and showing that the rotating fluidized bed (RFB) is a promising

technology (Watano et al., 2001). However, the fluid pattern inside of a RFB is

not completely known; therefore, in the present work, the fluid behavior inside of

the rotating frame is analyzed by using computational fluid dynamic (CFD)

methods.
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1.4 Objectives of the Present Study

This research work covers the fluidization of agglomerates of nanoparticles under

different external forces, in which the following methods are studied: conventional

fluidization, magnetically assisted fluidization and fluidization in a rotating frame.

The powders studied are fumed silica, titanium dioxide, iron oxide and aluminum

oxide (Aerosil® R972, Aerosil® R974, Aeroxidee ® P25 and Aeroxidee® Aluminum

0xide C).

Several aspects of the fluidization of agglomerates of nanoparticles such

as the experimental setup, the fluidization behavior and some preliminary

modeling are described. 0ne of the major objectives is to characterize and

describe the peculiar fluidization behavior of these powders and subsequently,

after analysis of the data, some modeling is proposed to explain the fluidization

characteristics regarding the estimation of the agglomerate size for conventional

fluidization and bed pressure drop for fluidization in a rotating assembly.

1.5 Organization of the Thesis

The present chapter has been an overview of the objectives of the research. By

introducing how particles are made, it is shown that some nanoparticles are

produced by the pyrogenic process; however, due to their small size and high

surface area strong cohesive forces are present leading to the formation of

agglomerates several times larger than the primary particle size.

In Chapter 2, the basic concepts of fluidization are introduced. A

summary of the hydrodynamic classification of powders and the most important
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parameters that describe fluidization are mentioned, such as bed pressure drop,

minimum fluidization velocity, terminal velocity and bed empty voidage. Since

the bed voidage fraction is a variable involved in many of the models, such as the

Richardson & Zaki equation, the theory related to the bed voidage has been

emphasized in this chapter.

Chapter 3 describes the conventional fluidization of agglomerates of

nanoparticles. The experimental work, procedures and results of fluidization

experiments with Aerosil® R974 are explained extensively. The Richardson &

Zaki equation was applied to the fluidization results, allowing the estimation of

the agglomerate size based on the terminal velocity. Furthermore, since

fluctuations in some variables, such as the bed pressure drop, were observed

and a mechanism that explains this phenomenon was developed.

The role of an external force field generated by the movement of magnetic

particles under the influence of an oscillating magnetic field is evaluated in

Chapter 4 for Aerosil® R974. In this chapter, the behavior of the magnetic

particles under an oscillating magnetic field and its characterization gives an idea

of how magnetic particles work in fluidization experiments. Several parameters

of the fluidization experiments were changed such as the magnetic field intensity,

frequency and weight of magnetic particles. Among the conclusions, the amount

of magnetic particles used plays a significant role in the fluidization results which

also depend on the magnetic field intensity.

The fluidization of agglomerates of nanoparticles in a rotating fluidized bed

is the object of study in Chapter 5. The experimental conditions are explained in
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detail as well as the results of the experiments. Moreover, as previous

theoretical models show some discrepancies with the experimental data, a novel

model based on the Navier-Stokes equation in a rotating frame was derived. Not

withstanding the difficulties in getting an analytical solution to the Navier-Stokes

equation for a rotating fluidized bed, the new model based on a rotating frame of

reference allowed us to identify several additional forces that can play a role in

the fluidization of powders depending on the rotating speed, the velocity and

pressure of the fluid at the entry and the geometry of the unit. These were

subsequently verified by using a computational fluid dynamic (CFD) program

(Fluent®).



CHAPTER 2

PREVIOUS CONCEPTS IN FLUIDIZATION

2.1 Introduction

Fluidization is the term commonly used to refer to a fine solid matter when it

behaves like a liquid by the passage of a fluid at a certain rate above a critical

value and without having been exposed to a temperature high enough to make a

phase transition from solid to liquid state. It can be also understood as the

dilution of particulate solid matter by gas or liquid. Many publications describe

the fluidization phenomena as shown below.

Figure 2.1 Different stages in fluidization (Kunii et al., 1991).

10
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There are mainly three stages: Pre-fluidization, fluidization and conveying;

the characteristics of these stages are different depending on the powder size,

density and structure. Pre-fluidization can be defined as the state in which either

there is not enough fluid through the bed or the bed is too cohesive so that only

bubbling, channeling and/or spouting occurs; the pressure drop is not equal to

the bed weight which means that the powder has not been lifted, and the gas is

not evenly distributed in the bed of powder; this condition is also called incipient

fluidization. A bed of powder is fluidized when the pressure drop is equal to the

bed weight, which means that all the powder is being lifted; in addition, the gas is

evenly distributed through the bed of powder and it acquires a liquid like

behavior. Finally, the conveying stage, can be defined as the one in which solid

particles start to abandon the dense-phase of the fluidized bed, and are carried

out of the system following the path of the gas since they are driven by a

superficial velocity larger than their terminal velocity.

The classification of the solid particulates in fluidization can be based on

their hydrodynamic response. According to the literature (Gupta et al., 1999),

several classifications can be found as follows: Geldart groups (1973), Molerus

groups (1982) and Clark et al. (1986) groups. The reason for these

classifications is for extrapolating data of fluidization only among the same class

of powders. As shown in Figure 2.2, Geldart classified the powders by the

difference in density between the fluidized gas (i.e., air and solid) and the mean

size of the particles; Groups A and B are suitable for fluidization while Group C is
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very difficult to fluidize and Group D is spoutable. The numerical criteria for the

flint in Piniira 9 9 riafincri Dv 	 aim ac fnlinwc•

this is the boundary between Group A and Group B powders,

Equation 2.2 is the boundary between Groups B and D powders. Geldart did not

provide a criteria for the boundary line between Group A and Group C powders.

Figure 2.2 Classification by Geldart.

Similarly, Molerus proposed some criteria to group the powders by

considering the interparticle force as well as the drag exerted by the gas on the

particle (Gupta et al., 1999), Figure 2.3. The criterions for the definition of the

boundaries between the classes of powders are as follows:



13

According to Molerus, the constants IC depend on the nature of the powder, and

Ce represents the estimated cohesive force. Molerus was able to introduce an

equation for the boundary between the Groups C and A.

Figure 2.3 Powder classification of Geldart as modified by Molerus.

The most significant contribution by Clark et al. (1986) was to devise a

method of representing the powders groups of Geldart by certain dimensionless

numbers; this was useful for computer analysis, however, their equations are

long and tedious (Gupta et al., 1999).
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Nanoparticles may be initially considered as Class "C" powders, however,

due to their different behavior during fluidization and the formation of

agglomerates, some researchers have suggested that these powders should be

classified into a new type. They have classified agglomerates of nanoparticles in

two types which they called "Agglomerate Bubbling Fluidization" (ABF), Group

"C" like behavior, and "Agglomerate Particulate Fluidization" (APF), Group "A"

like (Wang et al., 2002).

The liquid-like behavior is a very important characteristic of the fluidization

of particulates, as shown in Figure 2.4; once fluidized, the dense-phase which is

the homogenous mixture of solid particles and the gas, shows the following

characteristics: a horizontal surface, levels of different connected beds equalize,

and the pressure drop is equal to the static head (Kunii et al., 1991). For

example, a heavy object that would rest at the top of a static bed would sink in a

fluidized bed; likewise a light object would tend to float. These properties

indicate that a fluidized bed can be taken as a denser gas phase or a light liquid

phase.

Figure 2.4 Fluid like behavior of fluidized particles (Kunhi et al., 1991).
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2.2 Parameters that Describe the Fluidization

2.2.1 Bed Pressure Drop

The bed pressure drop is a very important parameter in fluidization because it

determines the work to be done by the fluid media to lift the dense phase, and an

estimation of the power consumption can be made.

The most common criteria used to determine the pressure drop across a

homogeneous bed of particles is the Ergun equation (Ergun, 1952); and it is

related to the frictional pressure drop by the very well known equation:

However, it is important to remind ourselves that this is an empirical

equation and it was developed for an inertial frame, it also considered a fixed bed

of particles and not a dynamic assembly of particles. This equation describes the

almost linear relationship between the bed pressure drop and the fluid velocity

until reaching fluidization conditions (pre-fluidization or fixed bed).

0nce the bed of powder is fluidized, the drag force exerted on the

particles by the fluid has to be equal to their weight over the cross-sectional area

of the column. Therefore, the pressure drop across the bed of powder should

follow the equation:

AP
L if Mc 	 eif)(Ps Pgl M

Mc
(2.7)
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It will be shown below that the Ergun equation for the pressure drop is not

applicable at all, since for very fine particles the distribution of the gas is not even

and the bed is not homogeneous. In the case of the agglomerates of

nanoparticles, the stage before fluidization usually exhibits channeling and there

are also many fluctuations in the pressure drop that cannot be explained at all

with the Ergun model for the pressure drop.

2.2.2 Minimum Fluidization Velocity (U mf)

The minimum fluidization velocity (U mf) is important because it determines the

instant in which there is a homogeneous mixture between the solid particles and

the fluid, in addition almost all the particles present a dynamic behavior (they are

moving).

According to the literature (Gupta et al., 1991), there are many

experimental methods that can lead to the determination of the U mf such as the

pressure drop method, voidage method and heat transfer method, as shown in

Figure 2.5. Regarding the theoretical predictions of U mf, the following methods

are commonly used: dimensional analysis, drag force method, pressure drop

method and terminal velocity method.



Following the theoretical pressure drop approximation, the equations for

the pressure drop given above (Equations 2.6 and 2.7) should apply at the

minimum fluidization velocity and the following quadratic expression results:

This equation, after manipulation of the variables, can be simplified to:
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Simplifications of the equation of the minimum fluidization velocity based

on the size of the particles can be made (Kunhi et al. 1991). For very small

particles at Rep,mf < 20,

It can be seen that the equation to find the minimum fluidization velocity is

of quadratic form with respect to the Re number

and the coefficients of this quadratic expression have been found constant for

certain ranges; in the case of small particles, it can be presented in the form as

indicated by Wen and Yu (1966) and recalled in Kunii-Levenspiel (1991).

Therefore, this equation can be transformed into the following expression as

proposed by Wen and Yu (1966) for fine particles.

Figure 2.6 shows a typical plot of the experimental data showing the

traditional form in which U mf is defined and the plateau region that the value of

the bed pressure drop reaches once the bed is fully fluidized.



Figure 2.6 Formal definition of U mf and the bed pressure drop (Kunii et al.,
1991).

In the same way, Figure 2.7 shows the behavior of three different classes

of powders. The experimental bed pressure drop response and bed expansion

for each class of powder are different.



Figure 2.7 Typical fluidization behaviors of powders class B, A and C (Kunii et
al, 1991).

2.2.3 Terminal Velocity

The terminal velocity is important because it establish the maximum allowable

fluid velocity for the operation or the minimum velocity for carryover of the

particles (Gupta et al., 1999). Applying Newton's second law, the following

equations can be written:

then the equation for the terminal velocity is given by:



21

where CD is the drag coefficient which for spherical particles can be found using

the following expression:

as proposed by Haider and Levenspiel (1989).

However, there are many correlations for the drag coefficient depending

on the range of the Reynolds number and the shape of the particles; the large

number of correlations are based on the conditions at which the terminal velocity

is being estimated; there are differences in the terminal velocity between

spherical particles settling in an infinite medium as compared to non spherical

particles, and if they are settling in an assembly of particles were collisions can

occur.

The experimental methods used for finding the terminal velocity are the

same ones for measuring the minimum fluidization velocity (Umf) except for the

selection of the point at which the values of bed pressure drop and fluid velocity

are considered.

The most common method for finding the terminal velocity from

experimental data is by extrapolation of the bed expansion represented by the

bed voidage. Nevertheless, special attention should be taken when applying

these criteria to fine particles since it can overestimate the value of the terminal

velocity (Gupta et al., 1999).
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2.2.4 Importance of the Empty Bed Voidage

The empty bed voidage (c) is a very important variable in fluidization, since the

empty bed voidage is present in all the equations that model fluidization. For

example, it is used for determining the local average axial velocities of fluid and

particles.

Let introduce Vf and Vs as the volumetric flow rates of the fluid and the

solid particles respectively. Taking into account the bed empty voidage, the local

velocities of fluid and particles can be found by the following equations:

As mentioned before, during bed expansion there is a drag force ( f ) exerted by

the fluid on the particles and it is expected to be proportional to U — V with a

proportionality factor /3 that is an increasing function of £:

0ne important contribution to fluidization theory was made by Richardson

& Zaki (1954); they assigned an empirical expression to the proportionality factor

/3 as shown below:

where Bs  is the density of the solid material, lit is the terminal velocity and n is

the so called Richardson & Zaki index which depends on the Reynolds number of

the particle (Jackson, 2000).
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A force balance on the particles per unit volume of the suspension gives

A corresponding force balance on the gas shows that its pressure gradient must

support the weight of the suspended particles, so

in this equation 	 represents the fraction of the total volume occupied by the

particles; moreover, this expression can be manipulated to get
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Figure 2.8 is a result of Equation 2.24, and it shows the contours of the

volume fraction of the particles into the first, second and third quadrants, where

they represent concurrent upflow, countercurrent flow and concurrent downflow

respectively. The fourth quadrant lacks physical meaning since in that region the

particles will move up with a downward flow of fluid. In Figure 2.8, the line

between the intercepts A and B represents fluidized beds in which the overall

velocity of the solid particles is zero. Nevertheless, this does not mean that the

solid particles are static inside of the fluidized bed, but that the mass velocity of

the solid particles upward is equal to the mass velocity of the solid particles

downward (Jackson, 2000).
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According to Equation 2.22, the pressure drop is proportional to the void

fraction and therefore the volume fraction of the particles; a set of curves that

relate the pressure gradient (equivalent to the volume fraction) to the gas flow

rate, for different fixed values of the particles flow rate can be represented by the

Zenz diagram shown in Figure 2.9 (Jackson, 2000).

Again, the line between the points A and B correspond to fluidized beds;

contour lines at flow of particulates larger than zero Vs > 0 represent conveying

of solids , so called "elutriation" of particles, and contour lines at flow of particles

less than zero Vs <0 represent sedimentation of solids, so called "collapse" of

the fluidized bed.
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The contour line between the points A and B occurs when Vs = 0 , if this

value is replaced in Equation 2.24 then the following equation results

Equation 2.25 can be expressed in logarithmic form in order to have a linear

relationship to make it easy to find the exponent "n" as shown below

Another form to express this equation is by expanding the term in the left side as

shown below,

It will be shown in Chapter 3, that for fluidization of agglomerates of

nanoparticles, Equation 2.27 is frequently used to find the values of "n"

(Richardson & Zaki index) and "At" (terminal velocity). In addition, Figure 2.9

shows the changes in the slopes of the different curves at different solids

velocities and that an increase in the slope of the experimental data plotted

(Equation 2.27) means that the particles start to be carried out by the flow, in

other words, elutriation is present. This can be more clearly seen in Figure 2.10

which is the same as Figure 2.9 except for changing the variable from the volume

fraction of solids (0) to the bed empty voidage (6) and rotated in a way that the

gas velocity appears as the ordinate.
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Figure 2.10 Zenz diagram corresponding to Figure 2.9, but rotated and as a
function of the bed voidage instead of the solid volume fraction.

The experiments carried out by Richardson & Zaki gave information about

the sedimentation velocity v s of a dispersion of particles in liquid and their

relationship with the concentration, measured by E. They came up with the

following empirical relation for a suspension of uniform, spherical particles,

infinite in extent:

where
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the Reynolds number for an isolated particle falling at its terminal velocity in the

fluid.

It is important to note that there are at least two kinds of empty voidage

(Gupta et al., 1999). The following equation correlates the bulk density (or

density during fluidization) and the true density,

where the intraparticle voidage, 61 , corresponds to the empty spaces inside the

agglomerates of nanoparticles and it is almost invariable during fluidization; while

the interparticle voidage 6, is related to the voids between agglomerates and

depends on the fluid flow during fluidization.

This chapter has covered the main principles on which the present work

relies in explaining diverse phenomena in conventional fluidization experiments.

Chapters 3 and 4 will make reference to some of the equations and/or figures

shown in this chapter. However, this chapter could not cover the many aspects

of the theory already developed for fluidization, new concepts such as the

involvement of the Stokes number in the modeling has been already mentioned

(Jackson, 2000); this concept is important for dense phase fluidized beds and

would help to explain the effect of recirculation of solid particles and the

dynamics of the bed.



CHAPTER 3

CONVENTIONAL FLUIDIZATION OF
AGGLOMERATES OF NANOPARTICLES

3.1 Introduction

This type of fluidization takes place when the powder, composed of many

agglomerates of nanoparticles, and the fluid gas interact inside the column in the

absence of any kind of force field but gravitational. It has been mentioned before

that agglomerates of nanoparticles have very low density, therefore, the gas

velocity for their fluidization is expected to be very low compared to micron size

particles. Conventional fluidization takes place in a vertical fluidization column

which will be described in the experimental section.

During the experiments, it was observed that some of the powders

expanded very uniformly about several times the initial bed height; for this

homogeneous fluidization to occur, it was very important to have a homogenous

gas field and to separate agglomerates larger than 500 urn from the bed of

particles.

Among the new findings, it will be shown that there are fluctuations in

variables related to fluidization, such as bed pressure drop and bed height,

before reaching the minimum fluidization velocity, and that some powders

present an exponential bed expansion which follows the Richardson & Zaki

model.

29
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3.2 Experimental Set-Up

An acrylic pipe of 2.25" l.D. was used as a column; in its bottom, a 100 urn or 20

urn porous sintered metal plate was placed and used as a gas distributor. Before

the distributor, a packed bed of spherical glass beads (particle diameter of about

2 mm) was placed in order to make the gas fluid flow uniform even before

reaching the distributor. The length of the column was of about 6 feet, and in the

top, a filter was located to trap any elutriated particles.

The gas flow was either dry nitrogen or bone dry air measured by an area

variable or a differential pressure flowmeter depending on the range. The

differential pressure flowmeter was used for ranges under 1 liming, while the area

variable was used for ranges under 4 liming. The pressure drop across the bed

was measured using a high accuracy differential pressure transmitter which

allowed us to measure even mils of inches of water with a range of 0 -1" H20. A

diagram of the apparatus is shown in Figure 3.1.

All the gas connections were sealed with clear silicon to avoid leaks, since

the gas flow used in the experiments was so low that a small leak could distort

the results. Additional experiments were done in a 0.75" I.D. column.



3.3 Procedure

The agglomerates of nanoparticles were sieved in order to obtain only particles

under 500 um, since it was found that large agglomerates break the homogeneity

of the gas flow field required for a smooth fluidization. After sieving a certain

amount of powder was weighed; experiments were done with 5, 10 and 20 grams

of powder. The weight of the powder was changed, to find out if it affected the

behavior of the fluidization. After the powder was loaded into the column, the

gas flow was increased progressively. At the beginning, due to the strong

cohesive forces, the powder formed a plug, then it was broken by tapping the

bed. 0nce the powder became loose, channeling occurred, and circulation of the

dense phase began.
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Bed pressure drop and bed height oscillated when the gas velocity was

below the minimum fluidization velocity. At larger flow rates the plateau of the

bed pressure drop was reached and fluctuations no longer occur. Bed expansion

began as soon as the gas flow started to circulate through the bed but it

oscillated which means that the density in the bed was not homogeneous. Flow

rates higher than the minimum fluidization velocity the bed height increased at a

larger rate and oscillations did not occur. The large bed expansion of about five

times the initial bed height without flow is a very important characteristic since no

other class of powder behaves in this way (large bed expansion before minimum

fluidization conditions). The gas flow was stopped when bubbling began and

elutriation was significant.

3.4 Results

Typical results of the fluidization experiments are plots of bed pressure drop vs.

gas velocity. As mentioned in Chapter 2, the minimum fluidization velocity (U mf)

is found when the bed pressure drop reaches the plateau region (see Figure 2.6);

however, there are fluctuations in the bed pressure drop and bed height before

the U mf. These fluctuations are not noticeable when using a water manometer for

measuring the bed pressure drop since its sensitivity is too low.

Figures 3.2, 3.3 and 3.4 are plots for 5, 10 and 20 grams of Aerosil ® R974,

respectively, in a 2.25 inch I.D. column. At gas velocities less than 0.4 cm/s there

are many fluctuations in the bed pressure drop and bed height readings; in

addition, some of the values of the bed pressure drop match the plateau value
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even before the minimum fluidization velocity is reached. These unstable high

values of bed pressure drop before full fluidization may lead to an incorrect

determination of the Umf. For example, if we assume that the bed pressure drop

plateau region begins at these unstable points the U mf would be about 0.2 cm/s

for Aerosil® R974, rather than 0.4 cm/s.

As mentioned before, fluidization experiments were carried out using

different amounts of agglomerates of nanoparticles. It is clear that the value of

Umf is independent of the amount of powder used to fluidize; however, the bed

expansion is proportional to the initial bed height in all cases. However, the

nondimensional bed height, which is the ratio of the actual bed height divided by

the initial bed height at no flow, is almost independent of the amount of fluidized

powder.
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Since there are fluctuations in the bed pressure drop in the region close to

the U mf, it can be inferred that the fluidization is not fully developed in the entire

bed; moreover, these fluctuations show up when either fluidizing or de-fluidizing

the bed (increasing or decreasing the gas velocity). Figure 3.5 shows that the

fluctuations disappear when the gas velocity is around 0.4 cm/s or more, for

Aerosil R974, and that they increase at gas velocities below that value.

Due to these fluctuations, the value calculated for the U mf by using the

pressure drop approach became uncertain because of the instabilities of the bed.

Thus, it is necessary to find a procedure to confirm the value of the minimum

fluidization velocity.
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As mentioned in Chapter 2, there are different methods for finding the U mf,

such as bed voidage or heat transfer based methods. Since the bed expansion

is proportional to the bed voidage fraction, a tendency was sought to relate bed

expansion and gas velocities in a way that the U mf could be found by the empty

voidage method. Hence, a plot of the fluidized bed height vs. the logarithm of the

gas velocity is introduced as shown in Figure 3.6; clearly, a linear tendency can

be seen. This relationship between the bed expansion and the logarithm of gas

velocity may mean that an increase in the bed voidage due to an increase in the

gas flow is homogeneous throughout the bed of agglomerates. Moreover, it can

be noticed that this linearity can be used to confirm the value of the U mf when the

bed of particles is fully fluidized and stable. These plots may also be useful to

identify the gas velocity range in which elutriation becomes significant.

According to Figure 3.6, the U mf for Aerosil® R974 is around 0.35 cm/s (-0.45

logarithm scale) and the Umb is around 1.3 cm/s (0.15 logarithm scale).
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The bed height can be made non-dimensional by dividing it by the initial

bed height at no flow. After running experiments with three different amounts of

agglomerates of Aerosil ® R974 and measuring bed expansion, Figure 3.7 was

obtained. The linear correlation found in Figure 3.7 (Equation 3.1) can be

applied for any amount of powder, and can be used for predicting the bed

expansion in the range of our experiments, where the coefficients "a" and "b"

were found according to a linear regression.

Figures 3.8, 3.9 and 3.10 show the Richardson & Zaki plots for the

fluidization of three different amounts of agglomerates of Aerosil ® R974. The

data can be fitted by two linear approximations. These results are not clearly
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understood yet, but they may mean that either there is a change in the size of the

agglomerates of nanoparticles at different gas velocities during fluidization or

elutriation/conveying of particles increases the bed voidage at a higher rate than

in smooth fluidization which is explained by the Zenz diagrams (Figure 2.10,

Chapter 2). In these, the average velocity of the agglomerates is zero during

fluidization, but an increment on the velocity of the solids is reflected by an

increase on the rate of change of the fluid velocity against the empty bed

voidage.

For these plots, the empty voidage was calculated by Equation (3.2) using

the experimental bed pressure drop (AP) and the bed expansion (H). The

agglomerate density was found by using Equation (3.3).

The slope of the linear regression at low gas velocities can be explained

by the criteria of Richardson & Zaki. These plots give straight lines in which the

slope is the index "n" and the constant coefficient is the terminal velocity of the

agglomerate; therefore, its size can be estimated using the terminal velocity

equation. However, this method overestimates the size of the agglomerates

since it is based on the extrapolation of the empty voidage fraction to unity, a

condition that works for the largest agglomerate but for the average one (Lewis et

al., 1949).
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In addition, the Richardson & Zaki criteria can be applied only to a fully

fluidized bed of nanoparticles. At gas velocities lower than U mf, the data scatter

and clearly fall out of the linear regression.

The very well known correlation for these plots follows Equation 3.4

where "n" is the Richardson & Zaki index, E is the bed voidage, U is the gas

velocity and Lk is the average terminal velocity. From the values of the terminal

velocities, the agglomerate sizes can be calculated.
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Figure 3.10 Richardson & Zaki plot for the fluidization of 20 grams of R974.



Table 3.1 Richardson & Zaki Data of Fluidization of Aerosil ® R974.

41

By assuming a creeping flow around a spherical particle (Ret < 0.1), in

which Stokes' law applies, a preliminary estimation of the agglomerate size can

be done by using the values of terminal velocities of Table 3.1 and the following

equation (Seville et al., 1997):

which after substitution of appropriate values gave us the approximate

agglomerate sizes, 160 um for the first slope (At = 2.8 cm/s) and 285 um for the

second slope (At = 9.12 cm/s). These approximated agglomerate diameters

were used to calculate the Reynolds number as follows
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The Reynolds number obtained by Equation (3.6) corresponds to low flow

conditions and the first slope of the Richardson & Zaki plots while the one

obtained in Equation (3.7) corresponds to high flow conditions and the second

slope of the plots. These results imply that the flow regime is in the intermediate

range between the creeping flow and Newton's law, say 0.1 < Ret < 750, for

which there is no explicit equation for the terminal velocity; and it is necessary to

use an equation based on a drag coefficient correlation.

Thus, the average diameter of the agglomerates was calculated by using

an equation that relates the terminal velocity for a single spherical particle (Gupta

et al., 1999):

The values of the coefficients "a" and "b" in Equation (3.8) depend on the flow

regime as shown in the table below and they relate the Reynolds number to the

drag coefficient for three different flow regimes (Gupta et al., 1999).
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Agglomerates of nanoparticles are not spherical and are surrounded by

other agglomerates in the fluidized bed. Therefore a drag coefficient correlation

that considers porous non spherical particles and multiparticle effects should be

more suitable; however, such a more general correlation is not available.

Nevertheless, there are some correlations for the drag coefficient based on the

Reynolds number, the sphericity, permeability, volume fraction, and density of

the particles and for comparison purposes the following correlation was used

(Cliff et al., 1978.)

The diameter of the particles can be calculated by using either Equations

3.8 or 3.12 in an iterative procedure, having the initial values of the agglomerate

sizes estimated by Equation 3.5; in which, the density of the agglomerate is

estimated from the mass of powder divided by the volume occupied by the bed at

no flow as shown in Equation (3.3) and this value can change slightly due to bed

aeration. A typical value for the agglomerate density of Aerosil ® R974 is about

0.27 to 0.34 kg/m3.
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0nce again, these results confirm that the flow regime around the agglomerates

is intermediate, between the Stokes (creeping flow) and Newton flow regimes.

3.5 Discussion

Certainly, it is very difficult to apply the Ergun equation mentioned in Chapter 2 to

the fluidization of nanoparticles for the region before full fluidization is obtained;

since this equation was empirically designed for a packed bed of spherical large

particles, where the gas flows uniformly through all the empty spaces of the bed.

This does not occur in the fluidization of agglomerates of nanoparticles since,
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before full fluidization, the gas flow is not uniform through the entire bed and it

forms channels as shown in Figure 3.11.

Figure 3.11 Simulation of a fluidized bed in its early stages (Seville et al., 1997).

For example, when the gas velocity in the column is 0.4 cm/s (value close

to the A mf of R974), the empty voidage calculated from the experimental data and

Equation 3.2 is 0.56 and taking into account the Richardson & Zaki index from

Figure 3.10 (n= 3.2) the terminal velocity of the agglomerates can be calculated

as follows:

In the same context, since the gas velocity value of 0.4 cm/s considers the

full cross section area of the fluidization column (25.7 cm 2 for a 2.25 inch I.D.

column), the volumetric flow rate is about 10.3 cm 3/s. However, the effective

cross section area, considering the agglomerates inside of the column, can be

approximated by multiplying the full cross section area by the void fraction,

resulting in a reduced area of about 14.46 cm 2 ; since the volumetric flow rate



46

found (10.3 cm3ls) is constant through the column, the interstitial velocity of the

fluid gas becomes 0.7 cmls. In some cases the relative gas velocity respect to

the agglomerate can be even larger depending on its velocity in the fluidized bed.

Moreover, during channeling the gas velocity in the channel may become

as high as 81.7 cmls, assuming a channel diameter of about 4 mm. If the

Reynolds number is calculated inside the channel, a value of Re = 90 is

obtained, this condition can still be considered laminar flow (Hagen - Poiseuille

type); therefore, the shear stress can be calculated according to the formula:

Solving this equation, a value of 0.19 Pa of shear stress at the bottom of

the bed is obtained and this value for Aerosil ® R974 powder is approximately the

same at different powder loads. The A mf is important because it can help us to

determine the shear stress necessary for the gas flow to carry up the

agglomerates in the channel and begin the dynamic fluidization process. The

agglomerates that have been carried up by the gas stream will locate on the top

of the bed forming layers of a new bed of increased voidage or porosity, and the

increased porosity reduces the shear stress required to carry up the

agglomerates; these effects are explained by Figures 3.12 and 3.13 (Rietema,

1991).
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Figure 3.12 shows that for a powder to start to flow, the shear stress (t)

has to reach a critical value determined by the critical state line. At these

conditions, the normal stress x is not too high, but the elasticity limit of the

powder has been reached and the powder will yield and be sheared off along a

plane "X" which is moving in the direction of the normal stress. The critical shear

stress depends on the normal stress acting on the plane "X" and increases when

the normal stress increases, as indicated by the yield locus. For non-cohesive

powders the yield locus will intercept the origin of the (x, t) diagram, but for fine

cohesive powders it will pass through a point in the negative x-axis (Rietema,

1991).
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Figure 3.13 shows that the yield locus and consolidation locus depend on

the original porosity of the powder in such a way that they shift to higher values

at decreasing porosity. Also the critical normal stress and the corresponding

critical shear stress will decrease at increasing porosity (Rietema, 1991). Hence,

during channeling, the new layers of agglomerates formed at the top of the bed

will have larger porosity, which means that they will require less normal and

shear stresses to be moved.

0ne additional explanation for the channeling effect is that the powder

packing of the agglomerates in the proximity of the wall increases the porosity of

the bed as shown in Figures 3.14 and 3.15 (Rietema, 1991). Therefore, the fluid

velocity will be higher in the proximity of the wall giving birth to the channel.
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Figure 3.15 Local fluid velocity near the wall of the container.

In addition, the channel formation occurs randomly due to the non-

uniformity of the porosity in the bed as mentioned in Rietema (1991). The wall

effect, the random settling of particles, the cohesion between the particles and

the particle size distribution deviate the porosity in the bed of powder.

Due to these factors, a model that can justify the fluctuations of the bed

pressure drop found before fluidization must be based on channeling and the

Hagen — Poiseuille equation. Thus the pressure drop across a channel can

change if the density of the fluid (p ), the diameter (R) and length of the channel
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(Lc) change according to the equation for the mass rate flow (w) as mentioned by

The density of the fluid going through the channel was assumed as the

density value of the mixture of the gas and carried particles which may range

between 10 to 20 kglm 3 and it will depend also on the amount of particles

dragged by the gas flow. Before reaching the minimum fluidization velocity, the

length of the channel remains almost constant and equals to the initial bed height

approximately. According to Equation 3.18, a small change in radius can change

the pressure drop across the channel significantly and the pressure drop can

also change due to the mass of dragged particles.

Regarding the estimation of the agglomerate size, the drag coefficient

method can be used for the calculations, but a more accurate correlation for it is

needed since agglomerates of nanoparticles are porous, non spherical particles

and even collide with each other during fluidization. Therefore, further research

could lead to an appropriate drag coefficient correlation for agglomerates of

nanoparticles. Agglomerate sizes can be measured in the bed during fluidization

by Focused-beam Reflectance Measurement (FBRM), and then the experimental

agglomerate size measurements can aid in finding a suitable drag coefficient

correlation.



CHAPTER 4

MAGNETICALLY ASSISTED FLUIDIZATION OF
AGGLOMERATES OF NANOPARTICLES

4.1 Introduction

As it has been seen in the last chapter, one of the main problems in fluidization is

to overcome the shear forces of the powder, in order to make it loose so that the

gas flow can distribute uniformly across the entire bed. There are two main

obstacles to obtain fluidization: the presence of large agglomerates right above

the distributor that promote the formation of channels by breaking the uniformity

of the gas field, and the cohesive force between agglomerates. Cohesion

among agglomerates result in shear forces which need to be overcome, to

separate the agglomerates and open new paths for the gas to flow through the

bed by increasing the bed voidage.

The use of magnetic particles to obtain smooth bubble-less fluidization

was based reported by Coulaloglou (1979), in which different kinds of

ferromagnetic materials with different coercivity were fluidized before and after

being magnetized; in all the cases, the minimum fluidization velocity increased

for the magnetized particles. Also, Rosensweig et al. (1987) stabilized a fluidized

bed containing nonmagnetizable particles with a magnetizable fluid or ferrofluid,

which consists of a stable colloidal dispersion of super paramagnetic particles of

about 0.01 microns in size. Saxena et al. (1996) studied magnetically stabilized

air fluidized beds of a mixture of magnetic and non-magnetic millimeter size

particles. In these experiments a Helmholtz coil was used for the generation of a
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homogenous vertical magnetic field. Hristov (1997) studied the effects of the

direction of the magnetic field on the fluidization of ferromagnetic particles. Li et

al. (1999) fluidized a mixture of ferromagnetic particles and calcium carbonate

(Group C) particles, and it was found that the fluidization quality of Geldart Type-

C particles could be improved by the magnetic assistance. Change in the

fluidization behavior, from Group B to A, of iron particles of micron size was

studied by Rhodes et al. (2001); in this case the magnetic field generator was

placed on the bottom of the column near to the distributor and consisted of a

Helmholtz electromagnet, which generated a constant and uniform magnetic field

collinear with the air velocity vector. Magnetic particles have been used also as

assistance for impaction coating processes (Singh et al., 2001).

In the present work, magnetic particles enhanced fluidization by breaking

large agglomerates at the bottom of the bed and by opening new paths for gas

flow, increasing the bed porosity and thereby reducing the shear stress

necessary to drag the agglomerates towards fluidization.

The improvement of the fluidization of agglomerates of nanoparticles by

the movement of magnetic particles under the influence of an oscillating

magnetic field depends on several factors such as the magnetic field intensity,

percentage of magnetic particles, homogeneity of the magnetic field and

frequency, among others. The magnetic field used to move the particles is not

homogenous, oscillates and it is located at the bottom of the bed only. Also, the

magnetic particles are larger and heavier than the powder to fluidized, and they

serve only to disrupt the interparticle forces holding the agglomerates together.
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4.2 Behavior of Magnetic Particles in an Oscillating Magnetic Field

The magnetic particles that assist the fluidization of powders play a key role in

these processes; many powders will not fluidize without assistance, but can be

fluidized if assisted by an external force field such as magnetic field (Yu et al.,

2004), sound (Zhu et al., 2004) or vibration (Nam et al., 2004).

0ne of the objectives of these fluidization experiments is to identify the

fluidization characteristics of agglomerates of nanoparticles such as the minimum

fluidization velocity, pressure drop and bed expansion when assisted by the

movement of magnetic particles. Therefore, it is important to quantify the

contribution of the magnetic particles in enhancing the fluidization characteristics

and to identify the conditions under which the magnetic particles are effective in

promoting fluidization.

Experiments were performed using the experimental setup shown in

Figure 4.1.
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The magnetic field was characterized by a Gaussmeter, which measured the

intensity and direction of the magnetic field over the surface of the distributor at

different positions. A close-up view of the geometry of the probe is shown in

Figure 4.2; the probe has a flat tip which measures the intensity of the magnetic

field perpendicular to it.

Figure 4.2 Probe of tine Gaussmeter.

As previously mentioned, the magnetic field intensity was measured along

several points over the distributor as shown in Figure 4.3, to determine the

direction and homogeneity of the magnetic field intensity.

Figure 4.3 Measurement of the magnetic field intensity.



Measurements of the magnetic field intensity indicated that it was not

homogeneous as can be seen in Figure 4.4; moreover, Figure 4.4 shows the

results of measurements done in the North-South direction, in which the highest

intensity was obtained. Measurements in the East-West direction showed a

similar distribution over the area but a much lower intensity of about 60 Gauss at

the highest point. Hence, it played a relatively small role in the movement of the

magnetic particles.

It is important to note that a DC magnetic field was also present, but its

intensity was negligible compared to the AC magnetic field (the DC magnetic

field intensity was about 20 Gauss). In addition, it was found more convenient to

work at low frequencies because of the linear relationship between the power

required by the electromagnetic coils and the current frequency, as shown in

Figure 4.5. However, in these experiments magnetic particles move in the

absence of powder, i.e., in an empty bed.
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If the magnetic field intensity is weak, the magnetic particles tend to

agglomerate and remain motionless over the distributor, breaking the

homogeneity of the gas field and therefore causing adverse effects on the

fluidization as shown in Figure 4.6. 0n the other hand, under stronger magnetic

field intensity, all the particles move without forming agglomerates as shown in

Figure 4.7.

Figure 4.6 magnetic particles under weak magnetic tied intensity.



4.3 Experimental Set-Up

Similar to the conventional fluidization experiments, a column made of acrylic

plastic was used, but in addition to the 2.25" column, a 1" column l.D. was also

used for comparison purposes. A pair of electromagnetic coils was used for

generating the magnetic field, and a frequency converter supplied the desired AC

for the coils at a selected frequency. Due to the generation of heat, the coils had

to be cooled down by air blown past them by a fan. The experimental set up is

shown schematically in Figure 4.8.

A voltage and frequency regulator (Triathlon Precision AC Source)

allowed to adjust the power supply to the electromagnetic coils and by doing so

the intensity of the magnetic field. It is important to note that the magnetic

particles were made of barium ferrite (Ba0-6Fe203), a ferromagnetic material

with relatively high coercivity.



4.4 Procedure

Different amounts of powder were placed inside the column and it was not

necessary to sieve the powder in order to get smooth fluidization since the

magnetic excitation was sufficient to break down even the very large

agglomerates. However, in order to compare with the conventional fluidization

experiments in some cases, the powder was sieved and a certain amount of

agglomerates larger than 500 urn (the ones that break the homogeneity of the

gas flow) were added on purpose to make the fluidization difficult so as to better

evaluate this method. Thus experiments were performed using only soft

agglomerates (less than 500 urn) and a mixture of soft agglomerates and large

agglomerates.

After loading the powder into the fluidization column, the magnetic

particles (1.5 — 2 mm diameter made of barium ferrite) were added. The mass

fraction of magnetic particles was significant due to their high density, but their
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volume fraction was small; furthermore, due to the very low air flow required for

the agglomerates of nanoparticles to fluidize, movement of the magnetic particles

occurred only due to the external magnetic field.

In addition to using different combinations of magnetic particles and

agglomerates of nanoparticles, the voltage and frequency were changed using a

frequency converter so that the movement of the magnetic particles could be

intensified by increasing the intensity of the magnetic field. The frequency was

changed in the range of 45 to 100 Hz, and the voltage in the range of 60 to 120

V; these changes were limited by the electromagnetic coils, since they were

designed for a current intensity of 3 Amps each.

4.5 Results

0ne of the major objectives of the experiments was to determine the effect of the

magnetic particles on the fluidization of agglomerates of nanoparticles. As

discused in Chapter 3, Aerosil ® R974 can fluidize at low gas velocities if the

agglomerates have a diameter under 500 um.

When using magnetic particles as assistance to fluidization, agglomerates

of nanoparticles larger than 500 um can be broken by the collisions with the

magnetic particles. Therefore, it is not necessary to sieve the powder to get a

smooth fluidization, but if the as received powder without sieving is fluidized, the

A mf is very high, and it is significantly reduced by the magnetic assistance as

shown in Figures 4.9 and 4.10.
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The amounts of magnetic particles used in the magnetic assisted

fluidization also play a significant role in the results. In order to quantify the effect

of using different amounts of magnetic particles a certain quantity of Aerosil ®

R974 (10 grams) was placed in the fluidization column and fluidization runs were

done using 2.6, 5.2, 10.4 and 20.8 grams of magnetic particles, successively.

Figures 4.11 and 4.12 show the fluidization characteristics of 10 grams of

Aerosil® R974 when assisted by different amounts of magnetic particles; for

these experiments the only variable changed between the runs was the amount

of magnetic particles.

Although an improvement in the quality of fluidization occurs when

increasing the amount of magnetic particles, this does not necessarily mean that

the greater the amount of magnetic particles the better; it will be shown later that

there is an optimum amount of magnetic particles which depends on the

diameter of the column and the intensity of the magnetic field.
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The effect of the intensity of the magnetic field was also studied; however,

this was limited by the fact that the electromagnetic coils could not generate a

stronger than 120 Gauss magnetic field for more than 30 minutes and the time

for carrying out the experiments were at least 1 hour.
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In Section 4.2 it was shown that at lower frequencies of the alternating

current less energy is used in the electromagnetic coils. Experiments using

different frequencies for the AC supply were run and the effects on the

fluidization are shown in Figures 4.15 and 4.16. In these runs the mass of

Aerosil® R974 was 10 grams, the amount of magnetic particles was 20.8 grams

and the magnetic field intensity was held constant at 120 Gauss. Thus frequency

was the only variable that was changed.

It can be seen that both low and high frequencies give poor results.

According to these plots, it seems that there should be an optimal frequency. An

additional problem arises at lower frequencies due to the increase in current, the

electromagnetic coils heat up faster, increasing the resistance of the coil and this

may affect the magnetic field intensity performance.
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For fluidization experiments of Aerosil ® R974 in a 1 inch I.D. column,

different amounts of agglomerates were used; specifically 1, 2 and 2.5 grams; it

was not possible to fluidize these powders without magnetic assistance even

though they were previously sieved to select agglomerates under 500 urn.
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According to mixing experiments, an optimum amount of magnetic particles for

use in the 1 inch l.D. column was about 0.3 grams. Therefore 0.3 grams was

used in all the experiments done in this small column with Aerosil ® R974.
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Figure 4.17 shows a typical fluidization plot for 1 gram of Aerosil® R974 in

a 1" l.D. column when assisted by 0.3 grams of magnetic particles. There is a

pressure "overshoot," when gas velocities are below the A mf due to column wall

effects. In Figure 4.18, the non-dimensional bed expansion vs. the logarithm of

the gas velocity is shown for different amounts of powder, and it can be seen that

the fluidization behavior does not depend on the amount of powder that was

fluidized and that there is a linear tendency when the bed is fully fluidized.

Moreover, scatter of the data can be seen at gas velocities below the Amf (Amf =

0.4 cmls; Log (A mf) = -0.4).

Figure 4.19 shows that in a 2.25" l.D. column, the bed expansion is larger

than in a 1" 1.D. column. The lower expansion in the smaller column may mean

that more energy is required to overcome friction between the moving powder

and the walls of the fluidization column.
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4.6 Mixing of Agglomerates of Nanoparticles
by Magnetically Assisted Fluidization

0ne of the applications of magnetic assisted fluidization is in mixing of

agglomerates of different nanoparticles. Therefore, experiments were done in

the 1 inch I.D. column. The two powders used were Aerosil ® Aluminum C (Al203

nanopowder, white, primary particle size of about 13 nm) and Nanocat ®

Superfine Iron 0xide (ferric oxide nanopowders, reddish brown, primary particle

size of about 3 nm) provided by Mach 1, Inc.

The minimum fluidization velocity for Aerosil® Aluminum C mixed with

Nanocat® Iron 0xide in the proportion of 10:1 was found to be close to 1 cmls

(data not shown). The reason for the 10:1 ratio was because at higher iron oxide

to aluminum ratios it was very difficult to visually quantify the mixing, which was

based mainly on the homogenous dispersion of aluminum oxide agglomerates.

It was not possible to fluidize either aluminum oxide or iron oxide in the 1

inch I.D. column without the magnetic assistance. However, the amount of

magnetic particles used in the experiments played a significant role and an

optimum ratio of agglomerates of nanoparticles to magnetic particles was found

to be 10:1 for the 1 inch l.D. column as can be seen in Figure 4.20. This ratio

can change depending on the size of the column.

It was also found that the fluidization results were affected with respect to

time because of the formation of a cake over de distributor andlor the increase of

the resistance of the electromagnetic coils due to overheating causing a

decrease in the intensity of the magnetic field.
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After 10 minutes of fluidization, a homogeneous mixture can be seen; but

some large aluminum oxide agglomerates still remain. After 30 minutes, the

experiment had to be stopped because of the overheating of the electromagnetic

coils. Figure 4.21 (a) and (b) show a comparison between the agglomerates of

nanoparticles before and after mixing, respectively.
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4.7 Conclusions and Discussion

It has been shown that assistance of fluidization by the movement of magnetic

particles under the influence of a magnetic field enhances the fluidization by

lowering the minimum fluidization velocity (Figure 4.9); but the effect of the

magnetic assistance on fluidization depends on the amount of magnetic particles

(Figures 4.11 & 4.12), the magnetic field intensity (Figures 4.13 &4.14) and the

frequency of the power supply of the electromagnetic coils (Figure 4.15 & 4.16),

among others. It is also interesting to note that sieving of the agglomerates of

nanoparticles is no longer necessary for obtaining a smooth fluidization of

agglomerates of nanoparticles of Aerosil® R974, since the magnetic particles

destroy the large agglomerates that break the homogeneity of the air flow at the

bottom of the fluidization column. By doing this, magnetic assistance becomes

important because it avoids gas bypassing through the fluidized bed enhancing

the mixing between the fluid and particulate materials.

The mixing experiments showed that mixing occurs at the micro scale and

not at the nano scale, since later SEM images showed that the agglomerate size

of Al203 was of the order of hundreds of microns (data not shown). Therefore,

this technique works to mix agglomerates of nanoparticles rather than the

nanoparticles themselves; however, it is not known if longer fluidization time may

enhance mixing at the nano scale since the agglomerates behave dynamically —

that is, they are continually breaking and reforming.



CHAPTER 5

GAS FLUIDIZATION OF AGGLOMERATES OF
NANOPARTICLES IN A ROTATING ASSEMBLY

5.1 Introduction

Fluidization of fine powders, like agglomerates of nanoparticles, is important

because of the breaking up (disaggregation) and spreading out of the

agglomerates into smaller agglomerates, which allows taking advantage of their

smaller size and their high specific surface area. Breaking the agglomerates

requires force fields in which the agglomerates are subject to opposite forces

applied at different points of the agglomerate; for example, the agglomerate's

weight is a force applied at the inertial center of the agglomerate while a drag

force due to a gas flow is applied at the surface of the agglomerate. These

opposite forces generate shear stresses inside the agglomerate, and depending

on their intensity, are capable of breaking the agglomerate.

A rotating fluidized bed (RFB) can generate the appropriate conditions for

the breaking up of agglomerates and subsequent reduction of their size. In this

unit, the angular speed of the chamber, containing agglomerates of

nanoparticles, generates a centrifugal force which artificially increases the weight

of the agglomerates; moreover, this centrifugal force can be controlled by

adjusting the rotating speed. As particles are under a force balance while

fluidized, the drag force required to fluidize agglomerates in a rotating fluidized

bed has to be larger than in a conventional fluidized bed. It is believed that under

these forces, breakup of the agglomerates occurs.
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During the fluidization of agglomerates of nanoparticles in a conventional

fluidized bed under normal gravity conditions, elutriation takes place at even low

gas velocities; however, by using a centrifugal force field it is possible to apply

higher gas flow rates without as much elutriation.

Previous works in a rotating fluidized bed include fluidization of micron

size particles, glass beads and alumina, (Qian et al., 2001); and corn starch

(Watano et al., 2003). A linear relationship between the minimum fluidization

velocity and the artificial gravity force (centrifugal force) was found for fluidization

of micron size powders.

Some discrepancies were found between the experimentally measured

and estimated (theoretical) bed pressure drops in the fluidization experiments. In

some cases, the experimental bed pressure drop was less than the estimated

pressure drop as can be deduced from data reported in the fluidization of corn

starch (Watano et al., 2003). Fluidization experiments done with glass beads,

magnesia clinker and sand showed that the estimated bed pressure drop

exceeded the experimental one by a margin of 20% (Fan et al., 1985). A

mathematical model developed for a rotating fluidized bed overestimated the bed

pressure drop for experiments with polyethylene millimeter size granules (Kao et

al., 1987). 0ddly enough, in some cases, the experimental bed pressure drop

exceeded the theoretical bed pressure drop by threefold in the fluidization of

ultraflne particles in a rotating fluidized bed (Tsutsumi et al., 2001). Hence, it is

difficult to predict the bed pressure drop across a rotating fluidized bed of

powder.
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Moreover, even though the rotating unit was not loaded with powder,

changes in the pressure drop across the chamber, while flowing gas through it,

occurred when the direction of the rotation of the chamber was changed even

though the magnitude of the gas flow rate was kept constant (Zhu et al., 2001).

It has been reported that rotation is an additional factor for destabilization

and may contribute to different flow patterns and pressures (Brouwers, 2002),

and that the rotating effect becomes even more important when the Reynolds

number based on rotational speed is higher than a certain value.

Besides the factors that can affect the experimental bed pressure drop

such as elutriation, wall effects or the design of the unit, it is believed that

previous models for estimating the bed pressure drop in a rotating fluidized bed

have been missing an important contribution. It will be shown that Coriolis forces

and their effects play a role in the discrepancies between experimental and

theoretical bed pressure drops in the rotating fluidized bed; these discrepancies

become even more noticeable under the low flow conditions required during

fluidization of agglomerates of nanoparticles, where the minimum fluidization

velocities are of about two orders of magnitude less than those required for

fluidizing micron size particles.

In the present work, fumed Silica (Aerosil ® R974 and Aerosil® R972

provided by Degussa Japan — Nippon Aerosil Co.) and Titanium Dioxide

(Aeroxide® P 25 provided by Degussa ASA) were fluidized under different

centrifugal force fields, specifically, 211, 299, 366 and 423 rpm which simulated

10, 20, 30 and 40 times the normal gravity force, respectively. The fluidization
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behavior of these powders was recorded including the bed height expansion and

bed pressure drop. Subsequently, the minimum fluidization velocity for each

powder was found by plotting the bed pressure drop vs. the gas velocity;

moreover, a relationship between the minimum fluidization velocity and the

simulated gravity force was examined.

Due to discrepancies found between the experimental and theoretical bed

pressure drops, a review of the existing models led to the conclusion that some

of the assumptions made do not apply for a rotating fluidized bed. Therefore, a

different model based on a rotating frame of reference is proposed; previous

models were based on a fixed inertial frame and did not consider the effects of

rotation. Results of numerical simulations using Fluent ® corroborate the

importance of the Coriolis forces and the magnitude of the tangential velocity of

the fluid relative to the rotating frame of reference.

5.2 Experimental Set-Up and Procedures

Details of the rotating unit are shown in Figure 5.1, it includes a chamber which

encloses a cylindrical stainless steel sintered wire mesh with an aperture size of

20 um, a thickness of 3 mm, a diameter of 400 mm and 100 mm in depth. This

cylindrical mesh distributes the gas and holds the particulate material while

rotating along its axis of symmetry at a controlled speed. The unit has a

stationary cylindrical filter of 100 urn mesh with a thickness of 3 mm, 100 mm in

diameter and 90 mm in depth; its function is to retain any elutriated fine powder.
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The covers of the chamber and gas distributor are made of acrylic plastic which

allowed for visualization of the fluidized bed of powder.

The rotating distributor was driven by a motor and its velocity could be adjusted

by a motor speed controller; in addition, the rotating speed was measured with a

tachometer. This configuration was assembled by Nara Machinery Co. (Tokyo,

Japan) as a medium scale lab prototype.

The plenum chamber, that enclosed the rotating distributor, received air

delivered by a blower (Hitachi, VBD-080). Its rotating speed, and therefore its

output, was adjusted by a motor speed controller. The air flow delivered by the

blower was measured by an area variable flowmeter with a range from 3 to 50

m3lh.

Inside the chamber, pressure taps connected to a differential pressure

transmitter were placed as shown in Figure 5.1. The higher pressure tap was

placed in the chamber that surrounded the gas distributor and the lower pressure

tap was placed right before the inner filter. Hence, the instrument measured the

pressure drop so that if the rotating chamber was empty the readings

corresponded to the pressure drop across the distributor and the gas region, but

if the rotating chamber was loaded with powder, the readings corresponded to

the pressure drop across the distributor, the fluidized powder and the gas region.

The differential pressure transmitter was connected to a computer that worked as

a display.



Since the bed pressure drop across the powder bed could not be

measured directly, it was necessary to find a relationship between the gas

distributor's pressure drop and the gas velocity; this was done by running the unit

without powder at a constant rotating speed and changing the gas flow. Then

the bed pressure drop across the powder bed could be quantified by subtracting

the pressure drop measured when the unit was empty from the pressure drop

when the unit was loaded with powder at the same rotating speed and gas flow

conditions.

A digital camera recorded the behavior of the agglomerates of

nanoparticles during fluidization; a pointer laser was used to determine the bed

expansion as well as its homogeneity and the pressure drop across the inner

filter was quantified by a water manometer.

Regarding the hydrodynamic classification of the powders used in the

present experiments, Aerosil® R974 and R972 show smooth fluidization without
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bubbling, characteristic of Group P powders, and Peroxide ® P25 (Ti02) shows

Group B like behavior. While the nanoagglomerates show a strong cohesive

behavior, they are quite different than group C powders due to the formation of

highly porous fractal agglomerates.

Due to the relatively long period of time that the as received nanoparticles

are contained in a bag for storage and transportation purposes, the cohesive

interactions between the particles cause the formation of agglomerates of many

different sizes; therefore, for purposes of repeatability of these experiments, the

powders were sieved using a shaker and a sieve of Mesh No. 60 (mesh opening

about 250 um). This procedure was followed since it was observed that the

fluidization behavior could be changed by the size of the agglomerates.

Furthermore, fluidization experiments done with non-sieved agglomerates did not

result in good fluidization behavior with large bed expansion (data not shown).

The fumed silica used in the experiments has a tapped density of about 50

glI and a bulk density of about 30 glI. R974 has an average particle size of 12

nm while R972 has an average particle size of 16 nm; for each powder 70 grams

of material were used. Peroxide® Ti02 P25 has an average particle size of 21 nm

and a tapped density of 130 g/I and a bulk density of about 90 g/l; 250 grams of

this powder were used for the experiments. For all three powders, the amount of

material used and loaded into the rotating chamber gave an initial bed height of

about 0.02 m.

The experimental procedure for each batch of experiments can be

summarized as follows. First, the unit was carefully cleaned, so that a uniform
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and repeatable air field is generated by the air distributor. Next, all the different

parts of the unit were carefully assembled and all the joints were properly sealed

in order to prevent leaks which could cause erroneous results in the pressure

drop readings. This was followed by the measurement of the pressure drop

across the distributor (RFB unit without powder) using different air flow rates, and

at a predetermined rotational speed (211, 299, 366 and 423 rpm). Then each

batch of the powder was loaded into the unit and the rotating speed was set at

the desired value in order to increase the centrifugal force (which simulated an

artificial gravity force). Simultaneously, the air flow was increased slowly and the

data such as air flow, pressure drop and bed height were recorded for different

values of the air flow. P similar procedure was followed for several other values

of the rotating speed for all three powders that were studied.

5.3 Results of the Experiments

Ps explained in previous chapters, a plot of the bed pressure drop against the

gas velocity can be used to determine if the powder has reached full fluidization.

Before minimum fluidization conditions, as the gas flow increases progressively,

the bed pressure drop increases proportionally to the gas flow, but once all the

powder is fluidized, and supported by the gas flow, no further increase in the bed

pressure drop is expected and it becomes constant. This region is called the

"plateau region."

The following figures show the bed pressure drops measured at different

rotating speeds that simulated an artificial gravitational force of 10, 20, 30 and 40
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times normal gravity (1G = 9.8 m/s 2). Full fluidization of the powder can be seen

for all of the different artificial gravitational forces and powders used since a

plateau region was reached; however, when compared to conventional

fluidization, the plateau region was shortened because of elutriation of powder at

higher air velocities.
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P further increase in the gas velocity above the values shown in Figures

5.2, 5.3 and 5.4 caused significant elutriation of powder and the experiment was

stopped; therefore, the plateau region is shorter than in conventional fluidization.

In Figure 5.4, many of the values of bed pressure drop before minimum

fluidization have been omitted since they fluctuated widely.

The minimum fluidization velocity was found from the plots from the

interception of the straight lines that correspond to the before fluidization and the

plateau regions. Table 5.1 summarizes the minimum fluidization velocities

obtained from the graphs. The results are also plotted in Figure 5.5.



Regarding the bed expansion, it was found that Perosil ® R974 and R972

expanded considerably compared to Peroxide® P25 and micron-size particles as

reported in the literature. This high bed expansion is a very peculiar

characteristic of agglomerates of nanopowders and it is not seen when fluidizing

micron-size denser particles. Figures 5.6, 5.7 and 5.8 show the bed expansion

obtained for the powders at different gas velocities and rotating speeds. It is

seen that the bed expansion of Perosil® R974 is slightly less than that of R972;
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this is a consequence of the loss of powder due to elutriation. Aeroxide ® P25

shows a very small bed expansion that appears to decrease with the centrifugal

force "G" and is very difficult to quantify.
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5.4 Discussion and Theory

Theoretical analyses of the bed pressure drop in a rotating fluidized bed are

based mainly on using the Ergun approach (1952) to obtain the drag force

exerted on the particles by the interstitial gas velocity (Chen, 1987). Chen

assumed the gas to be an incompressible fluid, and a system configuration as

shown in Figure 5.9. This system configuration does not account for changes in

the tangential velocity of the gas phase that may occur as a consequence of the

geometry of the unit, the initial tangential velocity at the entry, and the gas phase

pressure distribution. As can be seen in Figure 5.9, the system is assumed to

have a perfect radial symmetry, a fact that does not consider the cyclone type

gas entrance of the unit.
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Furthermore, the Ergun equation was conceived for a bed of relatively

large spherical particles in an inertial fixed frame, in which the effects of a

rotating fluid were not considered. Despite these unfavorable conditions for

applying Ergun's equation, a local momentum balance for the gas phase led to a

model for estimating the bed pressure drop (Jackson, 1971), as shown in

Equation 5.1:



Equation 5.4 was further simplified, assuming that the effects of inertia and

variable porosity were negligible (Kao et al., 1987). Thus

represents the bed pressure drop for the fluidized bed region.

The bed pressure drop for the fixed-bed region will not be discussed in

this work, since the flow mechanism in a fixed bed of nanoagglomerates is not

fully understood even for conventional fluidization. As explained in Chapter 3,

applying Ergun's equation to a fixed-bed of agglomerates of nanoparticles is

problematical due to the peculiar properties of the nanoagglomerates and the

non homogeneity of the flow passing through the fixed bed.

Since discrepancies were found between the experimental and theoretical

bed pressure drops in the fluidization experiments of agglomerates of

nanoparticles, it was necessary to review the existing models and to rethink the

fluidization problem in a rotating assembly. In this context, Figure 5.10

represents in a better description of the flow pattern under which agglomerates of

nanoparticles were fluidized. In comparison with Figure 5.9, it can be seen that

the unit is not symmetrical since there is only one entrance; in addition, it is

believed that changes in the tangential velocity of the fluid inside the chamber

must be considered since the tangential velocity will depend on many factors

such as the pressure and velocity at the entrance of the chamber and the rotating

speed of the distributor. Moreover, agglomerates of nanoparticles are very light
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and easy to drag by the air flow which causes a significant bed expansion as

shown in the experimental results. This implies the presence of a force that

moved the particles in the radial direction, and thus, Coriolis forces may play a

significant role.

Figure 5.10 RFB showing the streamlines of the fluid.

In fluid flow analysis, the mass conservation and the Navier-Stokes

equations are key for finding a solution; even for turbulent flows, both equations

are valid, but in this case the flow field becomes so complicated that it is

extremely difficult to find an exact solution to the problem. In previous models of

the rotating fluidized bed, a rigid-body rotational system in a fixed inertial frame

was assumed, in which the tangential velocity is proportional to the

radius (ve = Qr) . It is believed that this rigid-body assumption does not

represent the fluid behavior in a rotating fluidized bed.

In order to analyze a flow region of interest in a rotating fluidized bed, a

noninertial rotating reference frame can be used; this leads to the Navier-Stokes

vector equation written for a reference frame rotating at constant angular velocity
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given by Equation 5.6, which represents the fluid flow problem in a rotating

fluidized bed.

where SI x (n x r) is the centripetal acceleration, and 2f/x v is the Coriolis

acceleration. Both of these additional terms are due to the rotating frame of

reference.

The continuity equation is also invariant to the transformation from the

fixed inertial to the rotating noninertial frame. It becomes (V • v = 0) , with all

quantities now relative to, and expressed as components in, the rotating frame

(J. P. Vanyo, 2001).

Equation 5.6 represents a force balance if the density of the fluid (p) is

placed on the left hand side of the equation; i.e., each term has units of force

which balance each other according to Newton's law. In this context, it should be

noted that the pressure term (second in the right side) can be balanced either by

the centrifugal force (third term in the left side) and/or the Coriolis force (fourth

term in the left side). It is also important to note that since a new reference frame

has been established, the velocity term in Equation 5.6, corresponds to the local

velocity, which means the velocity of the fluid relative to the rotating frame.

Therefore, if the velocity of the fluid changes, a change in the pressure drop will

also occur.

The fundamentals for developing a theoretical model has been explained

briefly here and in more detail in Vanyo (2001). The conservation of momentum
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and Navier-Stokes can be applied to our rotating fluidized problem; additional

factors to consider are that the rotating fluidized bed is modeled at steady state

(
condition 

ay
— = 0 and that the bed of powder behaves fluid-like when fully
at

fluidized. 	 In addition, only the fluid gas phase will be considered so

complications with modeling a two phase fluid flow are avoided.

A cylindrical coordinate system is defined as shown in Figure 5.11, having

the distributor rotating at an angular speed of ft = flk which is positive since its

rotating vector direction, following the right hand rule, is pointing in the same

direction as the unit vector k of the reference frame. In the rotating unit the fluid

enters tangentially like in a cyclone, and it can be assumed that the fluid vector

can be represented by v = (-v o ve , 0) , neglecting the velocity in the direction of

the unit vector k, which only becomes important at the exit which is out of the

region of interest. Since the directions of the frame of reference are taken

arbitrarily, if they were changed, i.e., a unit vector k pointing downward in Figure

5.11 or pointing away from the motor in Figure 5.1, the signs of the rotating

vector and the tangential velocity would also have to be changed.

Figure 5.11 Coordinate system selected for the modeling, unit vector k pointing
towards the motor (looking the unit from the back).
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In Equation 5.6 the term 11x(axr) can be expanded using the vector

quantities of velocity and rotational speed as follows:
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component, and independent of the "9" component. Simplifying Equation 5.10,

In order to continue with the analysis, further simplifications are needed; in

this context, the dimensionless Rossby and Ekman numbers were considered in

order to evaluate the contributions of the convective and viscous terms in the

Navier-Stokes equation. The Rossby number is defined as the ratio of the

convective to the Coriolis forces while the Ekman number represents the ratio of
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the viscous to the Coriolis forces; Equations 5.18 and 5.19 represent the Rossby

where U represents the fluid velocity, .0 the rotational speed, v the kinematic

viscosity and L a geometric length scale related to the fluid flow analysis.

However, the magnitude of "L" is not equal in both equations because it depends

on the component velocity vector analyzed and the geometry of the unit.

Convective contributions to the radial velocity component take place mainly in the

radial direction, and therefore "L" represents the radius of the distributor (L = R =

0.15 m). Similarly, viscous contributions to the radial velocity component take

place mainly in the axial direction "1; hence, "L" represents the distributor's

width (L = W = 0.1 m). Likewise, convective contributions to the tangential

velocity component take place in the tangential direction "0" and "L" may be

represented approximately by the distributor's perimeter (L = TrD = 1.25664 m).

The viscous contributions to the tangential velocity component take place mainly

in the axial "z" direction; thus "L" represents the distributor's width (L = W = 0.1

m).

In order to evaluate the nondimensional numbers, experimental conditions

and geometry of the RFB unit are referred. The kinematic viscosity of air is

approximately 0.141 cm 2/s and the simulated gravity forces of 10, 20 30 and 40

times normal gravity force occurred when the rotating speeds were 22.1, 31.3,
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38.3 and 44.3 rad/s, respectively. Asing these data, the Rossby and Ekman

numbers were estimated for the conditions of the experiment and the results are

shown in Table 5.2, for the radial component velocity and Table 5.3 for the

tangential velocity component.
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According to the results shown in Tables 5.2 and 5.3, the results of the

Ekman number imply that the viscous terms in Equations 5.13 and 5.17 can be

neglected; however, the Rossby number requires a more careful evaluation since

it is not that small. From the tables it can be seen that the Rossby number

becomes small at low fluid gas velocities so that convective terms can be

neglected, but as the fluid flow velocity increases, the Rossby number becomes

significant, and convective terms cannot be neglected. The fluidization of

agglomerates of nanoparticles of Perosil ® R974 and R972 required relatively low

fluid velocities and therefore the convective terms in Equations 5.13 and 5.17 can

be neglected. However, in the fluidization of Peroxide® P25 and agglomerates of

micron size particles, the fluid velocities are higher and the convective terms in

Equations 5.13 and 5.17 should not be ignored.

The dimensionless form of the Navier-Stokes equation at steady state

condition is (Vanvo. 20011:

Equation 5.20 allows us to

make further simplifications based on the Rossby and Ekman number values.

Therefore, when fluidizing agglomerates of nanoparticles of Perosil ® R974

and R972 using a very low gas flow, Equation 5.13 can be simplified to:



and Equation 5.14 can be neglected due to expected symmetry of the flow

because of the predominance of the rotating distributor in the flow pattern and

the relatively low gas pressure at the inlet of the chamber, i.e.; assuming that the

initial and boundary conditions are independent of 8 and trying to find a solution

with the same property.

However, when fluidizing micron size particles and Aeroxide ® P25, the

Rossby number cannot be neglected since the convective terms can modify the

pressure in the region of study. Furthermore, the boundary and initial conditions

are dependent on e due to the asymmetric gas inlet, so that Equations 5.13 and

5.17 become:

These equations (5.22, 5.23 and 5.24) show that it is very difficult to

estimate the experimental pressure drop with a theoretical model, but they allow

us to understand the factors, such as the radial and tangential fluid velocities and

the boundary conditions, that can modify the pressure drop values in the region

of study. Equation 5.22 reduces to the theoretical model of Kao et al. (1986)

Equation 5.5, when the tangential velocity of the fluid with respect to the rotating

frame is zero, which only occurs when considering a rigid body rotation and at
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certain gas flow rates. A comparison between these equations is shown in

Figure 5.12 Comparison between the model for the pressure drop of Kao et al.
(1986) and the present work.

Equations 5.22 and 5.23 can explain the higher experimental pressure

drop than expected. The increase in the bed pressure drop not only have been

found for Perosil® R974 and R972, which is about three times the theoretical bed

pressure drop, but also in the experimental data reported by Matsuda et al.

(2001) as shown in Figure 5.13. According to our model, it is believed that the

increase in the bed pressure drop is due to the Coriolis forces, a term that was

neglected in past theoretical models.

Figure 5.13 Comparison between calculated and experimental values for the
bed pressure drop (Matsuda et al. 2001). Fluidization of ultrafine particles in a
RFB.
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Since the experimental measurements of the pressure drop were done in

the radial direction, then Equations 5.22 and 5.23 are more significant for

comparison purposes; however, Equation 5.24 shows that since the boundary

conditions are 8 dependent, this equation needs to be solved to determine the

magnitude of the tangential velocity of the fluid, which will depend on the initial

and boundary conditions.

In order to verify that the tangential fluid velocity component can differ

from the rotating frame velocity, FLAENT 6.1 was used to predict the flow

patterns and other parameters in the rotating fluidized bed system. This

commercial software is capable of handling complex geometries; and after

iteration, the velocity, density and pressure profiles were obtained at the desired

cross sections as shown in figures below.

The simulation region is a rotating fluidized bed system which consists of

a cylindrical chamber with an outer diameter of 50 cm and a height of 15 cm.

The chamber has a rectangular tangential entry for the gas with a length that

matches the chamber's height of 15 cm and a 4 cm width with a gas outlet

cylinder of length of 1 meter coaxially connected to the center of the chamber.

Inside the static cylindrical chamber, there is a moving cylindrical mesh set with a

diameter of 40 cm, a height of 10 cm and 3 mm of thickness. The geometry and

meshes were constructed by Gambit from Fluent Inc., which established a total

of around 320,000 tetrahedral meshes that were used in this simulation. Figure

5.14 and 5.15 shows details of the geometries used in the computational

calculations.
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used for numerical simulation purposes.

In order to have a better understanding of the dynamic behavior of

gas/particle flow, a simpler case of a single phase (gas) system was studied as a

first step. In these simulations, a coupled solver and implicit formulation were

employed considering their stability and fast convergence. The gas media used

in this computation is regarded to be an ideal gas with properties equals those of

air. Since the gas speed is relatively high inside the computational field, it was

treated as a compressible media instead of incompressible. The standard ic-e

tArbAlence model was used to describe the turbulence behavior for its

robustness, reliability, and reasonable accuracy.
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Since the density of the fluid plays a significant role in all the equations

previously shown, the assumption of previous models of treating the gas as an

incompressible fluid in the theoretical approach had to be verified; thus, the

densities of the fluid at different inlet velocities and constant rotating speeds are

shown in Figure 5.16. As shown, the density of the air increases with the

volumetric flow does so, but for low flow conditions the assumption of a constant

fluid density is valid and the fluid media can be treated either as a compressible

or incompressible system.

Figure 5.16 Contours of density of the gas at constant angular speed of 420 rpm
(40 times gravity) (a) 2 m/s at the inlet, 9.5 cm/s radial velocity at distributor; (b) 6
m/s at the inlet, 28.6 cm/s radial velocity at distributor; (c) 12 m/s at the inlet, 57.3
cm/s radial velocity at distributor; (d) 60 m/s at the inlet, 286.5 cm/s radial velocity
at distributor.



98

As explained in the theoretical approach of the rotating fluidized bed

model, the tangential component of the fluid velocity vector can change the

magnitude of the pressure along the radial direction if the Coriolis term becomes

significant. Hence, a change in the tangential velocity was sought; for this

purposes, the rotating speed was kept constant and the velocity of the gas at the

entry of the chamber was changed. The results of these numerical calculations

using Fluent® are shown in the contours of velocity in Figure 5.17.

Figure 5.17 Contours of fluid velocity having the distributor rotating at a constant
angular speed of 420 rpm (40 times gravity) (a) 2 m/s at the inlet, 9.5 cm/s radial
velocity at distributor; (b) 6 m/s at the inlet, 28.6 cm/s radial velocity at distributor;
(c) 12 m/s at the inlet, 57.3 cm/s radial velocity at distributor; (d) 60 m/s at the
inlet, 286.5 cm/s radial velocity at distributor.
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Figure 5.17 requires further explanation. The tangential fluid velocity

component is extremely large compared to the radial fluid velocity; therefore, the

contribution to the magnitude of the velocity vector from the radial velocity is

almost negligible in the contours of fluid velocity shown; therefore, the changes in

color observed in the figures are due to changes in the tangential velocity. In all

four cases (a, b, c & d) the tangential velocity of the distributor (outer dotted

circumference) is about 8.83 m/s; therefore, if the fluid velocity in the proximity of

the distributor differs from 8.83 m/s a Coriolis effect is expected. Figure 5.17 (a)

shows that the fluid velocity has an approximate value of 6.43 m/s in the

proximity of the distributor, 2.4 m/s less than at the distributor; Figure 5.17 (b)

shows that the tangential velocity of the fluid in the proximity of the entry is

almost equal to the distributor's velocity (8.8 m/s), however, the tangential

velocity reduces as the fluid moves away from the entry falling to a value of about

6 m/s; furthermore, this figure shows that the chamber flow field is not

symmetrical due to the asymmetrical boundary conditions. In Figure 5.17 (c), the

fluid velocity at the entrance (12 m/s) of the chamber is even higher than the

tangential velocity of the distributor (8.83 m/s), hence the tangential velocity of

the fluid in the proximity of the distributor and the entrance (10 m/s) is slightly

higher than the distributor's velocity. However, at the opposite end of the

entrance, the velocity of the fluid has increased to 18 m/s; once again, the

tangential velocity of the fluid respect to the distributor is neither equal nor

constant along the angular component. In Figure 5.17 (d), the fluid velocity at the

entrance (60 m/s) is a lot larger than the tangential velocity of the distributor (8.83
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m/s) so that the fluid velocity in the whole system is dominated by the velocity at

the entry, but at this point, convective forces play a significant role.

Figure 5.18 shows the contours of static pressure for the four different inlet

velocities. It can be seen that in cases (b) and (c) the lowest pressure in the

chamber does not match exactly with the geometrical center and that the

pressure field is not symmetrical. Since the fluid velocity is also pressure driven,

changes in the contours of pressure imply changes in the velocity vectors.

Figure 5.18 Contours of static pressure having the distributor rotating at a
constant angular speed of 420 rpm (40 times gravity) (a) 2 m/s at the inlet, 9.5
cm/s radial velocity at distributor; (b) 6 m/s at the inlet, 28.6 cm/s radial velocity at
distributor; (c) 12 m/s at the inlet, 57.3 cm/s radial velocity at distributor; (d) 60
m/s at the inlet, 286.5 cm/s radial velocity at distributor.
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Figure 5.19 shows the contours of the velocity magnitude inside of the

rotating frame when the distributor has an angular speed of 211 rpm. As before,

the velocity of the fluid gas at the inlet of the unit was changed to values of 2, 6,

12 and 60 m/s. Again, the tangential fluid velocity component is changing in both

the radial and angular directions.

A better explanation of the difference between the tangential fluid velocity

and the tangential velocity of the rotating frame can be deduced from Figure 5.20,

which shows the tangential velocity of the rotating frame as a function of the

radial position (solid line without dots) and the tangential fluid velocities as a
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function of the radial position of the different inlet gas velocities (data extracted

from the contours of velocity). As shown in this figure, the tangential velocity of

the fluid gas can be greater or lesser than the tangential velocity of the rotating

frame, which means that the magnitude of Ve can be either positive or negative.

This fact demonstrates that the tangential velocity of the fluid is not necessarily

equal to the tangential velocity of the rotating frame, condition assumed for past

models (rigid body rotation).

Since the tangential velocity of the fluid could be significant in some

cases, Coriolis effects have to be considered in the calculation of the pressure

drop across the region of interest as shown by Equation 5.22. This equation can
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be further applied to the full fluidization of agglomerates of nanoparticles by

considering the mix of agglomerates and gas as a new fluid. This new fluid will

have a density equal to the weight of the powder divided by the entire fluidized

bed volume when expanded; otherwise, the bulk density of the agglomerates can

be modified by the empty bed voidage which depends on the bed expansion. In

addition, the bed pressure drop has to be evaluated in the region of interest

which is the fluidized bed. Thus, Equation 5.20 can be modified for estimating

the bed pressure drop in the RFB as shown in Equation 5.25.

In this equation, the tangential velocity of the fluid bed is expected to be

positive and its behavior different than the tangential velocity of the fluid gas only.

For fluidization of agglomerates of nanoparticles of fumed silica, the fluidized bed

of agglomerates is expected to behave like a denser fluid with much higher

viscosity than the air; it is believed that this higher viscosity will transfer the

tangential velocity of the distributor over the entire bed, maintaining an

approximate constant value of the tangential velocity in the radial direction in the

bed region while the tangential velocity of the frame reduces; this effect

increases by the fact that the fluidized bed height doubles the bed height at no

fluidization, a behavior that does not occur during fluidization of micron size

particles.

A nondimensional number Cor can be defined for evaluating the

contribution of the Coriolis force to the total pressure drop:
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If this nondimensional number (Cor) is less than 0.05 (Cor < 0.05) then the

Coriolis forces can be neglected, otherwise it should be considered in the

calculations. The greatest difficulty is to find the value of the tangential velocity

of the fluid (mixture of particulates suspended in the fluid gas) respect to the

rotating frame, since it is a function of the radial and angular positions, the inlet

fluid velocity and the static pressure inside of the chamber.

Since agglomerate of nanoparticles of Aerosil® R974 and R972 are much

lighter than agglomerates of micron size particles, they can be easily dragged by

the gas flow not only in the radial direction but in the tangential direction as well.

The drag of these agglomerates in the radial and tangential direction implies the

presence of an additional force which is related to the Coriolis effect; moreover,

as mentioned before, a significant bed expansion was observed for agglomerates

of R974 and R972, which does not occur when fluidizing agglomerates of micron

size particles or even Aeroxide® P25.

A force balance on the agglomerate based on the equations previously

explained is sketched in Figure 5.21. Here V r is the velocity of the agglomerate

in the radial direction reflected by the bed expansion while Ve is the velocity of

the agglomerate in the tangential direction with respect to the rotating reference.

In addition, in order to compensate for the centrifugal and Coriolis forces, the

drag force has to have two components, in the radial and in the tangential

directions.



Figure 5.21 Schematic of the forces balance of the agglomerate in the
proximities of the distributor showing velocity vectors (blue) and force vectors
(black).

5.5 Conclusions

Agglomerates of nanoparticles can be fluidized in the RFB unit, as seen by the

plateau region in the plots of bed pressure drop vs. gas flow velocity. The

minimum fluidization velocity in a RFB is higher than in a conventional fluidized

bed due to the large centrifugal force and other additional forces involved in the

system. During fluidization, agglomerates of nanoparticles of Aerosil ® R974 and

R972 presented a significant bed expansion.

The pressure drop across the bed of agglomerates depends not only on

the centripetal force but on the Coriolis force originated by the tangential velocity

of the fluid gas which drags the agglomerates. This tangential velocity

component of the fluid gas depends on the velocity of the fluid at the entrance of

the chamber (volumetric flow rate), the rotational speed of the distributor and the

pressure distribution inside of the chamber. A model that accounts for the
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additional forces due to rotation of the frame and the fluid has been developed

and it explains some of the discrepancies between experimentally measured

pressure drop data when compared with previous theoretical models.

A significant difference in the tangential velocities of the fluid gas inside of

the chamber was found between low gas flow rates (when fluidizing

nanoparticles) and high gas flow rates (when fluidizing micron size particles).

Moreover, for the fluidization of micron size powders, the convective term

becomes important when calculating the bed pressure drop depending on the

value of the Rossby number.

Further analysis of the rotating fluidized bed unit is required in order to

fully evaluate the different forces present in this system. For example, a unit

designed with a very large chamber diameter implies that the Coriolis forces are

less important; in addition, elutriation of powder is expected to decrease since

the centrifugal field can interact with the particles over a greater area. Moreover,

the entrance of the fluid gas to the chamber could be modified in a way that the

initial tangential velocity of the fluid can be made negligible or changed to a

desired value. Regarding the instrumentation, the actual location of the pressure

taps seems to be important because of the changes in pressure along the radial

and angular directions as shown by the different contours of pressure obtained

using the numerical calculations. Thus a different criterion to quantify the

pressure drop in the system is required. In order to quantify the tangential

velocity of the fluid in the chamber, it is necessary to install a device for

measuring the gas velocity such as a Pitot tube; furthermore, additional Pitot
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tubes should be installed close to the static pressure taps in order to quantify the

total pressure.

From the experience of working with a RFB unit with a 40 cm diameter

distributor, it can be concluded that an even larger size unit is required in order to

properly measure all the variables in the system. This is necessary because

agglomerates of nanoparticles require large volumes because of their low density

and in many cases, coating or granulation of powders require the installation of

devices inside of the chamber like nozzles, sprayers, and instrumentation such

as Pitot tubes to measure local gas velocities.
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