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ABSTRACT

MATHEMATICAL MODELING OF TRANSIENT STATE
TRANSDERMAL DRUG DELIVERY

by
Alison Nickol Weitner

In this work, a two-pathway mathematical model for transdermal drug delivery with

iontophoresis is presented. The partial differential equations are described and then

solved. An alternative, two-pathway, three-layer model is also presented, and the

implications of the coefficients within the equation are discussed. Using Franz cell

iontophoretic delivery data from three drug substances (amitriptyline HC1, clomipramine

HC1, and amitriptyline HC1), the two-pathway model is regressed to determine the

diffusion coefficient and the concentration within the skin at the drug reservoir interface.

ANOVA analysis indicates a correlation between iontophoretic current and concentration

of drug within the stratum corneum.
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CHAPTER 1

INTRODUCTION

Transderrnal drug delivery is the practice of delivering a therapeutic chemical substance

to the body via the skin. The Transderrnal route of drug administration is advantageous

for a number of reasons. Entry into the general circulation through the skin circumvents

hepatic metabolism, the process by which an orally administered drug may be chemically

altered before reaching its target organ. Unlike delivery systems which require

intermittent dosing, the transdermal route can circumvent fluctuating concentration levels

within the blood. A Transderrnal delivery system can make continuous dosing feasible,

thereby achieving steady drug concentrations within the body.

Additionally, transderrnal systems offer great potential for enhanced patient

compliance. Applying a transdermal patch is easy and painless. Once applied to the

patient's skin, the patch remains in place for an extended period of time, during which a

slow, controlled amount of drug is released to the body. The patient receives the needed

dose in a manner convenient and non-disruptive to his or her normal activities. Issues

resulting from a patient forgetting to take his or her medication or failing to take the

medication as directed can be minimized.

While transdermal delivery systems offer great advantages to the consumer, such

techniques present formidable challenges to their designers. The necessary development

work is extensive. Transdermal drug delivery requires an understanding and application

of both pharmacological principles and engineering principles as well. The device must

1
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allow the drug to penetrate the barrier properties of the skin, while also achieving a

release a rate that suits the patient's needs.

1.1 The Structure of the Skin

The barrier properties of the skin are innately difficult to overcome. The natural function

of skin is to deter foreign substances from entering the body and to prevent necessary

fluids and nutrients from escaping the body. To design an effective transdermal delivery

system, these barrier properties must be addressed.

The most significant contributor to these barrier properties is the outer-most layer

known as the stratal corneal (Bouwstra et al., 2001). The stratal corneal is

composed of keratin-filled dead cells known as "corneocytes." The cell membrane of the

comeocytes contains a dense, highly impermeable protein layer. Surrounding the

corneocytes is a continuous, crystalline lipid bilayer. A common conceptual

representation of the stratal corneal is the "brick and mortar" model, named for its

similarity in appearance to individual bricks (i.e. the corneocytes) surrounded by mortar

(i.e. the lipid regions) (Barry, 1983; Pieper et al., 2003). Although the structure of the

lipid bilayer is not easily overcome, its continuity across the stratal corneal makes it a

potential route for transport through the stratum cornea (Bouwstra et al., 2001).

Below the stratal corneal is the viable epidermis. The epidermis demonstrates

fewer barrier properties than the stratal corneal (Lee et al., 1997). Unlike the stratum

cornea, the viable epidermis contains enzymes which can have a metabolic function

(Lee et al., 1997). Below the viable epidermis are the capillaries, which can readily
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absorb substances from the epidermis into the bloodstream. Once in the bloodstream, the

drug substance can be carried to the target organ.

1.2 Methods for Enhancing Drug Penetration Through the Skin

Due to the difficulty in penetrating the stratum corneal, various means and mechanisms

for enhancing transdermal drug delivery have been pursued. Two such methods for

overcoming the stratum corneal barrier properties are the use of chemical enhancers and

the use of iontophoresis.

1.2.1 Drug Penetration Enhancement Through the Use of Chemical Enhancers

Chemical enhancers improve transderrnal drug delivery by reducing the resistance of the

stratum corneal to the drug molecules. Existing evidence suggests that chemical

enhancers operate by disturbing the lipid organization in the stratum corneal. The

mechanisms) by which the enhancer disturbs the stratum corneal lipid organization

depend on the enhancer's chemical structure and affinities. Bouwstra et al. (2001) have

theorized several possible mechanisms for disturbing the stratum corneal lipid

organization: (a) the enhancer molecules insert themselves sporadically into the lipid

lamellae, (b) the enhancer inserts itself between the lamellae layers, thus disturbing the

packing of the layers, and (c) the enhancer molecules form an organized, separate phase

within the lamella. Additionally, other works have shown how specific types of chemical

bonding, such as hydrogen bonding, can effect a change in drug penetration through skin

(Hadgraft, 2001; Du Plessis et al., 2002).

Several methods have been used to incorporate chemical enhancers in transdermal

drug delivery systems. One approach has been to incorporate the chemical enhancer into
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the drug formation itself (Harrison et al.; 1996; Fang et al.; 1999; Essa et al., 2004).

Another approach has been to incorporate the chemical enhancers as a pretreatment for

the skin prior to the application of the drug vehicle itself (Graaff et al.; 2003, Nair and

Panchagnula, 2003; Wang et al., 2003). In vitro observations show that skin samples

treated with a fatty acid prior to application of the drug resulted in increased overall drug

penetration (Wang et al., 2003; Nair and Panchagnula, 2003).

1.2.2 Drug Penetration Enhancement Through the Use of lontophoresis

Another approach to improving transdermal drug delivery is a technique called

iontophoresis. In iontophoretic delivery, a small electric current is used to drive the drug

molecules across the skin barrier. Jontophoresis is a promising technology that has

already received some regulatory approval. Iontocaine an iontophoretic transdermal

system developed by lomed Corporation (Salt Lake City, Utah), is currently marketed for

the administration of lidocaine HC1, a local anesthetic. Vyteris, Inc. (Fairlawn, New

Jersey), in partnership with B. Braun Medical, Inc., is awaiting approval of its own

iontophoretic system for transdermal lidocaine delivery. 	 Alza Corporation

(Mountainview, California), a subsidiary of Johnson & Johnson, has developed an

iontophoretic delivery system known as E-Trans and has applied the E-Trans®

technology to administer fentanyl HC1, an analgesic. The product is now in late-stage

development.

Drugs delivered via iontophoresis are typically hydrophilic and ionic. Positively

charged drugs are placed at the anode; negatively charged drugs are placed at the

cathode. A small battery provides a voltage that drives the drug out of the donor
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reservoir and into the skin. To complete the electric circuit, a buffer solution is placed in

a return reservoir (Junginger, 2002). A diagram is given in Figure 1.1.

1.3 In Vitro Methods for Study and Analysis of Transdermal Drug Delivery

Studies of fundamental transdermal drug delivery principles are commonly conducted in

vitro, rather than in vivo. In vivo analysis presents myriad complexities, complications,

and restrictions that render it unsuitable for basic investigation into mass transfer

principles. For example, ethics prohibit conducting in vivo studies in halans before

sufficient knowledge regarding toxicity or side effects has been gathered. Furthermore,

the interpretation of data from in vivo testing is more problematic, since other

physiological variables may alter or mask the effect of the studied parameter.

In vitro studies of transdermal delivery principles are typically conducted in a

Franz diffusion cell. A Franz cell consists of two chambers, one of which contains the

drug substance and one of which contains the receptor fluid. A small, thin piece of skin
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is placed between the compartments, thus allowing the drug substance to penetrate from

the doami compartment across the skin to the receptor compartment. Periodically, the

drug concentration in the receptor fluid is collected and assayed to determine the quantity

of drug transported across the skin. A diagram is given in Figure 1.2.

Franz cell data analysis is performed by calculating Q, the mass quantity of drug

accalulated in the receptor cell over time, and then plotting Q as a function of time ( t).

For most iontophoretic delivery, the Q versus t plot is nonlinear at initial t values but

becomes linear at large t values. The slope of the linear region, divided by the surface

area available for diffusion, represents the flux of the drug through the skin in units of

mass per area per time.

Analysis by the graphical method is useful for quantifying and comparing results

among individual studies. However, the graphical method alone cannot explain why

differences or similarities among a given set of experiments exist. Employing a
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mathematical model can enhance the analysis process by offering insight as to the

mechanism(s) by which a particular outcome is achieved.

1.4 Applying Mathematical Models to Analyze Transdermal Drug Delivery Data

In this work, two new models for mathematical analysis of drug delivery through the skin

are presented. The models are based on previous work available in the literature. The

first model, discussed in Chapter 2, is a one-layer, two-pathway model which

characterizes delivery through the stratal corneal. The second model (Chapter 3) is a

three-layer, two-pathway model which encompasses delivery from the drug vehicle (i.e.

the delivery device) itself to the stratal corneal, and then from the stratal corneum

through the viable epidermis and finally to the capillaries.

In Chapter 2, the solutions to the partial differential equations for the one-layer,

two-pathway model are presented. In Chapter 4, these solutions are applied to several

existing sets of iontophoretic delivery data. Using nonlinear regression software, a series

of coefficients corresponding to the diffusion coefficient and the concentration within the

stratal corneal at the vehicle-device interface are established. The values for these

coefficients are compared and discussed.



CHAPTER 2

TRANSlENT MODEL FOR A TWO-PATHWAY SYSTEM

A nalber of mathematical models have been presented in the literature as a means of

describing transdermal delivery data. These models have discussed passive diffusion

(Lee and Aldama, 1992; Lee et al., 1996; Mitragotri, 2002; Tezel and Mitragotri, 2003),

diffusion assisted through chemical enhancers (Moser et al., 2001), diffusion of solvents

through the skin (Pikal, 2001), and diffusion aided through iontophoresis (Kontturi and

Murtomaki, 1996; Lim et al., 2002).

The model proposed by Kontturi and Murtomäki (1996) for iontophoretic systems

is based on the assalption that parallel pathways are available for drug diffusion in the

skin. These routes are referred to as the aqueous and lipid pathways. Drug flux through

the skin is thus a function of the flux through each of the two pathways.

Kontturi and Murtomaki present equations to characterize steady flux through the

stratum cornea for their two-pathway system. However, the transient state solutions for

this model have not yet been developed. In this chapter, the two-pathway model is

analyzed and solved for the transient state condition.

2.1 The Kontturi-Murtomäki Two-Pathway Model

The two-pathway model developed by Kontturi and Murtomaki (1996) considers drug

penetration through the stratal cornea to be the product of transport across two

separate pathways. These pathways exist in parallel; migration from one path to the other

is not addressed.

8



9

The two pathways differ based on their composition: one pathway is lipophilic

and will take up only neutral molecules. The second pathway is hydrophilic and will

readily take up charged ions as well as neutral molecules.

An important assalption in Kontturi and Murtomäki's work is that enhancement

of delivery due to iontophoresis impacts the aqueous pathway exclusively. The rationale

for this assumption is that only the aqueous pathway can carry an electrical current. In

the Kontturi-Murtomäki model, enhancement of flux through the aqueous pathway due to

iontophoresis is mathematically represented by a factor of E . The value of E increases

with increased iontophoretic current.

As a general principle, the total flux through parallel pathways is equal to the sal

of the fluxes through the individual paths, scaled by their surface areas. Thus, if J ab and

J, are defined as fluxes through the aqueous and lipid pathways, respectively, then the

total flux across the skin is equal to the sal of these fluxes multiplied by the fraction of

their respective surface areas.

In the presence of iontophoresis, the effective flux through the aqueous pathway

is increased. The surface area fraction consisting of the aqueous pathway is defined as s

(Kontturi and Murtomäki, 1996). It thus follows that the surface area fraction consisting

of the lipid pathway is 1— e. As such, in terms of the enhancement factor E , the total

flux in the skin due to iontophoresis (Jiff) may be defined as:

Kontturi and Murtomäki's model applies to transport through the stratal corneal

only. The boundary conditions assale that the drug is applied to the skin in a well-

stirred reservoir. The bulk concentration of this reservoir, Cb , partitions into the skin
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layer according to the partition coefficient P. Furthermore, Kontturi and Murtomaki's

analysis is generalized such that bulk solution in the doami reservoir may contain a drug

substance in both ionized and non-ionized forms. A parameter a, defined as the fraction

of drug present in the non-ionized form, accounts for this possibility. A diagram of the

system analyzed by the Kontturi-Murtomäki two-pathway model is given in Figure 2.1.

Figure 2.1 Diagram of transport through the stratal cornea as characterized by the
two-pathway model. The darker regions in the stratum corneal represent the lipid
pathway; the lighter regions represent the aqueous pathway.

Through their analysis, Kontturi and Murtomäki show that drug flux through the

lipid pathway of the stratal corneum may be represented as:

where DI is the diffusion coefficient for the drug in the lipid path and L is the length of

the diffusion pathway, taking into account both tortuosity and membrane thickness.

Embedded in this result are two boundary conditions. The concentration of drug at the
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drug reservoir-skin interface is dependent upon the lipid pathway partition coefficient, the

concentration of drug in the bulk, and the fraction of the bulk drug in the non-ionized

form. (The surface area fraction of the lipid pathway (1— e) is omitted from the final

result as a simplification, since the quantity is taken to be very close to unity. Kontturi

and Murtomaki use a value of 10 4 for c.)

Hence, the steady state flux at this interface (i.e. at z = 0) is represented as

DIaPCb I L. At the opposite end, transport out of the stratum corneal skin layer and into

the viable epidermis is governed as a desorption process obeying first-order kinetics with

a rate constant of IcD .

The flux through the aqueous layer is given as:

where Da is the drug diffusion coefficient in the aqueous path. The concentration

boundary condition of the aqueous layer at the reservoir-stratum corneal interface is

equal to Gb . For the aqueous layer, the concentration boundary condition at the stratal

corneal-epidermis interface is taken to be 0, due to the infinite sink approximation.

The boundary conditions for the lipid and aqueous pathways differ. Unlike the

lipid layer, Kontturi and Murtomaki do not multiply the skin concentration for the

aqueous pathway by the quantity a, because both the ionized and non-ionized forms of

the drug are permitted to pass through the aqueous pathway.

The boundary conditions at z = L (i.e. the stratum corneum/viable epidermis

interface) differ for the two pathways as well. Konttun and Murtomaki explain that the

viable epidermis is characterized by polarity similar to that of water. Because the

aqueous layer and the viable epidermis are alike with respect to polarity, desorption from
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the aqueous pathway to the epidermis should have a time scale much faster than that of

the diffusion process through the aqueous path itself. Thus, infinite sink conditions is an

appropriate approximation for the aqueous path.

The difference in polarity between the lipid pathway and the viable epidermis,

however, poses a problem to which the perfect sink approximation cannot be applied.

Based on empirical observations (Kontturi and Murtomaki, 1996), Fickian diffusion

alone cannot account for lipid pathway diffusion. To summarize Kontturi and

Murtomaki's argalent (1996), if the perfect sink condition applied to the stratal

corneum-viable epidermis interface for the lipid path as well as the aqueous path, then

partition from the lipid layer of the stratum corneal to the viable epidermis would

increase or decrease only with a single partition coefficient. Furthermore, partition of a

highly lipophilic drug into the lipid layer from the drug reservoir would have to be fast as

well, due to the similar polarity between the drug and the lipophilic layer. As such, the

only rate limiting parameter for the lipid pathway would be the diffusion coefficient

through the pathway itself. Empirical data does not match this conclusion. Thus, a

kinetic process must occur at the stratal corneum-viable epidermis interface to account

for this problem. Kontturi and Murtomaki capture the effect of this transfer between skin

layers in terms of a first order kinetics model with a rate constant of fp.

2.2 Partial Differential Equations Describing the Two-Pathway System

The analysis performed by Kontturi and Murtomaki (1996) is based on Fickian diffusion

and application of suitable boundary conditions. However, the flux equations in the

Kontturi-Murtomäki analysis do not address the transient state conditions. Kontturi and
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Murtomäki's results are only applicable to steady state, constant flux conditions, and thus

only apply when the large time approximation is employed.

Understanding the drug concentration profile for transient conditions, however, is

important for several reasons. For example, in the case of high potency drugs, the

quantity delivered to the plasma prior to achieving steady state flux may lead to toxicity

problems. In the delivery of rescue medications, the time required to achieve an adequate

plasma concentration may be more critical than the time required for steady state flux

through the skin. Additionally, studying the dynamics of the system prior to the steady

state conditions can help explain the rate limiting steps in the delivery process. This

knowledge, in turn, can be utilized to improve the system design.

As previously explained, diffusion through the aqueous layer is entirely due to

Fickian diffusion. The general equation for Fickian diffusion is:

To this equation, the enhancement factor E is added to account for iontophoresis, thus

obtaining:

In this equation, z represents the linear direction over which the diffused substance

travels, and Ga represents the concentration within the aqueous pathway of the stratum

corneal at a given location z and time t. The drug reservoir-delivery device interface is

defined as z = 0, and the delivery device-viable epidermis interface is defined as z = L .



The boundary conditions assume fast diffusion in the delivery device as compared

to the skin. Thus, the drug concentration on the drug reservoir side at z = 0 remains

constant.

The diffusion through the lipid layer during iontophoresis is also modeled by

Fickian diffusion. Since iontophoresis enhances only the aqueous pathway, the partial

differential equation for the lipid layer is analogous to the equation describing passive

diffusion except that it does not contain the enhancement factor. The concentration in the

lipid layer is thus described as:

The initial condition for the lipid layer is analogous to initial condition for the aqueous

layer (i.e. no drug is present in the stratum comeum at t = 0 ).

Applying the boundary conditions established by Konttun and Murtomäki (1996), as

introduced in Section 2.1, the concentration of the lipid layer at the device-skin interface

at any time:
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Unlike the aqueous pathway, however, the boundary condition for the lipid layer at the

stratum corneum/epidermis interface is treated as a function of first order kinetics, rather

than as an infinite sink. Thus, the condition of continuity of flux is applied.

2.3 Solving the Partial Differential Equations for Flux and Accumulation

Generally, transdermal systems are characterized in terms of the flux they provide. Flux,

represented by Jab and J1 for the aqueous layer and the lipid layer, respectively, is

expressed in units of mass of drug per area per time. As defined by the equations, flux is

a function of time. However, as noted in Section 1.3, steady state flux is achieved for

substantially large t values.

For each pathway, the quantity of drug accumulated in the receptor cell over time

is a function of the diffusion coefficient, the surface area available for diffusion, and the

concentration gradient at z=L. These equations for the aqueous and lipid layers,

respectively, may be represented as:

The total surface area of skin available for diffusion is A. As introduced in Section 2.1,

the parameters 6 and 1— c represents the fraction of the skin surface area that is

composed of the aqueous and lipid layers, respectively.
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When the above equations are amimalized for area, the resulting expression is the

flux in units of mass per area per time:

Solving Equation 2.15 for the aqueous layer, the cumulative amount of drug penetrated

through the aqueous pathway in the skin per unit area, as a function of time, becomes:

At very large time values, the exponential term in this equation quickly decays. Thus, at

large time values, this equation may be approximated as a linear equation. Rearranging

the above equation, the large time approximation becomes:

By studying this linear equation, it is clear that when Qa is plotted as a function of t, the

y-axis intercept equals - GbLAsI6. Additionally, the line has a slope of GbACEDa I L .

The diffusion in the lipid layer may be represented as the change in total quantity

of drug transported through the lipid layer over time as well. When Equation 2.14 is

amimalized by the area of the lipid layer, the resulting expression is the flux J, (t) in units

of mass per area per volale:

To solve this partial differential equation for the lipid layer, a Laplace transform is

used, hence obtaining:
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When this equation is changed from the Laplace domain to the z domain, and the limit is

taken for large t values, the following result is obtained:

Taking the partial derivative of this equation with respect to z, the following is obtained:

Flux through the lipid layer at the stratum corneum-viable epidermis interface, z = L ,

can be represented as:

When each term in the numerator and denominator of Equation 2.24 is divided by AP,

the result is Equation 2.2, the steady state value obtained by Konttun and Murtomaki

(1996).



CHAPTER 3

MODEL FOR A THREE-LAYER, TWO-PATHWAY SYSTEM

The two-pathway model presented in Chapter 2 is suitable for modeling iontophoretic

drug delivery through the stratum corneum. In other transdermal drug delivery systems,

it may be desirable to model drug flux through not only the stratal corneal, but through

the viable epidermis and the delivery vehicle itself as well.

While the model presented in Chapter 2 is suitable for characterizing transdermal

delivery of a drug dissolved in a well-mixed solution, it is not suitable for situations in

which the drug formulation or vehicle is intended to control the rate of delivery. Many

examples of these types of systems exist, such as the contraceptive patch (Ortho Evra®,

Ortho-McNeil Pharmaceuticals, Raritan, New Jersey), which utilizes a matrix system to

control hormone delivery to the body (Burkman, 2004).

In this chapter, the two-pathway system is extended from a one-layer model

encompassing only the stratum corneal to a three-layer model that encompasses the drug

vehicle, the stratum corneum, and the viable epidermis as well. Work from Chapter 2 is

further developed by incorporating not only mass transfer across the layer, but also

between the aqueous and lipid pathways. Mass transfer between pathways has been

addressed in previous developed partial differential equations (Lee et al., 1996), but a

simultaneous analysis of both multiple pathways and multiple layers has not yet been

performed.
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3.1 Partial Differential Equations for the Three-Layer Model

The three layers represented by the model are the drug delivery vehicle, the stratum

corneal, and the viable epidermis. The partial differential equations characterizing the

drug delivery follow the same principles of Fickian diffusion as those applied to the two-

pathway, iontophoretic model. For the three-layer model, several assumptions are made.

Firstly, it is assumed that the aqueous and lipid pathways exist in the stratum corneal

and viable epidermis layers. The one-layer, two-pathway model for the stratum corneal

has been previously discussed in Chapter 2. For the three-layer model, the viable

epidermis is considered as a continuation of these two pathways, although drug delivery

through the viable epidermis is expected to differ greatly from the stratum corneal, since

the viable epidermis is more aqueous than the stratum corneum. The drug delivery

vehicle is homogeneous in content, and thus, is treated as a one-pathway region.

The three regions (i.e. vehicle, stratum corneal, and viable epidermis) are

represented as I, II, and III, respectively. The diffusion length through each region is

taken to be Li , Loll , and Lm , respectively. See Figure 3.1.



3.1.1 Characterization of Transport Through the Drug Vehicle

The equation for flow of the drug through the vehicle is:

The initial condition for this equation assales uniform drug concentration G10

throughout the entire volume of the device at time 0. This is represented as:

Furthermore, there are two boundary conditions for Equation 3.1, one to indicate

continuity of flux at the vehicle-stratum corneal interface, and one to indicate no flux

exists at the edge of the vehicle furthest from the skin (i.e. at z = 0). Symbolically, these

conditions are represented as:
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3.1.2 Characterization of Transport Through the Stratum Corneum

Since the model assales both lipid and aqueous pathways are available for drug delivery

through the stratal corneal (Region II), separate equations and boundary conditions are

written for each pathway.

For the aqueous pathway, the drug concentration profile in the stratum corneal

over time is dependent upon three mass transfer mechanisms: 1) Fickian diffusion

through the aqueous layer, 2) transfer from the lipid layer of the stratum corneal to the

aqueous layer of the stratal corneal, and 3) transfer from the aqueous layer of the

stratal corneum to the lipid layer of the stratum corneum. Diffusion is dependent upon

the diffusion coefficient Prig and PAL  for the drug in each pathway. The mass transfer

between pathways depends on the concentration in each of the paths and a mass transfer

coefficient. This model is represented as:

The coefficient for mass transfer to the aqueous layer from the lipid layer is ku,L , and the

coefficient for mass transfer to the lipid layer from the aqueous layer is IcHg .
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The initial conditions for these partial differential equations establish that at time

0, no drug is present in any part of the stratum corneum. Thus:

The stratum corneum boundary conditions establish that at the device-stratum corneal

interface ( z = L1 ), the concentration in the stratum corneum equals the concentration in

the device multiplied by the device/stratal corneum layer partition coefficient ( PHg and

PHIL for the aqueous and lipid pathways, respectively).

Furthermore, at the opposite end of the stratum corneal (z = L1 + L11 ), the flux

continuity condition gives us the following relation between the stratum corneum and the

viable epidermis:

3.1.3 Characterization of Transport Through the Viable Epidermis

Transport through the viable epidermis (Region III) may also be modeled as drug

delivery through a set of two parallel pathways, one aqueous and the other lipid. As in

the stratum corneum, mass transfer is modeled as the result of Fickian diffusion, transport

from the aqueous to the lipid pathway, and transport from the lipid pathway to the

aqueous pathway.
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The initial condition of zero drug concentration at time 0 is also true for the viable

Beni Fermi c

The left boundary conditions (at z = LIB + La) for the viable epidermis state that

concentration in each of the pathways is a function of concentration in the stratal

corneum at the same point and the stratum corneal-viable epidermis partition

coefficients ( P/IIA and PIII,L for the aqueous and lipid pathways, respectively). The right

boundary conditions for the viable epidermis layer, which are representative of the point

of drug transfer to the capillaries, assume infinite sink conditions. These boundary

conditions are defined as:

3.2 Potential Applications of the Three-Layer Model

The three-layer model for drug delivery through the skin is considerably more complex

than the one-layer model presented in Chapter 2. The partial differential equations for

the three-layer model would require additional attention in order to derive the analytical
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equation. However, even in differential form, understanding the partial differential

equations themselves can be useful in understanding transdermal delivery data and how

certain variables will effect specific outcomes.

The three-layer model highlights the fact that a given drug substance, when

applied to the skin, must be transported through three layers, each of which have very

different characteristics. The rate-limiting mass transfer step for this three-layer system

must be identified. Any attempt to speed or control the overall rate of drug delivery to

the systemic circulation must include careful consideration of this rate-determining step.

Typically, the stratum corneum, by nature of its crystalline lipid structure, is the

rate-limiting step for drug diffusion. This factor serves as justification for including only

the stratum cornea layer in the model discussed in Chapter 2. However, for some

transdermal systems, situations demanding exceptionally slow drug release are possible.

In such situations, the diffusion coefficient for the drug through the drug vehicle (D1 )

could be a critical parameter in ultimately controlling the rate of delivery to the systemic

circulation.

Thus, even without solving the three-layer model partial differential equations,

analyzing the diffusion coefficients relative to one another can provide insight into the

transdermal delivery process. Such insight can then be utilized when designing

experiments. For example, a study may need to quantify drug delivery through a series

of differing drug vehicle formulations. Each formulation may contain varied

concentrations of chemical enhancers, designed to speed the delivery process. Often, the

time and resources required to test each modified formulation individually may be

prohibitive. Analysis of the partial differential equation coefficients, however, can help
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to narrow the number of potential formulations. For example, as discussed in Chapter 1,

various chemical enhancers have been studied as a means of improving transdermal drug

delivery. Analysis of the diffusion coefficients and partition coefficients can benefit such

investigations by reducing the overall nalber of experiments run. If the diffusion and

partition coefficient for a particular control group are known, then knowledge of the

chemical properties of the skin and the drug substance may be used to plan and

rationalize further trials. For instance, if partitioning of the drug into the skin is shown to

be the rate-limiting step, then further studies can be designed to augment the partition

coefficient rather than the diffusion coefficient.

As another example, assume that the diffusion, D11 , for a particular drug through

the stratum corneum is known. Rather than testing each formulation for total effective

diffusion through the skin, a small number of individual formulations could be tested to

determine a set of baseline diffusions, { D*}. Diffusion coefficients from this set can

then be compared against one another and against D11 . This comparison would indicate

if any significant differences in diffusion exist among the tested formulations, and if so,

which candidate or candidates produce the most desirable results. Based on these

preliminary results, an additional set of formulations could be prepared to optimize the

formulation. Further comparison of diffusion coefficients could be performed among the

subsequent set to further optimize, if necessary. The overall result from this approach

would be determination of the desired drug vehicle formulation in a reduced number of

empirical trials.



CHAPTER 4

DATA ANALYSlS USlNG THE TWO-PATHWAY MODEL

Thus far, two separate mathematical models have been presented as means of

characterizing transdermal drug delivery phenomena. This section applies the transient

model discussed in Chapter 2 to the analysis of in vitro transdermal drug delivery data. A

simplification of this model is presented. The application of non-linear regression

software for data analysis is then explained. Finally, the results of the analysis are

discussed.

4.1 Analysis of Transdermal lontophoretic Data for Three Drug Substances

A series of Franz diffusion cell experiments were conducted by Wang (2004) to study

iontophoretic delivery of tricyclic antidepressants through human skin. The three drugs

studied were amitriptyline HC1, clomipramine HC1, and nortriptyline HC1. Each of these

molecules consists of three cyclical hydrocarbon chains and a subgroup chain extending

from the center ring. The structure of the center ring and the subgroup chain differ

slightly; this difference contributes to slight differences in molecular mass among the

three drugs.

Wang's investigations consisted of varying the donor cell drug concentration

(0.0032 M, 0.016 M, and 0.032 M) and varying the applied iontophoretic current density

(0.1 mA/cm2 , 0.2 mA/cm2, 0.3 mA/cm2 , and 0.4 mA/cm2). For each specific set of the

variables (that is, drug molecule, drug concentration, and current density), three

individual determinations were performed. All three determinations for a given set of
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concentration and current conditions were performed on halan skin samples from the

same donor. The large quantity of samples required for the study prohibited the use of

the same donor for all studied conditions.

Human skin samples were placed in a Franz diffusion cell apparatus. The exposed

surface area of each sample was 0.64 cm 2 and the skin thickness of each sample was

500±100 lam. At start up, each donor cell contained the drug substance dissolved in

water to the desired molar concentration. Each receptor cell contained a phosphate saline

solution. Analysis of the quantity of active in the receptor cell was performed by

extracting samples from the receptor solution every hour for a total of 8 hours. Samples

were analyzed for drug content via HPLC. Further details regarding the methods are

given in Wang, 2004.

4.2 Simplification of the Two-Pathway Model

In Chapter 2, a two-pathway system describing transient drug transport through the

stratum corneum was presented. These transient equations were based on the steady state

equations developed by Kontturi and Murtomäki (1996).

One of the important assalptions of the Kontturi-Murtomäki model is that

ionized drug molecules can only travel through the aqueous pathway of the stratum

cornea. This assumption has an important impact on the analysis of the data set

described in Section 4.1. All three selected drugs were salts, and thus, were highly

soluble in the aqueous delivery vehicle. Having high solubilities, the quantity of non-

ionized drug is essentially zero. Since the lipid pathway, as defined by Kontturi-

Murtomaki, supports mass transfer of non-ionized drug only, the lipid pathway
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characterized by this model cannot contribute to the flux of salts through the stratum

corneum. Therefore, the analysis herein is performed using the aqueous pathway

equation only.

Equation 2.17 established a transient model for iontophoretic drug delivery

through the aqueous pathway of the stratum corneal. For the given system, however,

several simplifications to this equation can be made.

In Equation 2.17, iontophoresis was shown to impact transdermal drug delivery

through the enhancement factor E , which serves as a multiplier for the diffusion term

Da . To perform data analysis, the diffusion coefficient Da and the enhancement factor

E may be treated as a single, combined variable, defined here as D' .

The drug concentration in the aqueous pathway at the skin-reservoir interface can

be considered as a function of the bulk drug concentration and a partition coefficient P .

As such, the drug concentration within the skin at the interface is represented as PCb  .

However, for the purpose of nonlinear regression modeling, this quantity may be treated

as a combined variable, annotated here as C'.

Additionally, Equation 2.17 contained a term c which represented the surface

area fraction belonging to the aqueous pathways. Although Konttun and Murtomäki use

a quantity of 104 for this parameter (1996), an exact value is not known for the analyzed

system. This parameter must be included if separate fluxes through both the aqueous and

lipid pathways are to be derived. However, because only aqueous pathway diffusion is

assaled, the parameter c can be eliminated. The cumulative amount of drug through

the lipid pathway is assaled to be 0 for all time points. Thus, the cumulative amount of

drug through a skin sample of surface area A is equal to the cumulative amount of drug
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through the aqueous pathway surface area A E . For analysis, therefore, the cumulative

amount of drug, Q a (t) , may be amimalized by the total surface area A . The resulting

quantity, defined as M(t), is expressed in units of mass per surface area.

The analytical solution to the aqueous layer equation includes an exponential term

embedded in an infinite salmation senes. Since the exponential portion of this senes

causes the summation to decay quickly, the summation may be truncated after only a few

terms. For the analysis discussed herein, three terms (i.e. n = 3) were used.

Incorporating these simplifications, Equation 2.17 can be re-wntten as:

As previously described in Chapter 2, L is the length of the diffusion pathway and is

considered to be equal to the thickness of the skin samples (500 gm).

4.3 Method of Data Analysis

For each Franz cell determination, the cumulative quantity of drug in the receptor cell

was measured after every hour for a total of eight hours (Wang, 2004). To find the set of

M(t) values for a given set of conditions, the individual M(t) values for each of the

three determinations were averaged to find the mean quantity M at each hour.

For data analysis, NLREG nonlinear regression analysis software (Author: Phillip

Sherrod, www.nlreg.com) was used on a Dell personal computer to provide a set of

numerical solutions to Equation 4.1. The set of M values were entered into NLREG for

each drug at each specified set of conditions. The software regressed the data and

returned values for D' and C' for each set of data.
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4.4 Resulting Diffusion and Partition Coefficients

After performing the nonlinear regression analysis, the data sets were analyzed to

determine the existence of any correlation between either D' or G' and current density

and/or donor cell drug concentration. Analysis was performed using analysis of variance

(ANOVA) for each of the three drugs.

4.4.1 Relationship of Current Density to Drug Diffusion Coefficients

For each of the three drugs, results of ANOVA showed no statistically significant

relationship between the current density and the diffusion coefficient D'. This result

indicated that the diffusion coefficient is constant for a particular drug irrespective of

iontophoretic current. The mean diffusion coefficient and standard deviation for each

drug are given in Table 4.1.

As presented in Equation 2.17, Konttun and Murtomaki (1996) incorporated the

effect of iontophoresis into their mathematical model through the use of the enhancement

factor E . The magnitude of E was taken to increase with current density. The results of

the ANOVA analysis conducted herein are contrary to the findings of Konttun and

Murtomaki. As previously discussed, the diffusion coefficient and the enhancement



31

factor E were treated as the lumped parameter D' . Based on Equation 2.17, a

relationship between D' and applied current would be expected. However, the constant

value of D' indicates that diffusivity is not dependent upon current for the drug

substances studies at the range of currents studied.

4.4.2 ANOVA Analysis of Drug Partition Coefficients

Nonlinear analysis of Equation 4.1 included the parameter C', which represents the

concentration within the stratum corneal at the donor cell reservoir-skin interface (i.e.

z=0). C' is expressed in units ugug/cm3. The concentration at this point is a function of

both the bulk drug concentration in the applied delivery device ( Gbh) and the drug

partition coefficient P . In Section 4.2, the value of C' is taken to be the product of these

two. Two ANOVA analyses were carned out. First, the values of C' were analyzed for

any correlation to iontophoretic current or to applied bulk concentration. Then, the same

analysis was conducted after normalizing C' by the known bulk concentration Cb . The

results of the ANOVA analysis are given in Table 4.2.
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The ANOVA results showed that a statistically significant relationship exists

between iontophoretic current and the skin-side concentration C'. However, when the

partition coefficient is calculated by amimalizing G' for the bulk drug concentration

within the vehicle, ANOVA analysis showed no statistically significant correlation

between applied current the partition coefficient.

Analysis of a possible correlation to bulk concentration gave the opposite result.

With the exception of clomipramine, no statistically significant relationship was noted

between the skin-side concentration G' and the bulk concentration Cc. After normalizing

C' by CI, to obtain P' , a strong correlation was detected for all three drugs, as expected.

The positive correlation between the magnitude of applied iontophoretic current

and the stratal corneal concentration at z = 0 indicates that iontophoresis enhances

flux through the stratal corneal by increasing the concentration of drug penetrating the

skin at the skin-device interface. However, the lack of correlation between P' and

applied current indicate that the mechanism for enhancement is not simply increasing the

drug's partition coefficient.

The permeation from the bulk solution in the drug reservoir to the skin is greatly

enhanced at lower concentrations. This trend was generally observed for all three of the

drugs and indicates that as concentration increases, a lesser fraction of the drug in the

doami cell is transmitted through the skin. This effect is shown in Figure 4.1

The results of the analysis indicate that other factors may be impacting upon the

magnitude of stratal corneal concentration at the interface. One such factor that could

impact upon C' is the skin damage factor. The skin damage factor may change the

available volume in which the drug concentrates within the skin.
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4.5 Comparison of Flux from Nonlinear Regression and Graphical Analysis

Wang (2004) employed a graphical method for computing the flux. The cumulative

amount through the skin versus time was plotted for each data set. The graph yielded a

curve function that could be approximated as a linear function at large time values. From

the linear region of the graph, the slope was determined and then normalized by the skin

sample surface area in order to calculate the empirical flux.

As a means of assessing the results of the transient state equation versus the flux

calculated by the conventional, graphical method, a parity plot (Figure 4.2) was

constructed. The empincal flux values Jg denved from graphing the data (Wang, 2004),

was compared to the theoretical flux values .1, computed from the transient state

equation coefficients.

To calculate theoretical flux values .1,, the transient state equation and large time

approximation were used. At large t values, Equation 2.17 becomes linear. The slope of

this equation is equal to the product of the diffusion coefficient and the concentration at

the skin-device boundary divided by the diffusion pathway length. Thus, the flux as

computed by the transient equation parameters (J, ), with units of mass per time area, can

be calculated as

For the given data sets, the exposed surface area in the Franz cell diffusion

apparatus was 0.64 cm 2 . The length of the diffusion pathway was considered equal to the

thickness of the skin sample (i.e. 500±100 .1,m). Tortuosity of the path was considered

negligible with respect to the entire thickness of the skin. A comparison of the flux
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values calculated from the nonlinear regression parameters and applied iontophoretic

current is shown in Figure 4.3.

The two sets of flux values Jg and J, were in close agreement with each other.

By plotting these two fluxes against one another and performing a linear fit, a regression

parameter of 0.97 and a slope of nearly unity (0.97) were obtained. This result indicates

that the two methods are in close agreement with each other.
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Flux determination using the conventional, graphical method is advantageous for

several reasons. This method can be quickly and easily applied to Franz cell analysis.

For charactenzing iontophoretic data, the graphical approach is useful because flux

through the skin dunng iontophoresis quickly becomes constant. Thus, the large time

value approximation required by the graphical method can be applied relatively soon

after drug device application. For example, most of the data points for the drugs

analyzed herein fell within the linear range after the first hour. This minimized the

nalber of data points omitted from the regression analysis. Among the disadvantages of

the graphical method are: 1) the analysis does not capture the entire data set, 2) the

selection of points in the linear portion of the curve can be subjective in nature, and 3)

diffenng answers may be obtained based on the inclusion or omission of data points.

Use of the transient equation for delivery across the viable epidermis eliminates

these concerns since all data points may be used. A more complete charactenzation of

the data, even at small time values prior to reaching steady flux, may be achieved.

Histoncally, the major disadvantage of using a transient equation such as Equation

4.1 has been that it is nonlinear, and therefore, difficult to regress. However, by

implementing nonlinear regression software, data sets can be very easily fit to an

equation such as this.

More importantly, use of the transient equation to solve for flux enables one to

determine the diffusion coefficient and to characterize the concentration within the

stratum corneal at the skin-device interface. Such information can then be used to

enhance the understanding of how a particular set of variables works to promote or hinder

delivery through the skin.
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4.6 Effect of D' and G' Parameters on Flux Through the Stratum Corneum

Typically, the key parameter of interest in transdermal drug delivery studies is flux.

Since delivery through the stratal cornea is usually a rate-limiting step in the overall

delivery of drug to the blood stream, control of this parameter, and understanding the

options for enhancing it, are of great interest.

As the data shows, the calculated diffusion coefficients differed among drug

substances but did not vary substantially with changes in current density or bulk

concentration. As evidence of this, nortriptyline HC1 produced the highest overall flux

values, but the smallest diffusion coefficient of the three drugs analyzed.



CHAPTER 5

CONCLUSlONS

The close agreement between the flux values derived from the aqueous layer transient

state equation and the graphical method demonstrate the suitability of the theoretical

model for iontophoretic delivery. Additionally, the results act as further validation of the

conventional, graphical method. The graphical method may be preferred as a suitable,

simple means of flux analysis.

The transient model equations show that the delivery of amitriptyline HC1,

clomipramine HC1, and nortriptyline HC1 is dependent upon the diffusion coefficient

parameter and the bulk drug concentration. The large time approximation for the

accumulated drug penetration is helpful in understanding this effect. The large time

approximation mathematically describes how these parameters impact overall drug

delivery.

A major challenge in the designing of drugs for transdermal delivery is the

establishment of an adequate and steady rate of delivery through the skin. The

implications of the large time approximation equation can be readily applied in

developing the correct system for the correct delivery strategy.

The large time approximation shows that drug delivery can be influenced by bulk

concentration, the drug partition coefficient, the diffusion coefficient, and the diffusion

pathway length. Bulk concentration is frequently the easiest of these to control, from a

formulation standpoint. It is also a very important parameter because it impacts both the

rate of drug transport and the overall quantity of drug transported.
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Increasing the value of the diffusion coefficient will also increase drug delivery

through the skin. Diffusivity is related to chemical or physical properties of the skin, the

drug and the vehicle into which the drug is formulated. In order to utilize knowledge of

the diffusion coefficient to augment overall drug permeation, an understanding of which

factors increase diffusivity is required.

Typically for a biological system such as the skin, the diffusion pathway length is

modeled as a constant of the skin itself. Many studies available in the literature,

however, indicate that tortuosity of the stratal corneal can vary with hydration levels.

Since the diffusion pathway is a lalped parameter that incorporates both membrane

thickness and path tortuosity, empirical results suggest means of altering the diffusion

pathway length do exist (Talereja et al., 2001). Furthermore, Tezel and Mitragotri note

(2003) that the size of the diffused particles may change the effective tortuosity. The skin

contains pores that extend both perpendicular to and parallel to the direction of drug

transport. Due to their size, smaller particles may be able to diffuse through a greater

nalber of paths, while large particles are more limited in the number of diffusion

pathways through which they can pass. As such, diffusion of the smaller particles

through the stratum corneal may follow a less direct path than diffusion of larger

particles. This factor may be the reason why nortriptyline HC1, which had the smallest

molar mass, also had the smallest diffusion coefficient.

A series of partial differential equations for a three-layer system were additionally

presented. Studying the coefficients in this equation can also help to illalinate the

mechanisms for drug delivery through this type of system.
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In the development of drug delivery regimens, particularly those used for high

potency drugs, it may be necessary to understand the delivery dynamics at the initial time

points as well as after achieving steady flux. Additionally, particularly for the purposes

of data collection and analysis, one may wish to know after what time point is the large

time approximation appropriate. By using nonlinear regression, the dilemma of judging

which data to include and which data to omit is circalvented. Furthermore, the

nonlinear regression method allows one to calculate coefficients such as the diffusion

coefficient and the partition coefficient. Utilizing this information, additional insight into

the mechanisms of transdermal drug delivery can be achieved.
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Amitriptyline 1%, 0.4 mAkm^2 
1: Title "Aqueous layer equation";
2: Variable time; 	 // Cooling time in hr
3: Variable Qa; // Quantity thru skin in micrograms
4: Constant L=500*10 A -4; 	 // Skin thickness in cm
5: Parameter Da; 	 // Diffusion coefficient in aqueous layer
6: Parameter C1; 	 // Bulk concentration
7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A 2*(cos(pi)*exp(-

Da*pi A2*time/LA2)+cos(pi*2)/4*exp(-Da*4*pi A2*time/L A2)+cos(pi*3)/9*exp(-
Da*9*pi A2*time/L A2)));

8: Plot xlabel="Time (hr)",ylabel="Drug permeated (micrograms)";
9: Data;

Beginning computation...
Stopped due to: Relative function convergence.

---- Final Results ----
NLREG version 6.1
Copyright (c) 1992-2004 Phillip H. Sherrod.

Aqueous layer equation
Number of observations = 8
Maximum allowed number of iterations = 500
Convergence tolerance factor = 1.000000E-010
Stopped due to: Relative function convergence.
Number of iterations performed = 242
Final sum of squared deviations = 2.9223007E+002
Final sum of deviations = -9.0032209E+000
Standard error of estimate = 6.9789
Average deviation = 5.07336
Maximum deviation for any observation = 10.4809
Proportion of variance explained (RAE) = 0.9986 (99.86%)
Adjusted coefficient of multiple determination (Ra A2) = 0.9983 (99.83%)
Durbin-Watson test for autocorrelation = 2.022

Warning: Covariance matrix could not be computed because
the finite-difference Hessian was indefinite.
Analysis completed 14-Mar-2004 17:17. Runtime = 0.06 seconds.

Descriptive Statistics for Variables

Variable Minimum value Maximum value 	 Mean value Standard dev.

	

time 	 0 	 8 	 4.1875 	 2.852787

	

Qa 	 0 	 440.6788 	 185.523 	 169.806

--- Calculated Parameter Values ----

Parameter 	 Initial guess Final estimate

Da 	 1 	 0.000155975524
C1 	 1 	 26767.9595

---- Analysis of Variance ----

Source 	 DF Sum of Squares 	 Mean Square 	 F value Prob(F)

Regression 	 1 	 201546.4 	 201546.4 	 4138.10 0.00001
Error 	 6 	 292.2301 	 48.70501
Total 	 7 	 201838.7
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Clomipramine 0.1%, 0.2 mA/cm^2 
1: Title "Aqueous layer equation";
2: Variable time; 	 // Cooling time in hr
3: Variable Qa; // Quantity thru skin in micrograms
4: Constant L=500*10 A -4; 	 // Skin thickness in cm
5: Parameter Da; 	 // Diffusion coefficient in aqueous layer
6: Parameter C1; 	 // Bulk concentration
7: Function Qa= Cl*L*(Da*time/LA2-1/6-2/pi A2*(cos(pi)*exp(-

Da*pi A2*time/L A2)+cos(pi*2)/4*exp(-Da*4*pi A2*time/L A2)+cos(pi*3)/9*exp(-
Da*9*pi A2*time/L A2)));

8: Plot xlabel="Time (hr)",ylabel="Drug permeated (micrograms)";
9: Data;

Beginning computation...

Error executing line 7: Function Qa= Cl*L*(Da*time/L A 2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (639.326)

57

Error executing
Da*pi A2*time/L
Error: Argument

Error executing
Da*pi A2*time/L
Error: Argument
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Da*pi A2*time/L
Error: Argument

line 7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-

to exp function is too large (1438.48)

line 7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-

to exp function is too large (603.632)

line 7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-

to exp function is too large (1358.17)

line 7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-

to exp function is too large (934.034)

Error executing line 7: Function Qa= C1*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (912.722)

Error executing line 7: Function Qa= C1*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (2053.62)

Error executing line 7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (861.832)

Error executing line 7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (531.872)
Stopped due to: Relative function convergence.

Final Results
NLREG version 6.1
Copyright (c) 1992-2004 Phillip H. Sherrod.

Aqueous layer equation
Number of observations = 9
Maximum allowed number of iterations = 500
Convergence tolerance factor = 1.000000E-010
Stopped due to: Relative function convergence.
Number of iterations performed = 188
Final sum of squared deviations = 7.8825876E+001
Final sum of deviations = 1.6649555E+000
Standard error of estimate = 3.35572
Average deviation = 2.67774
Maximum deviation for any observation = 4.50932
Proportion of variance explained (RAE) = 0.9885 (98.85%)
Adjusted coefficient of multiple determination (Ra2 ) = 0.9869 (98.69%)
Durbin-Watson test for autocorrelation = 2.538
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Adjusted coefficient of multiple determination (Ra A2) = 0.9984 (99.84%)
Durbin-Watson test for autocorrelation = 1.526

Warning: Covariance matrix could not be computed because
the finite-difference Hessian was indefinite.
Analysis completed 14-Mar-2004 22:24. 	 Runtime = 0.05 seconds.

---- 	 Descriptive Statistics for Variables 	 ----

Variable Minimum value Maximum value Mean value Standard dev.

time 0 8 4 2.738613
Qa 0 186.84 72.75818 69.0723

---- 	 Calculated Parameter Values ----

Parameter Initial guess Final estimate

Da 	 1 	 0.000165603593
C1 	 1 	 10290.1685

---- Analysis of Variance ----

Source 	 DF Sum of Squares 	 Mean Square 	 F value Prob(F)

Regression
Error
Total

1
7
8

38112.97
54.89285
38167.86

38112.97
7.841835

4860.21 0.00001

Clomipramine 0.1%, 0.4 mik/cm^2
1: Title "Aqueous layer equation";
2: Variable time; // Cooling time in hr
3: Variable Qa; 	 // Quantity thru skin in micrograms
4: Constant L=500*10 A -4; 	 // Skin thickness in cm
5: Parameter Da; // Diffusion coefficient in aqueous layer
6: Parameter C1; // Bulk concentration
7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-

Da*pi A2*time/LA 2)+cos(pi*2)/4*exp(-Da*4*pi A2*time/L A2)+cos(pi*3)/9*exp(-
Da*9*pi A2*time/L A2)));

8: Plot xlabel="Time (hr)",ylabel="Drug permeated (micrograms)";
9: Data;

Beginning computation...

Error executing line 7: Function Qa= C1*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (690.957)

Error executing line 7: Function Qa= C1*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (1554.65)

Error executing line 7: Function Qa= C1*L*(Da*time/L A2-1/6-2/pi A 2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (864.767)
Stopped due to: Relative function convergence.

---- Final Results
NLREG version 6.1
Copyright (c) 1992-2004 Phillip H. Sherrod.

Aqueous layer equation
Number of observations = 9
Maximum allowed number of iterations = 500
Convergence tolerance factor = 1.000000E-010
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Standard error of estimate = 3.58966
Average deviation = 2.60861
Maximum deviation for any observation 5.49494
Proportion of variance explained (RAE) = 0.9978 (99.78%)
Adjusted coefficient of multiple determination (Ra'2) = 0.9975 (99.75%)
Durbin-Watson test for autocorrelation = 1.387

Warning: Covariance matrix could not be computed because
the finite-difference Hessian was indefinite.
Analysis completed 14-Mar-2004 22:29. Runtime = 0.11 seconds.

Descriptive Statistics for Variables
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Variable Minimum value Maximum value 	 Mean value Standard dev.

	

time 	 0 	 8 	 4 	 2.738613

	

Ca 	 0 	 198.9717 	 72.29846 	 72.28478

---- Calculated Parameter Values ----

Parameter 	 Initial guess Final estimate

Da 	 1	 0.000138151316
C1 	 1	 14033.9368

---- Analysis of Variance ----

Source 	 DF Sum of Squares 	 Mean Square 	 F value Prob(F)

Regression 	 1 	 41710.52 	 41710.52 	 3236.98 0.00001
Error 	 7 	 90.1995 	 12.88564
Total 	 8 	 41800.72

Clominratnine Control
1: Title "Aqueous layer equation";
2: Variable time; 	 // Cooling time in hr
3: Variable Ca; // Quantity thru skin in micrograms
4: Constant L=500*10 A -4; 	 // Skin thickness in cm
5: Parameter Da; 	 // Diffusion coefficient in aqueous layer
6: Parameter C1; 	 // Bulk concentration
7: Function Ca= Cl*L*(Da*time/LA 2-1/6-2/pi A2*(cos(pi)*exp(-

Da*pi A2*time/L A2)+cos(pi*2)/4*exp(-Da*4*pi A2*time/L A2)+cos(pi*3)/9*exp(-
Da*9*pi A2*time/L A2)));

8: Plot xlabel="Time (hr)",ylabel="Drug permeated (micrograms)";
9: Data;

Beginning computation...

Error executing line 7: Function Ca= C1*L*(Da*time/L A2-1/6-2/pi A 2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (837.928)

Error executing line 7: Function Ca= C1*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (3351.71)

Error executing line 7: Function Ca= C1*L*(Da*time/L A 2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (7541.36)

Error executing line 7: Function Qa= C1*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (559.447)
Stopped due to: Relative function convergence.
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Error executing line 7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (591.184)

Error executing line 7: Function Ca= C1*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (1136.37)

Error executing line 7: Function Ca= C1*L*(Da*time/L A 2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (2556.83)

Error executing line 7: Function Qa= Cl*L*(Da*time/L A2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (1048.64)

Error executing line 7: Function Ca= Cl*L*(Da*time/L A 2-1/6-2/pi A2*(cos(pi)*exp(-
Da*pi A2*time/L
Error: Argument to exp function is too large (589.087)
Stopped due to: Relative function convergence.

---- Final Results ----
NLREG version 6.1
Copyright (c) 1992-2004 Phillip H. Sherrod.

Aqueous layer equation
Number of observations = 9
Maximum allowed number of iterations = 500
Convergence tolerance factor = 1.000000E-010
Stopped due to: Relative function convergence.
Number of iterations performed = 218
Final sum of squared deviations = 1.8814887E+003
Final sum of deviations = 6.7507443E+000
Standard error of estimate = 16.3946
Average deviation = 12.4069
Maximum deviation for any observation = 25.6267
Proportion of variance explained (RAE) = 0.9933 (99.33%)
Adjusted coefficient of multiple determination (Ra A2) = 0.9923 (99.23%)
Durbin-Watson test for autocorrelation = 1.265

Warning: Covariance matrix could not be computed because
the finite-difference Hessian was indefinite.
Analysis completed 21-Mar-2004 00:09. Runtime = 0.06 seconds.

---- Descriptive Statistics for Variables ----
Variable 	 Minimum value Maximum value 	 Mean value Standard dev.

	

time 	 0 	 8 	 4 	 2.738613

	

Ca 	 0 	 523.754 	 182.6759 	 186.7263

---- Calculated Parameter Values ----
Parameter 	 Initial guess Final estimate

Da 	 1	 0.000113679205
C1 	 1	 50403.8657

---- Analysis of Variance ----

Source 	 DF Sum of Squares 	 Mean Square 	 F value Prob(F)

Regression 	 1 	 277052.3 	 277052.3 	 1030.76 0.00001
Error 	 7 	 1881.489 	 268.7841
Total 	 8 	 278933.8
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