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ABSTRACT

A KINEMATIC ANALYSIS OF HAND CONFIGURATIONS
IN STATIC AND DYNAMIC FINGERSPELLING

by
Gillian B. Sherry

The focus of this study was the investigation of target handshapes in American Sign

Language fingerspelling in order to determine whether there was a difference between

static canonical structures and structures produced in the context of a movement

sequence. This was achieved by measuring the joint angles of a signing hand with an 18-

sensor CyberGlove® by Virtual Technologies, Inc.

A discriminant analysis was used to identify targets that occurred at points of

minimum angular joint velocity. A multivariate analysis of variance with planned

comparisons was then applied to these dynamic data along with the static data to test the

hypothesis.

The results showed that there was a significant difference between handshapes

produced statically and those produced dynamically, which suggested that a simple,

cipher model of static handshapes produced within the context of a movement sequence

is not sufficient to account for the production and perception of fingerspelling. These

findings may be applied to future research in sign language recognition, so that

consideration of the variability of target handshapes, as influenced by the spatiotemporal

environment, might be incorporated into future models.



A KINEMATIC ANALYSIS OF HAND CONFIGURATIONS
IN STATIC AND DYNAMIC FINGERSPELLING

by
Gillian B. Sherry

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2004



APPROVAL PAGE

A KINEMATIC ANALYSIS OF HAND CONFIGURATIONS
IN STATIC AND DYNAMIC FINGERSPELLING

Gillian B. Sherry

Dr. Richard Foulds, Thesis Advisor 	 Date
Associate Professor of Biomedical Engineering, NJIT

Dr. William Hunter, Committee Member 	 Date
Professor of Biomedical Engineering, NJIT

Dr. Stanley Reisman, Committee Member	 Date
Professor of Biomedical Engineering, NJIT



 
 
 
 
 
 
 
 
 
 
 
 
 
 



BIOGRAPHICAL SKETCH

Author:	 Gillian B. Sherry

Degree:	 Master of Science

Date:	 August 2004

Graduate and Undergraduate Education:

Master of Science in Biomedical Engineering
New Jersey Institute of Technology, Newark, New Jersey, 2004

Bachelor of Science in Electrical & Computer Engineering Technology
New Jersey Institute of Technology, Newark, New Jersey, 2002

Major:	 Biomedical Engineering

Presentations and Publications:

Sherry, Gillian and Foulds, Richard, "Pattern Recognition Considerations for Continuous
Sign Language Recognition", Proceedings of the 29 th Northeast Bioengineering
Conference, Newark, NJ, March 2003.

iv



To Jacqueline Pridgen Feeney

agus

I gcuimhne Kathleen O'Malley Sherry, Beannacht De lens hanam

NN AI "I NN

Education is not the filling of a pail, but the lighting of a fire.
-William Butler Yeats

v



ACKNOWLEDGEMENT

There are many people to whom I am indebted and would like to acknowledge. I am most

grateful to Dr. Richard Foulds, my advisor, for giving me the opportunity to pursue

research in this very interesting field, and for always being helpful, enthusiastic and

supportive of my work. Special thanks to Dr. William Hunter and Dr. Stanley Reisman

for actively participating on my committee.

I am very grateful to the Millbank Foundation, the National Science Foundation

and the Pfeiffer Foundation for supporting this study, which was conducted in the

Neuromuscular Engineering Research Laboratory at NJIT.

I would like to extend particular thanks to my fellow graduate students in the

Neuromuscular Engineering Laboratory (Jerome Allen, Corey Birmingham, Don Helt III,

Bruno Mantilla, Matthew Noesner and Darnell Simon), whose friendship and humor

made the experience much more enjoyable. My thanks also to John Davidson, who

graciously helped with the data collection.

My sincerest appreciation to my many teachers throughout my formative years in

Limerick for providing me with a strong background, not only in the math and science

areas, but also in the arts and literature, without which the pieces of the puzzle could not

come together.

Finally, I wish to express my deepest gratitude to my family for their constant

encouragement. My sincere thanks to my parents Eileen E. and Francis T. Sherry for their

support and sacrifices over the years. My deepest appreciation to my sisters Diane M.

Sherry, Keira F. Baheti, and brother-in-law, Umesh S. Baheti, for their friendship.

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Background 	 1

1.2 American Sign Language 	 2

1.3 Models of Fingerspelling  	 4

1.4 Hypothesis  	 6

1.5 Coarticulation  	 7

2 METHODOLOGY 	 9

2.1 Overview  	 9

2.2 Experimental Task 	 10

2.3 Calibration  	 11

2.4 Data Collection  	 13

2.5 Pattern Recognition  	 19

2.6 Pre-Processing 	 20

2.7 Model Estimation 	 22

2.8 Classification 	 30

2.8.1 Bayesian Decision Theory  	 30

2.8.2 Calculation of Angular Joint Velocities  	 38

2.9 Data Matrix Assembly 	 43

vii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

3 RESULTS 	 46

3.1 Hypothesis Testing  	 46

3.1.1 Basic Assumptions — Multivariate Normality 	 47

3.1.2 Detection of Outliers  	 51

3.1.3 Homogeneity of Variance 	  55

3.1.4 Homogeneity of Covariance 	  56

3.1.5 Independence of Observations 	  56

3.2 MANOVA Theory 	  57

3.3 MANOVA Design 	  58

3.4 General Linear Model 	  59

3.5 Contrast Analysis  	 60

3.6 SAS Results  	 63

3.7 Matlab Results  	 68

4 DISCUSSION 	  75

5 CONCLUSION 	  77

6 FUTURE DIRECTION 	  78

APPENDIX A MATLAB SOURCE CODES 	  79

APPENDIX B SEGMENTATION POINTS 	  109

	

APPENDIX C SAS FILE    125

REFERENCES 	  127

viii



LIST OF TABLES

Table Page

2.1 Letter String Categories 	 9

2.2 Sensor Descriptions 	 17

2.3 Mahalanobis Distances Between Training Set and Class Means for Subject 1 	 27

2.4 Mahalanobis Distances Between Training Set and Class Means for Subject 2 	 28

2.5 Mahalanobis Distances Between Training Set and Local Minima for String
`PERISCOPE' Performed by Subject 2 	 43

3.1 Test for Multivariate Normality   47

3.2 MANOVA Results for Static versus Context Groups of I Observations 	 65

3.3 MANOVA Results for Static versus Context Groups of S Observations 	 66

3.4 MANOVA Results for Static versus Context Groups of C Observations 	 67

ix



LIST OF FIGURES

Figure Page

1.1 Manual alphabet of American Sign Language   2

1.2 ASL sign for "water" 	 3

1.3 Envelope of a written word 	 4

1.4 Caricatures demonstrating assimilation and dissimilation 	 6

2.1 Data acquisition program interface   10

2.2 CyberGlove® calibration, part I    12

2.3 CyberGlove® calibration, part II 	 13

2.4 Orientation of finger position    14

2.5 CyberGlove® used for data collection 	 15

2.6 CyberGlove® with embedded sensor locations (left) and posterior view of the
right hand (right) 	 16

2.7 Sample of the first seven features of an initial trial 	 18

2.8 Pattern classification process 	 19

2.9 Response of bi-directional filter fourth order versus unidirectional second
order filter 	 21

2.10 Pairwise scatter plots show bivariate normality   22

2.11 Bivariate normal distribution 	 •	 24

2.12 Contours of constant Mahalanobis distance (left) and Euclidean distance
(right) in two-dimensional space 	 25

2.13 Classification using Mahalanobis and Euclidean distance measures 	 26

2.14 Confusion matrix for training set versus testing set of class means for Subject
1 (above) and Subject 2 (below) 	 30

x



LIST OF FIGURES
(Continued)

Figure Page

2.15 Functional structure of pattern classifier 	 32

2.16 Decision boundary for bivariate Gaussian distributions 	 35

2.17 Probability densities and decision regions for bivariate Gaussian distributions. 36

2.18 Classification of entire string using linear discriminant classifier   37

2.19 Graphical representation of function f(x) to be differentiated at x = a 	 38

2.20 Summed angular joint velocities and local minima for string
"PERISCOPE" 	 41

2.21 Confusion matrix of Mahalanobis distances of local minima for string
"PERISCOPE" 	 42

2.22 Similar joint angle configuration for K (left) and P (right), differing only in
orientation 	 42

2.23 Formation of data matrices for multivariate analysis 	 45

3.1 Chi-squared quantile-quantile plot of I observations for Subject 1 	 48

3.2 Chi-squared quantile-quantile plot of I observations for Subject 2 	 49

3.3 Chi-squared quantile-quantile plot of S observations for Subject 1 	 49

3.4 Chi-squared quantile-quantile plot of S observations for Subject 2 	 50

3.5 Chi-squared quantile-quantile plot of C observations for Subject 1   50

3.6 Chi-squared quantile-quantile plot of C observations for Subject 2 	 51

3.7 Scatter plot of first two canonical variables of I observations for Subject 1 ..... 52

3.8 Scatter plot of first two canonical variables of I observations for Subject 2 ..... 52

3.9 Scatter plot of first two canonical variables of S observations for Subject 1 .... 53

3.10 Scatter plot of first two canonical variables of S observations for Subject 2 .... 53

xi



LIST OF FIGURES
(Continued)

Figure	 Page

3.11 Scatter plot of first two canonical variables of C observations for Subject 1 	 54

3.12 Scatter plot of first two canonical variables of C observations for Subject 2 	 54

3.13 Test of homogeneity of within-class covariance matrices  	 56

3.14 Confusion matrix of Mahalanobis distances between group means for Subject
1, I observations  	 69

3.15 Dendrogram of Mahalanobis distances between group means for Subject 1, I
observations  	 70

3.16 Confusion matrix of Mahalanobis distances between group means for Subject
2, I observations  	 70

3.17 Dendrogram of Mahalanobis distances between group means for Subject 2, I
observations  	 70

3.18 Confusion matrix of Mahalanobis distances between group means for Subject
1, S observations  	 71

3.19 Dendrogram of Mahalanobis distances between group means for Subject 1, S
observations  	 71

3.20 Confusion matrix of Mahalanobis distances between group means for Subject
2, S observations  	 72

3.21 Dendrogram of Mahalanobis distances between group means for Subject 2, S
observations  	 72

3.22 Confusion matrix of Mahalanobis distances between group means for Subject
1, C observations  	 73

3.23 Dendrogram of Mahalanobis distances between group means for Subject 1, C
observations  	 73

3.24 Confusion matrix of Mahalanobis distances between group means for Subject
2, C observations  	 74

3.25 Dendrogram of Mahalanobis distances between group means for Subject 2, C
observations  	 74

xii



CHAPTER 1

INTRODUCTION

1.1 Background

The visual-gestural languages of the Deaf, their labored history of evolution, their

intricacy and richness of linguistic structure, as well as their expression of a unique and

challenged culture, have provided a vast array of disciplines with a unique insight into the

workings of the human brain. It is through this window of gesture that scientists can

explore some of the puzzles of language and cognition and take one step closer to

resolving the complex mystery that is man. Research in linguistics, neurophysiology and

biomechanics are among a few of the interrelated disciplines that have used signed

languages to investigate such topics as phonetics, motor control and sensorimotor

integration where the underlying strategies of sign organization, production and

perception provide a structured basis for examination.

Natural language may be represented by the three different modes of speech,

writing and gesture, and its study must include both cross-modal and cross-linguistic data

in order to ensure accuracy. Particular emphasis has been placed on signed languages

over the last couple of decades for this very reason, with the most extensive research

having been conducted on American Sign Language (ASL). This is the native language

of the North American Deaf community where it is the primary mode of communication

and is used by more than a half a million people throughout the United States and

Canada. This visual medium is composed of signs but also of fingerspelling where the

latter represents the manual alphabet of the signed language.

1
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1.2 American Sign Language

It is important to note that ASL is a natural, autonomous language that is transmitted in

signed modality and not merely a medium though which the English language is

expressed. There exist regional, social and situational dialects, just as can be found in any

spoken language. Complex abstract thought, intellectual argument, wit and poetry are all

capable of expression. Fingerspelling, on the other hand, is a tertiary system, which

represents the written form of a spoken language, and the American manual alphabet

contains the same twenty-six letters as the orthographic form of English. Consequently, it

is integrated into ASL, where it is used for transliteration of English words by spelling

one letter at a time.

Source: http://www.deafmissions.com/dic/ASLabc.html

Figure 1.1 Manual alphabet of American Sign Language.
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Fingerspelling is used to communicate words for which no specific unitary sign

exists such as proper names, place names, and new or technical words not yet

incorporated into the sign lexicon. Furthermore, it is fully integrated into the sign

vocabulary to the extent that hand configurations for some letters actually form the basis

for certain signs while incorporating a variation in a particular parameter(s). The sign for

"Monday", for example, consists of the letter "M" oriented towards the body and moved

in a circular motion, and "water" is signed by forming the letter "W" with the right hand

and tapping the mouth with the index finger.

Source: www.lifeprint.com/as1101/pages-signs/w/water.htm

Figure 1.2 ASL sign for "water".

The phonological structure of signs consists of five parameters: hand

configuration and orientation, movements of the hands and arms, places of articulation,

and non-manual gestures such as body language and facial expression (Stokoe). It is

through variation of these parameters that lexical signs are differentiated and

communication is achieved. The parameters of fingerspelling are handshape and

movement, and transformations of the other features are irrelevant.
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1.3 Models of Fingerspelling

The traditional, elementary model of fingerspelling views word production as the sum of

its individual letters, or "beads on a string" (Hardcastle and Hewlett), with simple letter-

handshape correspondence. However, although the organization of fingerspelling is, by

nature, a concatenation of discrete elements, the overall perception of fingerspelling is

that of a continuous stream when articulated fluently and in quick succession. This is

reflected in Akamatsu's model of fingerspelling which builds on the basic, cipher model

by approaching word production and perception as a "movement envelope" whose shape

is dictated by the hand configurations of the individual letters, so changes in letters bring

about changes in the overall envelope shape. Hanson's study on fingerspelling also found

that subjects used an underlying structure to perceive words rather than reading

individual letters. Similarly, Zakia and Haber note, "In reading fingerspelling words, a

highly experienced reader is not attending to the individual letters, but rather to the total

pattern of finger configuration, or at least enough to identify the word." For a non-signer,

the best analogy will result from observing the following picture.

Figure 1.3 Envelope of a written word.
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If asked to identify the word represented by the overall shape, rather than

examining the individual components in sequence (which in this case would be futile

anyway), one might easily read the word "apple." This is interpreted by relying solely on

the envelope of the written word. Moreover, it is the relative sizes and locations of the

blocks that contribute to the shape of the envelope and are critical to the overall

perception of the word. Notice how the two blocks in the middle extend equally in length

in the negative y-direction. This could be considered the result of assimilation, which is

the tendency of distinguishing features of different components, in this case the length of

the letter blocks, to become more like each other, in order to aid in comprehension.

Conversely, the extension of the fourth block in the positive y-direction could be

attributed to dissimilation of length, whereby distinguishing features become less like

each other to facilitate recognition.

Another example of assimilation and dissimilation can be found in the form of

caricatures. Here, the characterizing features that are necessary for differentiation are

emphasized so that the overall impression is the exaggeration (and blending) of facial

features pertinent to recognition. In the same way, it is believed that fingerspelling

recognition is largely based on a similar phenomenon except that the envelope is created

in the spatiotemporal environment. It is not only the articulatory targets of the hand

configurations, but the corresponding transitional movements implicit in Akamatsu's

model that contribute to the production and comprehension of a word. This emphasis on

transitions is central to Wilcox's dynamic model of fingerspelling which explores the

underlying structure that contributes to the coordination and cooperation of articulators in

executing a task.



6

Source: http://www.dimpleart.com

Figure 1.4 Caricatures demonstrating assimilation and dissimilation.

1.4 Hypothesis

In accordance with the model of fingerspelling that is based on targets and transitions,

this thesis examined the structure of targets produced in different circumstances and

explored the influence of surrounding transitional variables. Targets were characterized

in terms of the configurations of the articulators (fingers of the hand) occurring at time

points when the overall velocity of the fingers was at a minimum. The handshapes

formed by configuring the finger positions were determined by measuring certain joint

angles of the signing hand when producing letters in isolation and when executing

movement sequences. Admittedly, this was a simplification since the independent motor

subsystems, of which the articulatory targets of fingerspelling comprise, also include

movement, which is important for differentiating between particular targets, such as the

hand configurations for "I" and "J."

The hypothesis of this thesis is that the target handshapes towards which

articulators move are not the canonical structures found when letters are produced

statically, but rather are modified versions of the canonical forms, with variable ranges
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that adjust according to the influence of kinematical and temporal variations in

surrounding letters. The study was designed to investigate this hypothesis by examining

and comparing the production of hand structure, one of the main motor subsystems of

ASL. The anticipated target modification is a direct result of a number of phenomena

including assimilation and dissimilation, as mentioned previously. It can also be

attributed to another effect that is prominent in fingerspelled and signed words, known as

coarticulation, which has its roots in speech and has been investigated since as early as

the 19 th century by various researchers including Sweet in 1877 and Jespersen in 1897.

1.5 Coarticulation

It is a well-known fact that coarticulation in the auditory medium is manifested when the

articulation of a given phoneme partially overlaps in time with the articulation of

immediately adjacent speech sounds, thereby affecting its acoustic and articulatory

properties. As with most motor activities in which a certain amount of fluency and

coordination is required, signed language also displays coarticulatory influences in

articulator production. This reflects the neuromuscular production of articulator

movement and results from a kinematic variation in the movement of these articulators,

as determined by the kinematic characteristics of surrounding elements in the movement

sequence.

Reich described the bidirectional effects of coarticulation (carry-over and

anticipatory) in fingerspelling as a type of phonological restructuring, which can manifest

itself as forward or backward assimilation. The very existence of such a phenomenon

refutes the notion of targets in fingerspelling as invariant, static, canonical structures.
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This study is an advance over Akamatsu's movement envelope which was primarily

based on the sequential transmission of static handshapes, and builds on Wilcox's model

of dynamic fingerspelling to propose that the handshapes produced serially are in fact

different to their corresponding static formations.

Although previous research has explored the presence and extent of coarticulation

in the form of assimilation and dissimilation (Jerde et al.), few studies, if any, have

addressed the deviation from canonical forms that results from coarticulation. This

question is taken up here through analyses described in the following chapters.



CHAPTER 2

METHODOLOGY

2.1 Overview

The main goal of this study was to compare the target configurations produced along an

articulatory trajectory to the same target configurations produced statically, in order to

determine whether the static formations remained invariant when produced in context.

The trajectories selected were based on a study of coarticulation in fluent fingerspelling,

where the stimuli consisted of a set of letter strings, comprising ten words and ten non-

words, that were performed by sign language interpreters wearing a CyberGlove® on the

signing hand. The 20 strings were distributed equally amongst four distinct categories of

same initial letter words, same initial letter non-words, different initial letter words, and

different initial letter non-words. Each string sequence contained the trigram I-S-C

followed by a vowel. The primary question was whether there was a statistical difference

between static and contextual configurations of the abutting letters in the trigram.

9
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2.2 Experimental Task

Two professional sign language interpreters participated in this study which was

approved by the Institutional Review Board at the New Jersey Institute of Technology.

Both were female, right-handed with normal hearing, and were proficient in ASL. The

subjects were presented with a visual representation of each of the 26 letters in the

English alphabet or each of the 20 strings in random order, and were asked to produce the

appropriate sign(s). They were instructed to hold the static letters for the duration that the

cue remained on the screen and to sign the letter strings in a consistent manner. Because

signs for letters are unimanual, this required that the data from one hand be collected.

Due to the limited combination of finger positions, many of the signs are very similar and

differ only by slight variations in finger position or hand orientation.

Figure 2.1 Data acquisition program interface.
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Each trial began with the subject's elbow in a neutral resting position. A break

period was provided between the trials, as needed. Upon receiving a letter or string

prompt on the lower right corner of the screen, the subject produced the signs)

representing the letter(s). A total of 20 series were collected for each subject (ten discrete

alphabet blocks of 26 letters and ten continuous string blocks of 20 words/non-words).

The order of the trials was randomly permuted and cues were presented to the subject one

at a time and remained on the screen for several seconds. The intention of the random

selection was to minimize anticipatory coarticulation that may have occurred if the signs

were produced in consecutive or predictable order. Extra time was incorporated to ensure

that samples from the static trials could be easily segmented into their corresponding

letters. Letters within strings would be recognized using an automatic recognition

procedure which will be discussed later in detail.

2.3 Calibration

It was necessary to calibrate the glove to the subjects' hands due to the range of

variability amongst hand sizes and ranges of motion. This was achieved with Virtual

Technologies' Device Configuration Utility (DCU) software program. In order to convert

to appropriate joint angles from raw A/D sensor values the following equation was

applied,

Gain and offset values were set during calibration and were based on a default
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configuration of hand-geometry in the calibration file. While this hand-geometry portion

of the file contained baseline hand structure information, the hand-calibration portion

contained the gain and offset parameters required to map the digitized values to the joint

angles of the default hand structure. The gain affected the range of joint angles and the

offset referred to the difference between the AID values and the default hand-geometry

position (Virtual Technologies, Inc).

Calibration consisted of two phases where each subject was instructed initially to

rest the hand with the CyberGlove® flat on the table, and then instructed to make an

`OK' sign and hold the position. The DCU then calibrated the hand to the default file and

created a unique calibration for each subject based on her specific hand structure. The

following figures illustrate the screens that prompted for glove calibration.

Figure 2.2 CyberGlove® calibration, part I.
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Figure 2.3 CyberGlove® calibration, part II.

2.4 Data Collection

The first requirement in handshape recognition is data acquisition in order to capture the

gestures that are made as signs. This project used an instrumented glove as a transducer

rather than a camera-based device because gloves allow for concise and accurate data

extraction whereas certain data, such as hand orientation, forward-backward motion and

finger position information, are difficult to extract from visual images.



14

Source: Martin, J., "A Linguistic Comparison: Two Notation Systems for Signed Language: Stokoe
Notation & Sutton SignWriting."

Figure 2.4 Orientation of finger position.

A right-handed CyberGlove® by Immersion 3D Interaction Corporation (formerly

known as Virtual Technologies, Inc) was used to record high-accuracy digital joint angle

information. Sensor data were captured at a rate of 55 Hz and were stored on a PC hard

disk for off-line analyses. Although 22-sensor CyberGloves® with covered fingertips are

commercially available, as shown in Figure 2.6, the CyberGlove® used in this study was

open-fingered and did not possess sensors on the most distal joints of the pinkie through

index fingers. It did contain the remaining 18 embedded sensors - two bend sensors on

each finger, four abduction sensors, plus sensors measuring thumb crossover, palm arch,

wrist flexion and wrist abduction.

The thumb of the CyberGlove® had two bend sensors, which measured the

metacarpophalangeal and interphalangeal joints. The metacarpophalangeal joint is

located at the point where the thumb connects to the palm and the interphalangeal joint is
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located between the thumb's proximal and distal phalanges. The remaining four fingers

of the CyberGlove® also contained two embedded sensors which measure the

metacarpophalangeal and proximal interphalangeal joints. As with the

metacarpophalangeal joint sensor of the thumb, these sensors also measured the points at

which the fingers connect to the palm. The proximal interphalangeal joints of the fingers

are found between the proximal and middle phalanges. The thumb had an additional

sensor which measured the degree of rotation of the thumb about the palm. The point of

rotation is a saddle point at base of thumb and is called the trapeziometacarpal joint.

These joints are illustrated in right-hand side of Figure 2.6 which shows the posterior

view of the hand.

An additional sensor was provided on the pinkie finger, which measured the

degree of rotation of the pinkie across the palm. This indicates the arch of the palm

formed when the hand is in a cupped position. Sensors on the wrist measured pitch,

which is the flexion/extension of the wrist in the vertical plane, and wrist yaw, which is

the abduction/adduction or sideways flexion of the wrist. Finally, abduction sensors

measured the lateral movement of the thumb-index, middle-index, ring-middle, and

pinkie-ring fingers.

Figure 2.5 CyberGlove® used for data collection.
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In sum, these bend sensors measured the following 18 degrees of freedom: the

metacarpophalangeal joint angles (MPJ — sensors 2, 5, 7, 10, 13) of the thumb and each

of the 4 fingers; the proximal interphalangeal joint angles (PI — sensors 6, 8, 11, 14) of

each of the 4 fingers; the interphalangeal joint angle (IJ — sensor 3) of the thumb;

abduction (ABD — sensors 4, 9, 12, 15) of the thumb-index, middle-index, ring-middle,

and pinkie-ring fingers; the trapeziometacarpal joint angle (TMJ — sensor 1) of the

thumb; palm arch (PA — sensor 16); wrist pitch (WP — sensor 17); and wrist yaw (sensor

18) with a spatial resolution of 1°, and a temporal resolution of 18ms.

Figure 2.6 CyberGlove® with embedded sensor locations (left) and posterior view of
the right hand (right).

The raw analog data were converted to a digital form that could be analyzed. This

was accomplished by the data acquisition program, which produced an ASCII output file

that was a description of this sequence of features (18 joint angles) and was displayed in
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degrees. The ASCII file then became the input pattern matrix to the classifier. The angle

headers were: TTMJ, TMPJ, TIJ, TABD, IMPJ, JPIJ, MMPJ, MPIJ, MABD, RMPJ,

RPIJ, RABD, LMPJ, LPIJ, LABD, PA, WP, and WY, as described in Table 2.2.

In order to facilitate the goal of the project, which was the comparison of static

and contextual hand configurations for the specific letters in the trigram (I-S-C), it was

necessary to compile feature vectors corresponding to each of these letters from the static
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alphabet data and from the dynamic string data. Static postures were defined by

calculating the moving average of the last 60 samples of each trial (approximately the last

second). Dynamic postures were defined using an automatic recognition procedure based

on minimum angular joint velocities put forth by Jerde, Soechting and Flanders.

The static letters were manually segmented and extracted. Each letter occurred

once in random order in every series. Due to equipment error, only seven usable series of

static alphabet were acquired for Subject 1. All ten of Subject 2's alphabet was usable.

For each series produced by the subjects, the moving average vectors of the last 60

samples of each of the 26 letter trials were computed and combined to form one static

feature matrix for each subject. Let each of the sample averages be represented by an 18-

dimensional vector, Lk = {x1, x2, x3, ...x18} where 18 is the number of joint angles. Let

Figure 2.7 Sample of the first seven features of an initial trial.
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2.5 Pattern Recognition

The process of automatic letter recognition, necessary to define dynamic postures,

involved several steps including the pre-processing and feature extraction of the training

and testing data sets, model estimation of the training data and classification of the testing

data using a linear discriminant analysis (LDA). The training set for each subject was

compiled from the joint angles retrieved from the static block. Subject 1 had 7/10

successful trials (with three trials discarded due to equipment error) and Subject 2 had

10/10 successful trials yielding (176x18) and (260x18) feature matrices respectively for

the training sets. Pre-processing was initiated in the CLASSIFYSTATIC function by

filtering the data at 10Hz using a fourth-order bi-directional Butterworth filter as outlined

in the next section. Feature extraction involved isolating the CyberGlove® data from

other movement data that had been collected. The start of a movement was taken 25

frames after the cue was initially presented and the next 275 frames were automatically

analyzed.

Source: Hansen, J., "A Matlab Project in Optical Character Recognition (OCR)."

Figure 2.8 Pattern classification process.
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The function then set up for the model estimation and classification of the LDA.

The goal of the pattern classification algorithm was to classify joint angles, produced

within a string, to letters in the alphabet. Each of the 26 letters corresponded to a different

class. The feature matrix was labeled according to the particular class to which the joint

angle vectors belonged. An LDA was then performed on the recorded trajectory for

classification. The Matlab function for this procedure, CLASSIFYSTATIC, can be

referenced in Appendix A.

2.6 Pre-Processing

Before the raw data could be effectively analyzed, a certain amount of pre-processing

was required. Pre-analytic processing functions such as analog-to-digital conversion, data

compression, and data formatting were performed to the sensor data by the data

acquisition program on the front-end for the purposes of enhancing data utilization. Once

the raw data was in the format indicated in Figure 2.7, a smoothing operation was

performed whereby the signal was passed through a filter to remove any additive noise

that may have been present. All signal processing operations were performed in Matlab

6.5 (MathWorks, Inc.) and each task is described henceforth in terms of its Matlab

implementation.

The high frequency noise component of the signal was significantly reduced by

applying a low-pass digital filter to the kinematic data. A second-order Butterworth filter

was chosen because of its shorter rise time and in spite of its overshoot in response to

impulse type movements (which was unlikely to pose a problem to the data in question).

The filter itself introduces a phase delay to the higher harmonic range of input
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frequencies passed and this effect was eliminated by applying the filter a second time to

the attenuated output signal which was reversed in time. The final output sequence then

displayed zero-phase shift due to the canceling of the phase lead and lag. The

implementation of a bi-directional filter also had the effect of doubling the sharpness of

cutoff, effectively creating a fourth-order filter.

The optimal cutoff frequency was determined by performing a residual analysis

on the difference between the filtered and unfiltered signals. The overall cutoff frequency

was set at 10Hz because the greatest percentage of signal power was contained below that

frequency. This selection was a compromise to minimize noise while simultaneously

minimizing distortion. The cutoff frequency for the original second-order filter needed to

be adjusted to account for the increased sharpness in cutoff caused by double filtering.

The overall cutoff frequency was then equal to 0.802 times the cutoff frequency of the

one-way filter (Winter). The Matlab function FILTERDATA can be referenced in

Appendix A.

Figure 2.9 Response of bi-directional filter fourth order versus uni-directional second
order filter.
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2.7 Model Estimation

It was necessary to estimate a model for each class of the training data from the (176x18)

and (260x 18) feature vectors of each subject. A Gaussian model for the actual probability

distribution was assumed because of the nature of the data, which were likely corrupted

by normal random processes (which have normal distributions). To verify that this

assumption was acceptable, pairwise scatter plots for random samples were constructed.

Pairs of variables have a bivariate normal distribution when the sample comes from a

multivariate normal distribution, so the scatter plot allowed the association between

variables to be examined.

Figure 2.10 Pairwise scatter plots show bivariate normality.
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Visual inspection can confirm that elliptical patterns are formed by these pairs of

variables, thereby validating the assumption of normality.

An 18-variate normal distribution for each sample, X — N18 (Gil Ai), was

considered to provide a satisfactory approximation of the true density, where X is an 18-

dimensional row vector, determined by the elements of the mean vector, Ili (also an 18-

dimensional row vector), and the covariance matrix, lib, (an 18x18 positive definite

symmetric matrix i.e. none of the eigenvalues are zero). The multivariate normal

distribution of its probability density function is of the form,

where lAil is the determinant of the covariance matrix, and d is the number of dimensions.

Because Zip is a positive definite matrix, Ei -1 is positive definite by implication, and

therefore,

The maximum value of the density occurs at x - pi = 0, or x = ui (because of the (-

1/2) in the front of the exponent). Multivariate normal data form hyperellipsoids, as

defined by this quadratic equation, whose points cluster about the mean, 12, and whose

shape is dictated by the eigenvalues (which determine the length), and the eigenvectors

(which determine the principal axes) of the covariance matrix, Z. Figure 2.11 shows a

bivariate normal distribution. In this instance the contours are spherical because the
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covariance matrix is diagonal (covariances (non-diagonal elements) are zero because

features are independent) and the variances are equal.

Figure 2.11 Bivariate normal distribution.

The contours of constant density are determined by setting this negative exponent

of the Gaussian density to a constant value, C, which represents the distance from the

mean group value that has a constant covariance, Ai.
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This is called the Mahalanobis squared distance or D statistic, after Prasanta Chandra

Mahalanobis of India, whose statistical analyses of anthropometric problems led to its

discovery. The larger this distance, the smaller the probability density, since the density

decreases exponentially with the square of the distance. In two-dimensional space this

distance forms an ellipsoid as shown below. Here, the ellipses show the 50%, 95%, and

99% lines of equal probability density, indicating the percentage probability that an

unknown sample will fall in that area (Duda et al.).

Figure 2.12 Contours of constant Mahalanobis distance (left) and Euclidean distance
(right) in two-dimensional space.

Mahalanobis squared distance is a natural choice to measure the distance from an

unclassified joint angle vector, x, to a mean vector, Ili, so classification in this 26-

category case was assigned to the group with the shortest Mahalanobis distance between

x and IA of the training data, while weighing the variation in the unknown sample by the

range of variability in that direction. Differences in the sample are weighted the most on

the shorter axis and the least when they lie along the axis of elongation. This is preferable

to Euclidean distance which measures relative distance by weighing all directions

equally, thus failing to take into account the variability of the values in all dimensions.

Figure 2.13 illustrates how the distance between the new object and the mean of Class 1
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is 2 standard deviations (constant density in the univariate case, equivalent to covariance

in the multivariate case) whereas the distance between the new object and Class 2 is 3

standard deviations. The new object is then classified to Class 1 which has the shortest

statistical distance.

Source: http://www.cac.sci.kun.nl/people/philipg/poster97/

Figure 2.13 Classification using Mahalanobis and Euclidean distance measures.

Mahalanobis distance looks at variations in within-group (variance) and between-

group (covariance) responses alike. The training groups define multidimensional spaces

within whose borders an acceptable range of variation lies and into which an unknown

vector must fall in order for it to be classified as a member. The separation between

classes in LDA space is achieved by minimizing the variance within groups and

maximizing the variance between groups.

The LDAM algorithm implements a linear discriminant using the Mahalanobis

distance as a classifier. It begins by splitting the (176x18) or (260x18) feature matrix of
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training data from the static block into the 26 respective classes and calculating 18-

component mean vectors for each. Class dependent covariance matrices, weighted by the

number of observations in each class of the training set, are then pooled and inverted. The

means and inverse pooled covariance matrix create clusters in 18-dimensional space,

where the Mahalanobis distances between classes are then computed. Tables 2.3 and 2.4

indicate the normalized Mahalanobis distances between the training and testing sets,

where the testing set, for the purpose of illustration, consists of the mean vectors from

each class.
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Table 2.4 Mahalanobis Distances Between Training Set and Class Means for Subject 2

The confusion matrices in Figure 2.14 are grayscale coloimaps of the tables of the

training versus testing sets, where white indicates minimum Mahalanobis distance and

black indicates maximum distance. They provide a summary of the extent to which the

Mahalanobis distances could predict the class to which a handshape would be classified.

The white blocks along the main diagonal illustrate how each mean vector along the x-

axis has the minimum Mahalanobis distance to the corresponding class of the y-axis, and

so would be classified accordingly.
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Figure 2.14 Confusion matrix for training set versus testing set of class means for
Subject 1 (above) and Subject 2 (below).
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2.8 Classification

The CLASSIFYSTATIC algorithm, implemented in Matlab, was used to assign

consecutive feature vectors performed in a string to the class with the minimum

Mahalanobis distance. In each case, the classifier was trained with the static block of the

performing subject. The program first prompted the user for subject and string selection.

Once acquired, training and testing data were pre-processed by passing forward and

backward through a fourth-order Butterworth digital low-pass filter, and features

corresponding to the 18 joint sensors from the CyberGlove® were extracted. Input to the

linear discriminant analyzer, such as number of classes and class size, was compiled

according to the subject in question and classification of the entire string was then

performed. Finally, feature vectors, corresponding to the time points at which the

velocities of summed joint angles fell to a minimum, were classified.

2.8.1 Bayesian Decision Theory

Bayesian Decision Theory is a methodology that uses a priori information about the data

to solve pattern recognition problems by applying decision rules that use probability

distributions. Bayes Formula states that the probability (posterior, P(wilx)) that a pattern

is in class wig and contains the feature vector, x, can be calculated from prior information

(right-hand side of equation),
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where p(xlco) is the likelihood that wig is the true class for a large value of p(xlco), P(coj) is

the prior probability, and p(x) is the evidence or scale factor that ensures that the

posterior probabilities sum to one (Duda et al.).

Let col represent the state of nature where a hand configuration produces the letter

`A'. Let x represent the 18-component feature vector of joint angles that are produced in

the formation of the letter. The expression p(xlco) represents the class-conditional

probability density function for the feature vector, x, given that the state of nature is an

`A'. Finding the posterior probability means finding the probability of a hand

configuration pattern belonging to a particular letter class, given that a certain vector of

joint angles is observed. If such a probability were known, then for some observed

feature vector, the hand configuration could be classified by comparing the probabilities

that each letter class had such a feature vector (P(o)lx)). According to the Bayes Decision

Rule, the feature vector should then be classified to the class with the highest posterior

probability to minimize the probability of error. Because p(x) is irrelevant to the decision-

making process, in that it simply ensures that the sum of prior probabilities is equal to

one, this rule becomes based on the combination of the states of nature (prior

probabilities, P(coj)) and the likelihoods (conditional probabilities, p(xlco) so that an

unknown sample is classified to co; if p(xj(4)P( 04) > p(x1(4)P(a4), otherwise the sample is

classified to coi .

Hand configuration patterns in this study were classified by computing different

discriminant functions, g1(x), for each co;, such that { co i ,...w26} is the finite set of 26

states of nature of classes, and selecting the class corresponding to the largest

discriminant.



Figure 2.15 Functional structure of pattern classifier.

The Bayes Decision Rule was used as a discriminant function, such that,

The maximum discriminant function corresponds to the maximum posterior probability

and the classifier assigned the hand configuration to the class with the maximum

posterior probability. The multivariate normal density, assumed for the movement data

analyzed here, had multivariate normally distributed conditional densities

and prior probabilities P(o)i). Since,
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the discriminant function became,
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where E was the pooled covariance matrix and p i was the mean of class wig, i = 1,...26.

Since the prior probabilities were assumed to be the same for all classes, the last three

terms were eliminated as extra constants resulting in,

This quadratic discriminant function is, of course, the squared Mahalanobis

distance, and the optimal decision rule for classification is that the feature vector, x,

should be classified to the category which has this distance at a minimum. This is based

on Bayes Decision Rule of classifying according to the maximum posterior probability

(maximum discriminant function) which is proportional to the probability density

function, of which the Mahalanobis distance is the negative exponent. The smaller this

distance, the larger the probability density, and the larger this distance, the smaller the

probability density, since the density decreases exponentially with the square of the

distance. Consequently, classification to the class with minimum Mahalanobis distance

means classifying to the class with the maximum probability density, which in turn

means classifying to the class with the maximum posterior probability.
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Geometrically, the effect of the decision rule is to divide the feature space into 26

decision regions which are defined by hyper ellipsoidal clusters, centered about different

mean vectors, and separated by decision boundaries. These boundary surfaces, in the case

of 18-dimensional feature vectors, take the form of 17-dimensional hyperplanes, and are

defined by the linear equations gi(x) = gj(x) for the two classes with the highest posterior

probabilities. Expansion of the quadratic form of the discriminant function results in an

equivalent sum of linear discriminant functions,

where wino is the weight factor,

and wig is the threshold or bias,

The orientations of the surfaces of these decision boundaries are determined by the

weight vector, wig, so that its points are of equal distance to the contour lines surrounding

the means in each class, and the locations are determined by the bias, wino. Unequal prior

probabilities also bias the decision in favor of the a priori more likely class.



Source: http://www.cs.mcgill.ca/ —mcleish/644/normal_header.html

Figure 2.16 Decision boundary for bivariate Gaussian distributions.

This is illustrated in Figures 2.16 and 2.17 for bivariate normal distributions.

Here, the covariance matrix is not diagonal and the variances are not equal causing the

rotation and the elliptical shape of the contours. Notice how the prior probabilities are the

same, causing the decision boundary, which runs through the point x0 , to fall half-way

between the two means. Because the probability densities are bivariate, the decision

boundary is a 1-dimensional plane, or line. Here, the decision line is tilted as per the

weight factor, so that it is equidistant to the Mahalanobis space constructed by W1 and

W2. Observations are classified according to the decision region into which they fall.
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Figure 2.17	 Probability densities and decision regions for bivariate Gaussian

distributions.

Using these linear discriminant functions for pattern classification, the set of

feature vectors, corresponding to the angular displacement of joints caused by the

execution of the string "PERISCOPE" by Subject 4, was classified at every time point in

the recorded trajectory and this is illustrated by the confusion matrix in Figure 2.18. The

upper graph of the figure is a plot of the summed absolute velocity of joint angles. The

Mahalanobis distances between the vectors produced at every time frame in the string

and the mean vectors for each class are represented visually in grayscale, where black

corresponds to the maximum distance and white corresponds to the minimum distance.



Figure 2.18 Classification of entire string using linear discriminant classifier.
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The minimum distances indicate the categories to which a linear discriminant

classifier would assign an unknown vector. Comparison of the times at which such

distances occur (as circled in red) with the plot of summed angular joint velocity,

strongly suggests that the classification of target letters in the string occurs at points of

minimum velocity. Notice the distinct switching between black and white indicating the

transition between maximum and minimum velocities.

2.8.2 Calculation of Angular Joint Velocities

In order to detect these points of minimum velocity, the angular displacement of joints

produced within the recorded trajectory was first differentiated and smoothed to obtain

the instantaneous velocity of the individual joints. Angular joint velocities were derived

from the angular displacement data by numerical differentiation using a central difference

algorithm. This three-point method uses a Taylor series of points to find derivatives.

Figure 2.19 Graphical representation of function f(x) to be differentiated at x = a.
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The centered formula for the first derivative is based on three points centered about the

point x=a, as represented by the Taylor series expansion, given as follows,

Assuming the data are equally spaced, the points can be represented by the following

equations,

For central differentiation, equation 2.3 is subtracted from equation 2.1 to give,

This method has greater accuracy and lower error than the forward or backwards

difference methods. The three-point methods do, however, introduce end effects at the

beginning and end of the analyzed waveform, so a different three point method was
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required to evaluate the value off '(a) at the endpoints. By using more terms to model the

first derivative, these effects were eliminated and the equation became,

for the endpoint. Once the angular velocities were calculated for each of the 18 measured

joints throughout the trajectory, the absolute values of these velocities were summed

together and passed to the next function for minima detection. Code for the velocity

calculations was executed within the Matlab function ABSSUMVEL, which can be

referenced in Appendix A.

Local minima of the summed angular joint velocities were calculated with an off-

the-shelf Matlab function, LMIN, called by LOCAL_MINIMA. Through trial and error, a

default filter level was selected which determined the number of passes of the running

average filter required to eliminate small peaks. Once these were removed, the function

calculated the values of the local minima and more importantly, the time points at which

they occurred.
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Figure 2.20 Summed angular joint velocities and local minima for string
"PERIS COPE".

Figure 2.19 shows the same plot included in Section 2.8.1 of summed angular

joint velocity produced by Subject 2 when executing the hand configurations for the

string "PERISCOPE". The plot now also includes the points marked as local minima, as

determined by the LOCAL_MINIMA function. Instead of feeding the entire sequence of

consecutive hand configurations recorded every 18ms to the LDA for classification, only

the feature vectors performed at the time points of minimum velocity were classified.

Figure 2.20 shows these nine minima to have minimum Mahalanobis distances from the

classes corresponding to the letters P, E, R, I, S, C, 0, P and E, respectively.
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Figure 2.21 Confusion matrix of Mahalanobis distances of local minima for string
"PERISCOPE".

Notice how P and K at the first and eighth minima have the shortest distances, indicating

a similarity in configuration of joint angles. This is verified by Table 2.5 from which the

confusion matrix is derived.

Figure 2.22 Similar joint angle configuration for K (left) and P (right), differing only in
orientation.



Table 2.5 Mahalanobis Distances Between Training Set and Local Minima for String
`PERISCOPE' Performed by Subject 2
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2.9 Data Matrix Assembly

The next step was to find the local minima for each of the ten trials of 20 strings for each

subject. CLASSIFYSTATIC was called for each string replication and the cut points for

the local minima of letters on either side of the trigram were recorded. (See Subject 1

Cuts and Subject 2 Cuts in Appendix B.) ASSIGNLETTERS was a Matlab script called

for each string and was used to assign every trial's feature vectors for I, S and C to its

own feature matrix. The static trials for each subject were first saved to the data matrices

of I-Observations, S-Observations and C-Observations. These are represented by the
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black shaded areas in Figure 2.22.

In ASSIGNLETTERS, the user was prompted to enter the number of the subject

whose data would follow. The user was then instructed to enter the string to be assigned

to the data matrices, as well as the number of replications of that string that would be

entered. Rejected movements included those in which the target letter was deemed to

have been unsuccessfully classified. Unsuccessful classification did not necessarily imply

that the letter was classified to the incorrect class. Rather, there were instances where the

expected letter sequence simply did not occur, and in particular, the expected letter was

completely omitted. For Subject 1, 4/200 samples were rejected (2%) for Observation C,

6/200 samples were rejected for Observation I (3%), and 2/200 samples were rejected for

Observation S (1%). For Subject 2, 23/200 samples were rejected (11.5%) for

Observation C, 1/200 samples were rejected for Observation I (0.5%), and 1/200 samples

were rejected for Observation S (0.5%). In total, 2% and 4.16% of trials were rejected for

Subjects 1 and 2 respectively.

Once all usable replications of each string were selected, the local minima of the

truncated strings were classified using CLASSIFYMINIMA (a modification of the

CLASSIFYSTATIC program). ASSIGNLETTERS was called 20 times for each subject

and each time a context matrix was created as illustrated in Figure 2.22. From these

three-dimensional matrices the data matrices for the target letters of interest were formed.

These I-Observations, S-Observations and C-Observations were (201x18), (204x18) and

(203x18) dimensional matrices for Subject 1 and (209x18), (209x18), (187x18)

dimensional matrices for Subject 2, and included both static and contextual feature

vectors to be used for analysis.



45

Figure 2.23 Formation of data matrices for multivariate analysis.



CHAPTER 3

RESULTS

Post-hoc multivariate analyses were performed on the three data matrices for each

subject. A Multivariate Analysis of Variance (MANOVA) was the statistical test used to

assess the likelihood that the mean vectors of each of the 21 groups (20 dynamic, 1 static)

were taken from the same sampling distribution of means, and to explore how static

versus context letters influenced the production of joint angles. The main goal of the test

was to compare the mean vectors of the 18-dimensional hand configurations of the letters

produced statically with those same letters produced dynamically.

3.1 Hypothesis Testing

The null hypothesis was that there is no statistical difference between populations from

the static and context groups, as indicated by the sample data. Realistically, there is

always a difference, due to the nature of random processes and imperfect sample data.

The real question was whether the effect was trivial, as determined by predefined

confidence limits. The statistical test itself simply tested for significance, trivial or not.

The level of confidence in the significance was represented by the p-value associated

with the multivariate statistic, and a confidence level of 0.05 was allowed in this study for

a 5% chance of finding a significant difference between groups when, in fact, no

difference existed. The multivariate statistic produced by the test was based on a

comparison of the error variance-covariance matrix and the variance-covariance matrix of

the hypothesis (effect).

46
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3.1.1 Basic Assumptions — Multivariate Normality

In order to perform the MANOVA, it was necessary that certain basic statistical

assumptions be verified. The first was that the residuals or prediction errors were sampled

from a normal distribution. For this study, it was assumed that all observations were

sampled from an 18-variate normal distribution with (1x18) mean vector, it, and (18x18)

covariance matrix, A. To verify this, an off-the-shelf program, MULNORMTEST

(Trujillo-Ortiz et al.), was used. The output of this program combined a graphic approach

with a probability output that the null hypothesis of normally distributed errors was true.

The chi-squared quantile-quantile plot, which graphed the chi-squared percentiles against

the percentiles of the I, S, and C observations' ordered squared Mahalanobis distances,

are shown in Figures 3.7 to 3.14. See Appendix A.11 for Matlab source code.
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Since the independent variables consisted of groups, the normality assumption

implied that the dependent variables must be normally distributed within each group. The

within group dependent variables for each subject were found to follow a multivariate

normal distribution, and so the Mahalanobis distances followed a chi-squared distribution

with 18 degrees of freedom. The graphs below illustrate the multivariate normality of the

set of observations as a whole and the outputs of the program (significance level of 0.05),

as per Table 3.1, confirmed that this assumption was tenable.

Figure 3.1 Chi-squared quantile-quantile plot of I observations for Subject 1.



Figure 3.3 Chi-squared quantile-quantile plot of S observations for Subject 1.
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Figure 3.5 Chi-squared quantile-quantile plot of C observations for Subject 1.
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Figure 3.6 Chi-squared quantile-quantile plot of C observations for Subject 2.

3.1.2 Detection of Outliers

The second assumption was that errors, which were significantly different from the

average, were transformed or removed. MANOVA involves finding the canonical variate

or linear combination of original dependent variables that yields the largest differences

between groups. Figures 3.7 to 3.12 show the grouped scatter plots of the first two

canonical variables of I, S, and C observations for Subjects 1 and 2, so that the separation

between the 21 groups is emphasized. Visual inspection may indicate the presence of

outliers, which often appear as clusters with only one member. In each of the figures, the

observations with the greatest Mahalanobis distances from its group mean were within 3

standard deviations of the group mean, and were not considered to be outliers.
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3.1.3 Homogeneity of Variance

The third usual assumption was that the underlying errors were all unconrelated with

identical variances (homoscedastic, in regression terminology) in the different groups of

the design. To test for homogeneity of residual variances, which is whether the standard

deviations are significantly different from each another, the values of the dependent

variables for each group of independent variables were first converted to dispersion

variables, and then a MANOVA was performed on these dispersion variables. The p-

valued for the F-test then determined the significance, where the level of significance was

set to a = 0.05. Appendix C shows the SAS code (PROC GLM) to perform the usual

ANOVA test for equal group means followed by Levene's test for homogeneity of

variances, which is considered to be the standard.

For each dispersion variable, it computes the difference between the value of the

dependent variable and its mean and performs a one-way analysis of variance on those

differences. The samples from the populations under consideration are assumed to be

independent and the populations under consideration are assumed to be approximately

normally distributed.

The null hypothesis of Levene's test, which is that group variances are within

random sampling of each other, was accepted for each set of observations, since the p

values were greater than the 0.05 cutoff for most of the variables. Even though the

variances for all variables proved not to be within sampling error, it was assumed that the

MANOVA test would be sufficiently robust to compensate for the slight

heteroscedasticity. This is a valid assumption unless the variances are extremely different

or the number of groups is large, which was not the case here.
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3.1.4 Homogeneity of Covariance

Bartlett's chi-square test was performed to examine the homogeneity of covariance. The

results for each data set were highly significant indicating equality of covariance

matrices. Regardless, MANOVA would also have been sufficiently robust if this

assumption had been violated. The SAS code to request this test is included in the

Appendix C under the PROC DISCRIM section which uses the POOL=TEST option to

request Bartlett's modification of the likelihood ratio test of the homogeneity of the

within-group covariance matrices. As an example of the SAS output, Figure 3.13 shows

the results for Bartlett's test for homogeneity of covariance for C observations of

Subjecti. Since the chi-square values are significant at the 0.01 p level, the within

covariance matrices were assumed to be equal.

Figure 3.13 Test of homogeneity of within-class covariance matrices.

3.1.5 Independence of Observations

The observations were randomly sampled and the joint angle measurements for any one

observation were independent from the measurements for all other observations. This is

known as the "independence of observations" assumption. There is little room for

violation of this assumption, so if it is violated MANOVA should not be conducted.
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3.2 MANOVA Theory

The overall logic of MANOVA is to compare two different estimates of the population

covariance based on covariance matrices and mean vectors of the groups. The first

estimate is the average covariance matrix within the groups (mean squares within groups

or error mean squares) and the second is the covariance matrix of the means between the

groups (mean squares between groups or hypothesis mean squares). A ratio of the mean

squares of the hypothesis divided by the mean squares of the error is called the F statistic

and this value is expected to be close to 1.0, or the identity matrix, under the null

hypothesis, implying that the mean vectors are the same and that the observations are

sampled from the same normal distribution.

As the value of the F statistic increases, so too does the likelihood that the null

hypothesis is false. These multivariate F values are obtained with tests such as Pillai's

criterion (pooled effect variances), Hotelling-Lawley's trace (pooled ratio of effect

variances to error variances), Wilk's lambda (pooled ratio of error variances to effect

variance plus error variance) and Roy's largest root (upper bound/ maximum eigenvalue

for F statistic). Should any of the assumptions have been violated, Pillai's criterion

provides the most conservative analysis.
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3.3 MANOVA Design

The MANOVA was performed using the Statistical Analysis System (SAS) program,

version 8.2 for Windows. Traditionally, results of a MANOVA test would indicate

equality of mean vectors across all groups, without providing any indication as to which

mean vectors differed, or which dependent variables were responsible for the inequality.

The F statistic simply indicates whether the means of all groups for an ANOVA effect are

within random sampling error of each other. Because the null hypothesis for this study

required that one specific group be compared to the others, it was necessary to overcome

this limitation of traditional MANOVA. This was accomplished through the use of a

priori contrast coding; available in contemporary MANOVA testing and implemented in

SAS.

The MANOVA was performed on the I, S, and C observations matrices, where

the rows consisted of (1x18) vectors of independent observations, and the columns of

joint angles represented the dependent variables. These observations were organized into

21 groups corresponding to 20 context groups and 1 static group, and this matrix of

groups was the oneway ANOVA factor representing the categories of independent

variables. The MANOVA would uncover the direct effect of these independent variables

on the dependent variables. Because each group had a different number of independent

variables, for reasons mentioned in the previous chapter, the design was unbalanced.

Consequently, the PROC GLM (General Linear Model) procedure was used in SAS

which compensated for the non-orthogonal nature of the design.
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3.4 General Linear Model

MANOVA is a specific case of the general linear model, whose fundamental equation is,

where Y is a matrix of observations of dependent variables, X is a design matrix of

independent variables as determined by predictors, 0 is a matrix of parameter estimates,

and U is a matrix of prediction errors. The general linear equation for multivariate

hypothesis tests in MANOVA, where the null hypothesis states that the elements of the

parameter matrix are zero, is as follows,

To test this hypothesis of no effect, such that there is no difference between

means, the model expresses the 21 group means as linear functions of the overall mean,

p, plus a deviation, a, from this mean. Algebraically, this is equivalent to,

Knowing the variables of the dependent and independent matrices (L and M,

respectively), the parameters of the null hypothesis (f3, which corresponds to IA and a) are
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then solved in order to determine if the deviations from the overall mean are zero. This

parameter matrix is estimated by performing a multivariate analysis of variance. The F

statistic then indicates the likelihood that the group mean vectors are within sampling

error and were drawn from a single normal distribution, but does not indicate which

groups contribute to this conclusion. This is addressed with contrast coding.

3.5 Contrast Analysis

In order to determine which group mean vectors are different, multiple t-tests or

univariate F tests could be performed for the variables of means in each level of the

MANOVA factor. However, this would increase the chance of rejecting the null

hypothesis of no mean difference (false positive or Type I error), when in fact there is no

mean difference and the hypothesis should be accepted. Instead, a contrast analysis was

performed based on the a priori hypothesis that the mean group vector of the static group

was statistically different to the average mean group vector of the context groups. This

was a planned comparison where the data was deliberately coded in advance to test the

natural contrast hypothesis that the joint angles formed by the production of static letters

were sampled from a different population than the joint angles formed by the production

of context letters. Directly addressing a hypothesis for planned comparison in general

linear models is accomplished by creating linear combinations of independent variables

from the original independent variables.

These new variables are created by a coding procedure that uses contrast weights

to compare the groups of independent variables in accordance with the new hypothesis.

The contrasts represent linear combinations of the parameters and are used to test for
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differences among the levels of the factor (the 21 groups). The dependent variables are

then analyzed using these new independent variables.

This can also be expressed as,

where X* is the matrix of new independent variables, X is the matrix of old independent

variables, and L is the design matrix of independent variables.

In this study, the null hypothesis stated that the mean for the static group of

observations was equal to the average mean of the 20 context groups of observations.

Algebraically, this is equivalent to,
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So, to test the null hypothesis that the 20 context groups did not differ from the static

group, the contrast code created a new variable by assigning numeric weights to the

levels of the factor, such that the sum of the weights was equal to zero,

This is equivalent to

where X* is the matrix of the new independent variables Context and Static, L is the row

vector of coefficients or contrast codes (design matrix of independent variables), and X is
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the matrix of old independent variables. Performing a MANOVA on the new independent

variables implies that the null hypothesis, as represented by,

would test whether the average deviation of the 20 context groups from the overall mean

were equal to the deviation of the static group from the overall mean, such that L is the

(1x21) vector of contrast codes (design matrix of independent variables), M is the matrix

of dependent variables, and 0 is a (22x18) dimensional matrix of parameter estimates,

where the first row contains the overall means for each of the dependent variables, and

the remaining rows contain the deviations of the variable from the group mean.

3.6 SAS Results

A sample of the SAS code to perform the multivariate analyses is located in Appendix C.

The output of the analysis programs on the I, S, and C observations for Subjects 1 and 2

first displayed the univariate ANOVAs for each of the 18 joint angles (dependent

variables). This was followed by the results of the tests for homogeneity of variance and

covariance. Next, the PRINTE option in the MANOVA statement displayed the elements

of the error Sums of Squares and Cross Products (SSCP) matrix. The diagonal elements

of this matrix were the error sums of squares from the corresponding univariate analyses.

The PRINTED option also displayed the partial correlation matrix associated with the error

matrix. The Type III sums of squares were calculated by default which adjusted its

calculation to account for the unbalanced design. Otherwise the total sum of squares
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would not equal the hypothesis sum of squares and the error sum of squares. Finally, the

MANOVA using planned comparisons was implemented by using the CONTRAST

statement, under PROC GLM.

Four multivariate tests (Wilks' Lambda, Pillar's Criterion, Hotelling-Lawley

Trace and Roy's Greatest Root) were computed, and all were based on the characteristic

roots and vectors of E'H, which is the product of the inverse of the error SSCP matrix

and the hypothesis SSCP. These roots and vectors were also displayed along with the

tests. All four statistics were transformed to variates that had F distributions under the

null hypothesis.

The univariate results for the dependent variables showed mixed levels of

significance throughout the data sets. There was no evidence of differences between

means for some of the joints and favorable evidence for differences in others. It was

possible that some of the results may have been false positives or negatives. This was

cleared up by the multivariate analysis, which confirmed that there was, indeed, an

overall difference between the group mean vectors of the joint angle configurations of the

hands, and angles of the letters produced statically were significantly different from the

average of the angles of the letters produced within a string. In each case, the four tests

all gave the same results for the contrast, since it had only one degree of freedom. The

following tables summarize the results of the contrast hypothesis coding.



Table 3.2 MANOVA Results for Static versus Context Groups of I Observations



Table 3.3 MANOVA Results for Static versus Context Groups of S Observations



Table 3.4 MANOVA Results for Static versus Context Groups of C Observations
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The F statistics found using all four of the tests were identical and highly significant. It is

clear from the MANOVA that differences between the means of the static and context

groups are highly likely, as indicated by the F values in the table and their associated p

levels, which imply that the probabilities of obtaining such differences by chance are

extremely low (less than 0.01%). The p value for the F is the area under the F distribution

with n and d degrees of freedom from F to positive infinity. Hence, for Subject 2, C

observations, it is the probability of observing an F of 33.68 or greater from an F

distribution with (18, 149) degrees of freedom. Because the confidence level was set to

0.05, these low p-values suggested that the null hypothesis of no difference must be

rejected.

3.7 Matlab Results

The Statistics Toolbox in Matlab also allows for multivariate analysis. The function

MANOVA1 produces a number of output structures including the stats structure which

contains the field GMDIST. This is a measurement of the Mahalanobis distance between

each pair of group means. The following confusion matrices are visual representations of

the multivariate distances between means for I, S, and C of Subjects 1 and 2. The

colormaps are grayscale, where the maximum distance is represented by black and the

minimum distance is represented by white. Figures 3.14 and 3.16 shows the Mahalanobis

distances between each of the 21 groups for the I observations for each subject. This is

followed in Figures 3.15 and 3.17 by a deprogram of the same thing, where the heights

of the connecting lines illustrate the distance between connected groups. The context

groups are represented by the first 20 columns and rows and the static group is
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represented by the final column and row. Notice the lightly colored square blocks,

highlighted with the red circles. These represent the categories of Same Initial Letter

Word (Discard, Discern, Disciple, Discover, Discuss) and Same Initial Letter Non-Word

(Briscant, Briscense, Brisciard, Briscoze, Briscudge). The fact that the distances within

these groups are similar and minimal, by visual inspection, indicates the presence of

carryover coarticulation, since the only difference between the hand configurations of

each block is the "D" or "R" that occurred prior to the "I". Interestingly, the mean vectors

of the hand configurations for the I's produced after the D's in the Same Initial Letter

Word (SILW) category were further from the mean vectors of the hand configurations for

the I's produced after the R's in the Same Initial Letter Non-Word (SILN) category, as

indicated by the black blocks. The others are arbitrary in accordance with the fact that the

letters performed prior to the "I" were different. It is interesting to note that the mean

vectors between groups were not maximally distant from the mean vector of the static

group in the case of the I observations.

Figure 3.14 Confusion matrix of Mahalanobis distances between group means for
Subject 1, I observations.
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Figure 3.16 Confusion matrix of Mahalanobis distances between group means for
Subject 2, I observations.
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Figure 3.17 Dendrogram of Mahalanobis distances between group means for Subject 2,
I observations.
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For the S observations (as represented by the next four figures), which correspond to the

second letter in the trigram, the effect of the same letter prior to the "I" can still be seen

by the white blocks. At this point the "D" and the "R" were executed two letters before

the "S". This gives some indication as to the domain of coarticulation.

Figure 3.19 Dendrogram of Mahalanobis distances between group means for Subject 1,
S observations.



Figure 3.20 Confusion matrix of Mahalanobis distances between group means for

Subject 2, S observations.

Figure 3.21 Dendrogram of Mahalanobis distances between group means for Subject 2,

S observations.
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For the C observations (as represented by the last figures), which correspond to the third

letter in the trigram, the effect of the same letter prior to the "I" can still be seen by the

white blocks. At this point the "D" and the "R" were executed three letters before the

"C". Again, this may indicate the domain of coarticulation as these hand configurations

were all performed after the same letter, "S". The effect is less obvious in the data for

Subject 2, which may mean that the domain is signer dependent.
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The dark stripes along the 21 St dimensions illustrate the vast difference between the

means of the static and context groups as opposed to the differences among the context

groups.

Figure 3.25 Dendrogram of Mahalanobis distances between group means for Subject 2,
C observations.



CHAPTER 5

DISCUSSION

The study provided favorable evidence that the simple, cipher model of static handshapes

produced within the context of a movement sequence is not sufficient to account for the

production and perception of fingerspelling. Rather, the results suggest that it may be

insightful to use targets that are based on dynamic configurations in order for a

fingerspelling model to be more accurate. Such target modification can be attributed to

the presence of coarticulation in the signs, which are influenced by the kinematic

characteristics of surrounding signs. The coarticulation is likely made manifest as

assimilation and dissimilation in order to emphasize and reduce differences between

finger positions, thereby aiding in the letter recognition. Past research has revealed that

joints of the thumb and wrist tend to show assimilation whereas the proximal

interphalangeal joints of the middle and index fingers tend to show dissimilation (Jerde).

The findings are in keeping with Wilcox's prediction that "if learners [of

fingerspelling] are looking for static, canonical, invariant hand configurations, then it is

little wonder why understanding fingerspelling is so difficult. They are looking for

something that simply is not there." He made this assessment on the basis of a study he

conducted to determine the temporal variation in the production of targets versus

transitions. He found that the difference between the duration of targets and transitions in

dynamic fingerspelling was significant, F(1,291) = 473.294, p < .001.

This emphasizes the importance of transitions in their contribution to the overall

comprehension of fingerspelling. Modifications of this study might consider an
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examination of transitions in conjunction with targets. Even in a target-oriented scheme,

detection of targets may well occur during the approach or retreat phases, centered about

the time points of minimum summed joint velocity. Rather than examining the handshape

at these points alone, an improved scheme might account for this range of configurations

so that joint angles within a certain range could be detected for examination.

A number of factors may have influenced the automatic recognition of letters, and

in turn, the accuracy of the data on which the MANOVAs were performed. Namely, bias

and transposition errors may have decreased the accuracy of the data. There may have

some bias introduced into the data as a result of the fit of the glove, worn by the subjects

during data collection. The open-fingered design of the 18-sensor glove results in a looser

fit, particularly among female subjects with smaller physiological measurements of the

hand. This may have affected the accuracy of the joint angle information picked up by the

sensors.

Additionally, transposition errors may have prevented classification of letters in

the predicted order, which limited automatic post-hoc analyses. Transposition errors refer

to the switching of elements of a sequence and are considered one of the "cardinal

characteristics of serial order processes" (Averbeck et al.). Another aspect that limited the

automatic letter recognition was the sensitivity of the program to biphasic speed profiles,

where surrounding transitions about a target reflect the adjustment of finger positions

causing a dip in velocity. Such points were sometimes interpreted as local minima,

resulting in classifications at time points other than when targets were reached.



CHAPTER 4

CONCLUSION

The goal of this thesis was to conduct a scientific investigation into a specific aspect of

sign organization with the intention of gaining greater insight into ASL's phonological

structure. The main objective was to identify a significant amount of variability in

underlying sign structure, and in conclusion, the findings of the study offer some

evidence in favor of this theory. The difference between static and dynamic sign

configurations was found to be significant for each letter that was analyzed (F1108,163) =

8.84, p < .0001, F1208,171) = 11.72, p < .0001, Fc1(18,165) = 37.87, p < .0001, F12(18,171) =

25.94, p < .0001, Fc108,165) = 18.17, p < .0001, Fc208,149 = 33.68, p < .0001).

These results, in consonance with earlier studies, indicate that the simple, cipher

model of static handshapes produced within the context of a movement sequence is not

sufficient to account for the production and perception of fingerspelling, and that a model

of dynamic handshapes would be more appropriate. Although it cannot be assumed, on

the basis of two subjects, that findings can be applied to the entire population it is

reasonable to assert that the results provide favorable evidence in that direction with

further investigation in order.
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CHAPTER 6

FUTURE DIRECTION

The overall goal was to facilitate further progress toward fluent sign and fingerspelling

recognition as well as to gain a greater understanding of the manifestation of the

organizational levels of language production and visual-spatial functions. Data

concerning handshape variability in dynamic fingerspelling may be an invaluable

resource for testing theories on sign language production and perception in the future.

Although important, this study offers limited discussion in the neurological basis for the

organization of sign and further research is called for to investigate this directly

observable language as a window into the brain and cognition.
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APPENDIX A

MATLAB SOURCE CODE

This appendix contains the annotated Matlab source code for all the programs referenced

throughout this thesis. They were written to aid in the analysis of data collected.
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% A different three point method exists which allows us to evaluate the value of y' at the

endpoints.

for i = 1

for k = i:ncol

ang_vel(i, k) = (- 3*(x(i, k)) + 4*(x(i + 1, k)) - x(i + 2, k) ) / 2*(TIME(i + 1) - TIME(i));

end

end

% Notice that this formula uses -1 to replace 1 for the final endpoint

for i = nrow

for k = 1:ncol

ang_vel(i, k) = (- 3*(x(i, k)) + 4*(x(i - 1, k)) - x(i - 2, k) ) / -(TIME(i) - TIME - 1)));

end

end

% Take the absolute values of all velocities

for i = 1:nrow

for k = i:ncol

if (angvel(i, k) < 0)

abs_ang_vel(i, k) = -ang_vel(i, k);

else

abs_ang_vel(i, k) = angvel(i, k);

end
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% and isolate 18 CyberGlove joint angles

% Static hand postures consist of moving average of final 60 samples of each trial

inp = inp(:,1:18);

inp_filtered = filterData(inp);

% Prompt for file selection.

[filename, pathname] = uigetfile('*.xls', 'Select an EXCEL string for classification to be

trained on static postures');

string = xlsreadgpathname,filenameth]);

string = string(25:300,3:20);

string_filtered = filterData(string);

x string_filtered;

[nrow_s,ncol_s] = size(x);

% Set up for discriminant analysis

% Allocate each of the samples to the class to which it belongs

if (subject == 2)

for i = 1:ncls

end

elseif (subject == 4)



for i = 1:ncls

clsinfo(1,1+((i-1)*10):i*10) = i;

end

end

% Class size = Number of samples for each of the the 26 letter classes of the alphabet

if (subject == 2)

for i = 1:ncls

clsize(1,i) = 7;

end

elseif (subject == 4)

for i = 1:ncls

clsize(1,i) = 10;

end

end

% Classify entire string and display confusion matrix

[letter] = ldam(inp_filtered,ncls,clsinfo,clsize,x);

% Plot the summed angular joint velocity and the local minima

[lmval, indd] = plot_savANDminima(x);
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% Classify data at local minima into correct classes based on subject's



% static training data. (NOTE that string consists of 25:200 of original

% data)

[letter] = ldam(inp_filtered,ncls,c1sinfo,c1size,x(indd,1:ncol_s));
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A.8 LDAM.M

function [letter, min_mahal, mvect] = ldam(train,ncls,clsinfo,clsize,pred)

% Linear Discriminant Analysis-Mahalanobis

% Assigns ungrouped items to closest group center, using the Mahalanobis

% distance measure (i.e., minimum distance classifier).

% Author	 Ron Shaffer

% Modified	 Gillian Sherry

% letter	 letter classification

% mvect	 mean vectors for each class

% pcov	 pooled covariance matrix

% tscor	 training set mahalanobis distance scores

% pscor	 prediction set mahalanobis distance scores

% tmislist	 training set misclassified list

% tmislist 	 prediction set misclassified list

% dist sum	 summation of mahalanobis distances between classes

% tpct	 training percentage correct

% ppct	 prediction percentage correct

% train	 training set data

% ncls	 number of classes

% clsinfo	 classification of each member of the training set (vector)

% cisize 	 class sizes (vector)

% pred	 prediction set data
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Veriion 1.0 4/18/96 (original code)

Version 1.1 4/19/96 fixed bug in pooled covariance calculation

Version 1.2 5/28/96 fixed bug in calculation of prediction % correct

Version 1.3 6/17/96 Added calculation of the sum of between-class

Version 1.4 6/17/96 Return distance and pct correct

Version 1.5 6/26/96 fixed bug in calculation of mean vectors and

pooled coy caused by having data classes with

different #s of patterns.

Gillian Sherry fixed bug in computing training results by adding tmislist =

Note: Based on MINITAB function (DISCRIMINANT) and Fortran subroutine

LDA by F. Murtagh available from the Statlib FTP site.

[nrow_t,ncol_t] = size(train);

[nrowp,ncol_p] = size(pred);

dist_sum = 0;

% Split training data into respective classes

count = 1;

covsum = zeros(ncol_t,ncol_t);

for i = 1:ncls
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% Now compute training results

tmislist = 0;

count = 1;

missed = 1;

tcor(1:ncls) = zeros(size(1:ncls));

for i = 1:ncls

for j = 1:clsize(i)

for k = 1:ncls

tscor(count,k) = (mvect(k,:)-train(count,:))*c*(mvect(k,:)-train(count,:))';

end

tcor(1:ncls) = tscor(count,1:ncls);

[Uunk,winnerl] = min(tcor);

if (winner == clsinfo(count))

tcor(i) = tcor(i) + 1;

else

tmislist(missed) = j;

missed = missed + 1;

end

count = count + 1;

end

end

for k = 1:ncls

temp = (tcor(k)/clsize(k))* 100;
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A.10 MULNORTEST.M

function [n, p, Al, t, P] = Mulnortest(X,alpha)

% Multivariate Normality Statistical Test.

% Modified by: Gillian Sherry, April 2004

% Inputs:

%	 X - multivariate data matrix.

%	 alpha - significance level (default = 0.05).

% Output:

n - sample-size.

p - variables.

bib - estimated sample slope.

t - observed Student's t statistic used to test any deviation from

a expected slope of 1.0 (bib = 1.0), which means a deviation of the

multivariate normality.

P - probability that null Ho: is true.

Figure - plot of the ordered Mahalanobis distances along with the

corresponding chi-square values, as well as the expected

straight line.

% On the literature there are available several tests of the multivariate normality.

% Among them is the graphic approach based on a chi-square quantile-quantile plot of

% the observations' squared Mahalanobis distances. Besides the graphic q-q approaching,

% in this file we proposes an alternative statistical test to this.
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% Created by A. Trujillo-Ortiz and R. Hernandez-Walls

Facultad de Ciencias Marinas

Universidad Autonoma de Baja California

Apdo. Postal 453

Ensenada, Baja California

Mexico.

atrujo@uabc.mx

And the special collaboration of the post-graduate students of the 2002:2

Multivariate Statistics Course: Karel Castro-Morales, Alejandro Espinoza-

Tenorio,

Andrea Guia-Ramirez, Raquel Muniz-Salazar, Jose Luis Sanchez-Osorio and

Roberto Carmona-Pina.

% November 2002.

% $Updated: June 10, 2003$

% References:

% Johnson, R. A. and Wichern, D. W. (1992), Applied Multivariate Statistical Analysis.

3rd. ed. New-Jersey:Prentice Hall. pp. 158-160.

% Stevens, J. (1992), Applied Multivariate Statistics for Social Sciences. 2nd. ed.

New-Jersey:Lawrance Erlbaum Associates Publishers. pp. 247-248.
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CMRes = SCRes/v2; %Residuals mean square (random variance).

varb = CMRes*inv(X'*X);

EEb = diag(sqrt(varb));

EEbl = EEb(2,1); %Slope standard error.

t = (bl-1)/EEb1; %Observed Student's t statistic assuming a slope expected value of 1.0.

P = 1-tcdf(t,v2); %Probability that null Ho: is true, P = tcdf(X,V) computes Student's t

cdf at each of the values in X using the corresponding degrees of freedom in V.

fprintf(' 	 \n');

disp(' Sample-size Variables Slope	 t	 P')

fprintf(' 	 \n');

fprintf( 1 %8.i %13.i %14.4f%10.4f%8.4nni,n,p,b1,t,P);

fprintf(' 	 \n');

fprintf('With a given significance level of: %.2f\n', alpha);

if P >= alpha;

fprintf('Assumption of multivariate normality is tenable.\n\n');

else

fprintf('Assumption of multivariate normality is not tenable.\n\n');

end;

X = X(:,2);

plot(X,Y,'*',Y,Y,'--');
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APPENDIX B

SEGMENTATION POINTS

This appendix contains time points at which the strings were segmented for the analysis.

These corresponded to the local minima of the letters on either side of the ISC trigram.
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OMNISCIENT9
OMNISCIENT10

Misclassified... as ...

99 	 170
84 	 144

#times/10

15 8 10 15 19 15 10 5 8 20
15 15 15 13 14 10 3 19 3 10

112

3 3
5 14 20

14 	 8, 21 — 15, 8, 1 5,1 — 3, 1, 1
9 	 1O— 1O, 15 8 — 4, 5
3 	 15 1

27 PERISCOPE — 16 5 18 9 19 3 15 16 5
PERISCOPE1 48 	 125 16 19 18 9 19 3 15 16 5 5 5 5
PERISCOPE2 72 	 134 16 19 18 10 19 3 15 16 5 5 55
PERISCOPE3 47 	 1O9 2 19 21 10 19 3 15 16 5 3 3
PERISCOPE4 43 	 1O2 2 15 18 10 19 3 15 11 5 5 5 5
PERISCOPES 5O 	 113 16 19 21 10 19 3 15 16 5 5 15 15
PERISCOPE6 58 	 119 2 19 21 10 19 3 15 11 5 15 15 15
PERISCOPE? 47 	 11O 11 19 18 10 19 3 15 11 5 3 3 15
PERISCOPE8 69 	 124 15 2 19 18 10 19 3 15 11 5 15 15
PERISCOPE9 47 	 130 16 19 21 20 19 3 15 16 5 5 3 3
PERIS COPE10 47 	 1O5 11 19 21 10 19 315 11 5 3 15 3

Misclassified. . . as . . . 	 #times/1O
5 	 19, 15 	 9,
9 	 1O, 2O 	 8,
16 	 2, 11 -11 	 4,
18	 21 	 5

38 VISCERAL — 22 9 19 3 5

1
1
2 -5

18 1 	 12
VIS CERAL1 26 87 22 9 19 3 19 18 20 12 12 12 12 12
VISCERAL2 85 162 22 1O 3 1O 22 10 19 3 19 18 1 12 12
VISCERAL3 13 85 22 10 19 3 19 18 1 12 12 12 12 12
VISCERAL4 37 93 22 22 9 19 3 19 18 1 4 12 12 7
VISCERAL5 17 69 22 10 19 3 19 18 19 12 26 7 7
VISCERAL6 14 98 22 10 19 3 19 18 2O 12 3 15 3 15
VISCERAL? 25 95 22 10 19 3 19 18 19 12 12 15 7 7
VISCERAL8 16 80 22 10 19 3 19 22 19 12 12 12 7
VISCERAL9 22 98 22 9 19 3 19 18 19 12 3 3 3 2

VISCERAL1O 32 89 22 9 19 19 3 19 18 1 12 12 7

Misclassified...as... #times/1O
5
1
9
18

15
19,
1O
22

2O
1O
4, 2
6
1

ISC Same inital letter non-words
1 BRISCANT — 2 18 9 19 3 1 14 2O
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11A



115



116



,11^ PH



11Q



119



120



121



122



123



124
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126

which performs a MANOVA on the Group and Error as well as on the Groups
defined by the CONTRAST statements. */
PROC GLM DATA=work.C_observationsl ORDER=data;
CLASS Group;
MODEL j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 j18 =
Group;
CONTRAST 'Static vs Context' Group 1 1 1 111111111
1 1 1 1 1 1 1  1 20;

MANOVA H=Group / PRINTE PRINTH SUMMARY;
MEANS Group / HOVTEST=levene;
RUN;
ODS HTML Close;
quit;
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