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ABSTRACT

EVALUATION OF EFFECT OF EXTRUSION PROCESS VARIABLES ON
MECHANICAL PROPERTIES OF EXTRUDED COLLAGEN TUBES AND

EFFECT OF POST EXTRUSION TREATMENTS

by
Mayank Patel

This study evaluated the effect of extrusion process variable on mechanical properties of

extruded collagen tubes made using a specialized extruder, made by ZOKO Corporation

of Czechoslovakia. Three extrusion variables were considered; extrusion speed, linear

draw rate and rotation speed. Using Taguchi L4 matrix, a design of experiment (DOE)

was run. Two mechanical properties, wall thickness and estimated elastic modulus, were

considered as response of this DOE. Data was analyzed statically to evaluate the effect of

extrusion variables on both these properties. Result of this study showed that linear draw

rate of the extrusion process has the highest influence on wall thickness and rotation

speed has highest influence on elastic modulus.

Additional studies evaluated effects of post-extrusion treatment on properties of

the tubes. Collagen is a biodegradable material so it degrades very fast in the body. A

proposed use of these tubes is as vascular grafts. To serve this purpose the tubes have to

be treated to degrade slowly in the body so that when it degrades newly formed vessel

replace it. Studies were performed to compare two different cross-linking methods,

coagulation methods and cross-linking time for a glutaraldehyde crosslinking process.

Two crosslinking methods, considered in this study, are crosslinking by glutaraldehyde

and EDC/NHS. Result of these studies showed that, crosslinking with glutaraldehyde

gives higher degree of crosslinking than EDC/NHS; and the coagulation with acetone and



ammonium hydroxide is also more effective than coagulation with just ammonium

hydroxide solution. Crosslinking time study for glutaraldehyde showed that increase in

degree of crosslinking after 15 minutes is very slow.
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CHAPTER 1

INTRODUCTION

The word collagen is derived from the Greek word meaning to produce glue. In the past

the collagen of bones and tendons was used in industry to produce glue. Also in

organisms collagen is a kind of glue. The English adaptation "collagen" was first used

around 1865. The Oxford Dictionary (1893) defines collagen as: "that constituent of

connective tissue which yields gelatin on boiling." Much of the early work was indeed

done on heat-denatured collagen. On the other hand, the presence of fibers in connective

tissues had been known since the 19 th century from the work of early histologists such as

Henle and Ranvier. Only in the 1920s did the pioneering work of Nageotte reveal that

acid-solubilized collagen could precipitate into a material, later shown by x-ray

diffraction and electron microscopy to be collagen fibers. [1]

1.1 Collagen Overview

The protein collagen is the main substance of connective tissue and is present in all

multicellular organisms. In mammals collagen is the most abundant protein making up a

quarter of the total weight of proteins. Collagen gives many different organs and tissues

substantial, stout and elastic properties. It has been found in many different tissues and

organs like bones, tendons, (hyaline) cartilage, blood vessels, teeth, cornea, inter

vertebral disks, vitreous bodies, placenta, (fetal) skin, etc. Collagen is a protein that

enwraps the organs and parts of it to hold specialized cells together in discrete units. It

prevents organs/tissues to tear or loose their functional shape when they are exposed to

sudden and wild movements. Besides the structural role in mature tissues, collagen plays

1



2

a regulating role in developing tissues as well. Collagen functions as a kind of trigger that

influences the proliferation and differentiation of unspecialized cells. It has a key

function in the regulation of cell type-specific gene expression and developmental control

and diseases like cancer [2].

Besides glue, many new applications have been developed in industry for these

proteins. The most popular uses are found in: cosmetics, nutrition, and medical

applications for example as surgery stitch cotton [3].

However, collagens attract attention not only for commercial motives. Also from

a clinical point of view there is much interest in collagens, because many different

diseases are related to disorder in collagen. A better understanding of the spatial structure

will give more insight in collagen related disorder diseases. These can be congenital, for

example like the Ehler-Danlos syndromes, or the consequence of a deficiency like

scurvy.

The collagen proteins belong to the larger family of fibrous proteins, like the

fibrins from blood. They form mostly insoluble super strong fibers that have a high

tensile strength. A fiber of only 1 mm thick can easily resist a force of 10 kg.

Collagen occurs not only in the shape of fibers. Collagen has been observed as

ropes, straps, woven sheets, filtration membranes, supporting skeletal frameworks,

bearing materials lubricated with proteoglycans and in all other specialized tissues that

must be strong and yet have unusual properties, for example as the light-transmitting

cornea and fatigue-resistant heart valves [4]. All these examples concern genetically

distinct types of collagen that have evolved into a particular structural function outside

the cell. At least 20 types of collagen have been described and characterized so far. They
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are distinguished on the basis of their chemical differences. These 20 types differ in the

way they associate with one another and the way they interact with other molecules.

The most important types are the fibrillar collagen types I, II, III, IV and V. Type

I is with 90% the most abundant collagen type. It forms the largest and strongest fibrillar

component that provides tensile strength to bones, skin, tendons and ligaments. Type II

collagen is unique to articular cartillage and fibrocartilage, the vitreous body of the eye

and certain other organs. Type III collagen is similar in structure to type I but less

abundant and is often encountered in areas of rapid new collagen synthesis. Type IV is a

major component of all basement membranes and type V is found in some veins and

arteries.

Collagens are known to form highly ordered aggregates. The periodicity in these

macromolecular structures makes them suitable for investigation by means of X-ray

diffraction.

This chapter will describe the spatial organization of collagen structures in

particular of the collagen type I. Collagen type I is the most regular one and most

structure research has been done for this collagen type.

First, a detailed description will be given of the collagen monomers and the

different types. Next it will be shown how they are synthesized (febrile formation). After

that the packing of collagen into collagen fibers will be discussed. The mode of packing

will be divided in an axial and an equatorial direction.
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1.2 Structure of Collagen

Collagen fibers are analogue to fibrin fibers. Both protein fibers are made from repeating

building units. In both cases the building units become active after specific proteolytic

cleavages and the active monomers that arise are both self-assembling. Active collagen

monomers exist of three different chains. These are called the a-chains.

Figure 1.1a Model of the a-chain structure of collagen.
The collagen model was taken from the Brookhaven PDB. The model is of an artificial collagen with the
sequence (Gly-Pro-Pro) 12 [5].

Each a- chain consists of about 1000 amino acid residues. Three of these chains

together form a stiff helical cable of 3000 Ǻ *15Ǻ , which is one of the largest known

proteins.

Figure 1.1b Model of the triple helix structure of collagen.
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First, the amino acid composition of the collagen a-chain will be discussed.

The percentage of prolines in the a-chains is 20%. This is such an extremely high

percentage that it easily can be used as a measure for the collagen contents in tissues.

Almost a third of the 1000 amino acid residues are glycines (see Appendix)[6]. This is

also an enormous high percentage. For example, in hemoglobin this percentage is only

5%. If we take a closer look at the amino acid sequence we will see that every third

position is occupied by glycine with an extreme regularity. In many cases glycines are

followed by proline or even by two prolines. Roughly, the overall amino acid sequence of

the collagen a- chain can be described with (Gly-Pro-Y)n.

The polypeptide-chains form left-handed coils. Three of this helical a-chains

assemble to form the collagen monomer. They are twisted around each other, forming a

right-handed, triple-helical structure. The different a-chains are bonded to each other in

the following way:

a. By H-bridges. NH... from the glycines and CO... from residues of the other chain.

These H...0 bonds are perpendicular on the axis of the collagen chains.

b. By H-bridges of hydroxyl-groups of hydroxy prolines.

c. By H-bridges with water molecules [2].

All these bonds stabilize the triple-helical structure of collagen. However, the

repulsion of the prolines (pyrrolidon rings, see Figure 1.1a) already gives the helical

structure and turns the H-side chain of the glycins to the inside of the helix. This happens

without the help of H- bridges. Inside the triple helix there would be no more space than

for the small H- side chains of glycines. All the bulky side chains have to point to the
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outside of the triple helix of the collagen. In summary: glycines, prolines and

hydroxyprolines are mainly responsible for the triple helix structure. The remaining

amino acid residues are expected to be responsible for higher order structural regularities.

Two special amino acids occur in collagen almost exclusively:

a. 4- and 3-hydroxyproline,

b. 5-hydroxylysine.

The amino acid residues hydroxyproline and hydroxylysine exhibit special

functions for the collagen structure. The 4- and 3-hydroxyprolines are important for

interchain linking with H-bridges to stabilize the helical structure. The stability of the

collagen helix depends strongly on the percentage of prolines and these hydroxyprolines

(Table 1.1).

When the temperature rises at Tmelt, the viscosity drops and altering optical

rotation properties can be observed. This is caused by the thermal movements, which

become larger than the cooperative interaction that stabilizes the triple-helix of collagen.

In this way T., is a measure for the stability of the helix structure of a particular collagen.

Table 1.1 Stability of Collagen Helix

Sample Pro+Hyp T. Body temperature

Cod skin * 155/1000 16°C 10-14°C

Frog skin * 174/1000 ,25°C ?

Shark skin * 191/1000 29°C 24-28°C

Calf skin * 232/1000 39°C 37°C

(Gly-Pro-Pro)n ** 333/1000 24°C -

(Gly-Pro-Hyp)n ** 333/1000 58°C - 
* Data taken from [7].

** Data taken from [8].
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From Table 1.1 it might be concluded that the percentage of prolines and

especially the contents of hydroxyprolines positively affects the stability.

The 5-hydroxylysines are covalently bonded to oligosaccharides, mostly

disaccharides of glucose and galactose. In nascent collagen, before it become helical, the

sugars are bonded to the hydroxyl group of hydroxylysines. This occurs with help of the

enzymes galactosyl transferase and glucosyl transferase. The number of sugar residues

and the kind of sugar residues depends on the tissue, but in general fibrils contain

relatively small amounts of sugars while sheets are relatively rich in it. For example: the

fibrillar tendon has only six sugar residues per collagen monomer, while the lenscapsule

has 110 sugar residues. Hydroxylysines are also enormous important for extensive

crosslinking of collagen molecules after secretion of the polypeptides in the extracellular

space.

In a normal a-helix distance per amino acid residue is 1.5A. After self-

assemblance of the loose monomers, cross-links generate the tight, covalently bond

complex.

The amino acid sequence is not totally unique to collagen. If the collagen

sequence is compared with other proteins, homology is found for:

a. Clq subcomponent (chain A, B and C) from the complement system.

b. Acetylcholinesterase.

c. Fibronectin.

d. Osteonectin.
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These proteins contain similar stretches of (Gly-X-Y)n [9]. It is expected that

these different proteins somehow interact with collagen to anchor (a and b) or to form

tight complexes (c and d). In this way specific cells can use collagen as a kind of anchor

field with help of specific antibodies.

In all multicellular organisms many different kinds of tissue can be identified.

Most of these tissues need distinct collagen structures, all with their own specific

properties. For this purpose organisms have genetically distinct collagen a-chains. These

a-chains have been well defined as distinct gene products in higher animals and they are

encoded by many distinct collagen genes [10].

Although from combinatorial point of view more than a thousand different types

of triple helices can be assembled from the various combinations of the a-chains, only a

few types of collagen have been described and characterized so far.

To obtain the diversity of collagens needed in all different tissues, the distinct

collagen types are modified by some external factors;

a. Glycosylation in the endoplasmatic reticulum,

b. Post-translational modifications (idem).

These are mechanisms of introducing a greater degree of variability. Owing to

these modifications, many tissue-specific collagens can be built from one and the same

collagen type [11] [12]. The glycosylation takes place intracellular and the post-

translational modifications take place extracellular. Both modifications lead to the fine-

tuning of the collagen structures.
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Adaptability to local environment: It has been shown [13] that specific proteoglycans

influence significantly the diameter of collagen fibers. The presence of small

proteoglycans results in collagen fibrils that was significantly thinner in width.

1.3 Collagen Fibril Formation

Collagen is most abundant in animal tissues as very long fibrils with a characteristic axial

periodic structure. The fibrils provide the major biomechanical scaffold for cell

attachment and anchorage of macromolecules, allowing the shape and form of tissues to

be defined and maintained. How are the fibrils formed from their monomeric precursors?

Collagen fibril formation is basically a self-assembly process (i.e. one which is to a large

extent determined by the intrinsic properties of the collagen molecules themselves) but it

is also sensitive to cell-mediated regulation, particularly in young or healing tissues.

Recent attention has been focused on 'early fibrils' or 'fibril segments' of •--#10 JAM in

length which appear to be intermediates in the formation of mature fibrils that can grow

to be hundreds of micrometers in length.

The assembly of collagen molecules into fibrils is an entropy-driven process,

similar to that occurring in other protein self-assembly systems, such as microtubules,

actin filaments and flagella (for a review, see [6]). These processes are driven by the loss

of solvent molecules from the surface of protein molecules and result in assemblies with

a circular cross-section, which minimizes the surface area/volume ratio of the final

assembly. Although the broad principles of collagen fibril self-assembly are generally

accepted, less is known about the molecular mechanisms of the assembly process.
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Collagen biosynthesis and assembly follows the normal pathway for a secreted

protein. The collagen chains are synthesized as longer precursors called procollagens; the

growing peptide chains are co-translationally transported into the lumen of the rough

endoplasmic reticulum (ER). In the ER, the procollagen chain undergoes a series of

processing reactions. First, as with other secreted proteins, glycosylation of procollagen

occurs in the rough ER and Golgi complex. Galactose and glucose residues are added to

hydroxylysine residues, and long oligosaccharides are added to certain asparagine

residues in the C-terminal propeptide, a segment at the C-terminus of a procollagen

molecule that is absent from mature collagen. (The N-terminal end also has a propeptide.)

In addition, specific proline and lysine residues in the middle of the chains are

hydroxylated by membrane-bound hydroxylases. Lastly, intrachain disulfide bonds

between the N- and C-terminal propeptide sequences align the three chains before the

triple helix forms in the ER. The central portions of the chains zipper from C- to N-

terminus to form the triple helix.
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Figure 1.2 Major events in the biosynthesis of fibrous collagens.
Modifications of the procollagen polypeptide in the endoplasmic reticulum include hydroxylation,
glycosylation, and disulfide-bond formation. Interchain disulfide bonds between the C-terminal propeptides
of three procollagens align the chains in register and initiate formation of the triple helix. The process
continues, zipperlike, toward the N-terminus. All modifications occur in a precise sequence in the rough
ER, Golgi complex, and the extracellular space, and allow lateral alignment and formation of the covalent
cross-linkers that enable helices to pack into 50-nm-diameter fibrils. [After M. E. Nimni, 1993, in M. Zern
and L. Reid, eds., Extracellular Matrix, Marcel Dekker, pp. 121 —148.]

After processing and assembly of type I procollagen is completed, it is secreted

into the extracellular space. During or following exocytosis, extracellular enzymes, the

procollagen peptidases, remove the N-terminal and C-terminal propeptides. The resulting

protein, often called tropocollagen (or simply collagen), consists almost entirely of a

triple-stranded helix. Excision of both propeptides allows the collagen molecules to

polymerize into normal fibrils in the extracellular space. The potentially catastrophic

assembly of fibrils within the cell does not occur both because the propeptides inhibit
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fibril formation and because lysyl oxidase, which catalyzes formation of reactive

aldehydes, is an extracellular enzyme. As noted above, these aldehydes spontaneously

form specific covalent cross-links between two triple-helical molecules, which stabilizes

the staggered array characteristic of collagen molecules and contributes to fibril strength

[18].

1.4 Types of Collagen

There are at least 20 types of collagen, but 80 — 90 percent of the collagen in the body

consists of types I, II, and III. These collagen molecules pack together to form long thin

fibrils of similar structure. Type IV, in contrast, forms a two-dimensional reticulum;

several other types associate with fibril-type collagens, linking them to each other or to

other matrix components. At one time it was thought that all collagens were secreted by

fibroblasts in connective tissue, but we now know that numerous epithelial cells make

certain types of collagens. The various collagens and the structures they form all serve

the same purpose, to help tissues withstand stretching [1].

The existence of a family of collagenous proteins in the connective tissues of

vertebrates was first identified when cartilage collagen (type II) was found to be

genetically distinct from the type I collagen of skin, bone, and tendon. A third collagen

(designated type III) was detected in skin. More than 30 different collagenous

polypeptides have been found in the extracellular matrix in the form of at least 20

different collagen types. The collagen numbering system (with Roman numerals for each

collagen type and Arabic numerals for individual a-chains) to some extent reflects the
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relative abundance of the various collagens, in that generally the more abundant

collagens were identified earliest [17].

In addition to these collagens, there exist a number of secreted proteins that

contain collagenous amino acid sequences and short triple-helical conformations, such as

the complement component, C 1 q, acetylcholine esterase, lung surfactant protein,

conglutinin, serum mannose-binding protein, scavenger receptors (AR-I and AR-II), and

MARCO. The collagenous sequences in these proteins contribute to their distinctive

structures and functions. Since they have no known structural role in the extracellular

matrix, however, they are not classified as collagens.

From the data derived from amino acid and gene sequencing, collagen molecules

can be grouped into the groups shown in Table 1.2. Fibrillar collagen molecules are

characterized by an uninterrupted helical domain of approximately 300 nm. They are

synthesized as procollagens comprised of three pro a chains that undergo processing to a

chains and subsequently assemble into collagen fibrils and fibers [15]. Fibrillar collagen

molecules (i.e. types I, II, III, V, and XI) exhibit several common structural features that

reflect the highly conserved exon-intron structure of the genes. Polygonal meshwork-

forming collagens (type IV collagen polypeptides) have large triple- helical domains (>

160 kDa) with a length of >350 nm. Their primary structures are characterized by

imperfections in the Gly-X-Y- triplet sequence. These interruptions are a particular

feature of type IV collagen, in which the helical domain contains more than 20 short

stretches of non-helix-forming amino acids [16].
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Short triple-helical collagen molecules (types VIII and X) contain interruptions in

the helical domains (as in types IX, XII, XIV, and XIX). Collagen types VIII and X show

remarkable homology and might, have similar roles in tissues. Type XII and type XIV

collagens have similarities to type IX collagen in the helical domain structures. A portion

of these triple-helical domains have the potential to interact with fibrillar collagen. Thus,

these three types of collagen, plus type XVI and XIX, comprise a group of fibril-

associated collagens with interrupted triple helices (FACIT collagens). An alternative

approach for classifying the collagens depends on supramolecular structures that might

be related to their physiological function. Individual collagen types may themselves

represent a family or group of related collagenous structures in the extracellular matrix.

Type IV collagen is a family of six homologous a chains (al, a2, a3, a4, a5, and a6),

and type V/XI is a family of six a chains: α1(V), a2(V), a3(V), al (XI), α2(XI) and

α3(XI) [17].
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Table 1.2 Classification of Collagens

Known	 or	 putative Length of
Known chain	 compositions the Major distribution Aggregate	 structure

Type a-chains of	 molecules	 at
present

domain of purified protein*

Fibrillar Collagen
I a 1(I)

a2(I)
[α1(I)]2α2(I) 300 rim Almost	 all	 connective

tissues	 except	 hyaline
cartilage

Fibril

II a 1 (II) [α1(II)]3 300 nm Cartilage Fibril
III α1(III) [α1(III)]3 300 nm Almost similar to that of

type I
Fibril

V α1(V) a2(V)
a3(V)

[a 1 (V)] 2a2(V)
a 1 (V)a2(V)a3(V)

300 nm Almost	 all	 connective
tissues

Fibril

XI α1(XI)α2(XI)
α3(XI)

α1(XI)α2(XI)α3(XI) 300 nm Cartilage Fibril

V/XI α1(XI)a2(V) [α1(XI)]2α2(V) 300 nm Fibril
FACIT Collagen

(Fibril-associated collagen with interrupted triple-helices)
IX α1(IX)α2(IX)

a3 (IX)
a 1 (IX)a2(IX)a3(IX) Surface

fibril
of the cartilage Periodically

cartilage
fibrils

on	 the
collagen

XII a 1 (XII) [α1(XII)] 3 ? Surface
fibril

of the collagen Periodically
cartilage
fibrils?

on	 the
collagen

XIV a 1 (XIV) [a 1 (XIV)] 3 ? Surface
fibril

of the collagen Periodically
cartilage
fibrils?

on	 the
collagen

XVI a 1 (XVI) [a 1 (XVI)] 3 ?
XIX a 1 (XIX) [a 1 (XIX)] 3

Short chain collagen
VIII α1(VIII)

α2(VIII)
[a 1 (VIII)] 3

[α2(VIII)] 3

Basement	 membrane	 of
endothelial cell

Hexagonal array

X a 1(X) [a 1(X)] 3 ? 150 nm Hypertrophic cartilage Hexagonal array
Multiplexins

(Protein with multiple triple-helix domains and interruptions)
XV a 1 (XV) [α1(XV)]3? 150 nm
XVIII α1(XVIII) [a 1 (XVIII)] 3 ?

MACIT
(Membrane associated collagen with interrupted triple-helices)

XIII α1(XIII) [a 1(XIII)]3

XVII a 1 (XVII)	 __foci (XVII)13?
Others

VI a 1 (VI)a2(VI)
a3(VI)

α1(VI)α2(VI)α3(VI)
[α1(VI)]2α2(VI)?

100 nm Almost	 all	 connective
tissues

Beaded microfibril

VII a 1 (VII) [a 1 (VII)] 3 ? 420 nm Anchoring fibril Short dimer
IV α1(IV)α2(IV)

a3(IV)a4(IV)

α5(IV)α6(IV)

[α1(IV)]2α2(IV)
α3(IV)α4(IV)α5(IV)
[α5 (IV)] 2α6(IV)

350 nm Basement membrane
sinusoid

Polygonal meshwork



CHAPTER 2

APPLICATION OF COLLAGEN TUBES

2.1 Collagen as Biomaterial

An important aspect of biomedical applications is to make the intended implant or device

as biocompatible as possible. Biocompatibility is defined as the "ability of a material to

perform with an appropriate host response in a specific application" [19] . In order for an

implant to be as biocompatible as possible, certain materials are often chosen because

they do not illicit a harmful response from the body. The definition applies for the

lifetime of the implant, therefore if an implant is to be placed permanently into the body,

it must never illicit a harmful response. Likewise, a degradable implant must not illicit a

harmful response during its time of operation or after it has degraded into byproducts.

Many materials are carcinogenic and others often cause clotting or encapsulation.

Natural polymers can be more effective than synthetic ones because they are very

similar and often identical to the items that are being replaced or augmented. The body

therefore may not deem them foreign and an undesirable host response may be avoided.

This can avoid the most common problems of toxicity or the inflammatory reaction. A

second advantage of a natural material is that it can perform the same tasks on the

molecular level as the original as well as the intended function. There is always a chance

or immunogenecity of any natural polymer, however, which increases the chance of

antibiotic attack on the implant. The immunological response of the body is directed at

target sites on the implant proteins. The body can produce antibodies or lymphocytes,

which attach to the surface of the implant leading to its degradation. In order to counter

16
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this, these antigenic determinant sites on the protein can be modified chemically. Table

2.1 shows some natural polymers and their general properties [19].

Table 2.1 Natural Polymer Examples and Functions in Host Animal

Polymer Incidence Physiological Function _
Silk Synthesized by arthropods Protective cocoon
Keratin Hair Thermal insulation
Collagen Connective tissue Mechanical support
Gelatin Partly amorphous collagen (Industrial Product)
Fibrinogen Blood Blood clotting
Elastin Neck ligament Mechanical support
Actin Muscle Contraction, Motility
Myosin Muscle Contraction, Motility

Source: Rattner, Buddy et al. Biomaterials Science, Academic Press, N.Y. , 84-92, 287-288, 1996.

Collagen is a structural protein which properties make it suitable for various

biomedical applications. Collagen has good mechanical properties, a good

biocompatibility (depending on e.g. the type of crosslinking, will be discussed later in

this chapter), and as a matrix protein it can be used as a scaffold for cell seeding or for

regeneration of host tissue [20]. Table 2.2 shows some of the advantages of using

collagen as a biomaterial.

Table 2.2 Properties of Collagen as a Favorable Biomaterial

Type of Property Property
Physical- Mechanical High Tensile Strength

Low Extensibility
Orientation of Fibers

Physical-Chemical Controllable	 Cross-linking (Affects	 solubility,	 Swelling,
Resorption)
Ion Exchanger Function
Semipermeability of Membrane

Biological Low Antigenicity
Effect on wound healing/blood clotting

Source: Whyne,C., M.S. Thesis: Evaluation of Crosslinking Methods and Characterization of Surface Features of a Collagen-Based
Dermal Equivalent. Biomed. Eng., Rutgers, The State University, N.J., 1-16, 1984.
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An added advantage that makes collagen an excellent choice for an implantable

biomaterial is the relative similarity among species. Due to collagen's relative standard

Gly-X-Y arrangement, species differences among mammals are small [21]. The triple

helix configuration does not allow for major substitutes of amino acids between the

species as other proteins do, making collagen a relatively constant structure [19]. As a

result, the collagen from other species, mainly bovine type I collagen, can be harvested

for use in biomedical application. The relatively high amounts of bovine collagen

available make it an excellent source of collagen for medical applications after chemical

treatment.

2.1.1 Collagen Antigenicity

The collagens are generally considered weak immunogens in comparison to most

proteins, which may be due to a lake of tyrosine residues [22]. According to some

research, tyrosine had a 1.2% contribution per residue to the antigenicity of a protein.

This data suggests that most of the antigenic determinants are of the steric conformation

in which tyrosine is frequently involved as immunodominant amino acids [23]. The use

of bovine collagen in humans may lead to an antigenic response, however, due to the

minor differences in the collagen amino acid sequences and the nonhelical telopeptide

region [19]. When purified, collagen is only weakly antigenic [24]. Antigenicity of

collagen can be further reduced by (enzymatic) removal of the non-helical telopeptide

regions of the molecule [25] or by crosslinking [26]. As a result of these treatment

antigenicity is reduced and will allow xenografts to be more accepted in humans without

serous immunological response.
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2.1.2. Collagen Thrombogenicity

Collagen is highly thrombogenic, as is demonstrated from its use as a hemostatic powder

or sponge [20]. Collagen induces platelet adhesion and aggregation as well as activation

of the intrinsic coagulation cascade. Fibrillar collagen preparations are used as

aggregation agent in diagnostic platelet function tests. Where contact of blood with an

injured vessel wall result in extrinsic blood coagulation, contact of blood with purified

collagen induces activation of the intrinsic pathway, initiated by adsorption of (activated)

factor XII [27]. It has been postulated that crosslinking of collagen may decrease its

thromobogenicity [28]. Crosslinking can be done by using different crosslinking agents.

Two procedures of crosslinking will be discussed later in this chapter.

2.2 Use of Collagen in Small Diameter Vascular Graft

As the incidence and frequency of vascular procedures increases from year to year,

researchers are increasingly looking to modified natural materials as a compromise

between autografts — replacement vessel taken from the patient's own arteries and veins —

and purely synthetic grafts utilize material like ePTFE (extended polytetrafluoroethylene)

and Dacron (poly[ethylene terephthalate]). More then 450,000 vascular grafts were used

in coronary bypass surgeries in 1999. Other uses for vascular grafts include treatments for

blood vessel aneurysms and fistulas, as well as replacement for diseased arteries in other

locations in the body. When possible, the best choice for a replacement vessel is an

autograft, where sections of the patient's healthy blood vessels (usually veins) are

harvested and implanted in the required location. Many patients, however, especially

those with pre-existing vascular disease or patients that have already had autograft
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procedures do not have blood vessels that are healthy enough to adequately serve as

replacements. There are several other drawbacks to autografts. One problem is the

relatively poor long-term patency. Failure of the autograft is usually due to some form of

occlusion that results from lumenal narrowing. Damage of the vessel during removal and

reimplementation may cause the recruitment of factors or cells that adhere to the

autograft wall and decrease the diameter or the lumen. The restricted flow then increases

the thromobogenicity, making full occlusion ever more likely. Other problems are

preparation and preservation of the autograft, procedures that can result in vessel damage

or diminished in vivo performance. Finally, due to increased and/or different mechanical

forces, endothelial cells can shrink, diminishing barrier performance and degrade, also

resulting in increased thrombogenicity [40].

Synthetic vascular grafts are usually made of ePTFE, Dacron, or polyester. These

materials work well for large diameter vascular grafts (>5-6 mm) but have low long-term

patency for small diameter grafts (4 mm). These synthetic graft materials often cause a

severe inflammatory reaction. In large diameter synthetic vascular grafts, the

accumulation of fibrous and cellular material is not great enough to cause the graft to

shrink in diameter significantly. On the other hand, in small diameter synthetic vascular

grafts the accumulation of material is often significant enough to cause the blood vessel

to become occluded. In order to reduce thrombus formation anticoagulation drugs are

necessary. The use of these drugs often results in undesirable systemic side effects and

can be very problematic. Therefore synthetic materials are poor choices for materials for

small diameter vascular grafts [41].



21

By incorporating biological materials into a synthetic vascular graft, the host

response can be modulated to help insure that the graft will not fail. To reduce the

chance of thrombus formation anti-thrombogenic substances can be incorporated into the

synthetic graft material system [42]. Incorporating biodegradable materials into the graft

material system could further modulate the host response. However, these types of

techniques have been able to significantly increase long-term patency.

In these cases, the most common form of treatment has been the use of synthetic

polymeric materials, like Dacron, to form either permanent or resorbable replacements

for the damaged vessels. In cases where the graft can be of a large diameter (greater than

5-6 mm), the synthetic material has been effective. However, in situations where a

smaller vessel diameter is required, the synthetic material cannot be used due to high

rates of stenosis and thrombus formation. One possible solution is to use natural materials

like collagen, either modified or combined with a synthetic material, to form a graft that

more closely mimics the body's natural function and has low thrombogenicity and low

incidence of stenosis.

The use of collagen as a material for a synthetic vascular graft is quite promising

because it is biodegradable and has good mechanical properties. Since collagen is

biodegradable, as the device degrades tissue can grow into the device. This is

advantageous because ideally as the collagen implant degrades the newly formed tissue

will replace it, which results in a gradual transfer of stress from the implanted device to

the newly formed tissue. Collagen can be crosslinked to form a polymer with sufficient

mechanical strength to resist the collapse of the blood vessel.
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According to the discussion in previous section, collagen is antigenic and

thromobogenic. It is also biodegradable so if it is not treated it degrades very quickly in

body. Collagen must be treated to get desired properties as vascular grafts.

Heparin is a negatively charged anti-thrombogenic protein that can be

incorporated into collagen, which is inherently thrombogenic. The incorporation of

heparin significantly reduces the thrombogenic properties of collagen and at allows it to

be used as a material for vascular implants. If a collagen vascular implant material were

seeded with endothelial cells so that they coat the lumen, the surface would theoretically

be more biocompatible. Recently, endothelial cells have been cultured onto the collagen

small diameter vascular grafts. The growth of endothelial cells into the collagen vascular

graft can be increased by incorporating growth factors into the vascular graft material.

Basic fibroblast growth factor (bFGF) can be immobilized by the heparin that is already

incorporated into the collagen that is used for a vascular implant. bFGF caused more

tissue to grow into the implant material and helped form a coating of endothelial cells on

top of the implant material. Therefore, by incorporating bFGF into the collagen vascular

implant material endothelial cells can be seeded onto the top of the material to create a

lumenal surface that is comprised of endothelial cells to more closely mimic the natural

biological environment [43].

To reduce the antigenicity, as discussed before, collagen should be crosslinked

with different method. Crosslinking of collagen will also enhance mechanical strength

and time needed for degradation of collagen tubes. Many crosslinking methods can be

used i.e. chemical cross-linkage using formaldehyde, hexamethylene diisocyanate,

glutaraldehyde (GA) or N-(3-dimethyaminopropyl)-N'-ethylcarbodiimide (EDC) and N-
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hydroxysuccinimide (NHS), physical cross-linking using irradiation, ultraviolet(UV)

irradiation or heat treatments.

Depending on the intended application, the ability for natural polymers to be

broken down by enzymes allows for the complete degradation of an implanted material.

This can be an advantage if the implant is only meant for short-term usage and eventual

replacement by the body's own materials. For collagen, the cells can synthesize new

collagen, which normally forms a new architectural arrangement, such as scar tissue, in

wounds. This is one step in the wound healing process that the body begins as a result of

damage caused by implantation.

This degradation can also be a disadvantage if these enzymes destroy the implant

before it completes its intended task. Collagen is susceptible to attack by collagenases in

physiological setting. These collagenases are present in healing wounds and are a primary

reason for the degradation of collagen implants. Luckily, through various physical or

chemical methods, the degradation rate of collagen implants can be controlled.

2.3 Cross-linking of Collagen

Cross-linking of collagen biomaterials is often applied to control or reduce the in vivo

resorption rate or to improve mechanical properties of materials [29][30]. In general,

there are two methods for crosslinking of collagen: physical and chemical.

The most common physical method is dehydrothermal treatment. By heating in an

oven, collagen can be severely dehydrated which creates interchain amide links. By

exposure to temperature in excess of 105° C with atmospheric pressure for a few hours,

the collagen can produce cross-links which help to prevent degradation of the helix. The
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ultimate tensile strength may be improved by preventing interfibrillar slippage and also

removing the water molecules which swell the matrix and prevent hydrogen and other

forms of electrostatic bonding between the collagen. Dehydrothermal treatment of

collagen requires a careful balance between the amount of time exposed to heat to

provide adequate cross-links and the amount of time which could lead to the denaturing

or degrading of the tissue. Another less widely used method for cross-linking collagen is

through exposure to short wave ultraviolet irradiation of gamma radiation. An issue with

this, however, is in determining how deep the radiation will penetrate and subsequently,

how many cross-links it will produce. Although these methods do not introduce

potentially harmful chemical to the collagen, they are not as effective as chemical

treatments, which have been used commercially for years and as previously stated, can

help lower antigenicity while increasing the tensile strength of the collagen.

The more prevalent method of cross-linking is through chemical treatment.

Reagents like glutaraldehyde, formaldehyde and diisocyanates introduce crosslinks

between two ε-amino groups of lysine and/or hydroxylysine residues of reconstituted

collagen. Secondly, crosslinking can be carried out by introducing amide bonds between

carboxylic acid groups from aspartic or glutamic acid residues and ε-amino groups.

Examples are cyanamide crosslinking, acyl crosslinking and the use of carbodiimide [32].

Several studies have been directed towards the use of novel epoxy compounds for

cross-linking of collagen. It has been demonstrated that, depending on pH, bis-epoxy

compounds introduce crosslinks between either carboxylic acid groups, or primary amino

groups of collagen [30].



25

Crosslinking of collagen in commercial collagen-coated synthetic vascular grafts

is commonly carried out using glutaraldehyde or formaldehyde [33]. The mechanism of

crosslinking by these reagents is complex and poorly understood. Using glutaraldehyde it

is assumed that Schiff base intermediates are formed by reaction of aldehyde groups of

glutaraldehyde with amino groups of collagen (I). Subsequent reactions of these

intermediates results in the formation of large variety of possible crosslink-moieties[33].

Figure 2.1 shows the mechanism of crosslinking with glutaraldehyde.

Figure 2.1 Mechanism of crosslinking with glutaraldehyde.

The use of glutaraldehyde has an important drawback as it is incorporated in

collagen material. Glutaraldehyde is known to induce local cytotoxicity by the release of

(unreacted) crosslink-agents or derivatives thereof, during both in vitro and in vivo

application of collagen biomaterials [34]. It has been shown that residual glutaraldehyde

completely inhibits in vitro fibroblast proliferation at concentrations as low as 3 ppm

[35]. It can be concluded that upon implantation, cytotoxic reactions hamper

endothelialization of currently available collagen coated synthetic vascular graft

materials.

In addition, glutaraldehyde crosslinking of collagen- based biomaterials is

associated with enhanced calcification of the implant, which has an adverse effect on the

mechanical properties of material [36].
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Cross-linking of collagen using N-(3-dimethyaminopropyl)-N'-ethylcarbodiimide

(EDC) and N-hydroxysuccinimide (NHS) is based on a well known method in peptide

synthesis. The reaction of EDC with carboxylic acid groups of collagen results in the

formation of 0-acylisourea. When 0-acylisourea reacts with NHS reactive NHS-esters

are formed, [37] and release of water-soluble 1-ethyl-3(3-aminopropyl)urea (EDU)

occurs. Subsequently, reaction of NHS-esters with free c-amino groups of (hydroxy)

lysine residues results in the formation of peptide crosslinks and liberated NHS. Direct

reaction of 0-acylisourea with free c-amino groups also results in formation of peptide

crosslinks. NHS, however, prevents side reactions of 0-acylisourea groups like

hydrolysis and N-acyl shift to the stable N-acylisourea. Figure 2.2 shows the mechanism

of crosslinking with EDC/NHS.

Figure 2.2 Mechanism of crosslinking with EDC/NHS.

EDC/NHS crosslinked collagen is reported to be no-cytotoxic in vitro, and

biocompatibility was demonstrated in animal models [38]. When subcutaneously

implanted in rates, calcification of EDC/NHS crosslinked collagen proved to be very low

compared to glutaraldehyde crosslinked collagen [39].



CHAPTER 3

MATERIAL AND EXPERIMENTAL METHODS

3.1 Collagen Suspension Preparation

The collagen suspension used to prepare the tubes for these experiments was prepared by

the process, developed with the help of Mr. Nels Lauritzen and Dr. Joseph Nichols of

Prodex Science Inc., located in Princeton, New Jersey, USA. The process uses bovine

superficial flexor and deep flexor tendons as collagen source.

Approximately 1000 gms of frozen bovine tendon was sliced using the NBI

Nantsune deli slicer. The slices of tendon were ground using electric meat grinder (w/4.5

mm grinder plate). To determine the % solid weight in the ground tendon small sample

the wet tendon was weighed and then dried it in an oven for 4 hr to overnight at 100 °C to

determine the dry weight. The % solid was calculated by using the value of wet weight

and dry weight.

KH2PO4 (Potassium Phosphate Monobasic) solution was prepared by adding

41.25 grams of KH2PO4 to 8.4 liters of distilled or demineralized water. Then 1.77 grams

of NaOH was added to solution to get the pH of 6.15 ± 0.15. The weighed out ground

tendon was added to above solution. The mix was then warmed up to 37 °C using hot

plate. Then 300 ml of previously prepared buffer solution was taken and 10 grams of

Ficin was dissolved in it. Immediately 300 ml of Ficin premix was added in the buffer

solution and the enzyme activity was noted. The solution was stirred intermittently and

kept it at 37 ° C ± 2 for 1 hour.

27
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Enzyme deactivation solution was prepared by adding 84 gms of NH4NO3 and 10

grams of NaClO2 in 8.4 liters of distilled water. Wearing latex gloves, the enzyme treated

fibers were strained and hand squeezed to remove excess water and placed into the

enzyme deactivation solution. Perforated funnel (colander) was used to obtain last bits of

fibers. The fibers were kept in this solution for 1 hour with intermittent stirring. After

that, wearing latex gloves, once again fibers were strained and hand squeezed to prepare

for washing. Then fibers were washed 3 times for 15 minutes using 3 liters of distilled

water.

For alkalai treatment, a solution was prepared by adding 1400 gms of anhydrous

Sodium Sulfate and 350 gms of NaOH to 6.8 liters of distilled water. The temperature

was stabilized at 25 ± 1 °C. Fibers were kept in this solution for 42 hours at 25 ± 1 °C.

After 42 hours the fibers were washed 3 times with three liter sodium sulfate solutions for

15 minutes. Following these washes, fibers were once again washed 3 times with 3 liters

of distilled water, adjusted to pH of 4.6 by using dilute H2SO4, for 15 minutes.

For isopropanol treatment, fibers are placed into 2-3 liters of 100% isopropanol at

60 °C slowly and carefully, avoiding the hot spots and potential degradation. The blend

was kept stirring to avoid hot spots. Fibers were kept in this condition for 2 hours and

then prepared for second wash with isopropanol. The second wash proceeded with

harvesting the fibers from the first wash by hand squeezing the fibers and colander

staining to remove excess IPA. The fibers of second wash were allowed to remain in IPA

at 60 ° C for 1 day. After that fibers were teased and placed into Pyrex dish to dry it in to

oven at 45 °C overnight.
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Dried collagen fibers were stored in refrigerator. To prepare the collagen

suspension of C %, 10 x C grams of collagen fibers were soaked in 1000 ml of distilled

water. C ml of lactic acid was also added to break the fibers in the water. The fibers were

allowed to soak in this condition for 10-15 minutes. This mixture was than blended for 30

second in laboratory blender followed by allowing it to sit for 15 minutes and dissipate

the heat it received by blending and not letting the temperature go up. Blend the mixture

for 30 seconds followed by 15 minutes break and last cycle of 30 second blending. At the

end of third cycle of blending the mixture were become thick paste. The paste then

transferred in bottles and stored in refrigerator. Collagen suspension was centrifuged for

enough time to remove air bubbles if necessary before using them to extrude tubes.

3.2 Collagen Tubes Extrusion Protocol

The collagen tubes were extruded using a special collagen extrusion machine developed

by ZOKO spol. S r.o. of Czechloslovakia. The extrusion machine used a piston to force

the collagen gel through a rotating mandrel where it was deposited on a guide rod. The

rod itself was lifted away at uniform speed from the mandrel to form an even coating.

The collagen was deposited onto the rod after passing through a rotating head, which

oriented the get to the left or the right according to its rotation in left or right direction.

The rotation head had speeds ranging from 22- 260 rpm in either direction. In order to

adjust the thickness of the tube, the pulling device also had variable speeds ranging from

152 — 1522 mm/min in the upward or downward direction. The rate of extrusion was also

adjustable by controlling the upward motion of the piston. The extrusion rate had the

range from 2 — 50 cm2/min. The extrusion machine had a cylinder with a volume of
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approximately 1925.625 cc. The maximum pressure allowed in the cylinder head was 3

Mpa and was regulated by an electronic meter attached to an oil reservoir, which shut off

the extrusion if the pressure exceeded the maximum value. To allow for chemical

treatment of the tubes, homemade baths were made from PVC piping 40 in. long and

sealed on both ends with caps adding an additional 1 in. length. These baths are then cut

in half lengthwise to provide adequate length and ease of access.

3.2.1 Protocol for Pre-extrusion

Two types of rods were used as guide rod in extrusion process, 36" long Teflon rods and

36" Stainless Steel rod. Teflon rod didn't need any treatment except just cleaning up. But

stainless steel rods needed pre-extrusion treatment. For that one of the PVC baths was

filled with 99% pure glycerin from Fisher Scientific Company of Somerville, New

Jersey. The stainless steel rods were placed into the glycerin bath and allowed to soak for

about 10 minutes providing a coating to the rods. Then the guide rods were hung for 1-2

minute to drain off excess glycerin to the bath.

Before starting up for new study or new batch with different collagen

concentration, all the parts of the extrusion head were disassembled and cleaned to

prevent any contamination of the previous batch traces.

3.2.2 Protocol for Extrusion

After turning the machine on the allowing to warm up, the piston was lowered to its

lowest point and the piston head was manually pushed into place at the bottom of the

cylinder. Collagen was then hand packed tightly into the cylinder until it was

approximately 3/4 full. The desired extrusion head and nozzle were attached to the
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machine after ensuring the guide rod would fit through the nozzle without any

interference. The nozzle used was 3/16 in. diameter and extrusion head was 3/8 in.

diameter. The cylinder was then sealed and the tube from the cylinder head was run into

the extrusion head manifold. The swinging arm was closed so that it sat directly over the

extrusion head. A coated stainless steel rod was taken from the hanging rack and inserted

through the bottom of the nozzle up through the extrusion head and then clamped into the

swinging arm. The machine settings were then entered for the desired extrusion rate,

rotation speed, and linear pull speed. In order to ensure no stoppage of the tightly packed

collagen, the extrusion was started and collagen filled the tube from the cylinder to the

extrusion head manifold.

Once the collagen began filling the manifold, the rotation motor was started. The

collagen was continuously filling the manifold and finally became visible around the rod

through the top of the extrusion head. At this point, the linear drawing arm was then

activated and moved at the desired speed. The collagen was now being extruded onto the

rod and a visual check was made to detect for gaps in the tubes. Once the guide rod had

completely passed through the manifold, the extrusion and rotation was stopped to

prevent wasting of collagen. The swinging arm was allowed to rise until the guide rod

was completely clear of the manifold at which point the arm was opened and lowered.

The rod was removed and hung on the drying racks.

This process was repeated for each of the tubes with only minor changes to the

settings when necessary. After four tubes, however, the cylinder was refilled with

collagen to prevent gaps from forming in the tubes. After each trial was finished, the rods

were taken for post-extrusion treatment and the machine was cleaned.
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3.2.3 Post-extrusion Tube Treatment

The post-extrusion process was primarily concerned with chemically treating the collagen

and drying the tubes for removal from the guide rods. Chemical treatment can be divided

into two part, coagulation and cross-linking. The tubes prepared from the above protocols

were treated differently according to the protocols for different studies. The protocols for

different studies will be discussed later in this chapter. Regardless of subsequent

treatments, the tubes were extruded according to the protocols written in Section 3.2.1

and 3.2.2 and dried according to procedure described as follows unless mentioned

specifically.

After allowing stainless steel rods to sit for 18 to 24 hours under normal

atmospheric conditions, the tubes deemed dry. The tubes were immersed completely in

the water baths in order to rehydrate the tubes. Tubes were kept in water baths for

approximately 1 'A hour to allow enough water to absorb through the entire tube. At this

point, the tubes were cut to the desired length and slipped off of the stainless steel rods.

The rehydration made the collagen tubes more flexible and with slight twists at small

intervals along the tube, the bond with the rod was loosened enough to pull the cut tubes

off smoothly without damaging the tube or causing it to lose its shape. Some of the rods

were not completely rehydrated under the standard time, particularly the thick tubes, so

they were returned to the water bath for an additional 30 minutes until they were easily

slipped off of the stainless steel rods.

With the tubes no longer supported by the guide rod, curling would occur with the

final drying without intervention. To prevent this undesirable shape change, the collagen

tubes were placed in cardboard boxes for drying. A pair of holes were drilled on the
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opposite side wall of specially prepared cardboard boxes. Screws of approximately

diameter same as the guide rods were placed in the holes. Two ends of cut tube were then

fixed on the two opposite screws on the box. Tubes were actually cut of the length, so

that it can fit on the screws with slight tension. The tubes were allowed to dry for 18 to 24

hours in this condition and then removed from the rack and stored in boxes to prevent any

damage.

3.3 Glutaraldehyde Crosslinking Protocol

Ammonium Hydroxide used in this protocol was received from Fisher Scientific as 5%

v/v solution. It was then diluted using distilled water to 1%. Glutaraldehyde, used for this

treatment, was also received from Fisher Scientific as 25% v/v solution. It was then

diluted using distilled water to 5%. In order to ensure adequate chemical concentration

for all the tubes, these chemicals were refilled after every four tubes with the reminder of

the chemical being removed for disposal.

Using baths, 1 liter of ammonium hydroxide and 1 liter of glutaraldehyde were

prepared for treatment of the tubes. The rod with the extruded collagen tube on it was

immersed completely in the ammonium hydroxide solution. The tube soaked for 10

minutes with occasional agitation and rotation of the rod to ensure good chemical

absorbance. After the 10 minutes had passed, the rod was removed from the bath and

washed for 5-7 minutes in a water bath to remove excess chemicals from the surface.

After washing, the rod was immersed completely in the glutaraldehyde solution

bath and allowed to soak for 5 minutes with occasional agitation and rotation. After 5

minute treatment, the rod was removed from the glutaraldehyde and washed in a water
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bath for 5-7 minutes. The rod was subsequently hung on the vertical hanging rack to

allow excess moisture to drip off and the tube dried.

The procedure was repeated for the remaining samples. Stainless steel rods with

the collagen tubes were left to dry under atmospheric conditions for 18 to 24 hours.

3.4 EDC/NHS Cross-linking Protocol

Collagen tubes were crosslinked using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide

(EDC) and N-hydroxysuccinimide (NHS). In order to minimize hydrolysis of EDC,

crosslinking was carried out in a buffer of 2-morpholinoethane sulfonic acid (MES

buffer, 0.05 M, pH adjusted using 10 M NaOH). Extruded collagen tubes were

coagulated by 1% ammonium hydroxide for 10 minutes and then washed in water bath

for 5 minutes. Washed tubes were hung on drying rack for 15-18 hours to dry. Dried

collagen tubes were incubated in MES buffer for 30 minutes. Subsequently, the tubes

were immersed in a solution of EDC and NHS in MES buffer, and crosslinking was

carried out under gentle shaking.

Typically, crosslinking was carried out using 0.731 g EDC and 0.415 g NHS in

500 ml MES- buffer per gram of collagen (1.29 mmol carboxylic acid groups, Coll-

COOH, per gram of collagen, resulting in a molar ratio of EDC : NHS : Coll-COOH of

7.0 : 2.8 : 1). Approximately 2.5 feet long tube were crosslinked so 3.655 gms of EDC

and 2.075 gms of NHS was dissolved in 500 ml of MES solution After 1 hour the

crosslinking reaction was stopped by washing the collagen film with 0.1 M Na2HPO 4

solution for 2 hours.
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3.5 Protocol for DOE on Extrusion Variable

Primarily three variable effected the extrusion process; extrusion rate, linear pull rate of

swinging arm and rotation speed of extrusion head. To evaluate the effect of all the

variables on extrusion process and mechanical properties of extruded tubes, a design of

experiment (DOE) was run. As previously mentioned, three variables were considered as

input parameters in this design of experiment. The mechanical tensile strength and wall

thickness of extruded tubes were considered as response. To make the DOE simpler no

noise factor were considered. Otherwise concentration of collagen suspension and

diameter of extruded tube can be considered as noise factor in this DOE. Before setting

up the levels in this DOE, a range study was performed using waste collagen

approximately of same concentration of the collagen would be used in this DOE. The

machine was run at different setting and the extruded tubes were visually checked for

wall thickness. As a result of this study all the parameter were bracketed for two levels,

which can give significant effect in response parameter. To minimize the number of runs,

only two levels of the parameters were considered and L4 Taguchi matrix was used for

determining runs. To check the effect very precisely L8 Taguchi matrix of full factorial

matrix can be used with two level DOE or more than two level can also be used. From

the experiments, the two levels were decided as given on next page:
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Extrusion rate (E):	 Low (E 1 ) — 25 cm2/min

High (E2) — 40 cm 2/min

Linear Pull rate (L): Low (L1) — 300 mm/min

High (L2) — 450 mm/min

Rotation Speed (R): Low (R 1 ) — 30 rpm

High (R2) — 80 rpm

Using statistic software Minitab, L4 matrix was prepared for two levels of three

variables. Factorial design and Taguchi design can be used for this study; however,

Taguchi matrix was selected because it requires fewer numbers of runs for study.

According to matrix, four runs were carried out and two tubes were extruded for each

run. 1.6% collagen suspension was used to prepare all the samples for this study.

Coagulation of tubes was done by 1% ammonium hydroxide for 10 minutes and cross-

linking of the samples was done by 5% glutaraldehyde for 5 minutes. Detailed protocols

for coagulation and cross-linking are given in Section 3.3.
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Table 3.1 L4 Taguchi matrix for Design of Experiment

Run Number Extrusion Rate

(E) cm2/min

Linear Draw Rate

(L) mm/min

Rotation Speed

(R) rpm

1 E1 L1 R1

(25) (300) (30)

2 E1 L2 R2

(25) (450) (80)

3 E2 L2 R1

(40) (450) (30)

4 E2 L1 R2

(40) (300) (80)

Samples prepared for each run were labeled by the DOE - run number followed

by sample number; i.e. 2'1 sample of 1 st run was labeled as DOE-1-2. Five samples were

prepared from each run for testing. Two types of responses were evaluated for this study;

estimated elastic modulus and wall thickness. Data collected from these tests were

analyzed statistically to prepare graphs of effect of all the input parameters on responses

and bar chart of effects using demo version of design and analysis of Taguchi

experiments software Qualitek-4 from Nutek Inc.
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3.6 Study of Coagulation Methods and Collagen Suspension Concentration

Coagulation of tubes was tested for three different methods. For this study collagen tubes

were extruded using setting of extrusion speed 25 cm 2/min, linear draw rate 300 mm/min,

rotation rate 60 rpm. Three different concentration of collagen suspension were used for

this study 1.6%, 2.0% and 2.5%. Three tubes of all three different concentrations were

extruded. Then one tubes of each concentration were reconstituted by using 1%

ammonium hydroxide for 10 minutes. Another three tubes was reconstituted using 1%

ammonium hydroxide for 5 minutes and then 50-50% of acetone and 1% ammonium

hydroxide for 10 minutes. The last three tubes were reconstituted using 50-50 % of

acetone and 1% ammonium hydroxide for 15 minutes. Table 3.2 shows the matrix and

how the samples were numbered.

Table 3.2: Matrix for Study of Coagulation Method and Collagen Concentration

1% NH4OH

10 min.

1% NH4OH 5min.

1:1 (NH4OH: Acetone) 10min

1:1 (NH4OH:

Acetone) 15min

1.6% Collagen 1-1 1-2 1-3

2.0% Collagen 2-1 2-2 2-3

2.5% Collagen 3-1 3-2 3-3

The tube that was coagulated using just 1% ammonium hydroxide was washed

with water for 5-7 minute in water bath and then cross-linked by 5% glutaraldehyde for 5

minutes. After cross-linking, it was given another water wash for 5-7 minute and then

hung on drying rack for 18-24 hours. The other two tubes were directly transferred into
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5% glutaraldehyde bath for cross-linking without washing them with water. The samples

were tested for DSC, TGA, TMA, swelling test.

3.7 Study of Different Cross-linking Method

Samples for this study were prepared using 2% collagen suspension. The extrusion

parameters were set at extrusion speed 25 cm 2/min, linear draw rate 300 mm/min,

rotation speed 60 rpm. Then tubes were cross-linked using two different cross-linking

methods. Two tubes were prepared for each method. Two tubes were extruded and cross-

linked using the protocol documented in Section 3.3 for glutaraldehyde cross-linking.

The other method used for cross-linking is described in Section 3.4 with using

EDC/NHS. Samples prepared for this study was tested for DSC, TGA, TMA, Swelling

ratio.

3.8 Study of Cross-linking Time for Glutaraldehyde

Samples for this study were prepared using 2% collagen suspension. The extrusion

parameters were set at extrusion speed 25 cm 2/min, linear draw rate 300 mm/min,

rotation speed 60 rpm. Tubes were coagulated with 1% ammonium hydroxide for 10

minutes and then washed in water bath for 5 minutes. Coagulated tubes were then cross-

linked with 5% glutaraldehyde for 5 min., 15 min., 25 min. and 35 min. After cross-

linking, tubes were washed in water bath for 5 minutes and than hung to dry for 18-24

hours. Dried tubes were removed from the guide rods as described in Section 3.2.3 and

analyzed for DSC, TGA, TMA, swelling ratio test.
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3.9 Swelling Test Protocol

Approximately 1 inch long sample was cut from the dried collagen tubes. Dry weight of

the samples was found using a Calm C-30 electric microbalance calibrated for

milligrams. After the dry weight was determined, the samples were placed into phosphate

buffer solution (PBS) solution of pH 7.4 for 1 hour at room temperature. Separate

aluminum pan was used for each sample to soak. After 1 hour, the samples were removed

from the PBS solution and excess solution accumulated inside the tube was removed vie

paper towel as well as any excess surfaced water. The wet weight of the sample was

determined. The following formula was used to determine the percentage swelling of the

samples.

Swelling Ratio = (Wet weight/ Dry weight) x 100 %

3.10 Protocol for Wall Thickness Measurement

Dried collagen tubes were moistened by immersing them into distilled water for 2-3

minutes. Then very thin cross-section of the tube wall was cut with the razor blade and

placed on a standard microscope slide. The cross-section of tube wall was dried for 5-10

minutes at atmospheric condition to loss the moisture it gained while moistening it to cut.

It was dried to get exact wall thickness as with the moisture trapped inside the wall will

swell a little and exact thickness can't be measured. After drying the cross-section was

examined under the Zeiss microscope to measure wall thickness. Wall thickness was

measure using 6.3x magnification.



41

3.11 Protocol for DSC, TGA and TMA Tests

3.11.1 Thermal Gravimeteric Analysis (TGA)

Thermal gravimetric analysis was carried out on Q50 Thermogravimetric Analyzer. Non-

isothermal experiments were performed in the temperature ranges of 30 to 250 °C at

heating rate of 10 degree C per min on each sample. The average sample size was 8 mg

and the nitrogen flow-rate was 50 cm 3 per min.

The thermogravimetric data was acquired by a computer connected to Q50

Thermogravimetric Analyzer and analyzed using the associated TGA-Q50 software. The

loss of mass in terms of percentage loss in weight from the dependence of the heating rate

was the apparent results of this test.

The collagen tubes were cut with a razor blade into tiny bits of pieces and

weighed. The scan rate was 10 degree C/min over a range of room temperature to 250

degrees. These parameters were selected based on the previous studies conducted on rat-

tail tendon and collagen of pericardium.

3.11.2 Differential Scanning Calorimetry (DSC)

Thermal analysis of collagen tubes was used as a diagnostic tool to evaluate the effect of

temperature and stress conditions. The effect of temperature on the collagen fibers,

however, has not been adequately studied. This method while easy to apply does not

provide any insight into structural changes occurring in the fiber. This study is based on

the understanding of collagen structure. Collagen chains consist of three helical

polypeptide chains held together by hydrogen bonds. The thermoreversible

transformation of collagen to gel is interpreted as the disintegration of these helical

structures into random coils. Upon cooling, random coils undergo a conformational coil
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to helix transition during which they attempt to reform the original collagen structure.

Depending on the temperature and time at which the random coils are allowed to cool,

they form less organized gel. In this sense gel is prepared by complete thermal

denaturation of collagen [23] followed by partial renaturation through nucleation and

growth of crystalline links [24]. The resulting three-dimensional network is responsible

for the strength and integrity of the gel. Only a fraction of the macromolecules comprises

the crystalline network. The space between the fibrils is composed of disordered

amorphous polypeptide chains [25], plasticizers and water providing the elasticity to the

collagen fiber.

The objective of this study was to gain an understanding of the structural changes

of collagen fiber when exposed to higher temperature on heating and lower temperature

on cooling by observing the relative heat flow using ramp and heat-cool-heat using

thermal analysis.

Thermal behavior and denaturation temperatures were determined with Q100

differential scanning calorimetry, TA Instruments New Castle, DE. Samples for thermal

analysis were prepared as follows. The collagen tubes was cut with a razor blade into tiny

bits of pieces and weighed. The weight was 5-9 mg then hermetically sealed into

aluminum DSC pans and crimped. An empty pan with a cover was also crimped and

placed as a reference sample. The equipment was first operated on Heat-Cool-Heat mode.

The scan rate was 20 degree C/min over a range of -50 to 225 °C for first cycle and —50

to 300 °C for second cycle. For heat cool heat operation mode, the scan rate was kept at

10 degree C/min for cooling. These parameters were selected based on the previous

studies conducted on rat-tail tendon and collagen of pericardium. The same procedure
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were used for all the samples. The heat flow at different temperature was measured and

the data was acquired by a computer connected with the DSC instrument. Denaturation

temperatures for all the samples were determined by analyzing the data of heat flow vs.

temperature.

3.11.3 Thermal Mechanical Analysis (TMA)

This test was conducted using the TMA 2940 Thermo mechanical Analyzer made by TA

Instruments. This test was used to evaluate the effect of temperature on the change in

dimensions. The results were analyzed using the software. It is expected that as the

firmness of the collagen tubes increases, the temperature at which it breaks, also

increases.

Method for determining break point

Collagen tubes were cut, using a razor blade, to 3 mm wide films and placed

between the clamps. Before the sample was mounted onto the thermocouple tube, the

probe was zeroed. The sample was then mounted onto the thermocouple tube. The initial

length of the film was measured automatically by the instrument. The sample was then

subjected to the non-isothermal temperature ranging from room temperature to 325° C.

The same procedure was used for all the samples. Heating rate was kept at 20 °C/min for

all the testing.

Method for the stress strain curve

This type of TMA test was performed to measure the estimated elastic modulus of

DOE samples. Tubes were moistened with distilled water to make them flexible. Then

the tubes were flattened carefully and placed between the clamps. After zeroing the

probe, the sample was placed on the thermocouple tube. The initial length of the film
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was measured automatically by the instrument. The sample was then subjected to

isothermal temperature. The temperature is kept constant at body temperature i.e. 37

degree C. After equilibrating at this temperature for 5 minutes, the sample was subjected

to force ranging from 0 to 1 N at a rate of 0.1 N/min. The same procedure was used for

all the samples of DOE.



CHAPTER 4

RESULTS AND DISCUSSION

According to extrusion protocols, tubes were successfully extruded. Two different types

of guide rods were used for extrusion; stainless steel rod and Teflon rod. Handling of

Teflon rod was easy, as it didn't need to be glycerin coated before using it in the

extrusion equipment. However, Teflon rod can not remain straight and hence, when the

guide rod comes out from the extrusion head it can not remain in center and because of

this, the wall thickness varies in longitudinal cross-section of the tube. Because of this

problem with Teflon rod, the stainless steel rods were used for all the studies. A solution

for this problem could be to use Teflon coated metal rod. Teflon coated metal rods can

remain straight and coating of Teflon can serve the advantage of Teflon surface.

As part of different studies, tubes were extruded at different settings and treated

according to the study protocols. The wall thickness varied by changing the extrusion

process variables. The tubes, which were crosslinked with glutaraldehyde, became

yellowish after treatment. The thicker the tube the darker it is in color. After taking it out

from the guide rod and drying it in the specially prepared drying box, it was observed that

the thicker tubes shrinks more. After final drying, the tubes with thicker wall had small

inner diameters. From this phenomenon it can be derived that if specific inner diameter is

required for dried tube it can not just be obtain by using the same diameter guide rod but

the wall thickness and the shrinkage of tube has to be considered as well.

45
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4.1 Results of DOE

According to the protocol of DOE, tubes were extruded using different settings and

treated with ammonium hydroxide and glutaraldehyde. Samples for all the runs were

tested according to the protocols of wall thickness measurement and elastic modulus.

Both wall thickness and estimated elastic modulus were determined successfully. Wall

thickness values for all the DOE runs are given in table 4.1

Table 4.1: Wall Thickness Values for DOE Runs

Run

Number

Extrusion Rate

(E) cm2/min

Linear Draw

Rate

(L) mm/min

Rotation Speed

(R) rpm

Avg. Wall

Thickness in

pm

- E1 L1 R1
1 116.3

(25) (300) (30)

E 1 L2 R2
2 81.4

(25) (450) (80)

E2 L2 R1
3 100

(40) (450) (30)

E2 L1 R2
4 400

(40) (300) (80)

The determined values were statistically analyzed using the demo version of

Taguchi design and analysis software Qualitek-4. Analysis of the results gave the effect

of extrusion variable.



Figure 4.1b Average effects graph of linear draw rate on wall thickness of tube.
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Figure 4.1c Average effects graph of rotation on wall thickness of tube.



Figure 4.2 Influence of extrusion process variables on wall thickness of extruded tubes.

From figure 4.2 it is concluded that linear draw rate has maximum effect on wall

thickness of extruded tubes and rotation speed has the minimum influence on wall

thickness. Therefore, linear draw rate of guide rod is the significant factor to control the

wall thickness of tubes. Figure 4.1a, 4.1b and 4.1c shows the effect of two levels

variables on the wall thickness. Figure 4.1a, graph of average effect of extrusion speed

shows that, if the extrusion speed is increased with keeping the other two factors

constant, the wall thickness will increase. Graph of average effect of linear draw rate in

Figure 4.1b has negative slope. From this it can be derived that linear draw rate has

negative effect on wall thickness of tube. Therefore, when linear draw rate is increased

and the other two variables are kept constant, the wall thickness of tube will decrease.

Graph of average effect of rotation speed has positive slope hence it shows that when the

rotation speed is increase and the other two variables are kept constant wall thickness will

increase. However, Figure 4.2 shows that the influence of rotation speed is lower than
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extrusion speed and linear draw rate so change in rotation speed doesn't cause as much

difference in wall thickness as linear draw rate and extrusion speed do.

Table 4.2 Main Effects of Extrusion Variables on Wall Thickness of Tube

Factors Wall thickness in

mm at level 1

Wall thickness

in mm at level 2 L2 - L1

(L1) (L2)

Extrusion Speed 97.5 250 152.5

Linear Draw Rate 257.5 90 -167.5

Rotation Speed 107.5 240 132.5

Table 4.2 highlights the numbers graphed in figure 4.1 and 4.2. Second and third

column of the table give the value of wall thickness, which particular variable will give at

level 1 and 2.Fourth column of the table gives the slope of the all three graph given

Figure 4.1. The values of the slope give the measure of influence of that variable on the

process and the negative sign indicates that that variable has negative effect.

To determine the estimated elastic modulus of tubes, graph of TMA stress-strain

test was used. From the TMA stress-strain test data, graph of force vs. dimension change

was prepared and slope of this graph was calculated. Then cross-sectional area of the tube

was calculated by considering the inner diameter of tube as 4.762mm and wall thickness,

calculated in previous section.

Cross-sectional area of tube (A) = π((ID of tube + wall thickness)2 — (ID of tube) 2)/4
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The length of all the samples (la) was kept 12.6 mm. From this data the estimated

elastic modulus of the tube was caluculated as follows:

Estimated elastic modulus r=--, (slope of graph) x (1 0/A)

Figure 4.3 shows the graph of force vs. dimension change for DOE run 1. Similar

graphs were prepared for all four runs and estimated elastic modulus was calculated for

all the runs. Table 4.3 gives the value of estimated elastic modulus for all the runs.



Figure 43 Stress strain curve for DOE samples.
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Table 4.3 Results of Elastic Modulus for DOE Runs

Run

Number

Extrusion Rate

(E) cm2/min

Linear Draw Rate

(L) mm/min

Rotation Speed

(R) rpm

Slope of Force-

Dimes. Change

plot N/m2

E1 L1 R1
1 1.117X 109

(25) (300) (30)

E 1 L2 R2
2 1.024 x109

(25) (450) (80)

E2 L2 R1
3 1.226 x109

(40) (450) (30)

E2 L1 R2
4 0.509 x109

(40) (300) (80)

The determined values were statistically analyzed using the demo version of

Taguchi design and analysis software Qualitek-4. Analysis of the results gave the effect

of extrusion variable. The analysis was performed considering the bigger the better

option with averaging the data.



Figure 4.4a Effect of extrusion speed on estimated elastic modulus.
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Figure 4.4b Effect of linear draw rate on estimated elastic modulus.

Figure 4.4c Effect of rotation speed on estimated elastic modulus.



Figure 4.5 Influence of extrusion process variables on estimated elastic modulus of
extruded tubes.

Figure 4.5 shows the influence of all three variables on elastic modulus of

extruded tubes. The numbers of the columns gives the percentage of influence on

estimated elastic modulus. This results shows that rotation speed has highest influence on

elastic modulus and extrusion speed has minimum influence. From the graphs of effect of

each variable in Figure 4.4a, 4.4b and 4.4c, it is observed that rotation speed and

extrusion speed has negative effect on elastic modulus. That means, by increasing the

rotation speed and extrusion speed within the specified range of both the variables, elastic

modulus decreases therefore tube becomes more compliance. Linear draw rate has

positive effect on elastic modulus therefore by increasing the linear speed within the

specified range of linear draw rate, elastic modulus will increase and tube becomes less

compliance.
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Table 4.4 Main Effects of Extrusion Variables on Elastic Modulus

Factors Elastic Modulus in

N/m2 at Level 1

(L1)

Elastic Modulus in

N/m2 at Level 2

(L2)

L2 - L1

Extrusion Speed 1.07 x 109 0.86 x109 -0.21 x109

Linear Draw Rate 0.81 x109 1.13 x109 0.32 x109

Rotation Speed 1.17 x109 0.77 x109 -0.40 x109

Table 4.4 gives the highlights of Figure 4.3 and 4.4. Second and third column of

the table give the value of estimated elastic modulus, which particular variable will give

at level 1 and 2. The fourth column of the table gives the slope of the all three graph

given Figure 4.3a, 4.3b and 4.3c. The values of the slope give the measure of influence of

that variable on the process and the negative sign indicates that that variable has negative

effect.

4.2 Results of Coagulation Method and Collagen Concentration Study

To study the effect of collagen concentration and coagulation method this study was

performed according to the protocol. The tubes were extruded and treated according to

the protocol successfully. Results of TGA test are given in Table 4.
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Table 4.5 Weight % at Different Temperature

Run # Weight % at
100°C

Weight % at
200°C

Weight % at
250°C

1-1 95.1 90.2 88.6

1-2 94.7 90.0 88.4

1-3 95.4 90.4 88.8

2-1 96.5 91.2 88.8

2-2 96.4 90.5 88.8

2-3 96.5 90.7 88.9

3-1 95.6 89.8 88.4

3-2 95.6 89.6 88.2

3-3 95.5 90.0 88.6

Figure 4.6 gives a graph of weight% vs. temperature and rate of weight loss vs.

temperature. Weight% at different temperature is determined as given in Figure 4.6.



Figure 4.6 Graph of TGA
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From the data of weight % at different temperature given in Table 4.5 it is

observed that weight% at different temperature for all the runs is almost the same. From

this it is concluded that there is no effect of collagen concentration or coagulation method

on the weight loss of the tubes. But the rate of weight loss at particular temperature varies

for different concentration. Temperature at which highest and lowest rate of weight loss

was observed is given in Table 4.6.

Table 4.6 Temperature at Highest and Lowest Rate of Weight Loss

Run # Highest rate of weight loss
at Temp °C

Lowest rate of weight loss
at Temp °C

1-1 88.38 188.67

1-2 84.10 185.11

1-3 94.65 194.12

2-1 110.39 213.79

2-2 113.45 215.10

2-3 102.09 201.47

3-1 109.71 216.19

3-2 119.91 216.46

3-3 105.46 203.11

To provide the rationale for this behavior the wall thickness of all three different

concentration tubes was measured. The wall thickness of lower collagen concentration

tube was observed less as when tubes were extruded at same extrusion variable setting

wall thickness of the tube at the time of extrusion is same but because of the more water

content in lower collagen concentration tubes the physically bound water evaporates at
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the time of drying and leaves the tube with smaller thickness. So tubes extruded with

1.6% collagen concentration has the smallest the wall thickness and tubes extruded with

2.5% collagen concentration has the largest wall thickness. The highest and lowest rate of

weight loss was observed at lower temperature for lower collagen concentration tube.

This could be because the water from the large wall thickness tubes needs higher

temperature to evaporate so 1.6% collagen concentration tubes with smaller wall

thickness has higher and lower rate of weight loss at lower temperature compared to

2.5% collagen concentration tubes.

Differential Scanning Calorimetry was performed on all the samples of this study

according the protocol for DSC. Table 4.7 gives the data of denaturation temperature for

all the runs.

Table 4.7 Denaturation Temperatures for Coagulation Study

Run # Denaturation temp. °C

1-1 218.69

1-2 237.35

1-3 240.26

2-1 239.83

2-2 236.52

2-3 237.09

3-1 241.44

3-2 241.50

3-3 239.43



Figure 4.7 DSC graph of heat flow vs. temperature
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Figure 4.7 shows a DSC test graph of heat flow vs. temperature and how the

denaturation temperature was determined. It is observed from the data on the Table 4.7

that denaturation temperature for all the samples is the same except one of 1.6 % collagen

concentration, which was coagulated with just ammonium hydroxide. The reason could

be that the 1.6% collagen concentration tube contains more water and when it was

removed by acetone the degree of crosslinking can be achieved higher in collagen matrix.

That's why 1.6% sample, which is coagulated with ammonium hydroxide and acetone

have higher denaturation temperature.

Results of TMA studies and swelling test are documented in Table 4.8 and 4.9

respectively. Figure 4.8 gives the graph of dimension change vs. temperature during the

TMA study. Break point temperature was determined from where the graph of dimension

change vs. temperature suddenly jumps up. The TMA results show that the break point is

highest for coagulation method third samples for all the concentration. The break point

increases with increase in degree of crosslinking. However, the results of TMA test are

not reliable because of the limitations of the instrument. In Figure 4.8, it is observed that

the graph of dimension change vs. temperature becomes straight line parallel to x-axis for

some times before it breaks. This happened with all the samples as instrument cannot

measure dimension change beyond that point and the graph shows no dimension change

after that point. Therefore measurement of break point is also not exact. However, the

samples were tested for swelling test, which is the most reliable test to measure the

degree of crosslinking.



Table 4.8 TMA Results for Coagulation Study

Run # Break point
°C

1-1 293.53

1-2 268.34

1-3 300.97

2-1 300.27

2-2 289.01

2-3 303.11

3-1 295.71

3-2 277.82

3-3 303.11
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Figure 4.8 T 	 aph of 	 on change vs temperature
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Results of swelling test also show the swelling ratio is lowest for samples

coagulated by third method of the protocol. Swelling ratio decreases when degree of

crosslinking increases, as the number of sites available for water to bind is less.

Therefore, these results show that the tubes coagulated with third method of protocol, 15

minutes treatment in 1:1 mixture of acetone and 1% ammonium hydroxide, gives highest

degree of cross-linking with glutaraldehyde. From this, it can be derived that tubes

coagulated by acetone/ammonium hydroxide mixture gives highest degree of

crosslinking with 5 % glutaraldehyde. The rationale for this could be that acetone

removes the water molecules, which swell the matrix and prevent hydrogen and other

forms of electrostatic bonding between the collagen.

Table 4.9 Swelling Test Results for Coagulation Study

Run # Swelling Ratio

1-1 231.2896406

1-2 224.6062992

1-3 209.1139241

2-1 240.2967523

2-2 230.9872611

2-3 224.0117132

3-1 263.6828645

3-2 249.6296296

3-3 216.5275459
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4.3 Study of Crosslinking Methods

Study for crosslinking was performed according to protocols. Tubes were extruded at the

same extrusion variable and with same collagen suspension. After the coagulation with

1% ammonium hydroxide tubes were crosslinked with two different methods. Both the

samples were removed from the guide rod by swelling the collagen by immersing it in

water for one and half hour. It was observed that the tubes crosslinked with

glutaraldehyde swelled more and easy to remove from the guide rod while the tubes,

crosslinked with EDAC/NHS swelled less and was a little harder to remove from the

guide rod. Tubes crosslinked with EDAC/NHS were clear with white shades while tubes

crosslinked with glutaraldehyde were yellowish. Besides this, there is no major

difference observed between the two samples. Samples were tested for TGA, DSC, TMA,

swelling test and universal microscope analysis.

Weight% at different temperature for both the samples is given in table 4.10.

From the TGA results it is concluded that there is no much difference in weight%

through out the range of 30°C to 250°C.

Table 4.10 Weight% at Different Temperature

Cross-linking method Weight % at 100°C Weight % at 200°C Weight % at 250°C

Glutaraldehyde 96.5 91.5 90.1

EDAC/NHS 96.57 90.94 89.72

Results of DSC test gave the denaturation temperature for both the samples.

Denaturation temperature of sample crosslinked with glutaraldehyde is 239.82 ° C and

for EDC/NHS sample denaturation temperature is 238.18. There is not big difference



66

observed in denaturation temperature of both the samples. From the DSC data it cannot

be concluded that which crosslinking method gives higher degree of crosslinking.

TMA was performed on both the samples. Break point temperature for sample

crosslinked with glutaraldehyde is 300.27 °C and for EDC/NHS crosslinked sample is

273.32 °C. From the results of TMA it can be observed that breakpoint temperature of

sample crosslinked with EDC/NHS is less that means the degree of crosslinking is less

compared to crosslinking with glutaraldehyde.

Swelling ratio for sample crosslinked with EDC/NHS is 266.25% and for sample

crosslinked with glutaraldehyde is 240.29%. As the swelling ratio increases with decrease

in degree of crosslinking, this result suggests that the degree of crosslinking achieved by

glutaraldehyde is more than can be achieved by EDC/NHS. This is also consistent with

the results of the TMA test.

4.4 Crosslinking Time Study Results

To evaluate the effect of time on crosslinking process with 5% glutaraldehyde this study

was performed. Tubes were extruded at mentioned in protocol with 2.0% collagen

suspension. After coagulation, tubes were treated for crosslinking for different time

period. One tube was not crosslinked at all to set the base line. The results for TGA test

are given in table 4.11. This results shows that there is no effect of crosslinking time on

weight loss by increase in temperature.
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Table 4.11 Weight % at Different Temperature for Crosslinking Time Study

Crosslinking time Weight % at Weight % at Weight % at
100°C 200°C 250°C

No crosslinking 93.4 86.9 83.5

5 min 96.5 91.2 88.8

15 min 96.4 90.7 88.9

25 min 96.2 90.2 88.3

35 min 96.5 90.7 88.7

Denaturation temperature was determined using the DSC data. Denaturtion

temperatures for all the runs are given in table 4.12. From this data it is seen that

denaturation temperature increases with crosslinking as sample without crosslinking has

danaturation temperature much lower than crosslinked tubes. However, denaturation

temperature for all the tubes crosslinked for different time is almost same. From this data

we cannot say any difference in degree of crosslinking by increasing time of crosslinking.

Table 4.12 Denaturation Temperature for Crosslinking Time Study

Crosslinking time Denaturation
temp °C

No crosslinking 209.98

5 min 240.26

15 min 241.50

25 min 241.92

35 min 237.35
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Results of TMA test are documented in Table 4.13. These results show the

increase in break point temperature with increase in cross-linking time. Graph of break

point temperature vs. crosslinking time is given in figure 4.9. The increase in break point

temperature is little after 15 minutes time so it can be concluded that the at 15 minutes

almost the highest degree of crosslinking with 5% glutaraldehyde is achieved. After 15

minutes also it continues to crosslink but the process is almost complete by the time and

very little further crosslinking can be done.

Table 4.13 TMA Results for Crosslinking Time Study

Run # Break point
°C

1-0 202.75

1-1 300.27

1-2 306.84

1-3 307.59

1-4 308.92

Figure 4.9 Graph of break point temperature vs. crosslinking time.
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Swelling test results are given in table 4.14. Swelling ratio decreases with

increasing the time of crosslinking. And as mentioned, swelling ratio is inversely

proportional to degree of crosslinking. So lower the swelling ratio higher the degree of

crosslinking. The results of swelling test show that the increase in time of crosslinking

increases the degree of crosslinking. Figure 4.10 gives the graph of 1/swelling ratio vs.

crosslinking time. The graph shows that the decrease in swelling ratio after 15 minutes is

slow. This supports the results of TMA, which shows that the increase in degree of

crosslinking after 15 minutes is slower.

Table 4.14 Results of Swelling Test for crosslinking Time Study

Run # Swelling Ratio

1 240.296752

2 225.8673

3 220.3007519

4 217.6165803

Figure 4.10 Graph of 1/swelling ratio vs. crosslinking time.



CHAPTER 5

CONCLUSIONS

A design of experiment was run and evaluated the effect of extrusion variable on

extruded tubes by ZOKO extruder. Graphs of effect of all the variables on wall thickness

and elastic modulus of tubes were obtained as a result of DOE. With these graphs the

wall thickness and elastic modulus can be controlled. In other words, with the use of

these graphs, desirable wall thickness and elastic modulus can be obtained depending on

the requirement of its application. From the results of DOE it can be concluded that to

reduce the wall thickness, linear draw rate should be increased or extrusion speed and

rotation speed should be decreased and vise versa. To reduce the elastic modulus, rotation

speed and extrusion speed should be increased and linear draw rate should be decreased.

From the post extrusion studies it was concluded that coagulation with acetone

and ammonium hydroxide mixture is more effective than just with ammonium hydroxide.

The results of this study showed that samples coagulated with acetone and NH 4OH

achieves higher degree of crosslinking. This method is more effective particularly in

tubes extruded with lower collagen concentration suspension as acetone removes the

water from collagen matrix and thus crosslinking becomes more effective.

Crosslinking study showed that crosslinking with glutaraldehyde is more effective

that crosslinking with EDC/NHS. Both TMA and swelling test results showed higher

degree of crosslinking with glutaraldehyde. Study of crosslinking time for glutaraldehyde

showed that degree of crosslinking increases with time. After 15 minutes of crosslinking

increase in degree of crosslinking is slower than in the initial 15 minutes.
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From the results of all the post extrusion studies it is concluded that optimized and

strongest tubes can be prepared by treating the tubes 15 minutes each with acetone and

NH4OH mixture for coagulation and glutaraldehyde for crosslinking.

Future work on this would be surface characterization to reduce the

thrombogenicity of collagen. This may include incorporation with heparin, which is

anti-throbogenic. This study showed that glutaraldehyde is more effective way for

crosslinking but there is some drawback with glutaraldehyde such as cytotoxicity by

release of unreacted glutaraldehyde and its derivative. Possible research could be in

direction of reducing the cytotoxic effect of glutaraldehyde in vivo or development of

other crosslinking method more effective that glutaraldehyde crosslinking.

From the biological point of view, the future work also includes testing of these

tubes in vivo. Develop a relation between the degree of crosslinking and degradation in

vivo will help a lot to control the degradation of this tube as graft in vivo. Other possible

work includes characterizing the tube biologically to mimic the function of blood vessel.



APPENDIX

HUMAN COLLAGEN CHAIN a(1)

Table A.1 gives amino acid sequence of human collagen chain a(1) including the

propeptides.

Table A.1 The Sequence of Human collagen α 1(I)
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