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ABSTRACT

REVIEW OF ALGORITHMS FOR RNA SECONDARY
STRUCTURE PREDICTION WITH PSEUDOKNOTS

by
Ingrid Helene Nielsen

Pseudoknots are structures that are formed from the base pairing of an RNA

secondary loop structure with a complementary base which lies somewhere

outside of the loop. The result is a structure, which plays a vital role in cell

structure rigidity, regulation of protein synthesis, and in the structural organization

of RNA complexes. Deciphering RNA folding patterns would begin to unravel

some of the mysteries surrounding the cell and its functions and open a new

world to scientists. Many algorithms have been written in this quest to predict

RNA's secondary structure but not many have been very successful.

In this thesis, some of these algorithms are discussed and considered for

their strengths and weaknesses. First those algorithms, which exclude

pseudoknots and other more complex structures, are presented. The later

algorithms include those, which attempt to include some of the more complex

structures into their calculations.

In the end, all the algorithms are taken into consideration and their

strengths and weaknesses compared so as to find some path for future direction.

By using the strengths found in these variety of algorithms and avoiding some of

the pitfalls encountered by others hopefully new algorithms will be developed in

the future that are more successful in deciphering RNA secondary structure.
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CHAPTER 1

INTRODUCTION TO RNA FOLDING

RNA folding is an essential aspect for many of the structures involved in the

regulatory, catalytic and structural roles within the cell. For this reason, scientists

have a big interest in deciphering the patterns by which the RNA molecule folds.

For a structure of length n, it has been estimated that there are about 1.8"

possible structures. This is a huge amount of structures to consider when

predicting the secondary structure of a particular sequence. For this reason,

secondary structure prediction remains a very computationally intense problem

(Shapiro, 1999).

The primary structure of RNA is the series of nucleic acids, which make up

its sequence. The basic secondary structure of RNA on the other hand, is

dominated by its base-to-base interactions known as helices. For the most part

these interactions are between complementary bases and are therefore only

simple Watson-Crick pairs which are easy to predict and seemingly easy to map.

1
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However, not all of the interactions within the RNA molecule follow the same

simple pairings. Many more complex interactions, which are characterized as

loops are possible within the structure. These interactions are much more

difficult to predict.

Some of these more complex interactions include stacking pairs, hairpin

loops, bulges, interior and multiple loops, which can be seen in figure 1.1 above.

These secondary structure elements although more complex than the simple

Watson-Crick base pairs can still be predicted with a certain amount of accuracy

using a wide variety of algorithms already determined. On the other hand,

structures such as pseudoknots are not as easily predicted by these algorithms.

In fact most of the common RNA secondary structure prediction algorithms out

there do not even take into account the possibility of a pseudoknot occurring

within the structure. These algorithms exclude pseudoknots from the prediction

in order to maintain a certain level of accuracy within a manageable amount of

time.

Pseudoknots are actually a form of RNA tertiary interactions however they

influence all aspects of the RNA structure. Overall it is the combination of

secondary and tertiary interactions as well as the structures interaction with
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outside forces such as water, ions and proteins that results in the final 3D

structure of the RNA and RNA-protein complexes. It is this final 3D structure that

determines the molecules final function and therefore, it is extremely important to

determine all the influences when determining the final structure (Shapiro, 1999).

Pseudoknots are formed when one of the loops in the RNA's secondary structure

pairs with a complementary sequence somewhere outside the loop. Another

reason why pseudoknots are so different than other RNA structures is that they

are not nested. As you can see in figure 1.2, the pseudoknot shown has base

pairs from one loop that interact with base pairs from a separate part of the

molecule, possibly another loop but not necessarily. Most RNA secondary

structures follow a nested convention always maintaining pairwise correlations,

meaning, "that for any two base pairs i, j and k, I (where i<j, k<I and i<k), either

i<k<ki or kj<k<I (Rivas and Eddy, 1999). Early algorithms, such as the Zucker

dynamic programming algorithm or Mfold algorithm rely on this nested

convention in order to predict RNA structure. They do this, by calculating the

minimal energy structure recursively on progressively longer subsequences. The

fact that pseudoknots violate this nesting convention is yet another reason why

many algorithms chose to ignore their existence in order to get a faster and

simpler algorithm.



4

At this time almost all known pseudoknots are made up of at least two

stems and at least three base pairs. For this reason, if you take into account all

four types of single stranded loop regions that are possible in RNA structures the

result is that there are theoretically 14 possible types of pseudoknots. Not all of

these pseudoknots are sterically possible however. The most common

pseudoknot found is the H-type pseudoknot, which is the result of hairpin loops

binding with single stranded regions and can been seen above in figure 1.3

(Shapiro, 1999). The other common types of pseudoknots include the I-type,

which, is formed between interior loops and single stranded regions and the B-

typed, which is formed between bulge loops and single stranded regions and can

be seen below in figure 1.4.
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Pseudoknots provide the RNA's secondary structure with a certain amount

of rigidity that doesn't come from some of its other more fluid structures. It is

able to do this because of the branching affect that occurs due to the overlapping

of base pairs. These overlapping base pairs are a result of the regular double

stranded helices of the structure connecting with some of the more flexible

structures of the RNA molecule. Usually pseudoknots are found in ribosomal

structures where they are essential for 3D enzymatic shape due to their

contribution to this structural rigidity. They can also be found in the catalytic core

of group I introns, RNase P RNAs, and in mRNA-ribosome interactions during

the initiation of translation and during frameshift regulation (Xayaphoummine et

al., 2003). Recently, pseudoknots have been found to be a common structural

motif in viral RNAs where they are thought to mimic certain tRNA structure.

vvnen pseudoKnots are round in cooing regions they tens to nave a very

large impact. For example, they are known to stimulate ribosomal frameshifting
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and translational read-through during elongation. Frameshifting is a process that

allows the cell, usually viral, to code for more then one protein using the same

sequence. Pseudoknots stimulate such processes by combining with so-called

"slippery" heptanucleotide sequences resulting in a slipping of the ribosome

during translation, which leads to a frameshift. However, the impact of these

structures is not limited to only coding regions; even non-coding regions are

highly influenced by the presence of pseudoknots. In such regions, pseudoknots

have been shown to initiate translation in one of two ways. The first is when they

fold at the 5" end of non-coding regions. Here they become part of the internal

ribosomal entry sites or IRES during translation control. These sites mediate

end-independent ribosomal attachment to a specific internal position in the

mRNA. The second is when the pseudoknot folds at the 3' non-coding region.

Here their influence is as a translational enhancer as well as providing a signal

for replication (Han, Lee and Kim, 2002). The final area where pseudoknots

seem to influence the cell is when they are found in molecules, which have some

sort of catalytic activity. In these types of molecules, pseudoknots are found in

the core of the tertiary fold and involve interactions between nucleotides that are

extremely far apart in the RNA's sequence.

Pseudoknots that are involved in translational control at the 5' end seem

to adopt one of two roles. In the first case, translation control is the result of a

specific recognition of the pseudoknot by a particular protein. In the second, the

presence of the folded pseudoknot is the only necessity for control with no

restrictions on the nucleotide sequence. Pseudoknots that are found in core
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positions otherwise known as core pseudoknots are necessary for the formation

of reaction centers in ribosomes. Most enzymatic RNA's that contain core

pseudoknots are involved in specific activities which are usually cleavage or self-

cleavage reactions (Stadler and Haslinger, 1997).

The complexity of these structures leads to two main reasons why it

becomes an issue to include pseudoknots into RNA structure prediction

algorithms. First of all there is the issue of structural modeling. Modeling nested

structures is simpler because a database of known structures and energies is

available to pull from when running the algorithm. This is not the case for

pseudoknots, there is no database of known energies and for this reason an

algorithm including pseudoknots most use some other form of description for the

structure. The second issue in pseudoknot modeling is that of computational

efficiency. Simple RNA structure prediction algorithms excluding pseudoknots

are able to compute a structure in polynomial time (Xayaphoummine et al.,

2003). The best of these algorithms is the Mfold algorithm which has a time

complexity of O(1n1 3) with space O(In12 ). It makes sense to say that since Mfold

algorithms have the best time and space complexities and are unable to predict

pseudoknots, prediction with pseudoknots would take at least as much time and

space to compute and in reality take much more. Lyngso has recently shown,

(Lyngso, 2000) that prediction with pseudoknots is in fact an NP-complete

problem and that there is really little hope that an algorithm that takes into

account all pseudoknots will have a polynomial time complexity. Therefore at

this time the only way to get a polynomial time complexity for an RNA secondary
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structure prediction algorithm with pseudoknots is to either limit the types of legal

pseudoknots allowed in the model or ignore the interactions that occur between

the neighboring base pairs. Finally if we compromise our level of accuracy we

can use heuristics for structure prediction on pseudoknots resulting in structures

of low energy but not necessarily of lowest energy.

Here we will be looking at a series of different algorithms, which predict

the secondary structure of RNA sequences. In the next chapter, basic algorithms

are presented that predict structures while excluding the presence of

pseudoknots. These algorithms all have polynomial time and space complexities

and return structures that are optimal based on the legal structures allowed for

that particular algorithm. In the third chapter, the algorithms are more complex

and all include pseudoknots into their legal structures even though each has its

own definition of what types of pseudoknots are allowed. These algorithms all

have slightly larger time and space complexities but all of them show that the

idea of including pseudoknots into structure prediction algorithms is in fact

feasible even if it does take slightly more time and space to compute the

necessary extra calculations. All of these algorithms are considered in the final

chapter where a discussion put forward on what might be the best route to take

in the future for new RNA secondary structure prediction algorithms.



CHAPTER 2

BASIC ALGORITHMS WITHOUT PSEUDOKNOTS

In this chapter, four simple algorithms are described which predict RNA

secondary structure while excluding the presence of pseudoknots in their

calculations. All of these algorithms, state that limiting the amount of legal

structures possible in the structure allows the algorithm to keep a time and space

complexity which is within a reasonable range for today's computers to handle.

Whether or not these algorithms would be able to handle pseudoknots were they

included is not addressed although studying these more basic algorithms is a

good background for evaluating those algorithms, which do include pseudoknots.

2.1 Comparative Modeling Approach

Currently the best way of determining the secondary structure of RNA is to use a

technique known as comparative modeling. This technique requires the

availability of several related structured with a homology of at least 30% and

works by identifying pairs of positions where mutations occur that result in

retaining base pair capability. The model finds structures with similar base

pairing and infers the unknown structure from the known related structure.

However since several related structures must be known for the model to work it

is not always possible to determine an accurate model. Another problem with

this model is that it is difficult to fully automate due to the fact that intervention is

9
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often necessary to identify the common mutations. So although, Protein servers

such as Swiss-Prot have been able to deal with the problems of comparative

modeling in a reasonable way this is still a ways off for RNA modeling since it

would require many components and access to a know database of RNA

structures (Lyngso, 2000).

2.2 Genetic Algorithm Approach

Genetic algorithms (GA's) are stochastic optimization techniques that work on

populations of possible solutions changing them through series of steps to

become closer to a thermodynamically fit model. These series of evolutionary

steps involved in the algorithm involve changing some of the solutions known

here as a GA mutation as well as the recombining of certain features of the

parental solution known as the GA crossover and finally the GA selection which

models natures survival of the fittest mechanism. The next generation is then

selected based on predefined fitness criteria. The steps of the algorithm are then

repeated until no further improvement can be found. Although the results

produced by the genetic algorithm approach are not necessarily the optimal

solution, the solutions have been shown to perform well under certain tests.

The genetic algorithm approach deals with only a single RNA sequence

and uses free energy as its fitness criterion. Free energy is the energy

associated with a chemical reaction that is used to do work and is defined as the

sum of the systems enthalpy plus the product of the temperature and the

entropy. The population used to perform the genetic operations is made up of an
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array of elements where each of the elements represents a base-paired region

known as a stem (Shapiro, 2003).

In (Chen et al., 2000) a genetic algorithm approach for RNA secondary

structure prediction is shown which takes into consideration not only the

structural energy but also the structural similarity among different sequences.

The method they propose is able to predict a common RNA structure without

finding the alignment of the sequences, which genetic algorithms usually require

for optimal results. The algorithm begins by generating a list of all possible

stems based on a particular sequence. It achieves this by applying a free energy

GA to a random population of structures until a certain level of stability is

reached. From this list, stems, which are compatible with those already in the

structure, are added one at a time in a stepwise manner as long as the resulting

structure is more stable than the parent structure. This process is repeated until

no stems can be found that will increase the stability of the parent structure.

Once a structure is determined the three genetic operations; crossover,

mutation, and selection, are repeated using free energy as the only criterion until

the most stable structure is determined. The probability that a structure will be

selected for a crossover event is proportional to its free energy with the offspring

being a random selection of stems from each of the two parents. Stems that

close unstable regions are subject to the mutation operation. These stems are

removed from the structure and new stem is added in a completely random

manner. In Chen's algorithm if there are n structures in the population then n

structures are mutated and n pairs of structures are subject to crossover. This
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results in a population that increases three-fold each time an iteration of the

genetic algorithm is complete. For this reason, the selection operation is a

necessity. This is because the selection operation chooses the next generation,

by maintaining the size of the population as n and keeping the time and space

complexity of the algorithm consistent. Selection takes into account both the

structural stability as well as the structural distance between each of the solutions

to prevent the solutions chosen from converging prematurely to a local favorable

solution. After the operations are complete a conservation score is determined

for each of the structures in the population and the genetic algorithm is repeated

until the structures converge to one final optimal solution.

The optimal solutions in Chen's version of the genetic algorithm for RNA

secondary structure prediction have been shown to correctly predict on average

about 87.7% of the known base pairs of a tRNA structure with at least one of the

top ten structures predicting on average about 98.8% of the known base pairs.

All together the top ten structures predict an average of about 99.8% of the

known base pairs within a structure, a very good result.
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Chen's genetic algorithm takes 0(n 2) comparison time where n represents

the maximum number of stems from all the structures that were considered. The

computational time required is 0(n2m2N2) where N is the number of sequences

and m is the maximum number of sequences found. Chen characterizes his

algorithms as being an alternative for poorly determined structural domains or for

molecules with few well-determined domains (Chen et al., 2000).

In the case of prediction without pseudoknots, Chen's genetic algorithm is

a very good example of an algorithm that is very accurate but is also highly

computational. Most genetic algorithms are run simultaneously using several

processors in order to accomplish this massive task of creating these

generations. A single computer can easily handle one generation but in order to

achieve high levels of accuracy it is often necessary to compute hundreds of

generations over several runs of the genetic algorithm. For this reason, although

highly accurate, genetic algorithms may not be the most efficient way of

predicting structures especially very large structures.

2.3 Energy Minimization Models

Energy minimization models otherwise known as Mfold type algorithms or Zucker

algorithms based on their originator, determine the secondary structure of RNA

by calculating free energy. From these calculations, the optimal structure is
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considered to be that which has the lowest free energy. The time and space

necessary for computations in such an algorithm depend entirely on the type of

legal structures allowed, and their free energies. The basic Mfold algorithm

which excludes pseudoknots runs in 0(n 3) time with a space complexity of 0(n 2)

where n is the length of the sequence being determined.

These types of algorithms are recursive in nature and consist of two parts,

the fill and the traceback. The fill component of the Mfold algorithm takes most of

the total computational time and space. During this part, the algorithm calculates

and stores the minimum folding energy for each of the fragments contained in the

structure. Smaller fragments such as pentanucleotides are used as a basis for

this energy determination. The resulting calculations are saved in a matrix

whose size is dependent on the length of the sequence being determined. The

traceback component of Mfold type algorithms basically assembles the final

structure by searching back through the folding energy matrix and adding one

base at a time to the evolving structure. The time needed for a single traceback

is very negligible as compared to the entire algorithm however several thousand

tracebacks may be necessary in order to completely assemble the optimal

structure. The reason for this large amount of traceback is because the amount

of tracebacks just like the size of the energy matrix is dependent on the size of

the sequence being determined as well as on the energy range being explored.

Therefore, for large sequences and for wide thresholds in energy large amounts

of tracebacks must take place in order for the optimal structure to be determined.
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Mold type algorithms are traditionally designed to output a single structure

as the solution but can be modified by the user to output more if necessary.

Since these algorithms work recursively to find the optimal folding for each sub

fragment of the entire structure, the optimal folding of the entire structure is easily

determined without any additional cost to time or space. This is the main reason

pseudoknots are ignored in these types of algorithms singe they are made up of

at least two stems and as a result influence the folding of all the sub-fragments

involved. Excluding pseudoknots allows the algorithm to run must faster and

much more efficiently computationally (Shapiro, 1999).

Mold type algorithms represent the most computationally efficient class of

algorithms for prediction without pseudoknots. The best of these algorithms runs

the fastest with the least amount of pull on memory resources of any secondary

structure prediction algorithm developed as of yet. However, it is necessary to

have some prior knowledge of energy within structures in order to receive the

best results. For this reason, including pseudoknots in such types of algorithms

immediately begins to complicate things. This is mainly because very little is

known about the energies involved in pseudoknot interactions. Even with this

lack of knowledge though, it seems using the ideas from Mold algorithms would
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be the best starting place for developing new algorithms for structure prediction

that do include pseudoknots.

2.4 Stochastic Context-free Grammars and Evolutionary History

In (Knudsen and Hein, 1999) a model was that incorporated evolutionary history

into the prediction of RNA secondary structure. This model uses an alignment of

RNA sequences as its input and the results are output as one single common

structure. There are two main parts to this model; the first is the stochastic

context-free grammars (SCFGs) that are able to give a probability distribution of

structures. The second part is the evolutionary model begins with the creation of

a set of phylogenetic trees. These trees are built using maximum likelihood

estimations (ML) from the model and serve as a way to relate the sequences.

Using these trees can reveal information about structures by tracking the

mutation patterns in RNA sequences. After the trees have been built, maximum

a posteriori estimation (MAP) is used to predict the structures of the sequences.

This sort of estimation basically finds the most likely structure based on all the

information known thus far. The accuracy of this algorithm is due mainly to the

use of the prior distributions, which were determined by the SCFGs earlier.

However, this accuracy is usually limited to small sequence sets. As long as the

sequence is modest in length, these distributions will ensure accurate structure

predictions from even just a small amount of related sequences.

0ne of the issues with this algorithm is that it needs a sequence alignment

to perform optimally. The reason for this is because the MAP calculation is
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performed on a series of sequences that are assumed to have a structural

alignment. Also multiple sequences are necessary to create the phylogenetic

trees, which are used by the MAP calculations. Another big issue with this model

is that pseudoknots cannot be modeled. The reason for this is not because of

time or space constraints but rather constraints on the use of the SCFGs. These

SCFGs can model most long range interactions found in RNA structures but

cannot model any type of crossing interactions. Since pseudoknots are mainly

composed of crossing interactions they are unable to be modeled using SCFGs

and cannot therefore be predicted using this algorithm. Another one of the

limitations with this algorithm due to the use of SCFGs is that loop and stem

lengths are automatically considered to be geometrically distributed. Some of

these issues can be fixed by using hidden Markov models (HMMs) instead of the

SCFGs however, more issues can develop along with these changes and the

accuracy of the model is reduced.

The accuracy of this model was found to be comparable to that of Mfold

algorithms having only slightly lower accuracy levels based on single sequence

input which is the only way to input data for Mfold. The accuracy improves when

a series of structures are used, especially if they are properly aligned. Knudsen

and Hein found that most of the inaccuracy in the models came from regions

where pseudoknots were known to occur and that taking into account the

phylogenetic data helped improve their accuracy level by approximately 5%.

(Knudsen and Hein, 1999)
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Using what has been seen to work and even what has failed new

algorithms are being introduced which try to conquer this task of including

pseudoknots. Most of these newer more complex algorithms find their basis in

these simpler algorithms, which have been discussed here. A few of these

algorithms that include pseudoknots are discussed next in the following chapter.



CHAPTER 3

ALGORITHMS WITH PSEUDOKNOTS

In chapter 2, simple algorithms were described which predicted RNA secondary

structures while excluding pseudoknots. In this chapter, five algorithms are

discussed which do take into account the presence of pseudoknots in RNA

structures. Although each of these algorithms has a certain time and space

complexity, they all contribute to the theory that RNA secondary structure

prediction with pseudoknots is in fact possible.

3.1 Energy Based Predictions

In a recent paper Rivas and Eddy use a very specific representation to diagram

the RNA secondary structures commonly formed (Rivas and Eddy, 1999). This

representation allows them to handle the more complex structures like

pseudoknots for algorithmic purposes. A very important feature in their

representation is that there can be no more then two bases that are interacting at

once. The RNA's backbone is represented as a straight line with the 5' end

always placed on the left. Secondary interactions are represented as wavy lines

that connect the two positions that are interacting along the backbone. Figure

3.1 shows this representation with common structures found in RNA, H

represents a hairpin, S a stem, B a bulge, IL are internal loops and M are

multiloops. In this representation you can easily see that any non-nested

structure is considered to be a pseudoknot.

19
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(Rivas and Eddy, 1999), describe their nested algorithm using two

triangular matrices of size N x N. The matrix vx(i,j) is defined as the score of the

optimal folding between the paired positions i and j. The other matrix, wx(i,j), is

defined as the score of the optimal folding of positions i and j whether or not they

are paired. For these pairs, the position i is defined as less than or equal to j

since i is always found at the 5' end and j at the 3' of a fragment. After the

algorithm has defined these two matrices they are filled recursively with the

appropriate scores. For the matrix vx the scores added are highly influenced by

the presence of hairpins, bulges, internal loops and multiloops found within the

structure since vx is calculated using irreducible surfaces. The reason for this

influence is that hairpin loops represent the irreducible surface of with an order of

one. An order of one represents only one secondary interaction occurring such

as with stems and bulges. Internal loops represent all the irreducible surfaces

with an order of two otherwise known as multiloops. The optimal function for vx(i,

j) is given below in figure 3.2. EIS stands for the scoring function of the

irreducible surfaces, P I represents the score for closing the multiloop and M is the

score for starting the multiloop.
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The wx matrix, on the other hand, is influenced by single-stranded

nucleotides, external pairs and bifurcations. This matrix is used only when there

are no external base pairs to represent. The recursive function used to fill this

matrix can be seen below in figure 3.3. In this recursion P represents the score

given to the external base pairs, and Q is the score for the single stranded

nucleotides. Both Q and P in most cases are given approximate values of zero.

Figure 3.3 Optimal recursive function for the wx matrix.

Since pseudoknots are non-nested structures it is impossible to represent

them using only the two matrices described earlier so Rivas and Eddy added gap

matrices to represent these more complex structures. The use of such gap

matrices can be seen in figure 3.4 below which shows the graphical

representation used by Rivas and Eddy for a simple pseudoknot structure. In
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this diagram, two gap matrices are represented that have complementary holes.

Putting the two matrices together forms the simple pseudoknot desired.

In order to create the gap matrices the algorithm uses generalized forms

of the wx and vx matrices known as whx(i,j:k,l) and vhx(i,j:k,I). The matrix

whx(i,j:k,l) is defined as the optimal folding connecting the segments [i,k] and [l,j]

and is used when the relationship between the four points is undetermined. On

the other hand, vhx(i,j:k,l) is defined as the optimal folding connecting segments

[i,k] and [I,j] when i and jare paired andkandIare paired. Since there are two

other possible situations that can arise from the interactions of these four points

two matrices are added into the algorithm at this point to cover all these

possibilities. These two new matrices are yhx(i,j:k,l) which is defined when k

and I are paired but the relationship between i and j is undetermined and

zhx(i,j:k,l) which is defined when i and j are paired but the relationship between k

and I is undetermined. Although these four new matrices are the basis for the
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pseudoknot algorithm the original two matrices are still considered as special

cases of whx and vhx when no hole is present in the gap matrix.

Using combinations of these matrices, Rivas and Eddy's algorithm is able

to solve most RNA configurations that include pseudoknots as long as they can

be broken down into a series of gap matrices that follow a set of defined

recursion rules. Structures become unmanageable when they require more then

two gap matrices for representation since this requires a higher order of

calculations which at this point the algorithm is unable to handle (Rivas and

Eddy, 1999). This particular algorithm can however handle overlapping

pseudoknots and some non-planar pseudoknots as well as pseudoknot chains of

any length. Whether or not an algorithm can handle chains of pseudoknots is a

good judge of the algorithms ability. This is because a chain of pseudoknots can

be thought of as a good representation of classes of much more complex

structures. The fact that this particular algorithm can handle lengths of any size

is a good testament to its ability to determine complex structures even though the

algorithm cannot handle all complex knotted structures (Lyngso, 2000).

Rivas and Eddy's pseudoknot algorithm has a worst case time complexity

of O(N 6) with a storage of O(N 4). These complexities are the main drawback for

this particular algorithm since the large amount of time and space needed leads

to constraints on the size of RNA that can be analyzed as well as on the

complexity of the structures to be determined. Dynamic programming

algorithms to determine RNA secondary structure all have some sort of

inaccuracy within them due to some of the approximations that are necessary to
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carry out all of the necessary calculations. This dynamic programming algorithm

is no different; in fact it actually has a slightly higher level of inaccuracy due to

the larger amount of legal structures the algorithm allows. This is mainly due to

the fact that there is very little thermodynamic information available for

pseudoknotted structures. Implementing more complete set of parameters as

well as deciphering more thermodynamic information would take care of the

inaccuracy of this algorithm leaving its complexity as its only drawback for

structure prediction. (Rivas and Eddy, 1999)

All in all Rivas and Eddy's energy minimization model is a very good

algorithm for structure prediction with pseudoknots. Much of the basis of this

algorithm can be traced back to the Mfold algorithms and the predictions made

there based also on energy minimization. Rivas and Eddy took the basic Mfold

algorithm one step further and expanded it to include a wide variety of much

more complex structures and interactions. In doing so they increased the time

and space due to much more intense computations and lowered the average

accuracy yet they still maintained an algorithm which accomplished the goals

intended. This algorithm is a good starting point for any algorithm that includes

pseudoknots because it gets the job done. If improvements could be made on its
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time complexity and accuracy levels this algorithm would be the best choice for

structure prediction with pseudoknots.

3.2 Exactly Clustered Stochastic Simulations

Xayaphoummine proposes that pseudoknots can be predicted using long-time-

scale RNA-folding stochastic simulations by modeling the opening and closing of

RNA helices (Xayaphoummine et al., 2003). Since stochastic simulations have

the tendency to become inefficient, Xayaphoummine developed a generic

algorithm that accelerates the simulations by exactly clustering the main short

cycles that lie among the folding paths that have already been explored.

Comparing these findings with non-clustered simulations helps predict the actual

prevalence of pseudoknots within the RNA structures.

It was shown in chapter 2 how many algorithms exclude pseudoknots from

calculations of RNA structure prediction due to their complexity. The presence of

these more complex structures would have resulted in a much higher time and

space complexity for the algorithm, along with the need for a more complex

algorithm to deal with them. Xayaphoummine takes pseudoknots into account by

using polymer theory to model the 3D constraints associated with these

structures. Within this algorithm the entropy costs of such structures as

pseudoknots and loops are evaluated all on the same basis. This is achieved by

modeling these structures as a series of stiff rods that are connected to polymer

strings. The rods are meant to model the helices found within these structures

with the strings representing the unpaired regions. The only set back to using
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such a method is that some hardcore interactions are ignored between bases

and structures that could actually stereochemically prohibit certain other

structures from forming. In practice however, this has been found to be rather

limited and depends mainly on the G + C content of the sequence. Overall it has

been seen to affect only about <1-10% of the predicted structures

(Xayaphoummine et al., 2003).

This stochastic modeling approach works by following a particular

pathway involving the opening and closing of one helix at a time. The result is

the possibility of either the elongation or the reduction of that particular helix in

order for the structure to reach equilibrium. The equilibrium is considered to be

the minimum size for that particular helix. For any given RNA sequence the

proportion of helices in the structure is normally equivalent to approximately the

square of the length of the sequence. Figure 3.5 shows the stochastic

transitions necessary to open and close a helix surmounting the thermodynamic

barrier to form a new helix.
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The ECS algorithm involved in these stochastic simulations works to

reduce the computational stain, which is usually involved with trying to simulate

RNA-folding dynamics. In this algorithm, this is accomplished by clustering.

Recently explored configurations are combined together into one cluster and can

then be collectively revisited during further stochastic simulations. The clustered

configurations loose their stochasticity in terms of individuality instead they take

on a level collectively, which is proportionate to the number of configurations

present within the cluster as a whole.

It has been shown that this approach to secondary structure prediction is

efficient for predicting pseudoknots even though there is no actual optimal

solution found. Instead, low-energy structures are determined and visited

through simulations as the helices open and close. Xayaphoummine was able to

use the algorithm to come to some conclusion about the percentage of

pseudoknots present in RNA structures in general. Based on the results,

pseudoknots are distributed from a few percent to over 30% in areas with a high

G + C content. These results were consistent with experimentally determined

RNA structures. Also it was shown that the average proportion of pseudoknots

increases with the amount of G + C content in the sequence and independent of

the length of the sequence. Finally, the algorithm showed that excluding

pseudoknots from the legal structures creates a larger amount of inaccuracy then

the small amount of inaccuracy that is possible from adding the additional

calculations necessary to include them (Xayaphoummine et al., 2003).
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Based on the results that Xayaphoummine found, it seems likely that

using the ECS algorithm with other simpler structural models discussed earlier

would be the best way to benefit from this algorithms strengths. Combining a

more computationally efficient and accurate algorithm for structure prediction with

this algorithm using it to predict where and how many pseudoknots may occur

could result in a relatively effective model to predict RNA secondary structure

with pseudoknots

3.3 Simple Dynamic Programming Algorithm with Pseudoknots

Several simple dynamic programming algorithms have been determined that

does in fact take into account the presence of pseudoknots within the RNA

secondary structure. Akutsu presented one such algorithm in (Akutsu, 2000).

The basic problem Akutsu's algorithm looks at is the maximizing of the number of

base pairs. This combined with some of the ideas used by a tree adjoining

grammar approach suggested by Uemura in (Uemura et al., 1999) were

combined in order to improve the basic secondary structure prediction algorithm

using energy minimization in terms of accuracy of optimization. Tree adjoining

grammars are used to generate trees by replacing all of the internal nodes of the

current tree with a new tree, which is based on the rules of grammar. This

approach is similar to the way context-free grammars generate strings by

replacing all non-terminals with strings from the current string (Lyngso, 2000).

The basis of Akutsu's algorithm is a basic structure prediction algorithm

that includes basic pseudoknots by maximizing the number of base pairs

whenever a pseudoknot is encountered. This algorithm by itself has a time
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complexity of O(n 5) but this can be reduced to O(n 5-8) with a small modification.

Scoring in this algorithm is based on the number of base pairs where g, 6 are

fixed constants with the criteria that 0<E and 6<1. This modified algorithm is able

to compute for most RNA sequences, a structure that has a score of at least 1- E

of the optimal. Although this complexity is still rather high, Akutsu suggests that

combining these ideas with heuristics could lead to a more manageable

algorithm, which contains very useful techniques for predicting pseudoknotted

structures (Akutsu, 2000).

In Akutsu's algorithm the score function is defined as the total number of

base pairs that are found within the secondary structure. This score represents a

very generalized estimation of the free energy of the structure. The algorithm

has a set of defined conditions that are meant to represent simple pseudoknots.

A set of base pairs represented as Mj0,ko are considered a simple pseudoknot

only if these conditions are met and a set of base pairs called M is an RNA

secondary structure with simple pseudoknots if Mjh,kh is a simple pseudoknot for

a consecutive subsequence. (Akutsu, 2000)

The general recurrence scheme that Akutsu uses can be represented as

an S-like shape since the involved pair is folded along the backbone to form an S

pattern. The pseudoknot is then formed by pairing a base in the middle of the S

form with one on the outer portion of the form. Crossing is not allowed however

more complex recursive pseudoknots can be formed by allowing two bases on

the same stem to pair. Figure 3.6 shows the basic recurrence scheme found in

Akutsu's algorithm. The gray areas of the structures are defined structures
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where the black areas are not. It is in these black areas where the addition of

new base pairs takes place.

Using this type of S-shaped representation of the structure and recurrence

scheme allows Akutsu's algorithm to find the structure, which possesses the

least amount of energy. The basic element in Akutsu's recurrence is to find the

minimum energy between a series of base pairs; these include i and 1 0 in one of

the outer stems, as well as j and k in the other outer as well as the middle stem.

All of these pairs can be seen in their S shape pattern in figure 3.6 above. In

order to evaluate the structure either a base pair is added between the middle

stem and one of the outer stems or an additional minimum energy structure is

added to one of the stems. Recursive elements are built in this way with one

element depending on another if and only if they share the same leftmost base

represented as i onin figure 3.6.

For the most part, Akutsu's recurrence is very similar to Rivas and Eddy's

discussed earlier. However, Akutsu's runs in a time of 0(In1 5) using O(In13) space

both slightly faster and smaller than Rivas and Eddy's. One limitation is that

Akutsu's algorithm can only handle pseudoknots in chains of exactly two. Also

since Akutsu's recurrence is so similar to Rivas and Eddy's it makes sense that it

cannot deal with any pseudoknot that are not included in Rivas and Eddy's
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model. The fact that this algorithm is slightly faster than other algorithms that

include pseudoknots with less space needed makes it easy to understand why

the pseudoknots allowed are much more general then in the other algorithms.

Decreasing time and space leads to an increase in the generality of the

pseudoknots included. (Lyngso, 2000)

3.4 Motif Algorithms

Motif algorithms such as RNAmotif (Macke et al., 2000) make use of both

computations and public databases. RNAmotif is able to describe the structural

elements found within RNA structures and then search through any available

nucleotide database in order to find other organisms that contain the same

structures. RNAmotif uses a rather flexible language to define its structures and

can therefore specify any type of base-to-base interaction. A user-controlled

section allows the user to add criteria and patterns that they choose to suite their

needs. The algorithm can be classified as robust yet flexible since it is able to

deal with any structural features found in RNA secondary structures from basic
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base pair interactions to loops and hairpins all the way to pseudoknots and

tetraloops.

Within the RNAmotif algorithm the structures are defined at the lowest

level to be a set of descriptors, which distinguishes paired and unpaired positions

in the structures. These descriptors can be given parameters such as length of a

sequence, base pairings, mismatches and mispairings, which the user inputs

along with the sequence. If necessary the user may define to have more then

just base pairs, they can include both base triples and base quadruples as legal

interactions since RNAmotif allows for all 16 types of legal base pairings

The actual algorithm for RNAmotif uses two stages; the first is known as

the compilation stage. The compilation stage converts the users descriptor into a

tree, which is based on the helical nesting of the motif. Every duplex that the user

defines can be represent as a binary tree with the root of the tree representing

the helix, the left sub-tree representing the motif on the interior of the helix and

the right sub-tree representing the motif that immediately follows the defined

helix. At this stage all of the consistency factors are checked to make sure they

are correct. If the descriptor is not valid or no solution exists the algorithm will

not continue. If the descriptor makes it through all the tests, the lengths of the

motif elements are found and the limits to where each element begins and ends

are computed. The second stage then moves on to perform a depth first search

on the compiled tree. Table 3.3 shows the types of trees that can be created from

user inputted descriptors and the order of symbols resulting from the depth first

search on that tree.
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The last row in Table 3.3 shows the representation of a pseudoknot using

this descriptor motif. Pseudoknots are easily dealt with in RNAmotif by collecting

all the duplexes involved in the formation of that particular knot into a single tree.

The root of the tree is the helix at the 5' end of the structure, the left sub-tree

represents all the helices contained within the pseudoknot and the right sub-tree

represents all helices immediately following the pseudoknot.

After the formation of these binary trees based on the necessary

descriptors the tree traversal begins by testing the first position of the target

sequence against the left-most sub-motif of the descriptor for similarity. The

algorithm is then called recursively to find all the solutions possible for the sub-

motif in the left-most interior region. Once all the interior regions have been

exhausted the region following the left-most motif is searched. The point is that
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the algorithm is searching to find a solution that matches the original descriptor.

For each complete solution obtained it is scored, ranked and stored. The scoring

allows the user to add certain constraints on the motif that were omitted before

due to their complexity in programming. It also helps reduce the number of

candidate structures by automatically eliminating structures that fall below a

certain threshold level. When all candidates at a certain level have been

exhausted, the search is repeated moving one position over in the target

sequence and starting from the top of the tree until the entire sequence has been

searched. The structures with the highest score and lowest energy is returned

as the optimal solution (Macke et al., 2001).

Motif algorithms work wonderfully when a well-maintained database is

available to pull from and horribly when there is not. Like comparative modeling

introduced back in chapter 2 the limitations of this model are dependant on the

amount of experimental research available. If a lot is known about a certain type

of RNA and its structures then using a motif algorithm is the easiest and best

route to take but if experimental research is scarce this type of model should be

avoided so as not to give results based on little or no knowledge.

3.5 Genetic Algorithms including Pseudoknots

In 1996 Shapiro introduced a version of the genetic algorithm that was able to

deal with the presence of pseudoknots within the RNA structure specifically with

H-type pseudoknots (Shapiro 1999). The algorithm itself is non-deterministic and

works by iterating in parallel a three-step procedure that is supposed to mimic
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evolution. Like the genetic algorithm presented earlier in chapter 2, these steps

are selection, mutation, and crossover all of which work in the same basic way as

the earlier algorithm.

The algorithm starts by generating a stem pool, which consists of all of the

stems both fully, and partially zipped that are possible given the original

sequence. This pool is then initialized by the processor as a series of small

structures. For each generation, the algorithm selects two of these initialized

structures and its eight neighbors using a ranking rule, which is biased towards

lower free energies. These two structures labeled P1 and P2 are then mutated

by addition of randomly chosen stems from the stem pool to form C1 and C2 the

children of the original structures. In this step, stems that have the ability to form

pseudoknot type interactions are included which was not the case for the

previous genetic algorithm presented. A crossover operation is then performed

between the two parents and the two children by taking stems from the parental

structures and distributing them between the children. From here, the child with

the lowest energy is selected as the best. For each of the iterations of the

genetic algorithm there are 16,384 new structures created. The algorithm is

finished when a stable population if formed.

In order to add in the feature of including stems that can form

pseudoknots, a few issues have to be dealt with. First off and most importantly,

some sort of definition has to be given as to what types of stems can and cannot

form a pseudoknot. In this case this is defined as any two stems, which are not

conflicting or overlapping can form a pseudoknot if and only if one side of one of
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the stems is outside the bounds of the 5' and 3' ends of the other stem while the

other side of the stem is within bounds on both ends. In order to implement this

definition the algorithm keeps two lists of stems on each processor in such an

order so that their 5' ends are always presented first. The first list contains the

stems that form the secondary structure of the RNA sequence and the other

contains all the stems that can complete the formation of pseudoknots. For each

generation in the algorithm the child structures are based on the stems from the

first list forming an intermediate secondary structure. Once these structures are

formed, the compatible stems from the second list are added whenever possible

in order to form H-type pseudoknots. H-type pseudoknots are the most common

for of pseudoknots and are the result of a hairpin loop binding with a single

stranded region. Not all structures will have possible pseudoknots so for this

reason in each generation, structures with and without pseudoknots will compete

to be the optimal structure.

Another issue with including pseudoknots in the genetic algorithm is how

to deal with their free energy. Since the best structure from every generation is

selected based on their free energy it becomes very necessary to have a set way

of dealing with pseudoknots in terms of energy. Since further experiments need

to be performed on pseudoknots before a set energy rule can be determined

Shapiro deals with this issue by using a simple energy rule. This simple rule

assumes that a stable H-type pseudoknot can have connecting loops that are no

longer then 16 nucleotides. With this assumption a value of 4.2 kcal/mol is

assigned to each of the loops a positive value since the loop destabilizes the
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structure. The free energy of the pseudoknot itself is then defined as the sum of

the energies of the two stems that are involved along with their stacking energies

and the energies of the two connecting loops.

Although the two main issues of including pseudoknots into a genetic

algorithm are dealt with here there are still many limitations to using it, mainly the

fact that only H-type pseudoknots can be determined at this time. This is most

likely due to the fact that there is not a lot of experimental data on pseudoknots

out there. As more research is completed and more pseudoknot structures

analyzed more rules can be defined and added to such existing algorithms to

form more complete and accurate structure prediction tools. This particular

algorithm for example, is used as part of an RNA structure analysis workbench

called Structurelab, which uses a series of algorithms to determine the secondary

and tertiary structures of RNA (Shapiro, 1999).

Workbenches such as this are a good way of finding a compromise

between existing algorithms. If one algorithm is known to do well in one area and

another in a completely different then use both together to determine the

structure and your accuracy will increase. Running multiple algorithms can

obviously be computationally draining for a single processor but if they can be

automated into a server such as the one that Structurelab runs on they will serve

as the best way of determining structure both with and without pseudoknots.



CHAPTER 4

PSEUDOKNOT DATA SET

Very few pseudoknots have been experimentally determined in the lab. This is

one of the main reasons why it is so hard to predict these structures using

automated algorithms. Without the experimental data about energy and folding

patterns for these structures it becomes a trial and error game to determine what

other information is available that will be useful in determining structure

prediction patterns. This chapter will introduce some of the pseudoknots that

have been experimentally determined using such techniques as X-ray

crystallography and nuclear magnetic resonance (NMR). This small sample set

can be used in the future for testing both the present algorithms presented here

and future algorithms to determine how efficient they are for predicting RNA

structures that contain pseudoknots.

4.1 Turnip Yellow Mosaic Virus

The turnip yellow mosaic virus was determined by NMR technique in 1998 and

contains 1056 residues. Within the structure a simple pseudoknot was found on

the acceptor arm of the structure containing 44 of the bases and no water

molecules. 	 The structure is very reminiscent of tRNA structures. The

C-C-A. Figure 4.1 shows a 3D representation of the pseudoknot determined

38
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from the NMR deciphering of the turnip yellow mosaic virus

(http://www. rcsb . org/pdb/).

4.2 Simian Retrovirus Type-1

This particular simian retrovirus was determined using the NMR technique in

2000. The structure contains 540 residues total with 36 being involved in the

pseudoknotted structure. This small fragment in chain A contains the sequence:

A-C. This particular pseudoknot is involved in ribosomal frameshifting and can

be seen in the 3D representation below in figure 4.2 (http://www.rcsb.org/pdb/).
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4.3 HIV Type-1

HIV Type-1 is considered here to be a complex of nucleotidylitransferase and

RNA, which was deciphered experimentally by X-ray diffraction in 1998. This

extremely large complex contains multiple chains and a huge amount of varied

motifs however approximately 120 residues are involved in a complex with a 33

base pseudoknot. This extremely complex structure gives a variety to a data set

in that this is not a simple structure to decipher yet the pseudoknot contained

within is relatively small. This type of structure helps to test the limits of an

algorithm in terms of size and complexity as well as in terms of inclusion of

pseudoknots. Figure 4.3 below shows a 3D representation of the various chains

involved in this HIV complex (http://www.rcsb.org/pdb/).

4.4 Mouse Mammary Tumor Virus

The mouse mammary tumor virus was deciphered in 1996 using the NMR

technique. This frameshifting pseudoknot contains 32 bases which are: GAG-
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is a relatively small structure in terms of bases which can seen represented

along the purple line in the 3D representation in figure 4.4. However, just

because this structure has relatively few bases does not mean that the

structure is not complex as can also be seen below. This makes this

structure a good addition to a data set as you try to test the limits of an

algorithm and its accuracy (http://www.rcsb.org/pdb/).

4.5 Pea Enation Mosaic Virus Type-1

The pea enation mosaic virus type-l was determined in 2002 experimentally

using NMR. The entire structure contains a total of 405 residues however,

chain A contains the pseudoknot and consists of only 28 bases, which are: U-

pseudoknot contained in this chain is pl-p2 frameshifting pseudoknot, which

is naturally occurring. 15 models in all have been determined for this

particular viral structure all by use of NMR. From these models a 3D
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representation has been created which can be seen below in figure 4.5

(http://www. rcsb . org/pd b/).

4.6 Beet Western Yellow Virus

This RNA sequence was taken from the beet western yellow virus and contains

This structure was deciphered in 2002 using X-ray diffraction

techniques. This molecule is not very large but in contains some features that

the previous examples have not and that is that it has metal ions within the

molecule. These metal ions are not a part of the sequence obviously but they do

influence the structures shape. Including diversified molecules in a data set is

essential in order to completely test something like a structure prediction

algorithm. Without the diverse data set there is no way of knowing what the

limitations are of such algorithms. Without knowing these limitation we have no

way of knowing how accurate our solutions actually are. Figure 4.6 below shows
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a representation of the beet western yellow virus and you can see where the

large metal ions are inserted inside the molecule influencing the final shape of

the structure (http://www.rcsb.org/pdb/).



CHAPTER 5
DISCUSSION OF FUTURE PATHS FOR ALGORITHMS

In the past few chapters' algorithms have been presented which predict RNA

secondary structure with and without the inclusion of pseudoknots. The result

was shown that algorithms that do not include pseudoknots will have a smaller

time and space complexity but are not necessarily more accurate then those that

do include pseudoknots. Comparative modeling seems to be the best way

overall to predict secondary structures, as it is the most accurate. However,

there are many problems and obstacles that go along with using a model such as

this. First off, many known structures must be retained before such a model can

be successful and for this reason, at this time this model can not be successful

with pseudoknots since so little is known about them and so few structures have

been determined experimentally. In the future, this algorithm will be a very useful

tool for RNA prediction and so for now other types of algorithms must be focused

on.

Genetic algorithm approaches both with and without pseudoknots were

discussed previously. Addition of pseudoknots to the algorithm added to its

complexity by adding an additional level of computations to each generation in

the genetic populations. The basis of both algorithms are essentially exactly the

same they both uses lists of stems to hold the possible structures that can be

formed the only difference was that in Shapiro's version of the genetic algorithm

(Shapiro, 1999) an extra list was created to hold the stems which were able to

form pseudoknots. After the initial formation of the population a pseudoknot stem

44
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was added wherever it was possible to form a new population, which contain

some structures with and some without pseudoknots. The addition of these two

extra steps in the algorithm resulted in a population that was more accurate to

real RNA structures with just a minimum amount of extra calculations. These two

algorithms are a very good example of making the necessary changes in order to

accommodate more possible legal structure. But even in this case, Shapiro's

genetic algorithm does not cover all of the possible structures that can be

formed, even though it does shows where to go in order to improve existing

algorithms to include more and more structures as they are deciphered

experimentally.

Energy based models are the most common types of algorithms found for

RNA secondary structure prediction. Tons of algorithms can be found that tweak

different calculations in different areas to form slightly new algorithms with

perhaps slightly higher accuracy or maybe even slightly lower time and space

complexities. Algorithms not including pseudoknots are mostly known as Mfold

type algorithms based on the original algorithm presented by Zucker back in the

1970's. These algorithms have evolved since then but the current Mfold

algorithms are still the fastest of all secondary structure prediction algorithms and

are usually the most accurate of those not including pseudoknots. The time

complexity of O(n 3) and space complexity of O(n4) is considered to be the best

possible complexities for prediction algorithms. The reason for this is that these

algorithms use simple recursive functions to calculate the energy of structures

found within the final structure and from there use basic traceback methods to
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assemble the final structure outputted by the program. The algorithm needs very

little space since it doesn't save any unnecessary information and it keeps its

calculations as basic as possible in order to keep a short running time. How is it

then that these simple algorithms can be so accurate keeping everything so

basic? The reason is first because it calculates the aspect of the structure, which

influences the folding of the structure the most, its energy. Secondly because it

avoids more complicated calculations by ignoring interactions whose energies

have not been determined, in other words pseudoknots. If the energy to form a

particular structure is extremely high it wont be formed in nature and it wont be

chosen in this program. It keeps things simple and as a result it gets the job

done in most cases having most of its inaccuracies in areas where pseudoknots

are commonly found. Rivas and Eddy, (Rivas and Eddy 1999) built on this

theory in order to create an algorithm, which takes care of some of these ignored

interactions. Like Shapiro's genetic algorithm, Rivas and Eddy had to first come

up with a new way of representing the structures with pseudoknots. After that,

they could use energy-based calculations like those in the Mold algorithms to

determine the most optimal structures. They went about this by using a series of

matrices to represent both structures with and without pseudoknots. The result

was an algorithm with a time complexity of O(n 6) and space of O(n 4) much slower

than the normal Mfold algorithms but using the same amount of space.

However, although Rivas and Eddy's algorithm is much slower it takes into

account many structures ignored by Mfold algorithms. This algorithm can handle

regular pseudoknots, overlapping pseudoknots, some non-planar pseudoknots
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and even chains of pseudoknots of any length, certainly much more than Mfold

algorithms and even much more than Shapiro's genetic algorithm.

Akutsu uses recursive elements similar to Rivas and Eddy's along with

ideas for using tree-adjoining grammars to create a more general pseudoknot

algorithm. The result is that the algorithm runs in slightly less time and uses less

space having a time complexity of 0(In15) and space of Oan1 3) (Lyngso, 2000).

The problem as a result of this smaller time and space is that the amount of

pseudoknots included is much less than that of Rivas and Eddy. For example,

only pseudoknots in chains of no more than two can be handled whereas Rivas

and Eddy's model can handle chains of any length.

Knudsen and Hein propose (Knudsen and Hein, 1999) that using a

combination of stochastic free grammars and evolutionary history is the best

method for predicting RNA secondary structure however, evidence does not

necessarily support this. The results of Knudsen and Heinz's research showed an

accuracy level that was slightly lower than that of Mfold algorithms and this

reduction in accuracy is not the result of added calculations for pseudoknots. In

fact, this algorithm cannot be used for pseudoknots at all and it cannot be

modified to incorporate them either. Knudsen and Hein found that most of the

inaccuracy of the algorithm was in areas where pseudoknots were known to be

found. The reason this algorithm cannot handle pseudoknots is because the

stochastic context free grammars are not equipped to handle crossing

interactions, the interaction which defines a pseudoknot. However, even though

it is impossible to use this particular algorithm to determine pseudoknots its still
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remains a highly useful algorithm. The reason for this is because of the

incorporation of evolutionary history into the algorithm. This algorithm not only

predicts structures but it keeps track of structures in a tree form that is very

useful for further research on the distribution of structures found in RNA.

Xayaphoummine uses exactly clustered stochastic simulations to predict

pseudoknots by modeling the opening and closing of RNA helices

(Xayaphoummine et al., 2003). This particular algorithm is very insightful in

finding regions where pseudoknots can be found however it is not as great when

it comes to determining a final optimal solution. Instead low energy structures

are returned but no one conclusive solution is found. This algorithm is good at

illustrating however, that exclusion of pseudoknots creates a larger issue then

actually incorporating them might result in since the amount of inaccuracy in the

model can fall quite drastically when such structures are omitted. The main

reason for this is because it has been shown that pseudoknots can make up over

30% of the structures in areas where the G + C content is very high. If these

structures were to be ignored in such areas, this would lead to at least 30% of

the structure being inaccurate a huge disadvantage for such algorithms

(Xayaphoummine et al., 2003).

Motif algorithms make use of computations and public databases to come

up with an optimal structure (Macke et al., 2001). The calculations in this

algorithm describe the structural elements found within the structure, which are

then taken and compared against nucleotide databases in order to find

organisms that contain similar structures. The result of this program is a series of
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structures that match the original descriptors. The use of a ranking function that

is user controlled results in the elimination of certain structures that fall below a

particular threshold. At this point the program continues recursively until one

final optimal structure is returned. Using this type of algorithm has its benefits

but it also creates a lot of issues. On the plus side this algorithm combines two

types of models and can be therefore very accurate and very useful if the correct

information is around. On the other hand, it requires the presence of databases

that have the correct information and since not much is known about RNA

secondary structure experimentally this can be a problem and can lead to some

level of inaccuracy.

In the future the best path for creating new algorithms for RNA secondary

structure prediction is to combine what has been found in the past. Using

aspects of both algorithms with and without pseudoknots or even different types

of pseudoknot predicting algorithms can result in much higher levels of accuracy.

In terms of time and space, it seems logical that no algorithm will be found that

includes pseudoknots that will be any faster with less space being used then the

optimal Mfold algorithm. However, it has been shown through various types of

algorithms that pseudoknots can be included in a model while retaining a time

complexity that is polynomial. Whether or not this would remain the case if all

possible structure were included in an algorithm remains to be proven. However,

for the time being a reasonable algorithm can be determined using information

from these past algorithms that would result in a fairly accurate and fast algorithm

for secondary structure prediction with pseudoknots.
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