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ABSTRACT

DESIGN AND IMPLEMENTATION OF HEART RATE VARIABILITY
MEASURES IN THE TIME DOMAIN

by
Binoy John Mathews

The following study was conducted to design and implement computer programs to

derive five time domain and two frequency domain Heart Rate Variability (HRV)

measures from 24 hour Holter monitor recordings and to generate activity plots that

display the variation of three of the five time domain measures and two frequency

domain measures over a period of 24 hours.

Working with known pre and post experimental ECG data taken from a cyclical

exercise program, standard parameters in both the time and frequency domains were

derived using programs designed in Labview 7.0 engineering software package. Five

parameters in the time domain namely SDNN, SDNN index, SDANN, rMSSD, pNN50,

and two in the frequency domain, namely the low and high frequency band areas. The

designed programs were then tested on sample data files. Results of these tests were then

validated by verifying them with results calculated on statistical tools available on Matlab

and MS-Excel and also against standard ranges of values for the implemented measures.

The calculated results were found to lie well within the standardized ranges obtained

from literature. [2] A time domain analysis was then performed on a data set that

consisted of 22 files of 24 hour Holler monitor recordings. These 22 files were part of a

cyclical exercise study in which 11 healthy women with ages ranging from 32 to 58

participated as subjects. Eleven files were recorded prior to the cyclical exercise program



and another 11 files were recorded upon completion of the program. Each recording

contained the beat to beat intervals of a normal day in the subject's life. The generated

results were then tested for significance using standard t-tests and Analysis of Variance

(ANOVA).

In summary, no significant changes among pre and post experimental HRV

measure values were revealed for parameters in the time and frequency domain. But the

designed programs were found to reiterate a previously performed analyses in the

frequency domain on the same data set, i.e., no significant changes. The implemented

programs were then modified to plot 24 hour changes with pre-selected time and

frequency domain parameters by dividing the 24 hour recording into 5 minute segments

and generating the HRV measures from each interval. By performing such a calculation

an array of HRV measures was formed. This array contained the HRV measure for each 5

minute interval over course of 24 hours. The array was then plotted using Labview 7.0 or

Matlab and the peculiarities of the plots were then compared. Trends in change between

the two domains that were studied were noted and suggestions made on how to derive a

better understanding of the plots. The modified programs were designed with an

objective to study the changes in the time domain parameters during a 24 hour period.

Due to time constraints, the study of the time plot could not be completed, but the

programs to generate 24 hour changes in 3 time domain and 2 frequency domain

parameters and their corresponding plots were derived successfully. The programs now

await to further testing and validation. Once all applications complete testing and

validation, they will comprise a valuable "toolbox" for Heart Rate Variability Analysis.
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CHAPTER 1

INTRODUCTION

1.1 Scope of Research

This study was conducted to design, validate and implement programs for generating

measures in the time and frequency domains for Heart Rate Variability (HRV) studies.

The programs will be utilized in future research projects as part of a 'toolbox' of

applications to derive HRV parameters from ECG signals. In all, five time domain

parameters and two frequency domain parameters were chosen and programs

successfully implemented. Two file conditioner programs and an III creator were also

implemented to assist with filtering and conditioning the data sets before actual analysis.

The implemented programs were then modified to derive changes in time and frequency

domain measures over a 24 hour period. Three out of the five measures in the time

domain and the two in the frequency domain were selected for this particular portion of

the project. The designed tools were then tested and validated with using test data files.

The results of software testing were verified with results using Matlab. Also all generated

results fell into normal values for healthy subjects as found in literature. [2]

The programs were then used to perform an HRV analysis on a set of data from a

cyclical exercise study. The study was conducted on 22 healthy women in the age group

of 32 — 58. The data set consisted of 22 files of 24 hour Holter monitor readings which

were recorded during a normal day of the patients life. Eleven of the files were recorded

prior to the cyclical exercise program. The other 11 files were recorded after completing

the protocol. The outcome of the study and the results of HRV analysis in the frequency

1
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domain on this data were published. They found no significant changes in the pre and

post experimental values of the frequency domain meauures The time domain analysis

conducted in this study reiterated these results and found no significant differences in the

time domain measures. The designed analysis tools will contribute to HRV studies by

providing fast and accurate results. Another point of interest taken to consideration is the

association of parameters among the various domains of HRV study. Several questions to

be answered are how do the parameters of one domain compare to those of another

domain for the same data set? Can we find a relationship between them? What will such a

relationship prove? Can we derive the same information or at least similar information

from any single parameter in one domain? The end — product of this study will assist

research on ideas to resolve these questions.

Heart Rate Variability is defined as the fluctuation of the heart rate from one beat

to another. The last two decades have witnessed the recognition of a significant

relationship between the autonomic nervous system and cardiovascular mortality.[2]

Heart Rate Variability studies aim at the development of non-invasive, quantitative

markers of autonomic activity which in turn may provide good prognostic value towards

the detection of lethal arrhythmias, mortality after an acute myocardial infarction, and

even sudden cardiac death. Results of major studies conducted have all associated higher

risk of post infarction mortality with reduced HRV. [2]

All programs were developed in Labview 7.0 and the derived data was analyzed

with MS-Excel and Matlab. Labview 7.0 proved to be the best application development

environment. Its graphical programming environment, matrix manipulation functions,

and data acquisition software make it ideal for the studies conducted.
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1.2 Goals of the Study

This study was conducted with a goal to

1. Design computer applications in Labview 7.0 which will allow one to obtain time
domain parameters from a given Holter monitor recording.

2. Obtain the results of studying 5 commonly used parameters of the time domain
and 2 parameters of the frequency domain analysis of Heart Rate Variability a pre
and post experimental Holter monitor recording and derive a time plot for certain
time and frequency domain HRV parameters over 24 hours.

3. Test the significance of the obtained results and the derived time plots.

4. Question and determine the overall significance and effectiveness of the obtained
results on the 24-hour recordings.



CHAPTER 2

PHYSIOLOGICAL BACKGROUND

Heart rate variability results from the rhythmic activity of the heart. To better understand

HRV and its interpretations, knowledge of the cardiovascular system and the autonomic

nervous system is fundamental.

2.1 The Cardiovascular System

The cardiovascular system is made up of the heart and its associated vasculature.

Together they make up an extensive network carrying blood to every cell of the body.

The flow of blood is maintained by the heart and its beating action. The cardiovascular

system is controlled by the autonomic nervous system and regulated by the need of the

body. Numerous control mechanisms help to regulate and integrate the diverse functions

and component parts of the cardiovascular system to supply blood to specific body areas

according to need. The list of functions of the cardiovascular system is large, but its one

main function is maintaining homeostasis of the body. [28]

2.2 The Anatomy of the Human Heart

The main organ of the cardiovascular system is the heart. It is responsible for the

circulation of the blood according to the need of the body. It is located in the thoracic

cavity approximately midline between the sternum (breast bone) anteriorly and the

vertebrae posteriorly. The heart has a broad base at the top and tapers to a pointed tip

known as the apex at the bottom. It is situated at an angle under the sternum so that its

4
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base lies predominantly to the right and the apex to the left of the sternum. The size of the

heart is no larger than one's own fist. It is a hollow organ composed of cardiac muscular

tissue. Its beating action maintains the flow of blood through the entire human body.

From the heart numerous blood vessels branch out and spread to every corner of the

body. These vessels form the vasculature of the cardiovascular system. There are three

main types of blood vessels, namely, arteries which carries oxygenated blood from the

heart to the various systems of the body, the veins which carry deoxygenated blood from

the various parts of the body back to the heart, and capillaries which join the arteries and

veins and are the site for gaseous and chemical exchange between the various cells and

the blood. [28]

2.2.1 The Human Heart

As mentioned earlier, the heart is a hollow muscular chamber which acts as a

pump, continuously beating and maintaining the homeostasis of the body. This hollow

pump actually functions as a dual pump. Anatomically the right and left sides of the heart

function as two separate pumps. Figure 2.1 shows the heart and its chambers. The heart is

divided into right and left halves and has four chambers; an upper and a lower chamber

within each half. The upper chambers, the atria, receive blood returning to the heart and

transfer it to the lower chambers, the ventricles, which pump blood from the heart. The

vessels that return blood from the tissues to the atria are veins and those that carry blood

away from the ventricles to the tissues are the arteries. The two halves of the heart are

separated by the septum, a continuous partition that prevents the mixture of blood from

the two sides of the heart. This separation is important because the right half of the heart



6

is receiving and pumping oxygen poor blood while the left side of the heart receives and

pumps oxygen rich blood.

The blood travels continuously through the circulatory system to and from the

heart through two separate vascular (blood vessel) loops, both originating and terminating

at the heart. The pulmonary circulation consists of a closed loop of vessels carrying blood

between the heart and lungs, whereas the systemic circulation consists of a closed loop of

vessels carrying blood between heart and other organ systems.

Blood returning from the systemic circulation enters the right atrium via large

veins known as vena Java. The deoxygenated blood returning from the body tissues

enters the right atrium. In the lungs, the blood loses the extra carbon di-oxide and picks

up the oxygenated blood and returns to the left atrium. The blood from the left atrium

flows into the left ventricle and eventually into the aorta that supplies the oxygenated
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blood to all parts of the body. This is called the systemic circulation. Figure 2.2 showing

the systemic and pulmonary circulation. [28]

Figure 2.2 Systemic and pulmonary circulations.
The Systemic and Pulmonary Circulations. (From E. N. Marieb, Human Anatomy and
Physiology, 3rd Ed. New York: The Benjamin/Cummings Publishing Company, Inc.,
1995.)

2.3 The Nervous System

Heart rate variability depends on the rate of change of heart rate. The beating of the heart

and its regulation controlled of by the nervous system. The nervous system in itself is

divided into a number of sub-systems. The particular sub-system responsible for the

actions of the heart and the circulatory system is called the autonomic nervous system.

This system regulates not only heart rate but also respiration and is vital to the existence
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of the living being. It regulates all vital processes of the body which are performed

without consciousness. The autonomic nervous system is again sub-divided into the two

opposing portions, namely the sympathetic and parasympathetic nervous systems.

2.3.1 Sympathetic Regulation of Heart Rate

The sympathetic nervous system innervates the AV node, the SA node and the atria and

the ventricles of the heart and its regulation of heart rate is bought about by the

combination of neural and hormonal pathways. Sympathetic efferent impulses travel

from the brain via pre-ganglionic and postganglionic neurons to their target organs. At

their terminus these postganglionic fibers release norepinephrine or at the adrenal gland

epinephrine. These catecholamine exert both a choronotropic (increased heart rate) and

inotropic effect (increased contractility) on the heart. [28]

2.3.2 Parasympathetic Regulation of Heart Rate

Parasympathetic nerve impulses reach the heart via the right and left vagus nerves,

innervating the SA and AV nodes but only the atrial myocardium. Vagal efferent

impulses trigger the release of a neurotransmitter, acetylcholine (ACh) at their synapses.

ACh combines with myocardial muscarinic receptors which are the membrane-bound

proteins that contains a recognition site for acetylcholine (ACh) and the combination of

Ach with the receptor initiates a physiologic change of slowing the heart rate, which

results in increased efflux of K+ ions and a reduced influx of Ca++ ions, the net result of



which is to hyperpolarize the cell thus slowing the rate of depolarization and thus HR.

[28]. Figure2.3 shows the sympathetic and the parasympathetic nervous systems.

2.4 Physiology Behind the Change in Heart Rate

Change in heart rate is sensitive to changes in body temperature, plasma electrolyte

concentrations and hormone concentrations [29]. However, the most important influence

of beat-to-beat variations of heart rate comes from the autonomic nervous system. More
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specifically, sympathetic activity increases heart rate, whereas activity in the

parasympathetic (vagus) nerves causes the heart rate to decrease. Due to considerably

more parasympathetic activity to the heart than sympathetic activity in the resting state,

the normal resting heart rate is below the inherent rate of 100 beats/minute.

The autonomic nervous system innervates the heart in a number of places. The

sympathetic nervous system terminates at the SA node, the conduction system, atrial and

ventricular myocardium, and coronary vessels. The parasympathetic fibers terminate in

the SA and AV nodes, atrial and ventricular musculature, and coronary vessels. Interplay

between the two systems will cause the heart to speed up or slow down, depending on

which system is more active. [30].

Perhaps the most important site of innervation of the autonomic nervous system

on the heart occurs at the SA node. As matter of fact, the SA node possesses an inherent

discharge rate, often referred to as the pacemaker potential. The pacemaker potential is a

slow depolarization of the cells of the SA node. The innervation of the sympathetic and

parasympathetic nervous system on the SA node changes the characteristics of

depolarization within the SA node cells, thus changing heart rate. Table 2.2 shows the

autonomic effects on selected organs of the body.



2.5 Heart Rate Variability as a Measure of Autonomic Function

Changes in heart rate usually involve the reciprocal action of the two divisions of the

autonomic nervous system. 	 An increased heart rate is the result of reduced

parasympathetic tone and a concomitant increase in sympathetic activity. A decrease in

heart rate is usually the result of increased parasympathetic tone and a simultaneous

decrease in sympathetic tone. Therefore, changes in heart rate reflect the action of the

sympathetic and parasympathetic nervous systems on the heart. However, under certain

conditions, it is possible for heart rate to change by activity of only one division of the
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autonomic nervous system, independent of the other division, rather than reciprocal

changes in both. [26]

Initially, the effect of the autonomic nervous system on the heart was estimated by

utilizing the traditional technique of average heart rate [26]. As a reference, the average

heart rate was measured under normal resting conditions. Then the average heart rate was

measured under the administration of drugs. The drugs used were atropine, which blocks

the effects of the parasympathetic nervous system, and propranolol, which masks the

effects of the sympathetic nervous system. A qualitative assessment can then be made of

the autonomic nervous system by comparing the reference heart rate to the heart rate

while under the administration of the drugs. This method looks at the average over time

of heart rate. However, when the ECG is looked at on a beat-to-beat basis, rather than

over a period of time, fluctuations in the heart rate are observed [26]. Research indicates

that fluctuations in heart rate are a healthy sign. [2] By contrast a number of physiologic

and disease states produce alterations in autonomic function, which reduce the variability

in heart rate [27].



CHAPTER 3

HEART RATE VARIABILITY

3.1 The ECG Signal

The beating heart generates an electric signal that can be used as a diagnostic tool for

examining some of the functions of the heart. Its smooth, rhythmic contraction has an

underlying electrical precursor in the form of a well-coordinated series of electrical

events that takes place within the heart. These events are coordinated by a specialized

conduction system within the heart. Cardiac impulses originate in the pacemaking cells of

the heart called the sinoatrial (SA) node which is located at the junction of the superior

vena cava and the right atrium. From the SA nodes three specialized branches or

pathways emerge and terminate at the artrioventricular (AV) nodes. These nodes are

named the anterior, middle, and posterior internodal tracts. Another tract also emerges

from the SA node and leads into the left atrium. This tract is called the Bachman's bundle

and forms an interarterial passage. An impulse passes from the SA node through the

specialized tracts in the atria to activate first the right atrium and then the left. Passage of

the impulse is delayed once it has reached the AV node and continues into the various

tracts emerging out of the AV node. These tracts are as follows:

1. Bundle of his

2. the right bundle branch

3. the left bundle branch

4. the Purkinje Network

13
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The right bundle branch lies along the right side of the interventricular septum to

the apex of the right ventricle before it gives off significant branches. The left common

bundle block crosses to the left side of the septum and splits into the anterior division and

the posterior division. Each branch of this conduction system of the heart contributes its

own signal to the overall ECG signal that is normally seen. The branches are composed

of representative cells that are also anatomically different. All these cells are electrically

excitable and exhibits their own characteristic action potential. Hence the ECG normally

seen is in effect a vector sum of composite signals. Figure 3.1 shows what the building

blocks of the commom ECG signal are.



These potentials when measured on the outside surface of the body give rise to what we

normally call the Electrocardiogram or ECG. From an engineering point of view, the

heart is viewed as an electrical generator. At any instant the electrical activity of the heart

can be represented by a net equivalent current dipole located at a point that can be

considered the electrical center of the heart and is located within the heart's anatomical

boundaries. The net equivalent current is taken because at any instant several regions may

be active simultaneously. It is the overall contributions from these active regions which is
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measured at the electrical center. The magnitude of this signal when measured with

respect to time gives the following waveform.

Figure 3.2 The normal ECG waveform.
(From http ://butler. cc . tut. fi/—malmivuo/b emb emb °old 1 5/1 5 . htm)

The most significant features of the waveform are alphabetically labeled as the P, Q, R,

S, and T waves. The durations of each wave and time intervals such as P-R, S-T, and Q-T

intervals is another significant feature which are closely monitored. The P wave is

produced by atrial depolarization, the QRS complex primarily by ventricular
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depolarization, and the T wave by ventricular repolarization. The manifestations of atrial

repolarization are normally masked by the QRS complex.

ECG and Heart Rate Variability Studies

All parameters of heart rate variability, whether in the time or frequency domain

are derived from ECG data. Time domain parameters use IBI (inter-beat interval) data.

IBI data can be directly obtained from Holter monitors which contain ECG monitors

that record cardiac activity beat over prolonged periods In such a scenario, the signal to

be studied should be run through what is referred to as a "peak detection" program which

will ensure that each heart beat of the subject has been correctly detected. It should also

enable the user to correct any peaks that might have been skipped or gone undetected.

The errors imposed by the imprecision of the RR interval sequence are known to affect

substantially the results of statistical time domain and all frequency domain methods.

Another method of HRV analysis is through geometrical methods. In such methods the

series of RR intervals is converted into a geometric pattern. Casual editing of the RR

interval data is sufficient for the approximate assessment of total HRV in this methods,

but it is not known how precise the editing should be to ensure correct results from other

methods. Thus when time domain and/or frequency domain methods are used, the manual

editing of the RR data should be performed to a very high standard which ensures correct

identification and classification of every QRS complex. Automatic filters should not

replace manual correction because they are known to behave unsatisfactorily and to have

undesirable effects leading potentially to errors. In this study the data were obtained from

a Holter monitor and converted to the IBI format.
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The frequency domain requires the data to be of a format referred to as III or

Interpolated Inter-Beat Interval. III data is derived by interpolating IBI data over its

sampling frequency. A flowchart summarizing the individual steps used when recording

and processing the ECG signal for obtaining data for HRV analysis can be seen in the

Figure 3.3.

The construction of this interpolated inte-beat interval (III) involves several steps.

Each R wave is detected and a pulse is produced at the position of each R wave. The

height of each pulse is adjusted to be the length of the previous RR interval. For
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example, two successive pulses occur at T 1 and T2 seconds, respectively, where the

distance between the two is Y. Therefore, the interval of Y seconds becomes the height

of the pulse that occurs at time T2. The consecutive pulses that follow form a pulse wave.

This pulse wave is interpolated to produce a wave with equally spaced samples. This type

of interpolation is called backward step interpolation where the height of the wave in a

time interval is kept constant at the value of the length of the time interval.

Figure 3.4 Steps in the construction of an interbeat interval (IBI) signal. (From S. Shin,
W. N. Tapp, S. Reisman, and B. H. Natelson, "Assessment of Autonomic Regulation by
the Method of Complex Demodulation," IEEE Transactions in Biomedical Engineering,
vol. 36, pp. 274-283, 1983.)



20

3.2 Fundamentals of Heart Rate Variability

Heart Rate Variability may be defined as the beat to beat alterations in heart rate.[2]

Under resting conditions, the ECG of healthy individuals has a strong periodic

component. This rhythmic phenomenon, known as respiratory sinus arrhythmia (RSA),

fluctuates with the phase of respiration -- cardio-deceleration during inspiration, and

cardio-deceleration during expiration. RSA is predominantly mediated by respiratory

gating of parasympathetic efferent activity to the heart: vagal efferent traffic to the sinus

node occurs primarily in phase with expiration and is absent or attenuated during

inspiration. Reduced HRV has thus been used as a marker of reduced vagal activity.

However, because HRV is a cardiac measure derived from the ECG, it is not possible to

distinguish reduced central vagal activity (in the vagal centers of the brain) from reduced

peripheral activity (the contribution of the target organ -- the sinus node -- or the

afferent/efferent pathways conducting the neural impulses to/from the brain). However

HRV represents one of the most promising markers of autonomic activity. The term

"Heart Rate Variability" is now the general terminology used to describe variations of

both instantaneous heart rate and RR intervals. [2]

The clinical relevance of HRV was first appreciated in 1965 when Hon and Lee

noted that fetal distress was preceded by alterations in inter-beat intervals before any

appreciable change occurred in heart rate itself. [2]. Its clinical importance became

appreciated in the late 1980's when it was confirmed that HRV was a strong and

independent predictor of mortality after acute myocardial infarction. With the availability

of better and more powerful processing tools, HRV has the potential to provide
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additional valuable insight into physiological and pathological conditions and to enhance

risk stratification.

3.3 Domains of Analysis

The variations in heart rate may be studied by a number of methods.

3.3.1 Heart Rate Variability in the Time Domain

The simplest and oldest measure would be the evaluation of heart rate with respect to its

variation in time. This is called the time domain analysis of HRV. In this method, the

heart rate at any moment or the intervals between successive normal complexes are

determined and analyzed. In such methods the instantaneous heart rate or the inter- beat

intervals are determined and concurrently its variations over time are studied. All studies

of HRV originally begin from a raw ECG signals. The interval between two consecutive

QRS intervals is termed the inter-beat interval or IBI. Various statistical parameters are

derived from the inter-beat interval variations. These form the core of the time domain

analysis. Commonly used parameters in the time domain include

1. Mean RR interval

2. Mean Heart Rate

These two are relatively simple and can be calculated without much computing power.

Other more complex statistical measures have been defined [2] and can be divided into

two classes

1. Direct measures of the RR intervals or instantaneous heart rate

a. SDNN : Standard deviation of all RR intervals



3.3.2 Geometrical Methods of Heart Rate Variability Analysis

The series of RR intervals also can be converted into a geometric pattern such as the

sample density distribution of RR interval durations, sample density distribution of

differences between adjacent RR intervals, Lorenz plot of RR intervals, and so forth. [2]

Common examples of Geometrical Methods include:

1. HRV triangular index:  Total number of of all RR intervals divided by
the height of the histogram of all RR intervals measured on a discrete
scale with bins of 7.8125

2. TINN: Baseline width of the minimum square difference triangular
interpolation of the highest peak of the histogram of all RR intervals.

3. Differential index: Difference between the widths of the histogram of
differences between adjacent RR intervals measured at selected heights.

3.3.3 Frequency Domain Measurements of Heart Rate Variability

These measures determine the variations in the frequency components of the IBIS

signals. Power spectral density analysis provides the basic information of how power

distributes as a function of frequency. The algorithm used in this study calculates the
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spectral densities using Fast Fourier Transforms (FFT). Normally spectral components

are derived from either 5 minute or 24 hour recordings. The boundaries of the most

commonly used frequency bands are as follows [2]:

The three main spectral components calculated from short term recordings are VLF

(power in very low frequency range), LF (power in the low frequency range), HF (power

in the high frequency range) components. The distribution of the power and the central

frequency of LF and HF are not fixed and may vary in relation to changes in autonomic

modulations of heart period. VLF assessed from short-term recordings should be avoided

when the PSD of short-term ECG's is interpreted. This is because the physiological

explanation of VLF is much less defined [2]. Measurements of power spectral

components are usually made in absolute values of power (milliseconds squared per

Hertz). Long-term recordings result in frequency components called the ULF (ultra-low

frequency) and VLF.

The main advantage of spectral analysis of signals is the possibility to study their

frequency-specific oscillations. It involves the decomposition of the series of sequential

RR intervals into a sum of sinusoidal functions of different amplitude and frequencies.

Results are displayed in a graph with magnitude of variability as a function of frequency.

It represents the amplitude of the heart rate fluctuations present at different oscillation

frequencies. The power spectrum is normally divided into a number of spectral bands and
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powers are calculated separately for each band. The individual powers have definite

physiological significance [2]. Table 3.1 lists the normal values of standard measures of

HRV. These values are those measures of HRV that might be suggested for the

standardization of further physiological and clinical studies [31].
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3.4 Time Domain Analysis

The variation of heart rate over time is in essence the time domain analysis of heart rate

variability. In these methods either the heart rate any point of time or the intervals

between successive normal complexes are determined. In a continuous ECG recording,

each QRS complex must be accurately detected and the normal to normal (RR) intervals

determined. A number of standard parameters are defined for this type of analysis which

has been determined through prior experimentation and study to give reliable prognostic

information.

Common recordings used for the time domain analysis are recorded over 24 hour

periods. Using such a series of intervals complex statistical time domain measures can be

calculated and divided into two categories.

1. Those derived from direct measurements of RR intervals or instantaneous heart
rate.

2. Those derived from the differences between RR intervals.

Measures from the second category may be derived from analysis of total ECG

recordings or may be calculated using smaller segments of the recording. The smaller

segments are normally of five to ten minute durations. This would also allow for

comparison of HRV to be made during varying activities, for example, during rest, sleep,

etc. [2]

This section will now discus a few of the more commonly used parameters used

in the time domain and associated with 24 hour recordings.
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3.4.1 SDNN

This parameter of time domain analysis is the simplest and most commonly used

variable today. It is defined as the standard deviation of the RR intervals or the square

root of variance over the entire recording of inter-beat intervals. Mathematically, variance

is the total power of spectral analysis and SDNN reflects all the cyclic components

responsible for variability in the period of recording. [1] When SDNN is calculated over

24 hour periods, it encompasses short-term HF variations as well as the lowest frequency

components seen in a 24 hour period. SDNN has a high dependency on the time period of

the recordings used. The shorter the recording, the shorter the cycle length it measures.

Thus when comparing SDNN measures, durations of the recordings should be

standardized. Generally short term recordings are standardized to 5 minutes and long

term recordings to 24 hours. The unit of SDNN is milliseconds (ms).

3.4.2 SDNN index

SDNN index is defined as the mean of the standard deviations of all NN intervals for all

5 minute segments of the entire recording [2]. This correlates to the mean of 5 minute

total power in the frequency domain. SDNN index takes the SDNN values of all 5 minute

intervals in the recording and averages it to come out with one number called the SDNN

index. This parameter measures the variability due to cycles shorter than 5 minutes. The

unit of SDNN index is milliseconds (ms).
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3.4.3 SDANN

This parameter may be defined as the standard deviation of the averages of NN

intervals in all 5 minute segments of the entire recording [2]. It is an estimate of the

changes in heart rate due to cycles longer than 5 minutes. SDANN corresponds to the

ultra-low frequency (ULF) region of frequency domain methods. SDANN estimates the

long term components of HRV. It is unit is also measured in milliseconds (ms).

3.4.4 pNN5O

This measure of the time domain analysis of HRV studies is an interval difference

parameter. It is defined as the percentage of interval differences of successive RR

intervals greater than 50ms. This measure estimates high frequency variations in heart

rate and correlates to HF measures of the frequency domain [2]. pNN5O is a percentage

and hence has no unit.

3.4.5 rMSSD

This measure of time domain HRV analysis may be defined as the square root of the

mean of the sum of the squares of differences between adjacent RR intervals [2]. This is

another measure of short term variations of HRV and estimates high frequency variations

in heart rate. It highly correlates to pNN5O and corresponds to the HF measure in the

frequency domain. The unit of rMSSD is millisecond (ms).
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3.5 Frequency Domain Analysis

With the availability of more powerful computers spectral methods of HRV analysis have

become more readily available and more frequently used. Power spectral density analysis

provides the basic information of how power (variance) distributes as a function of

frequency. Methods for generating such a density are generally classified as

nonparametric and parametric.

3.5.1 Short term recordings

Two main spectral components are distinguished in a spectrum calculated from short

term recordings of two to five minutes. These are LF, and HF components. The

distribution of the power and the central frequency of LF and HF are not fixed but may

vary in relation to changes in autonomic modulations of heart period. In theory the VLF

component is also present but the physiological explanation of the VLF component is

much less defined. VLF assessed from short term recordings must be avoided when the

power spectral densities of short term ECG's are interpreted. This is because the

physiological explanation of the VLF component is much less defined, and the existence

of a specific physiological process attributable to these heart period changes might even

be questioned. [2] The nonharmonic component which does not have coherent properties

and is affected by algorithms of baseline or trend removal is commonly accepted as the

major constituent of VLF [2].

The power components are usually measured in absolute values of power

(millisecond squared). LF and HF may also be measured in normalized units which

represent the relative value of each power component in proportion to the total power
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minus the VLF component. The representation of the LF and HF in normalized units

emphasizes the controlled and balanced behavior of the two branches of the autonomic

nervous system. Normalization also tends to minimize the effect of the changes in total

power on the values of the LF and HF components. They should however always be

quoted with the absolute values of LF and HF power in order to describe completely the

distribution of power in spectral components.

3.5.2 Long term Recordings

When spectral analysis is used to analyze a sequence of RR intervals of an entire 24 hour

period, the results include a ULF component in addition to the VLF, LF, and HF

components [2]. "Stationarity" is a common problem frequently discussed with long

term recordings. If mechanisms responsible for heart period modulations of a certain

frequency remain unchanged during the whole period of recording, the corresponding

frequency component of HRV may be used as a measure of these modulations. In

actuality, this never happens. If, however, the modulations are not stable, the

interpretations of the results of frequency analysis is less well defined. In particular, the

physiological mechanisms of heart period modulations responsible for LF and HF power

components cannot be considered stationary during the 24 hour period. Thus spectral

analysis performed on the entire 24 hour period as well as spectral results obtained from

shorter segments (5 minutes) averaged over 24 hour periods provide averages of the

modulations attributable to the LF and HF components. Such averages obscure the

detailed information about autonomic modulation of RR intervals that is available in

shorter recordings.



CHAPTER 4

LABVIEW PROGRAMS

4.1 Labview 7.O and Heart Rate Variability

All computer applications associated with this study have been designed using Labview

7.0 engineering software created by National Instruments. Labview 7.0 is the latest

version and has been improved with new features to suit all kinds of engineering and

programming applications. Labview provides a powerful graphical development

environment for signal acquisition, measurement analysis, and data presentation. The

topic of heart rate variability is an area within biological signal processing. Labview 7.0

or any version of Labview for that matter is well adapted and constructed for both data

acquisition and signal processing objectives. For this matter, all HRV applications for this

study were designed and implemented in Labview 7.0. It provides a relatively easy work

environment because rather than writing code, Labview uses graphical programming

which takes most commonly used programming and engineering functions and creates

blocks which can be connected or "wired" to one another in such a way as to develop a

real working program. It allows one to develop both the front and back ends of the

application simultaneously and with relative ease. Blocks for almost every need have

already been developed and implemented. Each block has a fixed set of inputs and

outputs which must be wired to or from another block. Only by properly "wiring" the

output of one block to the input of another can a definite connection be made. By proper

wiring one means that the data types of the outputs and inputs of a set of blocks must

3O
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match. In case a particular function is not found, Labview provides the facility to create a

new block and add it to the set of functions already available.

Programs in Labview are called VI's or virtual instruments and functions used in

each VI are referred to as sub-vi's. A VI can be imported and used as a sub-vi in other

applications if need arises. In this way, Labview proves extremely powerful and versatile.

Applications of heart rate variability use many of the built in features available in

Labview. Frequency domain analysis utilizes the power spectral analysis block for

spectral density calculations. Similarly, time domain analysis call mainly upon statistical

blocks. Another prominent feature of Labview is its efficiency of processing. Most data

sets used for HRV analyses are extremely large (of the order of 600KB — 700KB for 24

hour recordings) and require complicated processing.

4.2 Protocol of Research: Program Execution and Analysis

For this study, programs were developed for measures most commonly used during HRV

analysis in the time and frequency domains. In all, five time domain and two frequency

domain measures were constructed. A separate application had to be developed for

conditioning and filtering the data files and to ensure the highest possible accuracy of

results. Upon conditioning the data the programs were then designed to read the data

directly from the computer files, perform the required mathematical calculations, present

the results of the particular measure, and write any required information to another user

specified file. This was performed on every file of the data set to be tested. This data set

consisted of 24 hour Holter Monitor recordings for 11 healthy women. For each subject

two recordings were taken, one prior to a cyclical exercise program, and the other
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afterwards. Thus for the 11 subjects, 22 data files were available. From each file we

derived five time domain and two frequency domain measures. The results were then

recorded in an MS Excel spreadsheet and statistical analyses on the various measures

were performed to check for any significance. Both a Student's t-test and an ANOVA

were performed for the results. The results were then discussed and conclusions drawn.

The next sections will discuss the various Labview programs and their sub-vi's

used in this study.

4.3 Integrated Sub-Vi's

Most of the programs used as a part of this study dealt with matrix manipulations. The

matrices used, i.e. the IBI files, are extremely big (600KB — 700BB) and hence sub-

programs or functions had to be implemented to reduce the complexity and increase the

overall efficiency of the programs. For all 11 subjects, the data was stored in the exact

same format. Hence a number of generalized functions were designed to be used by each

application to simplify its execution.

4.3.1 Sub — Zero eliminator

The zero eliminator was designed to remove zeros from an array. During many

matrix manipulations performed in the implemented programs, zeros are used to flags or

markers for a particular situation, for example, a zero in a matrix could identify a five

minute marker in the data set. Zero removal will then facilitate further processing of the

data after the zeros have served their purpose. In the designed programs, the Zero

eliminator was used to mark 5 minute intervals within the 24 hour recordings.
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Algorithm:

1. Read array from which zeros are to be removed. Let the input array be X = 0.
Declare the output array as Y and index variable I = 0;

2. For each element of X

3. The output matrix Y will now contain the indices of all elements of the input
matrix which are greater than zero. A -1 is given to each index where the element
was found to be a zero. To remove this the following procedure performed:

a. Use 'Sort 1D Array.vi' to sort the array in ascending order. Now all -1's
will be situated at the beginning of the output matrix.

b. Use 'Reverse 1D Array.vi' to reverse the order of Y.

c. Use 'Split 1D Array.vi' to split Y into two. This sub-function will search
for a specified element and divide the array at that point, i.e. the index at
which the specified element is found first.

d. The required division, i.e. the array of all non-zero element indexes is then
displayed and returned to the main program.

Figure 4.1 is the designed Labview program.



Figure 4.1 Labview 7.0 sub-program: Sub- Zero eliminator.vi
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4.3.2 Sub — begin and end points for sums.vi

For many of the time domain measures, the 24 hour recordings had to be divided into five

minute segments for the calculations to be performed. To accomplish such a task

conventionally one could use embedded loops to derive the answers. However as the size

of the data set increases, the overall efficiency of the program is substantially decreased

with the use of embedded looping. The extent to which to program's efficiency is

diminished is directly proportional to the number of embedded loops and increases

exponentially with the number of loops embedded. The data employed in this study

contains on average 100,000 points. Therefore the used of embedded loops in such a

scenario would be disastrous, taking hours to reach completion. This sub-vi alleviates

such complications by deriving the beginning and end points for each five minute

segment in the 24 hour recording. By doing so, one can generate the intervals using an

already available 'array subset' block. The algorithm behind this sub-vi is discussed

below:
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4. Upon completion of step three, remove zeros from output array Y using zero
elimination sub-vi.
** The output array Y is now the array of indices of the end points of the n-
minute intervals **

5. Calculate Z, the array of begin points for the n-minute intervals, as follows:
a. Let Z = Y;
b. Eliminate the last element of Z
c. Increment all the elements of Z by 1
d. Append 0 to Z as the new first element.

6. Display the resultant arrays Y and Z; return values to the main program.

The Labview program for the algorithm of Section 4.3.2 is shown in Figure 4.2



Figure 4.2 Labview 7.0 sub-program: Sub- Begin and end points for sums.vi
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4.3.3 Sub — Calculation of SDNN and array of SD.vi

This sub — vi is used to derive the the standard deviations and/or means of the intervals

that the 24 hour recording is divided into. The standard deviations are calculated for each

interval and stored in a separate array of its own. This array of standard deviations can

also be plotted to show the change in SDNN values over the course of 24 hours.

Algorithm:

1. Read input array X which is the 24 hour IBI array.

2. Call upon sub — vi , Sub — begin and end points for sum.vi to derive the begin and
end points (indices) of each 5 minute interval.

3. Repeat step 3 for each 5 minute interval of the input array:

a. Call upon the sub — vi, Array subset.vi. This sub — vi uses the inputs
• the original 24 hour IBI file.
• the begin point (index) of each five minute sub — interval.
• length of the five minute subinterval.

The sub — vi generates all five minute intervals within the input array. The
sub — vi outputs each interval as it is generated.

4. The standard deviation or mean of each interval can then be calculated as
specified. Certain measures to be derived require the standard deviation while
others might require its mean. The standard deviation or mean from each five
minute interval is then stored in an array of its own.

5. The newly generated array is then displayed as an array of means or an array of
standard deviations. Once again the mean or the standard deviation of this array
can be calculated to derive the mean of standard deviations or the standard
deviation of the means.

Figure 4.3 shows the Labview program for the above mentioned algorithm.



Figure 4.3 Labview 7.O program: Sub — Calculation of SDNN and array of SD.vi
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4.4 Algorithms and Virtual Instruments (VI's)

The following sections discuss the algorithms and programs used to derive the time and

frequency domain parameters used in this study.

4.4.1 File Conditioners

These VI's were designed to remove all known anomalies from the original bolter

monitor data files. The anomalies of the data set is explained in a Section 5.2.4. This

section will adhere to the explanation of the algorithm behind the programs.

Two file conditioners were used to filter the data set. They are named File

conditioner 1 and File Conditioner 2. For the most part file conditioner 1 was limited to

searching through each data file and pulling out elements which were above a given

threshold value. Upon completion, the resultant array of possible errors were then

displayed. The data set file was then opened using MS Notepad, MS Wordpad, or MS

Word and using the 'find and replace' function within the Tdiemenu, each possible error

was found and compared to its neighboring elements. If the particular element in question

was found to be dissimilar in magnitude to its neighbors, it was then deleted. Also the

immediate elements preceding and following the element in question are observed for

errors of the nature previously mentioned in the section on data set anomalies. File

conditioner 2 was designed to automatically remove elements below a given threshold.

These elements were found to be too low to be possible IBI values. Also they did not

correlate to any of its surrounding elements. In this program the elements are

automatically detected, deleted, and the file appended.



The Labview program is shown in Figure 4.4.
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Figure 4.4 Labview 7.0 program: File Conditioner 1.vi
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Algorithm: File Conditioner 2.vi

1. Read Input data set file X.

2. Declare output matrix Y, and temporary variables i = 0; j =0;

3. Repeat step 3 for each element of the X

If X[i] < 250 {given threshold value}

Then
• Call 'Search 1D Array.vi'

{ This function will search
through the input array and
and return the index of the
1-1,. ,..1.rwi art+ it full:J.01.i anti

4. Call the Zero eliminator sub — vi to remove all zeros from Y
{Y is now the array of indexes of all erroneous elements meeting the filter
condition. }

6. Display resultant ouput matrix Y which is the conditioned data set.

7. Call 'Write to File.vi' to write output array to its own file.

The program is shown in Figure 4.5.



Figure 4.5 Labview 7.0 program : File Conditioner 2.vi
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4.4.2 SDNN.vi

SDNN is defined as the standard deviation of all RR intervals in the given time period.

Algorithm:

1. Read input data set file using 'Read from File.vi'

2. Call 'Index Array.vi' to choose the correct channel of input from file.

3. Call 'Standard Deviation and Variance.vi' to calculate the Standard deviation of

all IBI's.

4. Resultant number is the SDNN of the 24 hour recording.

Figure 4.6 shows the Labview program SDNN.vi.

Figure 4.6 Labview 7.0 program: SDNN.vi
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4.4.3 SDNN index.vi

SDNN index is defined as the mean of the standard deviation of all RR intervals for all

five minute segments of the entire recording. The algorithm used will now be discussed.

Algorithm:

1. Read selected input file using 'Read from file. vi'. Label this array as X.

2. Call 'Begin and End points for sums.vi'

• Inputs: IBI array X, n = interval length

• Outputs: Begin points array and End points Array

3. Call 'Sub — Calculation of SDNN and array of SD.vi'.

• Input: IBI array X, Begin point array, End point array

• Output: Array of standard deviation's and SDNN index value.

The Labview program is shown in Figure 4.6

Figure 4.6 Labview 7.0: SDNN index.vi
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4.4.4 SDANN.vi

SDANN is defined as the standard deviation of the averages of NN intervals in all five

minute segments of the entire recording.

Algorithm:

1. Read selected input file using 'Read from file.vi'. Label this array as X.

2. Call 'Begin and End points for sums.vi'

• Inputs: IBI array X, n = interval length

• Outputs: Begin points array and End points Array

3. Call 'Sub — Calculation of SDNN and array of SD.vi'.

• Input: IBI array X, Begin point array, End point array

• Output: Array of mean IBI values for all five minute intervals and
SDANN value.

The Labview program is shown in Figure 4.7.

Figure 4.7 Labview 7.0: SDANN.vi
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4.4.5 pNN5O.vi

pNN50 is defined as the percentage of consecutive RR intervals whose difference is

greater than 50 milliseconds.

Algorithm:

The Labview program is shown in Figure 4.8.



Figure 4.8 Labview 7.0: pNN50.vi
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4.4.6 rMSSD.vi

rMSSD is defined as the square root of the mean of the sum of the squares of differences

between adjacent RR intervals.

Algorithm: rMSSD.vi

1. Read file from the specified location. Use the 'Read from file.vi' function. Let the

input array be X.

2. Declare the output array Y and variables t = 0, i = 0;



Figure 4.9 Labview 7.0: rMSSD.vi
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4.5 IIBI creator

The IIBI creator is used for Frequency domain HRV studies to interpolate the IBI signal

over its sampling frequency. The task of creating the IIBI over a 24 hour recording had to

be subdivided into two tasks.

1. Creation of the IIBI

2. Decimating the IIBI.

Decimation of the original IIBI file was necessary as it consumed a large quantity of

storage space and also required much more processing. By decimating the IIBI file we in

effect sampled the original IIBI data and reduced its size. The IIBI creator program calls

upon two main sub — programs which are discussed in section 4.5.1 and 4.5.2. The main

IIBI creator algorithm is given in section 4.5.3
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Figure 4.1O Labview 7.0: Sub — Decimator at 10 Hz.vi

4.5.2 Sub — IIBI decimated and mean eliminator -O4O4O4.vi

This sub — program was created with the task of creating an IIBI array, decimating it, and

returning both arrays to the main VI.

Algorithm:

1. Read IBI data into array X and sample rate into variable s;

2. Declare output array Z, array Y, i =0, mean = 0, n = 0, and t =0;

3. for i = 0 to sizeof(X) Repeat step 3



7. Return Z as the decimated III with zero removed.

The Labview program is shown in Figure 4.11.



Decimated IIBI array
with zero mean

size decimated III
with zero meanat 1)ectm

to 

IIBI array with mean(

size of III array'

Figure 4.11 Labview 7.0: IIBI decimated and mean eliminator creator.vi
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4.5.3 IIBI creator.vi

The IIBI creator is a program used during frequency domain analysis of HRV to create

IIBI data from and IBI file. This program will create an IIBI but due to the size of the

file, it will also decimate it and reduce its overall size by 10%. This is achieved through

resampling and was discussed earlier in section 4.5.1.

Algorithm:

1. Read the IBI file from the specified location using 'Read from File.vi' to a

variable X

2. Enter the sampling frequency, s, at which the IBI file was sampled.

3. Call the 'Sub - IIBI decimated and mean eliminator creator -040404.vi' The
IBI array X and sampling frequency s are the inputs to the called sub — vi.

4. Display the different output of the called sub — vi.

Figure 4.12 shows the Labview program for the IIBI creator.
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Figure 4.12 Labview 7.0: III creator.vi

4.6 Power Spectrum.vi

The power spectrum of a signal provides basic information of how power (variance)

distributes as a function of frequency. Two HRV parameters derived from the frequency

analysis are the LF area and the HF area. The HF/LF ratio is also sometimes used, but for

the purpose of this study, the LF and HF areas were found to be sufficient.
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4.6.1 Sub — calculation of power spectrum.vi

Algorithm:

1. Accept the IBI array X , the III array Y, and sampling frequency from the main

program.

2. Let the scaling factor be s, mean = m, scaling factor = scale, reversed array = rev,
power spectra = PS, and general variables n, t, P, a, b, c, d. Initialize all variables
to O.

3. Calculate the time of record = t.

4. Calculate scaling factor, scale = 1000/s;

5. Call 'Reverse 1D array.vi' to reverse the order of Y (III array).

6. Multiply each element of Y by scale.

7. Subtract each element of Y by its mean. This will center the power of the IIBI
signal.

8. Zero pad Y using 'Zero padder.vi'. This function will resize Y to the next highest
valid power of 2 by appending zeroes to the end of the array.

9. Let H = s/sizeof(Y). This term is the frequency per point or Hz per point.

10. Call 'Power spectrum.vi' to calculate the power spectrum of the III signal, Y.
Let this new array be P.

11. Round each element of P to the next lowest integer.

12. Calculate the High Frequency Area:



Figure 4.13 shows the Labview program for the algorithm described in section 4.6.1.



Figure 4.13 Labview 7.0: Sub — Calculation of power spectrum.vi
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4.6.2 Power Spectra.vi

Algorithm:

1. Read IIBI file from the specified location using the 'Read from file.vi'

2. Call sub — vi 'calculation of power spectrum.vi'. Inputs to sub — vi are the IIBI

file and the sampling frequency.

3. Outputs of the sub — vi are display. The outputs are:

a. Graph of the power spectrum

b. HF area

c. LF area

d. Time of record in minutes

The Labview program is shown in Figure 4.14 and Figure 4.15.

Figure 4.14 Labview 7.0: Power spectrum.vi (case 0)
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Figure 4.15 Labview 7.0: Power spectrum.vi (case 1)

4.7 SOFTWARE TESTING

Test files were used to validate the implemented programs before they were used on the

24 hour Holter monitor readings. The results were all found to match calculations which

were performed on the same data using software like Matlab and MS-Excel. The results

of the programs were also checked and the data ranges were found to lie well within the

standard values for normal subjects given in Table 3.1.



63

CHAPTER 5

DATA ACQUISITION INSTRUMENTATION AND THE DATA SET

As mentioned in section 1.3.3 data obtained from any instrument must be edited and

filtering errors from the data set should be performed as carefully as possible to make

sure the data that is processed is as free as possible from erroneous data. This chapter

discusses the experimental protocol, the obtained data set, acquisition device, and

anomalies detected.

5.1 THE DATA SET

5.1.1 Experimentation and Purpose

The data set used with this study was obtained through a set of clinical trials performed

by Lifewaves International as part of their ongoing studies to test the efficacy of a novel

exercise program called Heart Waves. The unique feature of Heart Waves is that it trains

not only the activation (arousal) phase of exercise, but also he relaxation (recovery) phase

in a cyclic (wave-like) fashion.

Traditional exercise trains a person through continuous prolonged exercise that

consists of a warm-up stage, maintained activity level, and a cool down stage. Cyclic

exercise on the other hand consists of a series of activation-relaxation cycles. The

objective of such cycles is to generate a sequence of heart rates in which the subjects,

pulse rate rises and falls. The overall hypothesis of such a program is that cyclic exercise
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may improve the quality of life, cardiac function, and immune function in healthy

subjects and in subjects with chronic disease.

5.1.2 Protocol

The exercise study was designed to study individuals on a protocol that consisted of:

• baseline ( pre-cycles) evaluation
o functional capacity
o quality of life
o cardiac function
o immune function

• Individualized cyclic exercise prescription

o Based on maximal heart rate response to progressively more vigorous
cycles of exercise

• Eight weeks of cyclic exercise training

• Post-cycle evaluation

o Functional capacity
o Quality of life
o Cardiac function
o Immune function

Though the above mentioned study was conducted to test this hypothesis, the data

derived to test cardiac function was ideal for this study. This data was acquired using an

instrument called a Holter monitor. The Holter monitor is a device which can be strapped

onto a subject and measures the inter-beat interval between consecutive heart beats. It is

normally used to record IBI intervals over 24 hours. The programs described in Chapter

4 were validated using this data from the above mentioned cyclic exercise study. This

data set was already analyzed using frequency domain techniques, the results of which
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were already known. The validity of our results were then cross-checked with those of

the earlier performed analysis.

The subjects for the study were chosen within an age group of 20 — 70 year olds.

The exclusion criteria used was as follows:

• Chronic drug or medication use

• Tobacco use

• History chronic illness

• Engage in regular exercise

Eleven healthy women were chosen. The subject characteristics can be seen in the Table

5.1.
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5.1.3 The Data Set

The data set used in this study consisted of 11 sets of pre and post experimental exercise

data, making a total of 22 files. Each file was a 24 hour recording of IBI (inter-beat

interval) data and was acquired through a Holter monitor during 24 hours of normal

activity. The ECG signals were sampled at a rate of 1000 Hz. All intervals were recorded

in milliseconds and were stored as text files after being downloaded from the Holter

monitor to a computer. The specifics of data transfer will be discussed in the next section.

Each file consisted of a header introducing the subject and noting the starting time of data

acquisition, and the first heart beat. An example of the file header from one subject can

be seen in the Figure 5.1 below.

Figure 5.1 Section of a data file from a Holter monitor recording.
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The header from each file is oriented in the same manner. Each file is a recording of

approximately 24 hours and takes up about 500BB of space. Considering data points

only, the file contains about 100,000 points or intervals. Prior to any filtering the data

points are all preceded by a letter. This is a characteristic of the machine used and not one

seen in all 24 hour recordings.

5.1.4 Data Set Anomalies

The data discussed in the previous section was not instantly ready for analysis. They had

to be filtered from errors and conditioned to be processed by the Labview programs.

Molding the data files into such a format that can be processed required much filtering

and editing. The major changes that had to be made to each file were as follows:

1. The header data had to be completely removed.

2. The data points had to be moved to the first line of each text file to ensure it was
consistently and uniformly accessed by the programs.

3. All letters which preceded each inter-beat interval had to be removed.

4. Each entry had to be verified for a correctness with respect to its neighborhood of
entries. This was because the acquisition device had a tendancy to place sporadic
numbers at random places. Such numbers could not be determined to be of any
relevance and were found to be in no way correlated to numbers within its
vicinity. If such a discrepancy was found, it had to be carefully examined. If
determined to be such a 'sporadic number' the entry was removed and the matrix
appended.

5. Another set of discrepancies found within the data set, were seen in pairs. These
errors were found out of place when compared to their neighboring entries, and
when added together, the sum was found to fit extremely well with the
surrounding entries.

6. Finally, sporadic entries were found that were either too high or too low to even
be considered part of the data set.
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The above mentioned points had to be corrected for each of the 22 data files used.

Only after proper conditioning, could the files be used for analysis. A point to be noted is

that by conditioning the files in these ways, the true effect on the HRV measure

calculation is not known entirely and could contribute to some percentage of error.

5.1.5 Data Corrections

Correcting the anomalies found in each data file had to be done carefully and

intellectually. A fixed procedure was defined, and each file was handled and conditioned

in the same manner. The manner in which each file was conditioned is explained in the

steps below:

1. Each file was opened using Microsoft Notepad or Microsoft Wordpad.

2. The header of each file was removed.

3. Each letter which preceded the inter-beat interval was deleted using the 'Search

and Replace' function of the software used.

4. A file conditioner program was written in Labview 7.0 to search through each file

and pull out entries based on a threshold value given. The entries were then

displayed separately. Each entry that was displayed had to be manually found

within the file and its neighbors evaluated. If the entry's value was found to be

inconsistent with the values of its nearest neighbors, the entry was removed from

the list.

5. Similarly if the entry was found to be associated with a pair of numbers found to

be inconsistent with its nearest neighbors, the entire set of entries was removed.
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6. Sporadically found numbers above and below a certain threshold level were then

passed through a second file conditioner which was designed to remove those

entries and append the file.

The files were then ready for analysis. The difference between the data sets before and

after conditioning can be seen from Figure 5.2 and is taken from the subject

CART2O1 01.

5.2 INSTRUMENTATION: THE HOLTER MONITOR

A Holter monitor is a battery operated device used to record prolonged durations of

cardiac activity, normally for 24 hours. It is a portable device that can be strapped onto

ones waist, neck or shoulder and carried around without much interference to a patient's
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daily life. Holter monitors record cardiac activity through electrodes which are placed on

the skin, in a similar fashion as an ECG recording. Normally such a test is prescribed

• to help detect irregular heart beats (cardiac arrhythmias)

• to help evaluate chest pain

• to help check the heart's activity after a heart attack

• to help check the heart's activity after a pacemaker has been implanted.

• to help check how certain medicines are working.

• to help discover the cause of certain symptoms like difficulty breathing, dizziness,
light — headedness, or fainting.

The advantage of Holster monitors of common ECG systems is that it allows a longer

reading which gives the physician a better chance of capturing information about a

specific heart ailment. A standard ECG lasts anywhere from five to ten minutes long and

captures on average 40 to 90 heart beats per minute. The Holter monitor on the other

hand, can capture an average of 100,000 heartbeats over a 24 hour period. It is also more

likely to capture any problems on a Holster monitor, especially if the problem occurs

irregularly. Another advantage of the Holster monitor is that it enables the recording of a

subject's cardiac activity during daily normal activities. Many heart problems arise only

during certain activities and will not be visible to a physician during a visit. The Holter

monitor helps the physician to see and analyze the patient's cardiac activity during the

course of a normal day. It also gives the physician a better chance of detecting

irregularities in the heart's electrical signals that might occur during normal daily life.

The disadvantage of Holter monitor tests is the non-uniform nature of the testing

environment. The foundation behind such recordings is to monitor the subject during his
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daily routines, but this is inconsistent. Since no uniformity of routine can possibly be

guaranteed among any number of subjects, the significance of results of any type of Heart

Rate Variability analysis must be questioned. One subject's activity during one part of the

day may not correspond to another subject's activity unless routines are scheduled to

follow a well defined agenda. This is highly impractical and hence the use of such data

for HRV parameters should prove unreliable.
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CHAPTER 6

RESULTS

6.1 The Time Domain Analysis

The following sections will display the results of the time domain measures obtained on

the exercise data using the designed applications. Table 6.1 lists the results obtained from

each of the Labview programs used to derive time domain HRV measures. In all, there

are five measures. They are

• SDNN

• SDNN index

• SDANN

• pNN50

• rMSSD

Table 6.1 lists the results for each of the 11 subjects. The measures are listed in such a

way that the pre and post exercise results lie side by side. Table 6.2 to Table 6.6 are the

results presented from t — tests. All tables show the same results of no significant

changes among pre and post exercise values of the time domain parameters. Table 6.7

shows the results of an analysis of variance (ANOVA) conducted on Table 6.1.

According to Table 6.7, there is no significant change among the various subjects. MS-

Excel labels the first column as Sample. There is a interaction among the columns, i.e.

the time domain parameters. The F-value for the columns (78.15) is very much larger

than the F-critical value of 1.97. The p-value of 3.2014E-41 is also extremely small and

means a high significance among the different parameters.



Table 6.1 Time Domain Measures
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The values shown as #NUM! are numerical errors that occur in MS-Excel. This error

occurs when the number is too high or too low for MS-Excel to display.
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6.1.2 Analysis of Variance (ANOVA)

Table 6.7 ANOVA: Time Domain Measures.

Anova: Two-Factor With Replication

SUMMERY SDNN-pre
SDNN-

post SDANN-pre
SDANN-

post
SDNN Index-

pre
SDNN

Index-post pNN50-pre pNN50-post
Rmssd-

pre
Rmssd-posit Total

201

Count 11 11 11 11 11 11 11 11 11 11 110

Sum 1270.29 1237.99 1125.75 1064.67 575.94 591.58 63.41 83.04 413.45 402.58 6828.74

Average 115.48 112.54 102.34 96.78 52.35 53.78 5.76 7.54 37.58 36.59 62.07

Variance 392.58 504.44 386.41 399.83 137.51 218.32 37.50 72.67 187.66 131.30 1819.07
Total

Count 11 11 11 11 11 11 11 11 11 11

Sum 1270.29 1237.99 1125.75 1064.67 575.94 591.58 63.41 83.04 413.45 402.58

Average 115.48 112.54 102.34 96.78 52.35 53.78 5.76 7.54 37.58 36.59

Variance 392.58 504.44 386.41 399.83 137.51 218.32 37.50 72.67 187.66 131.30

ANOVA
Source of
Variation SS df MS F P-value F crit

Sample 0 0 65535 65535 #NUM! #NUM!

Columns 173596.52 9 19288.50 78.145 3.20147E-41 1.974

Interaction 1.45519E-11 0 65535 65535 #NUM! #NUM!

Within 24682.71 100 246.82714

Total 198279.24 109
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6.2 The Frequency Domain Analysis

The frequency domain measures, HF area and LF Area, were derived through a spectral

analysis and the results are listed in Table 6.8. 't' — tests were performed for each of the

measures to determine significance. The results of these tests are found in Table 6.9 and Table

6.10. For both t-tests there was no significant changes found among pre and post recording LF

and HF parameters. A third term was also included in the results shown in Table 6.8. This was

the overall time of the 24 hour recording in minutes. An ANOVA was also performed and the

results of which can be seen in Table 6.11. According to the results, there was no significant

change found among the subjects, i.e. samples. However, significance was found among the

columns, i.e. among the frequency domain parameters. This was an anticipated outcome

because the columns are different measures and hence will exhibit a large amount of variations

in their values. The F-value of 231.9960 was found to be much greater than the F-critical

value of 2.36827. No significant interaction among the subjects and measures were found. The

analysis did display 4 numerical errors. They are shown as '#NUM!'. These errors occur when

the number to be displayed is either too high or too low and cannot be displayed by MS-Excel.



Table 6.8 Frequency Domain Measures.

SUBJECT PRE EXPERIMENTAL DATA POST EXPERIMENTAL DATA
LF AREA- 

PRE
HF AREA- 

PRE
TIME-
PRE

LF AREA- 
POST

HF AREA- 
POST

TIME-
POST

201 818.5 503.23 1424.74 546.4 468.56 1427.31

202 155 117.63 1413.63 144.68 115.55 1397.72

203 220.61 160.25 1431.47 192.07 168.14 1432.18

204 287.54 202.33 1378.43 705.29 445.71 1406.65

205 268.89 117.01 1424.41 131.02 102.71 1368.45

206 177.59 102.81 1409.72 202.03 137.05 1395.44

207 269.51 214.39 1423.7 418.34 282.52 1416.25

208 324.47 269.32 1425.74 200.6 222.26 1419.84

209 207.19 221.82 1411.17 156.06 114.97 1383.91

210 302.09 309.24 1417.63 361.23 335.73 1427.52

211 278.45 256.91 1400.61 296.2 355.68 1410.82
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6.2.2 Analysis of Variance (ANOVA)

Table 6.11 ANOVA: Frequency Domain Analysis.

Anova: Two-Factor With Replication

SUMMARY
LF AREA-

PRE HF AREA-PRE TIME-PRE
LF AREA-

POST HF AREA-POST TIME-POST Total

201

Count 11 11 11 11 11 11 66

Sum 3309.84 2474.94 15561.25 3353.92 2748.88 15486.09 42934.92

Average 300.89 224.99 1414.65 304.90 249.89 1407.82 650.52

Variance 32287.93 13044.05 224.02 34700.11 18387.87 396.42 309813.79

Total

Count 11 11 11 11 11 11
Sum

3309.84 2474.94 15561.25 3353.92 2748.88 15486.09

Average 300.89 224.99 1414.65 304.90 249.89 1407.82

Variance 32287.93 13044.05 224.02 34700.11 18387.87 396.42

ANOVA
Source of
Variation SS Df MS F P-value F cut

Sample 0 0 65535 65535 #NUM! #NUM!

Columns 19147492.3 5 3829498.45 231.99 6.9309E-38 2.368270235

Interaction
3.49246E-

10 0 65535 65535 #NUM! #NUM!

Within 990404.30 60 16506.73

Total 20137896.6 65
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6.3 24 Hour Activity Plots

Four programs were also designed in Labview 7.0 to generated activity plots of three time

domain measures (SDNN, pNN5O, and rMSSD) and two frequency domain measures (LF and

HF area). The plots were obtained through the following steps:

1. The IBI data was parsed and divided into five minute segments.

2. The decimated III for each segment was generated, in case of frequency domain
measures.

3. The HRV measures were then calculated for each five minute segment and stored in an
array.

4. The array was then plotted with the five minute segments along the X axis and HRV
measure along the Y axis.

The obtained plots can be seen in Figure 6.1.

Figure 6.1 24 hour Activity Plots for various heart rate variability measures.
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6.4 Discussion

The time and frequency domain measures calculated using the implemented Labview programs

and the provided data set were found to have no statistically significant changes. This was in

good standing with the prior study conducted on the same data. This in effect validates the

results obtained using the newly designed Labview applications. In the earlier conducted study

none of the studied frequency domain parameters showed statistical significance. The time and

frequency domain measures when measured over a 24 hour period are strongly correlated with

each other [2]. The correlation is better understood in Table 6.12.
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These strong correlations exist because of both mathematical and physiological relationships.

The frequency domain measures of LF and HF area were also calculated as a part of this study

with a modified version of a spectral analysis Labview program. This was done with the

intention to cross reference the results obtained from the earlier study and to test the new IIBI

creator and spectral analysis programs, all of which work highly efficiently and effectively.

Results were derived from 24 hour recordings in less than one minute. This is a major

advantage behind the implemented programs. 24 hour recordings are known to have close to, if

not more than, 100,000 data points. Computer applications for such large data sets must be

designed with an idea to keep complexities down to a minimum. The greater the complexity of

the program, the less efficient will it run. Time is an important factor to take into consideration,

especially for HRV research studies. Faster results means more effort can be focused on the

actual analysis of data rather than on deriving the measures. In effect the designed applications

for the time domain analysis of heart rate variability performed satisfactorily. The method of

decimation used for IIBI signal generation, reduced processing times to less than a minute.

Another advantage behind decimation of the IIBI is that it reduced redundancy, commonly

associated with the IIBI, and the amount of disk space required for storage. All these factors

contribute to the success of the implemented Labview programs.

The 24 hour activity plots generated by the Labview programs drew interesting

results. All plots seemed to show a decrease their respective HRV measure during what is

inferred to be the subjects period of sleep. It also give an idea of when HRV measures are

more active. Such activity plots can be further studied to generate more precise results.
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6.5 Conclusions

The Labview programs designed as a result of this study performed satisfactorily on the

provided exercise data set. The outcomes of the previous study conducted on the same data set

found no significant changes in the frequency domain parameters used for HRV analysis. The

programs that were designed in this study and implemented on the same data set were found to

produce similar results, no significant changes found. Processing time was another factor that

was given importance while designing the programs. Processing time will significantly

increase with greater complexity of the program and with the size of the data set. By

complexity one means functions that require a large amount of processing. Complexity

increases drastically with embedded looping and multi — level sub-programs. 24 hour data

recordings contain a large amount of information. Extra effort had to be put into creating

programs which were accurate, less complex, and fast.

The designed Labview programs met all requirements that they were intended for. The

time domain measures were calculated in good times of less than 30 seconds. The frequency

domain measures were also calculated in less than a minute. IIBI creation using decimation

worked exceptionally well, creating an IIBI file from a whole 24 hour IBI recording in less

than one minute. Run — time errors were not found using the given data set. However one

would not expect to run into such errors unless there was a change in the format of how the

information was stored. Execution of the programs can be done relatively easily and user

interaction is limited to specifying a sampling frequency and the path of the data file to be

processed.
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CHAPTER 7

POTENTIAL OF RESEARCH AND FUTURE GOALS

The Labview programs designed as a result of this study will go a long way to assist

researchers interested in HRV studies. These programs not only can be used to calculate the

originally intended time domain measures, but also could be used to derive plots to exhibit the

changes of the measures over a 24 hour period. Such a plot will not be able to be generated for

all measures like the SDNN index and SDANN which is defined over a 24 hour period. But for

measures like SDNN, rMSSD, and pNN5O, values can be found for any specified minute

interval and the change in values over 24 hours can me monitored. The study of such plots and

changes over time could lead to new measures of HRV and reveal trends not seen before.

Figures 8.1, 8.2 and 8.3 show the 24 hour plots of the above mentioned time domain

parameters and the programs used to generate them. Figures 8.4 to 8.6 show the Labview 7.0

program for generating the changes in HF and LF area over 24 hour period. Figures 8.5 and

Figure 8.6 are the plots obtained after executing the program.
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Figure 8.1 (Labview Program to derive changes in SDNN of patient CART2O1_O1 over 24
hours.(above) The plot generated using Matlab (below).
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Figure 8.2 Labview Program to generate rMSSD values for subject CART201_01 over 24
hours (above). The 24 hour plot generated using Matlab (below).



Figure 8.3 Labview 7.0 program to generate pNN50 values for subject CART201_01 over 24
hours (above). The pNN5O values generated using Matlab (below).
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Figure 8.5 Subject CART2O1_O1 : LF area over 24 hours
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The programs used to derive these plots are in their experimental stages and have not been

tested for precision or validity. A limitation behind such a plot is the effects of segmentation

on a 24 hour plot. To derive these plots the 24 hour Holter monitor data used to test orginal

programs had to be segmented into 5 minute intervals. Effects of such segmentation are

unknown and should be later studied. Also a program to generate a similar plot for the

frequency domain parameters HF and LF is also being developed. Limitations of such a

program is the effect of aliasing as a result of segmentation causing "end-effects".

Other possibilities for future of this work can be the development of an integrated tool

which will allow a user to read a single file and generate all required HRV parameters and

plots. Such a tool has would be immensely useful and beneficial to the research community.
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The study of the inter-relation of parameters in different domains is another area where

the designed programs would be useful. The time plots of HRV parameters over 24 hours can

be compared for the same subject and might be able to generate interesting information.

File conditioning is another area that should be given due importance. The filtering that

was performed as a part of this study could have been improved with the help of an adaptive

filter. Such a filter should be able to compare each element of the IBI array to its neighboring

elements, both before and after the element being tested. In this way an element could be

determined to be a true error and not just determined to be an error through supposition. Such a

filter would be able to remove many more possible errors that might be embedded within the

data set and increase the overall precision of any HRV measure determined from the data.

A large number of tools that can be generated from the basic applications implemented

as a result of this study. And with the generation of faster and more powerful processing tools,

one looks forward to the future of HRV and its contributions to the medical community.



APPENDIX A

LABVIEW PROGRAMS: FRONT ENDS

This appendix shows the front ends of each of the programs explained in Chapter 4.
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APPENDIX B

PROGRAMS CURRENLY IN DEVELOPMENT: FRONT ENDS

This appendix contains snapshots of the front ends of those programs which still in

developmental stages.
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