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ABSTRACT

EVALUATION OF POSTURAL STABILITY USING
SENSORY ORGANIZATION TEST

by
Tiffany Sims

Poor postural stability of the elderly and other patients has been a major concern.

The cost of treating injuries due to poor stability is expected to rise to $32.4

Billion by 2020. Many interventions have been proposed and used to improve

stability. In order to determine the efficacy of these interventions, an objective

evaluation of postural stability before and after intervention is important.

The aim of this thesis was to scientifically analyze the ambiguities in the

equilibrium score (ES) given by the Neurocom Smart Equitest (NSE) machine,

and compare it to a new measure of stability that has been proposed by

Chaudhry et al., (2003) the postural stability index (PSI). This was done by

determining the correlation of PSI and ES between the average sway angle, the

ankle stiffness, and the SF-36 summary scores. Another aim was to investigate a

method of validating mathematical models of the postural system, with the help

of Ascension's Flock of Birds (FOB). This was done by testing the position

output of the FOB in the NSE environment.

It was found that the average sway angle and ankle stiffness correlates

better with the PSI. However, the SF-36 summary scores correlates better with

the ES although both have poor correlation. It was also found that the FOB had

a maximum error of 2.5 inches over a height range of 15.5 to 40.5 inches.
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NOMENCLATURE OF EQUATIONS IN TEXT

A 	 ankle joint

M 	 mass of body above ankle

m 	 total mass of the feet and the force plate

d 	 distance from vertical force transducers to the pin axis

e 	 distance from horizontal force transducers to ankle joint

a 	 distance from the line through ankle and pin joints to the center of
mass of the feet

h 	 distance from ankle joint to the center of mass of the body

FH,A 	 horizontal force acting at ankle joint

FH 	 horizontal ground reaction force measured with force transducer at
pin joint of the force plate

Fv 	 vertical force acting at ankle joint

FF , FR 	 vertical ground reaction forces measured with front and rear force
transducers respectively

't , tg 	 moment acting at ankle joint by muscles and by gravity respectively

0 , y 	 absolute sway angle and center of mass with respect to fixed
vertical reference

m

 1 yin 	 relative sway angle and center of mass with respect to line
perpendicular to force plate

(1) 	 rotation angle of the force plate during sway-reference motion

I , IC 	 subject's moment of inertia about its ankle joint and about its center
of gravity



CHAPTER 1

INTRODUCTION

1.1 What is Postural Stability?

Human postural control during upright stance is typically evaluated in either of

two modes. The first mode is quiet stance, or stance with no intended movement.

The second mode is perturbed stance, which is quiet stance that is disturbed by

an external perturbation, such as a push or a sudden shift of the support surface

(a "dynamic" condition) (Collins, et al., 2003). Postural steadiness is the ability to

remain close to the equilibrium point when no perturbations are experienced

(Prieto, et.al.,1993). Postural stability is the ability to return the body close to the

equilibrium point after being perturbed. The human body's balance is maintained

by a control system referred to as the balance or postural control system. It is

believed that postural control is coordinated by the proprioceptive, vestibular, and

motor systems. The proprioceptive system collects positional information from

proprioceptors located in muscles, tendons, and ligaments that surround joints

while the motor system outputs positional information.

The three key systems that the sensory organization test (SOT) studies

are the somatosensory, vestibular, and visual systems. The somatosensory

system (which gets information form the sense of touch and the proprioceptive

system) provides information about vertical orientation relative to a support

surface such as the floor, or in the case of this study the force plate. The

1
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vestibular system provides both static and dynamic position using the

relationship with our head and gravity. The sensory receptors for the vestibular

system are located in the inner ear. The visual system also aids in postural

control via peripheral vision, which provides information about either the motion

of the subject or the motion of some other object (Bradley, 2002).

The ability to maintain posture can be reduced due to aging or pathologies

such as stroke, head injury, or cerebral palsy. These pathologies affect balance

by impairing either the proprioceptive or the motor systems. This in turn can

reduce the postural stability of a person resulting in increased body sway and/or

altered movement strategy. Typically, the movement strategy for controlling the

antero-posterior sway is an ankle strategy, in which the body pivots around the

ankles to maintain stability (Duarte, 2003). If the stability is somehow disturbed,

the body reverts to a hip or step strategy in order to help maintain stability

(Frykberg, 2000).

1.2 Why is Evaluation of Postural Stability Important?

According to the National Center for Injury Prevention and Control, every hour an

older adult dies as the result of a fall. Adults with impaired strength, mobility,

balance and endurance are twice as likely to fall as healthier persons of the

same age (Body sway measurement with PowerLab, 2002). Currently, devices

such as the adjustable Klenzac ankle joint with a rigid plastic molded brace are

being used to help patients gain balance. In order to know whether an
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individual's balance has improved as a result of a particular intervention, the

stability needs to be evaluated objectively, not on an individual's subjective

report.

1.3 Evaluation of Postural Stability

1.3.1 Parameters to be Studied

Postural control is currently being studied using `posturographic' recordings that

are typically made with a force plate. The force plate is used to measure the

deviations from the center of pressure (COP) caused by changes in the subject's

center of gravity as he or she maintains balance. Two key parameters of interest

are postural sway or body sway and ankle stiffness.

It is believed that the COP, which occurs mainly in the horizontal plane,

contains a lot of information about postural stability. Presently, measures of the

COP and the horizontal force components are used to quantify the body sway,

but the vertical force component is usually not taken into consideration in this

context. (Collins et al., 2003) Postural sway has been evaluated by many

researchers by analyzing the time-varying coordinates of the COP obtained from

the force plate. The analyses are usually limited to statistical measures of the

COP and center of mass (COM) such as the standard deviation, the path length

or the mean velocity of the COP. (Fykberg et al., 2000)

The ankle stiffness is another parameter that offers much information.

This is because, as mentioned before, it is believed that most people pivot about
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the ankles in order to maintain stability. The ankle stiffness of the patients can

be obtained by finding the slope of the ankle moment vs. sway angle through

linear regression. It is expected that as the ankle stiffness increases the

postural stability will decrease.

In addition to the more specific measures of postural sway discussed, a

survey known as the Short Form Health Survey (SF-36) is used to discuss

postural stability. The SF-36 was developed by John Ware and consists of 36

questions on various aspects of a person's well-being and health. The SF-36

was designed for use in clinical practice and research, health policy evaluations,

and general population surveys. The SF-36 includes one multi-item scale that

evaluates eight health concepts:

1) limitations in physical activities as a result of health problems

2) limitations in social activities as a result of physical or emotional problems

3) limitations in usual role activities as a result of physical health problems

4) bodily pain

5) general mental health (psychological distress and well-being)

6) limitations in usual role activities because of emotional problems

7) vitality (energy and fatigue)

8) general health perceptions

The survey was constructed for self-administration by persons 14 years of age

and older, and for administration by a trained interviewer (in person or by

telephone). This survey has been widely administered in many diagnostic
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populations resulting in development of norms within diagnostic groups and by

age. It has also been incorporated in the Large Health Survey of Veteran

enrollees with modifications made to the scoring of two domains, mental

(emotional) role and physical functioning role.

1.3.2 Review of Tests Used to Determine Postural Stability

In clinical practice, postural stability is commonly evaluated by self-report and in-

person interview/assessment instruments such as an activity-specific balance

confidence scale (Powell et.al.,1995) , falls efficacy scale (Tinetti et.al.,1990),

modified falls efficacy scale (Cheat et.al.,2001) , medical outcomes study short

form 36 (SF-36) or functional tests such as Berg balance scale (Berg

et.al.,1992).

Functional tests are tests that have been designed to assess balance

capabilities for various tasks related to everyday life. This section includes a few

examples of functional tests currently used. When therapists perform an initial

balance screening, they usually include an assessment of tandem (two legs

placed one behind another) and one leg stance, which is called a stationary

balance test. These evaluations are typically performed with shoes on, shoes

off, and they may sometimes include tests on unstable or uneven surfaces. In

addition to this, there may be a test with high heels on for women. The

performance is quantified by the length of time the patient is able to maintain the

stance, as well as a score for the amount of sway observed. A score of 1 is

given if a normal amount of sway is observed and a score of 0 is given if an
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excessive amount of sway is observed or if the sway was abnormal or

asymmetric (Bradley,2002). Two trials are typically done for each case, and

usually the best of the two scores is used for future comparisons. In order to

determine if a patient's scores are within a normal range, the scores are to be

compared to average scores of several normal subjects. It is important to note

that scores do differ for different age ranges.

The functional reach test is another test performed by therapist. This test

assesses the patient's ability to lean forward as far as possible, while reaching at

a 90° angle from the body. The test is performed while the patient is standing

close to (but not touching) a wall, with feet shoulder's width apart. This test is

quantified by measuring the fingertip distance the patient successfully reaches.

The farther a patient can reach, the better the postural control is said to be

(Bradley, 2002).

Physical therapists also use a test that assesses the functional balance of

patients, called the functional balance test. This test is a collection of 14 different

static and dynamic tasks that vary in difficulty of maintaining balance. These test

involve reaching, bending to pick up an object, standing on one leg, standing

heal to toe, etc. Each task is assigned a score from 0 to 4 with 0 being the worst

and 4 perfect, and all scores are summed together (Bradley,2002).



1.3.3 Sensory Organization Test

7

Figure 1.1 Sensory organization test conditions.

Another test used by therapists to assess postural stability is the sensory

organization test (SOT). The SOT was designed to identify abnormalities in the

use of the somatosensory, visual and vestibular systems, the three systems that

contribute to postural control. This is done by providing the eyes, feet and joints

with inaccurate information. Whenever a normal individual experiences a conflict

in one or more senses, an adaptive response occurs in which the individual

suppresses or ignores the responses from those senses and selects more

accurate sensory systems to generate the appropriate motor response.

Abnormal individuals, on the contrary, find difficulty suppressing the inappropriate
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responses from the senses and/or selecting a more accurate sensory system

(Bradley, 2002).

This test simulates conditions that are similar to problems that people

come across daily, for instance: (1) diminished visual cues, such as darkness, or

lack of contrast or depth cues, (2) unstable or compliant surfaces such as a

sandy beach, gravel driveway, or boat deck, or (3) conflicting visual stimuli which

can be present in a busy shopping mall, or with large moving objects such as a

moving bus (Neurocom, 2003). It is during this time that it is important for the

body to determine which system is providing inaccurate information and choose

the appropriate system.

The six different sensory conditions of the SOT can be administered

without a force plate, or using a posturaography testing system (force plate), as

done in this study. These conditions are designed to manipulate the visual or

somatosensory system. The test without the force plate is also known as the

foam and dome test. In this test, a square piece of high-density foam is placed

under the feet of the patient to reduce the effective use of the somatosensory

system. In addition, a dome constructed from a round paper lantern is placed

over the patient's head to distort visual information about body sway. The testing

conditions are as follows: (1) plain upright stance, (2) blindfold, (3) dome, (4)

foam, (5) foam & blindfold, (6) foam & dome. Each condition is to be performed

for thirty seconds. These tests are quantified using the length of time the patient

was able to perform each condition, and a score representing the amount of
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sway. The amount of sway is measured relative to the limits of stability, which

are the maximum distance a person can lean forward and backward without

falling. A score of 1 is given if the patient stays within the limits of stability and a

score of 0 is given if the patient exhibits abnormal, excessive or asymmetric sway

(Bradley, 2002).

Sometimes a force plate is used to measure how well the patient can

maintain their postural stability. The Neurocom Smart Equitest machine

quantifies postural stability by using what is called the equilibrium score, which

will be discussed more in detail later. In this case, inaccurate information is

introduced through sway referencing the visual surround and force plate under

the following six conditions:

Table 1.1 SOT Conditions

CONDITION PLATFORM SURROUNDINGS EYES
1 FIXED FIXED OPEN
2 FIXED FIXED CLOSED
3 FIXED MOVING OPEN
4 MOVING FIXED OPEN
5 MOVING FIXED CLOSED
6 MOVING MOVING OPEN

The patient's ability to use input from the somatosensory system to

maintain balance can be evaluated using the ratio of condition 2 to condition 1.

The patient's ability to use input from the visual system to maintain balance can

be evaluated by using the ratio of condition 4 to condition1. The patient's ability

to use input from the vestibular system to maintain balance can be evaluated by

using the ratio of condition 5 to condition 1 (NeuroCom, 2003).
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For certain tests the force plate or visual surround moves using sway

referencing, meaning that the motion of the force plate and visual surround

follows the subject's motion. This is done to deliver inaccurate visual or

proprioceptive information to the subject, which in turn causes the subject to rely

more on other senses in order to maintain balance. It is possible to assign a gain

factor for the sway any value from —2 to 2. A gain factor of —2 would mean the

machine would sway twice as much as the subject in the opposite direction the

subject swayed. And a gain factor of 2 would mean the machine would sway as

twice as much as the subject in the same direction the subject swayed. For all of

the tests performed for this thesis, the sway referencing had a gain setting of

one, meaning sway of the visual surround and the sway of the force plate

followed the subject's sway exactly.

1.4 Quantifying Postural Stability

It is desirable for physicians to have a number or at least a small set of numbers

that represents the postural stability of a patient. Although the tests previously

mentioned each test important aspects of balance, they all (with the exception of

the SOT with the force plate) contain a subjective score. What one therapist

considers being normal sway, reach, etc. may not be considered normal by

another therapist. Therefore, it is desirable to obtain more quantitative measures

in their places.

Researchers have used several methods, including the equilibrium score

to assess postural stability. One method involves measuring the rate at which
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consecutive peak values of the total angular moment of all body segments about

the ankles diminish when a standing person undergoes different types of

perturbations (Alexander, 1992) (Shepard, 1993). This method, however, still

does not provide a defined measure of postural stability. Another method

involves identifying stability zones in a patient. The stability zones to be

identified by the physician were the high preference, low preference, undesirable,

and unstable zones. However, it is difficult for physicians to identify these zones

(Popovic.et.al .,2000). It is desirable for physicians to have simpler methods to

obtain a single number or small set of numbers to quantify stability.

1.4.1 Equilibrium Score

The equilibrium score (ES) was designed to indicate how well the patient's sway

remains within the expected angular limits of stability during each sensory

organization test trial. These limits of stability are determined by having normal

subjects stand with the medial malleolus of each ankle directly above the y-axis

zero position on the force plates. Their feet are placed an equal distance on

each side of the x-axis zero position. They are then asked to lean forward and

backward as far as they can without losing balance. The maximum forward and

backward sway angles (8) are calculated using formulas that will be discussed

later (Figure 3.1).

Based on these experiments the limits of stability of normal subjects were

found to be 7 degrees anteriorly and 5 degrees posteriorly relative to the center

of base support. It is important to note that the equilibrium score does not take
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this asymmetry into consideration. The average maximum sway for a normal

person is considered to be 12.5°, although this angle may vary depending upon

the age, sex, mass and height of the individual. The machine using the following

formula calculates the equilibrium score (Neurocom International, 2001).

Therefore, persons with little sway would get scores close to 100 and persons

with much sway would get scores close to 0. If a person falls during the trial, the

operator interrupts the trial and the trial is assigned a score of 0. However, since

the limits of stability vary from person to person, those with a limit greater than

12.5 , for example 13 degrees, will receive a negative score (i.e. 12.5 - 13= -.05).

In such cases, the patient is assigned a score of zero, a practice that can

eliminate useful information.

In addition to reporting equilibrium scores for each condition, the

Neurocom Smart Equitest also reports a composite equilibrium score. This score

is a weighted average of all the equilibrium scores calculated as follows:

If a subject does not complete any of the trials for a given condition, the

denominator is reduced to reflect the number of elements in the numerator. This

score is meant to describe the person's overall level of stability, and is the score

generally used to study the person's stability over time.
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A disadvantage of this score is that many combinations of anterior and

posterior sway across the same overall range can give the same ES. For

example, the overall limit of stability of 6 degrees can be made up of the many

combinations. For example, 6 degrees of anterior sway and 0 degrees of

posterior sway, or 3 degrees of anterior sway and -3 degrees of posterior sway,

etc. All of these combinations would result in the same composite ES. Yet,

assuming the average limits of stability a subject with +6/0 degrees of sway

combination likely has a greater risk of falling than a subject with a 3/-3

combination. The first is close to the functional stability limit on the anterior side,

whereas the second combination is not as close to the functional stability limit on

either side. Therefore, the equilibrium score, which would be identical in these

two situations, can be insensitive to functionally relevant differences in postural

stability.

1.4.2 Postural Stability Index

Because the SOT-based ES does not take into account some key biomechanical

aspects of postural stability and has many ambiguities as mentioned in section

1.4.1, a new measure of postural stability which is called the Postural Stability

Index (PSI), was proposed (Chaudhry et al., 2003). A formula used to assess

postural stability should include information such as the mass and height of the

subject, as well as the ankle torque produced to maintain stability. These are

absent in the formula for ES.
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The Postural Stability Index is defined as the percentage ratio of the total

stabilizing ankle torque and the total destabilizing torque due to gravity (obtained

from the product of the weight, height and the sway angle). The lower of the two

quantities is placed in the numerator. In mathematical terms, PSI is defined as:

which ever is less than 100. The range of PSI is 0 to100, and the amount of

instability is reflected in how much the PSI is less than 100. When the numerator

and the denominator are equal, the PSI is 100%, and the subject is perfectly

stable.

Recall that two individuals with different magnitudes of anterior and

posterior sway, but with the same overall sway range will have the same ES (see

equation 1.1). However, it is believed based on the formula for PSI that the two

individuals will have different PSI scores. This is because the PSI relies on

biomechanical data recorded from each individual, whereas the ES relies heavily

on normative assumptions. A composite PSI score was found for each test in a

manner similar to that of the equilibrium score defined by the machine.



CHAPTER 2

BACKGROUND REVIEW

2.1 Mathematical Models

In addition to physically measuring the center of pressure, there have been many

efforts to mathematically model the balance system. It is difficult to model the

postural steadiness and stability of an individual, since there is no clearly defined

input function. Nevertheless, researchers have modeled the control system to a

reasonable amount of accuracy using the relations between body segment

angles and the joint torques based on the mechanical structure of the body.

The inverted pendulum is the most common model used to describe

postural control during quiet stance. However, the single-link inverted pendulum

model of the body is most commonly discussed only in the Anterior/Posterior

direction. In many cases a more complete two link inverted pendulum model is

used to evaluate ankle joint stiffness. In these two-link models, the postural

control is defined by the relation between the center of pressure and the center of

mass. In addition, Firsov (1990) described a three link inverted pendulum model

incorporating elasticity and damping coefficients for each joint.

Although the single-link, two-link, and three-link inverted pendulums are

simpler models to use for analysis, they do not describe completely human

postural dynamics at all the joints - ankles, knees, hips and the neck (Stockwell

1981, Levin 1998). This is supported by the findings that angular displacement,

velocity and acceleration of the hip are significantly greater than those of the
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ankle during quiet standing in humans (Aramaki, 2001). It is also observed

(Deniskina & Levik, 2001) that the basic contribution to posture regulation in the

frontal plane when standing is made by hip muscles. Four-link mathematical

models that take into account, foot, shank, thigh, torso, and the force plate mass

and motion have been developed. Zhiming et al. (2002) have developed a four-

link model, that unlike the previous 1,2 and 3 link models, takes into account the

horizontal component of the ground reaction. In almost all of the models

described above, the role of viscous friction at the joints had not been evaluated.

However, torque due to this viscous friction at the joints has been included in a

four-link model developed by Zhiming et al. (see Appendix D).

2.2. Limitations on Current Devices

Three dimensional camera systems are frequently used for motion analysis.

Although this method is believed to be very promising and fairly accurate there

are some disadvantages. These systems are expensive, only allow

measurements in a restricted volume, and the markers are easily obscured from

vision resulting in incomplete data (Kidder, 1996).

The accelerometer has been proven useful for motion analysis when

larger motion is being observed. However, for this study patients will exhibit a

small range of motion. Therefore, an accelerometer by itself will not be the best

tool for our measurements.
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There has been a device developed that uses both and accelerometer and

a gyroscope (Mayagoitia, 2002). This system is less expensive and more

portable. In addition to that, it has been found to yield comparable results to a

commercially available camera system at lower speeds. Some of the

disadvantages to this system are that in some instances it yields errors up to

15% and the device suffers from slippage which results in incorrect data.

Recently, researchers have started using electromagnetic tracking devices

as a kinematic measuring tool. There have been studies conducted to determine

the accuracy of such device over longer ranges and also when used in

conjunction with a force plate. There have been concerns of how a force plate

could possibly affect an electromagnetic tracking device. It has been found that

these tracking devices in general yield errors less than 150 mm and 10° with a

standard deviation less than 3mm for position and 0.3°. When the tracking

device is used in conjunction with a force plate, it was found that results were

satisfactory for sensors located at least 500 mm away from the force plate. It was

also found that errors increased with the distance between the transmitter and

the sensor and decreased with the distance between the force plate and the

sensor (Perie, 2002).

The Flock of Birds is a device developed that allows the use of multiple

electromagnetic tracking sensors at one time. This device has also been studied
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for accuracy and it was found that it yielded smaller errors than the device

studied by P'erie et al (Frykberg, 2000).



CHAPTER 3

DEVICES USED IN THIS THESIS

3.1 Neurocom Smart Equitest Machine

Figure 3.1 Neurocom Equitest Machine.

Source: http://www.onbalance.com/neurocom/products/SMARTEquiTest.aspx

3.1.1 Mechanics

The Neurocom Smart Equitest system is composed of a platform base, a visual

surround and a computer, printer and monitor system. The platform base is

composed of a dual force plate, force transducers (each with its own amplifier),

and servomotors. The dual force plate, one plate for the left foot and one plate

for the right foot, is made up of two 9 inch by 18 inch footplates that are

connected by a pin joint. The force plates are supported by four strain gauges

that are mounted symmetrically on a supporting center plate. The strain gauges

measures vertical forces applied to the force plate. Due to the pin joint that allows

each plate to rotate freely, a different set of forces can be measured for each

foot. There is a fifth transducer located directly beneath the center pin joint. This
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transducer measures the shear forces, the forces in the plane parallel to the

floor. This plane is considered the X-Y plane.

Before using the force plates, a subject is positioned so that the ankles are

centered over a stripe that is printed on the force plate, with the feet an equal

distance laterally from the center line. This allows their center of gravity to be

located directly at the intersection of the X and Y-axes. The point at which the

two axes intersect is called the electrical zero position and it serves as a

reference point for the calculation of the sway angles.

The force plates are moved when commanded by the computer using dc

servomotors, each powered by its own linear dc amplifier. These servomotors

are attached to the force plate using lead screws and ball bearing nuts, a detail

that will be of importance when using the flock of birds. With the use of ball

bearing gears, 95% of the motor's power can be delivered to the force plate.

3.1.2 Calculations Made by the Equitest Machine

There are five main force measures that the Equitest system either calculates or

measures. The first is the total vertical force, which is the sum of the right front

transducer (RF), the right rear transducer (RR), the left front transducer (LF) and

the left rear transducer (LR). The second is the total horizontal force, which can

be measured using the transducer located directly below the center pin joint.

The third is lateral center of the vertical force (P r), which is considered to be the

distance between the vertical projection of the patient's center of gravity and the

Y axis. This distance can be calculated using the following equation:
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(3.1)

The fourth and the fifth are the left and right centers of vertical force, which are

considered to be the distance between the vertical projection of the patient's

center of gravity and the X axis. These can be calculated using:

Most of the measurements made for this study are based on the center of

gravity of the subject. Therefore, it is important to know how the Neurocom

Smart Equitest determines this point. The Neurocom Smart Equitest actually

measures the person's center of mass. Neurocom's definition of the center of

mass is as follows: " the point in the object that moves the way a single particle of

the same mass would move if equivalent external accelerations were applied to

it". When the only acceleration applied to an object is gravity, the center of mass

of that object is equivalent to that object's center of gravity. It has been found

experimentally that the center of gravity of a person is located at 55.27% of the

total height of that person, and 14% of foot length in front of the medial malleolus

bone in the ankle joint. In terms of degrees the center of gravity of a person lies

2.3 degrees forward from a vertical line passing through the ankle joints

(Neurocom International, 2001).

If we were to drop a vertical down from this theoretical center of gravity

point while a person was standing vertically we would land on a point in the foot
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that is called the center of foot support. It is about this point, that all sway angles

have been determined. The anterior-posterior (AP) center of gravity sway angle

is the angle between the vertical line described previously and the line passing

through the current center of gravity and the center of foot support. The machine

uses the following formula calculates the sway angle:

Figure 3.2 Sway angle diagram.

Here, PcoG is the instantaneous PY, which is the horizontal distance

between the X axis and the patient's center of gravity. HcoG is 55.27% of the

person's height. The 2.3 degrees is subtracted because the center of gravity

lies 2.3 degrees in front of the person's absolute vertical line.

For each condition, data is recorded for three 20 second trials, which are

sampled at 100 Hz. The machine reports several scores from the SOT including

the Equilibrium Score, the Initial Alignment, and Strategy Score. The Initial

Alignment score indicates the person's initial center of gravity position before the

start of each trial. The Strategy Score indicates whether the person uses their
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ankles or their hips more to maintain balance. The Equilibrium Score as

mentioned before indicates the how well the patient's sway remains within the

expected angular limits of stability during each SOT trial.

3.1.3 Need for Better Sway Angle Calculations

The Neurocom Equitest machine mentioned earlier, provides the displacement of

the center of mass (COM) which is calculated by taking 14 samples of the center

of pressure (COP) and finding the moving average. These COP measurements

are a result of only the vertical ground reaction force. In order to effectively

evaluate muscle stiffness, COM data more accurate than the moving average of

the COP is needed. With this is mind a new mathematical model of the center of

mass of the postural system has been developed that includes the equations of

motion in the horizontal and vertical directions as well as the moment equation

(Zhiming et.al.,2002).

To develop this new model, the system equations of motion for the body

must be defined first. These equations can be determined with the help of

inverted pendulum model of the body mentioned earlier (Figure 3.2). In this

figure, the body's center of gravity is denoted by the gray circle and the ankle is

denoted by the white circle.



Figure 3.3 Free body diagram of the inverted pendulum model of the body.
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Since it is possible to acquire the forces exerted by the feet onto the force

plate, it is also important that the equations of motion for the feet are defined as

well. This will allow the sway angles and torque to be found in terms of the data

provided by the machine. The equations can be derived with the help of the

schematic below (Figure 3.3). In this figure, the rectangle represents the force

plate and the gray and white circles still represent the center of mass of the body

and the ankle respectively.



Figure 3.4 Free body diagram of the foot on the force plate.

The equations of motion for the feet can be written as:

It is important to remember that the platform is not always flat. For some of the

cases the platform experiences sway referenced motion. In other words, the

amount of rotation the platform experiences is represented by (I) and is equal to

the sway angle of the body's center of mass, o n, , multiplied by a gain which can

be set at anything from -1.0 to 2.0. For this study, the gain is set to 0 for the

nonmoving platform and 1.0 for the moving platform. The absolute sway angle, 0,

which is with respect to the vertical, can be found by summing e,,, and 0. This

definition of 0 differs from that of the Neurocom machine, which always takes 0 to

be e rn (the COM sway relative to the platform). The disadvantage to the
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Neurocom approach is that e rn does not always give a full picture of the amount

of sway the patient is experiencing.

After combining the equations of motion for the body and the equations of

motion for the feet and eliminating the forces (FH, A, Fv, and t) that cannot be

found using the force plate the final set of system equations can be found:

Using algebra and a small angle approximation, 0 and t can be found as given

below.

To calculate the sway angle for conditions 1,2,and 3 the following formula should

be used:

To calculate the sway angle for conditions 4,5,and 6 the following formula should

be used:

(3.16)

To calculate the ankle moment the following formula can be used:

The position of the center of mass can be obtained by using equation 3.16.
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y = h* sin° 	 (3.18)

An example of data calculated using both the old and new formulas for theta is

shown below.

Figure 3.5 COM data for a condition 1 trial.

3.2 Flock of Birds

Figure 3.6 Flock of Birds system
Retrieved from http://www.ascension-tech.com/products/flockofbirds.pdf
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3.2.1 Reason for Choosing Flock of Birds

In order to gain more information about a person's stability, it would be helpful to

know exactly what the hips, knees and other parts of the body do during the

SOT. In order to do this, some other instrument must be used in conjunction with

the Neurocom Smart Equitest System. There have been many instrument used

over the years for motion analysis including camera systems, accelerometers,

and various tracking devices but all have not returned results that would be

accurate enough for this study.

Based on what has been found in the literature, it is believed the best

system to use to measure the sway could be the Flock of Birds. Of all the other

systems, this system has proven to be the best concerning reliability, cost and

ease of use.

3.2.2 How the Flock of Birds Works

The flock of birds is a six-degree of freedom measuring device that is designed to

simultaneously track the position and orientation of multiple sensors. The system

is composed of a transmitter that transmits a pulsed DC magnetic field to all of

the sensors in the flock. Each sensor is able to make anywhere from 20 to 144

measurements per second. For this thesis, the recording rate was set to 60

measurements per second. It is important to note that for the system used in this

study, the sensors should be within 4 feet of the transmitter in order to ensure

accurate measurements.
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The sensors are relatively light and are able to be placed almost

anywhere. It is recommended that the sensors should only be mounted on non-

metallic surfaces using non-metallic bolts. Care should also be taken to not

mount the sensors near power supplies or any other low-frequency current-

generating device, because the sensors may pick up these signals.

The transmitter, which is much heavier than the sensor, must be placed

on a non-metallic surface as well. It is also recommended that the transmitter

should only be placed or mounted on non-metallic surfaces using non-metallic

bolts.

Since the Flock of Birds works on DC magnetic fields, one concern is that

the Neurocom Equitest machine can cause interference either through the

magnetic fields produced by the motors or through the metal on the force plate.

There has been a study done by LaScalza et al., to see how metal and sampling

frequency can affect the signal between the transmitter and receiver (LaScalza et

al., 2003). In that study, a 5x5x15 cm block of steel and aluminum was placed

15 cm away from the transmitter in the x direction. The investigator chose six

positions for testing. The test was conducted once with aluminum, once with

steel, and once without metal. For each metal condition, measurements were

taken at 20,60,100, and 140 Hz. It was found that the more the sampling rate

increased the more the aluminum affected the accuracy of the measurements.

Also, it was found that the more the sampling rate increased the less steel

affected the accuracy of the measurements. Another study (Stone, 1996) was
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discussed by LaScalza et al., which yielded slightly different results. It was

mentioned that this discrepancy could be do to the fact that the other

investigators tested the Flock of Birds in an environment composed of several

metals. Since each laboratory setting will have different types and combinations

of metal in their environment it was suggested that the flock be tested for

accuracy in each laboratory setting.

It was still unknown, however, what effect can a force plate system have

on the flock of birds. This question was partially answered by a study conducted

by D. Perie et al. (2002). The purpose of this study was to determine the

accuracy of an electromagnetic tracking device in an environment of a

conventional force plate. The electromagnetic system that was chosen for this

study was the Motion Star by Ascension Inc., this like the Flock of Birds is a DC

tracking device. The device is composed of a long-range transmitter, a base

computer and 12 sensors. Data was collected at a sampling frequency of 86.1

Hz for each sensor, simultaneously. The surface of the force plate was located

at ground level and the transmitter center was located at 115 cm above the

ground level and 75 cm from the nearest measured point. The investigator

determined the error based on the distance between the transmitter and sensor

as well as the distance between the force plate and sensor. It was found that

there were no differences between data collected with the force plate switched

on or off. Errors increased with the distance between the sensor and transmitter,

and errors decreased with the distance between the sensor and force plate.



CHAPTER 4

THESIS OBJECTIVES AND METHODS

The ES that is provided by the Neurocom Smart Equitest device has been

accepted to be a good measure of postural stability. However, the ES seems to

have limited usefulness since it cannot be used to reasonably determine whether

the ES value for an individual falls within the range for a particular diagnostic

group. This is because it suffers from ambiguities (see section 1.4.1). More

specifically, ES does not take into consideration the mass or height of an

individual (Mgh), which is believed to provide much information about the ankle

stiffness. For this reason an alternative measure, known as the postural stability

index was introduced (Chaudhry et al., 2003). One of the goals of this thesis, is

to study how well the machine's ES, the computed ES, and the PSI correlates

with the two key aspects of balance (sway angle and ankle stiffness) mentioned

earlier, and the SF-36. The second goal is to see if it is possible to validate the

mathematical models mentioned earlier using the flock of birds.

4.1. Comparing PSI and ES

In preliminary studies, it has been observed that veterans with medically

unexplained symptoms and civilians with chronic fatigue have measurable

postural stability problems. It has also been shown that there is a high

correlation between balance ability and overall self reported health. Therefore, it

is of importance to find ways of effectively quantifying and then improving

balance of these individuals.
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For this thesis, there were three groups of patients studied. The first

group is composed of patients with no reported balanced problems (normal).

The second group is composed of patients that suffer from Chronic Fatigue

(CFS), which is a condition known to cause balance problems. The third group is

composed of veterans with medically unexplained balance problems (veteran).

To study the equilibrium score and postural stability index, data for 30 subjects

(10 from each group) were randomly selected from the VA Medical Center's

database. All patient data used for this thesis are from those patients who

previously gave their consent for using their data in such studies. Data for each

of the 30 subjects were taken from the sensory organization test, previously

described in this paper.

It is believed that if the ankle stiffness is increased, the postural stability

should decrease. Therefore, there should be a negative correlation between the

two. In order to get a single ankle stiffness value for each subject, a composite

stiffness was calculated in a manner similar to calculating the composite PSI and

ES.

The average sway angle was calculated using MATLAB, by finding the

mean of the theta values for all 18 trials done by each patient. This is done to

indicate approximately, about which angle a subject tends to sway. It is believed

that the closer the average sway angle is to the limits of stability the lower the

postural stability should be. Therefore, the ES and PSI should show a negative

correlation with positive average sway angles.
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The SF-36 data was provided for a slightly different group of subjects.

The group is still composed of 10 veteran patients, 10 normal patients and 10

CFS patients. For the Mental Component Summary (MCS) score, a score of 0

corresponds to someone with frequent psychological distress, social and role

disability due to emotional problems, and health rated "poor". A score of 100

corresponds to a person with frequent positive affect, absence of psychological

distress and limitations in usual social/role activities due to emotional problems,

and health rated "excellent" (Ware, Kosinski, and Keller, 1994). Therefore, it is

expected that as the MCS scores increase the composite score should increase.

For the SF-36 Physical component summary (PCS) score, a score of 0

corresponds to a person with limitations in self-care, physical, social, and role

activities, severe bodily pain, frequent tiredness, and health rated "poor". A

score of 100 corresponds to a person with no physical limitations, disabilities, or

decrements in well being, high energy level, and health rated "excellent".

Therefore just as with the SF-36 PCS score it is expected that as the PCS

increases the composite score will increase.

Another thing that was considered was the accuracy of all three scores

even if the subject was not able to complete the entire 20 seconds of the trial. To

do this the composite equilibrium scores and composite PSI of three subjects

(one veteran, one CFS, and one normal) were computed using 5 seconds, 10

seconds, and then the complete 20 seconds of data. The composite scores for

each time length were then plotted along with the standard error bars. A percent
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difference was calculated, using the 20-second composite scores as the

expected value.

Data was analyzed using a program written in MATLAB (see Appendix A)

and Microsoft Excel. ES and PSI scores were plotted against ankle stiffness and

average sway angle, to see what correlation if any, each of the scores had with

these parameters. In addition to this, the composite equilibrium score and the

composite postural stability index were plotted against the summary SF-36

scores. P-values were found to determine the probability of getting these

correlations by chance.

4.2 Accuracy of the Flock of Birds When Used With Neurocom

Figure 4.1 Experimental setup.

In order to collect data on the sway of other joints of the body the flock of birds

system is to be used. Before using this system, it is important to make sure that

its recordings are precise and that the Neurocom Smart Equitest machine is not
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causing interference. It is believed that the greatest cause of interference will be

the force plate and motors located at the base of the machine. Therefore,

preliminary tests were done to see the effects on the flock of birds as the

distance from the base of the machine varies. The Flock of Birds transmitter was

located 17.5 inches above the surface of the machine, and 15.5 inches to the

right of the wooden stand. There are also two metal hooks, which are usually

used to help secure subjects, located 44 inches above the force plate. The flock

of birds device was tested under three conditions: (1) with the Neurocom Smart

Equitest machine turned off, (2) with the Neurocom Smart Equitest machine

turned on, and (3) with the force plate moving. The data were collected using a

LabVIEW program written by Robert Demarco, a VA Medical Center employee.

The program collected 3 seconds of data at each one-inch increment. The data

was collected at a rate of 60Hz. The data was analyzed using a code written in

MATLAB (see Appendix B). To collect the data one sensor was fixed to a

wooden stand. The wooden stand contained markings that corresponded with a

tape measure. The transmitter was placed on a wooden box, located within the

Neurocom Smart Equitest Environment. The sensor or "bird" was moved

carefully moved along the z-axis, being careful not to change the x, or y position.

It is expected that by doing this, the flock of birds device will yield the same

results as the tape measure in the z direction, and the x and y data points will

remain the same. The data was calibrated by making sure that the first point

measured at the 18.5-cm mark read 18.5 cm. This point was chosen because it
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was almost in line with the vertical center of the transmitter, and because it was a

reasonable distance from the force plate. The error was found by finding the

distance between the anticipated and actual data points. The mean error was

found for each one-inch increment, and plotted against the anticipated data point.



CHAPTER 5

RESULTS

5.1 Comparing PSI to ES

The following are a series of plots that compare the composite ES calculated by

the Neurocom Smart Equitest machine and the composite PSI calculated using

equation 1.5 from the 2-link model to the average sway angle and ankle stiffness.

Before doing this, it was of interest to determine if there was any relationship

between the PSI and equilibrium (computed and machine) scores. In order to

determine if there is some relationship between the PSI and equilibrium scores

the two were plotted against each other and the correlation coefficients were

compared. As can be seen in Figure 5.1, the correlation between the composite

PSI and composite equilibrium scores is very poor.

Figure 5.1 Composite PSI score vs. composite ES score.
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It was found that as the amount of recording time decreased the more the

errors in the composite scores increased (Figures 5.2 & 5.3). Although both

scores show some error, the PSI score appears to show less error (Figure 5.3),

which could be an advantage of this score. Also, with the error bars included, the

PSI data tends to overlap more, implying that there is a chance that the scores

may be the same with different time intervals. On the other hand, the computed

ES data tends to show little overlap (Figure 5.2), implying that there could be a

difference in the scores with different time intervals.

Figure 5.2 Average composite ES with different time lengths.



Figure 5.3 Average composite PSI with different time lengths.

5.1.1 Ankle Stiffness
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Figure 5.4 Composite ES and PSI vs. ankle stiffness.

The composite computed ES showed a slightly positive correlation with ankle

stiffness, with a correlation coefficient of .189 (Figure 5.4). The PSI and the

machine ES, however showed a negative correlation with ankle stiffness, with

correlation coefficients of -.467 and -.017 respectively. Here we can see that the

computed ES goes against intuition and gives high scores for patients with high
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ankle stiffness and low scores for patients with little ankle stiffness. The PSI and

the machine ES, on the other hand, do show what is expected. The correlation

of PSI with ankle stiffness is much better than that of the machine and computed

equilibrium scores.

In addition, ankle stiffness was plotted against Mgh, to see how much

correlation the height and mass of the subjects has with the ankle stiffness

(Figure 5.5). The results indicate a high correlation, with a correlation coefficient

of .77.

Figure 5.5 Ankle stiffness vs. Mgh.



5.1.2 PSI and ES Vs Average Sway Angle
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Figure 5.6 Composite ES and PSI vs. sway angle.

Here we compare the composite computed ES, the composite machine ES and

the composite PSI against the average sway angle (Figure 5.6). When this is

done, we find that the PSI does in fact show a negative correlation with the

average sway angle. Both the computed ES and machine composite ES,

however show a positive correlation when plotted against the average sway

angle.

5.1.3 SF-36

It was found (See Figure 5.7) that the composite machine ES, computed ES, and

the PSI scores have a positive correlation with the sum of the PCS and MCS.

After calculating the linear regression, it was found that the composite machine

ES, computed ES, and the PSI scores have slopes correlation coefficients of .36,
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-.022, and .04 respectively. The results show that there is possibly some

correlation between the sum of the SF-36 MCS and PCS scores and the

composite machine ES and computed ES.

Figure 5.7 Composite scores vs. total SF-36 score.

When outliers were removed (Figure 5.8), it was found that the composite

computed ES, machine ES, and the PSI scores have a positive (although weak)

correlation with the sum of the PCS and MCS. After calculating the linear

regression it was found that the composite machine ES, computed ES, and the

PSI scores have correlation coefficients of .36, .34, and .03 respectively. The

results show that there is possibly some correlation between the sum of the SF-

36 MCS and PCS scores and the composite machine ES and computed ES.
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Figure 5.8 Composite scores vs. total SF-36 score with outliers removed.

5.2 Accuracy of the Flock of Birds When Used With the Force Plate

The flock of birds exhibited similar results in all three environments ( see Figures

5.9,5.12, and 5.15). However, errors do vary as the z-coordinate varies. This

could be either due to the distance from the transmitter or due to the metal in the

force plate. 	 However, since the error tends to increase as the sensor gets

further from the force plate, it is believed that it is not the metal in the force plate

causing the error, but rather the distance from the transmitter. The greatest error

was found to be 2.5 inches.



5.2.1 Power Off
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Figure 5.9 Mean z-axis error vs. actual height with power off.

Figure 5.10 Mean x-axis error vs. actual height with power off.
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Figure 5.11 Mean y-axis error vs. actual height with power off.

5.2.2 Power On

Figure 5.12 Mean z-axis error vs. actual height with power on.



Figure 5.13 Mean x-axis error vs. actual height with power on.
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Figure 5.14 Mean y-axis error vs. actual height with power on.



5.2.3 Platform Moving

Figure 5.15 Mean z-axis error vs. actual height with moving force plate.
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Figure 5.16 Mean x-axis error vs. actual height with moving force plate.



Figure 5.17 Mean y-axis error vs. actual height with moving force plate.
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CHAPTER 6

CONCLUSION

The ambiguities involved in ES are discussed, and the new measure of stability,

that is PSI, is introduced. It is found that there is a high correlation between Mgh

and ankle stiffness. Since ankle stiffness is a key parameter it would be

advantageous to include Mgh in any formula that is used to quantify postural

stability. This term is included in the formula for PSI, but is missing from the

formula for ES.

It is found that the PSI does show the desired correlation with ankle

stiffness and average sway angle. The regression line when PSI is plotted

against the average sway angle shows a very good correlation with the data

points. The correlation between the composite PSI score and the sway angle

appears to be very promising, because the more a person sways the less the

PSI. However, the correlation of the PSI and the equilibrium scores between all

others relationships is still yet to be determined, since the regression lines for all

of the other relationships have p-values greater than .05. Therefore, analysis of

more subjects will be needed before making further conclusions. It is found that

neither ES nor PSI has a strong correlation with the SF-36 summary scores,

although ES has a better correlation than PSI. The possible reasons for weak

correlation between the PSI and SF-36 summary scores could be that a person's

overall mental and physical health might not be correlated to the ankle stiffness.

Also, this PSI score is based only on the two-link model, which ignores hip and
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knee motion. Therefore, a new formula for PSI based on the four-link model

needs to be developed.

The errors found with the block of birds are less than those found with an

equivalent device (Pierie, et al., 2002). The Motion Star Device used by Pierie et

al. (2002) was found to yield errors as high as 150 mm, or 6 inches. With further

calibration, they were able to get errors as low as 3mm or 0.8 inches. Likewise, it

is believed that with further calibration (signal processing), the error in the FOB

measurements can be reduced, since error in FOB measurements are smaller

than those of the Motion Star device.



CHAPTER 7

SCOPE OF FUTURE WORK

In the future, the scores discussed can be used to study the effectiveness of

different interventions. Some interventions that have been reported to be

beneficiary with regard to 'balance related' tests in older community living adults.

Some of these interventions are participation in programs of walking, dancing,

resistance exercise, Tai Chi, flexibility, and strengthening exercises . The group

at the East Orange VA Medical Center, however, is planning to concentrate on

specific interventions such as (1) Balance training exercise, (2) Improvement in

the design of existing braces, (3) Structural Integration, (4) Improvement in the

design of shoe inserts.

In addition to using the scores to evaluate interventions, work will be done

to validate mathematical models of the postural control system. A program will

be developed that allows the Flock of Birds to record data while a subject is on

the Neurocom Smart Equitest. This will provide the actual positional and angular

data that can then be compared to values calculated using the mathematical

models, for its validation.
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APPENDIX A

PSI CODE

This is the code written to calculate the PSI.

%Adapted from Postural Stability Analysis - by Zhiming Ji
%This program analyzes raw encoder data from SOT
%Modified in July to calculate the PSI and to output summary data for each
group into data files.
%Modified September 18 to calculate the same es as the machine and calculate
%the variance of theta in degrees for each condition.
%modified October 10 to do the above calculations using the absolute values of
theta.
clear all;
outpuffile1=input('Enter output file name:','s');
loop=1;
swayangle=zeros(2000,6);
outpuffileavg=strcat(outpuffile1,'avg.txt');
fidavg=fopen(outpuffileavg,'a');
fprintf(fidavg,', „ ,ES„ „ „ , „ ,SI\n');
fprinff(fidavg,'patient,ES_cond1,ES_cond2,ES_cond3,ES_cond4,ES_cond5,ES_
cond6,CompsiteES,
,meanth,Variance1,Variance2,Variance3,Variance4,Variance5,Variance6');
fprintf(fidavg,',patient,S1_cond1,S1_cond2,S1_cond3,S1_cond4,S1_cond5,S1_cond
6, CompositeSl\n');

while loop-=100
patient=input('Enter patient number:(enter d if done)','s');
if patient==100

inpuffile=9;
else
inpuffile=strcat(patient,'sot.txt');
fid=fopen(inputfile);

g=9.81;
r2d=180/pi;
%convert load cell reading to Newton with factor g/(5.12*2.2)=g/11.264
%skip first 8 lines of data
for i=1:8

1=fgetl(fid);
end
%line 8 contains height
sss=sscanf(1, 1 °/08c %d');
H=sss(9)/100; %from cm to m
%read another line of data
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1=fgetl(fid);
%obtain data for all trials
while feof(fid)—=1 %stop read if reaching eof

%read next 8 lines
for i=1:8

if feof(fid)==1, break, end
1=fgetl(fid);

end
if feof(fid)==1, break, end
%last line contains Condition number
sss=sscanf(I,'%16c %d');
Cond=sss(17);
%read another line with Trial number
1=fgetl(fid);
sss=sscanf(I,'%12c %d');
Trial=sss(13);
%read another line with Sample size
1=fgetl(fid);
sss=sscanf(I,'%23c %d');
Npts(Cond,Trial)=sss(24);
if Npts(Cond,Trial) < 2000;
fprinff('Condition %d, Trial %d lasts only %f seconds\n',Cond, Trial,

Npts(Cond,Trial)/100);
end
%get rid another line
1=fgetl(fid);
%process next Npts lines
for i=1:Npts(Cond,Trial)

1=fgetl(fid);
sss=sscanf(I,'%d %d %d %d %d %d');
If(Cond,Trial,i)=sss(2)*g/11.264;
rr(Cond,Trial,i)=sss(3)*g/11.264;
sh(Cond,Trial,i)=sss(4)*g/11.264;
Ir(Cond,Trial,i)=sss(5)*g/11.264;
rf(Cond,Trial,i)=sss(6)*g/11.264;

end
%get the mean weight in Kg

Wt(Cond,Trial)=mean(lf(Cond,Trial,:)+R(Cond,Trial,:)+Ir(Cond,Trial,:)+11(Cond,Tri
al,:))/g;
end %while
fclose(fid);
%get the average weight from Conditions 1, 2 and 3
Wt2=mean(Wt'); %get average weight for each Condition



W=mean(Wt2(1:3));
%dimension and inertial parameters for different body parts
M1=0.09*W;
M2=0.202*W;
M3=0.678*W;
m=0.03*W;
e=0.039*H;
d=4.2*0.0254; %force sensor to pin
a=0.249*0.152*H;
11=(0.285-0.039)*H; 12=(0.53-0.285)*H;
Ic1=0.567*11; 	 1c2=0.56712;1c3=0.175*H;
k1=0.643*I1; 	 k2=0.653*12;
J1=M1*k1^2; 	 J2=M2*k2^2;
%calculating J3
Is=0.288*H;
15=0.188*H; 	 16=0.145*H; 	 17=0.108*H;
1c5=0.56415; 1c6=0.57016; 	 1c7=0.50617;

m4=0.579*W; m5=0.054*W; 	 m6=0.032*W;
m7=0.013*W;
kp4=0.389*H; kp5=0.542*15; 	 kp6=0.526*16; 	 kp7=0.587*I7;
14=m4*kp4^2; 15=m5*(kp5^2+1s*(1s-215+21c5)); 16=m6*(kp6^2+(ls-15)*(1s-15-
216+21c6));
17=m7*(kp7^2+(15+16-1s)*(15+16-1s+21c7));

J3=14+15+16+17;
%single joint data
M=M 1 +M2+M3;
h=(M11c1+M2*(11+1c2)+M3*(11+12+1c3))/M;
1=J 1+J2+J3+M2*(11+21c2)*11+M3*(11+12+21c3)*(11+12);
k=(I/M)^0.5;

outpuffile=strcat(outpuffile1,'.txt');
theta=strcat(outputfile1,'theta.txt');
fid = fopen(outputfile,'a');
fid3=fopen(theta,'a');
fprintf(fid,'patient number is %12s\n',patient);
%save subject's information to data file
fprinff(fid,'NC,NT,Npts,');
fprinff(fid,'B,D,S1,es,es mean,Sl_mean\n');
%work on Conditions 1—to 6
Gain=0.0; %default Gain for Conditions 1, 2 and 3
counter=14;

for i=1:Cond
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for j=1:3
if Npts(i,j)==0, break, end

if i > 3
Gain=1.0; %Change if not 1

end
ff=(If(i,j,:)+rf(i,j,:)); %front force
fr=(Ir(i,j,:)+rr(i,j,:)); %rear force
fh=sh(i,j,:); %horizontal force
for n=1:Npts(i,j)

th(n)=(M*h*((ff(n)-fr(n))*d+elh(n)-m*g*a)+11h(n))/(MA2*h^2*g-((M+m)*g-
(ff(n)+fr(n))/(1+Gain))*1);

com(n)=h*th(n);
temp=(g*(M+m)-(ff(n)+fr(n))-fh(n)*th(n)/(Gain+1))/(M*h);
machinePy(n)=((ff(n)-fr(n))/(ff(n)+fr(n)))*4.2;
machineHcog=0.5527*H;
machineth(n)=asin(machinePy(n)./machineHcog)-2.3;
fprintf(fid3, 1 %6.3Ant,th(n));
if temp<0

ternp=0;
end
thd(n)=temp^0.5; %magnitude of theta dot
MI(n)=Of(i,j,n)-Ir(i,j,n))*d; %moment from left
Mr(n)=(rf(i,j,n)-rr(i,j,n))*d; %moment from right
Mh(n)=fh(n)*e; %moment% from horizontal friction
tau(n)=(ff(n)-fr(n))*d+Mh(n)-m*g*a;
Wr(n)=(rf(i,j,n)+rr(i,j,n))*100/(ff(n)+fr(n)); %weight percentage on right foot

end
%linear regression tau=aa(1)*theta+aa(2)
aa=polyfit(th,tau,1);
ymean=mean(tau);
for n=1:Npts(i,j)
el (n)=(ymean-aa(1)*th(n)-aa(2))^2;
e2(n)=(ymean-tau(n))^2;

end
R2=sum(e1)/sum(e2); %R^2 for single-variable regression
dy=tau-polyval(aa,th); %deviation of moment about the regression
y_e=M*g*h*th-tau; %effective moment
dt_min=min(y_e);
dt_max=max(y_e);
%new stuff for stability index
D=sum(abs(tau));
B=sum(abs(M*g*h*th));
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Slcheck=(B/D)*100;
if Slcheck <=100

SI=Slcheck,
else SI=(10000/Slcheck);
end

%min and max of sway angle and ankle moment
tau_min=min(tau);

tau_max=max(tau);
th_min=min(th);

th_max=max(th);
machineth_min=min(machineth);
machineth_max=max(machineth);
machinedelta_th=machineth_max-machineth_min;
delta_tau=tau_max-tau_min;
delta_th=th_max-th_min;
%create the line of the regression of 200 pts
inc=delta_th/200;
for n=1:200

t2(n)=th_min+inc*(n-1);
ybar(n)=aa(1)*t2(n)+aa(2);

end
%Equilibrium Score
es=(1-machinedelta_th/12.5)*100;
Wr_mean=mean(Wr);
Wr_min=min(Wr);
Wr_max=max(Wr);
Ml_mean=mean(MI);
Ml_min=min(MI);
Ml_max=max(MI);
Mr_mean=mean(Mr);
Mr_min=min(Mr);
Mr_max=max(Mr);
Mh_mean=mean(Mh);
Mh_min=min(Mh);
Mh_max=max(Mh);

%convert angle to degree
th_min=min(th)*r2d;
th_max=max(th)*r2d;
delta th=delta_th*r2d;

cond2(i,j)=i; trial2(i,j)=j; B2(i,j)=B; D2(i,j)=D; S12(i,j)=SI; es2(i,j)=es;
ES_mean=mean(es2,2)10,0,1];
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Sl_mean=mean(S12,2)10,0,1];

%check to make sure sufficient number of pts 2000
%composite score pt check.

if Npts(i,j)==2000
escheck(i,j)=es2(i,j);
sicheck(i,j)=S12(i,j);

else
escheck(i,j)=0;
sicheck(i,j)=0;
counter=counter-1;

end

fprintf(fid,'%d,%d,%d,',i,j,Npts(i,j));

fprinff(fid,'%6.3f,%6.3f,%6.3f,°/06.3f,%6.3f,%6.3f\n',B2(i,j),D2(i,j),S12(i,j),es2(i,j),E
S_mean(i,j),Sl_mean(i,j));

Loc=round(Npts(i,j)14);

t=0:0.01:(Npts(i,j)-1)/100; 	 c=ith';zeros(2000-Npts(i,j),1)];
swayangle(:,(i-1)*3+j)=c;

dswayangle=swayangle*r2d;
variance=std(abs(dswayangle)).^2;
testmean=mean(mean(abs(swayangle)));
boundary=size(find(swayangle>=.15))+size(find(swayangle<-.01));
clear th corn thd tau Wr M1 Mr Mh;
%because their sizes may change in the following Trials

end
end
%calculating variance
variance1=(variance(1)+variance(2)+variance(3))/3;
variance2=(variance(4)+variance(5)+variance(6))/3;
variance3=(variance(7)+variance(8)+variance(9))/3;
variance4=(variance(10)+variance(11)+variance(12))/3;
variance5=(variance(13)+variance(14)+variance(15))13;
variance6=(variance(16)+variance(17)+variance(18))/3;

%calculating composite scores
compes=(ES_mean(1,3)+ES_mean(2,3)+sum(escheck(3,:))+sum(escheck(4,:))+
sum(escheck(5,:))+sum(escheck(6,:)))/counter;
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compsi=(Sl_mean(1,3)+Sl_mean(2,3)+sum(sicheck(3,:))+sum(sicheck(4,:))+
sum(sicheck(5,:))+sum(sicheck(6,:)))/counter;
fprinff(fid,'compes,%6.3f\n',compes);
fprintf(fid,'compsi,%6.3f\n',compsi);

fprintf(fidavg,'%12s,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,°/06.3f,°/06.3f,',patient,ES_me
an(1 ,3),ES_mean(2,3),ES_mean(3,3),ES_mean(4,3),ES_mean(5,3),ES_mean(6,
3),compes);
fprintf(fidavg,'%12s,%6.3f,%6.3f,%6.3f,%6.3f,°/06.3f,°/06.3f,%6.3f,°/06.3f,',patient,t
estmean,variancel ,variance2,variance3,variance4,variance5,variance6);
fprintf(fidavg,'%12s,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,(3/06.3f,%6.3f\n',patient,Sl_me
an(1,3),Sl_mean(2,3),Sl_mean(3,3),Sl_mean(4,3),Sl_mean(5,3),Sl_mean(6,3),c
ompsi);

end
loop=patient+0;
end
fclose(fid);
fclose(fidavg);
fclose(fid3);
fprintf('done')



APPENDIX B

FLOCK OF BIRDS CODE

Code written to analyze the flock of birds data.

%Before using this program make sure to insert 5 lines before the first line of the
data file.
clear all
outpuffile1=input('Enter output file name:','s');
fidout=fopen(outputfile1,'a');
filename=input('Input the file name:','s');
fid=fopen(strcat('C:\Documents  and Settings\Owner\My
Documents\Desktop\thesis\flockdata\',filename));
fprintf(fidout,'actual,x,y,z,x std error, x mean error,y std error, y mean std, z std
error, z mean std\n');
k=1;

in2cm=1;
for i=1:10

1=fgetl(fid);
end

if 1==-1 break,end
actualin=sscanf(l,'%2f');

actualcm=actualin.*in2cm;
if feof(fid)==1, break, end
%grab each of the data points collected
for i=1:180

1=fgetl(fid);
getdata=sscanf(I,'%f %f %f %f %f %f',10);
%calibration term for flock of birds
zcalibrate(i)=sum(actualcm)-getdata(3);

observed(i,1)=getdata(1);
observed(i,2)=getdata(2);
observed(i,3)=zcalibrate(1)+getdata(3);
error(i,1)=abs(observed(i,1)-observed(1,1));
error(i,2)=abs(observed(i,2)-observed(1,2));
error(i,3)=abs(observed(i,3)-sum(actualcm));

end
STD=std(error);
average=mean(error);
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output(k,1)=sum(actualcm);
output(k,2)=mean(observed(:,1));
output(k,3)=mean(observed(:,2));
output(k,4)=mean(observed(:,3));
output(k,5)=STD(1);
output(k,6)=average(1);
output(k,7)=STD(2);
output(k,8)=average(2);
output(k,9)=STD(3);
output(k,10)=average(3);

fprintf(fidout,'%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f\n',o
utput(k,1),output(k,2),output(k,3),output(k,4),output(k,5),output(k,6),output(k,7),ou
tput(k,8),output(k,9),output(k,10));
k=k+1;

1=fgetl(fid);

while feof(fid)—=1

if feof(fid)==1, break, end

%Go eight lines to grab the actual(theoretical) data point
for i=1:10

1=fgetl(fid);
end

if 1==-1 break,end
actualin=sscanf(I,'%2f);

actualcm=actualin.ln2cm,
if feof(fid)==1, break, end
%grab each of the data points collected
for i=1:180

1=fgetl(fid);
getdata=sscanf(I,'%f %f %f %f %f %?,10);
observed(i,1)=getdata(1);
observed(i,2)=getdata(2);
observed(i,3)=zcalibrate(1)+getdata(3);

error(i,1)=abs(observed(i,1)-observed(1,1));
error(i,2)=abs(observed(i,2)-observed(1,2));
error(i,3)=abs(observed(i,3)-sum(actualcm));
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end
STD=std(error);
average=mean(error);

output(k, 1 )=sum(actualcm);
output(k,2)=mean(observed(:,1));
output(k,3)=mean(observed(:,2));
output(k,4)=mean(observed(:,3));
output(k,5)=STD(1);
output(k,6)=average(1);
output(k,7)=STD(2);
output(k,8)=average(2);
output(k,9)=STD(3);
output(k,10)=average(3);

fprintf(fidout,'%6.3f,°/06.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f,%6.3f\n',o
utput(k,1),output(k,2),output(k,3),output(k,4),output(k,5),output(k,6),output(k,7),ou
tput(k,8),output(k,9),output(k,10));

k=k+1;
1=fgetl(fid);
end
subplot(2,2,1); plot(output(:,1),output(:,4)); title('z axis');
subplot(2,2,2); plot(output(:,1),output(:,5)); title('SEM');

subplot(2,2,3); plot(output(:,1),output(:,2)); title('x axis');
subplot(2,2,4); plot(output(:,1),output(:,3)); title('y axis');

fclose(fid);
fclose(fidout);



APPENDIX C

ANKLE STIFFNESS ALGORITHM

This algorithm calculates the ankle stiffness for each trial and finds the mean
stiffness for each condition as well as the composite stiffness.

%@@@@@@@@@©@©@@@@@@@@@@@©@@@@@@@@©@
%calculating ankle stiffness
for i=1:18
fit=polyfit(swayangle(:,i),torque(:,i),1);
anklestiffness(i)=fit(1);
end
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

(:)/0 calculating composite scores
compes=(ES_mean(1,3)+ES_mean(2,3)+sum(escheck(3,:))+sum(escheck(4,:))+
sum(escheck(5,:))+sum(escheck(6,:)))/counter;
compsi=(Sl_mean(1,3)+Sl_mean(2,3)+sum(sicheck(3,:))+sum(sicheck(4,:))+
sum(sicheck(5,:))+sum(sicheck(6,:)))/counter;

stiffness1=meanganklestiffness(1),anklestiffness(2),anklestiffness(3)]);
stiffness2=meanffanklestiffness(4),anklestiffness(5),anklestiffness(6)]);
stiffness1a=mean(absffanklestiffness(1),anklestiffness(2),anklestiffness(3)1));
stiffness2a=mean(absffanklestiffness(4),anklestiffness(5),anklestiffness(6)]));

stiffnessrest=anklestiffness;
%creates a matrix with only the last 12 values

for i=1:6
%erases the first 6 values in the matrix
stiffnessrest(i)=fl;

end

compstiffness=(stiffness1+stiffness2+sum(stiffnessrest))/14;
compstiffness2=(stiffness1a+stiffness2a+sum(abs(stiffnessrest)))/14;
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APPENDIX D

FOUR-LINK MODEL

These are the equations of the 4-link model discussed earlier.

Figure D.1. Free body diagram of 4-Link model.

Figure D.2 Free body diagram of feet.

Nomenclature:
J i : lower joint of link i, (ankle joint J1, knee joint J2, and hip joint J3)
m i : mass of link i
m: total mass of the feet and the force plate

63



64

1 i : length of link i
: distance from joint Ji to center of mass P c; of link i

• FH ,i+i: horizontal force acting on link i at joints J 1 and Ji+1 respectively
• , 	 : vertical force acting on link i at joints Ji and Ji+1 respectively

• : moment acting on link i by muscles acting at joint Ji
• : viscous friction moment acting on link i by muscle acting at joint Ji
fl , n i : inertial force and moment of link i
FF , FR: vertical ground reaction forces measured with front and rear transducers
FH : horizontal ground reaction forces measured with horizontal transducer
d: horizontal distance between the vertical transducers and the pin axis of the

force plate
e: vertical distance between the ankle joint and horizontal transducer of the force

plate
c: horizontal distance between the center of mass m and the vertical line through

ankle

The acceleration at the center of mass of each link can be expressed as

Newton-Euler equations for link i can now be written as

with 	 (D.3)
FHA = FVA = m.4 = v4 - 0

Newton-Euler equation for feet with force plate can now be written as

After eliminating all the internal forces and moments FH ,i,	 and
), we have the following three equations:
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where I, = 1,1 + M l les is the moment of inertia of link i about Ji joint axis.

Equations (5) —(7) are solved for sway angles at the joints after getting the initial

conditions from Flock of Birds and the raw data from Equitest device. Then the

last part of the equations (3) and (4) are used to evaluate the torques and

therefore the muscle stiffness (which is the derivative of the torque with respect

sway angle) at the joints. For the two-link model, the equations for the sway

angle and the torque are given below:

(D.8)

and

(D.9)
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