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ABSTRACT

QUANTIFICATION OF LONG -RANGE POWER LAW CORRELATIONS
AMONG HEALTHY AND PATHOLOGY SUBJECTS USING DETRENDED

FLUCTUATION ANALYSIS AND MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS

by
Hardik Raval

The healthy heartbeat is traditionally thought to be regulated according to the classical

principle of homeostasis whereby physiologic systems operate to reduce variability and

achieve an equilibrium-like state. However recent studies reveal that under normal

conditions, beat-to-beat fluctuation in heart rate display the kind of long-range

correlations typically exhibited by the dynamical system far away from equilibrium. In

contrast, heart rate time series from patients with severe congestive heart failure show a

breakdown of this long-range correlation behavior. Two different non-linear dynamic

methods namely Detrended Fluctuation Analysis (DFA) and Multifractal (MF) DFA are

used for the quantification of this correlation property in non-stationary physiological

time series and it revealed the presence of long-range power law correlation for the group

of healthy subjects while breakdown in the long-range power law correlation for the

group of subjects with cardiac heart failure.

Application of DFA analysis shows evidence for a crossover phenomenon

associated with a change in short(α1) and lοng(α2) range scaling exponents. For healthy

subjects, calculated value of αl and α2 (mean value ± S.D.) are 1.31 ± 0.17 and 1.00 ±

0.07 respectively. For subjects with cardiac heart failure calculated value of αl and α2 is

0.71 ± 0.20 and 1.24 ± 0.07 respectively i.e. only one scaling exponent is not sufficient to



characterize the entire heart-rate time series which resulted into MF-DFA approach. This

suggested that there is more than one exponent values needed to characterize the heart

rate time series.

multifractality DFA is based on generalization of DFA and a MATLAB code is

developed to implement the MF-DFA algorithm and to identify whether the given time

series under analysis exhibits multifractal or not by generating more than one exponent

values for multifractality signal. The value of a for q>0 for healthy is 1.04 ± 0.02 and for

CHEF is found to be 1.32 ± 0.02 and the value of α for q<0 for healthy subjects is 3.01 ±

0.26 and for CHF subjects is found to be 3.53 ± 0.14 (mean value ± S.D.) The student's t-

test suggests that devalue is 0.00001 which is less than 0.05 thus the value of α for q <0

and q>0 among healthy subjects and CHEF subjects are statistically different. Value of a

for q>0 is less than that for q<0. And for q =2 MF-DFA retains multifractal DFA. Thus,

MF-DFA is clearly able to discriminate among the healthy and CHF for q<0 as well for

q>0. MF-DFA also determines which fluctuations i.e. (small or large) dominate for the

given interbeat interval time series because for q<0 the slow fluctuations dominate

whereas for q>0 large fluctuations dominate. DFA and MF-DFA were able to

discriminate 23 Healthy subjects out of 26 Healthy subjects data sets i.e. true positive

specificity is 0.89 and false negative specificity is 0.12 and 9 CHF subjects out of 11

CHEF subjects data sets i.e. true positive specificity is 0.82 and false negative specificity is

0.19.

These methods may be of use in distinguishing healthy from pathologic data sets

based on the difference in the scaling properties.
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CHAPTER 1

INSCODUCTION

1.1 Scope of Research

This study was conducted to develop and implement programs that revealed the presence

of long-range power law correlation for a group of healthy subjects while breakdown in

the long-range power law correlation for a group of subjects with cardiac heart failure.

The programs will be utilized in future research projects as part of DFA and MF-DFA

analysis methods to test their efficacy on various pathologic conditions other than CHF

icardiac heart failure) and determine how well the methods are able to discriminate

among healthy and pathologic subjects with various other pathologies. The programs

implemented were then tested and validated using test data files. The scaling exponent

ia) generated by the program is used to characterize the interbeat interval time series for

healthy and CHF subjects. Also all generated results fell into normal values for healthy

and CHF subjects as found in the literature.

The programs were then used to perform DFA and MF-DFA analysis on a set of

data from healthy and CHEF subjects. The study was conducted on 27 healthy imen and

women, aged 28.5 to 76, mean 52.3) and 11 subjects imen and women, aged 34 to 79,

mean 56.5) with congestive heart failure. The data for the normal control group were

obtained from 24-hour Holter monitor recordings of 27 healthy subjects with ECG data

sampled at 128 Az. The data for the CHF group were obtained from 24-hour Holter

recordings of 11 patients with recordings sampled at 250 Az. The outcome of the study

and the results of DFA analysis on this data set were published [ 17] and they showed a

1
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significant difference in the value of scaling exponent between both the groups of

subjects. The study also showed that there was no effect of activity on the DFA analysis.

The DFA analysis conducted in this study reproduced these results and showed

that data from normal interbee interval series showed a presence of long-range power

law correlations while data from CHEF subjects showed a breakdown in the long-range

power law correlations. Crossover effect was observed for DFA analysis and it showed

the presence of two different scaling exponents islow and fast) for each group of subjects

ihealthy and CHF). This suggested that a single exponent might not be enough to

characterize the interbee interval time series. Thus more than one exponent values is

needed to characterize the interbeat interval time series which can be obtained using

multifractal DFA. Thus, MF-DFA analysis was conducted on the same data set of healthy

and CHF subjects. This resulted into more than one exponent values and the results

revealed the significant difference between healthy and pathologic subjects. The end

product of this study will assist if any research involving DFA and MF-DFA analysis

shall be done to test, how well they perform for pathologies other than CHF.

Heart rate variability iiHRV) is defined as the fluctuation of the heart rate from

one beat to another. Non-linear methods related to chaos tend to deal with autonomous

systems, i.e. systems where there is no input or where the input has a very simple form. It

has been suggested that a healthy heart rhythm is chaotic and shows a fractal form that

may be broken down by a disease [8]. The parameters that have been used to measure

non-linear properties of MARV includes Phase Plane Plots, Return Maps, Poincare

Sections, Lyapunov Exponents, the fractal dimension, 1/f scaling of power spectra,

Detrended Fluctuation Analysis, Kolmogorov Entropy, Approximate Entropy, and
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Multifractal analysis. These methods have detected abnormal MARV in various

cardiovascular conditions such as coronary artery disease with or without previous

myocardial infarction

1.2 Goals of the Study

This study was conducted with a goal to

1. Determine the presence of long-range power law correlation for healthy subjects

and breakdown in the long-range power law correlation for CHEF subjects using

DMA and MF-DMA analysis and to reproduce the findings of Deng et al [17]. This

was done using programs implemented in MATLAB 7.0. The program for DMA

analysis is available on wwwphvsionet.org, and the program for MF-DMA

analysis was developed in MATLAB by the author of this thesis.

2. Determine how well DFA and MF-DFA analysis are able to discriminate among

healthy subjects and subjects with cardiac heart failure using statistical tools.

3. Test the effect of length, activity, non-stationarity, trends on DMA and the effect

of length on MF-DFA.



CHAPTER 2

PHYSIOLOGICAL AND ENGINEERING BACKGROUND

2.1 Cardiovascular System

The cardiovascular system is sometimes called the blood-vascular or simply the

circulatory system. It consists of the heart, which is a muscular pumping device, and a

closed system of vessels called arteries, veins, and capillaries. As the name implies, blood

contained in the circulatory system is pumped by the heart around a closed circle or

circuit of vessels as it passes again and again through the various "circulations" of the

body.

The vital role of the cardiovascular system in maintaining homeostasis [2] depends on the

continuous and controlled movement of blood through the thousands of miles of

capillaries that permeate every tissue and reach every cell in the body. The principle of

homeostasis in heart rate fluctuations was developed by Dr. Cannon of Harvard Medical

School in the 1920's, and was generally accepted for more than half a century later. This

states that physiological systems normally operate to reduce variability and to maintain a

4
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constancy of internal function. According to his theory, any physiological variable

including heart rate should return to its `normal' steady state after it has been perturbed.

The principle of homeostasis suggests that variations of the heart rate are merely transient

responses to a fluctuating environment [17].

2.1.1 Anatomy of Heart

The main organ of cardiovascular system is the heart. It is responsible for the circulation

of blood as required by the body. It is a hollow muscular organ lying in the center of the

chest ithorax) and contains four chambers: right atrium, right ventricle, left atrium and

left ventricle. Each of the four chambers of the heart is different from the others because

of its function. Its beating action maintains the flow of blood throughout the human body.

From the heart numerous blood vessels branch out and spread to every corner of the

body. These vessels form the vasculature of the cardiovascular system.

There are three main types of blood vessels, arteries which carry oxygenated

blood from the heart to the various parts of the body, the veins that carry deoxygenated

blood from the body back to the heart, and capillaries which join arteries and veins and

are the site for gaseous and chemical exchange between various cells and blood [2].
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2.1.2 Human Heart

Figure 2.2 shows the heart and its chambers. The heart is divided into right and left

halves and has four chambers: an upper and a lower chamber within each half.

Figure 2.2 Anatomy of the Heart [3].

The upper chamber, atria, receives blood returning to the heart and transfers it to the

lower chambers, the ventricles, which pump blood from the heart. The two halves of the

heart are separated by a septum. This separation is important because the right half of the

heart is receiving and pumping oxygen poor blood while the left side of the heart receives

and pumps oxygen rich blood.

2.1.3 Nervous System

Heart rate variability depends on the rate of change of heart. The beating of the heart and

its regulation is controlled of by the nervous system. The brain and spinal cord make up

the central nervous system. The autonomic nervous system is responsible for the body

functions, which are not under conscious control — such as the heartbeat or the digestive
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system. The smooth operation of the peripheral nervous system is achieved by dividing it

into sympathetic and parasympathetic systems. These are opposing actions and check on

each other to provide a balance.

The nervous system is divided into a number of sub-systems. The sub-system

responsible for the heart action and the circulatory system is called the autonomic

nervous system. It regulates all the vital processes of the body, which are performed

without consciousness. The autonomic system is further divided into sympathetic and

parasympathetic nervous system.

2.2 Heart Rate Variability

The measurement of RR interval variability is called heart rate variability iiHRV).

Generally lower heart rate predicts greater mortality. Wolf [4] was the first to associate

the higher risk of post infarction mortality with reduced MARV in 1977. There are

numerous methods namely time domain, frequency domain and now non-linear methods

that are being used to quantitatively evaluate beat-to-beat cardiovascular control.

2.2.1 Electrophysiology

Excitation of the heart does not proceed directly from the central nervous system but is

initiated in the sinoatrial iSA) node, the so-called pacemaker of the heart. The SA node

generates an impulse of excitation that spreads across the left and right atrium of the heart

and thereby causes the atria to contract. After a short time, it stimulates the

atrioventricular iAV) node and thus initiating impulse in the ventricles. The impulse then

proceeds down to bundle of His and then continues through special conducting fibers

called the Purkinje Fibers on either side of the ventricle thereby causing simultaneous
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contraction of the ventricles. Thus the frequency of the SA node mainly controls the heart

rate. The following figure shows the electrical activity of the heart

Figure 2.3 The Electrical pathway of impulse through the Heart [6].

In Figure 2.3 an electrical impulse generated by the SA node flows over the right and left

atria and thereby causing them to contract. When the electrical signal reaches the AV

node it is delayed slightly. The impulse then travels down the bundle of His, which then

divides into right bundle branch for the right ventricle and the left bundle branch for the

left ventricle. The impulse thus causes the ventricles to contract.

An ECG is a measure of the electrical activity within the heart. The ECG is used

clinically to diagnose various diseases and to assess cardiac health.
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2.2.2 The Concept of a Time Series

To appreciate the general clinical relevance of dynamics, consider the following common

problem. What is the best way to compare a sequence of measurements obtained from

two subjects, or from one individual or experimental procedure under different

conditions? Conventionally, clinicians and investigators rely primarily on a comparison

of means using appropriate statistical tests. However, the limitations of such traditional

analyses become apparent when evaluating the data in Figure 2.4, which shows that two

signals have the same means but different dynamics. Recording the instantaneous signal

from any system over a continuous observation period generates a time series.

Figure 2.4 Two heart rate time series, one from a healthy subject itop) and the other from
a patient with severe congestive heart failure iCHEF) imiddle) have nearly identical means
and variances ibottom), yet very different dynamics. Note the complex, erratic pattern of
the data set from the normal subject compared with the slow, periodic oscillations in
heart rate with congestive failure.
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2.2.3 Linear versus Nonlinear Systems

A well-known example of linear system can be given by Ohm's law: V=IR where the

voltage iV) in a circuit will vary linearly with current iI), provided the resistance iR) is

held constant. Two central features of linear systems are proportionality and

superposition. Proportionality means that the output bears a straight-line relationship to

the input. Superposition refers to the fact that the behavior of linear systems composed of

multiple components can be fully understood and predicted by dissecting out these

components and figuring out their individual input-output relationships. The overall

output will simply be a summation of these constituent parts. The components of a linear

system summate; there are no surprises or anomalous behaviors.

In contrast, even simple nonlinear systems violate the principles of proportionality

and superposition. An example of a deceptively complex nonlinear equation is y = ax i1-

x), referred to as the logistic equation [13]. The nonlinearity of this equation, which

describes a parabola, arises from the quadratic ix 2) term. Changes in the output as a

function of sequential time steps can be readily plotted by a feedback procedure in which

the current value of the output becomes the next value of the input, and so on. Iteration of

the simple-in-form logistic equation reveals dynamics that are extraordinarily complex;

depending on the value of the single parameter, a, the same equation can generate steady

states, regular oscillations, or highly erratic behavior. Thus, for nonlinear systems,

proportionality does not hold: small changes can have dramatic and unanticipated effects

[14]. An added complication is that nonlinear systems composed of multiple subunits

cannot be understood by analyzing these components individually. The components of a

nonlinear network interact, i.e., they are coupled.
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Figure 2.5 Panels ia-c) are subjects with obstructive sleep apnea syndrome, panels id-e)
are from healthy subjects at high altitude i15,000 ft) [14].

Their nonlinear coupling generates behaviors that defy explanation using

traditional ilinear) models iFigure 2.5). As a result, they may exhibit behavior that is

characteristic of nonlinear systems, such as self-sustained, periodic waves ie.g.,

ventricular tachycardia); Ventricular tachycardia (VT) is a heart rhythm disorder that

originates in the ventricles. It is characterized by a rapid heart rhythm during which

patients may feel faint or dizzy, or even pass out. During VT, the heart does not pump

blood as efficiently as it does during a normal rhythm, and rapid contractions prevent it
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from filling adequately between beats, abrupt changes ie.g., sudden onset of a seizure)

and, possibly, chaos.

2.3 Engineering Background

2.3.1 Fractal and Chaos

Fractals and chaos bring new sets of ideas and thus new ways of looking at nature. It is

true that fractals are really everywhere [9]. The essential characteristic of fractals is that

as finer details are revealed at higher magnifications the form of the details is similar to

the whole: there is self-similarity which briefly means that the parts that look like the

whole. Fractal structures in the human body arise from the slow dynamics of embryonic

development and evolution and that this evolutionary advantage accounts for their

omnipresence in biomedical phenomena as suggested by Professor Goldberger [9].

Figure 2.6 Fractals Bifurcation in the His-Purkinje Network [12].

Fractal structures, partly by virtue of their redundancy and irregularity, are robust and

resistant to injury. The heart, for example, may continue to pump with little mechanical

dysfunction despite extensive damage to the His-Purkinje system, which conducts cardiac

electrical impulses. Chaos is best understood by comparing it to two other behaviors
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which are randomness and periodicity. Landom behavior never repeats itself, and is

inherently unpredictable and disorganized except in a very special way e.g. the average

behavior of a collection of gas molecules can be predicted with absolute precision, but

the individual behavior of a single molecule cannot be predicted. Deriodic behavior, on

the other hand, is highly predictable because it always repeats itself over some finite time

interval. A mathematical sine wave and electrocardiographic normal sinus rhythm are

typical examples. Chaos is distinct from periodicity and randomness, but has

characteristics of both [15].  Although chaotic behavior looks disorganized ilike random

behavior), it is really deterministic ilike periodic behavior). Chaotic behavior exhibits a

number of characteristics that distinguish it from periodic and random behavior namely

chaos is more deterministic and aperiodic e.g. If one knows the equations and the initial

conditions one can predict the system's behavior accurately and precisely, no matter how

complex it appears. However chaotic behavior never repeats itself exactly.
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2.3.1.1 Geometric Self-Similarity. Figure 2.7 shows geometrically self-similar objects.

In Figure 2.7, the original objects are shown on the left. Then each object is shown after

one iteration, and then after two iterations. For example, at the top of Figure 2.7, consider

a line segment, and remove the middle third of the line segment, and then repeatedly

remove the middle third of each remaining piece. Middle portion of Figure 2.7: The

iterative algorithm to generate the Koch curve is to repeatedly add to each edge an

equilateral triangle whose sides are one third the length of each edge. Bottom portion of

Figure 2.7: The iterative algorithm to generate the Sierpinski triangle is to repeatedly

remove triangles that are one quarter the area of each remaining triangle.

2.3.1.2 Statistical Self-Similarity. The pieces of biological objects are rarely exact

reduced copies of the whole object [9]. Lather than being geometrically self-similar, they

are statistically self-similar i.e. the statistical properties of the pieces are proportional to

the statistical properties of the whole. For example, the average rate at which new vessels
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branch off from their parent vessels in physiological structure can be the same for large

and small vessels. This is illustrated in Figure 2.8 for the arteries in the lung.

Figure 2.8 Statistical Self-Similarity in space. In the lung arterial tree, the branching
patterns are similar for vessels of different sizes.

Measurements recorded from physiological systems over time can also be fractal.

As shown in the Figure 2.9, the current recorded through an ion-channel by Gillis, Falke,

and Misler[9] show that there are statistically self-similar bursts within bursts of the

opening and closing of these ion channels.
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Figure 2.9 Stastical self-similarities in time.

Examples of Self-Similarity

Many physiological objects and processes are statistically self-similar. Some examples

include: Systems where the branching pattern is similar at different spatial scales. These

can be found in the dendrites in neurons, the airways in the lung, the ducts in the liver,

the blood vessels in the circulatory system, and the distribution of flow through them.

2.3.1.3 Mathematical Description of Self-Similarity. Statistical self-similarity

means that a property measured on a piece of an object at high resolution is proportional

to the same property measured over the entire object at coarser resolution. Hence the

value of a property Lir) when it is measured at resolution r, is compared to the value

L(ar) when it is measured at a finer resolution Aar, where a < 1. Statistical self-similarity

means that Lir) is proportional to Liar), namely,

Liar) = k Lir) 	 i2.1)
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Where k is a constant of proportionality that may depend on a.

2.3.2 Scaling: The Measure Depends on the Resolution

The value measured for any property of an object depends on the characteristics of the

object. When these characteristics depend on the measurement resolution, then the value

measured depends on the measurement resolution. There is no one "true" value for a

measurement. How the value depends on the measurement resolution is called the

scaling relationship. Self-similarity specifies how the characteristics of an object depend

on the resolution and hence it determines how the value measured for a property depends

on the resolution. Thus, the self-similarity determines the scaling relationship.

2.3.2.1 Self-similarity can lead to a Power Law Scaling. The self-similarity

relationship of equation 2.1 implies that there is a scaling relationship that describes how

the measured value of a property L(r) depends on the scale r at which it is measured. The

simplest scaling relationship determined by self-similarity has the power law form

Where Α and a are constant for any particular fractal object or process.

Taking the logarithms of both sides of equation 2.2 yields

Thus, power law scaling is revealed as straight lines when the logarithm of the

measurement is plotted against the logarithm of the scale at which it is measured. The
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rule for self-similarity is that, there is for some measure, a constant ratio of the measure at

scale r compared to that at scale ar:



2.3.3 Fractal Dimension: Α Quantitative measure of Self-Similarity and Scaling

The properties of self-similarity and scaling can be assessed in a quantitative way by

using the fractal dimension. There are many different definitions of "fractional or fractal

dimension," so called because it has noninteger values [9]. When a geometrically self-

similar object is examined at finer resolution, additional small replicas of the whole

object are resolved.

2.3.3.1 Self-Similarity Dimension. The self-similarity dimension describes how new

pieces geometrically similar to the whole object are observed as the resolution is made

finer. If the scales is changed by a factor F, and if there are N pieces found that are

similar to the original, then the self-similarity dimension Dself Siniilarity is given by

By taking logarithm on both the sides,

Figure 2.10 shows why the self-similarity dimension is called a "dimension."



Figure 2.10 The self-similarity dimension tells us how many new pieces similar to the

whole object are observed as the resolution is made finer [9]. Consider objects that are r

long on each side. The length of a one-dimensional line segment is equal to r. If we

reduce the scale by a factor F, then the little line segments formed are each 1/F the length

of the original. Hence, F 1 of such pieces are needed to occupy the length of the original

line segment, and Dself = 1. The area of a 2-D square is equal to r 2 . If we reduce the

scale by a factor F, then the little squares formed are each 1/F 2 the area of the original.

Hence, F2 of such little squares are needed to occupy the area of the original square, and

Dselfsimilarity = 2. The volume of a 3-D cube is equal to r 3 . If we reduce the scale by a factor

F, then the little cubes formed are each 1/F 3 the volume of the original cube. Hence, F 3 of

such pieces are needed to occupy the volume of the original cube, and Dself similarity = 3
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2.3.3.2 Topological Dimension. 	 The dimension introduced above describes the

space-filling properties of the fractal set. The topological dimension describes the

connectedness between the points in the fractal set. The topological dimension is always

an integer. For curves, surfaces, or solids, the topological dimension

2.3.3.3 The Definition of a "fractal". 	 Mandeibrot defines a "fractal" as a set of

for which

When the fractal dimension is greater then the topological dimension then many new

pieces starts appearing as they are looked at finer details. Very loosely, the topological

dimension tells about the type of object the fractal is, and the fractional dimension tells

how wiggly it is. For example, a line segment that has topological dimension D τ =1 could

be so long and wiggly that it nearly fills a two-dimensional area, and thus its fractal

dimension D ~2. Since 2> 1, it is a "fractal."

The power-law scaling is a result of self-similarity. The fractal dimension is based

on self-similarity as discussed above. Thus, the power-law scaling can be used to

determine the fractal dimension. The power-law scaling describes how a property L(r) of

the system depends on the scale r at which it is measured equation (2.5), and the fractal

dimension describes how the number of pieces of a system depends on the scale r,

namely
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where B is a constant.

2.3.3.4 Relationship Between Fractal Dimension D and Scaling Exponent α. Derive

the function of dimension f(D), such that the property measured is proportional to r ).

The experimentally determined scaling of the measured property is proportional to r °`'

These powers of the scale r are equated, i.e f(D) = a, and then solve for dimension D.

For example, assume the total length measured for a line is proportional to rα,

where r is the resolution used to make the measurement. Then the length of the line

segment is measured at scale r, by breaking it up into pieces each of which has length r.

Eq. 2.16 tells us that number of pieces is proportional to r r  D. The total length measured

is number of pieces time the length of each piece. Thus the total length is proportional to

r D multiplied by r, i.e r l "D. Since length is proportional to rα, 1 - D = a, and so D = 1 - a

for lengths and D =2— α for areas.

2.3.3.5 1/fβ Power Spectra: Α Characteristic of Self-Similarity. Masonori et al.

investigated the statistical behaviors of heartbeat period fluctuation and estimated its

power spectral density. They computed the power spectral densities of fluctuations in the

heartbeat period of 15 subjects and found that the power spectral densities are inversely

proportional to frequency [10]. This type of power spectral density is often called the "1/f

spectrum" and such fluctuations are called the "1/f fluctuations." The 1/f fluctuations

were first found in 1925 [11]  in an electric current passing in a vacuum tube, and after

this a variety of phenomena namely, fluctuation of cell membrane potential, frequency

fluctuation of alpha brain wave, highway traffic current fluctuations, and so forth are

known to be having the 1/f fluctuations.
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Examples of such 1 /fβ power spectra is shown in the Figure 2.11

Figure 2.11 The power spectrum describes the amplitude of the fluctuations at different
spatial or temporal frequencies. It has an inverse power law form for fractals in space and
time. Left: Dower spectrum of the fluctuations in the spatial distribution of radioisotope in
the liver measured by Cargill et al. [9]. Right: Power spectrum of the fluctuations in time
of the ventricular depolarization in an electrocardiogram as measured by Goldberger et al
[9].

Consider for example any time series say, 2 hours of data. If we take the Fourier

transform of this data this will give us the Fourier coefficients, each characterizing the

different frequency present in the data and square of these coefficients will give us the

power spectrum for the same data. If the plot of log of power spectrum (Si(f)) vas log of

frequency (f) gives a straight line.

Thus, different frequencies are organized in such a way that all frequencies follow

the same rule. If the scale of observation is changed and the process remains the same,

there is scale invariance in the process. Scale invariance means no characteristic time

scale and hence exhibits a power-law relation as discussed in the previous sections.
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Fractals have invariance and when people find such 1/f behavior, they start

thinking for some fractal underlying this mechanism. "1/f' is a general notation to

indicate the process that doesn't have a characteristic frequency. This β is related to the

exponent a as β = 1 -2 α. Furthermore, β can be used as an indicator of the presence and

type of correlations and thus knowing the value of a using DMA one can determine the

value of β and vice versa. (i) If β = 0, there is no correlation in the time series i.e. ("white

noise"). White noise means there is no correlation in the time series, there is no

dependence of a second point on the previous point in the give time series. (ii) If -1 <j3 <

0, then the time series is correlated such that positive values of the time series are likely

to be close to each other, and the same is true for negative values. (iii) If 0 < β < 1, then

the series is correlated; however, the values of the time series are organized such that

positive and negative values are more likely to alternate ("anticorrelation"). The different

value of the slope β and hence α indicates the type of correlations present in the signal.



25

2.4 Different Measures of Heart Rate Variability (HRV) Analysis

2.4.1 Time Domain Measures of HRV Analysis

The easiest and oldest measure would be evaluation of heart rate with respect to its

variation in time. This is called the time domain analysis of ARV. In time domain

methods the instantaneous heart rate or the inter-beat intervals are determined and

subsequently its variation over time is studied. Commonly used parameters in the time

domain include 1) Mean RR interval and 2) Mean Heart Late. Other parameters have

been studied [5] and are divided as follows

The below mentioned techniques represent direct measures of RR interval:

a) SDNN: Standard Deviation of all RR intervals

b) rMSSD: the square root of the mean of the sum of the squares of differences
between adjacent RR intervals

Measures derived from difference in RR intervals

a) SDNN index: Mean of the standard deviation of difference of all NN intervals for
all 5-minute segments of the entire recording.

b) SDANN: Standard deviation of the average of RR intervals in all 5-min segments
of the entire recording.

These methods allow the comparison of ARV during various activities like paced

breathing, tilting, rest, sleep and so on. Generally the total variance of ARV increases

with the length of analyzed recording [7].



26

2.4.2 Frequency Domain Measures of Heart Rate Variability (HRV) Analysis

Various frequency domain methods are also useful for analysis of cardiac signals. One

such method is to construct the interbeat interval (ΙΒΙ) signal and power spectral

calculations. Variations in the frequency components of the interbeat interval (ΙΒΙ)

signals can be determined using these domain measures. Power spectral density analysis

provides the basic information of how power distributes as a function of frequency.

Normally spectral components are derived from either 5 minute or 24 hour recordings.

The main advantage of spectral analysis of signals is that it allows the study of

frequency-specific oscillation. Results are displayed in a graph with magnitude of

variability as a function of frequency. Frequency domain measurements indicate the

autonomic nervous system. The Table 2.1 below gives a comparison between time

domain and frequency domain methods
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Table 2.1 Comparison Between Time Domain and Frequency Domain Measurement
Methods (Andrew JE Seely and Peter T Macklem Complex systems and the technology of variability
analysis, Critical Care 2004, 8: R367-R384)
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2.5 Analytic Techniques to detect Non-linear Dynamic Behavior

Non-linear methods related to chaos tend to deal with autonomous systems, i.e. systems

where there is no input or where the input has a very simple form. It has been suggested

that a healthy heart rhythm is chaotic and shows a fractal form that may be broken down

by a disease [8]. The parameters that have been used to measure non-linear properties of

ARV includes, phase plane plots, return maps, Poincare sections, Lyapunov exponents,

the fractal dimension, 1/f scaling of power spectra, detrended fluctuation analysis,

Kolmogorov entropy, approximate entropy, and multifractal analysis. These methods

have detected abnormal ARV in various cardiovascular conditions such as coronary

artery disease with or without previous myocardial infarction.

2.5.1 Discrete Data

Many nonlinear systems (such as the logistic map) pass through a series of intermediate

stages prior to the chaotic behavior. Often, these stages are easily recognized as

oscillations between two, four, eight or more states. If a biological system is observed to

behave in this manner, then the underlying rules for the behavior might be based on a

nonlinear system. The next step in the analysis is the construction of a mathematical

model that could reproduce the behaviors noted. This is the most difficult aspect of the

problem. After developing a general theoretical model, appropriate parameters must be

selected that reproduce the behavior. The final step in the process is proving that the

proposed mathematical model accounts for most, if not all, of the behavior described in

the biological model.



29

2.5.2 Continuous Data

The modeling process described above is a general framework that can be applied to

many biologic behaviors; however continuous signals provide a more difficult problem.

Often subtle changes in behaviors are not visible in the time series; sometimes the time

series appears random. In these cases, more sophisticated techniques are needed to detect

the presence of underlying structure in the behavior.

2.5.3 Phase Plane Plots

The phase plane plot is a representation of the behavior of a dynamic system in state

space (the abstract mathematical area in which a behavior occurs). It typically takes the

form of a graph of a position of the signal (its amplitude) on the x axis, versus the

velocity of the signal (its first derivative) on the y axis. Each cycle called a trajectory or

orbit, represents the behavior of the system over a period of time [15].
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Figure 2.12 illustrates the phase plane plot of a typical chaotic system [15].

The two dimensional phase plots is the most common representation of state space, but

many others are possible. Phase plane plots of periodic signals have trajectories that

overlap each other precisely [Figure 2.12B], while those of random signals exhibits no

definite pattern [Figure 2.12J]. In contrast although phase plane plots of chaotic signals

do not have periodic trajectories, they do exhibit a definite pattern [Figure 2.12F]. A

major disadvantage of the phase plane plots is its sensitivity to noise. As little as 1%

noise can severely disrupt the structure of a plot. Thus the recording system and hence the

data must be as noise-free as possible.
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2.5.4 Return Maps

The return map is similar to the phase plane plot, but the analyzed data must be discrete

(digital). Typically, the return map represents the relation between a given point in a time

series plotted on the x axis, and the next point in the time series plotted on the y axis (a

next amplitude plot). The temporal difference between the two points is called lag. The

lag acts to smooth away some noise in the system, making return maps less sensitive to

the noise compared to phase plane plots.

2.5.5 Poincare Sections

If a phase plot does not have clearly discernible pattern, this ancillary graphical technique

can help reveal one. Α two-dimensional phase plot is cut by a line perpendicular to the

trajectories [Figure 2.13A], points on that line represents where each trajectory crossed

the line [Figure 2.13B]. A graph is constructed from these points, representing the

relation between adjacent trajectories [Figure 2.13C]. Sometimes this graph reveals

structure that is not apparent in the phase plot itself. This method is also sensitive to

noise.
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Figure 2.13 Poincare section [15]. Panel A is a phase plane plot of a typical chaotic
system. The vertical line intersects a selected portion of the phase plane plot. The
distribution of the points along an expansion of this line (panel B) reveals no apparent
structure, but a return map constructed from these points shows a nonlinear pattern
suggestive of a parabola (panel C). In panel B, Χ9 and Χίο are the ninth and tenth
trajectories-they are not adjacent. The relation between Χ9 and Χίο is shown in graph C.
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2.5.6 Lyapunov Exponents

As noted earlier, chaotic systems characteristically exhibit sensitive dependence on initial

conditions. In state space, sensitive dependence manifests itself graphically as adjacent

trajectories that diverge widely from their initial close positions. The Lyapunov exponent

is a quantitative measure of this rate of separation [15]. The magnitude of this exponent is

related to how chaotic system is; the larger the exponent, the more chaotic the system. A

random signal will have an exponent of zero, because over a long period of time adjacent

trajectories will converge and diverge equally. A positive Lyapunov exponent, on the

other hand, indicates sensitive dependence on initial conditions and is almost without

exception diagnostic of chaos. The major limitation in their calculation is that the

algorithms to implement them require large amounts of data (on the order of 1,000 to

10,000 cycles). As a result the computing time itself can be limiting. However, having

sensitive dependence on the initial conditions as requirement in most of the methods

described above, the following section gives an introduction to a new concept called

Detrended Fluctuation Analysis, which does takes into account the non-stationarity

present in the data and has proven one of the most useful non-linear dynamic tools in

characterizing MARV.



CHAPTER 3

DESCENDER FLUCTUATION ANALYSIS

3.1 Theory

The detrended fluctuation analysis technique is a measurement, which quantifies the

presence or absence of fractal correlation properties and was introduced by Deng and his

coworkers [ 17]. The healthy heartbeat is traditionally thought to be regulated according

to the classical principle of homeostasis whereby physiologic systems operate to reduce

variability and achieve an equilibrium-like state. However recent studies reveal that under

normal conditions, beat-to-beat fluctuations in heart rate display the kind of long-range

correlations typically exhibited by dynamical systems far from equilibrium [17].

If the RR interval time series is scale invariant, it exhibits a power-law

relationship. Consider for example a time series; say 2 hours of data around 8000 points,

within this boundary, if the time series exhibits a power-law it means that the series has

long-range correlation and long-range refers to about 8000 points as quoted by Deng et

al., which is the minimum number of data points needed for DMA analysis. The long-

range correlations serve as an organizing principle for highly complex, nonlinear

processes that generate fluctuations on a wide range of time scales [29]. Long-range

power-law correlation means a large interval is more likely to be followed by a large

interval and vice versa. A scaling exponent called a quantifies this long-range correlation

in the time series. The value of a was determined by implementing DFA on two long

interbeat interval time series of 24 hours which is available on www.physionet.org , and it

revealed that value of ovaries between 0— 1.5  [17]. For 0.5 < o < 1, it refers to

34
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long-range power-law correlation and for 0< a<0.5 refers to short-range correlation i.e. a

large interval is more likely to be followed by a small interval and vice versa.

Figure 3.1 Plot of log F(n) v/s. log n for two very long interbeat interval time series (-24
hours). The circles are from a healthy subject and triangles are from a subject with
congestive heart failure. Arrows indicate "crossover" phenomenon [17].

Figure (3.1) reveals the presence of two different a exponents: al for short range

correlation and a2 for long range correlation for healthy subjects and in contrast, the heart

rate time series from patients with severe congestive heart failure reveals the breakdown

of this long - range correlation behavior which is characterized by the value of al and α2

and they are different from the one for healthy subjects. DFA thereby helps to determine

the correlation in the time series and also indicates how the standard deviation of the time
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series grows with the time scale i.e. how far the value deviates from the normal value

which according to PPeng et al. i;

for pathologic subjects.

Conventional methods like time domain measures and frequency domain requires

that the data needed for analysis have to be stationary and DFA was introduced to address

this issue. The advantage of DFA over conventional methods is that, it permits the

detection of long-range correlations embedded in stationary time series and avoids

spurious detection of apparent long-range correlations that are artifacts of nonstationarity

behavior [17, 18]. Variations that arise because of extrinsic stimuli are presumed to cause

a local effect, whereas variations due to the intrinsic dynamics of the system are

presumed to exhibit long-range correlation. Therefore, any invariant scaling

characteristics in the heart rate fluctuations obtained by these means can mostly be

attributed to the intrinsic mechanism of neuroautonomic control [ 19].

The a exponent of the DMA calculation involves the subtraction of local trends

(more likely related to the external stimuli) in order to address the correlations that are

caused by nonstationarity. The DFA has also been applied to detect long-range

correlations in other time series like heterogeneous DNA sequences [ 18, 20] and the

stride interval fluctuations obtained from unconstrained human gait dynamics [21].
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1) The analysis is performed on a time series, for example, the interval between

consecutive heart beats, with the total number of beats equal to N. First the

interbeat interval time series of total length N is integrated yak) = Σ [Bpi) — Brave],

where Bpi) is the ith beat interval and Brave is the average interbee interval. This

new series of values represent an evaluation of trends; for example, if the

difference between individual RR intervals and the average RR intervals remains

positive i.e. the interval between heartbeats is longer than the average interbeat

interval, then the heart beat is slower than the mean, and the integrated series will

increase. This trend series of data displays fractal, or scaling behavior, and the

following calculation is further done to quantify this behavior.

2) The integrated time series is divided into boxes of equal length n as shown in

[Figure 3.2(b)]
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3) In each box of length n, a least-squares line is fit to the data representing the trend

in that box [Figure 3.2(b)]. The y coordinate of each straight line segments is

represented by y(k).

4) Next the integrated time series yaks) is detrended by subtracting the local trend

yaks) in each box.

5) The root-mean square fluctuation of this integrated and detrended time series is

calculated by

This computation is repeated over all box sizes to provide a relationship between

F(n), the average fluctuation function as a function of box size, and the box size n.

Typically F(n) will increase with box size n [17]. Finally it is possible to graph the

relationship between F(n) and n. Scaling or actal correlations are present if the data is

linear on a double log graph of F(n) vas n. The slope of the graph has been termed as a, a

scaling exponent, defined as F(n) ~ no .

3.3 Interpretation

Consider for example a time series in which there is no dependence of the second point

on the first point, which can be achieved either by shuffling the data points, so called

surrogate data or by generating random numbers. Surrogate data refers to artificial data

with known correlation values and is generated manually with an aim to test the model

that we would like to implement i.e. we would know before hand what we might be

expecting the method to generate, in this case DMA. Therefore, if the results generated
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returns the same value that we want it to generate we can say that the method works well.

Then we can implement the method on the original heart rate time series and compare the

results of that with the one generated running the surrogate data set and thereby validate

the use of that particular method for future use by other people.

For this type of uncorrected data, the integrated value, yaks), corresponds to white

noise, and therefore a = 0.5. The value of α greater than 0.5 and less than or equal to 1

indicates long-range power law correlations such that a large interbeat interval (compared

to the mean value) is more likely to be followed by a large interval and vice versa [17]. In

contrast 0<a<0.5 exhibits a different kind of power-law correlation such that a large

interval is more likely to be followed by a small interval and vice versa, so called anti-

correlations. The value of a=1 follows 1/f noise [16] and a=1.5 indicates brown noise,

which is integration of white noise [17]. a exponent can also be viewed as an indicator

that describes the "roughness" of the time series: the larger the value of a, the smoother is

the time series, reflecting a more periodic behavior commonly seen in pathologic

condition.

There are many ways to characterize different noise sources one is to consider the

spectral density, the mean square fluctuation at any particular frequency and how that

varies with frequency. This would generate a noise whose spectral density varies as

powers of inverse frequency, more precisely, the power spectra PP(f) is proportional to 1 /

beta for beta >= 0. When beta is 0 the noise is referred to as white noise, when it is -2, it is

referred to as Brownian noise, and when it is -1, it normally referred to simply as 1/f

noise which occurs very often in processes found in nature and since β = 1-2 a, the value
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of a can be determined for each value of β. Thus β=0, i.e. a=0.5 refers to white noise.

Figure (3.3) and Figure (3.4) shows the white noise and Brownian noise respectively.

White noise, beta = 0

Figure 3.4 Brownian noise [30].

For Brownian noise the change, or increment, from one moment to the next is

random and normally distributed. Thus, Brownian noise is an integration of white noise.

Figure 3.5 shows sample of Brownian noise, its power spectrum, and plots of

power and amplitude against frequency.



Figure 3.5 Brownian noise, its power spectrum and plots of power and amplitude against

frequency [31].

If one plots the log(power) vs. log(frequency) for noise with a particular beta value, the

slope gives the value of beta. This leads to the most obvious way to generate a noise

signal with a particular beta. Theoretically, the scaling exponent will vary from 0.5 (white

noise) to 1.5 (brown noise), but physiological signals yield scaling exponents close to 1.

3.4 Advantages and Disadvantages

DMA has advantages over other conventional fractal methods because it permits the

detection of long-range correlations embedded in a raw non-stationary time series.

Importantly, it avoids the spurious detection of long-range correlations resulting

from non-stationary conditions. Thus, the statistical invariant scaling characteristics in

ARV obtained by these means can be mostly attributed to the intrinsic mechanism of

neuroautononiic control [24].

Therefore, there is no need to rigorously control physical activity or provide an

external stimulus and, this technique promotes the possibility of analyzing ambulatory
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long-term recordings [25]. Although this exponent may serve as a useful indicator for

selected diagnostic purposes, a major drawback is that the data requirements are greater

than with other techniques and have been suggested to include at least 2 hours of data i.e.

8000 data points [ 17].

For practical purposes, clinical investigators are usually interested in the

possibility of using substantially shorter time series. In this regard, Deng et al. noted that

for short time scales, there was an apparent crossover exhibited for the scaling behavior

of both data sets i.e. for healthy and pathology subjects as revealed in Figure (3.1). For

the healthy subject, the @.exponent estimated from very small n (<10 beats) is larger than

calculated from large n (>10 beats). This is probably due to the fact that on very short

time scales, the physiologic interbeat interval fluctuation is dominated by the relatively

smooth heartbeat oscillation associated with respiration, thus giving rise to a larger o

value. For longer scales, the interbeat fluctuation reflects the intrinsic dynamics of the

system, approaching the standard 1/f behavior as previously noted. In contrast, the

pathologic data set shows a very different crossover pattern Figure (3.1). This apparent

crossover pattern motivated Deng et al. [ 17] to extract two different parameters from each

data set over two different time scales: one short, and the other long and for each data set,

al was calculated by making a least square fit of log F(n) vas log (n) for 4_<n<_16 and

similarly an exponent a2 was calculated from 16 _<n_<64.

However appealing in order to simplify clinical comparison, the calculation of

two scaling exponents [al for small (4<_n<16) and α2 for large (16 _<n<_64)] represents a

somewhat arbitrary manipulation. Here α1 indicates short-range correlation i.e. n<_16 and

α2 indicates long-range correlation i.e. n>_16. The value of al is greater than a2, because
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on very short time scales (few beats to 10 beats), a physiological interbeat interval

fluctuation function is dominated by relatively smooth heart beat oscillations associated

with respiration, thus giving rise to a larger a value [17].

The assumption that the same scaling pattern is present throughout the signal

remains unclear, and therefore techniques without this assumption are being developed

and are referred to as multifractal DFA.
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3.5 multifractals Detrended Fluctuation Analysis

3.5.1 Introduction

Consider a `population' consisting of `members' distributed over a volume of linear size

L. The population could, in fact, be the human population distributed over the surface of

the earth. The population could also be considered to be meteorological observation posts,

which are unevenly distributed over the globe. Many variables fluctuate widely in space.

Gold, for instance, is found in high concentration at many places, and in very low

concentrations almost everywhere. The point is that this description holds whatever the

linear scale is — to be global, on the scale of meters, or on the microscopic scale.

multifractals measures are related to the study of a distribution of physical or other

quantities on a geometric support. The support may be an ordinary plane, the surface of a

sphere or a volume, or it could itself be a fractal.

The concept underlying the recent development of what are now called

multifractals were originally introduced by Mandelbrot in the discussion of turbulence

and expanded by Mandelbrot to many other contexts. The idea that a fractal measure may

be represented in terms of intertwined fractal subsets having different scaling exponents

opens a new realm for the applications of fractal geometry to physical systems [26].
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3.5.2 Theory

monofractals signals are homogeneous in the sense that they have the same scaling

properties, characterized locally by a single exponent a, throughout the entire signal.

Therefore, monofractals signals can be indexed by a single global exponent which

suggests that they are stationary from the viewpoint of their local scaling properties.

Many records do not exhibit a simple monofractals behavior, which can be accounted for

by a single exponent [26]. In some cases, there exist crossovers separating regimes with

different scaling exponents. In other cases, the scaling behavior is more complicated, and

different scaling exponents are required for different parts of the series. This occurs, e.g.,

when the scaling behavior in the first half of the series differs from the scaling behavior

in the second half.

Multifractal occurs due to different long-range (time-) correlations of the small

and large fluctuations [26]. Multifractal signals can be decomposed into many sublets—

possible infinitely many-characterized by different a exponents, which quantify the

local behavior and thus relate to the local scaling of the time series. Thus monofractals

signals require many exponents to fully characterize their scaling properties, and are

intrinsically more complex, and homogeneous, than multifractal [32]. The statistical

properties of the different subsets characterized by these different exponents α can be

quantified by the function F q(s), where Fq(s) is the fluctuation function of the subset of

the time series characterized by the local exponents o Thus, the monofractals approach for

signals has the potential to describe a wide class of signals that are more complex then

those characterized by a single fractal dimension such as classical 1/f noise.



3.5.3 Algorithm

The generalized multifractal DMA method consists of following 5 steps

1) Determine the profile

Subtraction of the mean <x> is not compulsory, because it would be later eliminated by

detrending in the third step

2) Divide the profile Y(i) into Ns = int(N/s) non-overlapping segments of equal length s.

Since the length N of the series is often not a multiple of the considered time scale s, a

short part at the end of the profile may remain. In order to disregard this part of the series,

the same procedure is repeated starting from the opposite end. Thereby, 2Ns segments are

obtained together.

3) Calculate the local trend for each of the Ns segments by a least-square fit of the series.

Then determine the variance

is the fitting polynomial in segment v.

Linear, quadratic, cubic, or higher order polynomials can be used in the fitting procedure.

Since the detrending of the time series is done by the subtraction of the polynomial fits

from the profile, different order DMA differ in their capability of eliminating trends in the
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series. In MF-DFA m [math order DMA] trends of order m in the profile are eliminated.

Thus a comparison of results for different orders of DFA allows one to estimate the type

of the polynomial trend in the time series.

4) Average over all segments to obtain the qth order fluctuation function

where in general the index variable q can take any real value. For q =2 the standard DMA

procedure is retrieved. Our interest is to see how the generalized q dependent function

Fq(s) depends on the time scale s for different values of q.

5) Determine the scaling behavior of the fluctuation functions by analyzing log-log plots

Fq(s) versus s for each value of q. If the series xi are long-range power-law correlated,

Fq(s) increases, for large value of s, as a power law

3.5.4 Interpretation

For a monofractal time series with compact support, h(q) (slow) is independent of q,

since the scaling behavior of the variance F 2(v,․) is identical for all segments v, and the

averaging procedure in equation (3.5) will give just this identical scaling behavior for all

values of q [26]. A function has compact support if it is zero outside of a compact set. Let

S be a subset of a metric space. Then the set S is compact if, from any sequence of

elements X 1, X2 , ... of S, a subsequence can always be extracted which tends to some

limit element X of S. Compact sets are closed and bounded, and these conditions
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characterize them in finite-dimensional space. Α function with compact support is only

interesting in a bounded domain.

Only if small and large fluctuations scale differently there might be a dependence

of h(q) on q. i.e. It would be possible to distinguish whether the given series is

multifractal or multifractal because the value of h(q) remains the same despite any

change in the value of q. However, if we get different value of h(q) for varying q the

given series is multifractal.

For the positive values of q, segments with larger value of F2(v, s) will dominate

the average value of Fq(s) and thus h(q) describes the scaling behavior of the segments

with large fluctuations. On the contrary, for the negative values of q, the segments v with

small variance F2(v, s) will dominate the average Fq(s).

For the maximum scale s«N the fluctuation function is independent of q, since the

sum in equation (3.5) runs over two identical segments. For small segments s«N, the

sum will run over several segments, and the average value F q(s) will be dominated by

F2(v, s) from the segments with small or large fluctuation if q<0 or q>0.

Hence, if we follow equation (3.6), the slope h(q) for log plot of Fq(s) vacs log plot

of s for q<0 must be greater than slope h(q) for q>0. Usually, the large fluctuations are

characterized by a smaller scaling exponent h(q) for multifractal series than the small

fluctuations [26].
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3.5.5 Advantages and Disadvantages

The main advantage of multifractality DFA is, it makes possible to distinguish whether the

given time series exhibits multifractality or not by generating different scaling exponents

for different values of power q where q varies from -20 to 20 and thereby avoids

assuming that the scaling characteristic of the entire time series remains the same as is the

case with DFA.

It thereby detects the long-range correlation in the given data and henceforth is

able to distinguish between the healthy and pathologic subjects, thus, it has the benefit of

both DFA and itself.

A major drawback is the data requirements are greater than with other techniques

and needs 24 hours of data because the result becomes statistically inconsistent for short

data sets [26]. Thus, 24 hours long RR interval time series is needed for MF-DMA

Analysis. Also MF-DFA only generates positive exponents which could be a possible

drawback because for q«2, MF-DFA retains conventional DMA i.e MF-DMA generates

the same exponent value as does DMA.

DMA results show that for 0< a < 0.5 the given signal is anticorrelation, which

means that the method is not able to generate the exponent value beyond 0, which might

mean greater anticorrelated. Thus, both have a common drawback of only generating

positive value of the scaling exponent. Also, Fq(s) becomes inaccurate for strongly

anticorrelation signal i.e. h(q) is close to zero [26].



CHAPTER 4

DATA ACQUISITION AND DATA ANALYSIS

4.1 Data Acquisition

As mentioned in Section 1.2, the main goal behind this research is to i) Determine the

presence of long-range power law correlation for healthy subjects and breakdown in the

long-range power law correlation for CHF subjects using DMA and MF-DFA analysis and

to reproduce the findings of PPeng et al. (ii) Determine how well DFA and MF-DFA

analysis are able to discriminate among healthy subjects and subjects with cardiac heart

failure using statistical tools. (iii) Test the effect of length, activity, non-stationarity,

trends on DFA and the effect of length on MF-DFA. The data used in the experiments

were acquired from httρ://www.ρhysiοnet.οτg/ρhvsiοbank/database/nsr2db/.

This database includes beat annotation files for 26 long-term ECG recordings of

subjects in normal sinus rhythm (26 men and women, aged 28.5 to 76, mean 52.3) and 11

long-term ECG recordings of subjects (11 men and women, aged 34 to 79, mean 56.5)

with congestive heart failure. The data for the normal control group were obtained from

24-hour Holster monitor recordings of 26 healthy subjects with ECG data sampled at 128

Az. The data for the CHF group were obtained from 24-hour Holter recordings of 11

patients with recordings sampled at 250 Az.

4.2 Data Aberrancies and Data Correction

The data used in this experiment, contained some entries that were too high or too low to

be considered for this data set. Such entries were removed using "deglitching" available
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on PhysioNet. The code is written in MATLAB. The code identifies the outliers by

comparing the data set with an Auto Regressive prediction model of order 3. If the data

points lie within 25% and 75% of the predicted value, than the point is labeled valid,

otherwise invalid. Only valid points are used to calculate DMA and MF-DFA exponents.

4.3 Data Analysis

Figure 4.1 compares the DFA analysis of representative eight hour interbeat interval time

series of a healthy and a patient with congestive heart failure (CAFE). Notice that for large

time scales, the healthy interbeat interval time series shows almost perfect power-law

scaling over two decades (11_<n<_10000) with a=1.04, while for the pathologic data set

Figure 4.1 Plot of LogF(n) vacs Logic) for two interbeat interval time series (~ 24hοurs)
for healthy and subject with cardiac heart failure (CALM).
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4.3.1 Crossover Phenomenon

Figure 4.1 shows the plot of LogF(n) vacs Logic) for two interbeat interval time series for

healthy subjects and subjects with cardiac heart failure. Analyzing the figure 4.1, it is

noted that, there is an apparent crossover exhibited for the scaling behavior of both data

sets indicated by slowly and fasti for healthy, and slοw2 and fast2 for CHEF. For the

healthy subjects, α exponent estimated from very small n (n<_11 beats) is larger than that

calculated from n (>11 beats) and this refers to crossover phenomenon. This is probably

due to the fact that on very short time scales (a few beats to ten beats), the physiologic

interbeat fluctuation is dominated by relatively smooth heart beat oscillation associated

with respiration thus, giving rise to a larger α value. For longer scales, the interbeat

fluctuation, reflecting the intrinsic dynamics of a complex system, approaches that of 1/f

behavior as previously noted. In contrast, pathologic data set shows a very different

crossover pattern (Figure 4.1). For very short time scales, the fluctuation is quite random

(close to white noise, α —0.5). As time scale becomes larger, the fluctuation becomes

smoother, asymptotically approaching Brownian noise, α1.5).

Figure 4.1 shows the crossover effect resulting in two different exponents namely,

slow and fast, each for healthy and subjects with cardiac heart failure. Therefore, for each

data set an exponent αΙ is calculated by making a least square fit of logF(n) v/s log(n) for

4<_n<_16. Similarly, an exponent α2 is obtained from 16 <_n<_64. The two exponent's αΙ

and α2 were calculated for 4k, 8k, 10k, 12k, 16k, 18k, 20k, 22k, 28k, 30k, 40k, 60k, 80k,

and 100k data points. For healthy subjects, calculated value of αΙ and α2 (mean value ±

S.D.) is 1.31 ± 0.17 and 1.003 ± 0.07 respectively. For subjects with cardiac heart failure,

calculated value of αΙ and α2 is 0.71 ± 0.20 and 1.24±0.07, respectively.
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Table 4.1 Comparison between results generated by Deng et al. and results generated
using DMA analysis for Healthy and CHEF subjects.
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Table 4.2 and Table 4.3 listed below shows the effect of length on DFA for healthy and

CHEF subjects. The value of slow exponent for 4k, 8k, 10k, 12k, 16k, 18k, 20k, 22k, 28k,

30k, 40k, 60k and 100k among healthy subjects is 1.04 ± 0.02 and the value of slow

exponent among CHEF subjects is 1.32 ± 0.02 (mean value ± S.D.). Thus, 4000 data points

are sufficient for DFA analysis.

Table 4.2 Effect of data length on DFA for healthy subjects



Table 4.2 Effect of data length on DMA for healthy subjects (continued)
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Table 4.2 Effect of data length on DFA for healthy subjects (continued)
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Table 4.2 Effect of data length on DFA for healthy subjects (continued)
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Table 4.3 Effect of Data Length on DMA for CHEF subjects
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Table 4.3 Effect of Data Length on DMA for CHEF subjects (continued)

Table 4.3 shows the effect of data length on DMA for subjects with cardiac heart failure.
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Table 4.3 Effect of data length on DFA for CAF subjects (continued)

Table 4.3 Effect of data length on DMA for CHEF subjects (continued)
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4.3.2 NOVA Analysis

NOVA (Analysis of variance) is used for the statistical analysis of the data sets.

NOVA is used to compare the effect of length on al (fast) and α2(slow) exponent of

DMA for healthy and CHEF subjects. The null hypothesis for the experiment is that, if the

generated devalue using NOVA analysis is less then 0.05, reject the null hypothesis, and

if the generated devalue is greater then 0.05, do not reject the hypothesis.



Figure 4.2 NOVA for effect of length on DMA for healthy subjects.
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Figure 4.3 NOVA for effect of length on DFA for CHEF.
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Figure 4.2 and Figure 4.3 shows the NOVA analysis for the effect of length on

αΙ(fast) and α2(slow) exponent of DFA for healthy and CHF subjects. Figure 4.4 shows

the NOVA of healthy vas CHEF. As shown in the table devalued for healthy subject is

0.4006 and for CHEF subject is 0.6325, which is greater then 0.05. This suggests that there

is no statistical change in the values of slow exponents among healthy subjects and there

is no statistical change in the value of slow exponents among CHEF subjects. And the de

value for healthy versus CHEF is 0.008 which is less then 0.05, thus reject the null

hypothesis, which means both the data sets are statistically different. Figure 4.5 shows the

plot of α2(slow) versus number of data points for healthy and CHF subjects and it is

apparent that there is no effect of length on α2(slow). However, DFA analysis is done
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using atlas 4000 data points as indicated in table 4.2 because the results become

inconsistent for data points less than 4000, and the value of slow exponent for healthy

subjects is 1.004 + 0.07 (mean ± S.D.). The pathology group shows a significant

deviation of the long range correlation exponent from the normal. For the group of heart
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Tables 4.4 and 4.5 shows the effect of activity on DMA for healthy and subjects with

cardiac heart failure.

Table 4.4 Effect of activity on DMA for healthy subjects



Table 4.5 Effect of activity on DMA for CHEF subjects
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Figure 4.6 NOVA for effect of activity on DFA for healthy subjects.
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Figure 4.8 Effect of activity on DFA for healthy and CHF subjects.
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Figure 4.6 and Figure 4.7 shows the NOVA analysis for the effect of activity on

DMA for healthy and CAF subjects and the devalue for the healthy group is 0.8405 and

for CHF group is 0.7600 which is again greater then 0.05 and thus do not reject the null

hypothesis which according to the devalue suggests, there is no effect of activity on the

DFA scaling exponent for healthy as well as CHEF. This can also be seen in figure 4.8.

Figure 4.9 Scatter plot of scaling exponent's slow(α2) v/s fast(α1) for the healthy
subjects and subjects with cardiac heart failure. Note: Good separation between healthy
and heart disease subjects, with clustering of points in two distinct "clouds."

Figure 4.9 shows that good discrimination between these two groups can be

achieved by using these two scaling exponents and statistically the devalued of fast among

healthy subjects and subjects with cardiac failure is —0 which is < 0.05, and thus the value

of fast is significantly different among both the group of subjects.
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Figure 4.10 Effect of nonstationarity on DMA.

Figure 4.10 shows the plot of Log(n) vacs Login) for effect of nonstationarity on

the DMA. A surrogate signal with nonstationarity is taken from www.physionet.org. An

artificially generated signal with known correlation a =0.9 is used. nonstationarity is

introduced by stitching together segments of data obtained from discontinuous

experimental recordings, or removing some noisy and unreliable parts from continuous

recordings and stitching together the remaining parts--a "cutting" procedure commonly

used in preparing data prior to signal analysis. The value of a exponent obtained using

DMA analysis of the signal with an artificially introduced nonstationarity remained the

same as the signal without nonstationarity as revealed in fig. 4.10. Thus it can be

concluded that DMA is not affected by nn-stationarity present in the data.



Figure 4.11 Effect of trend on DFA.

Figure 4.11 shows the effect of a sinusoidal trend on DFA. A surrogate signal

with known correlation available on www.physionet.org  is used to check the effect of

trends on DMA.

A signal with known correlation and a trend with known scaling properties are

used. The trend is superposed on the signal and the DFA analysis of this signal with

superposed trend gives nearly the same α value as for the signal without any trend as

shown in Figure 4.11. Thus, it can be concluded that there is no effect of trends on DMA

because as discussed in the algorithm, DFA removes the effect of trend. The mathematics

used to superpose the trend on the signal with known correlation is described by Ivanov

et al. [33].
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Figure 4.12 White noise.

Figure 4.12 shows the results of DFA analysis for white noise. An artificially

generated noise signal available on www.physionet.org  is used for the analysis. The value

of α exponent using the DMA becomes a«0.5 which is white noise. Thus it can be

concluded that for white noise, a « 0.5.
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Tables 4.6 and 4.7 shows the Multifractal (MF)-DFA results for Healthy and CHEF

subjects

Table 4.6 Multifractal DFA results for Healthy Subjects for q varying from -20 to 20



Table 4.6 Multifractal DFA results for Healthy Subjects for q varying from -20 to 20
(continued)
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Table 4.6 Multifractal DMA results for Healthy Subjects for q varying from -20 to 20
(continued)
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Table 4.7 MF-DFA for CHEF subjects for q varying from -20 to 20
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listed below show the effect of length on MF-DFA

for healthy and CHEF subjects for q varying from -20 to 20

Table 4.8 Effect of Length on MF-DFA for 4000 Data Points



Table 4.9 Effect of Length on MF-DFA for 8000 Data Doints
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Table 4.10 Effect of Length on MF-DFA for 16000 Data Doints
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Table 4.11 Effect of Length on MF-DFA for 32000 Data Doints
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Table 4.12 Effect of Length on MF-DFA for 64000 Data Doints
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Figure 4.14 Effect of Length on MF-DFA for 8000 Data Points Note: It is possible to
distinguish between Healthy and CHEF at 8000 Data Points.



Figure 4.15 Effect of Length on MF-DFA for 16000 Data Points Note: It is possible to
distinguish between Healthy and CHEF at 16000 Data Points.

Figure 4.16 Effect of Length on MF-DFA for 32000 Data Points Note: It is possible to
distinguish between Healthy and CHEF at 32000 Data Points.
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Figure 4.17 Effect of Length on MF-DFA for 64000 Data Points Note: It is also possible
to distinguish between Healthy and CHEF at 64000 Data Points.

Figures 4.13-4.17 show the effect of length on MF-DFA for different data points.

Apparently the two groups of subjects (healthy and CHF) can be discriminated for 8000,

16000, 32000, and 64000 data points as seen in Figures 4.14-4.17. Thus it can be

concluded that 8000 data points are sufficient enough to discriminate healthy subjects

from subjects with cardiac heart failure.



Figure 4.18 shows the Comparison of DFA and MF-DFA for q=2. Note that DFA and
MF-DFA have nearly the same values of the scaling exponent for q=2.

Figure 4.19 shows the plot of slow versus q for an artificially generated binomial
multifractality sequence.

Binomial sequence is used because it is an artificially generated series that
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exhibits multifractality and thus is used as a reference to test the matlab code for MF-
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DFA. The binomial sequence is artificially generated using the mathematics discussed in

[27].



CHAPTER 5

CONCLUSION AND FUTURE WORK

In summary, two non-linear methods (DMA and MF-DFA) were used to analyze two

different groups of subjects (healthy and subjects with cardiac heart failure). This study

revealed the presence of long-range power law correlation for the group of healthy

subjects while a breakdown in the long-range power law correlation for the subjects with

cardiac heart failure. An α greater than 0.5 and less than or equal to 1.0 indicates long-

range power law correlation, which means large intervals intervals are more likely to be

followed by large and vice versa. In contrast, 0<α<0.5 indicates a different type of power-

law such that large and small values of time series are more likely to alternate. A special

case of α «1 corresponds to 1/f noise. For α >_1, correlations exist but cease to be of

power law form; α «1.5 indicates Brownian noise, which is an integration of white noise.

The `α' exponent can thus be viewed as an indicator that describes the

"roughness" of the original time series. The larger the value of α, the smoother is the time

series. Thus value of α«1.21 for CHEF, which is greater than 1.003 for healthy subjects

indicates a smoother time series and thus, a pathologic condition because the larger is the

heart rate variability, the healthier is the person. If the plot of LogF(n) versus Logic)

gives a straight line i.e. single value for α exponent is able to characterize the entire heart

rate time series, than the given time series exhibits a monofractal behavior.

However, a crossover effect was observed as illustrated in Figure 4.1, which

shows the presence of two different scaling exponents (slow and fast) for each group of

subjects
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(Healthy and CHEF). This suggestion that there is more than one exponent values needed to

characterize the heart rate time series, which can be obtained using multifractal DFA.

A scatter plot of slow v/s fast for healthy and CHF subjects in DFA reveals that

data from normal interbeat interval series are tightly clustered suggesting that there may

exists a "universal" scaling behavior for physiological time series. In contrast, the

pathologic data show more variation, which may be related to different clinical

conditions and varying severity of the pathologic states.

Thus, MF-DFA is clearly able to discriminate among the healthy and CHF for

q<0 as well as for q>0. Both the methods were tested for the effect of length and the

results suggests that, 4000 data points are needed for DFA analysis because results

become inconsistent for data points less than 4000. MF-DFA suggests 8000 data points

(-2 hours) are sufficient for the analysis. Therefore these methods cannot be applied to

relatively short time series. There is no effect of activity, effect of non-stationarity, and

effect of trend found on DFA. DFA and MF-DFA were able to discriminate 23 Healthy

subjects out of 26 Healthy subjects data set i.e. true positive specificity is 0.89 and false

negative specificity is 0.12 and 9 CHEF subjects out of 11 CHEF subjects data set i.e. true

positive specificity is 0.82 and false negative specificity is 0.19.
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As a further extension to this research, DFA and MF-DFA analysis methods

should be used on various pathologic conditions other than CHEF and determine how well

the methods are able to discriminate among healthy and pathologic subjects with various

other pathologies like atrial fibrillation, myocardial infarction and many more. I would

like to test how well these methods are able to detect the effect of drugs in different

pathologic conditions. The data sets that used for this experiment includes healthy

subjects aging between (28.5 to 76 years) and CHF subjects aging between (34 to 79

years). Thus, a study should be conducted that includes data set from young subjects

aging between (18 to 24 years) and check how well DFA and MF-DFA discriminate

among healthy and CHEF subjects. Also comparison among male and female group of

subjects should be done to check the underlying non-linear dynamics prevailing among

these group of subjects. These methods should be used as a predictor of pathologic

conditions i.e. in this experiment it was known that the data obtained was from subjects

with cardiac heart failure. However, future study should be designed such that it

examines the ability of these methods to predict the onset of diseased conditions.



APPENDIX

Matlab Code for DMA and MM-DMA Analysis

This appendix contain the code used to generate the scaling exponents for DFA analysis
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