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ABSTRACT

ANALYSIS OF ACCELERATION AND DECELERATION
DURING CYCLIC EXERCISE

by
Jeena Vadi

The Cyclic Exercise Protocol is a novel protocol that is designed to create a series of

cyclic waves of exercise and recovery. This exercise protocol involves short bursts of

exercise lasting for 60 seconds or less followed by a period of complete cardio recovery.

This study involves the analysis of the acceleration and the deceleration regions of the

cyclic exercise sessions. The objective of this study was to develop an algorithm to

quantitatively analyze the acceleration and the deceleration regions of cyclic exercise

sessions. The acceleration and the deceleration regions of cycles were split into three

segments and each segment was fit with mathematical curves and the variation of data

from the fit was calculated. The cycles data was analyzed using Mathematica version 4.1.

The subjects for this study were healthy volunteers.

The parameters extracted included the time constants and slopes from the

mathematical fits and the mean square errors. The mean square error values obtained

were less than 14.8 (±3.5% error in the variation of the heart rate), showing that the

algorithm is creating a proper mathematical fit to the different regions of acceleration and

deceleration.
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CHAPTER 1

INTRODUCTION

1.1 Scope of Research

The scope of this research involves the analysis of acceleration and deceleration regions

of cyclic exercise sessions. The cyclic exercise protocol is designed to train the exertion

phase and recovery phase of exercise in a cycle and it is aimed at improving the overall

health of a person. The underlying principle of this exercise protocol is that rest, recovery

and the body's natural rhythm are important to fitness and conditioning. The human body

has inherent rhythms that occur with different periods and at different times as cycles.

The cyclic exercise protocol that is designed to train exercise and recovery as a cycle

helps to improve the inherent rhythms of the body, which play a key role in a person's

health. In a cycle session the acceleration region represents the exercise phase and the

deceleration region represents the recovery phase.

The main objective of this research was to develop an algorithm to quantitatively

analyze the acceleration and deceleration regions of cyclic exercise sessions and to see if

it provides any significant information regarding the health of subjects. The subjects for

this study were healthy volunteers. After an initial baseline session the subjects started

doing the cycles session, which yielded cyclic waves of cardiovascular exercise and

recovery data. For quantitative analysis the acceleration and the deceleration regions were

divided into three sections. The three different regions in each case, which followed

different curves, were fit with mathematical curves and the variation of data from the fit

was calculated. The exercise data was analyzed using Mathematica version 4.1.

1
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1.2 Goals for the Study

1. To develop an algorithm to analyze the acceleration and deceleration region of

cycles exercise sessions data.

2. To fit appropriate curves to the data and to extract the parameters of interest and

observe the trend of various parameters while the subjects go through their cycles

session.

1.3 Physiology and Background

This research analyses the acceleration and deceleration region of cyclic exercise

sessions, which is aimed at improving the overall health of subjects by increasing the

heart rate variability and the amplitude of circadian rhythms. To better understand the

heart rate variability and its interpretations, knowledge of the cardiovascular system and

the autonomic nervous system is fundamental. The section presents the physiology of the

heart as well as the cyclic exercise protocol.

1.3.1 Cardiovascular System

The cardiovascular system or the circulatory system is the transport system of the body

[1]. It is made up of the heart, as well as a closed system of vessels and blood. The heart

is a muscular pumping device which pumps blood throughout the circulatory system.

Embryologically, the heart starts beating before the formation of the brain and this

beating is self initiated from within the heart itself [2]. Blood contained in the circulatory

system is pumped by the heart around a closed circuit of vessels as it repeatedly passes

through the various "circulations" of the body. The vital role of the cardiovascular
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system in maintaining homeostasis is dependent upon the continuous and controlled

movement of blood to reach every cell in the body. Regulation of blood pressure and

flow must change in response to cellular activity. Consequently, numerous control

mechanisms help to regulate and integrate the diverse functions and component parts of

the cardiovascular system to supply blood to specific body areas according to need.

1.3.1.1 Anatomy of the Human Heart. The main organ of the cardiovascular system is

the heart. It is responsible for the circulation of the blood according to the need of the

body. Figure 1.1 shows the heart and its chambers. The heart is located in the thoracic

cavity approximately midline between the sternum (breast bone) anteriorly and the

vertebrae posteriorly. The heart has a broad base at the top and tapers to a pointed tip

known as the apex at the bottom. It is situated at an angle under the sternum so that its

base lies predominantly to the right and the apex to the left of the sternum. The size of the

heart is no larger than one's own fist. It is a hollow organ composed of cardiac muscular

tissue. Its beating action maintains the flow of blood through the entire human body.

From the heart numerous blood vessels branch out and spread to every corner of the

body. These vessels form the vasculature of the cardiovascular system. There are three

main types of blood vessels, namely, arteries which carries oxygenated blood from the

heart to the various systems of the body, the veins which carry deoxygenated blood from

the various parts of the body back to the heart, and capillaries which join the arteries and

veins and are the site for gaseous and chemical exchange between the various cells and

the blood.
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1.3.1.2 Heart as a Dual Pump. Even though anatomically the heart is a single organ, the

right and left sides of the heart functions as two separate pumps. The heart is divided into

right and left halves and has four chambers; an upper and a lower chamber within each

half. The upper chambers, the atria, receive blood returning to the heart and transfer it to

the lower chambers, the ventricles, which pump blood from the heart. The vessels that

return blood from the tissues to the atria are veins and those that carry blood away from

the ventricles to the tissues are the arteries. The two halves of the heart are separated by

the septum, a continuous partition that prevents the mixture of blood from the two sides

of the heart. This separation is important because the right half of the heart is receiving

and pumping oxygen poor blood while the left side of the heart receives and pumps

oxygen rich blood.

Figure 1.1 The heart. (From E. N. Marieb, Human Anatomy and Physiology, 3 rd ed. New York: The
Benjamin/Cummings Publishing Company, Inc., 1995)

The blood travels continuously through the circulatory system to and from the

heart through two separate vascular (blood vessel) loops, both originating and terminating

at the heart. The pulmonary circulation consists of a closed loop of vessels carrying blood
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between the heart and lungs, whereas the systemic circulation consists of a closed loop of

vessels carrying blood between heart and other organ systems.

Blood returning from the systemic circulation enters the right atrium via large

veins known as vena cava. In the lungs, the blood loses the extra carbon dioxide and

picks up the oxygenated blood and returns to the left atrium. The blood from the left

atrium flows into the left ventricle and eventually into the aorta that supplies the

oxygenated blood to all parts of the body. This is called the systemic circulation. Figure

1.2 shows the systemic and pulmonary circulation.

Figure 1.2 Systemic and pulmonary circulations. (From E. N. Marieb, Human Anatomy and
Physiology, 3 rd ed. New York: The Benjamin/Cummings Publishing Company, Inc., 1995)

1.3.1.3 The Electrocardiogram. The heart contracts, or beats, rhythmically as a result

of an action potential that it generates by itself, a property known as autorhythmicity. The

electrocardiogram (ECG) is a record of the overall spread of electrical activity through
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the heart. The ECG is used primarily as a tool for evaluating the electrical events within

the heart. The action potentials of cardiac muscles can be viewed as batteries that cause

charge to move throughout the body fluids. These moving charges, or currents, represent

the sum of the action potentials occurring simultaneously in many individual cells and

can be detected by recording electrodes at the surface of the skin. Figure 1.3 illustrates a

typical normal ECG recorded between the right and left wrists for one heartbeat.

Figure 1.3 The electrocardiogram. (From E. N. Marieb, Human Anatomy and Physiology, 3 rd ed.,
1995)

The first deflection, the P wave, corresponds to the current flow during atrial

depolarization (contraction). The second deflection, the QRS complex, is a result of

ventricular depolarization. The third and final deflection is the T wave. The T wave is a

result of ventricular repolarization (relaxation). It should be noted that atrial



7

repolarization is usually not evident in the ECG because it occurs at the same time as the

QRS complex. The distance between two consecutive QRS complexes on an ECG record

is calibrated to the beat-to-beat heart rate.

Because electrical activity triggers mechanical activity, abnormal electrical

patterns are usually accompanied by abnormal contractile activity of the heart. Thus the

evaluation of ECG can be useful in diagnosing abnormal heart rates, arrhythmias, and

damage of the heart muscle.

1.3.2 Exercise — Neural Review

The heart is innervated by both divisions of the autonomic nervous system, which can

modify the rate and strength of contraction, even though nervous stimulation is not

required to initiate contraction. The parasympathetic nerve to the heart, the vagus nerve,

primarily supplies the atria, especially the SA (sinoatrial) and AV (atrioventricular)

nodes. Parasympathetic innervation of the ventricles is sparse. The cardiac sympathetic

nerves also supply the atria, including the SA and AV nodes, and richly innervate the

ventricles as well.

1.3.2.1 Sympathetic Regulation of Heart Rate. The sympathetic nervous system

controls heart action in emergency or exercise situations, where there is a need for greater

blood flow and speeds up the heart rate through its effect on the pacemaker tissue [1].

The sympathetic nervous system innervates the AV node, the SA node and the atria and

the ventricles of the heart and its regulation of heart rate is brought about by the

combination of neural and hormonal pathways. Sympathetic efferent impulses travel

from the brain via pre-ganglionic and postganglionic neurons to their target organs. At
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their terminus these postganglionic fibers release norepinephrine or at the adrenal gland

epinephrine. These catecholamines exert both a choronotropic (increased heart rate) and

inotropic effect (increased contractility) on the heart.

1.3.2.2 Parasympathetic Regulation of Heart Rate. The parasympathetic nervous

system's influence on the SA node is to decrease the heart rate [1]. Parasympathetic

nerve impulses reach the heart via the right and left vagus nerves, innervating the SA and

AV nodes but only the atrial myocardium. Vagal efferent impulses trigger the release of a

neurotransmitter, acetylcholine (ACh) at their synapses. (ACh) combines with

myocardial muscarinic receptors which are the membrane-bound proteins that contains a

recognition site for acetylcholine (ACh) and the combination of Ach with the receptor

initiates a physiologic change of slowing the heart rate, which results in increased efflux

of K+ ions and a reduced influx of Ca++ ions, the net result of which is to hyperpolarize

the cell thus slowing the rate of depolarization and hence the heart rate [18]. Figure1.4

shows the sympathetic and the parasympathetic nervous system.

During exercise, an increase of sympathetic activity and a decrease of vagal

discharge lead to an increase of heart rate, stroke volume, and myocardial contractility to

satisfy energy demand of working muscles [23]. Exercise cardioacceleration results from

release of parasympathetic inhibition at low exercise intensities and from both

parasympathetic inhibition and sympathetic activation at moderate intensities [24].
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Figure 1.4 Sympathetic and parasympathetic nervous system. (From E. N. Marieb, Human
Anatomy and Physiology, 3 rd ed. New York: The Benjamin/Cummings Publishing Company, Inc., 1995)

1.3.2.3 Heart Rate and Heart Rate Variability. The oscillation in the interval between

consecutive heartbeats as well as the oscillations between consecutive instantaneous heart

rates is heart rate variability [13] . The beating of the heart and its regulation is

controlled by the autonomic nervous system.

Physiology of Changes in Heart Rate

Change in heart rate is sensitive to changes in body temperature, plasma electrolyte

concentrations and hormone concentrations [5]. However, the most important influence
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of beat-to-beat variations of heart rate comes from the autonomic nervous system. More

specifically, sympathetic activity increases heart rate, whereas activity in the

parasympathetic (vagus) nerves causes the heart rate to decrease. Due to considerably

more parasympathetic activity to the heart than sympathetic activity in the resting state,

the normal resting heart rate is below the inherent rate of 100 beats/minute.

The autonomic nervous system innervates the heart in a number of places. The

sympathetic nervous system terminates at the SA node, the conduction system, atrial and

ventricular myocardium, and coronary vessels. The parasympathetic fibers terminate in

the SA and AV nodes, atrial and ventricular musculature, and coronary vessels. Interplay

between the two systems will cause the heart to speed up or slow down, depending on

which system is more active [6].

Perhaps the most important site of innervation of the autonomic nervous system

on the heart occurs at the SA node. The SA node possesses an inherent discharge rate,

often referred to as the pacemaker potential. The pacemaker potential is a slow

depolarization of the cells of the SA node. The innervation of the sympathetic and

parasympathetic nervous system on the SA node changes the characteristics of

depolarization within the SA node cells, thus changing heart rate.

Heart Rate Variability as a Measure of Autonomic Function

Changes in heart rate usually involve the reciprocal action of the two divisions of the

autonomic nervous system. An increased heart rate is the result of reduced

parasympathetic tone and a concomitant increase in sympathetic activity. A decrease in

heart rate is usually the result of increased parasympathetic tone and a simultaneous
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decrease in sympathetic tone. Therefore, changes in heart rate reflect the action of the

sympathetic and parasympathetic nervous systems on the heart. However, under certain

conditions, it is possible for heart rate to change by activity of only one division of the

autonomic nervous system, independent of the other division, rather than reciprocal

changes in both [7].

Initially, the effect of the autonomic nervous system on the heart was estimated by

utilizing the traditional technique of average heart rate [7]. As a reference, the average

heart rate was measured under normal resting conditions. Then the average heart rate was

measured under the administration of drugs. The drugs used were atropine, which blocks

the effects of the parasympathetic nervous system, and propranolol, which masks the

effects of the sympathetic nervous system. A qualitative assessment could then be made

of the autonomic nervous system by comparing the reference heart rate to the heart rate

while under the administration of the drugs. This method looks at the average over time

of heart rate. However, when the ECG is looked at on a beat-to-beat basis, rather than

over a period of time, fluctuations in the heart rate are observed [7]. Recent research

indicates that fluctuations in heart rate are a healthy sign. In fact, one hypothesis is that

the larger variations in the heart rate correlate to a healthier autonomic nervous system.

Goldsmith et al. studied and compared 24-h HRV in aerobically trained and untrained

healthy young men and observed that parasympathetic activity is substantially greater in

trained than in untrained men [3].

By contrast a number of physiologic and disease states produce alterations in

autonomic function, which reduce the variability in heart rate [8]. The increase in heart

rate that accompanies exercise is due in part to a reduction in vagal tone. Recovery of
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heart rate immediately after the exercise is a function of vagal reactivation [22]. A

delayed decrease in heart rate during first minute after graded exercise was found to be a

predictor of overall mortality, independent of workload, the presence/absence of

myocardial perfusion, changes in heart rate during exercise, in this study [22].

1.3.3 Exercise Physiology

The cyclic exercise protocol is designed to train exercise and recovery together as a

cycle. This research analyses the acceleration and the deceleration of the cycles of the

cyclic exercise sessions. One of the major concepts in exercise physiology is that physical

activity from the perspective of conferring health benefits may be the end goal of

exercise, rather than physical activity for the purposes of achieving maximal levels of

physical fitness for competition. Modest exercise such as walking, outdoor work, and

stair climbing can contribute to achievable levels of physical fitness for the general

population as well as "athletes" and confers the benefits of increased longevity. It is

hypothesized that since cyclic exercise is the exercise that confers maximum benefits to

the body with minimum exertion [5], moderate exercise may be much more palatable to a

patient than the idea of vigorous or strenuous exercise and may result in increased

compliance with a recommended program.

Exercise generally takes two basic physiologic forms—dynamic exercise and

static, or isometric exercise—although most athletic activities are a variable combination

of them such as distance running [15].

Dynamic Exercise constitutes an alteration in the length of skeletal muscle with

comparatively little change in muscle tension [15].
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Static Exercise is essentially the reverse - that is, a marked alteration in skeletal muscle

tension with little or no change in muscle length [15].

1.3.3.1 Cardiac Output and Control. The heart alternately contracts to empty and

relaxes to fill with blood. The cardiac cycle consists of alternate periods of systole

(contraction and emptying) and diastole (relaxation and filling). Cardiac output is the

volume of blood pumped by each ventricle per minute. The two determinants of cardiac

output are the heart rate (beats per min) and stroke volume (volume of blood pumped per

beat or stroke). The average resting heart rate is 70 beats per minute, and the average

resting stroke volume is 70 ml/beat producing an average cardiac output of 5 lit/min [1].

Cardiac Output(CO) = Heart rate * Stroke volume

CO = 70 beats/min * 70 ml/beat 5 liters/min.

Each minute the right ventricle normally pumps 5 liters of blood through the

lungs, and the left ventricle pumps 5 liters of blood through the systemic circulation. This

is the resting cardiac output. During exercise the cardiac output can increase to 20 to 25

liters/min and outputs as high as 40 liters per minute have been recorded in trained

athletes during heavy exercise. The difference between cardiac output at rest and the

maximum volume of blood the heart is capable of pumping per minute is called the

cardiac reserve [1]. The reserve is a major determinant of exercise capacity in a

population of normal subjects and patients with heart disease.

Systole is the active contraction phase of the cardiac cycle, the phase during

which the heart performs its principal function, the ejection of blood into the pulmonary

and systemic circulations. The delivery of blood to these circulations, measured as stroke
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volume, is an important indicator and demonstration of cardiac function [4]. The stroke

volume is defined as the difference between the end diastolic volume and the end systolic

volume. The stroke volume is determined by three factors namely, preload, afterload and

contractility.

1.3.3.2 Preload. Preload is the workload (stretch, filling) on the ventricle before

contraction begins [1]. This is measured by end diastolic volume, and diastolic pressure

and right atrial pressure and is regulated by the venous return to the heart.

Physiologically, preload can be defined as the initial stretching of the cardiac myocytes

(cells that line the walls of the heart) prior to contraction and is related to the sarcomere

(smallest unit of the muscle fiber) length.

1.3.3.3 Afterload. Afterload refers to the wall tension against which the ventricle must

contract during systole [4]. It is the workload imposed on the heart after the contraction

has begun. In simple terms, the afterload is closely related to the aortic pressure. A simple

measure of afterload is mean arterial pressure.

1.3.3.4 Inotropy — Contractility. Contractility is the innate ability of the fibers of the

heart muscle to shorten, which translates into a shrinking of the cardiac chambers during

each heartbeat [4]. Changes in stroke volume can be accomplished by changes in

ventricular inotropy (contractility). Changes in ionotropy are unique to cardiac muscle. A

simple measure of cardiac contractility is ejection fraction (ejection fraction (EF) is the

fraction of blood ejected by the ventricle relative to its end- diastolic volume. EF = (SV/
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EDV) • 100 where SV = stroke volume, EDV = end-diastolic volume). Cardiac

contractility increases with sympathetic stimulation [16]. Changes in contractility alter

the rate of force and pressure development by the ventricle and therefore changes the rate

of ejection.

Sympathetic stimulation increases the cardiac output by influencing the heart rate

and the stroke volume. Sympathetic simulation increases stroke volume not only by

strengthening cardiac contractility but also by enhancing venous return. Sympathetic

activity to the heart increases during exercise, when the working skeletal muscles need

increased delivery of oxygen-laden blood to support their high rate of ATP consumption

[1]. During the initial stages of exercise, increased cardiac output is due to an increase in

both heart rate and stroke volume. When the level of exercise exceeds 40% to 60% of the

individual's capacity, stroke volume has either plateaued or begun to increase at a much

slower rate. Thus, further increases in cardiac output are largely the result of increases in

heart rate [1].

1.3.3.5 Behavior of the Heart During Exercise. Autonomic nervous system activity

contributes to the regulation of cardiac output during rest, exercise, and cardiovascular

disease [17].

The heart rate increases during exercise [1].

■ The increase in heart rate is proportional to the workload.

■ The increase in heart rate is produced by an increase in sympathetic

discharge, a decrease in parasympathetic (vagus nerve) discharge and an

increase in circulating catecholamines (epinephrine and nor epinephrine).



Stroke volume increases during exercise [1].

■ The increase in stroke volume is caused by an increase in ventricular

contractility.

■ The end diastolic volume (preload) does not change very much during

exercise.

Cardiac output increases during exercise [1].

■ Stroke volume may increase two fold.

■ Heart rate may increase three fold.

■ Cardiac output may increase six fold (from 5 liters/min to 30 liters/min)

Effect of exercise training on the cardiovascular system

At rest

■ Reduced heart rate

■ Increased stroke volume

■ Increased end-diastolic volume

■ Increased blood volume

At maximal workload

■ Increased maximum stroke volume

■ Increased maximum cardiac output

■ Decreased maximum heart rate

■ Increased maximum oxygen extraction

■ Increase maximum oxygen consumption

Effects of Exercise on the Vascular System

Total peripheral resistance decreases during exercise.

16
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■ The arterioles perfusing exercising muscles are dilated by the metabolic

byproducts that accumulate during exercise.

■ The flow of blood through the exercising muscles and the number of

capillaries through which the blood flows are increased.

■ The resistance of the arterioles perfusing the skin decreases

■ Cutaneous blood flowing increases

■ The increased cutaneous blood flow contributes to the dissipation of the heat

produced by the exercising muscles.

■ The resistance of arterioles perfusing non-exercising muscles and other tissue

beds, such as the kidney and gastrointestinal track, increase.

■ Coronary vascular resistance decreases

■ Coronary blood flow increases

■ Delivery of oxygen to the myocardium increases to meet the demand.

1.3.4 Cyclic Exercise Protocol

The data for this study is collected from the cyclic exercise program, which is performed

based on a specific protocol. The cyclic exercise protocol is based on Dr. Dardik's

theory.

1.3.4.1 Dr. Dardik's Theory. The theory is radically simple. "Everything is waves" -

From the earliest time, everything in nature has displayed rhythmic cycles such as light

waves, sound waves, radio waves, and gravitational waves. And every second of our
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lives, our own heart valves open and close, for survival itself is based on maintaining

these rhythms [9].

There is a simple blueprint for human health: the collective, appropriate

organization of the body's waves or rhythms, from the biochemistry to the heart,

according to Dr. Irving Dardik's theory. Conversely, there is only one disease: the

"flattening" of the body's waves. Because the human body's waves are fractal (self-

similar repeating patterns at different scales), Dardik believes that shaping comparatively

larger waves in the body - such as the critically important heart wave (the combination of

the heart's systolic and diastolic beats and the increase and decrease of the heart rate

during exertion and recovery) - can organize the smaller waves, down to the cellular

level. And because waves repeat themselves with "memory," he states, it is possible to

help organize the body's rhythms with relatively brief training sessions that accelerate

heart waves, and by synchronizing with the powerful circadian and other natural patterns,

adding variability and preventing flattening [9].

Traditional exercise regimens are based on maintaining a prolonged increase in

heart rate followed by a single recovery period. The efficacy of a cyclic exercise protocol

designed to generate a series of cyclic waves of cardio acceleration lasting for less than a

minute followed by recovery to a steady state was tested. An observational study

conducted by Goldsmith et al, studied the effects of this type of cyclic regimen,

consisting of four to seven cycles per session, in a group of healthy women [5]. Cardio

respiratory fitness, autonomic function, and quality of life were assessed before and after

eight weeks of exercise, performed three days per week and it was found that a short
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course of the cyclic exercise protocol in healthy adult women is associated with evidence

of enhanced cardiorespiratory fitness, autonomic function and quality of life.

The implementation of a "cyclic" exercise protocol is designed to train not only

the activation phase, but also the relaxation phase of exercise in a wave like or pulsatile

fashion. The physiological importance of "training recovery" is derived from the concept

that recovery itself is a dynamic process, mediated primarily by the parasympathetic

nervous system [5]. Therefore training recovery as well as activation may result in greater

neuroautonomic plasticity, which may in turn enhance healthy function.

1.3.4.2 Baseline Determination. A baseline determination was done prior to the actual

cycles sessions. From the baseline cycles session the target heart rate is calculated for the

individual subject for the succeeding cycles sessions. Target heart rates for each

succeeding cycle were calculated as percentages of the peak heart rate determined from

the baseline session [5].

1.3.4.3 Cycles Session. Traditional exercise regimens are based on increasing the heart

rate to a target range determined by age and fitness and maintaining that level of activity

for a sustained period. The cycles exercise protocol employs an interval-type protocol,

where there are alternating periods of exertion and recovery.

The cycles protocol is designed to train not only exercise but also recovery

together as a cycle. This generates cyclic waves of exercise and recovery. A single cycle

consists of a short burst of exercise followed by a period of cardiovascular recovery. The

"Cycles" are performed in sets of three to seven cycles, three times per week. Each cycles
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session takes between 30 - 45 minutes involving 3-7 minutes of exertion per cycles

session and the total amount of exertion is no more than 40 minutes per month. During a

cycle, subjects are required to exercise at a predetermined exertion level and reach a

defined heart rate goal determined by the baseline session.

It has been hypothesized that the cycles program with short bursts of exercise

and recovery as a wave helps in training the larger 24-hour rhythm of the body thereby

improving the overall health of an individual [5].



CHAPTER 2

METHODOLOGY

2.1 Introduction

The cycle exercise protocol used in this study was based on a program developed by Dr.

Irving Dardik. The subjects for this study included two healthy individuals. The data

acquired from the subjects during the study was heart rate. This section presents the

implementation of the exercise protocol including subject selection, protocol

implementation and data acquisition.

2.2 Subject Selection

The subjects were two healthy volunteers. Upon arrival, subjects were briefed on the

cycle baseline exercise test protocol and were familiarized with the equipment used.

2.3 Study Design

A baseline testing was done before the actual cycles exercise session. Based on the cycles

baseline session, the target heart rates — heart rate to be achieved by each subject

undergoing the cycles, was determined. The subject then performed the cycles exercise

with an increased target at every successive cycle.

2.4 Protocol Description

One significant way to enhance the natural rhythms of the body is to create them

ourselves. Much of our natural activity is rhythmic, from laughter to running. Because the

21
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human body's waves are fractal (self-similar repeating patterns at different scales),

shaping the comparatively larger waves in the body - such as the critically important

heart wave (the combination of the heart's systolic and diastolic beats and the increase

and decrease of the heart rate during exertion and recovery) - can organize the smaller

waves, down to the cellular level [9].

Since waves repeat themselves it is possible to help organize the body's rhythms

with relatively brief training sessions that accelerate heart waves, and by synchronizing

with the powerful circadian and other natural patterns, adding variability and preventing

flattening [6]. Heart rate (HR) recovery after exercise has long been used as a marker for

physical fitness, possibly related to the high vagal tone associated with fitness and good

health [12]. The cycles exercise program is designed to generate a series of cyclic waves

of cardiovascular exercise and recovery. Burke et al. demonstrated that a seven-week

interval training performed at 85-95% of VO2 (Oxygen consumption) resulted in a 5%

increase in VO2 peak in active young women [14]. The cycles exercise program is

embedded within a holistic lifestyle program called LifeWaves®, designed to adjust the

circadian rhythm (i.e., the body's natural 24-hour "clock,"), which organizes all biological

processes, including metabolic rises and dips, blood pressure peaks and valleys, hormonal

releases, etc.[19].

Cycles were performed in sets of three to seven cycles, three times per week, for 3

weeks. Each cycle session took between 30-45 minutes involving 3-7 minutes of exertion

per cycle session. Each cycle in a session consisted of a short burst of exercise (for less

than 1 minute) followed by a period of complete recovery. This increased the

parasympathetic nervous system activity and hence may accelerate the increase in
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parasympathetic nervous system activity during recovery. The cycles were performed in

sets of three to seven and at specific times of the day. The study was designed such that

the cycles performed in the afternoon sessions required more exertion than the morning

session because the work performance typically increases in the afternoon [20,21]. This is

critically important because the body chemistry is different at different times of the day,

month and year. The exertion levels, the numbers of cycles per session and target heart

rates vary throughout the month. The subjects were given target heart rates and are

required to achieve those goals. These target heart rates were determined by the baseline

cycles session. Table 2.1 show the target heart rate for subject S1 for session 9.

Table 2.1 Target heart rates and exertion level for subject Si for session 9

Target Heart Rates
in beats/min

Exertion Scale

131 (2)
142 (3)
156 (4)

165 (5)
No goal (5)

Exertion Scale:

1) Easy Pace

2) Accelerate to Moderate Pace

3) Accelerate to Moderately Vigorous Pace

4) Accelerate to Vigorous Pace (Maximum Effort)

5) Maximum effort from the start of the cycle to the finish (Spike)
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No Goal: Do a spike (maximum effort from the start of the cycle to the finish), but stop if

your heart rate stops rising, if your heart rate drops, if you become tired, or if you have

gone for a full minute.

The equipment used for data collection was a heart rate measurement device- the

Polar S810 HR Monitor and a chest trap included with it. The data acquired by the

monitor was ECG (Electrocardiogram). The monitor then converted the ECG into either

five-second averaged heart rate (HR) or Interbeat intervals (IBI). The five second

averaged heart rate files, have their data averaged every 5 seconds and the Interbeat

interval files records the distance between an R-R wave in an ECG signal in milliseconds.

The data files used in this study are the Interbeat interval files.

2.5 Baseline Determination

A baseline determination was done prior to the actual cycles session. This cycles testing

session was done for a baseline establishment, which in turn was used for determination

of target heart rate for succeeding cycles in actual cycle session. Subjects were requested

to refrain from caffeine and meals for three hours prior to cycles testing. The subjects

were briefed on the exercise protocol. Baseline determination session consisted of 5

cycles. During the first cycle of the baseline-testing phase, the subjects were required to

exercise at an easy pace until the heart rate stabilized. The heart rate is said to have

stabilized when it is varying at most +1- three beats over 15 seconds, which occurs less

than one minute of exertion. The subjects were looking at the monitor to check for their

heart rate stability. The subjects then stopped exercise, sat down and began initiating the

recovery phase of the cycle. The heart rate data was collected using a Polar S810 HR
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monitor watch and chest strap (Polar Electro Inc., Woodbury NY) and then downloaded

to a computer. The cycles session was monitored by a trainer.

The subject performed the 2nd, 3 rd, and 4th cycle (including exertion and recovery)

in a similar manner, but increased the level of exertion for exercise with each successive

cycle. The final cycle of the baseline test was used to determine the peak heart rate for the

subsequent cycles sessions. The final cycle was vigorous and it consisted of a brief

exertion continued until the heart rate plateaued or the subject completed one minute of

exertion. Then the subject began the final recovery period.

2.6 Cycles Session

Once the cycles baseline testing had been completed, the subject started the cycles

regimen consisting of three to seven cycles per day, and three days per week for 3 weeks.

The subjects moved through the same type of exercise-recovery cycles described in the

cycles testing section. Target heart rates for each cycle were calculated as percentages of

the peak heart rate determined from the baseline session. Table 2.2 shows the target heart

rate determination for cycles sessions. The target heart rate for each cycle began at the

low end of the range and progressively increased in a step-wise incremental fashion to the

high end of the range.

Table 2.2 Target heart rate determinations

Week Time of Day Target Heart Rate Ranges
(percentage of peak heart
rate from baseline session)

1 6 a. m.- 9 a.m. 60%-92%
2 9 a. m — noon 70%-97%
3 3 p. m— 6 p. m 75%-100%
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The subjects underwent the cycles session three times a week. Each week had

three sessions. The target heart rate goals were matched to the appropriate files according

to the sessions and the date. Once the actual cycles sessions had been completed in 3

weeks, the 4th week was the resting period for the subjects. Figure 2.1 shows the graph of

the cycles performed by subject S2 in one session.

Figure 2.1 Graph of cycles performed by subject S2.

Table 2.3 shows a typical cycles schedule for a subject for 11 consecutive sessions.
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Table 2.3 Typical cycles schedule for a subject for 11 consecutive sessions

Early Morning Session 6-9 AM
Session 1
(Tuesday)

Session 2
(Thursday)

Session
(Saturday)

Target Heart
Rates in

Beats/min

3

Exertion
Scale

Session
(Monday)

Target Heart
Rates in

Beats/Min

4

Exertion
Scale

Target Heart
Rates in

Beats/Min

Exertion
Scale

Target Heart
Rates in

Beats/Min

Exertion
Scale

112
122
141
149
138

(1)
(2)

(3)
(4)

(5)

116
134
151
139
141

(1)
(2)
(4)

(5)
(5)

122
136
152
141
144
147

 (2)

(3)
(4)

(5)
(5)
(5)

124
138
146
143
146
148
151

(2)

(3)
(4)

(5)
(5)
(5)
(5)

Morning Session 9-12 AM
Session 5

(Wednesday)
Session
(Friday)

Target Heart
Rates in

Beats/Min

6

Exertion
Scale

Session
(Sunday)

Target Heart
Rates in

Beats/min

7

Exertion
Scale

Target Heart
Rates in

Beats/Min

Exertion
Scale

122
130
144
150
154

(2)

(3)
(4)

(5)
(5)

124
136
150
157

(3)
(4)

(5)
(5)

126
144
160

(4)

(5)
(5)

Afternoon Session 3-6 PM
Session 8
(Tuesday)

Session 9
(Thursday)

Session 10
(Saturday)

Session 11
(Tuesday)

Target Heart
Rates in

Beats/Min

Exertion
Scale

Target Heart
Rates in

Beats/Min

Exertion
Scale

Target Heart
Rates in

Beats/min

Exertion
Scale

Target
Heart Rates

in
Beats/Min

Exertion
Scale

129
141
154
160
165

(2)

(3)
(4)

(5)
(5)

131
142
156
165

No goal

(2)

(3)
(4)

(5)
(5)

134
146
154
160

No goal
150

(2)
(3)
(5)

(5)
(5)
(5)

Two Day
Recovery

138
150
158
161

No goal
151
153

(3)
(4)
(4)

(5)
(5)

(5)
(5)
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Exertion Scale:

1. Easy Pace

2. Accelerate to Moderate Pace

3. Accelerate to Moderately Vigorous Pace

4. Accelerate to Vigorous Pace (Maximum Effort)

5. Maximum effort from the start of the cycle to the finish (Spike)

No Goal: Do a spike (maximum effort from the start of the cycle to the finish), but stop if

your heart rate stops rising, if your heart rate drops, if you become tired, or if you have

gone for a full minute.

2.7 Mathematica for Cycles Analysis

All computer applications associated with this study were designed using Mathematica

4.1 software developed by Wolfram Research. Mathematica integrates a numeric

symbolic computational engine, graphic system, programming languages, documentation

system, and an advanced connectivity to other applications. The kernel is the

computational engine of Mathematica. The medium of the front end (the interface

between the user and the kernel) is the Mathematica notebook. Mathematica notebooks

enable the user to communicate with the kernel and it combine all the calculations, code,

results, and graphics into one interactive technical document. The program for analysis of

cycles exercise was written as Mathematica notebook.



CHAPTER 3

DATA ACQUISITION AND ANALYSIS

3.1 Introduction

This research analyzes the acceleration and the deceleration regions of cyclic exercise

sessions. An algorithm was developed for this analysis. The data acquired for this study

included the interbeat by intervals during cycles exercise.

The application used for cycles analysis was Mathematica. This section describes

the use of Mathematica for this study and the algorithms by which the acceleration and

deceleration regions of cycles were analyzed. This section also explains the different

parameters extracted from the acceleration and the deceleration regions including the

exponents, slopes and mean square errors.

3.2 Cycles Data Acquisition

The heart rate exercise data acquired for the study, involved the recording of R-R

intervals or, the interbeat interval in milliseconds. The equipment used during data

collection was a simple to use heart rate measurement device - the Polar S810 HR

Monitor and a chest strap included with it. For registration of R-R intervals using the

Polar® system an elastic belt (Polar T31 TM transmitter, Polar Electro, Kempele) is fixed

to the chest of the volunteer at the level of the lower third of the sternum. The belt

contains a case with heart rate electrodes, electronic processing unit and electromagnetic

field transmitter. The heart rate signals are continuously transmitted to the receiver unit

via an electromagnetic field. The required distance between transmitter and receiver for

29
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successful signal registration is 10-90cm. The receiver is connected to a computer

through a serial port. The data acquired by the heart rate monitor is the electrocardiogram

(ECG). The monitor then converts the ECG into interbeat intervals (IBI). The interbeat

interval is the distance between successive R-R waves in an ECG signal in milliseconds.

The digitally coded R-R interval length is continuously submitted to the software Polar ®

Precision Performance® software that in turn displays a heart tachogram on the monitor

[10]. The subject then performs the cycles exercise with an increased target at every

successive cycle.

3.3 Cycles Analysis:

After the completion of the baseline test the subjects started with the actual cycles

session. Target heart rates were calculated as percentages of peak heart rate determined

from the baseline session. The heart rates progressively increased in an incremental

fashion until the target heart rate was achieved. During the cycles that required high heart

rates, the subjects exercised vigorously to assist in reaching such high heart rates within

the allotted 60 seconds [5].

The heart rate data collected during exercise was in the form of interbeat intervals

in milliseconds. The data is then converted into beats/min using the formula:

Heart rate in beats/minute = 60,000milliseconds/min / interbeat intervals in
milliseconds/beat

and the acceleration and deceleration parameters were analyzed using a Mathematica

program (Version 4.1). The Mathematica code is shown in the appendix. Figure 3.1

shows the graph of a typical cycles session.



Figure 3.1 Graph of cycles showing the acceleration and deceleration regions.

The heart rate calculated from the interbeat interval data acquired from the Polar

S810 HR Monitor contained some artifacts, which could lead to erroneous results when

analyzed [11] . By eliminating the spikes in the heart rate (defined as sudden burst in heart

rate value), which removed much of the artifacts, the data was ready for further

processing.

Each cycle in a complete cycle session was analyzed as two different regions, an

acceleration region and a deceleration region. The acceleration region denotes the

acceleration phase of exercise and the deceleration region denotes the recovery period.

The acceleration and deceleration regions are marked for the first cycle in figure 3.1. In

order to define the acceleration and the deceleration regions, the peak value (the highest

heart rate achieved by a subject during the execution of the cycle), the acceleration valley

and the deceleration valley had to be determined for each cycle.
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Peak value: The peak value represents the highest heart rate achieved by a subject during

the execution of the cycle. This is a two dimensional parameter and consists of the

position in the time series and the value of the peak heart rate of the cycles.

Algorithm for peak value determination:

1. The cycles data was smoothed to eliminate spikes (sudden burst in heart rate) and

dropouts (sudden lowering in heart rate).

2. The mean value was subtracted from the cycles data.

3. Maximum heart rate value (mx) and minimum heart rate value (mn) were

calculated from the entire data points.

4. Heart rate values more than 40% of mx are considered as peaks and heart rate

values less than 40% of mn are considered as valleys.

5. Tested whether the peak is in between two valleys.

Table 3.1 displays the peak value parameter of the subject Si during a specific cycle

session. The peak value parameter consists of the position of the peak in the data file

(peak index) and the highest value of heart rate achieved by the subject Si.

Table 3.1 Cycle numbers, peak position and peak values of subject S1

Cycle
Number

Peak
index

Peak value achieved
(heart rate in

beats/min)
1 292 139

2 537 147

3 799 159

4 1120 162

5 1154 163
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Valley: This is also a two dimensional parameter, which indicates the minimum value

(heart rate) of the cycles and its position in the time series. Two kinds of valleys are

calculated for the acceleration and the deceleration parameter extraction. They are

acceleration valleys and deceleration valleys. The acceleration valley is the minimum

stabilized heart rate value (varying less than ± three beats over 15 seconds) in an

acceleration phase and the deceleration valley is the minimum stabilized heart rate value

(varying less than ± three beats over 15 seconds) in the recovery phase. The acceleration

valley was determined by back-calculating 200 data points from the peak value through

the acceleration phase and checking where the heart rate became stabilized. The data

point where the heart rate became stabilized was chosen as the acceleration valley. 200

data points was selected because, by observation, the acceleration valley was found

within these 200 data points. The deceleration valley was determined by forward-

calculating 350 data points from the peak value through the deceleration phase and

checking where the heart rate became stabilized. The data point where the heart rate

became stabilized was chosen as the deceleration valley. For deceleration valley

calculation 350 data points were selected because, by observation, the deceleration valley

was found within these 350 data points. The two valleys, the acceleration valley and the

deceleration valley, occurred at different points.

The protocol for calculating the acceleration valley and the deceleration valley

was based on the heart rate becoming stabilized, which was defined as heart rate varying

less than ± three beats over 15 seconds. But to simplify the calculation and to avoid

programming difficulties, the algorithm used 15 data points sections (overlapping over
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one data point), out of 200 data points for the acceleration valley and 350 data points for

the deceleration valley, to test for heart rate stability.

Acceleration Valley:

The acceleration valley is the minimum stabilized heart rate value in an acceleration

phase. The acceleration valley was determined by back-calculating 200 data points from

the peak value through the acceleration phase and checking whether the heart rate

became stabilized. The algorithm for determination of the acceleration valley point is

described below.

The Algorithm for acceleration valley calculation:

1. Back calculate 200 data points from the peak values. By observation, the

acceleration valley was found to be within these 200 points.

2. Partition the values as sets of 15 points. These 15 values were overlapping over

one data point.

3. In each 15 data point set, the 15 th value (max), 1 st value (min) and 8th value

(middle) of heart rate were identified.

4. The differences, middle-max and middle-min values were calculated.

5. If both the differences were less than three, the data point (the 1 st data point from

the 15 values set) was picked as the acceleration valley. One more criterion for

acceleration valley determination was that the minimum value for heart rate

should be less than 100.

The Mathematica program segment that calculated the acceleration valley follows.



Table 3.2 shows the cycle numbers, the position (index) and values of

acceleration valleys for subject Si for a specific cycle session.

Table 3.2 Cycle numbers, acceleration valley position and its values of subject Si

Cycle	 Acceleration valley	 Acceleration valley -
Number	 index	 Minimum value in

beats/min 
1	 185 	 65 
2	 391	 76

3 	 662 	 77 
4 	 1008 	 94 
5	 1343	 83



36

Deceleration Valley:

The deceleration valley is the minimum stabilized heart rate value (varying less than ±

three beats over 15 seconds) in the recovery phase. The deceleration valley was

determined by forward-calculating 350 data points from the peak value through the

deceleration phase and checking whether the heart rate became stabilized. The algorithm

for determination of the deceleration valley point is described below.

Algorithm for deceleration valley calculation:

1. Forward calculate 350 data points after each peak value.

2. Partition the values as sets of 15 data points.

3. In each 15 data point set, the 1 st value (maxi), the 15 th value (mini), the 8 th value

(middle), the 4 th value (max2) and the 12 th value (min2) of heart rate were

identified. (the 4th and 12 th values were calculated for more accurate deceleration

valley calculation as the heart values during deceleration were found to be less

fluctuating than heart rate values during acceleration)

4. The differences, middle-maxl , middle-minl, middle-max2, and middle-min2

values were calculated.

5. If all the differences were less than three, the point was picked as the valley. One

more criterion for deceleration valley heart rate determination was that it should

be less than 100.

The Mathematica program segment that calculates the deceleration valley is written

below.

(**** Deceleration valley calculation******)

throwvalue2=Table[0, { Length[peakvalu] } ];
fvalcalc2[j_] :=
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(valla=Take[origcyclel , {peakvalu[[j ,2]],peakvalu[[j,2]]+3 50 1 ];
va12a=Tab le[0, {Length[vall a] } ] ;
Do[val2a[[i]]=vall a[[i,2]], {i,l,Length[vall a] } ] ;
val 1 5 a=Partition[val2a,1 5,1];
meanvala=Table[0, {Length[vall 5a] } ] ;
Do[meanvala[ [i] ]=val 1 5a[[i,8]], i, 1 ,Length[vall 5a] } ];
maxvala=Table[0, {Length[vall 5a] } ] ;
Do[maxvala[[i]]=vall 5a[[i,1 ]], 0,1,Length[va1 1 Sall ];
nextmaxa=Table[0, { Length [val 1 5 a] ];
Do[nextmaxa[[i] ]=vall 5a[[i,4]], {i,1 ,Length[val 1 5a] } ];
minvala=Table[0, {Length[vall 5a] } ];
Do[minvala[[i]]=val 1 5a[[i,1 5 ]], {i,1,Length[val15a]}];
nextmina=Table[0, {Length[vall 5a] } ];
Do[nextmina[ [i] ]=val 1 5a[[i,12]], li,1 ,Length[val 1 5a] 1 ];
valdiffla=Table[0, Length[vall 5a] 1 ] ;
Do[valdiff1a[[i]]=Abs[(meanvala[[i]]-maxvala[[i]])], {i, 1 ,Length[val 1 5 a] } ] ;
valdiff2a=Table[0, (Length[vall 5a] } ] ;
Do[valdiff2a[[i] ]=Abs[(meanvala[[i]]-minvala[[i]])], 0,1,Length[vall 5a] ];
valdiff3a=Table[0, Length[vall 5 a] 1 ] ;
Do[valdiff3a[N]=Abs[(meanvala[[i] ]-nextmaxa[[i]])], fi,1,Length[vall 5a] 1 ];
valdiff4a=Table[0, Length[vall 5a] 1 ];
Do[valdiff4a[[i]]=Abs[(meanvala[[i]]-nextmina[[i]])], 1 ,Length[val 1 5 a] 1 ] ;
Do[throwvalue2[[j ]]=Catch[Do[i;If[(valdiffla[[i]]<3)&& (valdiff2a[[i]]
<3)&&(minvala[[i]]<100),Throw[i]], i,1, Length[val 1 5a] } ]]] ;

);
Do [fvalcalc2 [j ], {j,1 ,Length[peakvalu] } ];
Print["Throwvalue = ",throwvalue2];
valleys2=Table[0, {Length [peakvalu] } ];
Do [Ifithrowvalue2[ [i]]<1 ,valleys2[[i]]=valleyerror,
valleys2[[i]]=throwvalue2[[i]]+peakvalu[[i,2]]], i,1 ,Length[p eakvalu] 1 ]
Print["Deceleration Valleys = ",valleys2];
dcclnvalley=Table[0, i,Length[p eakvalu] 1 , {j,2} ];
Do[dcclnvalley[[i,2]]=valleys2[[i]], { i, 1 ,Length[peakvalu] } ] ;
Do[dcclnvalley[[i, 1 ]]=origcycle 1 [[valleys2[[i]],2]], {i, 1 ,Length[peakvalu] } ;
Print["Deceleration Valleys = ",dcclnvalley];

Table 3.3 shows the cycle numbers, the position (index) and values of the

deceleration valleys of subject S1 for a specific session.
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Table 3.3 Cycle numbers, deceleration valley position and its values for subject S1

Cycle
Number

Deceleration valley
index

Deceleration valley -
Minimum value in

beats/min
1 332 96

2 568 89

3 892 99

4 1182 99

5 1524 100

3.3.1 Acceleration and Deceleration Regions

The acceleration region comprises the region from the acceleration valley point to the

peak value point. The deceleration region comprises the region from the peak value point

to the deceleration valley point. Figure 3.2 shows a sketch of the acceleration and

deceleration regions with peak value, acceleration valley, and deceleration valley.
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Figure 3.2 Sketch of acceleration and deceleration regions with peak value and valleys.

In this study the acceleration and deceleration regions were analyzed separately.

For analysis purposes, both the acceleration region and the deceleration region were

divided into three sections with equal number of points. The idea was to fit the three

different regions with mathematical curves, to generate a single parameter for each fit and

to find out the mean square error for the each fit for quantitative analysis. The total

number of points from valley to peak value was determined and it was divided by three to

get three equal segments for both acceleration and deceleration regions. If the number of

points in a segment was found to be a non-integer value it was rounded upward. The first

segment, the initial portion, was fitted with an exponential curve, the second segment, the

middle portion, was fitted with a straight line and the third segment, the final portion, was

fitted with another exponential curve. The reason behind the selection of the exponential
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curve and straight line was that they both yielded a single parameter, an exponent for an

exponential curve and a slope for a straight line.

There are two assumptions based on which this division of acceleration and

deceleration regions into three different portions was performed and the corresponding

fitting was accomplished. First, by observation, the three sections in each acceleration

and deceleration region were found to follow different curves. For the acceleration region

the first section was following an exponential curve (y = Cle at), the second section was

following a straight line (y = bt + d) and the third section was following another

exponential curve (y = 1- C2e -gt). For the deceleration region the first section was

following an exponential curve (y = 1- C 3 ellt), the second section was following a straight

line (y = mt + n), and the third section was following another exponential curve

(y = C4e-kt). This assumption was found to be true when the mean square error values

obtained for individual curve fitting yielded values close to zero. Second was a

physiological observation. During the first section of the acceleration region the heart rate

was found to be accelerating, during the second section, this acceleration was found to be

zero and during the final section this acceleration was found to be decreasing. Similarly

during the first section of the deceleration region the heart rate was found to be

decelerating, during the second section the deceleration was found to be zero and during

the final section the deceleration was found to be decreasing.

3.3.2 Acceleration Parameters

The acceleration region comprises the region from the acceleration valley point to the

peak value point. For analysis purposes, based on the above-mentioned assumptions the
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acceleration region was divided into three sections. Figure 3.3 shows the sketch of the

three portions of an acceleration phase.

Fig 3.3 Sketch of three acceleration regions.

Acceleration 1:

The first section of the acceleration region, the initial rising phase (acceleration 1), was

fitted with an exponential curve (y = C l eat) using the Mathematica function 'Fit' and the

exponent of the exponential curve was extracted. The function 'Fit' finds a least-squares

fit to the list of data. The important parameters extracted from the acceleration 1 region

were the exponent (a) and the mean square error. From the exponent value the time

constant (1/a) was calculated. In order to curve fit the acceleration 1 region, the

logarithmic values of the exponential (Cle at) were taken to make it linear. While doing

the curve fitting there were some outliers, which caused the mean square error to be a
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larger value than expected, even though the curve was found to be fitting properly. These

outliers were removed using the following algorithm.

1. The data was fitted with appropriate curves (exponential curve for acceleration 1

and acceleration 3 regions and straight line for acceleration 2 region).

2. The errors between the original data point values and the curve fit values were

calculated.

3. The standard deviation of the errors was calculated.

4. The data points occurring outside the standard deviation of the errors were

removed.

The major reason for the outliers was the movement artifacts caused during exercise.

The data points outside 68% of the mean of errors between the data points and the curve

fit values were recognized as artifacts. Hence one standard deviation of errors was used

for outlier removal. After removing the outliers, the curve was 'refitted' with a new

exponential. From this new curve fit the exponent and the mean square errors were

calculated. The Mathematica program segment that did the exponential curve fitting at

the first part of the acceleration region, outlier removal and curve 'refitting' is written

below.

(**** Finding the parameters- exponents and mean square errors- for the first section of
acceleration (acc1n1). It is fitting with an exponential ****)

coeff1=Table[0, Length[peakvalu]1];
mser1=Table [0, { Length [peakvalu]l ] ;
facclnl[j]:=
(acchil= Take [origcyclel, facclnvalley[ [j ,2]], acclnvalley[ [j,2]]+acclnperthird[ [j] ] 1 ] ;
SD6=Table[0, Length[acclnl]1];
Do [ SD6[[n]]=accln 1 [[n,2]], {n,1,Length[accln 1 ] }];
XYs=Transpose[ {acclnl [ [A11,1]],Log[acclnl [ [A11,2]]]1 ];
gl [X_]=Fit[XYs, { 1,X},X];
c1=CoefficientList[gl [X], {X} ];
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gl 1 [X_]=Exp[cl [[ 1 ]]]*Exp[cl [[2]]*X];
errors 1 =Table[0, (Length[accln 1 ] } ];
Do[errors 1 [[i]]=g 1 1 [i+acclnl [[ 1,1 ]1-1 ]-acclnl [[i,2]], {i, 1 ,Length[acclnl ] } ];
SD5=errors 1 ;
Do[SD4 = 1 /Length[SD5 ])*(Sum[ SD5 [[n]], {n, 1, Length[SD5] } ])];
(**mean of errors**)
SD3=Table[0, {Length[SD5] } ];
Do[SD3[[n]] = (SD5[[n]] - SD4)^2, { n, 1, Length[SD5] } ];
Do[SD2 = (1 /Length[SD5])*(Sum[SD3[[n]], {n, 1, Length[SD5]} ])];
Do[SD 1 =Sqrt[SD2]];
(* *standard deviation of errors * *)
SD={};
Do[Iff(SD5[[n]]<(SD4+SD 1 ) )&&(SD5[[n]]>(SD4-SD 1 )),SD=Append[SD,n]], {n, 1,
Length[SD5] } ];
acln 1 1 =Table[0, {Length[SD] 1 ];
Do[aclnl 1 [[p]]=SD6[[SD[[p]]]], { p, 1 ,Length[SD] } ];
aclnl =Table[0, {Length[aclnl 1 ] } , {n,2} 1,
Do[aclnl [[i,1 ]]=SD[[i]], {i, 1 ,Length[aclnl 1 ]} ];
Do[aclnl [[i,2]]=aclnl 1 [[i]], {i, 1 ,Length[aclnl 1 ] } ];
XYsl =Transpose[ {aclnl [[A11,1 ]],Log[aclnl [[A11,2]]] } ];
g 1 a[X]=Fit[XYs 1, { 1 ,X} ,X];
c 1 a=CoefficientList[g 1 a[X], {X} ];
gl 1 a[X_]=Exp[cl a[[ 1 ]]]*Exp[cla[[2]]*X];
errors 1 a=Table[0, { Length[aclnl ] } ];
Do[errors 1 a[[i]]=g 1 1 a[SD[[i]]]-aclnl [[i,2]], { i,1 ,Length[aclnl ] } ];
mse 1 =Table[0, { Length[acln 1 ] } ];
Do[msel [[i]] = (errors 1 a[[i]])^2, {i, 1, Length[acln 1 ] } ];
Do[mserl [[j]] = (1 /Length[acln 1 ])*(Sum[msel [[i]], { i, 1, Length[acln 1 ] } ])];
Do[coeffl [W]=cla[[2]]]
);
(*facclnl [ 1 ];
Show[ListPlot[accln 1 ,PlotStyle-> {PointS ize[0.02],Hue [0.6] 1 ],
Plot[gl 1 [X], {X,First[accln 1 [[ 1 ]]],First[Last[accln 1 ]] 1 ,
PlotStyle-> {Hue[0] } ],AxesLabel-> ("Index","Heart Rate" } ];
Show[ListPlot[acln 1 ,PlotStyle-> {PointSize[0.02],Hue [0.6] 1 ],
Plot[gl 1 a[X], {X,First[aclnl [[ 1 ] ] ],First[Last[aclnl ]] 1 ,
PlotStyle {Hue[0] } ],AxesLabel-> {"Index","Heart Rate" } ]; *)
Do[faccln 1 [j ], {j, 1 ,Length[peakvalu] } ];
Print[Toefficients 1 [Exponent]= ",coeffl]
Print["Mean square error = " , mserl ];

The parameters extracted from the first acceleration region (acceleration 1) were

the exponent and mean square error.
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Exponent: This is the exponent of the exponential fit. The time constant was calculated

by inverting the exponent value.

Mean Square Error (MSE): This is the mean of the square of the differences of the

original data points and the curve fit values. Mean square error shows the variation of the

original data from the exponential curve. The lower the mean square error value, the

better the fit to the curve.

Figure 3.4 shows an exponential fit to the first section of the acceleration region

(acceleration 1) for subject S2 for 1 st cycle in a specific cycles session.

Figure 3.4 An exponential fit to acceleration 1 for 1 st cycle in a specific cycles session
for subject S2.

Table 3.4 shows the time constant and mean square error for the first section of

acceleration of subject Si for a specific cycle session.
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Table 3.4 Time constant and mean square error for acceleration 1 of subject Si

Cycle
Number

Time
constant

Mean Square Error

1 89.928 0.16
2 148.809 0.64
3 9.293 6.40
4 129.870 1.34
5 145.773 0.52

Outlier Removal:

Figure 3.5 shows a typical situation where some of the outliers were removed and refitted

with a new curve. Figure 3.5(a) shows the curve fitting of the acceleration 1 region with 5

data points as outliers (4 points below the curve and 1 point above the curve). The

standard deviation of the errors between the curve fit values and the original data point

values were calculated. The data points outside this standard deviation of the error were

considered as outliers and they were removed. The resultant curve was 'refitted' with a

new exponential. Figure 3.5 (b) shows the curve fitting of acceleration 1 region after

outlier removal.

Figure 3.5 A typical outlier removal for acceleration 1 region. (a) Acceleration 1 region
with some outliers (b) Acceleration 1 region after outlier removal.
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Acceleration 2:

The second section of the acceleration region, the zero accelerating region (acceleration

2), was fitted with a straight line (y = bt + d) using the Mathematica function 'Fit' and the

slope of the straight line was extracted. The function 'Fit' finds a least-squares fit to the

list of data. The important parameters extracted from the second acceleration region were

the slope (b) and the mean square error. While doing the curve fitting there were some

outliers because of which the mean square error was found to be a larger value than

expected, even though the data was found to be fitting the straight line properly. These

outliers were removed using the following algorithm.

1. The data was fitted with a straight line for the acceleration 2 region.

2. The errors between the original data point values and the curve fit values were

calculated.

3. The standard deviation of the errors was calculated.

4. The data points occurring outside the standard deviation of the errors were

removed.

After removing the outliers, the curve was 'refitted' with a new exponential curve.

From this new curve fit the slope and the mean square error were calculated. The

Mathematica program segment that did the straight line fitting at the second section of

the acceleration region, outlier removal and curve 'refitting' is written below.

(****Finding the parameters -slopes and mean square errors- for the middle section
(accln2) of acceleration region. It is fitting with a straight line****)

coeff2 = Table [0, Length[peakvalu] ];
mser2 = Tab le [0, { Length[peakvalu] } ];
facc1n2[L] :=
(accln2 = Take[origcycle 1 , {(acclnvalley[[j,2]]+
acclnperthird[[j]]),(acclnvalley[[j,2]]+(2*acclnperthird[W]))11;



ASD6 = Table[0, { Length [acc1n2] ];
Do[ASD6[[n]] = accln2[[n,2]], {n,1,Length[acc1n2]} ];
g2[X_] = Fit[acc1n2, {1,X},X];
c2 = CoefficientList[g2 [X], {X } ];
errors2=Table[0, {Length[accln2] ] ;
Do[errors2[[i]]=g2k-Facc1n2[[1,1]1-11-accln2[[i,21], {i,1,Length[acc1n2] ];
ASD5=errors2;
Do[ASD4 = (1/Length[ASD5])*(Sum[ASD5[[n]], {n, 1, Length[ASD5]} ])];
(**mean of errors**)
ASD3=Table[0, {Length[ASD5]}];
Do[ASD3[[n]] = (ASD5[[n]] - ASD4)^2, {n, 1, Length[ASD5] } ];
Do[ASD2 = (1/Length[ASD5])*(Sum[ASD3[[n]], {n, 1, Length[ASD5]}]];
Do[ASD1=Sqrt[ASD2]] ;
(*standard deviation of errors*)
ASD={};
Do [IfRASD5 [[n]]<(ASD4-FASD1) )&&(ASD5[[n]]>(ASD4-
ASD1)),ASD=Append[ASD,n]], fn,1,Length[ASD5] ];
acln22=Table[0, fLength[ASD]1 ];
Do[acln22[[p]]=ASD6HASD[[p]]]], {p,1,Length[ASD] } 1,
acln2=Table[0, {Length[acln22] }, {n,2}];
Do[acln2[[i,1 ]]=ASD[[i]], i,1,Length[acln22]} 1,
Do[acln2[[i,2]]=acln22[[i]], {i,1,Length[acln22]} ];
g2a[X]=Fit[acln2, {1,X} ,X];
c2a=CoefficientList[g2a[X], {X} ];
errors2a=Table[0, Length[acln2] } ];
Do[errors2a[N]=g2a[ASD[[i]]]-acln2[[i,21], {i,1,Length[aclii2]} ] ;
mse2=Table[0, {Length[acln2]} ];
Do[mse2[[i]] = (errors2[[i]])^2, {i, 1, Length[acln2}];
Do[mser2[j]] =
(1/Length[acln2)*(Sum[mse2[i]],	 1, Length [acln2 ])];
Do[coeff2[j]]=c2a[2]]]);
(*faccln2[1];
Show[ListPlot[accln2,PlotStyle-> {Pointsize[0.2],Hue [0.6] ],
Plot[g2[X], {X,First[acc1n2[[1]]],First[Last[accln2]] },
PlotStyle-> {Hue[0] 1,AxesLabel-> {"Index","Heart Rate" } ,
TextStyle-> FontFamily->"Helvetica",FontSize->13,
FontSlant->"Italic",FontColor->RGBColor[0,0,0] }1;
Show[ListPlot[acln2,PlotStyle-> {PointS ize[0.02],Hue [0.6] ],
Plot[g2a[X], {X,First[acln2H1 th,First[Last[acln2]]},
PlotStyle-> {Hue[0] 1,AxesLabel-> {"Index","Heart Rate" } , TextStyle->
{FontFamily-"Helvetica",FontSize->13,
FontSlant->"Italic",FontColor->RGBColor[0,0,0] ] ;
Print["Coefficients2 [Slope]= ",coeff2];
Print["Mean square error = " , mser2];*)
Do [facc1n2 [j], {j,l,Length[peakvalu] } ];
Print["Coefficients2 [Slope]= ",coeff2];

47
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Print["Mean square error = " , mser2],

The parameters extracted from the second acceleration region (acceleration 2)

were the slope and mean square error.

Slope: This is the slope of the straight line fit.

Mean Square Error (MSE): This shows the variation of the original data from the

straight-line fit. The lower the mean square error value, the better the fit to the curve.

Figure 3.6 shows a straight line fit for the second section of the acceleration region

(acceleration 2) for subject S2 for 2 nd cycle in a specific cycles session.

Figure 3.6 A straight line fit to acceleration 2 for 2 nd cycle in a specific cycles session
for subject S2.

Table 3.5 shows the slope and mean square error for the second section of

acceleration of subject Si for a specific cycle session.
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Table 3.5 Slope and mean square error for acceleration 2 of subject Si

Cycle
Number

Slope Mean Square Error

1 0.363 0.37
2 0.366 0.48
3 0.594 0.66
4 0.989 0.39
5 0.806 0.13
6 0.848 0.23

Acceleration 3:

The third section of the acceleration, the decreasing acceleration phase (acceleration 3)

was found to follow another exponential (y = 1- C2e -gt). The algorithm did the curve

fitting of the first portion of acceleration (acceleration 1) by taking the logarithmic values

of the exponential (Cie -at) to make it linear. In the case of the third section of acceleration

(acceleration 3), since the curve follows the exponential y = 1-C2e -gt, there is a problem in

taking the logarithm. This difficulty was overcome by adopting the following method to

change the original curve that was following the exponential curve y = 1- C 2e-gt to

another curve that was following an exponential curve C 5e-Pt .

1. Identify the final data point value (according to the index value) of the original

curve, y = 1- C2e -gt

2. Each data point in that curve was subtracted from the final data point value.

3. The resulting data points produced a curve that followed an exponential curve

y' = C5e-Pt .

The curve fitting of the third section of acceleration (acceleration 3) was done by taking

the logarithmic values of the exponential (C 5 e-Pt) to make it linear. The important



50

parameters extracted from the third section of acceleration were the exponent (p) of the

exponential fit and the mean square error. The time constant (1/p) was calculated by

inverting the exponent value. As in the case of the acceleration 1 and acceleration 2

regions there were some outliers, which caused the mean square error value to be larger

than expected. These outliers were removed using the following algorithm.

1. The data was fitted with an exponential curve for the acceleration 3 region.

2. The errors between the original data point values and the curve fit values were

calculated.

3. The standard deviation of the errors was calculated.

4. The data points occurring outside the standard deviation of the errors were

removed.

After removing the outliers, the curve was 'refitted' with a new exponential curve.

From this new curve fit the exponent and the mean square error were calculated. The

Mathematica program segment that did the exponential curve fitting at the third section

of the acceleration region, outlier removal and curve 'refitting' is written below.

(****Finding the exponent and mean square error for the last part (accln3) of
acceleration. The shape of the curve inverted for calculation purpose. The curve is fitting
with an exponential ****)
coeff3=Table [0, {Length[peakvalu] } ];
mser3=Table [0, { Length [peakvalu] } ];
facc1n3[j_]:=
(acc1n3=Take[ origcycle 1 , acclnvalley[[j,2]]+(2*acclnperthird[M,peakvalu[[j ,2]] 1 ] ;
acc1n3rev=Table[0, {Length[accln3] 1 ];
Do [acc1n3rev[ [i] ]=Last[Last[acc1n3]]-acc1n3 [[i,2]], i, 1 ,Length[acc1n3 ] 1];
q1={};
Do [Ifjaccln3 rev[ [i] ]>0,ql =Append [ql ,i]], { i, 1 ,Length[acc1n3rev]}];
acln3=Table[0, Length[ql ] 1, (n,2 } ] ;
Do[acln3[[0]]=q1[[i]],{i,1,Length[q1]}];
Do[acln3 [[i,2]]=acc1n3rev[[q 1 [[i]]]], i, 1 ,Length [q 1 ] I];
ABs=Transpose[ acln3 [ [A11,1 ]],Log[acln3 [[A11,2]]] 1];
g3 [X_]=Fit[ABs, { 1 ,X} ,X];
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c3=CoefficientList[g3 [X], {X} ];
g33[X]=Exp[c3[[1]]]*Exp[c3[[2]]*X];
errors3=Table[0, {Length[acln3] } , {n,2} ];
Do[errors3 [[i,1]]=acln3 [[i,11], { i,l,Length[acln3] }1;
Do[errors3[[i,2]]=g33[i+acln3[[1,1]]-1]-acln3[ [i,2]], {i,l,Length[acln3]}];
AASD6=Table[0, {Length[acln3]} ];
Do[AASD6[[p]]=acln3[[p,2]], fp,1,Length[acln3] 1];
AASD5=errors3[[A11,2]];
Do[AASD4 = (1/Length[AASD5])*(Sum[AASD5[[n]], {n, 1, Length[AASD5]}]];
AASD3=Table[0, {Length[AASD5] ];
[AASD3[[n]] =(AASD5[[n]] - AASD4)^2, {n, 1,Length[AASD5]}];
Do[AASD2 = (1/Length[AASD5])*(Sum[AASD3[[n]], {n, 1, Length[AASD5]}])];
Do[AASD1=Sqrt[AASD2]];
AASD= ;
Do[If[(AASD5[[n]]<(AASD4+AASD1) )&&(AASD5[[n]]>(AASD4-AASD1)),
AASD=Append[AASD,n]], {n, 1,Length[AASD5] ];
acln33=Table[0, {Length[AASD] } , fn,21];
Do[acln33[[i,1]]=AASD[[i]], fi,l,Length[AASD]}];
Do[acln33[[i,2]]=acln3HAASD[[i]],2]], {i,l,Length[AASD]}];
ABs1=Transpose[ facln33[[A11,1]],Log[acln33[[A11,2]]]l];
g3a[X]=Fit[ABs 1 , {1,X} ,X];
c3a=CoefficientList[g3a[X], {X} ];
g33a[X]=Exp[c3a[[1]]]*Exp[c3a[[2]]*X];
errors3a=Table[0, Length[acln33] ];
Do[errors3a[N]=g33a[i+acln33[[1,1]]-1]-acln33[[i,2]], {i,1,Length[acln33]}];
mse3=Table[0, {Length[acln33]} ];
Do[mse3[[i]] = (errors3a[[i]])^2, {i, 1, Length[acln33]}],
Do[mser3[[j]] = (1/Length[acln33])*(Sum[mse3[[i]], {i, 1, Length[acln33]11)];
Do[coeff3[[j]]=c3a[[2]]];
);
(*facc1n3[1];
Show[ListPlot[acln3,PlotStyle-> {PointSize[0.02],Hue[0.6]) ],
Plot[g33 [X], {X,First[acln3[[1]]],First[Last[acln3]] ],AxesLabel-> {"X","Y" }];
Show[ListPlot[acln33,PlotStyle -> {PointSize[0.02],Hue[0.6]}],
Plot[g33a[X], {X,First[acln33[[1]]],First[Last[acln33]]} ],AxesLabel -> {"X","Y"} ]; *)
Do[facc1n3[j],{j,1,Length[peakvalu]}];
Print["Coefficients3 [Exponent] = ",coeff3];
Print["Mean square error = ",mser3];

The parameters extracted from the third acceleration region (acceleration 3) were

the exponent and mean square error.
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Exponent: This is the exponent of the exponential curve fit. The time constant was

calculated from the exponent value.

Mean Square Error (MSE): This shows the variation of the original data from the

exponential fit. The lower the mean square error value, the better the fit to the curve.

Figure 3.7 shows an exponential curve fit for the third section of the acceleration region

(acceleration 3) for subject S2 for the 4th cycle in a specific cycles session.

Figure 3.7 An exponential fit to acceleration 3 for 4 th cycle in a specific cycles session
for subject S2.

Table 3.6 shows the time constant and mean square error for the third portion of

acceleration of subject Si for a specific cycle session.
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Table 3.6 Time constant and mean square error for acceleration 3 of subject Si

Cycle
Number

Time
constant

Mean Square Error

1 16.393 0.75
2 77.520 3.67
3 9.174 2.34
4 13.889 0.93
5 14.492 1.80
6 12.658 1.34

3.3.3 Deceleration Parameters

The deceleration region comprises the region from the peak value point to the

deceleration valley point. For analysis purposes, the deceleration region also was divided

into three sections just like the acceleration region. The first section, deceleration 1 was

fit with an exponential, deceleration 2 was fit with a straight line and deceleration 3 was

fit with another exponential. Unlike the acceleration regions, the deceleration regions

showed fewer artifacts because the movement artifact has been drastically reduced in

these regions since the subjects were sitting quietly during deceleration. Hence the outlier

removal part was not included for the deceleration analysis in the program.

Figure 3.8 shows the sketch of the three portions of a deceleration phase.
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Figure 3.8 Sketch of three deceleration regions.

Deceleration 1:

The first section of the deceleration region, the beginning of the recovery phase

(deceleration 1), was fit with an exponential curve y = 1-C 3 eht. The algorithm did the

curve fitting of first portion of the acceleration (acceleration 1) by taking the logarithmic

values of the exponential (C l eat) to make it linear. Since the curve to the first portion of

the deceleration follows the exponential y = 1-C 3 eht, there is a difficulty to take the

logarithm. This difficulty was overcome by adopting the following method to change the

original curve that was following the exponential curve y = 1-C 3 eht to another curve that

was following an exponential curve C6eqt.

1. Identify the first data point value (according to the index number) of the original

curve, y = 1- C 3 eht .

2. Each data point in that curve was subtracted from the first data point value.

3. The resulting data points produced a curve that followed an exponential curve
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y' = C6e.

The curve fitting of the first section of deceleration (deceleration 1) was done by

taking the logarithmic values of the exponential (C6e) to make it linear. The new data

set was fitted with an exponential curve using the Mathematica function 'Fit' and the

exponent of the exponential curve was extracted. The parameters extracted from the

deceleration 1 region were the exponent (q) of the exponential fit and the mean square

error. The time constant (1/q) was calculated by inverting the exponent. Since the

deceleration regions showed fewer artifacts compared to the acceleration regions the

outlier removal part was not included for the deceleration analysis in the program.

The Mathematica program segment that did the exponential curve fitting and

calculated the exponent and mean square error at the first part of the deceleration region

is written below.

(****Finding the parameters (exponential and mean square error) for the first section
(dclnl) of deceleration region. It is fitting with an exponential****)
dcoeffl =Table [0, Length[peakvalu] 1 ];
dmser 1=Table [0, Length[p eakvalu] 1 ];
fdcclnl [j] :=
(dcclnl =Take [origcycle 1 , {p eakvalu [[j ,2]],peakvalu[[j ,2]]+dcclnperthird[ [j ]] 1 ] ;
dcclnl rev=Table[0, {Length[dcc1n11} ];
Do[dccln 1 rev[[i]]=Last[First[dccln 1 ] ]-dccln 1 [[i,2]], fi,l,Length[dcclnl ] 11;
q2=0;
Do[If[dccln 1 rev[ [i]]>0,q2=Append[q2,dcclnl rev[[i]]]], i, 1 , Length[dccln 1 rev] 1] ;
dclnl =Table[0,{Length[q2] , {n,2} ];
Do[dclnl [[i,1 ]]=i, { 1,Length[q2] } ] ;
Do[dclnl [[i,2]]=q2[[i]], i, 1 ,Length[q2] 1 ] ;
XYsd=Transpose[ {dclnl [[All, 1 ]],Log[dcln 1 [[A11,2]]]1];
kl [X]=Fit[XYsd, {1 ,X} ,X];
dc 1 =CoefficientLi st[k 1 [X], {X}];
Do[dcoeffl [W]=dc 1 [[2]]];
k11 [X]=Exp[dcl [[1]]]*Exp[dcl [[2]]*X];
derrorsl =Table[0, {Length [dclnl ] } ] ;
Do[derrorsl [[i]]=Abs[k 1 1 [i+dclnl [[1,1 ]]-1 ]-dcln 1 [[i,2]]], {i,1, Length[dcln 1 ] 1 ];
dmse 1 =Tab le[0, Length[dcln 1 ]} ] ;
Do[dmsel [[i]]=derrors1 [[i]] *derrors 1 [[i]], {i,1,Length[dclnl ]} ];
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Do[dmserl [[j]] = (1 /Length[dclnl ])*(Sum[dmsel [[i]], {i, 1, Length[dclnl ] } ])];
);
(*fdcclnl [3];
Show[ListPlot[dcln 1 ,PlotStyle-> PointSize[0.02],Hue[0.6]} ],
Plot[kl 1 [X], {X,First[dcln 1 [ [1 ]]] ,First[Last[dclnl ]] },
PlotStyle -> {Hue[0] ],AxesLabel -> "X","Y" ] ;
Print["Mean square error =", dmserl];
Print["coefficient 1 =", dcoeffl ];*)
Do[fdcclnl [j], fj,1 ,Length[peakvalu] ];
Print["Coefficientsl [Exponent]= ",dcoeffl]
Print["Mean square error = ", dmserl];

The parameters extracted from the first deceleration region (deceleration 1) were

the exponent and mean square error.

Exponent: This is the exponent of the exponential curve fit. The time constant was

calculated from the exponent value.

Mean Square Error (MSE): This shows the variation of the original data from the

exponential fit. The lower the mean square error value, the better the fit to the curve.

Figure 3.9 shows an exponential curve fit for the deceleration 1 region for subject S2 for

2nd cycle in a specific cycles session.
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Figure 3.9 An exponential fit to deceleration 1 for 2 nd cycle in a specific cycles session
for subject S2.

Table 3.7 shows the time constant and mean square error for the first portion of

the deceleration for subject Si for a specific cycle session.

Table 3.7 Time constant and mean square error for deceleration 1 of subject Si

Cycle
Number

Time
constant

Mean Square Error

1 8.065 8.17
2 5.988 6.44
3 13.698 7.44
4 15.625 3.21
5 23.255 6.62
6 14.925 11.54

Deceleration 2:

The middle section of the deceleration region (deceleration 2) was fit with a straight line

(y = mt + n) using the Mathematica function 'Fit' and the slope of the straight line fit was
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extracted. The parameters extracted from the deceleration 2 region were the slope (m) of

the straight line fit and the mean square error. Since the deceleration regions showed

fewer artifacts compared to the acceleration regions, the outlier removal part was not

included for the deceleration analysis in the program.

The Mathematica program segment that did the straight-line fitting and calculated

the slope and mean square error at the second section of the deceleration region is written

below.

(****Finding the parameters -slopes and mean square error- for the middle section
(dccln2) of deceleration. It is fitting with a straight line****)

dcoeff2=Table[0, {Length[peakvalu] } ];
dmser2=Table[0, Length[peakvalu] } ] ;
fdcc1n2[j_]:=
(dcc1n2=
Take[origcyclel,{(peakvalu[[,2]]+
dcclnperthird[[j]]),(peakvalu[[j,2]]+(2*dcclnperthird[W]))}];
k2[X J=Fit[dcc1n2, { 1 ,X} ,X];
dc2=CoefficientList[k2[X], {X }];
Do[dcoeff2[W]=dc2[[2]]];
derrors2=Table[0, { Length [dcc1n2] }] ;
Do[derrors2[ [i]]=Abs[k2[i+dcc1n2[ [1 ,1 ]]-1 ]-dccln2[[i,2]]], i,1 ,Length[dcc1n2] 1 ];
dmse2=Table[0,{Length[dcc1n2]}];
Do[dmse2[[i]]=derrors2[[i]]*derrors2[[i]], fi,1 ,Length[dccln2] 1 ];
Do[dmser2[[j]] =(1/Length[dcc1n2])*(Sum[dmse2[[i]], {i, 1, Length[dccln2] } 1)];
);
(*fdccln2[3];
Show[ListPlot[dccln2,PlotStyle -> {PointSize[0.02],Hue[0.6] 1 ],
Plot[k2[X], {X,First[dcc1n2[[1 ]]],First[Last[dcc1n2]] 1 ,
PlotStyle -> {Hue[0]}],AxesLabel -> {"Index","Heart Rate" } ,
TextStyle -> FontFamily ->"Helvetica",FontSize->1 3,
FontSlant ->"Italic"1];
dmser2*)
Do[fdcc1n2[j ], fj,1 ,Length[peakvalu] 1];
Print["Coefficients2 [Slope]= ",dcoeff2];
Print["Mean square error = ", dmser2];

The parameters extracted from the second deceleration region (deceleration 2)

were the slope and the mean square error.
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Slope: This is the slope of the straight-line fit.

Mean Square Error (MSE): This shows the variation of the original data from the

straight-line fit. The lower the mean square error value, the better the fit to the curve.

Figure 3.10 shows a straight-line fit to the second section of the deceleration

region for 3 rd cycle in a specific cycles session for subject S2.

Figure 3.10 A straight line fit to deceleration 2 for 3 rd cycle in a specific cycles session
for subject S2.

Table 3.8 shows the slope and the mean square error for the second portion of the

deceleration for subject S2.



60

Table 3.8 Slope and mean square error of deceleration 2 of subject S2

Cycle
Number

Slope Mean Square Error

1 -0.628 2.39
2 -0.445 0.68
3 -0.447 1.79
4 -0.594 3.89
5 -0.447 1.13
6 -0.186 4.77

Deceleration 3:

The third section of the deceleration (deceleration 3) was fit with another exponential

(y=C4e-kt) using the Mathematica function 'Fit' and the exponent of the exponential curve

was extracted. The parameters extracted from the deceleration 3 region were the

exponent (k) of the exponential fit and the mean square error. The time constant (1/k) was

calculated by inverting the exponent value. Since the deceleration regions showed fewer

artifacts compared to the acceleration regions the outlier removal part was not included

for the deceleration analysis in the program. The Mathematica program segment that did

the exponential curve fitting and calculated the exponent and mean square error at the

third section of the deceleration region is written below.

(****Finding the parameters-exponents and mean square error- for the last section
(dccln3) of deceleration. It is fitting with an exponential*****)

dcoeff3=Table[0, Length[peakvalu]1];
dmser3=Table[0, fLength[peakvalt]1];
fdceln3[ji :=
(dcc1n3=
Take[origcyclel, {peakvalu[ [j ,2]]+(2*dcclnperthird[ [j] ]), dcclnvalley[[j,2]] } ;
ABsd=Transpose[ clecln3 [ [A11,1 ] ], Log[dcc1n3 [[A11,2] ] ]1] ;
k3[X]=Fit[ABsd, {1,X},X];
dc3=CoefficientList[k3 [X], (X}];
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Do[dcoeff3[[j]]=dc3[[2]]];
k33[X J=Exp[dc3[[1]]]*Exp[dc3[[2]]*X];
derrors3=Table[0, Length[dcc1n3]}] ;
Do[derrors3[[i]]=Abs[k33[i+dcc1n3[[1,1]1-1]-dccln3[[i,2]]],{i,l,
Length[dcc1n3]}];
dmse3=Table[0, {Length[dcc1n3]} ];
Do[dmse3[[i]]=derrors3[[i]]*derrors3[[i]], {i,1,Length[dcc1n3]}];
Do[dmser3[W] = (1/Length[dcc1n3])*(Sum[dmse3[[i]], {i, 1, Length[dcc1n3]}])];
);
(*fdccln3[1];
Show[ListPlot[dcc1n3,PlotStyle->{PointSize[0.02],Hue[0.6]1],
Plot[k33[X],{X,First[dcc1n3[[1]]],First[Last[dcc1n3]]),
PlotStyle -> {Hue[0]}],AxesLabel -> {"Index","Heart Rate" } ,
TextStyle ->{FontFamily ->"Helvetica",FontSize ->13, FontSlant ->"Italic"}];
*)

Do [fdccln3 [j ], {j J,Length [peakvalu] ];
Print["Coefficients3 [Exponent] = ",dcoeff3];
Print["Mean square error = ", dmser3];

The parameters extracted from the third deceleration region (deceleration 1) were

the exponent and mean square error.

Exponent: This is the exponent of the exponential curve fit. The time constant was

calculated from the exponent value.

Mean Square Error (MSE): This shows the variation of the original data from the

exponential fit. The lower the mean square error value, the better the fit to the curve.

Figure 3.11 shows an exponential curve fit for deceleration 3 region for subject S2 for 6 th

cycle in a specific cycles session.



Figure 3.11 An exponential fit to deceleration 3 for subject S2 for 6 th cycle in a specific
cycles session.

Table 3.9 shows the time constant and the mean square error for the third section of

deceleration (deceleration 3) for subject S2 for a specific cycle session.

Table 3.9 Time constant and mean square error for deceleration 3 of subject S2

Cycle
Number

Time
constant

Mean Square Error

1 200 1.89
2 200 1.29
3 1000 4.06
4 250 1.31
5 500 4.49
6 500 1.38
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The results of all the cycles sessions for both the subjects and the discussion were

presented in the next chapter.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter discusses the results obtained in this study. The acceleration and the

deceleration regions have been identified and divided into three different regions. Each

region was fit with different curves, the acceleration 1 region was fit with an exponential

curve, the acceleration 2 region was fit with a straight line and the acceleration 3 region

was fit with another exponential curve. Similarly, the deceleration 1 region was fit with

an exponential curve, the deceleration 2 region was fit with a straight line and the

deceleration 3 region was fit with another exponential curve. The time constants for the

exponential curves and the slopes for the straight lines were extracted. The mean square

error was calculated for each fit to show the variation of the data from the fit. The time

constants for different exercise sessions were plotted and analyzed. A linear trendline was

fit on the plots and the trend of the slope was analyzed.

The data of two subjects who underwent 4 exercise sessions each were used for

the parameter extraction. The number of cycles varied from three to seven. For

comparison purposes, in order to include all 4 sessions, the first 3 cycles were used in

each session. From each cycle 12 parameters each were extracted, 6 parameters for the

acceleration and 6 parameters for the deceleration. The acceleration parameters included

the time constant for the acceleration 1 and acceleration 3 regions, the slope for the

acceleration 2 region, and their corresponding mean square errors. Similarly the

deceleration parameters included the time constant for the deceleration 1 and deceleration

63
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3 regions, the slope for the deceleration 2 region and their corresponding mean square

errors. The comparison of parameters was performed within the subjects and between the

subjects. Within the subjects the comparison was done between different sessions for

comparable cycles. The target heart rate ranges for each subject were calculated as

percentages of the peak heart rate determined form their baseline session. The target heart

rate goal for each cycle began at the low end of the range and progressively increased in a

stepwise incremental fashion to the high end of the range. Therefore the heart rate goal

for different cycles in a specific session was different. Hence the same parameters for

different cycles in the same session were not a good category for comparison as it was a

non-repeated measure. Between the subjects, comparison was performed between

comparable cycles.

The Hypothesis: Adaptation to exercise could significantly influence the cardiovascular

response to exercise. An observational study done by Goldsmith et al [5] found a

significant increase in the heart rate variability after eight weeks of a cyclic exercise

program in untrained healthy women. A study done by Hagberg et al [25] found that the

increases in oxygen uptake (V02), carbon dioxide production (VCO2), minute

ventilation (VE), and heart rate (HR) at the onset of constant load submaximal work, and

the decreases in V02, VCO2, VE, and HR in recovery were more rapid at both the same

absolute and the same relative work rates after training. These results show that the

adaptation to endurance exercise training enables an individual to adjust to the energy

requirement of constant load submaximal work more rapidly, resulting in a smaller 02

deficit. The rate of recovery was also more rapid after training, resulting in a smaller 02

debt. Based on these findings, in this research it has been hypothesized that during the
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course of cyclic exercise the body will become adapted to the exercise and there should

be an increase in value of the exponent (and hence a decrease in values for the time

constant) in the acceleration 1 region from earlier sessions to later sessions. Figure 4.1

shows the sketch of expected results for the acceleration and deceleration regions for a

cycle in different exercise sessions.

Figure 4.1 Sketch of expected results for a cycle.

After a jump start in the acceleration 1 region the body was expected to maintain

that acceleration during the acceleration 2 region. The expected results for the

acceleration 2 region were that there should be an increase in the slope value as the cycle

session progresses. For the acceleration 3 region it was expected to have a decrease in the

value of the time constant which will denote a faster increase in the heart rate in the

successive sessions. For the deceleration 1 region it was expected to have a decrease in

the time constant which will denote a faster recovery of the heart rate in the successive

sessions. For the deceleration 2 region, the slope was expected to be decreasing for the
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successive cycles and for the deceleration 3 region, it was expected to have a decrease in

the time constant value which would show a faster recovery of the heart rate in the

successive sessions.

4.2 Results — Within Subjects

This section shows the acceleration and deceleration results within-subjects.

4.2.1 Acceleration Results

Acceleration 1 Region:

Tables 4.1 and 4.2 show the comparison of the acceleration 1 parameters of 3 cycles.

Table 4.1 shows the changes in the time constant and the mean square error (MSE) of the

acceleration 1 region for subject S1 through different sessions. Parameters (time constant

and mean square error) for the first 3 cycles are shown.

Table 4.1 Acceleration 1 parameters for subject Si

Cycle 1 Cycle 2 Cycle 3
Session Time

constant
MSE Time

constant
MSE Time

constant
MSE

04042001S1 250 0.43 100.00 14.84 111.11 2.25
04042201S1 90.91 0.16 166.67 0.63 100 6.40
04042801S1 52.63 9.94 83.33 2.36 _ 83.33 2.57
04050201S1 90.91 0.49 83.33 2.77 90.91 3.08

The following figure shows the graph of the time constant of the acceleration 1

region for different sessions of subject Si for cycle 1. A trend line is fitted on the graph

and the slope is calculated and displayed.
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Fig 4.2 Graph showing a decrease in the time constant for subject Si.

There was a negative slope indicating a decrease in the time constant. A decrease

in the time constant indicates a more rapid increase in the heart rate as the cycle session

progresses. This was true only with subject S1. Table 4.2 shows the changes in time

constant of the acceleration 1 region for subject S2 through different sessions. Parameters

for first 3 cycles are shown.

Table 4.2 Acceleration 1 parameters for subject S2

Cycle 1 Cycle 2 Cycle 3
Session Time

constant
MSE Time

constant
MSE Time

constant
MSE

04042301S2 47.61 7.51 30.30 7.47 34.48 5.84
04042602S2 31.25 35.62 29.41 30.40 66.67 1.96
04051601S2 66.67 16.82 33.33 12.18 125 12.53
04051801S2 55.56 25.30 38.46 24.92 33.33 80.81

For subject S2 there was a positive slope (shown in Figure 4.3) indicating an

increase in the time constant and hence a decrease in the heart rate with progress in the

cycle session.
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Fig 4.3 Graph showing an increase in the time constant for subject S2.

Mean square error is related to the fit of heart rate data between the curve and the

original data points. During the cyclic exercise the heart rate was changing approximately

from 60 to 170 beats per minute i.e. the variation was 110 bpm. A ±3.5% of error

corresponds to a mean square value (MSE) of 14.8. A MSE of 14.8 or less could be

considered as acceptable assuming a ±3.5% error in the variation of the heart rate value.

Discussion: The reason why the time constant is of great importance is because a

decrease in magnitude of the time constant indicates the body's ability to become adapted

to the exercise. Since this trend happened with only one subject it cannot be concluded

that the hypothesis was true. However there were some possibilities by which an increase

in the time constant for subject S2 might have happened. In certain cases (for example in

session 04042602S2 for subject S2 the time constant was 31.25 and mean square error

was 35.62 (shown in Table 4.2)) showing that the data was not properly fit by the curve.

As a result the time constant did not exactly correspond to the data and the mean square

error calculated was much higher than that of the acceptable value, i. e. 14.8. All such

cases were closely investigated and it was found that those errors fall into three major



categories. The first category of error was due to missed data. During the cycles exercise

program sometimes pieces of data were missing due to the loss of connectivity between

the subject and the heart rate monitor. Figure 4.4 shows an example of a cycle session

where data were missed at the beginning of the 3 rd cycle.

Figure 4.4 Graph of cycles with some missed data in the third cycle.

When the data were lost it led to a particular region (for example acceleration 1 as

shown in the above figure) to pick up data points from the next region (acceleration 2),

which actually was not a part of that particular region. The resultant curve, in this case

acceleration 1, did not correspond to a true exponential curve and the curve fitting did not

give the expected results yielding larger values for mean square error. Fig 4.5 shows the

exponential curve fitting for acceleration 1 with some missed data (index numbers 19

through 24). The last four points picked up were actually not the part of acceleration 1.



Figure 4.5 Exponential curve fitting in the acceleration 1 region with some missed data.

The second category of error was the extended valley calculation. The

Mathematica program for valley calculation used the original data points and no

smoothing techniques were employed. The valley was determined by back calculating

200 data points from the peak value, dividing them into segments of 15 data points and

checking for the condition of heart rate stabilization. Since the valley determination

procedure strictly followed the above mentioned algorithm, it sometimes led to the

segment past the original valley (as determined by observation) and it yielded an

incorrect valley point. Figure 4.6 shows an example of curve fitting for a region

(acceleration 1) with the extended valley calculation. The resultant curve, in this case the

acceleration 1, did not correspond to a true exponential curve and the curve fitting did not

give the expected results yielding larger values for mean square error.
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Figure 4.6 Curve fitting for acceleration 1 with extended valley calculation.

The third category of error was the sharp valley. According to the protocol the

subjects were asked to rest after each cycle until the heart rate was stabilized (defined as

changing at most +/- three beats over 15 seconds). In some cases the subjects did not rest

long enough between the cycles and this led to sharp valley formation. Figure 4.7 shows

a file with sharp valleys.

Figure 4.7 Graph of cycles showing sharp valleys.

These sharp valleys also led to incorrect valley calculations and the resultant

curve did not correspond to a true exponential curve and the curve fitting did not give the

expected results yielding larger values for mean square error. The errors from the first
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category (missed data) affected any regions of acceleration or deceleration regions, but

the errors from the second category (extended valley calculation) and the third category

(sharp valley) mostly affected the first section of the acceleration regions (acceleration 1)

and the third sections of the deceleration regions (deceleration 3).

From Table 4.2 it is found that the mean square error for the acceleration 1 region

for the file 04042602S2 was 35.62 and for the file 04051801S2 was 25.30. Both these

values occurred because of the errors from the second category (extended valley

calculation). Mean square error was in the acceptable range (less than 14.8) for the

acceleration 1 region only in 75% of the time. Compared to the acceleration 2 and

acceleration 3 regions it was very less (acceleration 2 region 95.8% and acceleration 3

region 100%). This indicates that the different category errors mostly affected the

acceleration 1 region.

Acceleration 2 region:

Table 4.3 shows the changes in the slope of the acceleration 2 region for subject Si

through different sessions. Parameters for the first 3 cycles (time constant and mean

square error) are shown.

Table 4.3 Acceleration 2 parameters for subject S1

Cycle 1 Cycle 2 Cycle 3
Session Slope MSE Slope MSE Slope MSE

04042001S1 0.363 0.36 0.366 0.47 0.594 0.66
04042201S1 0.662 0.65 0.716 0.21 0.724 0.81
04042801S1 0.401 0.29 0.862 0.38 0.433 0.63
04050201S1 0.633 0.26 0.802 0.42 0.892 1.74
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The following figure shows the graph of the slope of the acceleration 2 region for

different sessions of subject Si for cycle 1. A trend line is fitted on the graph and the

slope is calculated and displayed.

Figure 4.8 Graph showing an increase in the slope for subject Si.

In the acceleration 2 region, for subject Si, in all the three cycles there was a positive

slope (for the trend line fit to the slope values) indicating a faster increase in heart rate in

successive sessions. This was true only for subject Si. For subject S2 there was a

decrease in the slope value in successive cycles (Figure 4.9). Table 4.4 shows the changes

in slope of the acceleration 2 region for subject S2 through different sessions.

Table 4.4 Acceleration 2 parameters for subject S2

Cycle 1 Cycle 2 Cycle 3
Session Slope MSE Slope MSE Slope MSE

04042301S2 1.434 2.52 0.853 0.51 1.182 1.65
04042602S2 4.004 140.13 1.247 0.39 1.420 1.04
04051601S2 1.431 2.59 0.987 0.45 0.182 1.70
04051801S2 0.908 2.22 0.767 1.10 0.802 1.99
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Figure 4.9 Graph showing a decrease in slope for subject S2.

Discussion: A positive slope indicates the body's ability to become adapted to the

exercise faster. For subject S1 there was an increase in the slope value for the

acceleration 2 region. However for subject S2 the trend line fit to the slope value shows

that there was a decrease in the slope value in successive cycles. So it cannot be

concluded that the heart rate was increasing faster with successive sessions in the

acceleration 2 region. However there were some cases for subject S2 where the data was

not exactly fitted by the straight line. The mean square error for the acceleration 2 region

for the file 04042602S2 was 140.137. This was due to the first category error (missing

data). For the acceleration 2 region 95.8% of the time the value of mean square error

were less than 14.8, the acceptable range, showing that the straight line fitted the data

properly.

Acceleration 3 region :

This is the third acceleration region and it was fit with an exponential curve. Table 4.5

shows the changes in the time constant of the acceleration 3 region for subject S1 through
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different sessions. Parameters for the first 3 cycles (time constant and mean square error)

are shown.

Table 4.5 Acceleration 3 parameters for subject Si

Cycle 1 Cycle 2 Cycle 3
Time

Constant
MSE Time

Constant
MSE Time

Constant
MSE

04042001S1 8.69 0.95 11.76 0.82 13.89 3.06
04042201S1 16.67 0.74 7.752 3.67 9.17 2.34
04042801S1 13.88 8.68 12.19 2.56 25.64 2.50
04050201S1 12.98 2.18 12.98 3.12 17.54 0.84

The following figure shows the graph of the time constant of the acceleration 3

region for different sessions of subject Si for cycle 2. A trend line is fitted on the graph

and the slope is calculated and displayed.

Figure 4.10 Graph showing an increase in the time constant for subject Si.

In the acceleration 3 region it was expected to have a decrease in the value of the

time constant which would denote a faster increase in the heart rate in successive

sessions. Unlike the expected results, for subjects S1 and S2, all the three cycles show a



76

positive slope (figure 4.10) indicating a slower increase in the heart rate in successive

sessions. So with these results, it cannot be concluded that the heart rate was increasing

faster in successive exercise sessions. For subject S2, the values of the time constants

were not consistent (Table 4.6). For the acceleration 3 region, for 100% of the data the

magnitude of mean square error was less than 14.8, the acceptable range, showing that

the exponential curve fitted the data properly.

Table 4.6 Acceleration 3 parameters for subject S2

Cycle 1 Cycle 2 Cycle 3
Session Time

Constant
MSE Time

Constant_

MSE Time
Constant

MSE

04042301S2 5.23 0.63 8.54 0.48 9.70 1.17
04042602S2 3.11 2.23 3.40 1.00 10.31 1.45
04051601S2 71.32 6.15 125 4.90 32.2 0.53
04051801S2 3.98 0.98 8.00 0.91 71.42 14.00

Discussion (Acceleration Regions): For the acceleration 1 and 2 regions the two

subjects have shown different trends (for time constants and slopes) and for the

acceleration 3 region, both subjects have shown a similar trend. The fact that the heart

rate goal for a specific cycle in different sessions was slightly different might have had an

effect on this result. Also the subject's history of physical training prior to the cycles

exercise program might have influenced the results. Since the subjects have shown

different trends in the acceleration 1 and 2 regions and an opposing trend to the expected

results in the acceleration 3 region it cannot be concluded that the hypothesis is true.

The mean square errors were less than 14.8, 75% of the time for the acceleration 1

region, 95.8% of the time for the acceleration 2 region and 100% for the acceleration 3
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region showing that the three different category errors affected the first region of

acceleration to the most.

4.2.2 Deceleration Results

Deceleration 1 Region:

The deceleration 1 region was fit with an exponential. Table 4.7 shows the changes in

time constant of the deceleration 1 region for subject S1 through different sessions.

Parameters for the first 3 cycles (time constant and mean square error) are shown.

Table 4.7 Deceleration 1 parameters for subject S1

Cycle 1 Cycle 2 Cycle 3
Time

Constant
MSE Time

Constant
MSE Time

Constant
MSE

04042001S1 8.06 8.16 6.02 6.44 11.6 7.43
04042201S1 12.98 2.89 12.05 11.6 12.5 3.09
04042801S1 13.69 1.89 11.49 8.11  12.7 5.35
04050201S1 14.29 9.81 13.16 4.15 111.11 951

The following figure shows the graph of the time constant of the deceleration 1

region for different sessions of subject S1 for cycle 2. A trend line is fitted on the graph

and slope is calculated and displayed.
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Figure 4.11 Graph showing an increase in the time constant for subject Si.

In the deceleration 1 region it was expected to have a decrease in the time

constant which will denote a faster recovery of the heart rate in the successive sessions.

Unlike the expected results in the deceleration 1 region all three cycles for subjects S1

and S2 show a positive slope (of the trend line fit) showing an increase in time constant

indicating a slower recovery of the heart rate in successive sessions. For file 04050201S1,

in the third cycle, the value of time constant was 111.11 and the mean square error was

951 indicating an incorrect fit to the data. For the deceleration 1 region, the mean square

error was within the acceptable limits (i.e. a value less than 14.8) 91.6% of the time for

subject S1 and 83.3% of the time for subject S2 indicating a proper fit of the exponential

curve to the data. For subject S2, there were some exceptional values for the time

constant. For example for file 04051601S2 the time constant was 250 for cycle 1 (mean

value 70.11) and the mean square value was 32.67 indicating an incorrect fit to the data.

This was caused by some missing data. For the same file the time constant for cycle 2 and

cycle 3 were 1000 and 1613 showing an incorrect fit to the data. The mean square error

also was high (331.36) for this file for the third cycle.
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Table 4.8 Deceleration 1 parameters for subject S2

Cycle 1 Cycle 2, Cycle 3_
Session Time

Constant
MSE Time

Constant
MSE Time

Constant
MSE

04042301S2 13.15 15.14 13.15 2.20 17.86 4.75
04042602S2 7.58 58.75 9.43 11.86 50.0 8.01
04051601S2 250 32.67 1000 25.50 1613 0.88
04051801S2 9.71 6.74 13.69 1.44 149.25 331.26

Discussion: A decrease in the values of time constants indicates a faster recovery of the

heart rate in successive sessions. However, subjects S1 and S2 have shown positive slope

for the trend line fit to the time constant data indicating a slower recovery of heart rate for

successive sessions. Hence it cannot be concluded that the hypothesis was true. For

subject S2 there were some exceptional values for the time constant, which was caused

by the different category errors.

Deceleration 2 Region:

The deceleration 2 region was fit with a straight line. Table 4.9 shows the changes in

slope of the deceleration 2 region for subject S1 through different sessions. Parameters

for the first 3 cycles (slope and mean square error) are shown.

Table 4.9 Deceleration 2 parameters for subject S1

Cycle 1 Cycle 2 Cycle 3
Slope MSE Slope MSE Slope MSE

04042001S1 -0.222 1.98 -0.355 2.71 -0.001 4.06
04042201S1 -0.157 0.17 -0.514 2.39 -0.006 3.81
04042801S1 -0.414 1.88 -0.557 2.31 -0.002 7.20
04050201S1 -0.401 0.97 -0.516 2.29 -0.004 9.35
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The following figure shows the graph of the slope of the deceleration 2 region for

different sessions of subject Si for cycle 2. A trend line is fit on the graph and the slope is

calculated and displayed.

Figure 4.12 Graph showing a decrease in the slope for subject Si.

The negative slope indicates a faster recovery of the heart rate in successive sessions.

This was true with subject S1 for all the three cycles. For subject S2 there was an increase

in slope (for the trend line fit to the slope for different exercise sessions) indicating a

slower recovery of heart rate for successive sessions (Figure 4.13). The mean square error

was within the acceptable limit for 100% of the time in the deceleration 2 region.

Table 4.10 Deceleration 2 parameters for subject S2

Cycle 1 Cycle 2 Cycle 3
Session Slope MSE Slope MSE Slope MSE

04042301S2 -0.391 3.38 -0.673 3.02 -0.006 7.21
04042602S2 -0.425 0.83 -0.655 3.66 -0.003 9.89
04051601S2 -0.326 1.75 -0.717 0.78 -0.003 10.02
04051801S2 -0.627 2.39 -0.445 0.68 -0.002 8.86
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Figure 4.13 Graph showing an increase in the slope for subject S2.

Discussion: The expected result for the deceleration 2 region was that the slope should

decrease for successive cycles. Subject Si has shown a decrease in the slope indicating a

faster recovery of heart rate for successive exercise sessions and subject S2 has shown an

increase in slope indicating a slower recovery of heart rate for successive exercise

sessions. Since the subjects have shown different trends, it cannot be concluded that the

hypothesis was true.

The mean square error was within the acceptable limits 100% of the time for the

deceleration 2 region indicating a proper fit of a straight line to the data.

Deceleration 3 Region:

The deceleration 3 region was fit with an exponential curve. Table 4.11 shows the

changes in time constant of the deceleration 3 region for subject Si through different

sessions. Parameters for the first 3 cycles (time constant and mean square error) are

shown.
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Table 4.11 Deceleration 3 parameters for subject Si

Cycle 1 Cycle 2 Cycle 3
Time

Constant
MSE Time

Constant
MSE Time

Constant
MSE

04042001S1 200 1.89 166.67 1.29 1000 4.06
04042201S1 200 1.13 250 18.40 166.67 3.81
04042801S1 200 1.98 250 11.30 500 7.20
04050201S1 333 6.45 166.67 2.82 250 9.35

The following figure shows the graph of the time constant of the deceleration 3

region for different sessions of subject S1 for cycle 3. A trend line was fit on the graph

and the slope was calculated and displayed.

Figure 4.14 Graph showing a decrease in the time constant for subject Si.

The expected result for the deceleration 3 region was that the time constant should

decrease for successive cycle sessions indicating a faster recovery. This was true with

subject S2 for only one cycle. For the rest of the cycles for subject S2 and for subject Si

there was an increase in the slope (for the trend line fit to the time constant data)

indicating a slower recovery in successive cycle sessions (Figure 4.15). Hence it cannot



be concluded that the hypothesis was true. The mean square error was within the

acceptable limits 83.3% of the time for the deceleration 3 region indicating a proper fit of

straight line to the data. For subject S2, the mean square error for second cycle for the file

04042301S2 was 76.25. This was caused by some missing data.

Table 4.12 Deceleration 3 parameters for subject S2

Figure 4.15 Graph showing an increase in time constant for subject S2.

Discussion (Deceleration Regions): For the deceleration 1 region subjects have shown

an opposing trend to the expected results. For the deceleration 2 and 3 regions the
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subjects showed different trends for the values of time constants and slopes. Hence it

cannot be concluded that the hypothesis is true. The different category errors affected the

deceleration regions. The mean square errors were less than 14.8, 87.5% of the time for

the deceleration 1 region, 100% of the time for the deceleration 2 region, and 91.67% of

the time for the deceleration 3 region indicating that the three different category errors

affected the deceleration 1 region the most.

4.3 Results - Between Subjects

The time constant and slopes have been compared between the subjects for comparable

files (04042201S1 and 04042301S2; 04042801S1 and 04042602) based on the date of

exercise session.

4.3.1 Acceleration Results

Table 4.13 shows the changes in parameters (time constants and slopes) of both subjects

for the acceleration 1, 2, and 3 regions for files 04042201S1 and 04042301S2 and Table

4.14 shows the same comparison for the files 04042801S1 and 04042602.

Table 4.13 Comparison of acceleration parameters between the subjects

Acceleration 1 Acceleration 2 Acceleration 3
(Time Constant) (Slope) _ (Time Constant)

File Name Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3
04042201S1 90.91 166.67 100 0.662 0.716 0.724 16.67 7.75 9.17
04042301S2 47.61 30.3 34.48 1.43 0.853 1.18 5.23 8.54 9.7

For the acceleration 1 region, subject S2 has shown a lower value for the time

constant than subject S1 indicating a faster increase in the heart rate during exercise for
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subject S2 than subject Si. For the acceleration 2 region, subject S2 has shown a higher

value for the slope than subject S1 indicating a faster increase in heart rate during

exercise. For the acceleration 3 region, subject S2 shows a higher value for the time

constant than subject S1 indicating a slower increase in the heart rate during exercise for

subject S2 compared to subject S1. The result shows the difference in individual body

response to the exercise. However the trend for different regions of acceleration was not

consistent for subject S2 compared to subject Si.

Table 4.14 Comparison of acceleration parameters between the subjects

Acceleration 1 Acceleration 2 Acceleration 3
(Time Constant) (Slope) (Time Constant)

File Name Cycle 1 Cycle 2 Cycle 3 Cycle l Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3
04042801S1 52.63 83.33 83.33 0.401 0.862 0.433 13.88 12.19 25.64

04042602S2 31.25 29.41 66.67 4 1.247 1.42 3.11 3.4 10.31

Table 4.14 shows that for the acceleration 1 region, subject S2 has a lower value

for the time constant than subject S1 indicating a faster increase in heart rate during

exercise for subject S2. For the acceleration 2 region, subject S2 has shown a higher

value for the slope than subject S1 indicating a faster increase in heart rate during

exercise for subject S2. For the acceleration 3 region, subject S2 shows an lower value

for the time constant than subject Si indicating a faster increase in the heart rate during

exercise. The results show the difference in individual body response to the exercise.

4.3.2 Deceleration Results

Tables 4.15 and 4.16 shows the comparison of deceleration parameters between subjects

S1 and S2.
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Table 4.15 Comparison of deceleration parameters between the subjects

Deceleration 1 Deceleration 2 Deceleration 3
(Time Constant) (Slope) (Time Constant)

File Name Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3

04042201S1 12.98 12.05 12.5 -0.157 -0.154 -0.006 200 250 166.67

04042301S2 13.15 13.15 17.86 -0.391 -0.673 -0.006 142.86 111.11 166.67

Table 4.16 Comparison of deceleration parameters between the subjects

Deceleration 1 Deceleration 2 Deceleration 3
(Time Constant)  (Slope) (Time Constant)

File Name Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3

04042801S1 13.69 11.49 12.7 -0.414 -0.557 -0.002 200 250 500

04042602S2 7.58 9.43 50 -0.425 -0.655 -0.003 142.86 200 333.33

For the deceleration 1 region, subject S1 has lower values for the time constant

than subject S2 indicating a faster recovery of the heart rate after exercise for subject Si.

For the deceleration 2 region, subject S2 has shown a lower value for the slope than

subject Si indicating a faster recovery in the heart rate after exercise for subject S2. For

the deceleration 3 region also, subject S2 shows a lower value for the time constant than

subject S1 indicating a faster recovery in the heart rate after exercise. The results show

the difference in individual body response to the exercise.

Discussion: Adaptation to exercise acquired by physical training can significantly

influence the cardiovascular response to exercise [25]. A subject's history of physical

training might have affected the results. Also the results show the difference in individual

body response to the exercise. The results indicate that 83.33% of the time subject S2 has

shown a faster increase in heart rate during exercise and faster recovery after exercise
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than subject Sl. Hence the parameters of the fit (time constant and slope) could be used

as a marker for health.



CHAPTER 5

CONCLUSION, LIMITATIONS AND FUTURE PROGRESS

5.1 Conclusion

An algorithm for the analysis of acceleration and deceleration region of cycles has been

developed. The cyclic exercise program yielded a series of cyclic waves of

cardiovascular exercise and recovery. The acceleration and the deceleration regions of

these waves have been identified. Since different sections of the acceleration and

deceleration regions were following different curves, these regions were then divided into

three sections and each section was fit with appropriate curves. The Mathematica

program, then extracted the parameters (exponents, slopes and mean square errors) for

the different curves. The values for the mean square errors indicated that the curves are

being fitted properly. Subjects have shown different trends in the time constant and slope

values for the acceleration and deceleration regions. The expected results for the

acceleration 1 and 3 regions and the deceleration 1 and 3 regions were that there should

be a decrease in the time constant indicating a faster increase in heart rate during exercise

(acceleration) and faster recovery after exercise (deceleration) in successive sessions. The

expected results for the acceleration 2 region was that there should be an increase in the

slope indicating a faster increase in heart rate and for the deceleration 2 region was that

there should be a decrease in slope indicating a faster recovery after exercise in

successive sessions. Since the subjects have shown different trends for the time constant

and slope values for the acceleration and deceleration regions it cannot be concluded that

the hypothesis was true.

88
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5.2 Limitations

There are a number of limitations in the study. Since the data came from an on going

pilot study, sometimes the protocol was not followed exactly and hence there were

problems encountered during data analysis especially because it led to the incorrect

valley calculations. One subject did not rest long enough before the start of cyclic

exercise. Hence the calculation of the acceleration valley point was not possible and all

the data had to be dropped. Also the subjects in some of the sessions did not wait long

enough for the heart rate to stabilize between the cycles, which also affected the

calculation of acceleration and deceleration valley points. Also, if the connectivity

between the subject and the Polar heart rate monitor was lost, the data was not recorded

and hence pieces of data were missing. The instrument sometimes produced sudden burst

of heart rate values, which led to larger values of mean square error. The number of

subjects also was an issue. With two subjects a statistical analysis was not possible.

Adaptation to exercise acquired by physical training can significantly influence

the cardiovascular response to exercise [25]. This study did not take consideration of

subject's history of physical training and this fact might have affected the results. The

variation of the time constants and slopes between the subjects show that there was an

individual difference in the level of adaptation to the exercise.

Also, the heart rate parameters are to a large extent influenced by breathing

pattern. The cyclic exercise program designed for this study did not attempt to control the

breathing pattern.
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If the above-explained limitations are overcome, the algorithm can be used for the

quantitative analysis of health of an individual, as the parameters of the fit could be used

as a marker for the health.

5.3 Future Progress

The next step of this study is to implement the cyclic exercise program for a

group of people having disease (specifically diseases related to the heart) and a group of

healthy individuals and see if there is any significant difference in parameters of the fit

for the two groups. The algorithm could be modified in order to avoid some of the errors

it produced in the valley calculation. The extended valley calculation could be avoided by

adding more criteria to the valley selection. Methods should be implemented in the

algorithm to identify the data loss. Also a modification in the algorithm can be made to

exactly follow the protocol for heart rate stabilization, which could lead to a more

accurate valley calculation. The criteria for heart rate stabilization was that the heart rate

should be varying less than ± three beats over 15 seconds. Currently the program is

checking 15 data points.



APPENDIX

MATHEMATICA PROGRAM

Introduction

This section discusses the Mathematica program used for cycles data analysis. The

program calculates the peak value, acceleration valley, and deceleration valley for the

heart rate data. The program then identifies the acceleration and deceleration regions and

divides them into three sections. Different sections were then fit with appropriate curves

and the parameters of curves were extracted.

The Mathematica program follows.
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(***** This mathematics program for cycles analysis was originally
written by Dr. Stanley Reisman and was modified by Jeena wadi*****)

data= Import["0405160181.hrm", "Text"];
cycleb = data;
c= StringDrop[cycleb, (Part[Part[StringPosition[cycleb, "[HRData]"], 1], 2] +1)];
b= StringToStream[c]; a = ReadList [b, Number];
Close[b];cycle= {}; cycles = {};
Do[If[a[[i]] == 9999, 0, cycle = Append[cycle, a[[i]]]], {i, 1, Length[cycleb]}];
al = N[60000 /a]; cycleb = al;

(*remove points outside the range 29-231*)
Do [If [cycleb[[ [i] ] > 28A cycleb [ [i] ] < 232, cyclea = Append [cyclea, cycleb [ [i] ] ] ] ,
{i, 1, Length[cycleb]}]; cycle = cyclea;

(*program the time counter*)
tj = Table[0, (Length[cycle])];
N[tj[[1]] = 60 /cycle[[1]]];
Do[tj[[n]] = tj [ [n- 1]] +60 / cycle( [n]], {n, 2, Length[cycle]} ];
ti=N[tj];

(*Spike Detector*)
cycle[[1]] =N[1/8] *Sum[cycle[[i]], {i, 2, 9}];
cycle2d= Table[0, {i, Length[cycle]), {j, 2}];
Do[cycle2d[[i, 1]] = i, {i, Length[cycle]}];
Do[cycle2d[[i, 2]] = cycle[ [i]], {i, Length[cycle]}];
spot = {First [cycle2d] } ;
Do[If [ (cycle[ [i]] - cycle[[i-1]]) >60, spat = Xppend[spst, cycle2d[[i]]]],

{i, 2, Length[cycle]}];
spstl = Drop[spst, 1];
spend = Table[0, {Length[spst1]}];
fend[j_] := (Catch[Do[i;

If [cycle( [i]] # spstl[[j, 2]], Throw[i]], {i, spstl[[j, 1]], Length[cycle])]]);
Do[spend[[j]] = fend[j], {j, 1, Length[spst1]}];
freplace [j_] := (For [i = spstl [ [j , 1]], i < spend [ [J ] ]

i++, cycle2d[[i, ]] = cycle2d[[(spstl[[j, 1]] -1), 2]]]);
Do[freplace[j], {j, 1, Length[spst1]}];
Do[cycle[ [i]] = cycle2d[[i, 2]], {i, Length[cycle2d]}];
cycle3d = Table[0, {i, Length[cycle] }, {j, 3}];
Do[cycle3d[[i, 1]] = i, {i, Length[cycle]}];
Do[cycle3d[[i, 2]] = cycle[[i]], {i, Length[cycle]}];
Do[cycle3d[[i, 3]] = ti[[i]], {i, Length[cycle]}]; m= Floor[N[Length[cycle] / 5]];
origcycle= cycle;
(*Max Detector*)

(*take average of every five points*)
fifth = Table[0, {m}];
Do[fifth[[i]] = 0.2* (cycle( [5*i -4]] + cycle( [5*i - 3]] +cycle[[5*i-2]] +

cycle[[5*i-1]] +cycle[[5*i]]), {i, 1, m}];
cycle = fifth;
smooth = Table[0, {Length[cycle]}];
1 = Length[cycle] - 11;
(* smoothing for peak value determination.Take average of 21 points*)
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Do[ smooth[[j]] =N[1/21]*Sum[cycle[W], {i, j -10, j +10}], {j, 11, 1}];
smooth]. = Take [smooth, {11, 1 - 10}];
id = Table[0, (Length[smoothl])];
Do[ld[ [i]] = smoothl[[1]] - smoothl [ [i - 6]], {i, 6, Length[smoothl]}];
ldl = Drop[ld, 6 ];
mx = Max[1d1];
ran= Min[1d1];
test = Table[0, {i, Length[ldl] ), {j, 2}];
Do[test[ [1, 1]] = i, {i, Length[1d1]}];
Do[test[ [1, 2] ] = ldl[ [i]], {i, Length[ldl]}];
pd = First [test] ;
Do[If [test [ [i, 2] ] > 0.4*nuc, pd= Append[pd, test [ [1] ]]], {i, 1, Length[test]}];
If [Length[pd] < 3, Goto[skipl]];
pdl = Drop [pd, 2];
nd = First [test] ;
Do[If [test [ [1, 2] ] < 0.4*ran, nd= Append[nd, test [ [i]]]], {i, 1, Length[test]}];
If [Length[nd] < 3, Goto[skipl]];
ndl = Drop[nd, 2];
p1 = Table[0, (Length[pdl] )];
Do [p1 [ [i]] = pdl 	 1]], (i, 1, Length[pd1])];
n1 = Table[0, (Length[ndl])];
Do[nl[[i]] = ndl[ [1, 1]], {i, 1, Length[ndl]}];
p = {First [pl] };
Do[If [ (pl [ [1 +1]] -pl[[i]]) > 20, P = APPend[P, P1 [[i] ] ] ], {i, 1, Length[pl] - 1}];
If [p].[ [Length[pl]]] -p1[[Length[p1] - 1] ] > 20, p = Append[p, Pl[[Length[Pl]]]]];
p = Append[p, p1[[Length[p1]]]];
n = {First [nl] } ;
Do[Xf [ (n1 [[i+ 1] ] - n1 [ [i]]) > 20, n= Append[n, n1 [ [i] ] ] ], {i, 1, Length[n1] -1}];
If [nl [ [Length[nl]]] -n1[[Length[nl] - 1] > 20, n= Append[n, n1 [ [Length[nl]]]]];
n= Append[n, n1 [ [Length[nl]]]];
p = Drop [p, 1] ;
n= Drop [n, 1];
(* P and n contains the index values of max's and min's*)
PP= Join[p, (9999)];
n2 = {0};
p2 = {0};
Do[If[(1,9[M] <n[[i]]) A (PP([j + 1 ]] > n[ [i] ]) A (n[ [i]] - PP[[il] < 100 ),

p2 = Append [p2, pp[[j]]]], {i, 1, Length [n] }, (J, 1, Length [pp] - 1)];
p = Drop[p2, 1];

Do[If [UM[[j]] < 11 [[i]]) A Om[ [i +1]] >11[ [i]]) A (nHin - PD[W] < 100 ) ,
n2 = Append[n2, n[[i]]]], {i, 1, Length[n]}, {j, 1, Length[pp] - 1}];

n= Drop[n2, 1];
mxx = Table[0, {Length[p]}];
cyclel = Table[0, {i, Length[cycle]}, {j, 2}] ;
Do[cyclel [ [i, 1]] = i, {i, Length[cycle]}];
Do[cyclel[[i, 2] ] = cycle[ [1] ], {i, Length[cycle]}];
fmx[j_] := (testi = Take[cyclel, {p[ [j] ], n[[j]])]; testl2 = Table[0, (Length[testl] )];

Do[test12[ [i]] = testl [ [i, 2] ], {i, 1, Length[test1])]; mxl =Max[test12];
mx2 =Catch[Do[i; If [raxl test12[ [i] ], Throw[i]], {i, 1, Length[test12]}]];

x[ [j]] = testi [ [rax2]]);
Do[frax[j], {j, 1, Length[p]}];
mx = Table[0, (Length[nucx])];
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Do[rax[ [i]] =mxx[[i, 2]], {i, 1, Length[mx]}];
= Max [Tax] ;

nuc2 = {First [mxx] };
Do [If [inxx[ [i, 2] ] > 0.7*nucl, rax2 = Append[nuc2, mxx[[i]]]], {i, 2, Len.gth[nuoc]}];
mx3 = {First [mx2] } ;
Do[If [ (nuc2[[i + 1, 1]] - rax2[ [1, 1]]) >500, Break[], mx3 = Append[mx3, rax2[[i+1]]]],

{i, 1, Length[rax2] - 1}];
(* mx3 give the value and index of peaks of 5 point average*)
m= Table[0, (Length[rax3])];
Do[m[[1]] =nuc3[[i, 2]], (i, Length[mx3])];
maxcycle =Max[m];
peakval = nuc3[ [All, 2]];
(*peakval has peak values from 5 pt average data*)
peakindex = mx3 [ [All, 1]];
origpeakindex = peakindex*5;
val7 = Table[0, {i, Length[origpeakindex]), {j, 2}];
Do[val7[[i, 1]] = Range[origpeakindex[W] -3, origpeakindex[[i]] +3],

{i, 1, Length[origpeakindex]}];
origcyclel = Table [0, {1, Length[origcycle]}, {j, 2}];
Do[origcyclel[[i, 1]] = i, {i, Length[ori.gcycle]}];
Do[origcyclel[[i, 2]] = origcycle[ [i]], {i, Length[origcycle]}];
ListPlot[origcyclel, PlotStyle -, (Hue[0.6]), AxesLabel -> ("Index", "Heart Rate")]
Do[val7[[i, 2]] = Take[origcyclel[ [All, 2]],

(origpeakindex[[1]] -3, oriapeakindex[[i]]+3)], {i, 1, Length[origpeakindex]}];
(* val7 gives the 3 values left and right of 5 point average peak*)

(* peakvalu gives the peaks of all cycles *)

peakvalu = Table[0, {1, Length[val7]}, (j, 2)];
Do[peakvalu[ [1, 1]] = Max [val7[[i, 2]]], (1, 1, Len.gth[val7])];
aaal = Table [0, { Length [val7 ] } ] ;
aaa2 = Table[0, {Length[val7]}];
Do[aaa2[ [i]] = Position[val7[ [1, 2]], peakvalu[[i, 1]]], {i, 1, Length[val7])];
Do [aaal [ [i]] = First [aaa2[ [1] ] ] , {i, 1, Length [val7] } ] ;
aaa2 = Flatten[aaal];
Do[peakvalu[ [1, 2 ]] = aaa2[ [i]], {1, 1, Length[val7]}];
aaa3 = Table[0, {Length[val7]}];
aaa3 = val7 [ [All, 1]];
aaa4 = Table[0, {Length[val7]}];
Do[aaa4[[i]] = Take[aaa3[[i]], {aaa2[[i]], aaa2[[i]]}], {i, 1, Length[val7]}];
aaa3 = Flatten[aaa4];
Do[peakvalu[[i, 2]] = aaa3[[i]], {i, 1, Length[val7]}];

(*Valley point calculation. From peakvalu go back 200 data points. Make

them sets of 15 points. Check the middle, max and min values and if

beat to beat difference(middle-max and middle-min) is less than 3,

pick it as valley. Also the value of valley should be less than 100*)

throwvaluel =Table[0, (Length[peakvalu]}];
fvalcalc[j_] :=

(vall = Take[origcyclel, {peakvalu[ [j, 2]],peakvalu[[j, 2]] -200, -1)];
val2 = Table[0, {Length[val1]}];
Do[val2[[1]] = vall[[i, 2]], {i, 1, Length[vall]}];
vall5 = Partition[val2, 15, 1];
meanval = Table [0, {Length [val15]}] ;
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Do[meanval[[i]] =vall5[[i, 8]], {i, 1, Length[val15]}];
maxval = Table [0, {Length [val15] } ] ;
Do[maxval [ [i] ] =vall5[[i, 1]], {i, 1, Length[val15] }};
minval = Table [0, {Length [val15] }] ;
Do[minval[[1]] =vall5[[i, 15] ], {i, 1, Length[val15]}];
valdiffl = Table [0, {Length [val15] } ] ;
Do[valdiffl[ [i]] = Abs[(meanval[[i]] -maxval [ [i]]) ], {i, 1, Length[val15]}];
valdif f2 = Table [0, {Length [val15] } ] ;
Do[valdiff2[ [i]] = Abs[(meanval[[i]] -minval [[i]]) ], {i, 1, Length[val15]}];
Do [throwvaluel [ [j ] ] = Catch [Do [i; If [ (valdiffl [ [i] < 3) A (valdif f2 [ [i] ] < 3) A

(minval [ [i]] <100) , Throw[i]], {i, 1, Length[val15]}]]]

);
Do[fvalcalc[j], {j, 1, Length[peakvalu]}];
peak = peakvalu[ [All, 2]];
valleyindex = Table[0, {Length[peakvalu]}];
Do[valleyindex[ [i]] = peak( [i] ] - thromluel[ [i]] +1, {i, 1, Length[peakvalu]}];
Clear [valley] ;
acclnvalley = Table[0, {i, Length[peakvalu]}, {j, 2}];
Do[acclnvalley[[i, 2]] = valleyindex[ [i]], {i, 1, Length[peakvalu]}];
Do[acclnvalley[[i, 1]] = origcyclel [ [valleyindex[ [i]], 2]],

{i, 1, Length[peakvalu]}];
Print["ACCELERATION"];
Print["Peakvalues = ", peakvalu];
Print["Acceleration Valleys = ", acclnvalley];
Print["COEFFICIENT LISTS FOR ACCELERATION"];
(* accleration: getting values from peak to valley *)
accln = Table [0, {Length [peakvalu]}];
Do[(accln[[i]] = Take[origcyclel, {acclnvalley[[i, 2]], peakvalu[[i, 2]]}}),

{i, 1, Length [peakvalu] }];
acclnperthird = Table [0, {Length [peakvalu]}] ;
(* dividing accleration into 3 portions*)
Do[acclnperthird[ [i]] = Round[Length[accln[[i]]] /3 // N], {i, 1, Length[peakvalu]}];
(*Finding the parameters-exponent and mean square error-

for the first part (acclnl) It is fitting with an exponential*)
coeffl = Table[0, {Length[peakvalu]}];
mserl = Table [0, {Length [peakvalu] ] ;
facclnl [L] : =

(acclnl =

Take[origcyclel, {acclnvalley[[j, 2]], acclnvalley[[j, 2]] +acclnperthird[[j]]}};
SD6 = Table[0, {Length[acc1n1]}];
Do[SD6[ [n]] = acclnl [ [n, 2] ], {n, 1, Length[acc1n1]}];
XYs = Transpose[{acclnl[ [All, 1]], Log[acclnl[ [All, 2]] ] )];
gl [X_] = Fit [XYs, {1, X}, X];
cl = CoefficientList [gl [X] , {X} ] ;
gll[X_] = Exp[cl[[1]]]*Exp[cl[ [2]]*X];
errorsl = Table [0, {Length [acclnl] } ] ;
Do[errors1[[i]] = gll [i + acclnl[ [1, 1] ] -1] - acclnl [ [i, 2]], {i, 1, Length[acc1n1]}];
SD5 = errorsl;

1
Do [ SD4 = 	 * (Sum[SD5[ [n]], {n, 1, Length[SD5]}])]; (*mean of errors*)

Length[5D5]
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SD3 = Table[0, {Length[SD5]}];
Do[SD3[[n]] = (SD5[ [n]] -SD4) 2 , {n, 1, Length[SD5]}];

1
Do[SD2 = 	 *(Sum[SD3[[n]], {n, 1, Length[SD5]}])];

Length[SD5]
Do[SD1= Sqrt[SD2]]; (*standard deviation of errors*)
SD= {};
Do[If[(SD5[[n.]] < (SD4+SD1) ) && (SD5[ [n]] > (SD4-SD1)), SD= Append [SD, n]],
{n, 1, Length[8D5]}];

aclnll = Table [0, {Length [ SD] }] ;
Do[acln11[[p]] = SD6[[SD[[p]]]], {p, 1, Length[SD]}];
aclnl = Tablet°, {Length[acln11]}, {n, 2}];
Do[aclnl[[i, 1]] = SD[[i]], {i, 1, Length[acln11]}];
Do[aclnl[[i, 2]] = acln.11[[i]], {i, 1, Length[acln11]}];
XYsl = Transpose[{aclnl[ [All, 1]], Logtaclnl[ [All, 2]]])];
gla[X_] = Fit [XYsl, {1, X}, X];
cla = CoefficientList [gla [X] , {X} ] ;
glla [X_] = Exp [cla [ [1] ] ] * Exp [cla [ [2] ] * X] ;
errorsla = Table[0, {Length[acln1]}];
Doterrorsla[[i]] = glla[SD[ [i]]] - aclnl[[i, 2]], {i, 1, Length[acln1]}];
meal = Table [0, {Length [acln1] ] ;
Do[msel[[i]] = (errorsla[[i]]) 2 , 	 1, Length[acln1])];

Do[mserl[[j]] = 	
1 	

*(Sum[msel[[i]], {i, 1, Length[aeln1]}])];
Length[aclnl]

Do[coeffl[[j]] = cla[[2]]]

(*facc1n1[1];
Show[ListPlot[acclnl,PlotStyle4{Point8ize[0.02],Hue[0.6]}],
Flot[g11[X],{X,First[acclnl[[1]]],First[Last[acclnl]]},PlotStyle-,{Hue[0]}],
AxesLabe14{"Index","Heart Rate"}];

Show[ListPlot[aclnl,PlotStyle4{PointSize[0.02],Hue[0.6]}],
Plot[glla[X],{X,First[aclnl[[1]]],First[Last[aclnl]]),PlotStyle-,{Hue[0]}],
AxesLabel-o{"Index","Heart Rate")];

*)
Do[facclnl[j], {j, 1, Length[peakvalu]}];
Print["Coefficientsi [Exponent]= ", coeffl]
Print["Mean square error = ", mseri];

(****Finding the slope and mean square error for the middle part
(accln2) of acceleration region.It is fitting with a straight line****)

coeff2 =Table[0, {Length[peakvalu]}];
mser2=Table[0, {Length[peakvalu]}];
facc1n2 [L] :=

(acc1n2 = Take[origcyclel, {(acclnvalley[[j, 2]] +acclnperthird[[j]]),

(acclnvalley[[j, 2)] + (2*accln,perthird[[j]])))];
ASD6 =Table[0, {Length[acc1n2]}];

Do[ASD6[[n]] = acc1n2[[n, 2]], {n, 1, Length[acc1n2]}];
g2[X_] = Fit [acc1n2, {1, X), X];
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c2 = CoefficientList [92 [X] , {X}] ;
errors2 = Table [0, {Length [acc1n2] ) ] ;
Do [errors2 [ [i] ] = g2[i + acc1n2[ [1, 1] ]
ASD5 = errors2;

1
Do [ASD4 = 	 * (Sum[ASD5[ [n]], {n, 1, Length[ASD5]}])]; (*mean of errors*)

Length[ASD5]
ASD3 = Table [0, {Length [AS D5] } ] ;

Do[ASD3[[n]] = (ASD5[[n]] -ASD4) 2 , {n, 1, Length[ASD5]}];

Do [ASD2 = 	
1 	

* (Sum[ASD3[[n]], {n, 1, Length[ASD5]}])];
Length[ASD5]

Do [ASD1 = Sqrt [ASD2] ] ;
(*standard deviation of errors*)
ASD = {};

Do [if [ (ASD5 [ [n] ] < (ASD4 + ASD1) ) && (ASD5 [ [n] ] > (ASD4 - ASD1) ) , ASD = Append [ASD, n] ] ,
{n, 1, Length[ASD5]}];

acln22 = Table[0, {Length[ASD])];
Do[acln22[[p]] = ASD6[[ASD[[p]]]], {p, 1, Length[ASD]}];
acln2 = Table[0, {Length[acln22]), {n, 2}];
Do[acln2[[i, 1]] = ASD[[i]], {i, 1, Length[acln22]}];
Do[acln2[[i, 2]] = acln22[ [i]], {i, 1, Length[acln22]}];

g2a[X_] = Fit [acln2, {1, X}, X];
c2a = CoefficientList [g2a [X] , {X)] ;
errors2a = Table [0, {Length [acln2] ) ] ;
Do[errors2a[ [i]] = g2a[ASD[ [i]]] -acln2[[i, 2]], {i, 1, Length[acln2]}];
mse2 = Table[0, {Length[acln2]}];
Do[mse2[ [i]] = (errors2a[[i]]) 2 , {i, 1, Length[acln2]}];

Do[mser2[[j]] = 	
1 	

* (Sum[mse2[[i]], {i, 1, Length[acln2]}])];
Length[acln2]

Do[coeff2[[j]] = c2a[[2]]]

);

(*facc1n2 [1] ;
Show[ListPlot[acc1n2,PlotStyle.4{PointSize[0.02],Hue[0.6])],
Plot [g2 [X] , {X, First [acc1n2 [ [1]]] , First [Last [acc1n2] ] ), PlotStyle- {Hue[0])],
AxesLabel -,{ "Index", "Heart Rate" ),TextStyle -►{FontFamily-►"Helvetica",

FontSize.,13,FontSlant-OItalic",FontColor4RWColor[0,0,0])];
Show[ListPlot[acln2,PlotStyle-,{PointSize[0.02],Hue[0.6])],
Plot[g2a[X],{X,First[acln2([1]]],First[Last[acln2]]},PlotStyle4{Hue[0]}],
AxesLabel-►{"Index","Heart Rate"},TextStyle4{FontFamily4"Helvetica",

FontSize413,FontSlant4"Italic",FontColor-MGBColor[0,0,0])];
Print["Coefficients2 [Slope]= ",coeff2];
Print["Mean square error = " , mser2];*)

Do[facc1n2[j], {j, 1, Length[peakvalu])];
Print["Coefficients2 [Slope]= ", coeff2];
Print["Mean square error = ", mser2];

(****Finding the exponent and mean square error for the last part (accln3) of
acceleration.The shape of the curve is inverted for calculation purpose*****)

coeff3 = Table[0, {Length[peakvalu])];
mser3 = Table[0, {Length[peakvalu]}];

-1] -acc1n2[[i, 2]], {i, 1, Length[acc1n2]}];
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facc1n3 [L] :=

(accln3 =

Take[origcyclel, {acclnvalley[ [j, 2]] + (2*acclnperthird[[j]]), peakvalu[[j, 2]] )];
accln3rev = Table[0, {Length[acc1n3]}];
Do[acc1n3rev[[i]] = Last [Last [acc1n3]] - acc1n3[[i, 2]], {i, 1, Length[acc1n3]}];
ql = {};
Do[If[acc1n3rev[[i]] > 0, ql = Append[ql, i]], {i, 1, Length[acc1n3rev]}];
acln3 = Table[0, (Length[q1]), {n, 2}];
Do[acln3[[i, 1]] = ql[[1]], {i, 1, Length[q1]}];
Do[acln3[[i, 2]] = acc1n3rev[ [ql [ [i]]]], {i, 1, Length[q1]}];
ABs = Transpose[{acln3[ [All, 1]], Log[acln3[ [All, 2]]] )];
g3[X_] = Fit[ABs, {1, X}, X];
c3 = CoefficientList [g3 [X] , {X}] ;
g33 [X_] = Exp [c3 [ [1] ] ] * Exp [c3 [ [2] ] *X] ;
errors3 = Table [0, {Length[acln3]}, {n, 2}];
Do[errors3[[i, 1]] = acln3[[i, 1]], {i, 1, Length[acln3]}];
Do[errors3[[i, ]] = g33 [i + acln3[ [1, 1] ] -1] - acln3[[i, 2]], {i, 1, Length[acln3]}];
AASD6 = Table[0, {Length[acln3]}];
Do[AASD6[[p]] = acln3[[p, 2]], {p, 1, Length[acln3]}];
AASD5 = errors3[ [All, 2]];

1
Do [AASD4 = 	 * (Sum[AASD5[[n]], {n, 1, Length[AASD5]}])];

Length[AASD5]
AASD3 = Table [0, {Length [AASD5] } ] ;
Do[AASD3[[n]] = (AASD5[[n]] - AASD4) 2 , {n, 1, Length[AASD5]}];

1
Do [AASD2 = 	  * (Sum[AASD3[ [n]], {n, 1, Length[AASD5]}])];

Length[AASD5]
Do [AASD1 = Sqrt [AASD2] ] ;

AASD = {};
Do (If ( (AASD5 [ [n]] < (AASD4 + AASD1) ) && (AASD5[[n]] > (AASD4 - AASD1)),

AASD = Append[AASD, n]], {n, 1, Length[AAsD5]}};
acln33 = Table[0, {Length[AASD]}, {n, 2}];
Do[acln33[[i, 1]] = AASD[[i]], {i, 1, Length[AASD]}];
Do[acln33[[i, 2]] = acln3[[AASD[ [i]], 2]], {i, 1, Length[AASD]}];
ABs1 = Transpose[{acln33[ [All, 1]], Log[acln33[ [All, 2]]] )];
g3a[X_] = Fit [ABsl, {1, X}, X];
c3a = CoefficientList [g3a [X] , {X}] ;
g33a[X_] = Exp[c3a[[1]]]*Exp[c3a[[2]]*X];
errors3a = Table [0, {Length [acln33 ] } ] ;
Do [errors3a[ [1] ] = g33a [i + acln33 [ [1, 1] ] - 1] - acln33 [ [i, 2] ,
{i, 1, Len.gth[acln33]}];

mse3 = Table[0, {Length[acln33]}];
Do[mse3[ [i]] = (errors3a[ [i]] ) 2 , {i, 1, Length[acln.33]}];

Do [mser3 [ [j ] ] = 	
1 	

* (Sum[mse3[ [i]], {i, 1, Length[acln33]}])1;
Length[acln33]

Do[coeff3[[j]] =c3a[[2]]];

(*facc1n3[1];
Show[ListPlot[acln3,PlotStyle-,{PointSize[0.02],Hue[0.6]}],
Plot[g33[X],{X,First[acln3[[1]]],First[Last[acln3]])],AxesLabel-+{"X","Y")];
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Show [ListPlot [acln33, PlotStyle-,{PointSize [0.02] , Hue [0 .6] } ] ,
Plot [g33a [X] , {X, First [acln33 [ [1] ] ] , First [Last [acln33] ] ] , AxesLabel-,{ "X", "Y"}] ;

*)
Do [facc1n3 [j ] , {j, 1, Length[peakvalu] }];
Print [ "Coef ficients3 [Exponent] = ", coeff 3] ;
Print["Mean square error = ", mser3];

(****Valleys calculated for deceleration******)
Print[""];
Print ["DECELERATION"]
throwvalue2 = Table [0, {Length [peakvalu] } ] ;
fvalcalc2 [L] :=

(valla = Take[origcycle1, {peakvalu[[j, 2]], peakvalu[[j, 2]] +500)];
val2a = Table [0, {Length [val1a] } ] ;
Do[val2a[[i]] = valla[[i, 2]], {i, 1, Length[valla]}];
val15a = Partition[val2a, 15, 1];
meanvala = Table [0, {Length [vall5a] ] ;
Do[meanvala[ [i]] = val15a[[i, 8]], (1, 1, Length[val15a])];
maxvala = Table [0, {Length [val15a]}] ;
Do[mazcvala[[i]] = vall5a[[i, 1]], {i, 1, Length[val15a]}];
nextmaxa = Table[0, {Length[val15a]}];
Do[nextmaxa[[i]] = val15a[[i, 4]], {i, 1, Length[val15a]}];
minvala = Table [0, {Length [vall5a]}] ;
Do[zninvala[ [i]] = vall5a[[i, 15]], {i, 1, Length[val15a]}];
nextmina = Table[0, (Length[val15a])];
Do[nextmina[ [i]] = val15a[[i, 12]], {i, 1, Length[vall5a]}];
valdiffla = Table [0, {Length [vall5a] ] ;
Do[valdiffla[ [i]] = Abs[ (meanvala[ [i]] -raan-vala[[i]])], {i, 1, Length[vall5a]}];
valdiff2a = Table [0, (Length [val15a] ] ;
Do[valdiff2a[[i]] = Abs[ (meanvala[ [i] ] -minvala[ [i]])], {i, 1, Length[vall5a]}];
valdiff3a = Table [0, {Length [val15a]}] ;
Do[valdiff3a[ [i]] = Abs[ (meanvala[ [i]] - nextmaxa[ [i]])], {i, 1, Length[vall5a]}];
valdiff4a = Table [0, {Length [vall5a] ] ;
Do[valdiff4a[ [i]] = Abs[ (meanvala[ [i]] - nextmina[ [i]])], {i, 1, Length[val15a]}];
Do[throwvalue2[[j]] = Catch[Do[i; If [(valdiff1a[ [i]] < 3) A (valdiff2a[[i]] < 3) A

(minvala[ [i]] <100), Throw[i]], {i, 1, Length[vall5a]}]]];
);

Do [fvalcalc2 [j ] , {j, 1, Length [peakvalu] }i ;
Print["Throwvalue ", throwvalue2];
valleys2 = Table [0, {Length [peakvalu]}] ;
Do [If [throwvalue2 [ [i] ] < 1, valleys2 [ [i] ] = valleyerror,

valleys2[ [i]] = throwvalue2[[1]] +peakvalu[[i, 2]]], {i, 1, Length[peakvalu]}]
Print ("Deceleration Valleys = ", valleys2];
dcclnvalley = Table[0, (i, Length[peakvalu]), {j, 2}];
Do[dcclnvalley[[i, 2]] = valleys2[ [i]], {i, 1, Length [peakvalu] }];
Do [ciccinvalley[[i, 1]] = origcycle1[ [valleys2[ [i]], 2]], {i, 1, Length[peakvalu]}];
Print ["Peakvalues = ", peakvalu];
Print ["Deceleration Valleys = ", dcclnvalley];
Print ("COEFFICIENT LISTS FOR DECELERATION"];
(* deceleration: getting values from peak to valley *)
dccln = Table [0, {Length [peakvalu] ] ;
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Do[(dccln[[i]] = Take[origcyclel, {peakvalu[[i, 2]], dcclnvalley[ [1, 2]]}]),
{i, 1, Length[peakvalu]}];

dcclnperthird = Table [0, {Length [peakvalu] } ] ;
(* dividing deceleration into 3 portions*)
Do[dcclnperthird[ [i]] = Round[Length[dccln[ [i]] ] / 3 //N], {i, 1, Length[peakvalu] }l;
(****Finding the parameterss for the first part of

deceleration (dcclnl) . It is fitting with an exponential***)
dcoeffl = Table [0, {Length [peakvalu] } ;
dmserl = Table[0, {Length[peakvalu]}];
fdcclnl [j_] :=

(dcclnl = Take[origcyclel, {peakvalu[[j, 2]], peakvalu[[J, 2]] +dcclnperthird[[j]])];

dcclnlrev = Table [0, {Length [dcclnl ] ) ] ;
Do [dcclnlrev [ [i] ] = Last [First [dcclnl]] - dcclnl [ [i, 2] ], { i, 1, Length [dcclnl] )];
q2 = { };
Do[If [dcclnlrev[ [i] ] > 0, q2 = Append[q2, dcclnlrev[ [i]]]],
{i, 1, Length[dcclnlrev]}];

dclnl = Table[0, (Length[q2]), {n, 2}];
Do[dclnl[ [1, 1]] = i, {i, 1, Length[q2]}];
Do[dclnl[ [1, 2]] = q2[[1]], {i, 1, Length[q2]}];
XYsd = Transpose[(dclnl [ [All, 1]], Log[dclnl[ [All, 2]]])];
kl [X_] = Fit [XYsd, {1, X}, X];
dcl = CoefficientList [kl [X] , {X}] ;
Dotdcoeffl[[j]] =dcl[[2]]];
kll [X_] = Exp [dcl [ [1] ] ] * Exp [dcl [ [2] ] * X] ;
derrorsl = Table [0, {Length [dclnl] } ] ;
Do [derrorsl [ [i]] = Abs [kll [1 + dclnl [ [1, 1] ] -1] - dclnl [ [i, 2] ] ,
{i, 1, Length[dc1n1]}];

dmsel = Table [0, {Length [delnl]}] ;
Do[dinsel[[1]] =derrors1[[i]]*derrors1[[i]], {i, 1, Length[dc1n1]}];

Do [dmserl [ [j ] ] = 	
1 	

* (Sum [dmsel [ [i] ], {i, 1, Length [dclnl] }] )1;
Length[dclnl]

(*fdcclnl[3];
Show[ListPlot[dcln1,PlotStyle-,{PointSize[0.02],Hue[0.6])],
Plot[k11[X],{X,First[dclnl[[1]]],First[Last[dclnl]]),PlotStyle-gHue[0]}],
AxesLabel-+{"X","Y"}];

Print["Mean square error =", dmserl];
Print [ "coef ficientl=" , dcoeffl] ; *)

Do [fdcclnl [j ] , {j , 1, Length [peakvalu] } ] ;
Print ["Coefficients1 [Exponent]= ", dcoeffl]
Print["Mean square error = ", dmserl];

(*Finding the parameters for the middle part of
deceleration (dcc1n2). It is fitting with a straight line*)

dcoef f2 = Table [0, {Length [peakvalu]}] ;
dmser2 = Table[0, (Length[peakvalu])];
fdcc1n2 [j_] :=

(dcc1n2 = Take[origcyclel, {(peakvalu[[j, 2]] +dcclnperthird[[i]]),
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(peakvalu[ [j, 2]] + (2*dcclnperthird[ [j]])) }];
k2[X_] = Fit [dcc1n2, {1, X}, X];
dc2 = CoefficientList [k2 [X] , {X} ] ;
Do[dcoeff2[[j]] = dc2[[2]]];
derrors2 = Table[0, {Length[dcc1n2]}];
Do [derrors2 [ [ i] ] = Abs [k2 [ + decln2 [ [1, 1] - 1] - dcc1n2 [ [i, 2] ] ] ,
{i, 1, Length[dcc1n2]}];

dmse2 = Table[0, {Length[dcc1n2] }];
Do[dmse2[ [i] ] = derrors2 [ [i]] * derrors2 [ [i]], {i, 1, Length[dcc1n2] }];

Do[dmser2[[j]] = 	
1 	

* (Sum[dmse2[[i]], {i, 1, Length[dcc1n2]}])];
Length[dcc1n2]

(*fdcc1n2[3];
Show[ListPlot[dcc1n2,PlotStyle-►{PointSize[0.02],Hue[0.6]}],
Plot[k2[X],{X,First[dcc1n2([1]]],First[Last[dccln2]]},PlotStyle-,{HUe[0]}],
AxesLabel-){"Index","Heart Rate"},
TextStyle-o{FontFamily-)"Helvetica",FontSize-,13,FontSlant-)"Italic"}];

dmser2*)
Do [fdcc1n2 [j] , {j, 1, Length [peakvalu] ] ;
Print [ "Coefficients2 [Slope] = ", dcoeff 2] ;
Print ["Mean square error = ", dmser2];

(*Finding the parameters for the last part
(dccln3) od deceleration. It is fitting with an exponential*)

dcoeff3 = Table[0, {Length[peakvalu]}];
dmser3 = Table[0, {Length[peakvalu]}];
facc1n3 [L] :=

(dccln3 = Take [origcyclel,

{peakvalu[[j, 2]] + (2*dcclnperthird[ [j]]), dcclnvalley[[j, 2]])];
ABsd= Transpose[{dcc1n3[ [All, 1]], Log[dcc1n3[ [All, 2]]] )];
k3[X_] = Fit [ABsd, {1, X}, X];
dc3 = CoefficientList [k3 [X] , {X} ] ;
Do[dcoeff3[[j]] =dc3[[2]]];
k33 [X_] = Exp [dc3 [ [1] ] ] * Exp [dc3 [ [2] ] *X] ;
derrors3 = Table[0, {Length[dccln3]}];
Do[derrors3[[1]] = Abs[k33[1 + dcc1n3[ [1, 1]] -1] -dcc1n3[[i, 2]]],
{i, 1, Length[dcc1n3] }];

dmse3 = Table[0, {Length[dccln3]}];
Do[dmse3[[1]] = derrors3[ [i]] *derrors3[ [1]], {i, 1, Length [dccln3] }];

Do [dmser3 [ [j ] ] = 	
1 	

* (Sum[dmse3[ [i]], {i, 1, Length[dccln3]}])];
Length[dcc1n3]

(*fdcc1n3[6];
Show[ListPlot[dcc1n3,PlotStyle►{PointSize[0.02],Hue[0.6])],
Plot[k33[X],{X,First[dcc1n3[[1]]],First[Last[dccln3]]},PlotStyle-,{Hue[0]}],
AxesLabel-o{"Index","Heart Rate"),
TextStyle-,{FontFamily-o"Helvetica",FontSize-,13,FontSlant4"Italic"}];
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dmser3*)

Do[fdcoln3[j], {j, 1, Length[peakvalu] }];

Print["Coefficients3 [Exponent] = ", dcoeff3];

Print["Mean square error = ", dmser3];
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