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ABSTRACT

PLANAR VISUAL FUSION SCINTIGRAPHY

by
Jacob Puthiamadathil

Planar scintigraphy, while providing useful information about the distribution of the

radiopharmaceutical being used, often does not provide adequate information about the

surrounding anatomical structures. A proposed method to solve this problem is by

registering and fusing a scintigraphic image with a digital visual image. Fusing planar

scintigraphic images with visual photographic images to supply an anatomic correlate to

regions of radiopharmaceutical accumulation has been explored in this study. The

digital visual image will provide a context for the relevant structures in the scintigraphic

image. The validity of using one set of affine transformation parameters for registering

all patient data has been confirmed with preliminary data. Results using patient data

confirm registration accuracy to within .95 cm on average and 2.35 cm as the greatest

amount of error. Error was approximated for an optimal imaging radial distance from

the optical axis as being 1.70 cm. Initial clinical imaging has subjectively been very

useful in low background applications such as lymphoscintigraphy, whole body 1-131

NaI imaging for thyroid cancer and In-111 WBC infection imaging.
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CHAPTER 1

INTRODUCTION

Scintigraphic images produced by a gamma camera contain valuable and unique

information about the distribution of the radiopharmaceutical being imaged. In certain

circumstances, the activity levels in surrounding normal structures are low, and thus

abnormalities appear as "hotspots" without context. For this reason, in the realm of

tomographic imaging, successful efforts have been made in the past few years to combine

tomographic scintigraphic information (PET and SPECT) with CT volumetric data (1-4).

The idea of merging anatomic with molecular image information has been shown to be

intuitively correct and clinically meaningful (5), resulting in increasing references in the

medical literature (see Figure 1.1).

Figure 1.1 Annual frequency of PubMed citations retrievable based on keywords 'image
fusion' and 'radionuclide imaging'.

1
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One area in nuclear medicine imaging where fusion with anatomic modalities has

not penetrated is planar scintigraphy. Currently available methods to obtain anatomic

references for scintigraphic images (such as shadowgrams made by placing a sheet of

activity behind the patient, or hot markers placed on anatomic landmarks) are time-

consuming and crude (See Figure 1.2). A method of registering and fusing planar

scintigraphic images with visual images has been implemented and tested. Combined 2-D

visual-scintigraphic imaging would have several advantages over SPECT-CT imaging of

the region in question. It would be substantially more available than SPECT-CT

imaging, more cost effective, and result in less radiation to the patient.

Figure 1.2 Left Panel: Whole body 131 I-NaI study in a patient with papillary thyroid
carcinoma in the region of the thyroid bed (arrow). Because of minimal background
activity, anatomic landmarks are sparse. Right panel: 111 In-WBC localization in
osteomyelitis of the calcaneus (white arrow). The technologist has placed a hot marker
over the calcaneus to add an anatomic reference (gray arrow).
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Planar fusion imaging would be especially valuable in "hot-spot" imaging. Hot

spot imaging is when certain tissues take up radiopharmaceuticals at a much greater

degree than the surrounding tissues. These regions show up with high contrast on

scintigraphic images, however anatomic information is often sparse. Examples of hot

spot imaging include imaging with 111 In-WBC for infection, 131 I-NaI for thyroid cancer

and 99'Tc-colloid for lymphoscintigraphy.

The goal of this project is therefore to improve the ability of nuclear medicine

practitioners to accurately localize sites of abnormal signal by combining digital visual

images with planar scintigraphic images.

The proposed method consists of registering planar radionuclide scintigraphic

with digital visual (photographic) images obtained from a digital camera located at a

fixed geometric location relative to the gamma camera and then fusing these images to

provide a composite visualization, which includes both scintigraphic and anatomical

information.



CHAPTER 2

METHODOLOGY

2.1 Overview of Methodology

Gamma cameras in clinical use are highly regulated by the FDA, and adding additional

equipment to the gamma camera heads without major reengineering is not feasible due to

limited attachment areas and clearance. The gamma camera heads are equipped with

sensors that stop motion upon contact, and these cannot be easily circumvented. While it

might be preferable to attach the digital camera directly to the gamma camera head in a

commercial version of the device, in the initial study, a digital camera (2.11 Megapixel

Nikon Coolpix 850) was attached 255 cm above the floor and directly above the gamma

camera head. See Figure 2.1.

Figure 2.1 Schematic of gamma camera. The gantry, bolted to the floor, supports two
detectors that collect images from the patient. A moveable pallet translates the patient in
and out of the camera. A visual camera has been suspended from the ceiling and projects
directly downwards over the gamma camera field-of-view.

4
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The camera can be remotely controlled by public domain software

(www.math.ualberta.ca/imaging/photopc.exe), which allows for control of zoom,

resolution, flash, exposure, and image retrieval over a serial cable. These instructions

have been simplified by means of scripted and menued batch commands.

All patients have given informed consent to participate in this study, and when a

region of interest is identified (based on a priori information), a spot view of the area is

scintigraphically imaged with the upper gamma camera head oriented parallel to the

floor, above the patient lying on the gantry. While the patient remains immobile, the

gamma-camera heads are rotated by 90 degrees, and the pallet is raised such that the area

of interest is a fixed distance (128 cm) from the ceiling camera, facilitated by a hand-held

gauge that is used to estimate offset from the floor. At this distance, the area of interest is

photographed using the digital camera. See Figure 2.2.

Figure 2.2 Visual Camera mounted above gamma camera. Gamma camera head is in
horizontal plane for scintigraphic view (left panel) and is rotated to the vertical plane for
visual camera acquisition (right panel). Field of view of the visual camera (arrows) is
centered on the scintigraphic field of view.
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The photographic images are written to the hard drive in a JPEG format as a

1600x1200 pixel matrix with an 8-bit RGB format that is subsequently converted to

grayscale. Scintigraphic images are stored as 256x256 matrices with unsigned 8 bit

integers in the DICOM format and exported to PC by ftp.

In the initial implementation and for the data analysis offered in this report,

imaging of a 3-point phantom was done using both the gamma camera and the

photographic camera. The points consisted of Tc-99m markers that are clearly visualized

in both gamma camera and photographic camera images. Matlab (6) was used to find the

centroids of each of these points in the photographic and scintigraphic domains based on

the following protocol. The images were first smoothed using an averaging filter. A 5x5

filter was used for the photographic images and a 3x3 filter was used for DICOM images.

Then the images were thresholded to separate the points from the background, using

OTSU threshold levels. 8-connected objects were then selected (the points in question)

and the centroids of these objects were obtained. Using these three points in the visual

domain and three points in the scintigraphic domain, the parameters of an affine

transformation were obtained by mapping the points in the visual domain to the points in

the scintigraphic domain (See Figure 2.3). Once the transformation was defined, it may

be applied to the visual image as a whole.
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Figure 2.3 Images of the calibration phantom by scintigraphic (upper left) and visual
(upper right) cameras. On the phantom, points of activity are located at spatial
coordinates (0",0"), (0",12"), (12",0") and (10",10"). Based on the affine transformation
derived from the first 3 points, the registered visual image appears in the lower left panel
while the fused image appears on the lower right. The 4th point (arrows) can be used as
an internal measure of accuracy. Note the excellent registration of all four points.

In subsequent implementations, 57Co markers, which are easier to manipulate and

use, have been employed. With maturation of the technique, other changes that were

introduced include the usage of the open source Java program ImageJ (7) and two

plugins, TurboReg (8) and the Image Layering Toolbox (9) that were used to perform

image registration and fusion. Centroid locations were obtained through visual

inspection for reasons of speed and convenience.
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Testing of robustness of registration was performed in several ways. The affine

transformation defined for a certain plane using three markers was compared to a 4 th

point also on that plane. The transformation that was defined by the three points was

performed on the entire photographic image, which contained an image of a 4 th point as

well and this was compared to the actual location of the 4 th point in the gamma camera

image.

Testing of the imaging system was performed to ensure that it was linear and

spatially invariant. The phantom was centered on the patient bed and the bed height was

changed so that the phantom was at three different distances from the photographic

camera. The phantom was photographed at these distances. These measurements were

used to predict how much the affine transformation parameters could be expected to

change due to imprecision in the distance between the camera and the patient bed.

The imaging system was also tested under actual clinical conditions. During a

period of several months, a generalized affine transformation which was defined on a

certain day, was compared to patient specific affine transformations defined for certain

patients. The affine registration parameters for the generalized affine transformation

were compared to the specific patient-based affine transformations.

2.2 Image Acquisition and Preparation

Images of the phantom from the photographic camera were acquired as 1600x1200 8 bit

RBG JPEGs. Images of the same phantom from the gamma camera were saved as

256x256 8 bit grayscale images in the DICOM format. OTSU threshold levels were

determined to separate image of the points from the background image in both
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photographic and gamma camera images. The threshold categorized the images into 0

and 255 pixel intensities. The 8-connected objects were chosen which corresponded to

the images of the points in question. Centroid calculations were performed on these

connected objects having the centroid be the center of mass of these objects, calculated:

where Cx and Cy are the x and y coordinates of the centroid of the selected object. N is

the number of pixels found, and Xi and Yi are the coordinates of the pixel edges (10).

2.3 Affine Transformation

The affine transformation is a special case of the rigid body transformation that includes

translation, rotation and scaling operations (11). Fiducial markers were used to define

planes in both the photographic image domain and the gamma camera image domain.

Three points were used to define the respective planes. The affine transformation can be

written as x'=Ax.

In expanded form the transformation can be written as:

The equations can also be written in the form:
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where x,y were the coordinates of the fiducial marker in the input image domain and

x',y' are the coordinates of the same fiducial marker in the output image domain, since

the affine transform parameters are unknown.

For the study, the photographic domain was transformed to the gamma camera

domain. Since there are six unknowns (a,b,c,d,e, and f), six equations or 3 points were

needed to find the parameters of the transformation. In matrix form, the relationship can

be written as:

(xi' \ ( xi y1 1 0 0 0\(a \

yi' 0 0 0 xi yi 1 b

X2 ' X2 y2 1 0 0 0 c
y2' 0 0 0 x2 y2 1 d

.x3' x3 y3 1 0 0 0 e

y3') 0 0 0 x3 y3 1 jf)

It can be shown that the 6x6 matrix containing the initial x,y positions of the

object to be transformed is full rank, or rank of 6 since the three points selected in both

image domains were carefully selected so as to not be collinear. In this case, the inverse

of the 6x6 matrix exists. The column vector with the affine transform parameters can be

solved for in this manner:

( xi y, 1 0 0 0 1 (xi' ( 1 0 0 0 0 0\ ia )
0 0 0 xi yi 1 . yi' 0 1 0 0 0 0 b

x2 y2 1 0 0 0 X2' 0 0 1 0 0 0 c

0 0 0 x2 y2 1 yz' 0 0 01 0 0 d

x3 y31 0 0 0 X3' 0 0 0 0 1 0 e

0 0 0 X3 y3 1, y3') 0 0 0 0 0 l i f)

Once the parameters were obtained, the affine transformation was applied to the

entire photographic image which had a resolution of 1600x1200 and was previously

converted into a grayscale image using the formula, I=(R+B+G)/3. The intensity of the
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pixels in the transformed photographic image was interpolated using bilinear

interpolation. Bilinear interpolation is an extension of linear interpolation used for

interpolating functions of two variables (12). Since the original pixels values will tend to

lie on fractional x and y values in the transformed image, bilinear interpolation uses a

weighting of the four nearest neighbors to come up with a value for the integer grid

values in the transformed image.

2.4 Image Fusion

In the study, the final implementation was such that image fusion was performed within

the ImageJ environment. The Image Layering Toolbox (ILT) plugin was used to fuse the

gamma camera image and the registered photographic image. There are two different

layering options available within the ILT plugin: contour and colorburn. The colorburn

mode is the default mode, but the contour mode was used to modify the gamma camera

image.

For the colorburn mode, a colormapper was defined by an array of object Colors

with a size of 256. The array was called mLUT. The array mLUT[g], for g=0...255 was

populated using the equation:

The variable mC1 was the first Color selected by the user, by default white.

mCl.getred() refers to the integer value of the red component for mC1 and likewise for
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green and blue, and mCDiff[0] refers to the integer difference in red between mC1 and

mC2 (which was by default black but could also be modified), mCDiff[1] refers to the

difference in green between mC1 and mC2, and mCDiffI2] refers to the difference in

blue between mC 1 and mC2. mag is defined as:

The Color cx was defined as cx=new Color (g,g,g) for g=0...255. Thus mag

ranged in value from 0 to 1. The array mLUT basically takes an input in the form of mag

and maps it to a line with y-intercept of mC 1 .getred, mC 1 .getgreen, or mCl.getblue and

or Ablue with the slope of Ared Agreen,	 respectively. If the initial defaults for mC1

and mC2, which are white and black, respectively, this colormapper can be used to

convert an RGB image into an 8 bit grayscale image.

Mapping into the colormapper is done by reading the color at a particular pixel

and converting it into the Color class. This new Color object called cx is then normalized

using Equation above and then inserted into the mLUT array as follows

mLUT[mag*255] .

The contour mode's colormapper is defined as:

The array mLUT is once again an array of Color objects with a depth of 256. The color,

this time, is defined in the HSB domain. The variable huval refers to the upper hue value,
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which is set to .7. The lower hue value, hlval is set to 0. The variable i runs from 1 to

256. mLUT[0] is defined as Color (0,0,0), which is transparent, but for all other indices

of the array, the saturation and brightness were set to 1 and 1 respectively on a 0 to 1

scale. This is another linear mapping of the input hue into a different set of hues. The y-

intercept is hovel and the slope equals (huval-hlval)/depth.

Mapping into the contour mode colormapper is performed by first reading the

pixel value in the image to be mapped (which is the variable f) and then normalizing it

based on this formula:

The value of x varies from 0 to 1. Then this fraction was multiplied by 256 to

access the appropriate index in the mLUT array.

The registered photographic image was selected as the bottom layer and it was

automatically converted into a colorburn image. The gamma camera image, after it was

converted into a contour mode image was added to the layer below it. The addition of

these images was done with the Porter-Duff equations.

In the trivial case where:
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otherwise:

new red=destination red + source alpha * (source red-destination red)

new green= destination green + source alpha * (sourcegreen-destinationgreen)

new blue = destinationblue + source_alpha * (sourceblue-destinationblue)

The new image consists of a red, green, and blue channel. This is the

new_rgba_arr array. To obtain the new image, the destination image (the image that is

already in place), is added with the source image multiplied by the source image's alpha

value. This variable is source_alpha. By default the alpha value is .7 on a floating point

scale from 0 to 1.

Because there are extreme ranges of activity in hotspot imaging which are best

portrayed after log transformation, an additional fusion mode was created. The natural

log of the gamma image's pixel intensities were taken before the image was color coded

with the existing contour colormapper and added to the previous layers with the same

equations.

Essentially the new equation is:

The value of x is a float but when it is multiplied by 256 to get the value in the

mLUT array, it is converted to an integer, thereby a binarization process is occurring.



CHAPTER 3

BACKGROUND

3.1 Photographic Imaging System

A photographic camera can be approximated by a pinhole imaging system (13).

Assuming that all the points of interest lie in a plane equidistant from the camera, the

relationships between a point in the object domain (x,y) and the image of that point in the

imaging domain (x',y'), are governed by x'=-mx, and y'=-my, where m= -(f /z0). f' is

the distance from the optical center to the image plane along the k direction. —z0 is the

distance along that same direction from the optical center to the object domain (9).

If there are two points P and Q and their images P' and Q' the vectors PQ and

P'Q' are parallel and we also have PQ = mIPQI, See Figure 3.1. If the object plane is

moved a further distance from the optical center, all of the line segments in the image

plane will be magnified by a factor m. It can be assumed that the image has been scaled

uniformly.

Figure 3.1 Weak Perspective Projection (13).

15
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The thin lens equation can also be used to model the imaging process of a camera.

The equation governing the thin lens model is 1/z' — 1/z = 1/f. Where -z is the distance

from the lens to the object and z' is the distance from the lens to the image and f is the

focal length of the lens. An affine transformation would not be able to perfectly describe

an image where the object plane is at an angle to the lens. In this situation, perspective

error would be introduced as the magnifications would be variable. For most

applications, it is not a given that the object or region of interest will lie on a plane

parallel to the lens in the camera.

Even if the object to be imaged were to be located in one plane parallel to the lens

in the camera, spherical and chromatic aberrations would cause errors in the registration

process. Spherical aberration is defined as a point in the object domain, P, would appear

as a circle of confusion centered at P' (where P' is the paraxial image of P) in the image.

Spherical aberration that lies off the optical axis of the camera is called coma. Coma

would cause errors in the registration process. Chromatic aberration could also

potentially be a problem. Chromatic aberration occurs because different wavelengths of

light have different focal lengths, thus making locating the centroid of points inaccurate.

This is a fiducial location error. (See Figure 3.2).
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Figure 3.2 Top is spherical aberration. Bottom is chromatic aberration (13).

3.2 Overview of Nuclear Medicine Imaging

Anatomical imaging modalities such as planar X-ray and Computed Tomography are

limited to structural information about the body and generally do not provide metabolic

or functional information about an organ or tissue (14). This information is important

because it provides valuable insight into physiological functioning. Radionuclide

imaging methods directly involve an organ and associated tissue in the body in a way that

the organ itself becomes a source of radiation that is used in the imaging process. These

methods are called emission imaging methods and primarily utilize radioactive decay. In

the process of radioactive decay, an unstable nucleus decays into a stable nucleus by the
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release of nuclear energy and by emitting photons and/or specific particles such as

positrons, electrons and alpha particles.

Radioactive decay can be described as an exponential process with respect to

time:

N(0) is the initial number of radioactive atoms, N(t) is the number at time t and

ri is the radioactive decay constant.

The half-life of a radionuclide, Thalf is defined by the time required for half of the

radionuclides to transform, and can be expressed as:

3.3 Anger Camera and Scintigraphic Images

In the Anger camera, a y -ray image is projected by the collimator onto the NaI(Tl)

detector crystal, which creates a pattern of scintillations in the crystal that reflects the

distribution of the radioactivity in the front of the collimator (15). Photomultiplier tubes

that are attached to the collimator amplify the light signal while electronic position logic

circuits help determine the location of each scintillation event as it occurs in the crystal.

Individual scintillation events are analyzed for energy by pulse-height analyzer circuits.

If an event falls within the selected energy window, indicating a non-scattered event, the

matrix position X-Y is incremented by one, which corresponds to the location in the

crystal where the event occurred (See Figure 3.3).



Figure 3.3 Schematic of Anger Camera (15).

Gamma rays cannot be focused, so a lens principle similar to photography cannot

be used. Most y -ray imaging systems employ the principle of absorptive collimation for

image formation. There are four basic types of collimators: pinhole, parallel-hole,

diverging, and converging. A parallel-hole collimator was used for this application. The

parallel-hole collimator is the most commonly used collimator in most imaging

laboratories. Parallel holes are drilled or cast in lead or shaped from lead foils. The lead

walls between the holes are called septa. Septa thickness is designed so that y -rays do

not cross from one hole into another. The parallel-hole collimator projects an image of

the same size as the source distribution onto the detector. A fundamental relationship for
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the collimator is that for a given septal thickness, collimator resolution is improved only

at the expense of decreased collimator efficiency.

The Anger camera uses a single, large-area, NaI(Tl) detector crystal, usually 1.25

cm thick x 30-50 cm in diameter. Some low-energy radionuclide cameras, such as those

used solely for 99mTc, have crystal thicknesses of only 6-8 mm. Relatively thin detector

crystals are preferred for the Anger camera, even at the expense of less efficient radiation

detection, because of their ability to provide better intrinsic resolution and some

improvement in detail.

An array of photomultiplier (PM) tubes is coupled optically to the back face of the

crystal with a silicone fluid or grease (See Figure 3.4). Most modern cameras use 37, 61,

75, or 91 tubes arranged in a hexagonal pattern. The PM tubes are split into X+, X-, Y+

and Y- regions, and depending on the strength of these signals, X and Y position signals

are obtained which are used to position a recorded event in the proper matrix location.

The equation for the X position signal is: X = k(X+ — X - )1 Z and similarly for the Y

position signal, Y = k(Y+ — Y- )/Z . K is a scale factor adjusted for the size of the matrix.

Z is a signal proportional in amplitude to the total amount of light produced by a

scintillation event in the crystal. These equations do not describe a true mapping of

source position because the PM tubes are not "point" detectors.
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Figure 3.4 Setup of photomultiplier tubes (15).

Two basic types of problems that are found in the Anger camera are nonlinearities

and nonuniformities. Nonlinearities occur when X- and Y-position signals do not change

linearly with displacement of a radiation source across a PM tube. An example of this is

when a source is moved from the edge of a PM tube towards its center, the light

collection efficiency of the tube increase more rapidly than the distance the source is

moved. The result is a pincushion distortion in areas of an Anger camera directly in front

of PM tubes and barrel distortions between them. The other type of problem is

nonuniform detection efficiency. This occurs mainly from small differences in the pulse-

height spectrum for different PM tubes.

Some cameras incorporate microprocessor-based circuitry to correct for image

nonuniformities. In one scheme, the test image is first normalized relative to the image



22

matrix element having the smallest number of counts (the coldest element matrix in the

image). This element is assigned a relative intensity of 100. Other elements are assigned

greater values, depending on their relative intensities in the uniform field image. In

patient imaging, a certain fraction of the counts recorded in each element are thrown out,

depending on the relative intensity of that area in the test image.

Recently, because of the development of economical microprocessors circuits, it

has become feasible to address the nonlinearity problem as well. The camera is provided

with a set of microprocessors that are used to store correction matrices for regional

differences in pulse-height spectra and for position distortions. The correction matrices

are programmed into the microprocessor using calibration measurements performed at

the factory before installation of the camera. The calibrations involve precise

measurements using line source of pulse-height spectra for individual PM tubes and

position distortions over the entire region of the detector crystal.

3.4 Single Photon Emission Computed Tomography

In SPECT imaging, radionuclides are injected into the body via radiopharmaceuticals,

which distribute into tissue, making the tissue a source of gamma rays (16). The gamma

rays from the tissue pass through the body and are captured by the detectors surrounding

the body to acquire raw data for defining projections. The projection data are then fed

into reconstruction algorithms, to display images with the help of a computer.

Commonly used radionuclides include, Technetium ""Tc , Iodine 123/ , and Gallium

67Ga . These radionuclides decay by emitting gamma rays with photon energies ranging

from 140 keV to 400 keV.
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The attenuation of gamma rays can be expressed as: Id 7-7 10C" , where 4 is the

intensity of the gamma rays at the source, Id is the intensity at the detector after the

gamma rays have passed a distance of x with a linear attenuation coefficient v that

depends on the medium and the energy of the gamma ray photons.

After the tissue or organ to be imaged becomes radioactive, the patient is

positioned in a scanner with detectors placed surrounding the patient. Detectors may be

arrayed in a ring surrounding the patient covering a full 360-degree range, however more

commonly, detectors subtend only a small angle around the patient, but rotate during the

scan to provide a complete sampling of angular data. Sodium iodide NaI(T1) crystal-

based scintillation detectors coupled with photomultiplier tubes are most commonly used

for detection of gamma rays. Scattering and low photon statistics are major problems

with SPECT imaging. Scattering events cause loss of source information, as it is difficult

to identify the path of travel for the photon originating from the source. Lead-based

collimators are used to reduce the detection of scattered events, while pulse-height energy

windowing is used to identify non-scattered photons. These maneuvers improve the

signal-to-noise ratio.

The nonlinearities caused by the detectors and the photomultiplier tubes make the

SPECT imaging process spatially variant. Images would show degradations and

geometric artifacts such as cushion and barrel artifacts because the registered detector

count fluctuates from the actual count based on detector location. Intensity

nonuniformities are corrected by using phantom data of uniform emission activity in the

region of imaging. Pre-processing methods are needed to correct the geometric artifacts.

Assessment of point-spread and line spread functions are useful in this regard.
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The source of radiation is inside the body so gamma photons interact with the

matter inside the body for attenuation and scattering processing, including photoelectric

absorption and Compton scattering. Photoelectric absorption leads to the loss of a photon

and Compton scattering can cause the direction of a photon to be changed significantly.

The distribution of the data collected in the detectors might be different from the actual

distribution of emission source activity within the object. Attenuation correction methods

incorporate weighting factors that are based on the average regional or pixel-level

activity. Scatter correction methods are based on estimation techniques using photo

statistics derived from distribution models or experimental measurements.

3.5 Introduction to Multi-Modal Registration

There are three major approaches to multi-modal image registration, both for areas and

volumes (17). These include:

1) External Marker And Stereotactic Frames Based Landmark Registration: These
include external markers in multiple scans or the use of stereo tactic frames to
establish a common coordinate system. Markers, which are visible in different
modalities, have been used for image registration. External landmark-based
registration methods use coordinate transformation and interpolation computed
from visible markers to optimize the mean squared error.

2) Rigid-Body Transformation Based Global Registration: This category treats the
volume (usually brain volume) as a rigid body for global registration. Levy et al
presented a Principal Axes Transformation for 3-D registration, which does not
require user intervention. However this method has its weaknesses for interposal
PET-MR registration because PET scans do not cover the entire brain, whereas
MR scans usually do. So these volumes will not match. Dhawan et. al developed
an Iterative Principal Registration method which overcomes this limitation.

3)	 Image-Featured-Based Registration: These are algorithms which register images
based on features such as edges, contours, surfaces, volumes and internal
landmarks. This can be divided into two categories.
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a. Boundary and Surface Matching Based Registration: Pelzer et al.
presented a surface matching technique, in which 3-D models of the
surface to be matched are first produced by outlining contours on serials
slices of each scan. 3-D models of the brain surface from both scans are
then corrected for possible geometrical errors. 	 A geometric
transformation is obtained by minimizing a predefined error function.
Once the two surfaces are matched, the registration information is
transferred between the scans using the volume of interest solid model
created from boundary contours.

b. Image Landmarks and Feature Based Registration: Algorithms that utilize
predefined landmarks that can be identified or extracted from images has
been used recently. Bayesian probabilistic models have been used to
integrate 3-D image information for registration. Landmark-based elastic
matching algorithms have been implemented. Also, probabilistic models
using maximum likelihood estimation have also been investigated.

If landmarks can be identified a priori, then corresponding points can be used to

define a transformation. For non-rigid transformation with isotropic scaling, a

transformation can be defined as x'=srx + t such that the registration error defined as

E(x) = T(x) — y is a minimum. The vectors x and y are corresponding points in the source

image X and the output image Y.

The error function can also be written in the form I wiz I sRxi + t yi 1 2 . wig is a

weighting factor assigned to the point based on the confidence in the landmark and N is

the total number of points used. The algorithm used to calculate the values of R, s and t

is as follows:

1) compute the weighted centroid of the fiducial configuration in space:



2) Compute the displacement from each fiducial point to the centroid
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4) Perform singular value composition of H:

For the case where the scaling is anisotropic, a closed form solution does not exist

and an iterative solution must be used.

3.6 Weighted Geometrical Featured Based Registration

A disparity function can be written which utilizes multiple geometrical features to

perform a registration (18):

Where {Xi} for i=1 	 Ns is a set of Ns shapes that correspond between x and y spaces.

An iterative approach can be used to minimize the disparity function:
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initial transformation. K and the superscript parentheses are iteration indices.
The algorithm can be implemented with multiple initial transformations to make
sure that a global minimum has been obtained.

2)	 Iteratively apply the following steps, incrementing k after each loop, until
convergence within a tolerance e has been obtained

a. For each shape X, compute the closest points y k) ci(4) 	 for

j=1,...., Nx

b. Compute the transformation T(k) between the initial point set, {4 ) } , and

the current set, 64°1, using the weights {vu} .

c. Apply the transformation to obtain registered points: x ii(" ) = T (k) (4 ) )

d. Terminate the loop when d(T(k) )— d(T (" ) ) < 6.

3.7 Elastic Deformation Based Registration

In the elastic deformation process, one volume which is considered to be made of an

elastic material is registered to another volume, which is considered to be rigid (19). The

elastic volume is deformed by applying external forces so that it matches the reference

model. The matching process starts in a coarse mode in which large differences are

corrected first, and then fine detailed adjustments are done later in the registration

process.

There are two major constraints that can be applied during the deformation for

local matching. These are smoothness and incompressibility. Smoothness guarantees

that there will be continuity in the deformed volume while the incompressibility

constraint ensures that the total volume remains the same. The forces required to locally

match the volumes are calculated with these constraints and can be expressed by the

general equation for motion of a deformable body in Lagrangian form as:



28

where f(r,t) is the force acting on a particle at the position r at a time t. ,u and y

are the mass and damping constant of the deformable body, and e(r) is the internal

energy of deformation. An image voxel can be treated as a particle for which a

movement is calculated for image registration.

Let the elastic volume be represented by VI with the coordinate system

x = (x1 , x2 , x3 ) and the reference volume can be represented by V2 with the coordinate

system x' = (ii ,x2 ,i3 ) . A relationship between the two coordinate systems can be

expressed as dr = 
Sr 

dx1 +—
(Sr 

dx2 +—
gr 

dx3 . The partial differential operators on a
gx,	 gx2	 gx3

position vector r of a voxel in the registration space can be represented as g.
1 =

—

gr 
for

 gx1

i=1,2,3. Thus, the above equation can be rewritten as dr = g,dx1 .

If u is an arbitrary vector represented by (ul,u2,u3) with respect to the coordinate

system such that u = us1 +u2 g2 +u 3g3 =u 1g1 , it can be shown that ui =(usj )• gi = guuj .

The quantities gu are components of the generalized metric tensor G uic in a 3-D coordinate

system. The metric tensor represents a distance measure with respect to a given

coordinate system. Any transformation applied to the metric tensor creates a new metric

tensor for the new coordinate system.

Considering a position vector u with respect to a point a(a1,a2,a3) in the
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an be defined, which represents the second-order

partial derivative.

The potential energy c(x) = kI (Gift — Gii°7,) 2 can be defined in terms of the metric
ijk

tensor where Gii().k is the resting metric tensor (no deformation) and k is a constant. The

elastic deformation function model can now be represented as

e(r) = LI' Gijk - Gij9k 11 2 du where Q represents all voxels in the volume for registration.

A model for matching through elastic deformation can be formulated as a

minimization problem of the cost function that is based on a similarity measure between

the two volumes to be registered. Let S(x,x') represent a similarity measure between the

local region R centered at the location x in V and the region R' centered at x' in V2 . A

displacement vector u is defined as the difference between the two locations. The

optimal match for R to the region R' for the displacement vector u is the one that

maximizes the similarity measure S(x,x').

A possible form of the similarity measure can be expressed in terms of metric and

curvature tensors

superscripts 1 and 2 represent, the deformable volume V I and the reference volume V2 .

3.8 Overview of Image Fusion

Image fusion techniques have been used in 3-D MR and PET brain image data sets (20).

Such 3-D data can be considered as a stack of two-dimensional images cross sections that

are acquired along a certain axis. In such a case, a slice from one imaging modality can
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be overlayed onto a slice from another modality to create a composite visualization. The

advantage of this is that boundaries and edges from the anatomical imaging modality can

be overlayed onto the functional imaging modality to provide detail that was not

available in either image alone.

Direct 3-D visualization methods such as stereo-pairs with color- or polarization-

coded depth perception has been investigated in the medical literature. Through the

variations of brightness, the observer can visualize or perceive the depth in the volumetric

data. With stereoscopic visualization, two views of an object are created with different

viewing angles using a binocular vision approximating the same geometry. The

difference in viewing angle depends on viewing and interocular distances. Other direct

display methods include motion parallax, varifocal mirror systems, rotating light-emitting

diode systems and holography. The direct display methods have little significance in

diagnostic radiology dealing with tomographic images.

3-D volumetric data can be obtained from a 3-D medical imaging modality such

as CT, MRI or PET. In many applications, these 3-D representations will be organized as

a stack of serial selections that are 2-D images of a 3-D object along a specific axis. With

newer scanners, however, 3-D imaging directly provides 3-D volumetric data. The

methods to visualize volumetric data can be broadly classified into two categories:

surface rendering or volume rendering methods.

Surface rendering consists of turning 3-D data into a binary volume

representation. The 3-D binary volume is searched for the boundary voxels that are

interpolated to render a specific geometrical primitive based surface. This method is
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useful for understanding the geometrical shape of the object and its variation within a

group or with respect to an anatomical atlas.

Volume rendering methods allow visualization of the structural variations within

the 3-D volumetric data. A common approach used in volume rendering methods is ray

tracing. In the simplest form of ray-tracing, a uniform light source is placed behind the

voxels of the volumetric data. For each straight-line based ray from the light source to

the pixel in the image plane of the display, the density values and location of the voxels

in the path of the ray are used in calculating the intensity value of the pixel in the

corresponding image.



CHAPTER 4

RESULTS

4.1 Registered and Fused Examples

Thirty-eight patient images were registered and fused. Here are the results of some of the

registration and fusion process:

Figure 4.1 This is a planar scintigraphic image, originally saved in the DICOM format,
of In-11 l labeled white blood cells localizing in a painful left ankle. The regions that
have the highest levels of radioactivity appear whiter in color.

Figure 4.2 Digital visual image of the identical view.
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Figure 4.3 Digital visual image registered using the affine transform and then aligned
with the scintigraphic image.

33

Figure 4.4 Fused image. The hue in this image contains the scintigraphic intensity. The
regions with the least radioactivity are red in hue and increased levels of radioactivity are
coded as yellow, green, blue and magenta, respectively.
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4.2 Measurement of Error

The initial measurement of robustness of registration is error introduced within the image

plane. In the above 4-point phantom (Figure 2.3) the centroid of the fourth point was at

position (85.5, 168.6) in the scintigraphic image matrix while based on the affine

transformation of the visual image, it was predicted to be at a position (85.5, 169.5),

indicating an error less than 1 pixel confined to the y axis.

The second test was performed to assess the validity of the affine transformation

of the photographic image. The camera position was held stationary and the patient bed

was elevated to three separate heights (-27.5 cm, -10 cm, and 7.5 cm) with a phantom

located on the bed. At +7.5 cm, the phantom was closest to the camera. The pattern of

the phantom consisted of a square with four radionuclide markers at the vertices and an

additional marker in the center of the pattern (See Figure 4.5).

Figure 4.5 The x and y positions of the 5 point phantom imaged at distances of -27.5 cm
(furthest from the photographic camera), -10 cm and 7.5 (closest to the photographic
camera).
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Using the pinhole perspective model of imaging, we see that image plane locations x' and

y' of the object located at xylem are related as follows:

x' = f (x/z) and

y' = f (y/z)

The variable 1 is the length along the z direction. It is the distance between the

pinhole and the image plane. The variable z is the distance from the pinhole to the object

plane. See Tables 4.1-4.3 for a listing of the positions.

Table 4.1 The x and y Position of the Centroid of the Points at -27.5 cm (in cm)

-27.5 X Y
A 13.74 31.77
B 37.67 32.63
C 14.37 8.05
D 38.14 8.66

E (midpoint) 26.25 19.58

Table 4.2 The x and y Position of the Centroid of the Points at -10 cm (in cm)

-10 X Y
A 11.74 33.41
B 38.6 34.38
C 12.44 6.77
D 39.14 7.46

E (midpoint) 25.79 19.72

Table 4.3 The x and y Position of the Centroid of the Points at 7.5 cm (in cm)

7.5 X Y
A 8.95 35.36
B 39.52 36.49
C 9.75 5.05
D 40.16 5.85

E (midpoint) 24.95 19.8

Given any two points (P, Q) in the object plane, the length of the line segment in

the image plane will be related as mIPQ1, m being the magnification. Since the phantom



36

was imaged at three separate depths, the distance between any two points P, Q in the

images will be related to the original object plane length by m1IPQI, m21 13 Q1, and m311)Qi•

Thus, if the image plane is parallel to the object plane, the line segments that connect P

and Q should be related by a common multiple (m 3/m2 or m3/m 1 or m2/mi). Tables 4.4-

4.6 have a listing of the Pythagorean distances between points at a certain distance from

the photographic camera. Point A is the upper left point, Point B is the upper right point,

Point C is the lower left point, Point D is the lower right point, and Point E is the

midpoint.

Table 4.4 The Pythagorean Distance Between Points at -27.5 cm (in cm)

-27.5 A B C D E
A X 23.94545 23.72836 33.60702 17.467
B X X 33.86837 23.97461 17.34125
C X X X 23.77783 16.55522
D X X X X 16.14368
E X X X X X

Table 4.5 The Pythagorean Distance Between Points at -10 cm (in cm)

-10 A B C D E
A X 26.87751 26.6492 37.73808 19.61679
B X X 38.03495 26.92542 19.46822
C X X X 26.70891 18.59906
D X X X X 18.1254
E X X X X X

Table 4.6 The Pythagorean Distance Between Points at 7.5 cm (in cm)

7.5 A B C D E
A X 30.59088 30.32056 42.95235 22.31846
B X X 43.29811 30.64668 22.15493
C X X X 30.42052 21.18024
D X X X X 20.63847
E X X X X X
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Overall, the scaling factors between line segments at -10 cm to -27.5 cm were

roughly 1.23. The scaling factor between line segments at 7.5 cm to -27.5 cm was 1.27

and the scaling factor between line segments at 7.5 and -10 cm was 1.13. It appears that

the scaling is relatively uniform at different depths which means that spherical and

chromatic aberrations are not a significant cause of registration error. See Tables 4.7-4.9.

Table 4.7 Ratios of the Lengths of the Identical Line Segments at -10 cm and -27.5 cm

Ratios(-10/-
27.5)

A B C D E

A X 1.122448 1.123094 1.122922 1.123077
B X X 1.123023 1.123081 1.122654
C X X X 1.12327 1.123456
D X X X X 1.122755
E X X X X X

Table 4.8 Ratios of the Lengths of the Identical Line Segments at 7.5 cm and -27.5 cm

Ratios(7.5/-
27.5)

A B C D E

A X 1.277524 1.277819 1.278076 1.2775
B X X 1.278423 1.278298 1.277586
C X X X 1.279365 1.279369
D X X X X 1.278424
E X X X X X

Table 4.9 Ratios of the Lengths of the Identical Line Segments at 7.5 and -10 cm

Ratios(7.5/-
10)

A B C D E

A X 1.138159 1.137766 1.13817 1.137722
B X X 1.138377 1.138207 1.138005
C X X X 1.138965 1.13878
D X X X X 1.138649
E X X X X X

The second evaluation that was performed was to assess error introduced by

variation in the image height (Figure 4.5). From Figure 4.5, several factors are apparent.
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The center of the phantom aligns with the center of the image in the y dimension, but not

in the x axis, where it is displaced approximately 50 pixels to the right. Secondly, as the

phantom moves away from the imaging camera, the size of the rectangle boarded by the 4

outer markers decreases by 5.72 pixels per cm height (in the x direction) and 5.75 pixels

per cm height (in the y direction) or approximately .62 percent per cm height (in the x

direction) and .62 percent per cm in height (in the y direction). This represents an

estimate of the registration error based on incorrect camera-subject distance. As the

distance between the center point and the photographic camera increases, the center point

slightly shifts to the right.

An analysis was done comparing the affine registration parameters of the

generalized transformation to the patient specific transformation. The generalized

transformation was defined on January 26, 2004. It was compared to patient specific

transformations defined on five other dates.
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Table 4.10 Affine Transformation Parameters for "Generalized" and Patient-Dependent
Transformations

Date Transformation Parameters
January 26, 2004
"Generalized Transformation"

-.141, .005, 0
-.0044, -.1408, 0
237.2464, 210.7148, 1

June 9, 2004a -.1456, .0075, 0
.0024, -.1437, 0
234.6083, 209.2214, 1

June 9, 2004b -.1407, .0045, 0
.021, -.1326, 0
224.1104, 203.888,1

June 11, 2004 -.1406, .0076, 0
-.0017, -.1417, 0
224.5652, 207.5135, 1

June 14, 2004 -.2658, .0041, 0
-.0131, -.2723, 0
333.6204, 290.1921, 1

July 7, 2004 -.1427, .0035, 0
-.0015, -.1472
234.4822, 214.9255, 1

Table 4.11 Comparison of Generalized Transformation Parameters and Average of
Patient Dependent Transformations

Gen.
Trans.
Param. 	 1
- Trans. x-
Param. 1

Gen.
Trans.
Param. 	 2

Trans. x
Param. 2

Gen.Trans.
Parameter 3 -
Transformation
x Parameter 3

Gen.
Trans.
Param. 4-
Trans. 	 x
Param. 4

Gen.
Trans.
Param. 5-
Trans. 	 x
Param. 5

Gen.
Trans.
Param. 6-
Trans 	 x
Param. 6

Trans.1 0.0046 0.0025 0.0068 0.0029 2.6381 1.4934
Trans.2 0.0003 0.0005 0.0254 0.0082 13.136 6.8268
Trans.3 0.0004 0.0026 0.0027 0.0009 12.6812 3.2013
Trans.4 0.1248 0.0009 0.0087 0.1315 96.374 79.4773
Trans.5

0.0017 0.0015 0.0029 0.0064 2.7642 4.2107

Table 4.10 refers to a comparison of the affine parameters defined specifically for

patients on five dates as compared to the generalized affine parameters. The affine

parameter defined on June 14, 2004 appears to be more of an outlier than the

transformations defined on the other days.
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Table 4.11 is a comparison of the six parameters of the affine transformation

parameters between the generalized transformation and the five patient dependent

transformations.

Table 4.12 Mean and Standard Deviation of Error for Affine Transformation Parameters

Mean of Errors Standard
Dev.

of Errors

Mean
Of Errors

without June
14, 2004

Standard
Dev.

Off Errors
without June

14, 2004

Parameter 1 0.02636 0.055056998 .00175 .002

Parameter 2 0.0016 0.000938 .001775 .0009
Parameter 3 0.0093 0.009358686 .00945 .0108
Parameter 4 0.02998 0.056824 .0046 .0033
Parameter 5 25.5187 39.93712349 7.80 5.90
Parameter 6 19.0419 33.83964 3.15 2.23

Table 4.12 has the means of the errors for the six different 2-D affine parameters

and the standard deviation of the means. The affine parameters obtained on June 14,

2004 were significantly different from those obtained on the other days. For this reason,

the mean of errors and the standard deviation of the errors were recalculated without this

data point. The generalized and the patient-specific affine transformations appear to be

similar. More data is needed to see if they are statistically similar.

Another measure of error was obtained by using the generalized transformation

defined on the data of January 26, 2004 and applying this transformation on patient data

acquired on other days. Cobalt markers were placed on the patients and a single cobalt

marker was used as a best representative for the error of the transformation. A

comparison was done between the predicted locations of the cobalt marker in the

transformed image compared to the actual locations in the gamma camera image. Table

4.13 has this information.



Table 4.13 Comparison of Error for Generalized Affine Transformation

jpg-x jpg-y dcm-x dcm-y

Error x-
pixels

Error y-
pixels

Error
sum
pixels

Error
sum in
cm

40812 90 158 85 157 5 1 5.10 1.196

40709 131 141 127 140 4 1 4.12 .967

407011 187 127 186 126 1 1 1.41 .331

40630 133 137 130 136 3 1 3.16 .741

406091a 154 168 150 167 4 1 4.12 .967

406092a 184 127 187 125 3 2 3.60 .845

40611 105 123 95 121 10 2 10.20 2.34

40614 126 157 125 157 1 0 1 .234

It can be seen from Table 4.13, that in most cases, the error was small. The

average error in cm was .95 cm. In one particular case (case number 40611), the error

was significant. It is speculated that the height of the patient bed was not properly

adjusted for this particular case.

4.3 Error of a Single Point

Error from the digital visual image can be minimized both by adjusting the z

displacement from the camera to conform to the height at which the affine transformation

was defined and by placing the area of interest as close to the optical axis of the camera

as possible. Table 4.14 shows the distances from the midpoint (point E) to each of the

four corner points. Table 4.15 shows the error at the four outer points of the five-point

phantom, both as absolute distances and as percentages.

41



Table 4.14 Distances from Midpoint to Four Outer Points at Different z Distances

Distance from
midpoint at 7.5

cm (in cm)

Distance from
midpoint at -10.5 cm

(in cm)

Distance from
midpoint at -27.5 cm

(in cm)
Point A 22.3 19.6 17.5
Point B 21.1 19.5 17.3
Point C 21.2 18.6 16.6
Point D 20.6 18.1 16.1 	 .

Table 4.15 Error as a Function of z Displacement

Distance Absolute Dilation
for z displacement
of 17.5 cm (in cm)

Absolute Dilation
for z displacement
of 35 cm (in cm)

% Change for z
displacement of

17.5 cm

% Change for z
displacement of

35 cm
Point A-Point

E
2.7 4.8 12.11 21.52

Point B-Point
E

1.6 3.8 7.58 18.00

Point C-Point
E

2.6 4.6 12.26 21.70

Point D-Point
E

2.5 4.5 12.14 21.84

It should be noted that the calculated error in the position of the four peripheral

markers represents a worst-case scenario in that in the majority of cases, the area of

interest to be imaged lies near the center of the image, and not at the periphery. Because

the camera magnification or minification error due to discrepancy in camera-object

distance is proportional to the distance between the area images and the center of the axis

r, error within the circular field of view of radius 3 inches will only have an

error equivalent to 3 / V(2 * 6 2 ) or 3/'f72 of the corner errors. Theses formulae are

dependent on the fact that there were 12 inches between any two of the outer points.

Assuming that the phantom was centered with the optical axis of the camera (which is not
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a bad assumption because it is centered in the y-axis and only displaces by 50 pixels in

the x-direction for a z displacement of 35 cm), a reasonable calculation of the error can

be obtained by taking the maximum absolute dilation (4.8 cm), converting this into

inches and multiplying this by 3/ -rn , and converting back into cm. The error obtained

is 1.70 cm.



CHAPTER 5

DISCUSSION AND CONCLUSIONS

The goal of this project is to improve the ability of nuclear medicine practitioners to

accurately localize sites of abnormal signal by combining digital visual images with

planar scintigraphic images based on the hypothesis that fusion of planar scintigraphic

images with visual images leads to greater diagnostic confidence and accuracy.

Towards this aim, a working prototype has been constructed and a clinical

acquisition protocol for the combined visual and scintigraphic camera (including

successful registration and fusion of the visual and scintigraphic images) has been

initiated. A total of 38 images have been registered and fused.

Analysis of the imaging system reveals that the imaging system is linear and

spatially invariant, as the magnification values for the phantom were uniform at different

heights. While spherical and chromatic aberrations were noticed upon visual inspection

of the phantoms, they did not contribute to significant error.

The main source of error in the registration between the scintigraphic and

photographic camera occur because when the plane of interest is at an angle to the

camera, perspective error is introduced into the image. The second source of error occurs

by the process of approximating a surface of variable height with a 2-D plane.

One of the original hypotheses was that a generalized affine registration defined

for a certain distance from the photographic camera would be of negligible error as

compared to the patient dependent affine transformations. This type of study would take

into account error due to perspective, variations in the height of the patient bed, fiducial
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location errors, etc. It would not take into account the errors that would occur at the

variations from the 2-D planar representation of the plane.

Towards this goal, patient specific data has been gathered from approximately 10

patients. A generalized transformation has been compared to the average of the

transformations obtained for five patients.

Results from the comparison between the two sets of transformations shows that

they are similar, but this must be confirmed with more data.

Further analysis was conducted by comparing the location of one cobalt marker in

a registered photographic image and in the accompanying nuclear image. The marker

was chosen as a best representative of the location of the lesion. The average error was

.95 cm and the maximum error was 2.54 cm.

A theoretical evaluation for the error was conducted by making the assumption

that the center point of the 5-point phantom is aligned with the optical axis of the camera.

The displacement at the four outer points was measured and then an estimate was

obtained for a radius closer to the optical axis of the camera. This region is where

patients will ideally be imaged. A point 3 inches from the optical axis in the radial

direction would be displaced by 1.70 cm if the z were to be displaced by 35 cm.
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