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ABSTRACT

COMPARATIVE ANALYSIS OF PARAMETRIC, NONPARAMETRIC AND
PERMUTATION METHODS FOR DIFFERENTIAL EXPRESSION

by

Rahul Patil

DNA microarrays permit us to study the expression of thousands of genes

simultaneously. They are now used in many different contexts to compare mRNA levels

between two or more samples of cells. Microarray experiments typically give us

expression measurements on a large number of genes. Increasing popularity of

microarray technology has resulted in a number of tests being proposed to detect

differentials expression.

The purpose of study is to compare the parametric, non parametric and

permutation tests when applied to microarray data for differential expression analysis. t

test (parametric), Mann Whitney test (nonparametric) and Significance of analysis

(permutation ) test are compared. The study focused on comparison of tests based on the

ranking of genes by different tests. Biological and simulation data was used to test

compare the performance of statistical tests. The result shows that the SAM test

outperform the other two tests, under Normal as well as Lognormal data simulation in

case of both low and high number of replicates. Application to simulated data also brings

out the fact that with increase in number of replicates the performance all the tests

improves.
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CHAPTER 1

INTRODUCTION

Historically, the gene expression studies in molecular biology have focused on a very

limited number of genes at one time. But with publication of a historical paper in 1995

[1] in science magazine changed the way gene expression studies are conducted and more

importantly the scale on which they are conducted. This paper described a new

technology allowing the quantitative, simultaneous monitoring of the expression of

thousands of genes using a new tool termed a DNA microarray. Since then there has

been a deluge of microarray papers in last decades focusing on different aspects of

microarray technology.

The closest analogy one can find to compare the microarray technology is the

revolution in computer industry over last couple of decades with more powerful

computers and falling prices, it has changes the way people work and live, one of the

most remarkable aspect of this revolution has been the tremendous improvement in the

productivity of the individual and the society as whole. Similarly, with researchers

putting more spots per chip the cost of microarray is reducing making it possible for even

the modest budget institutes to perform microarray experiments and in the process

enables a large number of scientist to perform novel experiments, in the process this has

made it possible not only to do things better but also to generate new hypothesis and test

it which would have been impossible with out the scale of microfarad. Clearest example

of this is the expression profiles for various kinds of cancers generated in last couple of

years. This will be even more evident in coming years when microarray makes forays

into the clinical diagnostics.
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Although microarray technology has origins into monitoring DNA expressions, it

has since spanned into other areas of molecular biology like DNA copy number, DNA

protein interactions and DNA sequencing, SNP detection etc.

In the differential expression experiments, the expression of a gene is measured

by ability to hybridize to a target sequence localized to a specific region on a chip. To

measure this hybridization, RNA, extracted from a biological sample of interest, is

reverse-transcribed into cDNA that ideally represents a quantitative copy of genes

expressed at the time of sample collection. This cDNA is labeled with a molecule such as

fluorescent nucleotide. The labeled cDNA is then hybridized to the DNA chip that

contains thousands of gene targets. Ideally, each molecule in the labeled cDNA will only

bind to its appropriate complementary target sequence on the array. The measurement of

hybridization allows measurement of the amount of labeled cDNA that hybridized to each

target sequence, resulting in the identification and relative quantification of the genes

expressed in the original biological sample. The overall microarray experimental procure

is depicted in Figure 1.1
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Figure 1.1 Microarray experimental process.

There is couple of variations of microarray technology. These include deposition

or spotted cDNA, spotted oligomer, or synthesized oligomer chips. The cDNA

microarray consists of a collection of partial gene sequences that are spotted individually
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into precise locations within the DNA chip. These sequences usually range in size from

500-2000 by and may be chosen from different regions of the gene depending on the goal

of the project. When using a microarray to monitor gene expression, ideally the

investigator must detect the precise gene that is affected without cross-reactivity with

other family members. Advantage of these cDNA chips is their ease of use and

attainability. Complete instructions on their manufacture within a laboratory are freely

available. The ability to manufacture chips within a research laboratory or an institute

provides the advantages of flexibility and customization of design as needed by the

scientific goal of the project.

Another form of DNA microarray is based on deposition or on-chip synthesis of

oligonucleotides for generation of targets. Several approaches to the manufacturing of

these chips lead to the same end result, a chip that contains short oligomers ranging from

25-80 bases as the target sequences. One disadvantage of these oligomer-based chips is

their availability only from commercial manufacturers. The cost of custom development

of an oligomer-based chip is beyond the budget of a majority of researchers, but more

affordable, oligomer-based chips are available and may be sufficiently informative for

researchers.

Despite rapid technological developments, the statistical tools required to analyze

these fundamentally different types of DNA microarray data are not in place. Data often

consist of expression measures for thousands of genes, but experimental replication at the

level of single genes is often low. This creates problems of statistical inferences because

many genes will show fairly large changes in gene expression purely by chance alone.



5

Therefore, to interpret data from DNA microarray it is necessary to employ statistical

methods capable of distinguishing chance occurrences from biologically meaningful data.

The next chapter presents the ways to visually inspect the microarray data and

inference one can draw from it. Chapter 3 presents some of the popular statistical tests

used for detection of differential expression. Since the focus of this study is the t test,

Mann Whitney test and Significance of analysis test, detailed explanation of these tests is

given, while others are described briefly. Finally, results and conclusion are presented.



CHAPTER 2

NATURE OF MICROARRAY DATA

The statistical tests applied to the data are influenced by the nature of data, and so it's

worth exploring the kind of data microarray experiments generate. The best way to

inspect the data is through visual inspection. The visual inspection of data makes it easy

to understand and interpret the data, also one can get the idea about the outliners and

shape of data.

The microarray data is about the expression of genes under consideration,

abundance of each gene is quantified by the intensity of measurement. Figure 2.1 shows

the simplest of graphs the intensities of two channels (in case of cDNA array), green vs.

red

Figure 2.1 Raw intensity plot of two channel microarray data.

6
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Two things stand out from above graph, first thing, the range of intensity values

generated in microarray experiments is large and second thing to note is that the graph

has funnel shape, genes with lower expression having bigger variation compared to

higher intensity genes. Another observation that can be made from the graph is that, since

it is the graph of intensities from control vs. the sample, under the condition of no gene

being expressed, ideally the intensities of both green and red channel for each gene would

be same and hence, the graph would look like a straight line passing through center at 45.

Which means that, farther the gene from this 45 line, more likely that it is differentially

expressed. Also, the genes away from the 45 lines in upper half are likely to be over

expressed and on the other hand those away in the lower half are likely to be under

expressed as seen in Figure 2.2

Figure 2.2 Up and down regulated genes.
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Data transformation techniques are frequently used in data analysis.

Transformations are a remedy for outliers, failures of normality, linearity, and

homoscedasticity 3 . Data transformation usually involves applying some mathematical

function to the given data. In case of microarray data log transformation is frequently

used, it serves two purposes.

As seen in Figure 2.1, the range of intensity values in the microarray experiments

is indeed large, the log function compresses the larger values to reduce the range with out

affecting the underlying relationship. But more importantly, the log treats the number and

the it's reciprocal symmetrically, log(2) = 1 and log(1/2) = - 1, this tends to make the

expression data normal. Since many of the tests in the statistics assume normality of the

data this log transformation has important benefits.

During the early days of microarray, the frequently used method for expression

change was fold change [2]. In simplest form a change of 2 fold in intensity would

qualify the gene to be declared differentially expressed. In the graph 1 this would involve

drawing a line at two fold, and the genes above the line would be over regulated and

genes below would be under regulated, as shown in Figure 2.3,
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Figure 2.3 Fold change.

One of the first questions that arise from this kind of analysis is, how dose one

know that the observed difference is not due to chance? Also bigger the fold change more

likely that the change not due to chance, but how much of fold change is required to be

differentially expressed? Clearly this form of analysis lacks statistical rigor But it may

still serve the purpose if the objective of investigator is to obtain the list of probable

differentially expressed genes for further investigation.



CHAPTER 3

STATISTICAL TESTS FOR DIFFERENTIAL EXPRESSION

3.1 Tests for Differential Expression

A parametric test makes assumptions about the population distribution. The most

common assumption is that the data is normally distributed. Though this may sound as a

restriction, but many of the datasets in biological experiments amazingly enough do

follow the normal distribution and when they do fit the distribution the parametric

methods are indeed the methods of choice.

Non parametric tests are class of statistical test that do not make any assumptions

about the data, they allow for hypothesis testing that do not involve statements about

population parameters. Also non parametric test are much easier to implement and less

computationally intensive compared to parametric test. Another advantage of non

parametric data is that they can be applied to all kind of data including the ranked data,

analysis of which cannot be done using parametric methods. Another advantage of non

parametric data is that they are more immune to outliners, the reason being non

parametric test tend to take median as measure of central tendency in contrast to mean as

done in parametric test. What would happen if one were to apply the parametric test to

the non normal data? It would result in higher type I errors meaning there would be more

false positives. Non parametric test would reduce these false positives.

But such simplicity comes at a price, non parametric test are less powerful that the

parametric tests and for such reason in case of data that can be handled by parametric test

it would be prudent to use parametric tests. If the sample size is big(>30) and the data not

normal both the parametric and non parametric test would give similar kind of result, if

10
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if the data were normal then also result would be almost identical except non parametric

test would be slightly less powerful.

For most hypothesis tests, one starts with the assumptions and work forward to

derive the sampling distribution of the test statistic under the null hypothesis. For

permutation tests the procedure is reversed, since the sampling distribution involves the

permutations the method is called permutation test.

In order for the permutation test to work a large number of permutations are

required, which are limited by the number of samples available. Also because of large

number of permutations to be performed these test tend to be computationally expensive.

The permutation test normally involves selecting the test statistics, resembling

and recomputing test statistics, rejecting or accepting null hypothesis.

3.2 t TEST

The differential expression is instance of class comparison problem that has been studied

extensively in statistics. Under the normal distribution assumption how dose one

determine that there is difference in expression between two samples? One choice could

be to compare the means of two samples, as seen in fold change. But it would not give

enough information, for example if the means of two samples differ by X, what dose it

mean? How dose one know if X is significant enough to say that there is no differential

expression or there is differential expression? Clearly what is needed is some frame of

reference against which difference in mean can be compared. That's were t distribution

comes into picture. If one were to draw repeated pair of samples from the normally

distributed population and for each pair calculate the mean difference between pair of
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samples, then that mean difference follows a distribution known as t distribution.

Logically this distribution will have the mean of zero, because the average difference of

means of two repeated samples would be equal and hence the difference would be zero,

the samples are drawn form same population. It also follows that this t distribution, of

difference in mean has standard deviation of,

Were N1 and N2 are the sample sizes of two samples.

The interesting thing to notice in above equation is that, though the t distribution

for the different sample sizes will have same mean of 0, the variance will depend on the

sample size and will be more for smaller sample sizes. This is expected because larger

samples will have mean difference closer to the true mean of 0 and hence the distribution

would be more tightly clustered around mean.

Above explanation has important assumption that there is prior knowledge about

the population parameters, which is hardly ever the case in real scenario. Fortunately

there is a way around it, use the information in the given samples to estimate the

population parameters and use these parameters along with degree of freedom to draw the

sampling distribution of mean difference.

Having established the theory the following paragraphs would explain the way t

test is actually used to test differential expression. Analysis starts with the available data

that is expression level from the replicates for two samples. And ultimate aim is to test

how significant the difference in the mean of two samples.

The parameters (mean and variance) of sampling distribution of mean differences

need to be estimated from available data. The mean of this distribution is zero; the
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standard deviation of distribution is given in Equation 3.1. From the Equation 3.1 it is

clear that, first estimate the variances of population from the sample data is required,

which is estimated as,

The variance of population from the sample can be estimated as,

But there are two samples in the present case and that would result in two

estimates of the population variances. So question is which one to use? Better answer

would be to use the information from both the samples, and a composite variance is

estimated as, which is also know as pooled variance.

Were SS 1 and SS2 are sum of the squares for two samples and s 2p is called pooled

sampled variance.

The value obtained from above equation can be plugged in to equation 1 to get the

standard deviation of sampling distribution of sample mean.

Once all the parameters of given distribution are available, next step would be to

calculate the t test statistics given as,

Were M 1 and M2 are means of two samples.
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Figure 3.1 t —test.

What this equation simply does is to transform the raw mean difference between

two samples as difference per standard deviation. The t statistic on it's own is a mere

number and needs to be converted to probability to make meaningful inference. This

probability is known as p value, in simple terms p values is the probability of getting t

value as large or larger than the one obtained from the observations under the null

hypothesis. So the p value of .05 would be observed less than 5% of times.

Next is to compare the value obtained above to the table of critical values oft for

the given significance level, for degree of freedom (N1-1)+(N2-1). The df has one value

less per sample because while calculating the mean one df per sample is already used.

The significance of df lies in the fact that the t distribution curve would have the same

shape and mean but different spread depending on the df as shown in Figure 3.2
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Figure 3.2 Degrees of freedom and spread of data.

There are different ways to interpret the t statistic; one is to say that it is ratio of

between class to within class variability. Other interpretation of it would be to say that the

denominator, in the t statistic is the estimator of the variability of Ml-M2 one would

observe if one repeatedly draws two samples form large population.

(Random Variation + Differential expression)

t =	 (3.5)

Difference expected by chance (Random Variation)

In a away numerator (difference), is the outcome of microarray experiment and

denominator is the estimator. Greater is the difference between two, more likely the gene

being differentially expressed, meaning higher the absolute t value more likely that gene

is differentially expressed.
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3.2.1 Paired t test

The t test for dependent samples helps us to take advantage of one specific type of design

in which an important source of within-group variation can be easily identified and

excluded from the analysis. Specifically, if two groups of observations (that are to be

compared) are based on the same sample of subjects who were tested twice (e.g., say a

drug is tested on a group on individuals), then a considerable part of the within-group

variation in both groups of scores can be attributed to the initial individual differences

between subjects. In case of independent samples, one cannot do any thing, about this

with in group variation because we cannot identify the variation due to individual

differences in subjects. However, if the same sample was tested twice, then we can easily

identify this variation and subtract it. Instead of treating each group separately, and

analyzing raw scores, we can look only at the differences between the two measures in

each subject. By subtracting the first score from the second (e.g., pre trial and post trial),

for each subject and then analyzing only those differences, the entire part of the variation

attributed to intrinsic variation in data set can be eliminated. The remaining variation can

be explained by factor under consideration. Paired test always more sensitive than

unpaired t test, due to this reason only.

The paired t test takes advantage of specific experiment design, question is how

dose this fit into microarray experiments?. Especially because in microarray the same

sample(mRNA) is not treated twice as would be in case of say drug resting in patients.

The answer is to treat both control and sample in such way that both can be subjected to

similar noise.
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Consider a microarray experiment design in which the both the control and the

treatment are put on the same spot on the microarray chip. Under these conditions it is

reasonable to assume that what ever differ observed can be contributed solely to the

experimental factor under study since the experimental conditions for both the samples

are same. Under such circumstances it would be prudent to take in to account the

measured difference in the expression than the raw expression values.

The t statistics for unpaired t test is given as

Paired t test tries to modifies above statistic by taking into account only the

individual differential expression in the observations of two samples. The statistics for

the pair t test is given as ,

The numerator id the average difference in expression and the denominator is the

standard deviation estimated for the mean difference distribution. Also the degree of

freedom in this case would change to (N-1), since there are only N observations.

It is important to note that the paired t test is result of particular experimental

design in this case the test and control being printed on the same spot. The advantage of

such design is that both the test and control are subjected to same kind of environment

and hence similar random noises, which cancels out the net effect when the difference is

taken.
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3.2.2 Unequal Variances

Procedure outlined above assumes that the two samples are presumed to come from

distributions with equal variances. Due to small number of replicates in microarray

analysis this assumption may not be met. If this cannot be assumed (as a result of say F

test) then the procedure would still be same except that the degrees of freedom would

change to

3.3 ANOVA

The t test can be used to test the differential expression between two conditions. But in

case purpose is to study the gene under more than two conditions simultaneously, how

would one know, whether there is differential expression and if there is, under which

conditions? One simple way could be to perform the pair wise t test for all the

conditions. But this has interesting fallout. Say, one were to perform ten pair wise t test,

at 5% significance, which means that for each test there is probability of 5% for Type I

error, but for the group of ten test the Type I error add up and is much more than 5%

Each observation in given sample has variation around its sample mean. But observation

also varies around the global mean. The former is known as within group variation and

the later as between group variations. ANOVA studies the relationship between these two

variations (variances) hence the name Analysis of Variance.

The variations can be measured by sum of squared deviates, thus the total Sums

of Square (SS) would be sum of components,
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As in the case of t test, within group and inter group variability can be used to

estimate the population variances for appropriate degree of freedom. It follows that under

the condition of no Differential expression these estimates would be more or less equal,

which can be tested by F test.

As in case oft test the F test can be viewed as

Observed variance between sample means (Between Group Variance)

F =

	

	 (3. 1 0)

Variance expected by chance (Within Group Variance)

As shown in the following figure, the samples were the with in group variation is

much smaller than the between group variation we can reject the hypothesis that the two

samples are from same distribution.

Figure 3.3 Relationship between within group and between group variation.

But the real utility of ANOVA is not really in the above F test like application.

ANOVA can be used to build an explicit model about the sources of variance that affect
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the measurements, and then use the data to estimate the variance of each individual

variable in the model. One of the papers [3] proposes the following model to account for

the multiple sources of variation in a microarray experiment:

In this model, pt is the overall mean signal of the array, Ai is the effect of the ith

array, Dj is the effect of the jth dye, Vk is the effect of the kth condition, Gg is the

variation of the gth gene, (AG)ig is the effect of a particular spot on a given array, (VG)kg

represents the interaction between the kth variety and the gth gene, and eijkg represents

the error term for array i, dye j, condition k and gene g. The error is assumed to be

independent and have a mean of zero. Finally, log(yijkg) is the measured log-ratio for

gene g of variety k measured on array i using dye j.

The advantage of ANOVA is that each source of variance is taken into

consideration. Because of this, it is easy to distinguish between interesting variations,

such as differential expression, and side effects, such as differences caused by different

dyes or arrays. The problem is that ANOVA requires very careful experimental design it

cannot be after thought.

3.4 Wilcoxon Rank Sum Test

This is a non parametric equivalent of paired t test. Instead of using the actual expression

values directly to detect differential expression this test use the rank of expression values.

The steps involved in the Wilcoxon test are as follows,

Calculate the difference between the two samples for each corresponding observation.

Get the absolute value for each observation.
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Rank the absolute values.

For each rank add a sign it had before taking the absolute value.

Sum the ranks obtained ( E R)

It can be seen that if there is no difference between two means then the rank sum

should be zero and that is the Null hypothesis that will be tested. But if the rank sum

turns out to be say X, how significant is this X? What is the probability that this X can be

due to mere chance? Like the t test some frame of reference is required to test the

hypothesis.

For a sample size of three, the possible number of rank combinations would be

2N= 8 as shown in Table 3.1

Table 3.1 Rank Combination

1 2 3 Rank

+ + + +6

— + + +4

+ — + +2

+ + — 0

— — + 0

— + — -2

+ — — -4

— — — -6
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The range of the rank sum would be +- N(N+1)/2, which is +-6 in this case. All

the other possible values would lie between these two extremes and plot of the frequency

distribution would be as follows

Figure 3.4 Rank distribution.

As the number of samples increase, the distribution will resemble to Normal

distribution with standard deviation of

This is the reference, with which one can test the hypothesis of zero mean for

given samples, with Z ration as follows,

.5 in above equation is a correction factor and is - .5 when ER is positive and

+.5 when ER is negative. Once Z ratio is obtained, the hypothesis testing is simply the

matter of comparing against the critical value.
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Consider a simple case of rank a theoretical rank S for four samples. An S of 6

might be 1+2+3, or might be 2+4, or might be 1+5, or might represent a single rank of 6.

p is the probability of finding a value of S smaller than or equal to the one observed. Thus

the fact that four different patterns in this example all yield S-values of 6, means that all

these patterns are counted in the p computed when any one of the patterns is observed.

That raises the values of p and thus lowers the power of the test.

3.5 Mann Whitney Test

This is a non parametric equivalent of un paired t test. Like in case of Wilcoxon test the

Mann Whitney takes median as a measure of central tendency rather than the mean,

which makes these tests more robust compared to parametric tests. There are two ways of

calculating the statistics for Mann Whitney test. If the sample size is more than 20,

following procedure is adopted.

The steps involved in the Mann Whitney test are,

Let Xl, X2, X3, 	 .Xn and Y1,Y2,...Ym, be the measure of samples from

control and test . Note that these are observations form one gene and the test would be

repeated for each gene.

The next step would be to rank these observations according to the values,

X1 <Y5 <Y2 <X5 	 .<Y8

1	 2	 3	 4	 (n+m)

Combine observations from two samples and rank them.

In case of tied ranks each such observation gets the average rank, for e.g., if Y2,

X5,Y5 in above case then each would receive the ranking 3, and the next ranking will
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start at 5 and not 4. Which makes sense because the rank is representation of relative

distance in the observations.

Separate the ranks in two groups according to samples they came from and

calculate the rank sum for each group.

If there were no differential expression the average rank sum of both the groups

will be expected to be equal. The reason for using the average rank sum instead of raw

rank sum is that number of observations in both the samples might not be same.

For combined observation N the average rank sum would be N(N+1)/2. This

gives us the expected rank sum for two samples as,

For the samples size greater than 20 the sampling distribution for the samples tend

to be normal distribution with mean as above and standard deviation of ,

Once mean standard deviation and distribution are known, which in this case is

normal, the null hypothesis can easily be evaluated using z test as,

Interestingly the Z value obtained above would be same for both samples except

for the opposite sign (mirror images).

The above discussion is only valid if the sample sizes are at least 5 for both

samples, which might not be true in case microarray. Under such circumstances a

variation of above test is used. The basis of this variation is to calculate the statistic U,

which is defined as the Difference between maximum possible rank sum for given

sample minus the observed rank sum.
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This is the observed value of U, but under the Null hypothesis of no differential

expression expected value of U is,

This null hypothesis value of U can be calculated as n*m/2

Suppose there are two samples of

Let X=X1 , X2, X3, 	 .Xn and Y=Y1,Y2,...Ym,

Then the rank sum of X is maximum when all the samples of X are greater then

the sample Y,

Y3 < Y2 < Y5 <...Ym < X2 < X1 <....Xn

1	 2 3	 m m+1	 m+n

And this maximum rank sum of X, can be calculated as

Rx[max] = (m+1) + (m+2) + (m+3) ...(m+n)

Rx[max]= m*n + (1+2+3...n)

Rx[max] = m*n+(n *(n+1))/2,

The thing to note is that when rank sum of X is max, the rank sum of Y is

minimum, since all its observations are less than sample X and this minimum rank sum

would be

Ry[min] = 1+2+3.....m

Ry[min]= m* (m+ 1 )/2

Similarly the maximum rank sum of Y would be



26

Ry[max] = m*n+(m *(m+1))/2

Once the expected value of Unull under null hypothesis and the observed value of

Uob„ are known, how likely is it to obtain U obs by mere chance. The total number of

possible combination for given ranks are

(m+n)!/n! *m! (3.19)

So for the sample size of m=5 n=5 there are , the possible combinations are 252.

Then the task would be to find out the possible number of combinations that would

produce value as large as 'Jobs. This number divided by the total number of combination

would give probability of obtaining value as large as U obs . Important thing to note is that

one could have very well define the statistics U as

And still the result would be same.

Generally speaking, the t-test varies with the ratio of the average difference

between the two groups to the standard error of the average difference. A large

numerator or small denominator will increase the value of the t-statistic. On the other

hand, for the Mann-Whitney U test, if for example expression of a gene on four arrays in

class A is always greater the expression for the same genes in four arrays of class B, then

the ranks will be 5,6,7,8 in class A and 1,2,3,4 in class B, resulting in some standard

normal Z statistic. For other genes having the same relationship, the ranks will be the

same, i.e., ranks 5,6,7,8 for group A vs. ranks 1,2,3,4 for group B and the Z statistic will
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be identical. While the t statistic is usually never the same for different genes, the Mann-

Whitney U value can be identical for many genes.

3.6 Significance of Analysis (SAM)

Consider a simple experiment involving 10000 genes; let's say t-test is applied to detect

the differential expression. Even if not a single of 10000 genes is differentially expressed,

still at .5 significance (which is normal in biological experiments), the t-test would result

in 500 significant genes! This is known as problem of multiple hypothesis testing.

Another issue with t test like test is that they treat all the genes in same way applying the

same statistic, but as shown in Figure 1.1 the distribution of microarray data intensities is

such that non linear models are required to better explain the variations as shown below

[4]. The permutation models discussed in this and next section are such non linear

models.

Figure 3.5 Nonlinear and linear cutoff for differential expression.

For small number of replicates, which is indeed the case in microarray

experiments because of cost factor, t statistics tend to be co related to the error term in
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denominator. The consequence is that t test would tend to find more significant genes

form the genes with low sample variance than genes with higher sample variance. The

reason this is more of issue in case of microarray experiments is because there are

thousands of genes tested simultaneously, and there would always be some genes with

low variance by chance. The net effect of above problem in case of t test is increase of

false positives in case of genes with low variance and increase of false negative in case of

genes with high variance.

SAM [5] tries to address the issues raised above by adding a constant in the

denominator of the t statistic known as 'fudge factor', so the statistic for the SAM is,

The challenge is to find the value of So such that dependent of d(i) on s(i) is as

small as possible. Later in the section, the procedure for determining this is outlined. In

case of normal t statistic the after calculating d(i), it is tested against the critical value that

separates significant from non significant using the t table. But in case of SAM d(i) is not

a t distribution, because of addition of fudge factor hence the critical value table for t test

no longer valid. The significant of observed d(i) is accessed through permutation.

Next SAM generates the random datasets from the given data through

permutation. For each such permutation, d values are calculated. Interestingly, these

permutated data are observations when the null hypothesis is true, because the two

samples are exchanged and there is no differential expression indeed. Thus the values of

d for given genes obtained from permutation are the values expected under Null

hypothesis.



Figure 3.6 Permutation .

For each permutation, the false positives are calculated as the number of genes d

values is more than the value considered as significant and the False discovery rate is

calculated as number of false positives divided by the number of genes in original

dataset. The whole SAM procedure can be depicted as shown in Figure 3.7
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Figure 3.7 SAM overview.

3.6.1 SAM Details

The details of SAM algorithm are as follows [6]

SAM summarizes the observations using the statistic

Where i is the gene number, which ranges from 1 to n (total number of genes),j is the

sample number, which ranges from 1 to m (total number of samples) t, is the pooled

variance test statistic. s, is the denominator known as the error term,



Given two classes of sample size n1 and n 2 with group means of andand x2 , The pooled

variance t-test for each gene is calculated as:

So, the overall equation for pooled variance t-test appears as

3.6.2 Calculation of Fudge Term

1. Calculate the pooled variance test statistic for each gene in the normal way. Store
the numerator r, and the error term s, (the denominator)

2. Permute the data set arbitrary number of times to create P number of permuted*	 *	 *
datasets, D1 , D2 , D3 , 	  Dp .

3. For each gene, calculate the pooled variance test statistic for each permuted data
set (D*). Store the numerator and the denominator for each permuted data set.
These are used to find differentially expressed genes.

4. For each gene individually, rank the error terms (denominators) over all
permutations (D*). Divide each of these ranked lists into 100 quantiles.

5. For every fifth quantile(a), re-calculate the test statistic for each gene in the
unpermuted data set using a modified error term which is the original error term s,
(without permutation) plus the error term at that quantile (sa).
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6. Construct a vector of these test statistics comprised of that or those for that
quantile (a) and that or those of its next highest neighbor (a+1). The number of
test statistics in this list will be twice the number of permutations/number of
quantiles 2P/100

7. For each gene, calculate the median absolute deviation of this collection of test
statistics.

8. Find the quantile (a) where the coefficient of variation of the median absolute
deviations is minimized. The error term at that quantile becomes the gene-specific
`fudge factor so.

9. For each gene, in the original data set, calculate a revised test statistic (the SAM
test statistic) where the error term for each is the original error term plus the gene-
specific fudge factor so.

3.6.3 How Genes are Deemed Differentially Expressed

10 Rank the genes according to the SAM test statistic in descending order.

11. Re-calculate the test statistics for all of the permuted data sets using the values
stored in step 3 and the gene-specific so (ti *).

12. Rank these revised test statistics (for the permuted data sets) and calculate the

average test statistic value for each rank position ( ). This is the 'expected'
value of the SAM test statistic at that rank position under the null hypothesis.

13. The difference between the SAM test statistic for a gene in the real data set and
the expected SAM test statistic for that genes' rank (A) is calculated

and compared to a user-defined threshold value AT, to determine whether the
observed value of the test statistic for the gene in the real data set is higher or
lower than the expected value of the SAM test statistic associated with AT .

The SAM test is asymmetrical, i.e. the absolute value of the upper critical value of ti

associated with AT is not necessarily the same as that for the lower critical value of t,

associated with AT. Genes with test statistic values that are higher than the upper critical
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value oft or less than the lower critical value oft associated with AT are considered to be

statistically significant.

3.6.4 Estimating FDR

Count the number of genes (J) determined to be significant (above the value t , associated

with AT)

16	 Determine the average number of genes found to be significant ( 	 ) at values of
t over all permuted data sets (D*).

Because there are differentially expressed genes in most experiments, this
estimate is biased upwards. To correct for the upwards bias, the initial
estimate is multiplied by a correction factor no -

17 To calculate no, calculate the ratio of the number of nonsignificant genes (R) in the
real data set to the average number of nonsignificant genes ( /7 . ) over all
permuted data sets (D*). Because false positives are presumed to be rare at high
values of ti, this is performed at an arbitrarily small value of AT (called A'). The
value of no is either itself or unity, whichever is lower

(3.29)

The revised estimate of FDR is obtained by multiplying the initial estimate of FDR
and no
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3.6.5 Significance of Delta

Clearly delta is the parameter that will determine how many genes are declared

differentially expressed. So important question is how to choose this delta values?

Smaller delta value would generate more differentially expressed genes, but as seen from

graph below smaller delta would also result in higher FDR. The delta chosen would

depend on the answers the experimenter is looking for from microarray study.

Figure 3.8 Plot of delta vs FDR .

3.7 Empirical Bayes

Let us say there are two samples X and Y obtained under two conditions. The null

hypothesis is that there is no Differential expression hence the data in X and Y arises

from joint probability density function fo(X, Y). On the other hand the data with

differential expression come form the PDF f i (X, Y).

Apriori one do not know which distribution gene g comes from, so a parameter p

is introduced. P is the probability that the gene is differentially expressed. (1-P) is the
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probability that the gene is not differentially expressed. Thus the marginal distribution of

data would be,

There is couple of variations of Empirical bayes as to how these parameters are

estimated. Some assume the distribution hence parametric while others are distribution

free.

In one of the non parametric mixture models [7] the data is reduced to expression

scores Z for each gene. If f i(z) is the density of differential genes and f 0(z) the density

of un differentiated genes then the mixture density can be written as,

f (z) = pof o(z) + pi f i(z) Were po is the probability that gene is unaffected and

pi (1- po) is probability that the gene is differentially expressed.

The posterior probability that the gene with score Z shows no differential

expression is, po(z) = po f 0(z) 1 f (z) , f (z) which can be directly obtained from the data.

To estimate f 0(z) data is permuted number of times and expression score z is obtained,

from which f 0(z) is estimated.



CHAPTER 4

RESULTS

4.1 Biological and Simulation Data

The biggest impediment in the comparison different tests for microarray differential

expression is that there is no standard data to compare results against. In the absence of

such "gold standard" how can one comment upon the efficacy of particular method in

detecting differential expression. Increasingly researchers have turned to simulated data

as a alternate. Though the simulated data dose not reflect the complexity inherent in the

microarray data, nevertheless in dose give insight about the tests being compared.

4.1.1 Data Simulation

Two biological conditions (control and treatment) are simulated, m, n are numbers of

samples under each of two conditions, the total number of genes simulated are 1000 and

5% of these are produced as differentially expressed. Simulation is done for two

distributions normal and lognormal, so that the analysis is not biased towards particular

test due to distribution of data, as t test do assume normal distribution and real

microarray data may not be normally distributed. For both the distribution the parameters

are, m 1, m2 the means under two conditions and sl, s2 are standard deviation

respectively. For the genes deemed as non differentiated, the means as well as standard

deviation are same. For the differentially expressed genes mean of treatment is more than

control (m2>m 1) and standard deviation is same. For the purpose of simulation the

parameters value chosen are ml = 0 , m2=0 , s 1 =.5, s2 =.5 under non differential

36
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expression condition. For Differential expression the parameter values are ml = 0 , m2=1

, sl =.5, s2 =.5 .

Number of replicate in microarray is an issue, due to cost and other factors so to

test the effectiveness of method under low and high replicates each distribution (normal

and lognormal ) were simulated with three and ten replicates. So in all four datasets of

1000 genes each were generated, two which are normal, two lognormal with three and ten

replicates. The code for simulation was written in statistical language R.

4.1.2 Biological Data

cDNA data published as a with of publication "Liver gene expression in rats in response

to the peroxisome proliferator-activated receptor-_ agonist ciprofibrate" by Yadetie etc

[8] in journal physiolgenomics was applied to different tests under consideration. The

theme of study was to examined the effects of ciprofibrate(a drug) on liver gene

expression in rats using cDNA microarray. In all four hybridization were carried out

involving more than 6000 genes between normal and treated samples. The study also

carried out northern blot analysis of very few selected genes. The raw data was obtained

from Gene expression omnibus (GEO) [9] repository at the NCBI website.

The raw data was preprocessed as follows. First spots with undetected

fluorescence signals in either channel in at least one array were excluded. Further

filtering to remove unreliable measurements based on fluorescence intensity values was

performed by excluding spots with fluorescence signal intensity (mean of the four arrays)

less than 300 in both channels, about 3000 genes were left after filtering. After back

ground subtraction each array was globally normalized to balance intensity differences
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between the two channels using the online normalization tool MIDAW [10]. The graph in

4.3 illustrates the effect of normalization for a single one sample.

Figure 4.1 Raw Intensity plot.

Above graph is the result of raw intensity plot between two channels for a single

sample, before any preprocessing, After background correction same graph would look

like as follows
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Figure 4.2 Intensity plot after background subtraction.

The global normalization was applied to each sample after background correction,

and can been seen in Figure 4.3, the global normalization indeed balances the intensity

difference between two channels.
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Figure 4.3 Intensity Plot after normalization.

4.2 Methodology of Comparison

Gene ranking is used as the metrics for comparison of the tests. Gene ranks are generated

by descending order of the test statistic for each gene. For example if a gene x has t test

score of 4 and gene y has a score of 5 then gene y would rank higher than gene x.

Similarly for SAM genes are ranked according to d statistic and for Mann Whitney, U

statistic is used. One can get fair bit idea about the efficacy of test by the way each test

ranks the differentially expressed genes. Logically, the differentially expressed genes

should receive higher test score compare to non differentially expressed genes and hence

rank higher. Also ranking is important from practical point of view as in many of the
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differential expression experiments, normally researcher would generate a list of

important genes from expression data for further biological scrutiny.

For t test and Mann Whitney test, the functions available in software chipST2C

were used while the SAM implementation software, available as excel plug-in released

by the authors of SAM was used.

4.3 Application to Biological Data

Often with real microarray data the absolute value of the t-statistic is a function of the

standard error SE, and there is an erratic behavior of the statistic for small values of SE

with an increased risk of false positives. SAM is a nonlinear test and it tries to overcome

this shortcoming of t test. Figure 4.8 is the proof of this. It's a plot of numerator, which

is, SE in case of t test and SE+SO in case of SAM vs. t statistic and d statistic

respectively. Clearly because of fudge factor SO d statistic dampens the d statistic value at

lower SE, which why SAM produces less false positives, which is evident from the

simulation data in above section.
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Figure 4.4 t test, variation oft statistic relative to SE.

Figure 4.5 SAM, variation of d statistic relative to SE+ fudge factor.

Figure 4.9 shows the SAM graphical output generated during data analysis.



Following table summarizes as how these genes are ranked by each of the test under

consideration,

Table 4.2 Genes Ranks for Different Tests

Ref ID T test Mann Whitney Test SAM Test

3144 12 16 12

4662 406 637 153

2239 253 391 185

813 39 86 112

104 441 233 465

1185 44 106 21

1864 102 119 82

4872 115 567 439

The original study identifies 194 genes to be differentially expressed in the

experiment, if one were to take that as standard, as shown above SAM not only identifies

more genes but also ranks them higher compared to other two test

44
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4.4 Application to Simulated Data

To understand how each test ranks the genes graphs are plotted as number of true genes

detected by each test for the top 50 genes at the interval of 10 genes, for the simulated

data under different distributions and replicates. The test with the uppermost graph on the

plot, is the best one for given dataset, because that test would consistently pick up more

true genes per interval compared to other tests.

As seen in the graph below at low number of replicates, SAM is by far the best, as

it picks up a lot more number of true genes compared to t test and Mann Whitney test.

Figure 4.7 Gene ranking with normal data and few replicates.

Things look pretty much the same even with the lognormal data with three

replicates as shown below, and t test and Mann Whitney test do roughly pick up same

number of genes under normal and lognormal data. But the important thing to note is that

even with lognormal data t test out performs Mann Whitney test. Another thing to note is

the fact that SAM actually shows improvement in the total number of true genes detected

in top 50 genes.
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Figure 4.8 Gene ranking with lognormal data and few replicates.

More the number of replicates better the estimation of population parameters,

hence with more replicates one would expect better performance from all the tests, which

indeed is the case as shown below. Though SAM still ranks genes better that other two

tests, the performance gap between SAM and other tests reduces dramatically with

increase in number of replicates.



Figure 4.9 Gene ranking with normal data and large number of replicates.
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Figure 4.10 Gene ranking with lognormal data and large number of replicates.

Below is the table listing the total number of genes correctly identified by

different test, in the top 50 genes for all the simulations, as seen from graphs above SAM

detects more differentially expressed genes in top 50 compared to other two tests across



CHAPTER 5

CONCLUSION

The report discusses the popular parametric, on parametric and permutation tests to detect

the differentially expressed genes in microarray experiment. Further comparison of the

performance of t test, Mann Whitney test and SAM was carried out using ranking of

genes by these tests as criteria. Since currently there is no gold standard to access the

performance of the tests, data was simulated with Normal and Lognormal distributions

with three and ten replicates. This enables us to access the gene ranking ability of

different test under different distribution and with low and high number of replicates.

The study also discusses the nature of microarray data, it's distribution and visual

inspection techniques to get the feel of differentially expressed genes.

As shown in the result section, SAM has better performance in ranking the genes

compared to t test and clearly stands out as the best. While the performance of both t test

and Mann Whitney is found to be almost similar, with t test being marginally better.

The application of the t test and SAM to biological data also brings out the fact

that SAM indeed dampens the effect of some lowly expressed genes turning out to be

false positives in the as in case oft test.

One of the issues with simulated data is that it dose not account for outliners,

which are reality in real microarray data also the fact that simulation treats the genes

independent from each other in terms of expression, which is not the case in real

scenario, where genes are part of some network and expression of one can be dependent

on the other. Simulation dose not account for this kind of dependence. It would be

49



•	 50

worthwhile in the future to explore this dependence using simulation, especially since t-

test assumes independence between the gene expressions.



APPENDIX

SAMPLE SIMULATION CODE

library(stats)

# setting seed for random number generation

set.seed(553554)

gen_num <- 1000 # Total number of genes involved in simulation

m=10;n=10 # Number of Replicates

perc.changed <-0.05

utmat<-matrix(nrow=gen_num,ncol=m+n)

for (i in 1:gen_num){

temp<-sample(1:3,1)

mix <- runif(1)

if(mix < perc.changed) {

samplel<-rnorm(m,mean=0,sd=.5)

sample2<-rnorm(n,mean=1,sd=.5)

trueres[i,j]<-1

row<-cbind(t(sample1),t(sample2))

}

else {

samplel<-rnorm(m,mean=0,sd=.5)

sample2<-rnorm(n,mean=0,sd=.5)

trueres[i,j] <- 0

row<-cbind(t(sample1),t(sample2))

51



}

utmat[i,]<-row

}

utmatl=cbind(utmat,trueres)

ctr=0

for(i in 1:1000) {

if(utmatl[i,21]>0){

ctr=ctr+1

}

}

for(i in 1:1000) {

if(utmatl[i,21]>0){

utmatl[i,21]=w

w=w+1

}

else {

utmatl[i,21]=v

v=v+1

}

}

write .table(utmatl," 10_nor_test.txt",sep=" \t")
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