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ABSTRACT

AUTOMATIC DETECTION OF QT AND RELATED INTERVALS

by
Divya Gowdar

The objective of this thesis is divided into two main sections: The first section comprises

of the development of the algorithm for the detection of the Q wave, Tmax and the Tend to

measure the intervals such as QT, QT corrected (QTc), RT, QT max and RTmax

respectively. The second section deals with the analysis of different variabilities

including heart rate variability (HRV), QT, QTc, RT, QT max and RTmax .

Using the R wave points as reference points, the Q wave was detected by using the

Differential Threshold Method (DTH). The Tmax was detected by using a search window

on the derived signal of ECG starting from the R peak. The Tend was detected by two

different procedures. The first procedure was a combination of two different methods: the

Least Squares Method (LSI) and the Threshold Method (TH) and the second procedure

was based on the Differential Threshold Method (DTH). Once the points were detected,

the relationship between the heart rate variability (HRV) and corrected QT variability

along with other variabilities was studied in this research.

The algorithm was validated on ten patients of five minute data segment of paced

breathing at 6 breaths per minute and 12 breaths per minute respectively. The algorithm

for the detection of the Q wave, Tmax and the Tend produced an overall success of 99.16%

according to automatic verification of accuracy detection and 96.4% based on manual

inspection. In this study, the duration of the QT interval was in the range of 450 to 500

milliseconds, which indicated normal duration of ventricular repolarization. The

variability plots indicated similarity between HR variability and QT corrected variability.
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CHAPTER 1

BACKGROUND

1.1 Introduction

Cardiovascular diseases are the primary cause of death in the adult population. Half of

cardiac deaths occur as sudden death. An abnormal QT interval prolongation can be

associated with serious ventricular arrhythmias and sudden death. Thus, QT interval

measurement assumes great importance in diagnostic ECG and several methods are

proposed in the literature to implement QT interval measurement [4].

Accurate measurement of the QT interval is very important from a clinical

perspective. There are various issues involved in the measurement of the QT interval

especially regarding the end of the T wave and different morphological pattern of T-U

complexes. The other issue is significant spontaneous variability in the QT interval,

resulting in spurious QT prolongation and unnecessary concern.

The QT interval relies on the identification of the end of the T wave, which may

be visually assessed differently according to the experience and training of the

cardiologist. The use of a computer algorithm helps to detect more consistently the

location of the end of the T wave [11] [30]. However, computers may fail to identify this

location correctly if the shape of the T wave is abnormal (low amplitude biphasic T

wave) requiring visual checking of the automatic measurements.

The ability to define QT interval prolongation reliably is important because of its

association with ventricular abnormalities. The QT interval prolongation is hampered by

the fact that the QT interval is not constant and highly dependent on the preceding

cardiac cycles and therefore on the heart rate.

1
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The objective of this thesis is to accurately detect the points Q wave, Tmax and the

Tend on the electrocardiogram to measure the QT and other related intervals including

QTc, RTmax, QTmax, and RT interval. This thesis also examines the relationship between

the heart rate variability and QT corrected variability.

To detect the Q wave, differential threshold method (DTH) was used. This

method was based on running a search window on the differentiated ECG signal to detect

the maximum and minimum derivative points at the onset of the QRS complex. A certain

percentage of threshold level is created to detect the Q wave. The point Tma„ is detected

based on the window method.

The end of the T wave is the most difficult point to detect because of its varying

morphologies. In this study, two different procedures were used to detect the end of the T

wave. The first procedure involved a combination of two methods: the Least Squares

Method (LSI) and the Threshold Method (TH). This procedure had a potential problem of

early detection of the Tend and therefore a second procedure with the Differential

Threshold Method (DTH) was used to detect the T end.

In order to study the variabilities of different intervals, power spectrum of various

intervals was calculated using Fast Fourier Transform (FFT). Before performing the FFT,

the average of all the corresponding beat intervals were calculated. The variability plots

of different intervals were quantitatively analyzed by measuring the amount of power in

the LF and HF regions.
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1.2 The Heart: Electrophysiology

The heart is a small hollow muscular pump about the size of a closed fist, but able to

pump approximately 5-6 liters (1.5 gallons) of blood per minute. The Human heart is

divided into four chambers. The top two chambers are called atria and two lower ones are

called ventricles (Figure 1.1). The atrium functions as a weak primer pump for the

ventricle, helping the ventricle to move the blood. The ventricle supplies the force that is

required to push the blood out through the pulmonary circulation.

(Reference. http://www.corante.com/mooreslore/archives/images/heartanatomy.gif)

Figure 1.1 Anatomy of the heart.



4

The heart is composed of three major types of cardiac muscle: atrial muscle,

ventricular muscle and specialized excitatory and conductive muscle fibers. The

myocardium (cardiac muscle) is a specialized form of muscle consisting of individual

cells joined by electrical connections [2]. The contraction of each cell is produced by a

rise in intracellular calcium concentration leading to spontaneous depolarization and as

each cell is electrically connected to its neighbor, contraction of one cell leads to a wave

of depolarization and contraction across the myocardium.

1.2.1 Cardiovascular System

The cardiovascular system transports essential substances such as oxygen and nutrients

between various tissues and organs. It also helps to transport and eliminate waste

products. The arteries, veins and capillaries together with blood form a sophisticated

network of the cardiovascular system. The blood vessels of the cardiovascular system are

divided into two main pathways [1]. The blood vessels in the pulmonary circulation

system carry blood from the heart to the lungs and then back to the heart. The blood

vessels in the systemic circulation system carry blood from the heart to the different parts

of the body and then back to the heart. Figure 1.2 shows the anatomy of the

cardiovascular system.

Blood enters the heart on the right side through two main veins: the Superior vena

cava and the Inferior vena cava. The blood fills the right atrium. In addition to the two

veins, the coronary sinus also empties blood into the right atrium. When the right atrium

is full it contracts and forces blood through the tricuspid valve into the right ventricle,

which then contracts to pump the blood into the pulmonary circulation system.
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(Reference. http ://images. goo gle. com/imgres?imgurl=http ://www.niaaa.nih.gov )

Figure 1.2 Cardiovascular system.

When ventricular pressure exceeds atrial pressure, the tricuspid valve closes, and

the high ventricular pressure forces the pulmonary artery to open. The blood is forced

through the pulmonary artery, which divides into the lungs where exchange of gas takes

place. The pulmonary artery divides into many smaller arteries, which become arterioles

that supply blood to the alveolar capillaries. In the alveoli of the lungs, the red blood cells

are recharged with oxygen by giving up their carbon dioxide [1]. The Lung mass is

divided into capillaries which feed into tiny veins. These veins combine to form larger

veins which return oxygenated blood to heart via the pulmonary vein.
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The blood enters the left atrium from the pulmonary vein and from there it is

pumped through the mitral valve into the left ventricle, by contraction of the atrial

muscles. When the left ventricle muscles contract, the pressure produced by the

contraction of the ventricles forces the mitral valve to close and the high pressure of the

ventricles causes the aortic valve to open, which causes the blood to flow through

systemic circuit to different parts of the body.

1.3 Conductive System of the Heart

Figure 1.3 shows the conductive system of the heart that controls cardiac contractions.

This figure shows the Sinoatrial (SA) node, where the normal rhythmical impulse is

generated. The Internodal pathways conduct the impulse from the SA node to the

Atrioventricular (AV) node, where the impulse from the atria is delayed before passing

into the ventricles. The AV bundle then conducts the impulse from the atria into the

ventricles through the left and right bundle branches [2]. The bundle branches then

bifurcate into the Purkinje fibers, which conduct the cardiac impulse to all parts of the

ventricles.

1.3.1 Sinus Node

The Sinus Node is a small, flattened, ellipsoidal strip of specialized muscle about

3 millimeters wide and is located in the superior wall of the right atrium. The sinus fibers

directly connect to the atrial fibers, so that any action potential that begins in the sinus

node spreads immediately into the atria.
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(Reference. http://images.google.com/imgres?imgurl=http://images.webmd.com/images/hw/)

Figure 1.3 Conduction system of the heart.

The potential of the sinus fiber has a resting membrane potential of -55 to -60

millivolts when compared to ventricular muscle which is -85 to -90 millivolts. The cause

of this negativity is that the cell membranes of the sinus fibers are naturally leaky to

sodium ions. It is because of this reason that the sinus node is self- excitatory. There are

three types of channels which causes the change in voltages of the action potential: (1)

fast sodium channels (2) slow calcium-sodium channels and (3) potassium channels.

1.3.2 Internodal Pathways

The ends of the sinus nodal fibers fuse with the surrounding atrial muscle fibers

and action potentials originating in the sinus node travel outward into these fibers. There

are three small bundles called anterior, middle and posterior internodal pathways through

which the action potentials are spread into the entire atrial muscle and finally reach the

AV node.
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Figure 1.4 Waveform of action potential.

1.3.3 AV node and AV left and right bundle

The conduction system is organized so that the cardiac impulse will not travel

from the atria into the ventricles too rapidly; this delay allows time for the atria to empty

their contents into the ventricles before ventricular contraction begins. The AV node is

located in the posterior septal wall of the right atrium immediately behind the opening of

the coronary sinus. It is primarily the AV node and its adjacent conductive fibers that

delay this transmission of the cardiac impulse from the atria into the ventricles.

After a delay of about 90 milliseconds in the AV node, the impulse travels

through the penetrating portion of the AV bundle passing through left and right bundle

branches making its way into the ventricles.

1.3.4 Purkinje System

The Purkinje fibers lead from the AV node through the AV bundle into the

ventricles. They are very large fibers, even larger than ventricular fibers, and transmit the

action potentials at a velocity of 1.5 to 4.0 m/sec. This velocity is 6 times larger than the

normal cardiac muscle fiber conduction rate. This rapid transmission of action potentials

by the Purkinje fibers is believed to be caused by the high level of permeability of the gap
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junctions at the intercalated discs that connect between two cardiac cells. Therefore, the

ions are transmitted easily from one cell to another cell at a faster rate. Once the impulse

reaches the end of the Purkinje system, the action potential is transmitted through the

entire ventricle mass by the ventricle muscle fibers themselves.

1.4 Electrocardiogram (ECG)

The Electrocardiograph (ECG) is a clinically useful tool that shows the electrical activity

within the heart, simply by placing electrodes at various points on the body surface. The

ECG is composed of a P wave, a QRS complex and a T wave as shown in figure 1.5.

Figure 1.5 Electrocardiogram

The P wave is caused by electrical potentials generated as the atria depolarize

before contraction. The QRS complex is generated by action potentials when the

ventricles depolarize before contraction. Therefore, both P wave and QRS complex are

depolarization waves. The T wave is caused by the ventricular repolarization as the

ventricles start to recover from the state of depolarization and this wave is known as the

repolarization wave.
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During depolarization, the normal negative potential inside the fiber is lost and

the membrane potential reverses; that is, it becomes slightly positive inside and negative

outside. This happens when the fast sodium channels are open for few 10,000ths of a

second and the positive sodium ions leak into the cell fiber, which increases the potential

from -70 to -85 millivolts (resting membrane potential) to a positive potential. Once the

positive potential peak is reached, the action potential reverses again and the potassium

channels open from which positive ions start leaking to the extracellular fiber and the

action potential voltage starts decreasing. This wave gives rise to the repolarization wave.

Before the contraction can occur, depolarization must spread through the muscle

to initiate the chemical process of contraction. Therefore, the P wave occurs at the

beginning of contraction of the atria and the QRS wave occurs at the beginning of

contraction of the ventricles.

The repolarization of the ventricles begins after a few milliseconds of

depolarization wave, that is, about 150 to 350 milliseconds. Thus, the process of

repolarization extends over a long period. For this reason, the T wave in the normal ECG

is a prolonged wave.

The atria repolarize about 150 to 200 seconds after the P wave. This occurs at the

instant when the QRS complex is being recorded in the ECG. Thus, the atrial

repolarization wave is usually obscured by the larger QRS complex and is seldom

observed in the normal ECG.
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1.4.1 Electrographic Leads

The Electrocardiogram (ECG) is measured using 12 standard leads. They are:

• Three Bipolar limb leads (lead I, lead II and lead III)

• Three Augmented leads (aVF, aVR and aVL)

• Six Precordial or Chest leads (V1 through V6)

1.4.1.1 Bipolar limb leads. The term "bipolar" here means that the ECG is recorded

from two electrodes on the surface of the body and a reference electrode on the right leg.

In working with the ECG from these three bipolar leads, Einthoven postulated that the

heart is near the center of the equilateral triangle, the apexes of which are right and left

shoulder and the crotch [3]. Therefore, the points of this triangle represent the electrode

positions for the placement of the three limb leads as shown in the fig 1.6. Einthoven

showed that the instantaneous voltage measured from any one of the limb lead positions

is equal to the algebraic sum of the other two, or the vector sum of all the three limb leads

is equal to zero. A slightly different measurement is made at each of the limb leads with

respect to the indifferent electrode, which is assumed to represent an average of the

potentials of the three limb leads. This average can be approximated to a central terminal

connected to each of the three limb electrodes through equal resistances. A unipolar

measurement made from any one of these three limb leads to an indifferent electrode is

designated as VL, VR and VF.



(Reference. L. Cromwell, F. Weibell, E. Pfeiffer, "Biomedical Instrumentation and

Measurements", Prentice Hall, 1996.)

Figure 1.6 ECG lead configurations
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1.4.1.2 Augmented leads. Because of the loading effect of the resistance network

required to provide the central terminal, the ECG potentials measured at the three limb

leads with respect to the central terminal are inconveniently small. To offset this

difficulty, it was found that by disconnecting the measuring electrode from the network,

the measured voltage can be increased by 50%. Unipolar leads obtained in this manner

are called augmented unipolar limb leads, which are designated AVL, AVR and AVF.

1.4.1.3 Six Chest leads. The bipolar limb leads and the augmented unipolar limb leads

are essentially limited to measurements in the frontal plane. While the precordial leads do

include some effect of the third dimension, they do not provide a true representation of

the electrical activity in the saggital (front-to-back) direction.

Therefore, a single chest electrode is used as an exploratory electrode which is

sequentially placed on each of the six predesignated points on the chest to give a picture

of the saggital view. These chest positions are called the precordial unipolar leads, which

are designated V1 through V6.

1.5 Physiological Background

The QT interval is measured as the time interval between the onset of the QRS

complex and the end of the T wave, the end of the T wave being the time at which

repolarization is completed and the T wave voltage amplitude returns to the baseline [13]

[11]. The QT interval is thus a measure of the duration of the ventricular depolarization

and repolarization.

Accurate measurement of the QT interval is very important from a clinical

screening perspective. Expert manual measurement is both imprecise and imperfectly

reproducible, yet it is used as the reference standard to assess the accuracy of current
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automatic computer algorithms, which thus produce reproducible but incorrect

measurements of the QT interval [4]. The relationship between different cellular action

potentials and the QT interval recorded at the body surface is very complex and thus it is

difficult to measure the end of the T wave with precision [7].

First, there is inherent precision in identifying the end of the T wave because of

incomplete understanding of the recovery process and its projection on the body surface.

Second, significant variation both in onset of QRS complex and the end of the T wave

among some ECG leads provides different QT values depending on the leads selected for

measurement [12]. Third, technical factors like paper speed and sensitivity influence QT

measurements with higher paper speed leading to shorter interval values and higher

sensitivity resulting in QT prolongation [13].

1.5.1 QT and Corrected QT Interval (QTc)

There are various issues involved in the measurement of the QT interval especially

regarding the end of the T wave and the different morphological pattern of T-U

complexes. The other issue is significant spontaneous variability in the QT interval,

resulting in spurious QT prolongation and unnecessary concern.

The QT interval relies on the identification of the end of the T wave, which may

be visually assessed differently according to the experience and training of the

cardiologist. The use of a computer algorithm helps to detect more consistently the

location of the end of the T wave [11] [30]. However, computers may fail to identify this

location correctly if the shape of the T wave is abnormal (low amplitude biphasic T

wave) requiring visual checking of the automatic measurements.
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The ability to define QT interval prolongation reliably is important because of its

association with ventricular abnormalities. The QT interval prolongation is hampered by

the fact that the QT interval is not constant and highly dependent on the preceding

cardiac cycles and therefore on the heart rate. The QT interval varies not only with the

heart rate, but also with many factors, including gender and because of diurnal variability,

time of the day. To correct for the inconstancy of dependence of the QT interval on

preceding R-to-R changes, a rate-normalized or corrected QT interval (QTc) is used [28].

The object of QTc is to normalize the QT interval to the value that it would have

had if the heart rate were 60 beats/min, that is QTc=QT when RR interval is equal to one

second. One of the first, and still most widely used, QT correction formulas was

developed by Bazett. In Bazett's formula QTc is defined as the QT interval divided by

the square root of the of its preceding R to R time interval. It is given by:

RR is the duration between the two consecutive R waves which occurs during

ventricular depolarization. The QT correction formula was derived by defining QT

interval equals to QTc when RR=1 sec, and solving for the resulting expression. Because

the Bazett's formula tends to be inaccurate by overcorrecting and undercorrecting QT

interval at high and low ends of the range of heart rates, many other empirical formulas

have been developed. However, there is no agreement as to which is the best method for

QT correction, and Bazett's formula remains the best known and most widely accepted

method for rate normalization of QT interval [15].
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1.5.2 Long QT syndrome

The QT interval as well as the corrected QT interval are important in the

diagnosis of long QT syndrome (LQTS). Long QT syndrome is a cardiac ion channel

disease that leads to lethal ventricular arrhythmias [16]. In individuals who have long QT

syndrome, the time required for ventricular repolarization is prolonged. This creates a

problem because it makes the heartbeat electrically unstable and especially vulnerable to

the arrhythmias like Torsades de Pointes (polymorphic ventricular tachycardia that occurs

due to prolonged QTc interval) and ventricular fibrillation [17]. If the heart falls into any

of these rhythms death can occur within only a few minutes. Long QT syndrome is

characterized by prolongation of QT interval and thus, QT interval is a significant clinical

tool in assessing life threatening arrhythmias.

In people with long QT syndrome, as the heart recharges, the small channels in

the heart cells do not open and close properly to let the particles move at the correct

times. Researchers are still not certain how these channels are connected to the dangerous

heart rhythms associated with long QT syndrome, but it is known that the defective

channels make the heart's electrical system unstable as it recharges. When the heart is

unstable, it can enter into a problematic heart rhythm and cause the heart to pump blood

inefficiently.
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1.6 QT Variability and QT Dispersion

The electrographic QT interval represents a measure of ventricular repolarization.

Lability in the repolarization process would be expected to manifest as beat-to-beat

oscillations in the QT interval [4]. Temporal lability in ventricular repolarization is a

marker for, and is mechanistically related to, increased risk of malignant arrhythmias

[12]. QT measurement is highly dependent on waveform morphology near the end of the

T wave. Erroneous measurements are likely in the setting of signal artifacts or noise, even

if the noise is low in amplitude. Since the T wave is low in amplitude, locating the time

of its peak and terminus is easily corrupted by artifacts that often cannot be distinguished

from the true waveform [11].

It is known that the QT interval is controlled by a neural regulatory system in the

same way as heart rate (FIR) and the variation in the duration of the QT interval is the

same way as heart rate varies during time [6]. While this kind of variation is the normal

part of the regulation of the cardiac system, it has been argued that abnormal variation in

the repolarization duration could be a marker for a group of severe cardiac diseases such

as ventricular arrhythmias. It has also been argued that the QT variability could yield

such additional information which can not be observed from HR variability [15].

A single global QT interval measurement from the 12 lead electrocardiogram has

been the standard measure, but recently there has been a great interest in the distribution

of the QT intervals, at given instant of time, across the 12 lead electrocardiogram leads

[13]. This is called QT dispersion.

The QT dispersion is defined as the difference between maximum QT interval and

minimum QT interval [18]. It was originally proposed as an index of the spatial
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dispersion of ventricular recovery times. The QT interval duration varies between leads

on the standard ECG. These interlead differences, called QT interval dispersion was

proposed as an index of the spatial dispersion of the ventricular recovery times [19]. This

measurement was an attempt to distinguish between a myocardium that is homogeneous

from a myocardium that displays inhomogeneity, which is accompanied by increased

dispersion of the ventricular recovery times and prolongation of repolarization.

The initial concept that QT dispersion is an index of inhomogeneity was

supported by the link between the dispersion of ventricular recovery times and the

genesis of arrhythmias [21]. It was believed that the standard 12-lead ECG contained

information about regional ventricular repolarization; thus, when increased QT dispersion

was seen in cardiac diseases, it was assumed that this increased QT dispersion was a

direct reflection of the heterogeneous ventricular recovery times [22] [31].

1.7 RT. interval

The long QT syndrome (LQTS) is characterized by exercise or stress-induced syncope or

sudden death associated with a prolonged corrected QT interval (QTc). Because of the

difficulty in measuring the QT interval at rapid heart rates and the subjective nature of the

measurement of the beginning of the Q wave and end of the T wave, the RTmax interval

was measured. It was defined as the interval from the peak of the R wave to the peak of

the T wave [14].

Recent studies have shown that both the RT max interval and the QT interval are

prolonged in patients with LQTS and these intervals also correlated well in normal

subjects during paced breathing. Thus, RTC interval can be used as a surrogate of the

QT interval, the accepted measurement to quantify repolarization [14]. However, the
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abnormal configuration of repolarization in LQTS patients often makes the precise end of

the T wave difficult to determine. This problem is further hampered by fusion of the T

and P waves at higher rates. The use of the RT„ iax interval facilitates the development of

automated technology to measure and quantify the duration of repolarization. The use of

the peaks of the R and T waves minimizes the potential for observer bias in the manual

acquisition of data.



CHAPTER 2

ALGORITHMS FOR QT INTERVAL MEASUREMENT

2.1 Current Methods

In the study of ventricular activity, it is important that the QT interval is measured

correctly. Therefore, an algorithm to accurately detect QRS complex beginning points

and T wave end points is of great importance to compute QT intervals.

Several methods for automatic electrocardiogram T wave detection and QT interval

assessment have been developed [9] [8] [6]. While beginning of the QRS complex can be

measured with good accuracy due to its higher frequency content, the T wave end

presents greater difficulties. Currently the algorithms can be divided into two categories,

namely, threshold based algorithms and algorithms based on intersection of slope and an

isoelectric line [4].

In the threshold method, the threshold can be derived from a certain percentage of the

T peak or the derivative of the T peak, and the intersection is based on the threshold level

with the T wave. The slope methods are based on the intersection of the maximum T

wave slope after the T wave peak with an isoelectric line in the TP segment. Several

methods for the measurement of the end and, peak of the T wave are reviewed and

compared in this chapter. Measurement methods compared here include:

2.1.1 Threshold Method (TH): The point at which the T wave intersects a threshold

level.

2.1.2 Derivative Threshold (DTH): The point at which the derivative of the T wave

intersects a threshold.

20
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2.1.3 Slope Intercept (SI): The intersection of the maximum slope of T the wave

and the isoelectric line.

2.1.4 Least squares Intercept (LSI): The intersection of a line fitted by least squares

at the maximum slope of the T wave and an isoelectric line.

2.1.5 T Wave Area (TA): The total area of the T wave is considered and threshold

is fixed at 90% of the total area. Wherever the threshold intersects with the

baseline, the point is detected as the T wave end.

2.1.6 Wavelet Detection Method (WD): This method decomposes a signal into its

components based on different scales. The detection of QRS beginning, T

peak and Tend is based on the maximum absolute method and zero crossings of

the mother wavelet transform at characteristic scales.

2.1.7 Principal Component Analysis (PCA) of T wave: The PCA method takes the

total morphology of the T wave into consideration. The T wave is

decomposed into principal component matrices. This matrix is used to define

S/F ratio, which is the ratio of second component to the first component

multiplied by 100. This ratio determines the size and shape of the T wave and

based on that it provides an estimate of T wave complexity.

2.1.1 Threshold Method (TH)

This method aims at determining the end of the T wave by considering the point

at which the threshold level intersects with the T wave as shown in fig 2.1. The threshold

level is based on 5-20% of the maximum T peak [9]. For this technique, the T wave

amplitude and threshold level were calculated relative to an isoelectric level to allow for

any baseline offsets [23].
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(Reference. Z. Sahinoglu, "Analysis of Multi lead QT Dispersion by means of an
Algorithm implemented in LabVIEW", NJIT MS Thesis, January 1998.)

Figure 2.1 T wave end detection with threshold method (TH)

2.1.2 Differential Threshold Method (DTH)

Fig 2.2 shows the Differential Threshold Method (DTH) to detect the T wave end.

In this method, a search window is defined to find the maximum and minimum point

between the limits of the window which is located after the QRS complex. Then, the

amplitude of the maximum or minimum is used to set the threshold level [6] [9].

Thereafter, the threshold crossing point is detected in the same way as in the threshold

method [23].

(Reference. Z. Sahinoglu, "Analysis of Multi lead QT Dispersion by means of an
Algorithm implemented in LabVIEW", NJIT MS Thesis, January 1998.)

Figure 2.2 Differential threshold method (DTH) to detect T wave end.
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2.1.3 Slope Intercept (SI)

In this technique, the end of the T wave is defined as the intercept of an

isoelectric level and a line tangential to the point of maximum T wave slope. The SI

method is illustrated in the fig 2.3 [20].

(Reference. Z. Sahinoglu, "Analysis of Multi lead QT Dispersion by means of an
Algorithm implemented in LabVIEW", NJIT MS Thesis, January 1998.)

Figure 2.3 Slope intercept (SI) technique

2.1.4 Least squares Intercept (LSI) Method

This method is the interception of a least squared fitted line with the isoelectric

line which is then detected as T wave end. The least squares fitted line is a straight line of

y=mx+b which is determined based on the data points around the maximum slope point

(MSP) after the T peak is reached [4] [6]. The fit line is drawn based on the criteria that

the sum of squares of deviations of all points from MSP is minimal or ideally zero. The

least squares method is shown in the fig 2.4 [20].
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(Reference. Q. Xue, S. Reddy, "Algorithms for Computerized QT Analysis",
Journal of Electrocardiology, Vol. 30 Suppl)

Figure 2.4 Least squares intercept (LSI) to detect Tend.

2.2 Comparison of Different Methods

According to the literature, different QT measurement techniques produced results which

were influenced, to varying degrees, by filtering and other variables [9]. This is relevant

for the inter-comparison of studies using different techniques and to assess the influence

of lead selection, electrocardiogram filtering, and threshold levels.

Across the different filter parameter combinations, the technique threshold (TH)

demonstrated the largest intra-technique range of mean and standard deviation (SD) QT

difference values [11]. These variations with relatively small changes in filtering and

algorithm parameters together with the high values of SD make the technique threshold

(TH) unreliable.
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The QT interval measured with good quality and normal electrocardiograms revealed

that the technique Derivative Threshold (DTH), Slope Intercept (SI), and Least squares

Intercept (LSI) produce consistent results over most filter/parameter combinations but

with an underestimate of the QT interval in SI method [9]. Even with these techniques,

however, it should be noted that the effect of filtering has a critical influence on their

performance. The absence of 40 Hz high cut off frequency in filtering resulted in failed

measurements in SI and LSI methods respectively. The failure ratio for TH and DTH

measurements remained zero for almost all filter settings.

The QT interval measured using automatic techniques differ considerably and these

differences encountered were much greater than manual measurement. The application of

the TH method for QT interval measurement performed particularly poorly [4].

Furthermore, the non-uniform distribution of automatic QT difference across different

electrocardiogram leads means higher dispersion values for automatically determined QT

intervals.

The slope based methods in general have better reproducibility than other methods of

T wave end determination [25]. There are two reasons why slope based algorithms have

better reproducibility than threshold-based algorithms:

• The maximum slope point (MSP) of the T wave is more stable, or more reproducible

than the T wave amplitude from which the threshold level is determined.

• The straight line corresponding to the maximum slope is better than the original curve

for obtaining a stable point of intersection with a horizontal line.

A similar reason can explain why a higher threshold can improve reproducibility,

since the horizontal threshold line intersects with more stable portion of the T wave. The
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LSI method achieved better reproducibility than simple slope method [6], mainly because

of more stable fitting line due to more sample points.

(Reference. Q. Xue, S. Reddy, "Algorithms for Computerized QT Analysis",
Journal of Electrocardiology, Vol. 30 Suppl.)

Figure 2.5 Comparison of average QT interval dispersion by different algorithms.

As shown in fig 2.5, the first three bars are threshold algorithms with 10, 15, and 20%

of the maximum amplitude of the T peak, considered as threshold level for detecting the

Tend. The second bars are Derived Threshold (DTH) algorithms with same threshold

levels as in the Threshold (TH) method.

The third and fourth are the slope generated algorithms. The least squares fit

algorithm has 2, 6 and 8 sample points for the fitting lines. The QT interval dispersion

among the three bars of the least squares method (LSI) is much less when compared to

bars in the TH and DTH methods. From fig 2.5, it is clear that the threshold based

algorithms have larger QT dispersion values than slope algorithms and thus, making

slope methods more reproducible.



CHAPTER 3

METHODS

3.1 Getting Proper Data

The first step of the QT algorithm was to provide the proper inputs and obtain the

sampling frequency for the inputted data. The algorithm was validated using five ECG

data sets. The data sets were obtained from the NJIT, Signal Processing Laboratory

resources. These data sets were 5 minute segments of paced breathing at 12 breaths per

minute. The ECG segments chosen for this algorithm were all clean and noise free. The

dataset were sampled at 250 samples/sec. The input data was in the text format and was

read into LabVIEW 7.0 Software.

3.2 The Algorithm

The algorithm was divided into four main categories:

3.2.1 Filtering and Differentiation Process

3.2.2 R wave Detection

3.2.3 Q wave Detection

3.2.4 Tmax and Tend Detection

3.2.1 Filtering and Differentiation Process

The frequency range of an ECG is in between 0.1 Hz to 100 Hz. The ECG

contains various types of noise of different frequencies: low frequency noise (<0.03 Hz)

due to electrode movement and respiration, that causes baseline wander in ECG signal,

EMG noise which has a wide frequency range (1-5000Hz) and 60 Hz power line

27
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interference. Thus, to effectively remove these noise effects and enhance the signal, a

filtering process was required. A high pass filter with a cutoff frequency can be set

anywhere between 0.05-0.5 Hz to remove the baseline wander [9]. To reduce the noise in

the T wave, a low pass filter can be applied to the original ECG signals. Usually, a lower

cutoff frequency was used for the T wave complex than for the QRS complex because

spectral analysis of ECG reveals that the frequency of the T wave was below 15-20 Hz

and the QRS complex has frequencies in the range of 15-40 Hz [4]. The combination of

high pass low and pass filters can be implemented by a Bandpass filter. The algorithm

that was developed uses a digital Butterworth Bandpass filter with high and low cutoff

frequencies of 0.5 Hz and 40 Hz respectively. The baseline wandering was reduced in the

filtered signal due to the removal of low frequency components and the signal now has

improved signal-to-noise ratio. This Bandpass filter uses an order 2. The maximum delay,

in samples, used in creating each output sample is called the order of the filter or, the

number of previous inputs used to calculate the current output. The order of 2 would be a

compromise between getting a sharp cutoff at the transition band and delay in processing

the signal.

After the filtering procedure, the electrocardiogram was passed through a

differentiator. The differentiation process enhances slopes and peaks in the signal making

the detection process easier. The block diagram of filtering and differentiation of the

ECG is shown in figure 3.1 and its implementation in LabVIEW is shown in figure 3.2.

Figure 3.1 Block diagram of filtering and differentiation process
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Figure 3.2 (a) Original ECG

Figure 3.2 (b) Filtered ECG

Figure 3.2 (c) Filtered derived ECG

Figure 3.2 Screen shots of original, filtered and filtered derived ECG
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3.2.2 R wave Detection

The R wave points were used as reference points to detect Q wave, Tmax and Tend

respectively. The R peak was detected using an existing R wave detector [27]. The R

wave array indices were stored in a file by running the R detector program on various

ECG datasets. The R wave array was inputted into the QT detector and, these points were

used as reference points to detect Q wave, T max and Tend respectively. The R peaks

displayed on ECG dataset is shown in figure 3.3.

Figure 3.3 Reading and displaying R wave indices in LabVIEW 7.0

3.2.3 Q wave Detection

In order to detect the onset of the QRS waveform, the R peaks were used as

reference points, as described earlier. The QRS onset is defined as the beginning of the Q

wave. The Q wave detection process was comprised of three different steps:

• Detection of maximum positive and minimum negative derivative points

• Decision of morphology of Q wave

• Q wave detection
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3.2.3.1 Detection of Maximum Positive and Minimum Negative Derivative Points

A search window was run on the differentiated signal of ECG to detect the

maximum positive and minimum negative points. According to the literature, QRS

complex is approximately 90 to 150 milliseconds wide [28]. Thus the length of the

window starting from the R wave could be set up to a length of 80 msec. The length of

the window was approximately 60-70 msec. The length of the window was defined by

taking the number of points equivalent to ((60*sampling frequency)/1000), where the

sampling frequency fs = 250 samples/sec and thus, the length of the window depends on

the sampling frequency. In this search window, the maximum value and the minimum

value was searched and displayed on the ECG differentiated signal in figure 3.4.

Figure 3.4 Maximum positive and minimum negative points on differentiated signal

3.2.3.2 Decision of Morphology of Q wave. There were two types of Q wave at the

beginning of the QRS onset. This algorithm has the robustness to detect the morphology

of the Q wave and then, implement the corresponding detection steps. The two different

types of morphology of Q wave are:

• Q with negative wave

• Q without negative wave
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3.2.3.2.i Q with Negative wave. To decide the type of the Q wave, maximum and

minimum points were considered. The peak maximum point derivative was used to set

percentage level with which, the minimum negative point was compared. About 10% of

the maximum point in the derived signal was compared with the minimum negative

point. If 10% of the maximum point was less than the minimum point, then the program

can conclude that there was a negative wave present at the beginning of the QRS

complex based on the values of two points and, correspondingly apply the detection

process.

3.2.3.2.ii Q without Negative wave. The same percentage level was used to compare

both the minimum and maximum derivative points. If 10% of the maximum point was

greater than the minimum negative point, then the QRS onset does not have a negative

wave and the detection process for this type of Q wave is applied.

3.2.3.3 Q wave Detection

Depending on the morphology of the Q wave, the corresponding detection process

was applied. Since there were two types of Q waves, two different detection processes

was applied based on the differential threshold method (DTH):

3.2.3.3.i Q wave detection with negative wave

3.2.3.3.ii Q wave detection without negative wave

3.2.3.3.i Q wave Detection with Negative wave. This detection process was based on

the differential threshold method. The minimum negative point was considered for

creating the threshold level. The threshold level was set as 10 % of the minimum negative

point. The same window was used which was created in the previous section, for
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generating points less than this threshold level. Therefore, an array of all the points less

than this threshold value within this window was generated. The first point in this array

was considered as the Q wave and the corresponding index in the ECG was read and

displayed. The example of a Q negative wave is shown in figure 3.6 (b). However, in this

algorithm, none of the datasets used for validation had negative Q wave. But the

algorithm was able to distinguish between the ECG with negative Q wave and the one

without it.

3.2.3.3. ii Q wave Detection without Negative wave. This detection process was very

similar to the one with a negative Q wave except for the threshold level. The threshold

level was set as 10% of the maximum positive derivative point on the differentiated ECG

signal. Then, an array of points which are less than this threshold level was generated

within the search window. The first point within this array was detected as Q wave and

this point was correspondingly displayed on the ECG signal. The detection process for Q

wave is shown in figure 3.5 and its implementation in LabVIEW is shown in figure 3.6.

Figure 3.5 Q wave detection using differential threshold method (DTH).



Figure 3.6 (a) Detection of Q wave without negative wave

Figure 3.6 (b) Detection of Q wave with negative wave

3.2.4 Tmax and Tend Detection

The T wave operations include Tmax detection and Tend detection. The Tmax

detection was based on the window method. Starting with the R peak in the original ECG

signal, a search window was set. A refractory period of about 60 milliseconds was set

starting from the R peak so that no other maximum point other than Tmax is detected. The

length of the window was approximately 250 milliseconds based on the literature of the

RT interval [31] [14]. In this window, the maximum value was searched and displayed on

original ECG. This point was detected as Tmax.

34
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The Tend detection was based on the combination of two different methods: the

Threshold method (TH) and the Least squares Intercept (LSI) method. The least squares

method was based on generating a slope or "best-fit line" starting at T max on the T wave.

This best-fit line was based on the least squares solution and the detailed explanation of

least squares method is given in appendix A. The least squares method generates a

straight best-fit line, which is better than the original curve that intersects with the

isoelectric line to obtain the T wave end [6]. Due to 60 Hz noise interference from the

power line and low frequency noise from electrode movements, there exists baseline

wandering which makes the detection of the T wave end difficult. Thus, the threshold

method facilitates this detection because; the straight line threshold was intersecting with

a more stable portion of the T wave than fluctuating and wandering baseline. Thus,

higher threshold values were selected.

Starting from the Tmax, a search window was used to generate the subset of the

array for which the best-fit line has to be drawn. To draw the best-fit line, an array of

points on X-axis and Y-axis were required. The best fit line is in the form of Y=mX+b,

where m is the slope and b is the intercept.

Figure 3.7 Tend detection based on least squares method (LSI).
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To get the X-axis points, an array of points from 0 to maximum index in the ECG

signal was generated. From this array, the X points of the best-fit line were extracted by

taking a subset of the array starting at Tn. and going for a length of about 75

milliseconds. To generate the Y-axis points of the best-fit line, an array was generated

from the ECG signal array starting at the T max point (value) and, going for a length of

about 75 milliseconds. To draw the slope on the T wave, the size of the X array and Y

array has to be the same at all times. Once the arrays were generated, they are fed into the

linear fit block available in LabVIEW 7.0 to draw the slope starting at Tmax•

The next step was to find the intersection point of the best fit line with the

threshold. To define the threshold level, 5% of the Tmax amplitude was considered [25].

The point of intersection of the slope generated with the threshold level was detected as

Tend and the corresponding point was read on the ECG signal as shown in figure 3.8 (a).

3.2.4.1 Potential Problems of this Method. The process of validation was carried out

by testing this algorithm on several data sets. To understand the potential problem of this

algorithm exactly, this algorithm was run on two different data sets as shown in the figure

3.8 (a) and 3.8 (b) respectively.

The intersection of the best fit line drawn around the region of slope of the T

wave with constant threshold level was considered as the T end. Figure 3.8 (a) shows a

normal ECG data set where the constant threshold level was set just above the 'zero line'.

Since the most part of the T wave was above the 'zero line', the intersection of slope and

threshold was at a point where it can detect the exact Tend.
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Figure 3.8 (b) is another example of a normal ECG data set. Since half of the T

wave is below the 'zero line', an intersection of the slope and threshold will be

somewhere in the middle of the T wave, since threshold level is kept at a constant level

above zero. Therefore, the intersection results in the detection of a wrong Tend. The

problem was due to the fixed threshold level. To address this problem, a more easy and

accurate method was developed based on the differential threshold method.

Figure 3.8(a) Correct detection of Tend

Figure 3.8(b) Early detection of Tend

Figure 3.8 Correct and early detection of Tend
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3.2.5 Tend Detection Based on Differential Threshold Method (DTH)

Two different types of T waves were defined according to the locations of the

maximum and minimum points between the limits of the window. However, the

algorithm failed to decide on the morphology of the T wave, but applied the detection

process correctly on T positive.

Starting from the R peak, a refractory period of 60 milliseconds was created. This

point was taken as start of the search window to find the maximum and minimum T wave

points in the derived signal. The length of the window was approximately 200 to 250

milliseconds, depending on the sampling rate of the ECG signal, which in this study is

250 samples/sec. The length of the window was defined by the taking number of points

equivalent to ((250*sampling frequency)/1000). In this search window, the maximum and

minimum points were detected.

The minimum negative point was now compared with the maximum positive

point, in the derived signal, to find the earlier point in terms of occurrence. If the

maximum positive point occurs before the minimum negative point, then the T wave was

considered as positive T wave. If the minimum negative point occurs earlier than the

maximum positive point, then the T wave was considered as T negative.

In case of T positive, the threshold level was set as 10% of the maximum

amplitude of the T peak in the derived signal of the ECG. Using the same window which

was created in this section, all the points in this window were compared with the

threshold level. The points which are less than the threshold level were put in an array

and the first point in this array was considered as T wave end. The detection process for

Tend is shown in figure 3.9.
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Figure 3.9 Tend detection based on differential threshold method (DTH).

3.3 Interval Measurements

For this study, various intervals were measured including QT, QTc, RTmax, QTmax, RR,

and RT interval. The software used is LabVIEW 7.0 Express, which allows creating a

separate array for each detected point. The four different arrays created were R, T om, Q

and Tend array.

The QT interval is defined as the interval from the beginning of the Q wave to the

end of the T wave. The QT interval has some dependence on the heart rate variability and

it is presumed to follow the preceding RR interval [26]. The QT interval was corrected

for preceding R-to-R interval using Bazett's formula and the corresponding interval was

called QT corrected (QTc). The Bazett's formula is given by:

Where RR= R peak-to-peak interval in seconds.
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Since the measurement of the QT interval variability should be independent of the

heart rate variability, this formula reduces the influence due to heart rate changes on QT

interval. The RTmax interval is defined as the interval from R peak to T. or T peak. The

interval from the beginning of the Q wave to the peak of the T wave is called the QTmax

interval. The peak of the R wave to the end of the T wave is measured as the RT interval.

The RR interval is measured from R peak-to-peak which is also called inter beat interval

(IBI).

All these intervals were in the array form which is then converted into text file

format. The text format of the array was read into the MATLAB for plotting. The

intervals RT, RTmax, QTmax, QT, and QTc in milliseconds were plotted against the length

of the ECG signal. Since the length of the ECG signal was considered for five minutes,

the intervals were plotted for 350 to 400 seconds. When comparing signals, all the signals

must be of the same length in order to make the comparison convenient. The vertical

scales of all the intervals were fixed so that the analysis becomes easy.

3.4 Obtaining IIBI and Power Spectrum

The Inter beat interval (IBI) represents difference between two consecutive R wave peaks

in the ECG signal. The purpose of calculating the power spectrum was to study the

amount of influence of the sympathetic and parasympathetic branches of the Autonomic

Nervous System (ANS) on the QT interval and compare it with different variabilities like

RT variability (RTV), RT. variability (RTmxV), QTmax variability (QTmaxV), QTc

variability (QTcV) and heart rate variability (HRV).

In order to obtain IBI samples suitable for frequency analysis and comparison,

interpolation was required. In this research, backward interpolation was used to obtain
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interpolated inter beat interval (IIBI), as it is the most simplest and accurate method. The

IIBI of various intervals was then found by using the 11131 creator in LabVIEW. The IIBI

creator gives the 11131 array for a 5 minute signal. The corresponding beat-to-beat

intervals of QT, QTc, QTmax„, RTmax„, RT and RR were stored in an array format. These

arrays were then read into the MATLAB for power spectral analysis.

3.4.1 IIBI Creator

In order to perform the variability analysis it was important to have equally

spaced samples in the signal. The 1131 samples were not equally spaced and a

transformation was performed by interpolating points according to a desired sampling

rate. Figure 3.10 shows the steps involved in constructing an IBI and IIBI signal. In,

figure 3.10 (d), the pulse wave of figure 3.10 (c) is interpolated to produce a wave with

equally spaced samples. This type of interpolation is called Backward Step Interpolation,

where the height of the wave in a time interval is kept constant at the value of the length

of the previous time interval. Figure 3.10 (d) is called an interpolated interbeat interval

(IIBI).

(Reference. Dr. Reisman S. lecture notes, ECE 667, 1999)
Figure 3.10 Steps to create an interpolated interbeat signal (IIBI)



42

Generally, the sampling rate chosen was the same as the one for sampling the

ECG signal, but for too long and complex datasets, it was time consuming to interpolate

data at such a high sampling rate. It would be adequate to choose a sampling frequency as

low as 5 to 10 Hz, as the highest frequency of interest would not be more than 0.7 Hz.

3.4.2 Power Spectral Analysis

The spectral analysis of the ECG signal was based on the Fourier transform. The

Fourier transform was a method to determine the frequency content of a time domain

signal. The Fourier transform converts the time domain signal x (t) into the frequency

domain signal X (I). It is defined by the following equation:

Where co= 2πf, t is time, f is frequency, x(t) is the time domain signal and X(f) is

the frequency domain signal, representing a spectral density function with magnitudes

and phases of the frequency content of x(t). The Fourier transform can be applied to non

periodic signals and therefore, can be viewed as a Fourier series of a periodic function

whose period goes to infinity. Since the Fourier series relates the magnitudes and phases

of a periodic signal at a specified frequency, called the spectrum, the Fourier transform

becomes a spectral density which represents the contribution of any given frequency to

the signal. The power spectrum density S xx (f) is defined as:
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where X *0 is the complex conjugate of the Fourier transform X ()9. The Fourier

transform analysis of the ECG assumes that the input signal is a stationary signal. In

general, physiological signals are non stationary. However, for the purpose of paced

breathing, the ECG signals were assumed stationary. This assumption was based on the

fact that there are a limited number of influences affecting the autonomic nervous system

during rest.

Before calculating the power spectrum of the IIBI signals, a zero averaged IBI

was generated. The average of the FBI was subtracted from each value of the 1131 array to

get the zero averaged 1131. The purpose of doing this was to eliminate the DC component

which would otherwise result in a high frequency component close to zero in the power

spectrum. The IIBI's of all the intervals were calculated using the zero averaged 1131. The

power spectrum of various intervals including IIBI (RR interval), IQTcI (QT corrected),

IQTI (QT interval), IRTI (RT interval), IQT maxI (QTmaX  interval) and IRTmaxI (RTmax

interval) were found out and the variabilities of all these intervals were compared and

analyzed with respect to each other. Once the power spectrum was calculated, the next

step was to quantify the amount of energy contained in different frequency bands of the

power spectrum.

Spectral analysis of heart rate variability (HRV) usually reveals three peaks in the

following bands: very low frequency (VLF; 0-0.04 Hz), low frequency (LF; 0.04-0.15

Hz), and high frequency (HF; 0.15-0.4 Hz). The VLF is related to thermoregulatory

mechanisms. The LF region is mainly influenced by the activity of both the

parasympathetic and sympathetic parts of the autonomic nervous system and is related to

baroreceptor mechanisms (blood pressure control system). The HF region is an indicator
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of parasympathetic activity and is mainly related to respiratory sinus arrhythmia (RSA)

and a predominant peak usually occurs in the power spectrum at the respiration

frequency. The power in the LF and HF regions were calculated for each of the above

mentioned intervals and the plots of all the interval variabilities were analyzed

quantitatively and qualitatively. Before the analysis, the spectrum was windowed using a

Hanning Window. The purpose of doing a windowing function on the power spectrum

was to remove all the high frequency components at the beginning and end of the spectra.

The advantage of using a Hanning window was the reduction in the size of the side lobe

height at the expense of an increase in the main lobe width. Reduction of the side lobes

height was more important than the main lobe width. The Hanning window is the most

commonly used window.



CHAPTER 4

RESULTS AND DISCUSSIONS

The accuracy of the QT detection algorithm was verified by testing it on ten ECG data

sets obtained from the NJIT, Signal Processing Laboratory. These data sets involved five

minute segment of patients who were paced breathing at 6 breaths per minute and 12

breaths per minute respectively. The different parameters for which the algorithm was

tested included QT interval, QT corrected, QTmax, RTmax, R-to-R, and RT interval. The

intervals were plotted with respect to time of the ECG signal for each patient. The data

sets with 12 breaths per minute were used to study variability analysis in which, QT

variability was compared with heart rate variability and QT corrected variability.

Table 2 shows five different intervals measured for three data sets, each sampled

at 500 samples/sec. The data set paced and cbirecg1 were 3 minute and 5 minute

segments of paced breathing at 12 breaths per minute. These intervals are the result of the

first method used in this algorithm, which is, a combination of LSI and Threshold (TH)

method. This method had a potential problem of early detection of the Tend, and to

compensate for this problem, the differential threshold method was used to detect the Tend

Table 2 Five different intervals measured for three subjects using LSI method

Subjects QTmax

msec

RTmax

msec

RR

msec

QT

msec

RT

msec

Paced 181 148 530 217 184

Non-paced 321 266 809 348 298

Cbirecg1 321 257 519 356 300

45
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The result of detection of all four points on two data sets using LSI method is

shown in the figure 4.1 and 4.2 respectively.

Figure 4.1 Detection of Q, R peak, Tmax and Tend using LSI method for non-

paced data set

Figure 4.2 Detection of Q, R peak, Tmax and Tend using LSI method for

cbirecg1 data set

The intervals detected with the differential threshold method (DTH) for data sets

at 6 breaths per minute and 12 breaths per minute is shown in table 3 and table 4

respectively. For each subject, six different intervals were measured. The average (mean)

and standard deviation for each of these intervals were calculated for each data set.

Figure 4.3 shows the screen shot of all the four points detected at correct positions for the

data set stress20040825a respectively.
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Table 3 Average interval measurements for subjects with 6 breaths per minute paced
breathing (intervals in ms)

Subject RR QT QTc QTmax RTmax RT

20040413b 721+31 417+15 491+24 299+7 236+6 356+15

20040414a 827+112 496+78 504+34 331+48 270+48 435+78

20040414b 1098+95 528+23 551+118 402+19 341+18 467+22

20040415b 778+25 433+23 491+27 324+13 263+13 372+23

20040415c 827+34 461+6 508+12 353+15 292+14 400+6

Note: All the intervals are mean intervals and in milliseconds.

Table 4 Average interval measurements for subjects with 12 breaths per minute paced
breathing (intervals in ms)

Subject RR QT QTc QTmax RTmax RT

20040406a 978+90 515+57 524+84 366+50 305+49 454+57

20040407c 791+49 433+11 489+54 325+11 264+11 372+11

stress20040311c 971+58 461+14 469+22 347+6 286+6 401+14

stress20040825a 806+35 446+15 498+19 344+11 285+10 388+15

stress20040830b 890+76 461+10 463+19 304+13 247+13 359+11

Note: All the intervals are mean intervals and in milliseconds.

Figure 4.3 Detection of Q, R peak, Tmax and Tend in stress20040825a data set.
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In the data set stress20040825a, the total number of R beats in ECG was 372. The

accuracy of detection of different points including Q, Tmax and Tend was verified, both

using the program generated in LabVIEW as well by visual inspection. The R peak

detection was 100% accurate based on the calculations performed using both the

methods. The RR interval for the entire ECG was stored in an array. The average or mean

value of the RR interval was compared with each R-to-R interval in this array. If there

was any large deviation from this average value, the program considers the detected point

as the wrong one and stores it in an array. The percentage success was then calculated

based on the total number of points in ECG and the number of wrong detections. All the

detected points on ECG were then visually examined to check if they were at the right

positions. The wrong detection was based on the positions of the points in original ECG.

If the Tend occurred farther than 20 msec than its usual position, then the point was

detected as wrong Tend detection. A similar procedure was adopted to find the accuracy of

Q wave and Tmax as well.

The number of accurately detected Q, Tmax and Tend points and the percentage

success of these points, using both methods is shown in table 5 and table 6 respectively.

Figure 4.4 shows the wrong detection of Q, Tmax and Tend in Stress20040825a data set. On

an average, the algorithm produced 99.16% success results according to program and

96.4% success based on visual inspection.
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Table 5 Percentage success of detection using LabVIEW program in different patients

PATIENT Q POINTS T. POINTS Tend POINTS

Total

points

Points

detected

%

success

Total

points

Points

detected

%

success

Total

points

Points

detected

%

success

20040406a 307 305 99.3 307 292 95 307 292 95

20040407c 379 378 99.7 379 378 99.7 379 377 99.4

Stress20040311c 309 308 99.6 309 309 100 309 305 98.7

Stress20040825a 372 371 99.7 372 372 100 372 371 99.7

Stress20040830b 375 375 100 375 374 99.7 375 375 100

Total 1742 1737 99.7 1742 1726 99.08 1742 1720 98.7

Table 6 Percentage success of detection by visual inspection in different patients

PATIENT Q POINTS T. POINTS Tend POINTS

Total

points

Points

detected

%

success

Total

points

Points

detected

%

success

Total

points

Points

detected

%

success

20040406a 307 298 97.0 307 288 93.8 307 261 85.0

20040407c 379 370 97.6 379 373 98.4 379 369 97.3

Stress20040311c 309 301 97.4 309 305 98.7 309 302 98.3

Stress20040825a 372 364 97.8 372 353 94.8 372 357 95.9

Stress20040830b 375 370 98.6 375 361 96.5 375 370 98.6

20040413b 333 332 99.6 333 331 99.3 333 330 99

20040414a 290 283 97.5 290 278 95.8 290 260 89.6

20040414b 205 204 99.5 205 203 99 205 200 97.5

20040415b 308 298 96.7 308 308 100 308 300 97.4

20040415c 290 289 99.6 290 289 99.6 290 289 99.6

Total 3168 3109 98.1 3168 3089 97.5 3168 3038 95.8
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Figure 4.4 (a) Wrong detection of Q wave in stress20040825a data set.

Figure 4.4 (b) Wrong detection of Tmax in stress20040825a data set.

Figure 4.4 (c) Wrong detection of Tend in stress20040825a data set.

Figure 4.4 Wrong detection of points Q, T max and Tend in stress20040825a data set
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4.1 Interval and Variability Plot Analysis

The inter beat interval (IBI) of various intervals RR, QT corrected (QTc), QT, RT, grmax

and RTmax were calculated and are named IBI, QTcI, QTI, RTI, QTmaxI and, RTmaxI

respectively. The inter beat interval of all the intervals were plotted against the length of

the ECG signal for each patient. There were six IBI plots for six different intervals for

five different data sets. The interval plots for one of the data sets stress200400825a is

shown in figure 4.5.

For all the IBI interval plots, the time axis and the interval axis are fixed so as to

make the analysis easy. By comparing all the intervals, the QT corrected interval appears

to have the largest interval as shown in figure 4.5 (b). The variation in the interval of IBI,

QTmaxI, and RTmaxI interval is small as seen in figure 4.5 (a), 4.5 (e), and 4.5 (f)

respectively. In 4.5 (c) and 4.5 (d), there is a peak at 200 msec indicating a wrong

detection of point. One interesting thing to note about these interval plots is the similarity

between them. The QTI and RTI plots look similar, however with an increase in QT

interval. Similarly, QTmaxI and RTmaxI also look similar with QTmax interval being greater

than RT. interval.

The IBI was used to calculate the interpolated beat-to-beat interval of all the

intervals. The interpolated beat-to-beat interval of RR, QTc, QT, RT, QT,,,,„ and RTmax

were named IIBI, IQTcI, IQTI, IRTI, IQT maxI and IRTmaxI respectively. The interpolated

beat-to-beat intervals of all the intervals were run through the FFT program to calculate

the power spectrum. The variability plots of various intervals are shown in figure 4.6 for

stress20040825a data set.
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The heart rate variability (HRV) shown in figure 4.6 (a) shows a spike at

frequency 0.2 Hz implying, that the paced breathing was done at 12 breaths per minute

which was true for this patient and the HF region has few reduced amplitude peaks. The

HF region is thought to be primarily due to parasympathetic activity.

Figure 4.5 IBI plots for various intervals of stress20040825a data set
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Figure 4.6 Variability plots of different intervals for stress20040825a data set.
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Recent studies have shown that QT corrected variability shows similarity with the

HR variability [32]. The increased QT variability is associated with increased

sympathetic activity and a predictor of sudden cardiac death [34]. In figure 4.6 (b), the

QTc variability has high peaks in the LF region when compared to HRV. Since QT

interval is corrected for preceding R-to-R interval changes using Bazett's formula, the

variability for corrected QT interval might be related to heart rate variability. However,

the peak for the QTc is at a lower frequency (approximately 0.15 Hz), which is different

from the peak of HRV, although this is still in the HF region.

The QT variability shown in figure 4.6 (c) was a result of the QTI in figure 4.5

(c). The QT variability has increased peaks both in LF and HF region; although it appears

that one of the peaks occur at the same frequency (approx. 0.15 Hz) as QTc. RT

variability (figure 4.6d) appears to be similar to the QT variability.

The QTmax variability has peaks in both LF and HF region, with a dominant peak,

for this patient, at 0.6Hz. RTmaxV is different than QT V.

In this study, the use of controlled paced breathing at 12 breaths per minute (0.2

Hz), might have yielded RR and QT corrected spectral peaks at almost an identical

frequency. In QT variability, the frequency peak at approximately 0.2 Hz was merged

with other frequency components in HF and LF region. The peak was not predominant at

0.2 Hz when compared to HR variability. The same observation can be made in RT

variability which looks similar to QT variability. The 0.2 Hz peak in RT variability was

not clearly visible but had reduced amplitude peaks in LF and HF regions when

compared to QT variability.
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These observations made were similar in all the patients except for two patients in which

QTc variability looked different. These differences can be seen in figure 4.7.

Figure 4.7 Variability plots of different intervals for 200400407c data set.
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In figure 4.7 (b), in QTc variability, the frequency peak at 0.2 Hz is missing,

instead the frequency components are reduced in HF region. There are few high

frequency components in LF region. The frequency components start reducing from the

LF to the HF region. This observation can be seen in table 6. The amount of power in the

HF region is less when compared to the amount of power in the LF region. However,

there was not much difference in QT and RT variability because the peaks looked similar

in both these variabilities. The same observation can be seen in QT maxV and RTmaxV .

4.2 LF and HF Measurement

Once the power spectrum was calculated, the total power in both the bands needs to be

quantified in various intervals to measure LF and HF power. The power spectrum was

calculated using Fast Fourier Transform (FFT). The code for performing FFT was written

in MATLAB. The LF and HF power values were found out using power spectrum main

vi in LabVIEW 7.0 Express. The values of LF and HF for heart rate, QT, QT corrected

and RT variabilities for five different subjects are given in Table 6.

By analyzing the spectral power values, a quantitative analysis can be performed

to look at similarities between HRV, QTV, QTcV, and RTV. Since the subjects

underwent paced breathing at 12 breaths per minute, the breathing frequency peak

occurred at 0.2 Hz in the HF region. Thus, the amount of power in HR-HF region was

higher than the amount of power in HR-LF region except for the first (20040406a) and

last (stress20040830b) patient. [27]. In this study, the results obtained for HR-HF and

HR-LF power was in agreement with the other research.
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The HF power in HRV can be compared to the HF power in QT and QT corrected

variability. The HR-HF power is comparatively closer to QT-HF power than QT

corrected HF power. Similarly, the LF power values are similar between HRV and QTV.

The spectral power values used here are in normalized units. The numbers can be

quantitatively compared by plotting the difference between the power values in nLF and

nHF region for all the four variabilities in five different patients. Figure 4.8 shows the

comparison of LF power between HRV, QT, RT and QTc variabilities in five different

subjects

Table 7 Measurement of total power in LF and HF regions for four variabilities in five
different subjects

Subject HRV QTV QTcV RTV

nLF nHF nLF/n

HF

nLF nHF nLF/

nHF

nLF nHF nLF/

nHF

nLF nHF nLF/

nHF

20040406a 0.515 0.484 1.063 0.609 0.390 1.560 0.657 0.342 1.918 0.660 0.339 1.940

20040407c 0.445 0.554 0.803 0.216 0.783 0.276 0.740 0.259 2.850 0.259 0.740 0.350

stress20040311c 0.424 0.595 0.736 0.413 0.586 0.705 0.335 0.664 0.505 0.422 0.577 0.731

stress20040825a 0.302 0.691 0.433 0.338 0.661 0.512 0.375 0.624 0.600 0.278 0.721 0.385

stress20040830b 0.535 0.464 1.153 0.325 0.674 0.481 0.393 0.606 0.649 0.338 0.661 0.512
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The plots in figure 4.8 and figure 4.9 show the difference in the amount of power

in LF and HF region in different variabilities for five patients. In this plot, the amount of

power in the HR-LF region is comparatively closer to the amount of QT-LF power when

compared to QTc-LF power in almost all patients. Quantitatively, the amount of power in

QT-LF region is similar to power in RT-LF region. Figure 4.9 shows the amount of

power in HF region for HRV, QT, RT and QTc variabilities. The same observation can

be made in all the patients. However, the amount of the power is increased in HR-HF

region when compared to the HR-LF region except for the first and last patient.

Quantitatively the QTc-HF power is less than HR-HF power, and qualitatively the peaks

in QTc-HF region have reduced amplitudes when compared to HR-HF region.



Figure 4.9 Comparison of HF powers in HR, QT, RT and QTc variabilities
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CHAPTER 5

CONCLUSION

The algorithm created in this research for the detection of different points such as Q

wave, Tmax and Tend was validated on five minute data set segment of paced breathing at

12 breaths per minute for five different patients. It produced an overall success of 99.16%

according to automatic verification of accuracy detection and 96.4% based on manual

inspection.

To study the variability plots, the same five data sets mentioned above were used.

From the variability plots, HR variability and QT corrected variability look similar. Since

the QT interval was corrected for corresponding R-to-R changes, the variability of the

HRV might be embedded in the QTc variability. However, peak changed to a lower

frequency, which was still within the HF region.

A high QT variability indicates an increase in the ventricular repolarization

variability. A prolonged action potential arises chiefly from an increased duration of

cardiac repolarization [34]. The duration of the QT interval measured from beat to beat is

the sum duration of repolarization in all the ventricular myocardial cells. An asynchrony

in the duration of the repolarization could result in QT interval shortening and

lengthening accompanied by larger QT variability. In this study, the duration of the QT

interval was in the range of 450 to 500 milliseconds indicating normal duration of

repolarization. The intervals and variabilities for other subjects could be found in

Appendix E.

60



61

The variabilities of QT and RT look similar in all the patients. Qualitatively, the

peaks in both the LF and HF region have similar shape. They can be analyzed

quantitatively by measuring the amount of power in both LF and HF regions. Table 6

shows the comparison between the values of nLF and nHF for both QT and RT

variabilities.



62

5.1 Future Work

In this study, ten paced breathing data sets were used with relatively noise-free ECG

signals. On data sets other than these ten patients, which were used to validate the

algorithm, there were several data sets for which the algorithm produced incorrect results.

An example of such a data set stress20040719c is shown in figure 5.1, in which the

patient has T wave amplitude that cannot be visually determined. Thus, the algorithm

fails to detect the exact Tmax and Tend positions. Additional work needs to be done with

"non-ideal" ECG signals.

Figure 5.1 Detection of points in a data set stress20040719c

The QT detection algorithm is not robust enough to differentiate between the

positive and negative T wave. Another example of data set stress20040720b is shown in

figure 5.2, which shows a data set with a negative T wave. In this case, the algorithm fails

to detect the negative Tmax and Tend. Additional work needs to be done to look at varied T

wave morphologies. In addition, while the algorithm appears to be accurate for clean

ECG signals, there will be some missed or errors in positions. A manual system, similar

to the R wave detection system, needs to be developed to account for these errors.
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Figure 5.2 Detection of points in a data set stress20040720b.

By analyzing the variability plots in figure 4.6 (c) and figure (d) qualitatively, QT

and RT variability looked similar. The peaks are visually similar in shape in both LF and

HF region. Quantitatively, the amount of power in both LF and HF regions of QTV and

RTV differ very little. Since, QTV and RTV do not differ much, the similarities and

differences between them can be studied. If the amount of similarities is dominant over

differences, RT variability can be used as a surrogate of QT variability. A more detailed

study of the comparison of QT/RT variability and HRV should be performed.

The HRV, QT and other variabilities were studied using traditional frequency

domain methods in this project. The Fast Fourier Transform is applied to the interpolated

beat-to-beat interval of various intervals to study the spectral content of each signal. A

future study can look at the behavior of HRV with respect to QT variability in the time

domain and frequency domain, as well as using time-frequency analysis. These are the

parameters which are not addressed in this thesis.

Using the intervals obtained from this research, one can employ them to calculate

time frequency plots and see the effect of heart rate recovery after exercise on HRV, QT

and QTc variabilities. The effect of the respiration and baroreceptor index on these



64

variabilities could be studied in time frequency analysis. The behavior and similarity of

HRV with other interval variabilities can be analysed under different conditions.

One of the important parameters which could be studied in QT interval variability

is the QT variability Index (QTVI). This index quantifies the relative magnitude of QT

interval changes compared to heart rate variability. QTVI is the log ratio between QT

interval variabilities and heart rate variabilities each normalized by the squared mean of

the respective time series and is given by:

The QTVI index gives a non-invasive measure of beat to beat QT fluctuations and

represents the relationship between QT and RR variability. Studies indicate that increased

QT variability and decreased RR variability is a predictor of sudden death [33]. In other

words, increased QT variance and decreased RR variance would increase QTVI.

Increased QTVI can be correlated with clinical severity of heart failure. Therefore, a

study of QTVI would give a better picture about the relationship between QT and RR

variabilities.



APPENDIX A

LEAST SQUARES METHOD (LSI)

The Least Squares Method is a very popular technique, which is used to compute

estimations of parameters and to fit data. This method is equivalent to finding a function,

over a certain range, which is the "best fit" to the data points. What we mean by the "best

fit" of a line to a set of points? Intuitively, a good fit is a line with little space between the

line and the points it's supposed to fit. The best fitting line is the one that has the least

space between itself and the data points, which represent actual measurements.

There are three ways to measure the space between a point and a line: vertically

in the y direction, horizontally in the x direction, and perpendicular to the line. It is

desirous to measure the space vertically, because the whole purpose in making a

regression line is to use it to predict the y value for a given x value. It is nothing but

measuring how far off the vertical distances of prediction points would be from the points

actually measured. In general, the deviation (vertical gap) between any given point (x, y)

and the line y=mx+b will be mx+b—y.

But each deviation could be positive or negative, depending on whether the line

fall above or below that point. We can't simply add up deviations, because then a line

would be considered good if it fell way below some points as long as it fell way above

others. To prevent that, we square each deviation, and add up the squares. If we compute

the deviations in the y direction, square each one, and add up the squares, we say that, the

line of best fit is the line for which the sum of squares of deviations is the least. Since it's

a sum of squares, the method is called the method of least squares.

65
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The best-fit line, as stated earlier, is the line that minimizes the sum of squares of

vertical deviations between itself and the measured points. We can write that sum as

Where ST is the predicted value on the line for a given x (namely mx+b), and the y

is the actual value measured for that given x.

A line in slope-intercept form looks like y=mx+b, where b is the y intercept and

m is the slope. The unknowns b and m needs to be found such that y=mx+b is true for all

the data points. There may not exist b and m that fit all these equations, but a best fit can

be found. The equations can be written in the form Xc = y, in which the parameters X, c

and y can be written as:

Where X is the array of data points of the x axes, c is the matrix of unknown parameters,

that is, m slope and b intercept, and y is the matrix of data points on the y axes.

In general, this system can't be solved because the system is usually inconsistent

because it is over determined. In other words, we have more equations than unknowns

(the unknowns are the two variables, b and m). There is a system of equations called the
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normal equations that can be used to find least squares solution to systems with more

equations than unknowns.

Let X be an m by n matrix such that XTX is invertible, then the solution to the

normal equations, XTXc = XTy, is the least squares approximation to c in Xc = y. Where, X

and Y are array points of best-fit line on X-axis and Y-axis respectively. XT is transpose

of X array. It is important to remember that the solution to the normal equations is only

an approximation to c for Xc = y. It is not equal to c because Xc = y is inconsistent, so it

has no solution. In other words, there does not exist a vector, c, that makes Xc = y a true

statement. Therefore, we use the normal equations to approximate c.



APPENDIX B

Q DETECTOR MODULES

Figure B.1 Front panel of min and max points in derived ECG

Figure B.2 Block diagram of min and max points in derived ECG
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Figure B.3 Front panel of Q decision display
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Figure B.4 Block diagram of Q decision display



70

Figure B.5 Front panel of Q threshold detector

Figure B.6 Block diagram of Q threshold detector



Figure B.7 Front panel of sub-indices greater than refractory
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Figure B.8 Block diagram of sub-indices greater than refractory



Figure B.9 Front panel of sub-difference
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Figure B.10 Block diagram of sub-difference



Figure B.11 Block diagram of Q type decision
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Figure B.12 Front panel of Q type decision
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Figure B.13 Front panel of filter and differentiation module

Figure B.14 Block diagram of filter and differentiation module



APPENDIX C

T DETECTOR MODULES

Figure C.1 Block diagram of Tmax detector
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Figure C.2 Block diagram of T max and Tmin points on derived ECG
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Figure C.3 Front panel of T,„ and Tmin points on derived ECG



Figure C.4 Block diagram of Tend detector
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Figure C.5 Front panel of Tend detector
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Figure C.6 Block diagram of interval calculator

Figure C.7 Front panel of interval calculator
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Figure C.8 Front panel of QT detector



Figure C.9 Block diagram of OT detector



Figure C.10 Front panel of IIBI creator
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Figure C.11 Block diagram of IIBI creator
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Figure C.12 Front panel of sub-vi IIBI creator

Figure C.13 Block diagram of sub-vi IIBI creator



APPENDIX D

MATLAB CODES

%MATLAB code for IBI interval plotting%

[File, Path, FILTERINDEX] = uigetfile('*.*', 'Choose the clean
IIBI data file you wish to process');
original_rawdata=load ([Path File])';
rawdata=original_rawdata(:);

[row, col] =size (rawdata);
I=1:row;
I=I(•);
n=10;
% x=hann(n);
% x=hann(n,'symmetric');

figure

plot (I,rawdata);
axis ([0.03 450 200 1300]);
title (' 	 QTcI for original data');
xlabel ('time (sec)');
ylabel ('Interval (millisec)');
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%MATLAB code for IIBI variability plotting%

[File, Path, FILTERINDEX] = uigetfile('*.*', 'Choose the clean
IIBI data file you wish to process');
original_rawdata=load([Path File])';
rawdata=original_rawdata(:);

x = rawdata;
%N = length(x);

%order=5;
%freq=0.03;
sf=5;
%nfreq=freq/sample;

[row,col]=size(x);
I=1:row;
I=I(:);
A=(I/sf); 	 % Time axis in sec

fftsize=length(x);
x=x-mean(x);
fftx=fft(x,fftsize);
p=fftx.*conj(fftx);
%f=sf*(0:(fftsize/2-1))/fftsize;
f=sf*(0:(fftsize-1))/fftsize;
%clear fftx
n=64;
fftx=hann(n);
fftx=hann(n,'symmetric');

%figure

% plot (I,x);
% title(' 	 IBI for original data');
% xlabel('time (sec)');
% ylabel('amplitude');

figure
plot(f(1:100),p(1:100),lr');
%plot(f(1:150),P (1:150)/max(p), 1 r 1 );
axis([0.02 1 0 max(p)]);
xlabel('Frequency (Hz)');
ylabel('Power');
title('HR variability');



APPENDIX E

INTERVAL AND VARIABILITY PLOTS

Figure E.1 Interval plots of 20040406a data set
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Figure E.2 Variability plots of 20040406a data set
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Figure E.3 Interval plots of 20040407c data set
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Figure E.4 Variability plots of 20040407c data set



Figure E.5 Interval plots of stress20040311c data set
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Figure E.6 Variability plots of stress200403 11c data set



Figure E.7 Interval plots of stress20040830b data set
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Figure E.8 Variability plots of stress20040830b data set
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