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ABSTRACT

AUTO DETECTION IN AUTISM

by
Gayathri Chandar

Autism is a neurobiological disorder in which, certain regions of the brain are affected.

The main features of autism are impairment in communication, social interaction,

language and deficit in imitation and theory of mind. Using Functional Magnetic

Resonance Imaging (fMRI), haemodynamic responses during a bilateral finger tapping

task are analyzed for both autistic subjects and normal control subjects. fMRI is a

noninvasive technique to image the activity of the brain related to a specific task.

Generally, the active voxels in the fMRI images are detected using parametric or non-

parametric statistical methods in which the fMRI response is assumed to have a model.

Such methods are not applicable to detect the active voxels when the fMRI response is

unknown. The data driven methods are also used for analyzing the fMRI data. The data

driven methods are computationally expensive.

In this study, a method for detecting activated voxels without using prior

knowledge of the input stimulus is presented. The assumption in this method is that the

activation typically involves larger region comprising of several voxels and that these

neighboring activated voxels are also temporally correlated. To validate the accuracy of

this method, Principal component Analysis and Independent Component Analysis are

also performed. A significant overlap in the sensorimotor cortex is found between the

various methods suggesting that the automatic detecting method presented does provide

accurate detection and localization.
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CHAPTER 1

INTRODUCTION

Autism is a neurobiological disorder that affects the functioning of the brain which

begins in childhood and persists throughout the adulthood. Autism was considered as a

rare condition in 1943 with a prevalence of around 2-4 per 10,000 children. Several

studies shows that the number of children diagnosed with autism have increased in recent

years. According to the data from the United States Department of Education, in 1999 the

autism incident rate was 4.5 cases per 10,000. The US centers for disease control (CDC)

estimated 40 cases per 10,000 in 2005. The disorder is four times prevalent in boys than

in girls and autism is prevalent regardless of any racial, ethnic or social group. [1].

The symptoms vary and not all symptoms are present in all autistic children.

Some common symptoms in autistic children are: (i) lack of eye contact (ii) difficulty in

understanding other's action and feelings (iii) loneliness (iv) resists change in routine (v)

insensitive to pain etc.

Some theories also suggest a genetic basis to the disorder. It is usually associated with

intellectual impairment. The brain structures affected in autism are cerebellum, cerebral

cortex, limbic system, corpus collasm, basal ganglia and brain stem. Autism is usually

characterized by (i) qualitative impairment in social interaction, (ii) qualitative

impairment in communication, (iii) restricted, repetitive and stereotypical patterns of

behavior, (iv) deficits in imitation and theory of mind and (v) a significant delay in

language and cognitive development. Autistic children also have deficits in attention

since the cerebellum is affected.

1
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Bartholomeusz et al. [2] analyzed the head circumference in autistic children

during the first two years of life. He found that the head circumference was at 25 th

percentile at birth and by 6-14 months it increased to 84 th percentile in autistic children.

Conciatori et al. [3] found an association between Hoxal poly morphism and enlarged

head circumference in autistic children. Friedman [4] hypothesized that brain overgrowth

was due to increased level of N-Acetylaspartate and to test this hypothesis, he used

magnetic resonance spectroscopy (MRS) to measure N-Acetylaspartate where he found

that it was reduced in cerebral regions. Other MRS studies [5-7] also found reduced N-

Acetylaspartate in cerebellar and limbic system and reduced or normal level of N-

Acetylaspartate in frontal and temporal lobes.

Akshoomoff et al. [8] conducted an MRI study and he found that in younger

autistic children there was an enlargement in cerebral white and grey matter which

accounted for an increase in the head circumference and this was not found in older and

adolescent subjects with autism. Courchesne et al. [9] in a structural MRI study reported

abnormal growth in autistic children during early life. They found hyperplasia of

cerebellar white matter, neocortical grey matter and the growth was reduced in the

subsequent years. Another important finding in their study was that the cerebral vermis

lobes were found to be reduced in autistic children at all ages. They hypothesized the

abnormal growth was due to (i) genetic factors (ii) excess number of axons and glial cells

and (iii) elevated level of brain growth factor. Hashimoto et al. [10] and Levitt et al. [11]

reported cerebellar vermis hypoplasia in autistic children from infancy to adolescent.

Koul et al. [12] found that myelin composition was altered in autistic children and he

hypothesized that myelin alteration was due to enlargement in the white matter.
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Bauman et al. [13] analyzed the forebrain, brain stem and cerebellum of nine

cases of autistic children. They found the neurons in the amygdala and hippocampus

regions to be closely packed and small compared to the control group. The purkinje cells

in the cerebral cortex were also reduced in the autistic children compared to the control

group. They also observed the neurons in the septum part were larger in young autistic

children compared to older individuals. A similar pattern of change in cell size was noted

in the brainstem.

Using MRI, Carper et al. [14] found grey and white matter hyperplasia in the

frontal, parietal and temporal regions in autistic children. In subsequent years the

volumes were significantly reduced and there was minimal difference between autistic

subjects and matched controls. In their study, they also found there was no significant

difference in the occipital lobe of autistic children compared to the control group.

Casonova et al. [15] reported small and underdeveloped cortical minicolumns in frontal

and temporal areas in autistic children. Abell et al. [16] in a structural imaging study

reported reduced amygdala volume.

Waterhouse et al. [17] hypothesized that the major autistic behavior is due to

dysfunction of four neural mechanisms which are mentioned below:

• When the cell density of the neurons in the hippocampus is larger than the average cell
density, the sensory component in the hippocampal system tissue fails to integrate and as
a result the person cannot link the ongoing event with past event and this condition is
termed as Canalesthesia.

• When the cells in the amygdala are immature, it cannot assign significance to
incoming social stimuli such as facial expressions or messages and as a consequence
other people's actions and messages are not understood.
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• The neuropeptides namely vasopressin, oxytocin and serotonin (which are responsible
for emotional states and behaviors) is disrupted. When this is disrupted the social
behavior is affected.

• In healthy subjects, the temporal and parietal lobe is involved in facilitating
polysensory organization. The polysensory organization of temporal and parietal lobe is
disorganized and as a consequence there is a delay in shifting the attention and also the
time spent in selective attention increases.

Nelson et al. [18] found an increased level of neurotrophin and neuropeptides

namely vasoactive intestinal polypeptide, brain derived neurotrophic factor (BDNF),

neurotrophin 4 (NT-4) and calcitonin a gene related protein in autistic children. Morrison

and Mason [19] found an inverse relationship between the number of purkinje cells and

the levels of BDNF and NT-4. Akshoomoff [8] concluded that autistic children have

reduced number of purkinje cells due to an increased level of BDNF and NT-4.

Rodier [20] found that alleles of HOXA1 genes which is present in chromosome 7

was different in autistic children compared to a control group and this gene plays an

important role in brain stem development. Since this gene is affected in autistic children,

the author concluded that the lack of neurons in the brain stem is due to defect in HOXA1

gene.

Muller et al. [21] conducted an fMRI study to observe the functional organization

during visually driven motor sequence learning. The activation in the superior parietal

cortex was less pronounced in autistic group and the activation in prefrontal cortex and

posterior parietal loci was greater in autistic children and the authors hypothesized that

the axonal pathways connecting the cerebral deep nuclei, the thalamus and the cerebral

cortex were affected in children with autism.

Allen et al. [22] conducted an fMRI study to determine the role of cerebellum in

cognitive and motor functions. The activation was greater in cerebellum for motor tasks
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compared to attention tasks in autistic children. The authors concluded that the reduced

functional activation in the cerebellum for attentional tasks was due to a reduction of

purkinje cells in the cerebellum. Baron-Cohen et al. [23] conducted an fMRI study to

determine activation in the amygdala and the task was to identify the gender and mental

state of the photographed person. The autism group demonstrated significant response in

superior temporal sulcus compared to the control group and the control group

demonstrated significant response in left amygdala, right insula and inferior frontal gyrus.

The authors concluded the autistic children did not perform the task using amygdala and

this shows that amygdala is affected in children with autism.

Hadjikhani et al. [24] conducted an fMRI study to examine the visual cortex and

they reported the retinotopic maps in autistic children were similar compared to the

control group. They concluded that low level visual processing is intact in children with

autism.

Luna et al. [25] conducted an fMRI study in autistic children and subjects were

asked to perform an oculomotor task and making saccades via a visual stimulus. During

the oculomotor delayed response (ODR) task, there was no activation in the dorsolateral

prefrontal cortex (DLPFC) and posterior cingulate cortex in autistic children. But there

was activation in post parietal cortex, cortical eye fields, Medial Temporal (MT)/V5,

temporal regions, anterior cingulate cortex, superior temporal sulcus, inferior frontal

gyrus, insula, basal ganglia and thalamus and these regions are also involved in spatial

working memory. It is established that the DLPFC plays an important role in spatial

cognitive process. Since there was no activation in posterior cingulate cortex, they
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suggested a functional disconnectivity exists in the frontal cortex and because of this

disconnectivity autistics have deficits in higher order cognitive process.

Bailey et al. [26] in a postmortem study reported an increase in brain size and

there were developmental abnormalities in the cerebral cortex, brain stem and

cerebellum. Bauman et al. [27] and Rapin et al. [28] performed autopsy studies in autistic

children and they found the cell density in amygdala was reduced.

1.1 Objective

The goal of this study is to use signal processing methodologies including motion

correction, physiological noise reduction, and signal detection to improve reliable

determination of task-related signal changes.

1.2 Overview

Functional Magnetic Resonance Imaging (fMRI) is an important and popular tool for

studying the brain activity. The most frequently used effect to asses brain function is the

blood oxygenation level dependent (BOLD) effect. High oxygenation levels represent

high activity of brain regions responsible for performance of a specific task. The goal of

fMRI data analysis is to detect the parts of the brain that are involved for a specific task.

The data is usually preprocessed so that the artifacts due to motion and other sources

contaminating the signal can be minimized. The functional activation maps can be

generated using different techniques. In this study, three techniques were used and they

are discussed briefly in this section and the remaining techniques are described in detail

in Chapter 3.
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A technique for thresholding was first introduced by Bandettini et al. [29], in

which the shape of the response in a voxel is compared with the shape of the reference

waveform. This technique is known as the correlation technique and is commonly used

for analyzing the fMRI data. The correlation coefficient (cc) is calculated for each voxel.

The advantage of the thresholding technique is that the noise is suppressed and in

addition to it, the spurious correlation in voxels with very large signal changes arising

from pulsatile blood flow and cerebro spinal fluid (CSF) flow is eliminated. The value of

cc varies between + 1 to — 1 and the threshold value is varied between 0 and + 1. When

the correlation coefficient is less than the threshold value, the data in each voxel is

rejected.

The functional patterns in the functional imaging data can be isolated using

Principal Component Analysis (PCA) and it was first introduced by Moeller et al. [30].

This technique measures the tendency of signals at all possible pairs of voxels to covary

and the eigen vectors having the greatest variance in the data is determined.

McKeown et al. [31] used Independent Component Analysis (ICA) algorithm for

analyzing fMRI data. In this method, the fMRI datasets are decomposed into spatially

independent components. Each component consists of voxel values and time course of

activation. The advantage of ICA is that it can differentiate task-related and nontask-

related signal.

Levin et al. [32] proposed a new method for detecting brain activation in fMRI

data and it s termed as Biasless Identification of Activated Sites by Linear Evaluation of

Signal Similarity (BIASLESS). The analysis is based on the assumption that there is no

change in the time course of signal in activated voxels when an entire task is repeated by
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the same individual. The BIASLESS maps are generated by correlating the detrended

time courses of the identified voxels during the consecutive scans of the same subject and

the correlation coefficient is calculated for the two time series in each voxel of the brain.

The activation of each voxel is detected in a manner that is independent of the presence

or absence of activity in other voxels. Hence, this method does not require prior

knowledge of the time course of the mental activity.

In this study, the task activated regions were identified automatically and the

assumption is that the activation typically involves larger region comprising of several

voxels and that these neighboring activated voxels are temporally correlated. Without

prior knowledge of the reference waveform the activation maps were generated.



CHAPTER 2

MAGNETIC RESONANCE IMAGING (MRI)

2.1 Introduction

Nuclear Magnetic Resonance (NMR) was discovered in 1946 by Felix Bloch and Edward

Purcell. When nuclei of certain atoms are placed in a magnetic field, they absorb energy

in the radiofrequency range of the electromagnetic spectrum and this energy is reemitted

when the nuclei are transferred to the original state and this phenomenon is termed as

NMR. Magnetic Resonance Imaging (MRI) is a technique that uses NMR principles to

acquire 2D and 3D images and it was illustrated by Lauterbur in 1973.

2.2 Physics of MRI

MRI makes use of the radio frequency RF region of the electromagnetic spectra to

provide an image. It is a non-invasive technique that uses the principles of NMR.NMR

property is exhibited by atoms having odd number of protons or neutrons. An example is

Hydrogen. Hydrogen has a single proton in its nucleus so it has a net spin and magnetic

dipole moment is associated with spin.

In order to create an NMR signal, a sample is placed in an external magnetic field

Bo and the coil is placed near the sample with its axis perpendicular to the magnetic field.

This coil acts as a transmitter and receiver. During the transmit phase, current is applied

to the coil since the coil is in the magnetic field and current is applied, it creates an

oscillating magnetic field in the sample. This oscillating magnetic field is known as RF

pulse and the oscillations are in the radio frequency range so the coil is known as an RF

9
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coil. During the receive phase, a signal is detected in the coil by connecting the coil to a

detector in the external circuit.

The oscillating current (referred to as the Free induction decay) detected in the RF

coil is known as Nuclear Magnetic Resonance (NMR) signal and its frequency is equal to

the frequency of the RF pulse. The frequency at which it occurs is the resonant frequency

of particular nuclei because at its resonant frequency, a nucleus is able to absorb RF pulse

and returns a small portion of that energy back

2.3 MRI Scanner

The three main components of the MRI scanner are (i) the magnet, (ii) the gradient coils

and (iii) the radio frequency coils. The other components are the shimming coils to

ensure the homogeneity of the static magnetic field and specialized computer systems to

control the scanner. [33].
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Figure 2.1 Block diagram of the MRI system.

2.3.1 Magnet

The static magnetic field is created by the magnet. The signal measured from a part of the

body depends upon the strength and homogeneity of the magnetic field. In modern MRI

scanners, the magnetic field is generated by the superconducting electromagnets. The

field strength produced by the superconducting magnet is stable, homogeneous and the

strength varies from 1 to 9 T for humans. Even higher field strengths are available for

animal studies. A higher magnetic field is typically desirable for imaging because the

signal strength generated by the number of precessing protons increases linearly with the

magnetic field.
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2.3.2 Gradient Coils

The gradient coil generates a linear magnetic field across the imaging plane. It is done to

create a spatially dependent magnetic field such that each line in the space will have a

different larmour frequency. The gradient coils generate a magnetic field that increases in

strength along one spatial direction. The spatial locations are used relative to the main

magnetic field with z going parallel to the main field and x and y going perpendicular to

the main field.

2.3.3 Radiofrequency Coil

The RF coils transmit and receive the electromagnetic energy at the resonant frequency

of the atomic nuclei. RF coils control the amount of energy that can be transmitted or

received from the sample being measured. RF coils are placed between the object (for

example head) to be imaged and the gradient coil to maximize signal. The MR signal

depends on the sensitivity and uniformity of the RF coils.

2.4 Magnetic Field Gradients

In addition to the RF coils, there are three gradient coils in an MR scanner. Gradient is a

linear position dependent magnetic field which is applied to alter the precessional

frequency of the proton. The three gradient coils produce three gradient fields along X, Y

and Z axis. The field produce by the gradient coil adds to the external magnetic field Bo

and are much weaker in field strength. [34]. In order to extract the information about the

spatial distribution of MR signal, three techniques are used namely which are described

in the following sections:
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2.4.1 Slice Selection Gradient, Gz

Slice selection gradient (SSG) determines the slice that has to be imaged in the brain. For

axial images, SSG is applied along the cranial-caudal axis. RF pulse is simultaneously

applied with a certain frequency and the protons which has a precessional frequency

equal to the frequency of RF pulse spins. Due to this gradient, proton excitation occur in

a single plane and thus the signal is localized a dimension orthogonal to the gradient. It is

the first of the three gradients applied to the sample volume.

2.4.2 Phase Encode Gradient, Gy

Position of the spins in the third spatial dimension is determined by the Gy gradient and

is applied after the SSG. After the application of the SSG, all spins are in phase

coherence. When this gradient is applied, the precessional frequency of the protons varies

along the direction of the gradient. As a result, the protons precess at different rates and a

phase difference is introduced. The phase shifts cannot be removed even after the

gradient is turned off. Decoding the spatial position along the phase encoding direction

occurs using a Fourier transform, only after all the data for the image have been

collected.

2.4.3 Frequency Encode Gradient, Gx

The frequency encoding gradient is also called readout gradient and is applied in a

direction perpendicular to SSG. For axial images, this gradient is applied across the X

axis. When this gradient is turned on, higher precessional frequencies occur at the

positive poles and lower precessional frequencies occur at the negative pole. The signal is

amplified, digitized and is decoded by Fourier transform.
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2.5 MR Signal Generation

When a proton is placed in an external magnetic field (Bo), the field exerts a torque on it

that would tend to make it align with the field. Since the proton has a net spin, it posses

an angular momentum thus it cannot align with the field so it precesses around the field

axis and is shown in Figure 2.2. The frequency at which the protons precess is known as

Larmor frequency and is proportional to external magnetic field Bo.

7 = Gyromagnetic ratio in MHz/T and is different for different nucleus.

Figure 2.2 The magnetic field Bo exerts a torque on a nuclear magnetic dipole that
would tend to make it align with Bo. Since the nucleus also has angular momentum, it
precesses at an angle to the gravitational field. The precession frequency is proportional
to the magnetic field and is the resonant frequency of NMR.

When the precession is observed for million of cycles, the dipole gradually aligns

with the magnetic field Bo. Time constant for the relaxation is known as T1. After several

times longer than T 1 , the dipole is aligned with Bo. The main magnetic field Bo is
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generated by the scanner. In the absence of magnetic field, protons are not aligned and

randomly oriented. However when placed in the magnetic field, part of it aligns with the

magnetic field creating a net local magnetization Mo. Mo, which is the net difference

between dipoles aligned with the field and opposite to the field, is proportional to proton

density. It is weaker than Bo.

The net magnetization vector, M, is described by three components, M z is the

component of the magnetic moment parallel to the applied field and is known as

longitudinal magnetization. At equilibrium, the longitudinal magnetization is maximal

and is denoted as Mo where Mo= Mz, with the amplitude determined by the excess

number of protons that are in the low energy state. M xy is the component of the magnetic

moment perpendicular to the applied magnetic field and is known as transverse

magnetization. At equilibrium, the transverse magnetization is zero because the vector

components of the spins are randomly oriented about 360 degrees in the x-y plane and

cancels each other and is shown in Figure 2.3.

The oscillating magnetic field is generated by the RF coil. This oscillating

magnetic field created in the sample is B 1 and is perpendicular to Bo and is less than Bo.

The net magnetic field (vector sum of Bo and B1) wobble around Bo. Initially, Mo is

aligned with Bo but when net magnetic field is tipped slightly M o precess around Bo. If

B1 is different from Larmor frequency, M o wobbles slightly around Bo and if B1 is equal

to Larmor frequency, Mo tips farther away from Bo, tracing out a growing spiral as in

Figure 2.4. When the RF pulse is turned off, Mo continues to precess about Bo. The

effect of RF pulse is to tip Mo away from Bo and such pulses are described by the flip

angle they produce. The flip angle depends on strength of B 1 and duration of RF pulse.
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Figure 2.3 The net magnetization vector, M, is described by three components, Mz is the
component of the magnetic moment parallel to the applied field and is known as
longitudinal magnetization. Mxy is the component of the magnetic moment perpendicular
to the applied magnetic field and is known as transverse magnetization.

Figure 2.4 The RF pulse is a small oscillating field B1 perpendicular to Bo that causes
the net magnetic field to wobble slightly around the z-axis. As the magnetization M
precesses around the net field, it traces out a widening spiral. M is tipped away from the
longitudinal axis and the flip angle a is controlled by strength and duration of RF pulse.

A precessing magnetization creates a magnetic field and thus current is induced in

the coil which creates an NMR signal proportional to the magnitude of the precessing
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magnetization and the signal detected is called free induction decay. The name is derived

because free refers to the free precession of the nuclei; induction is an electromagnetic

process by which a changing magnetic field induces current in the coil and decay

describes the signal is transient.

The signal decays exponentially in amplitude with a time constant T2 as in Figure

2.5. The exponential relationship is given by,

When t=0, Mxy= Mo and when t= T2, Mxy=.37 Mo

Figure 2.5 After a 90° pulse tips the longitudinal magnetization into transverse plane, a
detector coil measures an oscillating signal which decays in amplitude with a time
constant T2.

The experiment is repeated to generate a new signal and the time between RF

pulses is called the repetition time (TR). When TR is long, the signal generated by a

second RF pulse is the same as that of the signal generated by the first RF pulse and when

TR is short, the signal generated by second RF pulse is weak.
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2.6 Contrasts in MRI

Unlike other imaging modalities, in MRI a number of different contrast mechanism are

present which can be used simultaneously to maximize the contrast from the various

mechanisms. The main contrast mechanism sources are due to longitudinal relaxation

(T 1 ), transverse relaxation (T2), and proton density. Two other sources of mechanism

including diffusion and chemical shift also exists, but are not very often used for brain

imaging. Contrast in an image is proportional to the difference in signal intensity between

the adjacent voxels in an image. T 1 and T2 are physical properties of the tissue and TR

and TE are the pulse sequence controls on the MRI machine. When T1 and T2 between

two adjacent voxels changes, the signal in those two voxels changes thus creates contrast

with an MRI image. By changing the pulse sequence parameters TR and TE, the contrast

dependence in the image can be weighted toward T1 or T2. [35].

2.6.1 T1 Weighted Image

T 1 is the time constant that describes the recovery of the longitudinal component of net

magnetization over time. Every tissue has its own T 1 and T2 value. In T1 weighted images,

most of the contrast between tissues is due to difference in T 1 value. T 1 contrast is

approached by imaging with a short TR and short TE, compared to tissue T2 so that image

contrast due to T2 is reduced.

2.6.2 T2 Weighted Image

T2 is the time constant that describes the decay of the transverse component of net

magnetization over time. Images created with TR's and TE's to enhance T2 contrast are

referred as T2 images. The contrast of T2 weighted image is dependent on T2 and this T2
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dependence is increased by using a long echo time and long TR compared to T1 so that

image contrast due to T 1 is reduced.

2.6.3 Proton Density Weighted Image

In this type, the contrast is dependent on the density of protons in the tissues. Proton

density weighted images are generated by choosing TR > T1 and TE < T2 When there are

more number of protons in a given tissue, that specific tissue appears bright.

2.7 Pulse Sequences

A pulse sequence is a set of RF and gradient pulses to the sample to produce a specific

form of NMR signal and is repeated several times during the scan. The characteristic of

MR images depends on the amplitude and shape of the gradient and also the time interval

between pulses.

MR relies on three major pulse sequences namely the spin echo, inversion echo

and gradient recalled echo which are described in the following sections:

2.7.1 Spin Echo

It describes the excitation of the magnetized protons in a sample with an RF pulse and

production of FID, followed by a second RF pulse to produce an echo. Due to 90 ° RF

pulse, transverse magnetization M xy is maximum and the spins are in phase. After a delay

of TE/2, 180° RF pulse is applied and as a result the phase difference is introduced in the

spins. The spins which are rephased produce a measurable signal equal at a time equal to

the time of echo (TE). Echo reforms in the opposite direction from the initial transverse

magnetization vector, so spins experience opposite external magnetic field
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inhomogeneties and this strategy cancels their effect. The amplitude of the echo is

determined by T2.

2.7.2 Inversion Recovery

An initial 180° RF pulse inverts the longitudinal magnetization of tissues, M z to - Mz. A

90° RF pulse rotates Mz into the transverse plane to generate an FID. The time delay

between 180° RF pulse and 90 ° RF pulse is known as time of inversion (TI) and it

controls the contrast of the tissues. Inversion recovery sequence produces a negative

longitudinal magnetization that results in negative or positive transverse magnetization

and the signals are encoded.

2.7.3 Gradient Recalled Echo

A magnetic field gradient is induced for the formation of an echo instead of 180° RF

pulse. The strength of the local magnetic field changes due to this magnetic field

gradient. FID signal is generated under a linear gradient, the transverse magnetization

dephases rapidly as the gradient is applied continuously. A gradient echo is produced, if

the polarity of the gradient is changed and echo formation is due to rephrasing of the

spins. The echo will decay if the gradient is applied continuously and the signal can be

acquired. The tissue contrast is determined by flip angle.
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Figure 2.6 Spin echo pulse sequence timing diagram indicates the timing of SSG, PEG
and FEG during the repetition time (TR), synchronized with the RF pulses and the data
acquisition (DAQ) when the echo appears.

2.7.4 Echo Planar Imaging

EPI is an MR acquisition method that collects all the data required to fill all the lines of k

space from a single echo train. In this technique, multiple echoes are generated and each

is phase encoded by a different slope of gradient to fill all the required lines of k space.

Echoes are generated either by 180 deg rephasing pulses termed spin echo EPI or by

gradients termed gradient echo EPI. In order to fill the entire k space in one repetition, the

readout and phase encode gradients must rapidly switch on and off.

In conventional spin echo, one line of k space is filled for every TR. The position

of this line depends on the amplitude and polarity of the phase gradient. The amplitude

and polarity of the read out gradient does not change and each line is filled in the same

direction. Using EPI, the entire k space is filled after the application of single excitation
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pulse. In EPI, the read out gradient is rapidly switched from positive to negative;

positively to fill the k space from left to right and negatively to fill the line from right to

left. The polarity of the phase gradient does not have to be changed. The first application

of the phase gradient is positive to fill the top line. The next application to encode the

next echo is still positive but its amplitude is slightly less thus the next line down is filled.

This process is repeated until the centre of k space is reached where the polarity of the

phase gradient becomes negative to fill the bottom lines. [36].

Summary

This chapter discussed the basic physics of Magnetic Resonance Imaging (MRI) and also

about the generation of MR signal. To create an NMR signal, an external magnetic field,

gradient coil and radiofrequency coil are needed. The external magnetic field is always

generated by the scanner. The radiofrequency coil transmits and receives the

electromagnetic energy and the gradient coil generates a linear magnetic field to alter the

precessional frequency of the proton. The contrast in the image depends on the tissue

properties namely T1, T2 and proton density. The functional MR images are obtained with

the help of echo planar imaging pulse sequence.



CHAPTER 3

FUNCTIONAL MAGNETIC RESONANCE IMAGING

Signal intensity of MR images can be altered when there is a change in blood

oxygenation and this phenomenon was first observed by Ogawa. With this phenomenon,

one can observe both the anatomical structures of the brain and also the function of

structures participated for a specific task. This type of imaging is known as Functional

Magnetic Resonance Imaging (fMRI). Fully oxygenated blood has the same

susceptibility as other tissues in the brain but deoxygenated blood changes the

susceptibility since it is paramagnetic. When the blood is deoxygenated, field distortions

around the vessel is increased so there is a drop in the MR signal. If the blood is

oxygenated, the intensity of the signal increases. When neural activity is increased in a

region of the brain, there is an increase in neuronal firing that leads to more metabolic

consumption. Decrease in the oxygenation leads to vasodilation resulting in increased

blood flow in the active regions. However, the increase in oxygenated red blood is much

more than the metabolic need at the active regions. As a consequence, there is an excess

of oxygenated red blood cells in the active regions. Because, oxyhemoglobin and

deoxyhemoglobin red blood cells have different magnetic properties, an increase in the

ratio of oxyhemoglobin to deoxyhemoglobin red blood cells causes less spin dephasing

and causes the MRI signal intensity from the activated regions to increase. This BOLD

contrast is the basis of most of the fMRI studies.

BOLD effect is the result of two factors:

• Deoxyhemoglobin produces a magnetic field around the blood vessel and as a result
an MR signal is reduced.

23



24

• Brain activation is characterized by a drop in Oxygen Extraction Fraction (OEF) which
results in a drop in oxyhemoglobin thus the MR signal is increased.

The prototype brain mapping experiment consists of alternating periods of

stimulus task and control task and the cycle is repeated several times. Images are

collected throughout the cycles and the image acquisition is repeated at several intervals

of the time of repetition (TR) throughout the experiment, while the subject alternates

between the stimulus and control task. In every experiment it is assumed that the

magnitude of the BOLD effect reflects the magnitude of the neural activity change [34].

3.1 Paradigm Design

A standard method of task presentation uses a box-car or block design where blocks of

the stimulus or task are presented typically for 20-30 seconds, alternating with periods of

rest or a control condition. Throughout these stimulus/control cycles dynamic echo planar

images are collected covering all or part of the brain. In order to accommodate the

haemodynamic response, the duration of the task should be long in the order of minutes.

The control task is chosen carefully such that it activates all of the neural processes

common to the stimulus-task. By subtracting the brain regions recruited during the

performance of the control task from the brain regions recruited during the test condition,

the areas of the brain whose activity is associated specifically with the cognitive process

of interest can be identified.
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Figure 3.1 Representation of box car waveform.

An alternative experimental approach is to present stimuli as isolated brief events

separated in time so that the individual response to single events can be identified. The

principle advantage of this event-related approach is that, it avoids the potential

confounding factors of habituation or fatigue which may arise in a block design as a

consequence of the presentation of repeated identical stimuli.

3.2 Analysis of fMRI Data

fMRI data from a single run consists of a time series of 3D images while the subject is

inside the scanner. The main objective in the experiment is to find the regions of the brain

that is activated for a given task and the activation maps can be generated by correlating

the time series with the given task. The pre-processing steps that are usually performed

on the raw data are image registration and smoothing. Registration is usually done to

correct for subject head movement during the experiment and smoothing is done to

increase the signal to noise ratio.
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3.3 Motion Correction

Any motion during the acquisition of an MR image will produce artifact and such motion

include subject head movement, coughing, swallowing, and physiological motions such

as blood flow, respiratory motions and CSF motions. Even with a slight head movement

(—lmm) by the subjects during image acquisition motion artifacts are produced. This is a

major problem because different samples in k space are inconsistent with one another

[31] and the interpretation becomes problem. This makes analyzing data difficult and

image registration is routinely used to minimize the effects due to motion induced signal

changes. Registration is usually done to eliminate the artifact due to motion. Registration

is a technique in which two or more images are aligned so that they superimpose

perfectly. It is usually done by transforming an input image and comparing it with a base

image. The transformation is repeated until the input image resembles the base image.

The two main algorithms used for registering MR images are described below:

3.3.1 Least Square Measure

MR images can be registered using a least square similarity method which was proposed

by Hajnal et al. [37] The least square similarity is given by

where u and v are the given two images, i and j varies from 1 to n and 1 to m

respectively, n and m represents the number of voxels in the x and y dimension of the

images u and v respectively, N is the number of voxels in the overlapping region of the
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two images and u (; ,i ) and v (; , j) represent signal intensity at voxel site (i,j) of the images

u and v respectively.

This method cannot be used to register the images obtained from different

modality because the tissue has different intensity values for different modalities. T1 and

T2 weighted images cannot be registered using this method.

3.3.2 Automated Image Registration (AIR) Method

Woods developed an automated registration algorithm for PET images and have since

extended this method for MRI. This method is based on the assumption that for two given

images, the value of any voxel in one is directly proportional to the value of the

corresponding voxels in other images only if the images are perfectly aligned. If they are

misaligned the values change from voxel to voxel throughout the image. Based on the

intensity value of the voxels, the brain is first segmented using a threshold.

If u is the reference image and v is the test image then the ratio r is given by r(i) =

u(i) / v(i) where u(i) is the value of voxel i in image u and v(i) is the value of the

corresponding voxel in image v. The normalized standard deviation is given by r std / r mean

where rstd is the standard deviation of r and r mean is the mean value of r over all voxels.

The test and reference images are interchanged and now u is the test image and v is the

reference image and the new normalized standard deviation of r is calculated and is given

by r'std / r' mean • The ratio Rstd / R mean is generated where Rstd = ( rstd + r'std) /2 and R mean

= (r mean + r' mean)/ 2. The main aim of the algorithm is to minimize the ratio of Rstd / R

mean so that the voxel to voxel variation is minimized [38].
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3.4 Statistical Analysis of fMRI Data

The fMRI data provides a time series of images (samples) for the volume scanned in a

sequential fashion. This allows time-series analysis for every voxel in the brain for the

entire volume. Several methods have been proposed to detect and identify activated

voxels in the brain and generate task—dependent activation maps. In order to yield

rigorous maps and quantify the task-induced signal changes, a number of approaches can

be applied. Analysis methods are required to find the response waveforms and associated

activated regions. These methods can be divided into two categories depending on

whether or not they require prior knowledge about activation patterns: model-based and

model-free [39]. Although the model based methods are easy to implement and are

effective in analyzing data with simple paradigms, they are not applicable in situations in

which pattern of neural response are complicated and when fMRI response is unknown.

The two model free methods used for the analysis of fMRI time series are Principal

Component Analysis (PCA) and Independent Component Analysis (ICA).The following

section describes both the model free and model based techniques used for analyzing

fMRI data.

3.4.1 Parametric Methods

In parametric method, the data is assumed to follow a common distribution like normal

distribution and the statistics are calculated based on that assumption. The statistical tests

based on the parametric statistics are called parametric statistical tests. The following

section explains some of the commonly used statistical tests.
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3.4.1.1 Subtraction Technique. The simplest technique to identify the active voxels

is the subtraction technique, in which the average of all the acquired data during the

control task are subtracted from the average data of all the images acquired during

stimulus task. When the images are subtracted, if there is no activation in the voxel, the

signal should subtract out but due to noise there will be a residual difference. It is

difficult to distinguish weak activation and a strong physiological fluctuation.

3.4.1.2 The t-test. In this method, the signal values measured from a particular voxel

during the task and control periods are treated as two populations. The significant

difference between the means of two groups can be assessed using a t-test. The t-statistic

for each voxel is calculated and a threshold is selected. The voxels whose t value passes

the threshold are considered active and those voxels are displayed in color.

3.4.1.3 Fourier Analysis. In this method, the Fourier transform of the time course is

measured and the component at the fundamental frequency of the stimulus pattern is

examined. If four cycles of stimulus and control tasks are performed in an experiment,

then the amplitude for the 4-cycle frequency in the Fourier spectrum should be a strong

spike whenever there is activation. The delay of the response is easily calculated and this

is the advantage of this method. The haemodynamic delay is not uniform and it may vary

from one part to other. When the standard correlation analysis method is used, there is a

problem because the delay used in the model does not match the true delay so the

correlation coefficient is reduced. As a result, the activated voxels which should be

identifiable are missed. To overcome this problem, the correlation coefficient is

calculated for the same model but with different delays and the one that gives the greatest
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value of r can be selected as the best fit. If the model response function is a sine wave,

then the best fit of the delay can be calculated using Fourier Transform.

3.4.1.4 Correlation Analysis. 	 In this method, the idealized box-car waveform is

used a reference waveform. It is assumed that, the reference waveform is a scaled version

of the input stimulus. The reference waveform is then correlated with every voxel in the

brain and the parameter r ranges from -1 to +1. This value expresses the degree of

correlation. A histogram analysis of the correlation coefficient in the brain is computed.

All voxels typically greater than a set threshold is considered active and belonging to the

task activation regions. After performing correlation, the regions that are colored are the

regions that are activated for a given stimulus. The voxels that are not colored imply that

they are not activated. It implies that, the statistical quality of measurements in those

voxels is too low, so one cannot confidently say there is activation. Activation maps are

created using correlation method and these maps are overlaid on anatomical images.

3.4.2 Non-Parametric Methods

In non-parametric methods, the data is not assumed to follow any distribution and they

are also called as distribution free methods.

Kolmogorov-Smirnov (KS) test. 	 The statistical significance of the detected activation

can be evaluated using the KS test. In this method, the signal values measured during the

control and stimulus periods are treated as two populations. With the KS test, the focus is

on whether the cumulative distributions of the two populations are significantly different.

All signal values are measured in the activated state and are sorted in ascending order. An

estimate of the cumulative distribution is formed by calculating P(x), the fraction of

signal values x for each x. P act(x) and Prest(x) are the two distributions and the KS statistic
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is calculated as the maximum difference between the two cumulative distributions. With

the KS test some weak activation can be missed but the ones that are deemed to be

significant are likely to be reliable.

3.4.3 Data Driven Methods

The data driven methods explore the fMRI data statistically without any assumption of

the paradigm and the advantage is that the unexpected components like drift, motion

related artifacts can be detected. The two commonly used data driven methods are

Principal Component Analysis and Independent Component Analysis.

3.4.3.1 Principal Component Analysis. Principal component Analysis (PCA) was

first introduced by Pearson and is the oldest and best known of the techniques of

multivariate analysis [40]. It is a method that reduces dimensionality of the data. In order

to examine the relationship among a set of correlated variables, it may be useful to

transform the original set of variables to a new set of uncorrelated variables called

principal components. These new variables are linear combinations of the original

variables and are derived in decreased order of importance so that the first principal

component accounts for as much as possible of the variation in the original data [41].

The dataset collected in a functional imaging study can be represented in a matrix

X whose dimension is n x p, where n is the number of individual scan images collected as

a time series and p is the total number of voxels in the image [42]. For the data matrix X,

the covariance matrix is calculated. PCA consists of finding the eigen values and eigen

vectors of the covariance matrix of the data matrix X. The eigen vectors are called the

principal components and the eigen values give the variance of the corresponding eigen

vector [43]. After finding the eigen vectors of the covariance matrix, the vectors are
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arranged in order by the eigen values (from highest to lowest). This gives the components

in order of significance. The first eigen vector represents the largest source of variation

between pairs of voxels and this is the first principal component [31].

The principal components obtained are cross correlated and by selecting

appropriate threshold the activation maps are generated.

3.4.3.2 Independent Component Analysis. ICA belongs to class of blind

sources separation methods for separating multivariate data into informational

components. The problem of unmixing signals is known as blind source separation (BSS)

and independent component analysis is a specific method for performing BSS. The term

blind is intended to imply that such methods can separate data into source signals even if

very little is known is known about the nature of those source signals. [44] The observed

fMRI signal is a linear mixture of various signal sources and components originating

from the cardiac and respiratory pulsations [45] and the blind source technique can be

applied to obtain the independent signal sources.
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Figure 3.2 fMRI data as a mixture of independent components.

The relationship between the observed voxel time courses and the source signals

can be expressed as

Where x is the observed voxel time series

A is the mixing matrix and

s represents the independent source signals

The goal of ICA is to estimate the mixing matrix A so that the source signals can

be obtained from the mixture. [46]. The basis for unmixing the source signals from the

mixtures in ICA is that, the source signals are statistically independent and the source

signals have non-gaussian distribution. In order to estimate the mixing matrix A, x is

linearly transformed to a new vector v such that its components are uncorrelated and their
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variance equals unity [47] v=Mx. This is called whitening and it should be done before

applying any ICA algorithm. v=MAs=Bs where B=MA is an orthogonal matrix .The

source signals can be obtained s= BT x. The ICA decomposition of x is given by

where W is the unmixing matrix and is usually the inverse of mixing matrix A.

Figure 3.3 Schematic diagram of the blind source separation problem.

In the above figure, S(t) = [si(t), s2(0, 	 s„ (t)] represents the signal sources which

are generally task-induced response, cardiac rate, respiratory rate etc, X(t) = [x i (t), x2(t),

x„ (t)] represents the observed voxels time series, h 1 is the unknown mixing matrix, W1

is the unmixing matrix. The signal sources S(t) and the mixing matrix h 13 are unknown.

The aim is to find Y(t) = [yi (t), y2 (t), y„ (t)] without knowing the signal sources and

the mixing matrix and is achieved using blind source separation technique.[45].

The algorithms used for finding ICA are infomax [48], FastICA [46], Joint

Approximate Diagnolization of Eigen matrices [49] etc. In this study FastICA algorithm

was used and is discussed briefly here.
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FastICA algorithm. FastICA learning rule finds a direction such that the projection W T

x maximizes non-guassianity. Non-guassianity in this algorithm, is measured by the

approximation of negentropy J (W Tx). Fast ICA is based on a fixed point iteration

scheme for finding a maximum of the non-guassianity of WTx. [47]. The number of

components determined by any ICA algorithm is equal to the number of time points in

the input data.

The independent components obtained from the algorithm are cross correlated

with all the voxels and a threshold value is selected. The voxels that pass this threshold

are considered active and activation maps are generated.

Summary

This chapter provided an overview of Functional Magnetic Resonance Imaging (fMRI).

The response of the brain to a particular stimulus is measured using Blood Oxygenation

Level Dependent (BOLD) mechanism. The least square algorithm is implemented in

AFNI for registering images and this algorithm was used in this study. Different methods

for detecting active voxels are discussed in this chapter and the techniques namely Cross

correlation, Independent Component Analysis and Principal Component Analysis was

used in this study for determining the active voxels.



CHAPTER 4

MATERIALS AND METHODS

4.1 Data Acquisition

Four autistic subjects and eight healthy matched controls were recruited for this study.

Written informed consent was obtained from all the subjects according to the guidelines

established by the Institutional Review Board at UMDNJ. Four subjects were diagnosed

with autism as measured on the AD1-R (Autism Diagnostic Interview — Revised [50]),

the ADOS-G (Autistic Diagnostic Observation Schedule — Generic [51]) and the DSM-

IV (Diagnostic and Statistical Manual [52]). The diagnosis was done by Dr. Charles

Cartwright.

Autistic subjects were recruited from Dr.Cartwright's clinical consultation at the

Autism and Anxiety Disorder programs (UMDNJ Newark). Data were collected using the

1.5 T GE scanner. Subjects were placed in the gantry and the surface coil was positioned

over their head. The subjects were positioned in the MRI gantry with their head placed

along the mid-sagital plane. The subjects were instructed to keep their head still. Foam

padding was used to minimize head motion. Each session began with the acquisition of

high resolution anatomical images. High resolution anatomical images were acquired in

axial planes for the use of anatomical landmarks and registration purposes with 28 slices

at 5mm thickness, FOV = 240 mm and the matrix size was 256x256 mm. For functional

runs, several time series of echo planar images were obtained using a T2* weighted

gradient echo pulse sequence. The imaging parameters included a matrix size of 64x64

mm2, FOV of 240 mm, 28 slices each 5mm thick. Other imaging parameters included TR

of 1000 msec, and TE of 40 msec.

36
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Control subjects data were collected using 3 T Allegra scanner. Anatomical

images were acquired with 11 slices covering the entire sensory motor cortex, FOV = 240

mm and the matrix size was 256x256 mm. For functional images, 11 axial slices were

obtained using a T2* weighted gradient echo pulse sequence with TR = 1000ms,

FOV=240 mm and the matrix size was 64x64 mm.

4.2 Experimental Task

A motor task paradigm was used for this study. Subjects were instructed to perform a

bilateral finger tapping for a period of time with alternating period of rest. Subjects

tapped their fingers (in both hands) using the periodic scanner noise as the auditory cue.

Typically, the finger tapping rate varied between 0.5 to 2 Hz. A typical reference

waveform representing the ON/OFF cycle of the finger tapping task is shown

below:

Figure 4.1 Reference waveform.
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4.3 Data Analysis

The data for this study were analyzed using AFNI. [53]. The first five time points of each

time series corresponding to the first 5 s of data acquisition for T 1 relaxation were

discarded from the beginning for each series.

4.3.1 Motion Correction

Because the motion was a concern particularly in children with autism, all datasets

obtained from all the subjects were tested for the presence of any head induced signal

change. Head motion causes spurious signal changes in the brain and makes detection of

activation signal difficult. Thus, while activation induced signal changes by about 5%,

head motion induced signal changes can be as high as 50% above the mean. Head motion

not only reduces the signal to noise ratio in the activated regions but also produces

spurious activations, especially at borders at the edge of the brain and between large

fissures. In order to reduce the artifact due to motion, it is necessary to register the

images. Image registration refers to the process of aligning time series of MR images to

minimize the effect of movement. Registration reduces the effective noise level and

increase the number of detected activations. The fMRI images of all the subjects were

registered in AFNI. The algorithm used in AFNI is iterative linearized weighted least

squares [54] and in this algorithm, each sub brick from the input data is registered to the

base brick.
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4.3.2 Automatic Detection of Task-Activation

Although a large number of data analysis methods currently exist, each of them make

certain assumptions regarding the nature of the experiment. One of the assumptions made

is that, the experimenter knows the exact sequence of stimulus being presented i.e., input

function. While for a number of cases it is true, for a number of cases it cannot be

assumed to be true. For example, while an elderly subject with Alzheimers (or children

with autism) may not be able to follow the task for the entire duration and may even

forget the task being done. For certain task paradigm, it is also possible that the response

(example, drug response involving pharmacokinetic studies) is not linear. For cases like

these, correlation (for example) would lead to difficulty in detecting results since the

input stimulus is not similar to the way in which the subject performed the task.

In this method developed, the assumption made is that the activation typically

involves larger region comprising of several voxels and that these neighboring activated

voxels are also temporally correlated. One problem with this assumption is that, vessels

and CSF pulsations (typically unrelated to the task) also are spatially located and

temporally have high degree of correlation. However, the primary distinction in the signal

characteristics between the signals from large vessels and that from task-activation signal

changes is that because the vessels have relatively higher frequency components caused

predominantly by respiration. Typical respiration rate is about 12-15 cycles per minute.

To minimize the effect of large vessel and CSF, the reference vector is shifted several

time points in an incremental fashion and correlation performed during each step.

Because the respiration frequency is significantly faster compared to the task-induced
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response, the mean correlation coefficient decreases much quicker than that obtained by

shifting the task response. Typically, 4 time points (8 sec) was found to be adequate to

cover more than one complete respiration cycle, while only covering half a cycle of task

presentation. The mean correlation from vessels and the cerebro spinal fluid (CSF) would

be less that that from activated voxels. A simple threshold method was then used to

identify voxels with high mean correlation-coefficient across several time shifts and

threshold applied.

This process can be implemented using the following steps:

• Correlating every voxel time series in the brain with the time series of its neighboring
voxels (either 8 or 4).

• Shifting the center (reference) time series by one time point and the correlation
coefficient with its neighbors is calculated. Typically, this is repeated 4 times and mean
correlation coefficient determined.

• This is performed for every voxel in the brain.

• A threshold is used to identify the activated regions of the brain.

All the four steps were implemented in AFNI. Each voxel time series was treated

independently and the linear and quadratic trend was removed from the time series using

least squares. A binary mask was created on the input dataset using an intensity voxels in

the brain. The time series of a voxel was correlated with the time series of its neighboring

voxels and the mean correlation coefficient was calculated.

4.3.3 Analysis using Cross Correlation Method

Task activated voxels were determined using cross correlation method and in this

method, the reference waveform representing the ON/OFF cycle of the finger tapping

task was cross-correlated with all the voxels on voxel- by-voxel basis and a threshold
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was used to generate the activation maps. All voxels whose intensity values passed the

threshold were considered active.

4.3.4 Analysis using PCA

In this method, a binary mask was first created with a threshold 0.2. The principal

components of the selected voxels time series were obtained in AFNI. Five principal

components were obtained and the component whose pattern matched the voxel time

series was selected and cross correlated. A threshold was used and the voxel values that

passed the threshold were considered active and activation maps were generated.

4.3.5 Analysis using ICA

The voxels time series were extracted from the input dataset that satisfied the mask

criterion. After extracting the time series of the desired voxels, the FastICA algorithm

was used to determine the independent components. Five independent components were

obtained and the component whose pattern matched the voxel time series was selected

and cross correlated. The voxels intensity values that passed the threshold were

considered active and activation maps were generated.



CHAPTER 5

RESULTS

5.1 Introduction

This chapter discusses the results obtained in this study. For the given bilateral finger

tapping stimulus, the active voxels belonging primarily in the sensorimotor cortex region

were identified The results were obtained using the automatic detection method,

correlation method, Independent Component Analysis, Principal Component Analysis.

5.2 Motion Corrected Data

A least square weighted algorithm was used to correct the motion artifacts for all the

subjects. The goal of the algorithm is to align the target image with a reference image

which was typically chosen from the series. To align the target image with the reference

image, the target image was translated and rotated. The new image matrix is an

appropriate interpolation of the original image onto the new registered grid. For this

study, head induced signal changes was found to be minimal. The mean shift in images

was found to be less than 0.1. In all the subjects across all the runs, the motion estimates

were found to be less than the set value of 2 pixels, and thus all the data sets were used

for further analysis.
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5.3 Detection of Activated Voxels

The active voxels in the motor cortex region was detected automatically. The

preprocessing step was to detrend the voxels time series. All voxels from the brain was

used to perform correlation with its neighbors and its mean correlation coefficient

between its surrounding voxels was determined. The activation maps were generated and

a threshold of 0.24 was used for normal subjects and a threshold of 0.21 was used for

autistic subjects.

The cross-correlation images were obtained by cross correlating the reference

waveform with every voxel time course on a voxel-by-voxel basis in the fMRI image.

The activation map was generated with a mean correlation coefficient threshold of 0.55

for normal subjects and 0.49 for autistic subjects.

To validate the results obtained using the automatic correlation method, PCA and

ICA was also performed on the detected voxels. Five dominant components were

determined across each of the methods for all the subjects.

In PCA, the voxels time courses from the datasets that satisfied the mask

criterion were extracted and five components were obtained. The first component was

selected as reference. The time course of the selected component was correlated on a

voxel —by-voxel basis with every voxel time course. A threshold of 0.77 was obtained for

normal subjects and a threshold of 0.59 was obtained for autistic subjects and activation

maps were generated.

In ICA also, the time series of the voxels were extracted from the input datasets

that satisfied the mask criterion. The independent components were obtained using

FastICA algorithm in MATLAB. ICA derived only one component that matched the
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voxels time series and it was selected as the reference. Activation maps were obtained by

correlating the time course of the selected component with the voxels time course. For

normal subjects, a threshold of 0.78 was obtained and for autistic subjects a threshold of

0.58 was obtained.

Figure 5.1 Images obtained during the finger tapping paradigm and the images are
obtained by a. Automatic detection b. Correlation c. Principal Component Analysis and d.
Independent Component Analysis methods. The first four images are from Normal
Subject # 6 (Slice # 9) and the last four images are also from the same subject (Slice #
10).
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Figure 5.2 Images obtained during the finger tapping paradigm and the images are
obtained by a. Automatic Detection b. Correlation c. Principal Component Analysis and
d. Independent Component Analysis methods. The first four images are from Autistic
Subject # 1 (Slice # 22) and the last four images are also from the same subject (Slice #
23).
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Figure 5.3a BOLD signal obtained from the finger tapping paradigm from Normal
subject # 6. The waveform in red is the first independent component.

Figure 5.3b BOLD signal obtained from the finger tapping paradigm from Autistic
subject # 1. The waveform in red is the second independent component.
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Figure 5.4a BOLD signal obtained from the finger tapping paradigm from Normal
subject # 6. The waveform in red is the first principal component.

Figure 5.4b BOLD signal obtained from the finger tapping paradigm from Autistic
subject # 1. The waveform in red is the first principal component.
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In this study, a method for detecting activated voxels without using prior knowledge of

the input stimulus was presented. To validate the accuracy of this method, comparisons

were made by using PCA and ICA analysis. A significant overlap in the sensorimotor

cortex was found between the various methods suggesting the automatic detecting

method presented here does provide accurate detection and localization.

Figure 5.5 Images obtained during the finger tapping paradigm and the images are
obtained by a. Automatic Detection b. Correlation c. Principal Component Analysis and
d. Independent Component Analysis methods. The first four images are from Normal
Subject # 2 (Slice # 8) and the last four images are also from the same subject (Slice # 9).
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Figure 5.6a BOLD signal obtained from the finger tapping paradigm from Normal
subject # 2. The waveform in red is the second independent component.

Figure 5.6b BOLD signal obtained from the finger tapping paradigm from Autistic
subject # 5. The waveform in red is the first independent component.
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Figure 5.7a BOLD signal obtained from the finger tapping paradigm from Normal
subject # 2. The waveform in red is the first principal component.

Figure 5.7b BOLD signal obtained from the finger tapping paradigm from Autistic
subject # 5. The waveform in red is the first principal component.



51

Figure 5.3a, 5.4a, 5.6a and 5.7a represents the time course of the voxels in the

motor cortex region for the normal subjects and 5.3b, 5.4b, 5.6b and 5.7b represents the

time course of the voxels in the motor cortex region for autistic children. Both PCA and

ICA, extracted the component that contained the task-induced response. The correlation

coefficient threshold for both PCA and ICA was high which implies that the pattern of

the principal and independent component and the pattern of the voxels time series

matched well.



CHAPTER 6

DISCUSSION AND CONCLUSION

Functional magnetic resonance imaging is the fast emerging as the tools for studying the

brain function due to its non-invasiveness in addition to high spatial and temporal

function. Changes in cerebral metabolism, blood flow volume or oxygenation in response

to a task can be detected and localized. Currently, both human and animal studies are

used to localize changes in cerebral blood flow, oxygenation. A number of clinical

population studies are currently being done. Several clinical studies including

preoperative surgical mapping has almost become standard clinical practice.

Although a large number of data analysis packages exist, no standard procedure

or even a sequence of procedure exists to facilitate researchers with analyzing datasets.

Clearly, the statistical analysis of the blood oxygenation level data is the critical part. The

images have to be pre-processed prior to statistical analysis so that noise level is reduced

and the signal to noise ratio is increased. The commonly used pre-processing steps are

image registration, filtering and smoothing.

The commonly used techniques for fMRI data analysis are cross-correlation

technique, t-test and general linear model. These techniques are easy to implement and

are effective but cannot be applied when the neural response is complicated and also

when fMRI response is unknown. Also in the above methods, the noise level is assumed

to be same for all the voxels and the active voxels detected by these methods are less

reliable.

The active regions can be detected reliably without assuming any model for the

fMRI response. Principal Component Analysis and Independent Component Analysis are
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the two commonly model free methods used for analyzing the fMRI data. In both the

methods, the original data is transformed to a high dimensional vector space so that the

functional response can be separated from various noise sources. The difference between

PCA and ICA is that, PCA separates the signal sources that are uncorrelated and ICA

separates the signal sources that are independent. PCA cannot accurately the task induced

response as ICA so PCA is generally used for reducing the dimension of the original data.

The Biasless Identification of Activated Sites by Linear Evaluation of Signal

Similarity (BIASLESS) technique proposed by Levin is based on the assumption that the

time course of the signals in activated voxels will not vary when the task is repeated by

the same individual. Even though the method is simple and model independent, it cannot

be used in situations where the subjects have to perform different tasks.

Many potential advantages exist with using automatic detection of task-induced

signal response without initially using the reference waveform. One is able to determine

the various clusters of activations that exist in the brain. This is particularly important if

the subject being scanned is not able to follow the task or the subject's performance

changed during the task. Further analysis including PCA or ICA can then be performed

on those voxels to further analyze the activation and signal response. This substantially

constrains the search of the PCA and ICA algorithms. ICA or PCA is done on the whole

brain in addition to being computationally expensive. It also does not guaranty that the

activation response will be the first component.

Habituation and learning effects can also be seen via this method. Through

automated analysis, areas of the brain solely associated with the event or task will be

shown if the stimulus is randomized. If this type of stimuli is administered along with a
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highly repetitive action, regions associated with habituation or learning will be active

when compared to the randomized period. More can be learned about the brain and its

habituation and learning functions via this type of experiment.

With event related M-sequence, fMRI studies are increasingly being used in

neuroscience research to detect hemodynamic responses associated with transient brain

activation. It can detect regions of the brains that are associated with a particular sensory,

motor, or cognitive task. For these kind of studies, automated analysis is ideal. The ability

to randomize the length of the event or task also offers the ability to narrow down which

regions of the brain are involved with certain tasks or events. With the ability to

randomize the task or event, distinct regions of the brain can be more clearly seen.

Regions of the brain with high physiological noise component can also be seen

through the method developed. In certain regions, for example near the sagital sinus

regions associated with the cardiac and respiration frequency can be seen.

This technique also allowed for a novel experiment paradigm that randomized the

ON-OFF time lengths of finger tapping. This paradigm can be modeled for stimuli that

may need various different time lengths or are unpredictable before the time of the study.

The experiment undertaken was a simple finger-tapping paradigm yet regions of

activation were visible in accordance with the reference stimuli waveform.

With the automated detection method, there are also limitations. This method

assumes that the activation occurs in a number of neighboring voxels, and that these

voxels have similar temporal patterns. It is however possible that some tasks can be

designed that activates only a few voxels (less than 4 voxels).
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This study used a new method to detect the active voxels in the brain. The

assumption made is that the activation involves large number of regions and the

neighboring activated voxels are temporally correlated. Using this method, activation

maps were generated and to validate the results Principal Component Analysis and

Independent Component Analysis were also performed. Analysis of the results revealed

that the automatic method can be used to reliably detect the activated voxels. Also, the

active voxels can be detected without using prior knowledge of the reference waveform.

Although PCA and ICA was used in this thesis for analysis, other time-domain

methods such as t-test, F-test, etc., frequency-domain methods such as Fourier analysis,

or time-frequency domain methods can be used to further analyze the data sets.

A simple finger tapping paradigm was used for this study. For individual

paradigms like text listening, face processing, paradigms that stimulates the visual cortex

and also for multiple paradigms, the automatic method can be employed to detect the

active voxels. A randomized block design was considered for this study and it can be

further extended to the event related design.

Functional connectivity exists in the resting brain and it has been reported in

motor regions, auditory regions, language system and visual regions of the brain. The

automatic method used in this study can be applied to detect the functional connectivity

of the brain in the resting state.
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