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ABSTRACT

CLASSIFYING MALICIOUS WINDOWS EXECUTABLES USING
ANOMALY BASED DETECTION

by
Ronak Sutaria

A malicious executable is broadly defined as any program or piece of code designed to

cause damage to a system or the information it contains, or to prevent the system from

being used in a normal manner. A generic term used to describe any kind of malicious

software is Malware, which includes Viruses, Worms, Trojans, Backdoors, Root-kits,

Spyware and Exploits. Anomaly detection is technique which builds a statistical profile

of the normal and malicious data and classifies unseen data based on these two profiles.

A detection system is presented here which is anomaly based and focuses on the

Windows® platform. Several file infection techniques were studied to understand what

particular features in the executable binary are more susceptible to being used for the

malicious code propagation. A framework is presented for collecting data for both static

(non-execution based) as well as dynamic (execution based) analysis of the malicious

executables. Two specific features are extracted using static analysis, Windows API

(from the Import Address Table of the Portable Executable Header) and the hex byte

frequency count (collected using Hexdump utility) which have been explained in detail.

Dynamic analysis features which were extracted are briefly mentioned and the major

challenges faced using this data is explained. Classification results using Support Vector

Machines for anomaly detection is shown for the two static analysis features.

Experimental results have provided classification results with up to 94% accuracy for

new, previously unseen executables.
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CHAPTER 1

INTRODUCTION

1.1 Research Motivation

The creation and spread of malicious executables is said to have reached pandemic

proportions. According to Sophos [8] all of the top 10 reports of malicious activity were

for the Windows 32 platform, essentially because of the ubiquitous presence of Microsoft

and its related technologies. The top 10 viruses accounted for over 80% of the malicious

activity with W32/Netsky-P alone being responsible for over 22%.

As more people become experienced with the Internet and other networked

applications like Cell phones, Personal Digital Assistants, Embedded Vehicular Sensors,

etc, using these resources would be a part of the daily routine. A malicious code which

manages to reach a vulnerable host among these can inflict varying degrees of damage.

The effect is more severe in a host which is networked as it can lead to cascaded

propagation [11]. The focus of this work has been on the classification of Windows

executables as either normal or malicious using anomaly detection techniques. Only

Windows binaries which have the Potable Executable (PE) format header were

investigated here as they constitute the largest subset of malicious codes. Several file

infection techniques were studied to understand what particular features in the PE format

are more susceptible to being used for the malicious code propagation. Malicious code in

the real world usually has obfuscated code and is also polymorphic in behavior due to the

popularity of tools such as ADMmutate [12]. This leads to constant updates in signature

based detection. Anomaly detection techniques have the advantage that they can be used

for detection of newer as yet unseen malicious executables.

1
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1.2 Unique Contributions

The work presented here has used among the largest datasets of both malicious and

normal executables. The training model for the anomaly based detection relies heavily on

the availability of a diversified set of both malicious and normal executables. The

malicious dataset was a total of 2257 MB of data downloaded from the Internet which

included 37,092 distinct files. The normal dataset was collected from a machine running

Windows XP Professional and having about 40 application software installed. All the

executable files from this machine were collected. This was a total of 673 MB which

included about 1,800 files.

Static Analysis is the process of collecting information regarding the binary

without actually executing the same. There are several benefits in using this technique for

data collection. The chances of the environment getting infected during the data

collection process become very remote. This helps in collecting features for a large set of

malicious executables. Also, the feature extraction process can be automated to a large

extent. Dynamic Analysis is a process in which the binary under test is executed and run-

time features such as the registry access, file system access, network access and the

system calls made are collected. The work presented here shows a methodology for data

collection using both Static and Dynamic Analysis. The features extracted from both

these techniques are discussed in detail in Chapter 5.

The classification was performed using the freely available Support Vector

Machine tool called `LIBSVM' [10]. While many publications use a small set of features

on multiple classification algorithms, we have used several sets of features on a single

classification algorithm.



CHAPTER 2

RELATED WORK

2.1 Review of Current Research

The industry and research approaches to detecting malicious code have been somewhat

different. While the industry has focused on providing a more deterministic and rule-

based solution, a lot of active research in universities has been in the area of providing an

anomaly based solution. While both have their specific advantages and disadvantages, the

optimal solution lies in a system which can provide both results and then co-relate it at a

higher level.

At Columbia University, Sal Stolfo's group has been doing active and extensive

research in detecting new malicious executables [3] [5] [14]. They have investigated data

mining methods like Naïve Bayes, Multi-Naïve Bayes and RIPPER for the classification.

Cai et al. [7] have evaluated a multivariate Gaussian likelihood model, fit with Principal

Component Analysis and a one-class Support Vector Machine. The have used the byte-

frequency analysis to profile the benign data.

Significant work has also been done for the static analysis of malicious code.

Christodorescu, Jha [2] provide several de-obfuscation techniques and methods to find

the 'semantic equivalence' of an obfuscated and vanilla malicious code. Rabek et al. [1]

at Lincoln Laboratory have used static analysis to identify the virtual addresses of system

calls within the executable and then monitoring the executable at run-time to verify the

location identified earlier. Kruegel et al. [8] have presented a technique which identifies

structural similarities between different worm mutations, evident in most polymorphic

malicious code. Forrest's group at University of New Mexico [15] have done extensive

3
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work on using system call models to detect a wide range of network and host security

anomalies. C. Zhang, J. Li, C. Manikopoulos et al. [13] have investigated several

statistical anomaly based intrusion detection systems.

Microsoft Research has a group working on the `Strider GhostBuster Rootkit

Detection' project which detects API hiding root-kits by comparing an 'inside-the-box'

infected scan with an 'outside-the-box' clean scan. It detects programs which hide files

and registry entries and assumes that those files are malicious in nature. It also detects

hidden processes by comparing the Win 32 API scan with a direct traversal of the active

process list.

Peter Szor [19] has written a comprehensive book on virus research and defense.

He has given an exhaustive background on the history of computer viruses as well as the

latest trends and developments in advanced code evolution and defense mechanisms.

2.2 Free and Open Source Software

While the industry has focused on providing immediate, scalable and network centric

solutions to the malicious code detection problem and research teams have investigated

and implemented futuristic detection techniques, the FOSS (Free and Open Source

Software) community provides small to medium sized tools to tackle this problem on

freeware basis.

Sysinternals [20] provides several advanced utilities for the Windows internals.

The tool `Process Explorer' provides information such as what files, registry keys, what

DLLs have been loaded by any given running process. The `Rootkit Revealer' scans the
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system to find root-kit based Malware. Another tool AutoRun can be used to find out

programs that are setup for autorun (which usually includes Spyware/Ad-ware).

Microsoft has released a tool in January 2005 called the 'Malicious Software

Removal Tool' and is updated on the second Tuesday of every month. It is used for the

removal of specific Windows based worms and can be run from their website without the

need for installing the same.

`Stinger' is a tool from McAfee to remove specific viruses and worms and is

usually used to clean an infected system, rather than protecting a system in real-time.

Clam AV and AVG Free Edition provide free anti-virus tools to protect systems

and detect malicious codes in real-time. Trend Micro has a tool called 'House Call'

which provides free online web-based scanning for malicious code.

Tools like 'PE Browse' and 'PE Dump' are used for the analysis of Windows (All

or .exe) files. IDA Pro (not freeware) is the industry standard tool for disassembling and

software reverse engineering.

For network related activity, the 'ethereal' tool is used to observe the packets

which are being transmitted or received from the host. `Fport' is used to observe which

are the open ports on the host and which process it belongs to.



CHAPTER 3

FILE INFECTION TECHNIQUES

In this section, several of the virus and malicious code infection strategies that have been

used over the years to invade host system files is explained in brief [19]. An

understanding of these techniques is critical in learning what features to look for in each

of these infection techniques.

3.1 Overwriting Viruses

This is one of the most primitive and simple technique for infecting system files. A

malicious code simply locates a critical file and overwrites it completely with its own

code. One obvious effect of such viruses is that the system cannot perform its basic

functions. Overwriting viruses cannot be disinfected from a system. Infected files must be

deleted from the disk and restored from backups. Some of the common extensions used

by the overwritten files are .vbs, .vbe, .ini, .bat, .com, .hta, etc.

3.2 Random Overwriting Viruses

A rare variation of the overwriting method does not change the code of the program at the

top of the host file. Instead, the virus seeks to a random location in the host program and

overwrites the file with itself at that location. A likely scenario is that the virus code

would not get control during the execution of the host. This kind of malicious code can

evade detection of several virus scanners which look for the signature at a particular

6
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location within the infected file. In most cases, if the host program does not pass control

to the virus code, it would usually result in a system crash.

3.3 Appending Viruses

The technique gets its name from the location of the virus body, which is appended to the

end of the file. Typically, a jump (JMP) or equivalent instruction is inserted at the front of

the host to point to the end of the original host. This technique can be implemented for

other type of executable file, such as EXE, PE, ELF, etc. These files have a header

section that stores the address of the main entry point, which, in most cases, is replaced

with a new entry point to point to the virus code appended to the end of the file.

3.4 Prepending Viruses

This technique uses the principle of inserting the virus code at the start of the host

programs. An example of this kind of a virus is Polimer.512.A, which prepends itself,

512 bytes long, at the front of the executable and shifts the original content to follow

itself. Depending on the actual structure of the executable, the execution of the original

program is not a trivial task. The infection involves creation of a new temporary file to

hold the content of the original host program. The system () call is used to execute the

original program in the temporary file. The malicious code typically passes command-

line parameters of the infected host to the host program stored in the temporary file. This

ensures that the functionality of the host program does not break because of the missing

parameters.
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3.5 Classic Parasitic Viruses

This is a variation of the prepender technique. Often when such malicious codes are

repaired, the repair definition directs to copy N number of bytes to the front of the file by

calculating backward from the end of the infected program. Then the file is truncated at

FILESIZE — N, where N is typically the size of the virus. The most common reason for

this type of repair to fail is that the file can have multiple infections. Early anti-virus

programs used to append some extra data, such as inoculation information to mark files

which have been cleaned. This caused problems when the inoculated files got infected

with another parasitic virus. The FILESIZE-N calculation will seek to an incorrect

location and cause the program to crash. Some viruses made use of this particular

anomaly in the anti-virus tools to crash system files.

3.6 Cavity Viruses

These malicious codes typically do not increase the size of the object they infect. Instead

they overwrite a part of the file that can be used to store the virus code safely. Cavity

infectors typically overwrite areas of files that contain zeros in binary files. However,

other areas also can be overwritten, such as OxCC filled blocks that C compilers often use

for instruction alignment. Other viruses overwrite areas that contain spaces (0x20).

A special kind of cavity infection relies on PE programs relocation sections.

Relocations of most executables are not used in normal situations. Modern linker

versions can be configured to compile PE executables without a relocation table.

Relocation cavity viruses overwrite this section when it exists. W32/CTX and

W95/Vulcano virus families use this technique.
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3.7 Fractionated Cavity Viruses

Not many Win32 viruses implement the cavity infection technique successfully. The

W95/CIH implements a variation of this technique called the fractionated cavity

technique. In this case, the virus code is split between a loader routine and N number of

sections that contain section slack space. First the loader (HEAD) routine of the virus

locates the snippets of the virus code and reads them into continuous area of memory,

using an offset tablet kept in the HEAD part of the virus code. During the infection, the

virus locates the section slack gaps of PE files and injects its code into as many section

slack holes as necessary.

A new viral entry point will be presented in the header of the file to point to the

start of the virus code, usually inside the header section of the host applications.

Eventually, the virus executes the original host program from the stored entry point (EP).

The exact identification of such viruses is complicated because the virus snippets need to

be pieced together.

Figure 3.1 A fractured cavity virus.
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3.8 Compressing Viruses

This technique uses the approach of compressing the content of the host program.

Sometimes this technique is used to hide the host program's size increase after the

infection by packing the host program sufficiently with a binary packing algorithm.

Runtime binary packers, such as PKLITE, LZEXE, ASPACK, etc are extremely popular

programs used by attackers to pack the content of Trojan horses, viruses, worms, etc. to

make them obfuscated and shorter. W32/HybrisF used this technique. Another infamous

example is W32/Aldebera which combines the infection method with polymorphism.

Aldebera attempted to compress the host in such as way that it remained equivalent in

size to the original file.

3.9 Amoeba Infection Technique

This is a more rarely seen infection technique which embeds the host program inside the

virus body. This is done by Prepending the head part of the virus to the front of the file

and appending the tail part to the very end of the host file. The head has access to the tail

and is loaded later. W32/Sand.12300 is an example of this technique.

3.10 Embedded Decryptor Technique

Some crafty viruses inject their decryptors into the executable's code. The entry point of

the host is modified to point to the decryptor code. The location of the decryptor is

randomly selected, and the decryptor is split into many parts. The overwritten blocks are

stored inside the virus code for proper execution of the host program after infection.
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When the infected application starts, the decryptor is executed. The decryptor of the virus

decrypts the encrypted body and gives it control.

The easiest way to analyze such virus code is based on the use of special decoy

files filled with a constant pattern, such as 0x41 (`A') characters. After the test infection,

the overwritten parts stand out in the infected test program. Several anti virus tools put

together the pieces of the decryptor by following these offsets to decrypt the virus.

3.11 Embedded Decryptor and Virus Body Technique

A more sophisticated approach was used by the Bulgarian virus, Commander_ Bomber,

written by Dark Avenger. The virus body is split into several parts, which are placed at

random positions on the host program. The overwritten parts are stored at the end of the

file, and a table is used to describe their locations.

The control blocks are polymorphic, generated by the DAME (Dark Avenger

Mutation Engine) of the virus. This makes the blocks difficult to read because they

contain a lot of garbage code with obfuscated ways to give control to the next block, until

the non-encrypted virus body is reached. Back in 1993 this technique was very

sophisticated and most of the anti virus tools missed detecting this. The host program is

reconstructed by the virus in run-time.

3.12 Obfuscated Tricky Jump Technique

W32/Donut was the first virus to infect .NET executables. Donut gets control

immediately upon executing an infected .NET PE file. The virus uses the simplest

possible infection technique to infect .NET images. In fact, Donut turns .NET executables
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to regular looking PE files (.NET uses Just-In-Time compilation). This is because the

virus nullifies the data directory entry of the CLR header when it infects a .NET

application.

The six-byte long jump to the _CoreExeMain() import at the entry point of .NET

files is replaced by Donut with a jump to the virus entry point. The _CoreExeMain()

function is used to fire up the CLR execution of the MSIL (Microsoft Intermediate

Language) code. The entry point in the header is not changed. This technique is called an

obfuscated tricky jump. Evidently, this method fooled some heuristic scanners.

The actual jump at the entry point will be replaced with a OxE9 (JMP) opcode,

followed by an offset to the start of the virus body in the first physical byte of the

relocation section.

3.13 Entry-Point Obscuring (EPO) Viruses

Entry-point obscuring viruses do not change the entry point of the application to infect it;

neither do they change the code at the entry point. Instead, they change the program code

somewhere in such a way that the virus code gets control randomly during the execution

of the host program.

3.13.1 Basic EPO Techniques on DOS

Several viruses use the EPO strategy on DOS to avoid easy detection with fast scanners

that scan the file near its entry-point code. The Olivia virus from early 1997 infected

DOS EXE and COM files using this method.
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If the victim has a COM extension, Olivia uses a special function that reads four

bytes in a loop from the beginning and checks for OxE9 (JMP), OxEB (JMP short), 0x90

(NOP), OxF8 (CLC), OxF9 (STC), OxFA (CLI), OxFB (STI), OxFC (CLD) and OxFD

(STD) each time. If one of the previous instructions is found, the virus seeks the place of

the next such instruction. If that position is not in the last 64 bytes of the host, the virus

modifies the host program at the location where the previous instruction sequence was

detected.

Olivia uses the 0x68 (Intel PUSH) opcode to push a word value to the stack. This

is followed by a OxC3 (RET) instruction, which gives control to the virus code by

popping the pushed offset to the decryptor of the virus.

3.13.2 Advanced EPO Techniques on DOS

The Nexiv_Der virus is polymorphic in COM files, and it also infects disk's boot sector

(DBS). The most interesting technique of this virus, however, is the special EPO

technique that it uses to infect files.

This virus traces the execution of a program as an application debugger does.

Then it patches the code at a randomly selected location to a CALL instruction. This

CALL instruction points to the polymorphic decryptor of the virus.

The execution path through a program depends on many parameters, including the

command-line arguments passed to the program and DOS version number. Depending on

the same parameters, an infected victim program will most likely run the virus code upon

normal execution each time. However, the virus might not run at all on a different version

of DOS because the virus code cannot take control. This generates a major problem for
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even sophisticated heuristic scanners that use a virtual machine to simulate the execution

of programs because it is difficult to emulate all of the system calls and the execution

path of the victim.

3.13.3 EPO Viruses on 16-Bit Windows

One of the first EPO viruses in the wild was the Tentacle_II family on Windows 3.x

systems. Tentacle_II takes advantage of the module reference table of NE files to find

common function calls that are expected to be executed among the first function calls

made by the host programs. Examples of these initialization functions are relocation

record 91 (INITTASK) in the case of KERNEL or 100 (THUNKMAIN) in the case of

VBRUN300.

3.13.4 API Hooking Technique on Win32

On Win32 systems, EPO techniques are highly advanced. The PE file format can be

attacked in different ways. One of the most common EPO techniques is based on the

hooks of an instruction pattern in the program's code section. A typical Win32

application makes a lot of calls to APIs. Many Win32 EPO viruses take advantage of API

CALL points and change these pointers to their own start code. Viruses typically search

for one or both API call implementations:

• Microsoft API Implementation

CALL DWORD PTR[]

• Borland API Implementation

JMP D WORD PTR[]
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Viruses can hook an API that is called whenever the application exits back to the

system. In this case, most programs call the ExitProcess() API. By replacing the call to

ExitProcess() with the call to the virus body, a virus can trigger its infection routine more

reliably whenever the application exits. To make antivirus detection more difficult,

viruses often combine EPO techniques with code obfuscation techniques, such as

encryption or polymorphism.

3.13.5 Function Call Hooking on Win32

Another common technique of EPO viruses is to locate a function call reliable in the

application's code section to a subroutine of the program. Because the pattern of a CALL

instruction could be part of another instruction's data, the virus would not be able to

identify the instruction boundaries properly by looking for CALL instruction alone.

To solve this problem, viruses often check to see whether the CALL instruction

points to a pattern that appears to be the start of a typical subroutine call. The function

calls usually start with the 0x55 Ox8B OxEC sequence. Another similar opcode sequence

is 0x55 0x89 OxE5. This technique was used by the variants of W32/RainSong.

3.13.6 Import Table Replacing on Win32

Newer Win32 viruses infect Win32 executables in such as way that they do not need to

modify the original code of the program to take control. Instead, such EPOs works

somewhat similar to the 16-bit Windows virus Tentacle II.

To get control, the virus simple changes the import address table entries of the PE

host in such a way that each API call of the application via the import address directory
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will run the virus code instead. In turn, the activated virus code presents a new import

table in the memory image of the program. As a result, consequential API CALLs run

proper, original entry-point code via the fixed import table. This technique is used by the

W32/Idele family of viruses.

Figure 3.2 Import Address Table replacing EPO virus.

3.13.7 Instruction Tracing Technique on Win32

The Nexiv_Der virus inspired modern virus writing on 32-bit Windows systems. In 2003,

new viruses started to appear that use EPO, based on the technique that was pioneered on

DOS. For example, the W32/Perenast family of viruses is capable of tracing host

programs before infection by running the host as a hidden debug process using standard

Windows debug APIs.
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3.13.8 Use of "Unknown" Entry Points

Another technique to execute virus code in a semi-EPO manner involves code execution

via non-well known entry points of applications. The Win32 PE file format is commonly

known to execute applications from the MAIN entry point stored in the

PE.OptionalHeader.AddressOfEntryPoint field of the executable's header structure.

Interestingly, this is not necessarily the first entry point in a PE file that the

system loader executes. On Windows NT systems and above, the system loader looks for

the thread local storage (TLS) data directory in the PE files header first. If it finds the

TLS entry points, it executes these first. Only after that will it run the MAIN entry-point

code. This technique is largely undocumented and was only recently successfully used

by the W32/Chiton viruses in 2003.

3.13.9 Code Integration Based EPO Viruses

A very sophisticated virus infection technique is called code integration. A virus using

this technique inserts its own code into the execution flow of the host program using

standard EPO technique and merges its code with the host program's code. This is a

complicated technique which requires complete disassembling and reassembling of the

host. The W95/Zmist virus used this approach. This technique is a major challenge for

detection. The virus is camouflaged in the code section of the infected host program, and

it is very difficult to locate the instruction that transfers control to the start of the virus.
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3.14 Possible Future Infection Techniques

A technique known as Code Builders has not yet been seen in viruses but is deemed

plausible. The virus code flows into the host programs code and back. In such viruses the

intent is to build the entire virus body on the fly, using the content of the host program.

The idea is based on the fact that any program might contain another set of programs in it

as instructions or instruction sequences. The viruses are advanced versions of the poly

and metamorphic viruses and malicious codes which exist today.



CHAPTER 4

METHODOLOGY

4.1 System Architecture

The goal of this thesis was to explore which static features from an executable provide

better classification results. A large set of executables was collected from commonly

available sources. The dataset was further spilt into a training set and test set. Section 4.2

elaborates on the dataset being used.

The next step was to extract features to be used with the classifiers. The feature

extraction requires certain amount of domain expertise to identify which features would

be more useful than others. This reduces the load of statistical feature reduction. In

Chapter 4 the various feature extraction techniques that were used, have been explained

in detail. The final step is to feed this data to a classification tool. In Chapter 5 the use of

Support Vector Machines (SVM) for this has been explained. The entire framework for

this system is as shown in the figure below.

Figure 4.1 Malicious Code Detection methodology using SVM.
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4.2 Taxonomy of Malicious Binaries

A comprehensive and well classified data set of 'Malicious Code' was integral to this

study of analyzing and detecting malicious windows binaries. We were greatly aided by

the availability of such data on the Internet. Several categories of Malicious Code, as

elaborated in Table 4.1 were collected from a mirror website of VX Heavens. The wget

utility was used to download the entire dataset. Each malicious file was received in a

compressed format and hence a command-line recursive utility was used to unzip and

store these files. The files available were named in the following manner:

TopLevelCategory.SubCategory.MaliciousCodeName.Variant

The Top level category describes the type of the malicious code and is useful in

determining the intended effect of the malicious code. For example Email-flooder would

send out large number of emails, a Backdoor would most likely provide a secret open-

port or an access authentication which only the attacker is aware of. The Sub-Category is

the target program or platform which the malicious code is attacking or exploiting. Table

4.1 gives the list of Top-level and Sub-level categories of the malicious code being used.

The malicious code name is what that program is most popularly known as on the

internet. The 'Variant' (e.g., BACKDOOR.WIN32.DARKFTP.14) is usually a small

modification to the original malicious code and is represented with either a number or the

alphabet depending on the number of variants available.
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Table 4.1 Taxonomy of Malicious Code

Top Level
Category

Sub
Category

Backdoor FreeBSD
Constructor BAT
DoS DOS
Email-Flooder , HTML
Email-Worm MSWord
Exploit Perl
Flooder VBS
HackTool Win 16
IM-Flooder Win32
IM-Worm Linux
IRC-Worm Solaris
Macro Unix
Net-Worm IIS
Nuker IE
P2P-Worm IRC
SMS-Flooder WinINF
Sniffer WinREG
Spoofer PIF
VirTool
Virus
Worm

The taxonomy is very useful when working with large sets of malicious codes.

For anomaly detection, multiple training models can be created for each of the top-level

malicious code categories. This helps in creating a better profile of the malicious code

and can also help in the categorization of the test data and the subsequent remedial action.

The sub-level category is useful to identify the technique which needs to be used for the

feature extraction. The header and the entire file format of the malicious code could be

different for the different sub-level categories. For E.g. a Win32 executable is different

from a Linux or Solaris executable. We have focused here only on the Win32 Portable

Executable format of malicious codes. A comparison graph shows the distribution of the
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malicious codes based on their file types. While the DOS malicious codes are the highest,

they have been steadily on the decline and the number of Win32 malicious codes has

risen sharply in the recent years. This was one of the reasons for focusing exclusively on

the Win32 file types in this study.

Figure 4.2 Count of malicious codes by file type.



CHAPTER 5

FEATURE EXTRACTION

5.1 Static Analysis

The feature extraction for static analysis utilizes information from within the structure of

the executable and hence, the file does not need to be executed. While the semantics of

the data collected remains the same for several different platforms, the actual structure of

the file varies as it depends on the operating system that the executable has been

compiled for. The work presented here is focused on the Windows 32 executables which

use the Portable Executable (PE) file format.

5.1.1 Portable Executable File Format

The feature extraction performed here is directly on the Portable Executable (PE) format

Windows binaries. As discussed in [16] the structure of PE was introduced by Microsoft

with the intent to have a common file format for all versions of Windows on all CPU's.

PE files are derived from the earlier Common Object File Format (COFF). Any given

compiler, creating an executable for the Windows platform, produces an OBJ file which

is in the COFF format. For the new 64-bit Windows, there have been few modifications

to the PE format and it is now called PE32+. The overview of the PE file structure is as

shown in Figure 5.1

23
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Figure 5.1 Overview of PE file format.

When the executable invokes a function from another DLL, it is importing it. The

loader takes care of locating the imported functions and making those addresses available

to the file being loaded. The LoadLibrary or GetProcAddress API's are used to

perform this function. The imports data is in the IMAGE IMPORTS DESCRIPTOR

data structure. There is one IMAGE IMPORTS DESCRIPTOR for each DLL invoked.

The end of the descriptor is indicated by an entry with all fields set to 0. Each descriptor

typically points to two essentially identical arrays. These are commonly known as Import

Address Table (TAT) or Import Name Table (TNT). Figure 4.2 shows an executable

importing some API's from USER32.DLL
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Figure 5.2 API import from USER32.DLL.

The information that is of interest with regards to the static analysis is the API

invoked with the DLL. For individual file processing several PE Browsing tools are

available, as well as obj dump which is a tool available with Cygwin. For batch

processing purposes of the large data set, a freeware utility called UsesWhat [17] was

used. UsesWhat is a DLL/API scan utility which scans the import tables of PE files and

provides comma-delimited files. Figure 5.3 shows the DLL/API features collected. The

comma-delimited file is the raw data input to the pre-processing step. As a first step in

the pre-processing, a master list of the all. APIs used in the training data is collected in a

single text file and a unique numerical value is given to each of these APIs. The

subsequent processing involves creating a feature vector for each given file, in which a

list of the APIs invoked by that particular file is listed. This feature vector is the input to

the anomaly detection algorithm.
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Figure 5.3 DLL/API features.

To create a visual representation of the data which was collected, a frequency plot

was done as shown in Figure 5.4. The graph plots the number of functions called within

each DLL against the various DLLs which exist in Windows (330 DLLs were used in this

test).
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Malicious Data Set 	 Normal Data Set

Figure 5.4 Frequency plot for DLL information.

5.1.2 Hex Dump

Traditionally, a Hex Dump is used to describe an unstructured record of the contents of

the working memory, and is generally used to debug a program that has terminated

abnormally (crashed). It is also referred to as a crash dump or a core dump. In this

context the hex dump is the contents of an executable file in the hexadecimal format.

Most variants of the UNIX system have a utility called the hexdump or obj dump to

produce the hexadecimal output. On the Windows platform freeware third-party utilities

[18] are available to produce the Hexdump output. Figure 5.5 shows the output of this

tool.
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Figure 5.5 Hex Dump output.

A batch script was written to collect the Hexdump data for the entire malicious and

normal data set.

The pre-processing of this data was done using a Perl script which counted the

occurrence of each of the hex patterns in the data. A total of 255 patterns [00 — FF] are

possible. A feature vector was created for each of the training and test file in a

name:value pair where the name of the feature was each of the 255 patterns and the value

is the count of that pattern in the given file.

5.2 Dynamic Analysis

In contrast to the static analysis, dynamic analysis involves the actual execution of the

file and data is collected during the execution phase of the file. This technique has certain

advantages over the static analysis, such as the availability of the de-obfuscated data,

real-time execution sequence data, the actual operating system call parameters, etc. In
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one of the major drawbacks of this technique is that only one of the many possible

execution traces can be collected and it is up to the data collection process to determine

which the best execution scenario to use is. The data collected here consists of:

• System call data

• Registry access data

• File system access data

• Network access data

5.2.1 Trapping System Calls

A system call is a software interrupt used by an application program to request service

from the operating system. System calls often use a special machine code instruction

which causes the processor to change mode (e.g. to 'protected mode'). As with the

Hexdump utility, a tool is available on the UNIX systems called `strace' which is used to

print out all the trace of system calls made by another process/program. A Windows port

of this tool is available with the Cygwin package.

On the Windows platform, applications interact with the operating system using

`Windows API'. The strace program captures the sequence of Windows API calls made

by any given application. For this, the application does not need to be compiled again,

nor is the source code of the application needed.

For anomaly based malicious code detection, the sequence information provided

by this tool is very useful. Techniques such as n-gram analysis and a state-based Hidden

Markov Model (HMM) can be used to build a model of the typical normal and malicious

executables.
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5.2.2 Registry Access Data

The Windows Registry is a database which stores settings and options for the Microsoft

Windows 32-bit version operating system. It contains information and settings for all the

hardware, software, users and preferences of the PC. The Registry is split into logical

sections, as follows:

• HKEY CLASSES ROOT (HKCR)

• HKEY CURRENT USER (HKCU)

• HKEY LOCAL MACHINE (HKLM)

• HKEY USER

 • HKEY CURRENT CONFIG

User modification of the Registry is done using the regedit.exe tool. For the application

programs to read, write or edit the Registry, special Windows API are provided. The

RegMon utility provided by Sysinternals [20] shows which applications are accessing the

Registry, which are the keys being accessed and the Registry data that is being read and

written to. Figure below shows the screen shot of the tool being used to capture data in

real-time.
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Figure 5.6 RegMon utility capturing data.

5.2.3 File System Access Data

Formally, a file system is a set of abstract data types that are implemented for the storage,

hierarchical organization, manipulation, navigation, access and retrieval of data on a disk.

File systems typically have directories which associate file names with files, usually by

connecting a name to an index in the file allocation table, such as the FAT in MS-DOS or

the mode in a UNIX-based file system.

The file system calls made by the application program can be captured in real-

time using freeware utilities such as TileMon'. The utility provides sequential

information regarding the actual file system call, the path to the file, the result and the

timestamp of the call. Figure below shows a screen shot of the FileMon tool.
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Figure 5.7 FileMon utility capturing data.

The sequential information is captured for each application program based on the

process-id. An automated batch processing implementation of this tool was attempted as

a part of this thesis using the Microsoft 'Installable File System Development Kit' for

Windows. Using the `minispy', a program was written which based on a particular

process-id would capture all the file system calls being made and if the process name/id

tried to access certain files which were supposed to be beyond its scope, the file system

call would have been blocked. Significant progress was made with regards to the

automated technique for capturing file system calls. The blocking of system calls raised

some interesting problems, as this tool needed to automatically know that a new process

has begun execution and that it should start capturing data. The process monitoring and

related issues were found to be beyond the scope of this thesis work.
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5.2.4 Network Access Data

While all the data collected in the prior three sections has been local to the host where the

malicious code is executing, most malicious activity propagates using the network

services and the open ports on vulnerable hosts. Monitoring the network access for data

being transmitted and received can be valuable for the malicious code detection. Several

tools are available for sniffing traffic over the Ethernet. In this a machine is put in the

promiscuous mode and a sniffer program such as ethereal is used to see the packets

which are being transferred. A tool from Sysinternals is available called TDIMon

(Transport Driver Interface Monitor) which provides TCP and UDP based activity by the

application on the local system.

The data provided is directly related to the WinSock (Windows Socket API)

functions. The Figure below shows the screen shot of the data captured by this tool.

Figure 5.8 TDIMon utility capturing data.



CHAPTER 6

SUPPORT VECTOR MACHINE BASED ANOMALY DETECTION

Support Vector Machines (SVM) was invented by Vladimir Vapnik. They are a method

for creating functions from a set of labeled training data. The function can be a

classification function (binary output based on the category of the input) or a general

regression function. For the anomaly detection we have used the classification output of

the SVM.

6.1 SVM Overview

Support Vector Machines are based on the concept of decision planes that define decision

boundaries. A decision plane is one that separates between a set of objects having

different class memberships. A schematic example is shown in Figure 6.1. [21] In this

example, the objects belong either to class WHITE or BLACK. The separating line

defines a boundary on the right side of which all objects are BLACK and to the left of

which all objects are WHITE. Any new object falling to the right is labeled, i.e.,

classified, as BLACK (or classified as WHITE should it fall to the left of the line).

Figure 6.1 Linear classification
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A curved line could be needed to classify data which is more complex. Figure 6.2

shows the basic idea behind Support Vector Machines. Here the original objects (left side

of the figure) are mapped, i.e., rearranged, using a set of mathematical functions, known

as kernels. The process of rearranging the objects is known as mapping (transformation).

Note that in this new setting, the mapped objects (right side of the figure) is linearly

separable and, thus, instead of constructing the complex curve (left figure), all we have to

do is to find an optimal line that can separate the WHITE and the BLACK. objects.

Figure 6.2 Support Vector Machine based classification

Support Vector Machine (SVM) is primarily a classier method that performs

classification tasks by constructing hyperplanes in a multidimensional space that

separates cases of different class labels. To construct an optimal hyperplane, SVM

employs an iterative training algorithm which is used to minimize an error function.

According to the form of the error function, SVM models can be classified into four

distinct groups:

• Classification SVM Type 1 (also known as C-SVM classification or C-SVC)

• Classification SVM Type 2 (also known as nu-SVM classification or nu-SVC)
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• Regression SVM Type 1 (also known as epsilon-SVM regression)

• Regression SVM Type 2 (also known as nu-SVM regression)

For the C-SVC, the parameter 'C' is known as the cost factor and it can be varied

during the training phase.

6.2 SVM Data Representation

LIBSVM uses a BNF-like format for the data.

Figure 6.3 SVM data format.
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6.3 SVM Analysis on DLL/API Data

For the SVM analysis on the DLL/API data, as a part of the pre-processing step an API

list is created in which each of the APIs is given a unique id. This id is used to create the

feature vector. A label is also provided to each of these feature vectors where +1 denotes

that the record is normal and -1 denotes that the record is malicious. The entire vector

with the label is used as the input to the SVM to build the training model.

Table 6.1 DLL/API Training and Test Datasets for SVM

Training Data Test Data
Normal 276 58
Malicious 1148 133

The svmt ra in tool was used to build the training model. The default SVM

type was used, which is C-SVC. Different cost factors were used with this training

model. The results are shown as follows.

Table 6.2 Effect of Cost Factor 'c' on SVM Training for DLL/API Data

Cost Factor 'c' of C-SVC Classification Results
Test 1 1 [default] 89.52% [171/191]
Test 2 5 93.19% [178/191]
Test 3 100 96.33% [184/191]
Test 4 1000 97.90% [187/191]

The classification results are obtained using the svmpredict tool. As can be

seen, with a higher cost factor, the classification results improve.
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6.4 SVM Analysis on Hex Dump Data

In Hex Dump data, the feature vector consisted of the label (+1/-1) followed by the hex

patterns [00 — FF] in decimal and the count of each of those patterns in the given file.

Due to the nature of the data, the count of these patters varied significantly. Hence,

scaling was done prior to building the training model. The SVM tool svms cal e was

used to scale the data in the -1 to +1 range. Table 6.3 gives the details regarding the size

of the training and testing data sets.

Table 6.3 Hex Dump Training and Test Datasets for SVM

Training Data Test Data
Normal 1477 155
Malicious 2074 582

The gamma factor 'g' of the SVM was varied in this case. The gamma factor can take

values from 1/k to 0.9, where k is the number of features of the vector (in this case

k=256).

Table 6.4 Effect of Gamma Factor 'g' on SVM Training of Hex Dump Data

Gamma factor 'g' classification results
Test 1 1/256 [default] 79.91 %
Test 2 0.1 82.08 %
Test 3 0.3 82.76 %
Test 4 0.6 88.46 %
Test 5 0.9 89.96 %



CHAPTER 7

CONCLUSION

Malicious Code Detection is a constantly evolving field. Several malicious code writers

are sophisticated programmers with some of the latest tools available at their disposal.

But, as with buffer overflows which have usually used NOP equivalent machine codes

and a return address to exploit, the underlying structure of these malicious codes has also

followed a similar pattern over the years. Hence, while signature based detection will

need constant updates, the need for anomaly based detection to supplement these

methods will only grow.

The feature extraction done in this thesis work uses some of the more generic data

which any malicious code cannot avoid to contain. This technique also has a significant

advantage of automated data collection and a relatively safe way of processing malicious

codes, which would not result in the compromise of the data collection environment. This

makes the technique more realistic to be implemented in a live scenario. The SVM

analysis also shows that this data can be used for accurate classification.
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CHAPTER 8

FUTURE WORK

Initial feature extraction techniques and classification results have been presented here. In

the PE header data, presently only the information regarding which APIs have been

called is being used. A more sophisticated approach could also find out the API call

sequence. This kind of sequence based data could be very useful in using state-transition

based classification. Also, additional data regarding the API can be collected such as the

Virtual Memory Address (VMA) of each of these function calls. This information could

be very useful during the run-time monitoring of an executable. Any deviation from the

pre-determined VMAs could mean malicious behavior. More research needs to be done

to know what the behavior of this feature is in both the normal and malicious executables.

Statistical probability of the feature can also be computed and used as an input to the

classifier.

Several classification techniques also exist besides Support Vector Machines. The

use of Bayesian Networks, Hidden Markov Models and other n-gram based analysis has

proven to be quite effective on similar data. Data mining algorithms can also be used to

make the anomaly detection. Future work also includes the comparison of these various

techniques on the features extracted. An n x m table of such an experiment would let us

know which features and classification technique gives the best result. A feedback

mechanism can also be implemented for the training model which is built for the anomaly

detection. For every correctly classified malicious or normal file, the training model

would be updated. Co-relation of the results of various techniques could also enhance the

detection rate at the same time reducing the false positives and false negatives.
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Datasets:
Training Normal:
Training Malicious:

1477 records
2074 records

Testing Normal:
Testing Malicious:

155 records
582 records

APPENDIX

SAMPLE SVM RESULTS WITH PROBABILITY ESTIMATES

Support Vector Machines output is given here with probability estimates. The output also

includes the actual values from the test data, misclassification rates and false positives

and false negatives.

Accuracy: 86.43% (637/737)
False Positives: 4.74% (35/737)
False Negatives: 8.81% (65/737)
Misclassified Malicious: 11.16% (65/582)
Misclassified Normal: 22.50% (35/155)

Actual Value	 Probability Estimates	 Predicted Value
-1/+1

-1 0.867998 0.132002 -1
-1 0.909216 0.0907838 -1
-1 0.796379 0.203621 -1
-1 0.852271 0.147729 -1
-1 0.881023 0.118977 -1
-1 0.890868 0.109132 -1
-1 0.894294 0.105706 -1
-1 0.94084 0.0591604 -1
-1 0.999137 0.000862609 -1
-1 0.96909 0.0309099 -1
-1 0.991446 0.0085538 -1
-1 0.867645 0.132355 -1
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