
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 2006

Non-repudiation secure file transfer protocol
(NRSFTP)
Jerry Chen
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Chen, Jerry, "Non-repudiation secure file transfer protocol (NRSFTP)" (2006). Theses. 390.
https://digitalcommons.njit.edu/theses/390

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F390&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F390&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F390&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F390&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/390?utm_source=digitalcommons.njit.edu%2Ftheses%2F390&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

NON-REPUDIATION SECURE FILE TRANSFER PROTOCOL (NRSFTP)

by
Jerry Chen

Non Repudiation Secure File Transfer Protocol (NRSFTP) is designed to resolve three

main concerns for today's electronic file transfer methodology. The three main concerns

are Non-Repudiation, Secure, and Non-Real Time file transfer. Non-repudiation is to

assure the receiver that the sender of the document is not an imposter. Secure document

transfer is to assure the sender that only the intended receiver will be able to read the

document. Non-real-time file transfer is to provide convenient and low cost

transportability of the encrypted data from one party to another. With the above three

concerns addressed, the NRSFTP protocol can be widely accepted by the general public

as the method to securely transfer a file.

NON-REPUDIATION SECURE FILE TRANSFER PROTOCOL (NRSFTP)

by
Jerry Chen

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 2007

APPROVAL PAGE

NON-REPUDIATION SECURE FILE TRANSFER PROTOCOL (NRSFTP)

Jerry Chen

Dr. Constantine N. Manikopoulos, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Robert Static, Committee Member 	 ' Date
Program Director of Information Technology, NJIT

Dr. Rancho Chang, Committee Member	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Jerry Chen

Degree:	 Master of Science

Date:	 January 2007

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2007

• Bachelor of Science in Computer Science,
Rutgers University, New Brunswick, NJ, 2001

• Bachelor of Science in Civil Engineering,
Rutgers University, New Brunswick, NJ, 2001

Major:	 Computer Engineering

To my beloved family

This thesis is dedicated to my family who has supported me throughout the years.

ν

ACKNOWLEDGMENT

I would like to sincerely thank my thesis advisor, Dr. Constantine N. Manikopoulos, for

leading me into this exciting field and working with me to produce this fruitful outcome.

This thesis and my degree could not have been completed without his enormous support,

guidance, and insight. Special thanks to Dr. Robert Statics and Dr. Rancho Zhang for

serving on the committee.

I sincerely appreciate the help from Peter Manikopoulos for working with his

father, Dr. Manikopoulos, to provide ideas and refine the NRS program. I also would

like to thank Vuedong Wu for answering many different questions that I had about the

NRS program using Java. In addition, special thanks to Calvin Culianu and Zhang Zhang

for providing insights to possibly rebuilding the NRS program using C++.

Lastly and most importantly, I would like to thank my parents, my brother, and

my girlfriend. I am forever indebted to their support and compassion. Without them, I

would not have gotten this far.

νι

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION. 	 1

2 NRSFTP VISION 	 3

2.1 Non-Repudiation 	 3

2.2 Secure 	 3

2.3 Non-Real-Time File Transfer 	 3

	

3 EXAMPLE USES FOR NRSFTP 6

4 NRSFTP PROTOCOL 	 9

4.1 Protocol Objects 	 9

4.2 Encryption 	 10

4.3 Decryption 	 .. 	 12

5 NRSFTP INFRASTRUCTURE 	 14

5.1 Digital Certificate 	 14

5.2 Session Key 	 15

5.3 Compression 	 15

5.4 Message Digest 	 16

5.5 Routing Number 	 17

5.6 Control Number 	 18

	

6 POSSIBLE ATTACKS 19

6.1 Securing the Private Key 	 19

6.2 Digital Certificate Authentication 	 19

6.3 False Document Flooding 	 ... 20

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

7 NRSFTP CLIENT SOFTWARE 	 .. 21

7.1 Software Description and Structure 	 21

7.2 NrsClient 	 23

7.3 NrsClientDecrypt 	 23

7.3 NrsClientEncrypt 	 23

	

7.4 NrsClientFrame 24

7.5 NrsClientMain 	 24

7.6 NrsClientSerialCode 	 25

7.7 NrsClientTpEdit 	 25

	

7.8 NrsCrypt 25

7.9 NrsFile 	 26

7.10 NrsFileHeader 	 27

7.11 NrsLog 	 27

7.12 NrsSerialCode 	 28

	

7.13 NrsTp 28

8 TESTING AND VALIDATION 	 29

	

8.1 Secure 29

8.2 Non-Repudiation 	 33

8.3 Non-Real Time File Transfer 	 37

	

8.4 User Functionality Testing 38

	

9 FUTURE IMPROVEMENTS 42

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

9.1 NRSFTP Server 	 42

9.2 File Transfer Methods for NRSFTP Client 	 ...	 42

	

10 CONCLUSION 44

REFERENCES 	 45

ix

LIST OF FIGURES

Figure Page

3.1 Different scenarios to exchange the many different types of documents
from one organization to another within the real-estate industry 	 .. 8

4.1 The steps to encrypt a document 	 .. 11

4.2 The steps to decrypt a document 13

4.3 Sample diagram of how message digest work from [9] 	 .. 17

8.1 Contents of a NRSFTP encrypted file using a text editor 	 30

8.2 Microsoft Excel program not able to open an encrypted NRSFTP file 	 31

8.3 Microsoft Word program not able to open an encrypted NRSFTP file 	 31

8.4 Windows Picture and Fax Viewer program not able to open an encrypted
NRSFTP file 	 .. 32

8.5 Windows zip program not able to open an encrypted NRSFTP file 	 32

8.6 The program not allowing decryption due to incorrect ΤΠ 	 34

8.7 The program not allowing encryption due to revoked digital certificate 35

8.8 The program not allowing decryption due to revoked digital certificate 36

8.9 The program not allowing a ΤΠ setup due to CRL not matching certificate ... 37

8.10 Decrypted NRSFTP file after non-real time transport 38

χ

CHAPTER 1

INTRODUCTION

In today's business communications, transfer of documents is a must between two

businesses. Both parties will have the need to send out files for the other to see it.

Before the age of emails, documents were faxed, mailed, or exchanged in person to

the intended recipient. These documents were not easily available for unintended

parties to intercept. With the new electronic age of emails being exchanged across

public interne, sensitive business documents are very vulnerable for unintended

parties to intercept and manipulate.

Due to this fact of unintended parties being able to look at the sensitive

business documents being transferred on the interne, two very important

characteristic of sending a business document is jeopardized. One, documents should

be securely delivered to the recipient without unintended parties being able to look at

it. This is call encrypting the document where only the receiver will be able to see the

document. Two, the recipient should have the comfort of knowing the document

came from the intended sender without unintended parties being able to modify the

contents of the document. This is called non-repudiation where the sender can not

deny that the document was sent by someone else. Non-Repudiation Secure File

Transfer Protocol (NRSFTP) is designed to cover the above two issues.

NRSFTP is also designed to cover a third issue, non-real-time transfer of files.

Since transmitting a file attached to an email is considered to be non-real-time, the

option of non-real-time file transfer will have to be considered for NRSFTP. Also,

1

2

real-time transfer of files requires the sender or the receiver to implement a server.

This can be very costly to the individual who has to implement and maintain a server.

There are many different types of security protocols and software available

but there were none developed to fit the exact needs for the NRSFTP ideology

requirements. The only two protocols that would cover most of the requirements for

the need of NRSFTP ideology are PAP and ΑS2.

PAP does not guarantee non-repudiation. Non-repudiation is one of the

necessary requirements for the NRSFTP ideology. PAP fits many different

functionality/characteristics for the implementation of NRSFTP. One of the PAP

functionality that the NRSFTP will simulate is the ability to securely transfer a file

through a non-real time communication medium. PAP is very fast since it uses both

public and session key ideology. One can use it to communicate securely with

intended recipients with no secure channels needed for prior exchange of keys. PAP

has many useful features, and with the hybrid public and session key ideology, it is

also very fast. Please refer to [5] for further details.

AS2 does guarantee non-repudiation. But AS is designed for real time

transmission using Secure Socket Layer (SSL). Therefore, the receiver must maintain

a server being up at all times for the sender to send a document to the receiver. In

normal business situations, both parties will need to send documents. But AS is

much more complex to implement and support.

CHAPTER 2

NRSFTP VISION

2.1 Non-Repudiation

When the recipient opens an encrypted document, the recipient should have the

comfort of knowing the document came from the intended sender. NRSFTP uses

digital signature to allow the recipient to verify the authenticity of the sender. And

having a digital signature also allows the recipient to verify that the data was not

altered while in transit.

Most file or transmission encryption protocols are not designed for none-

repudiations. These protocols simply ensure secure transmission of data by

encryption. This is the main reason for NRSFTP to address the issues of providing

encrypted files to the receiver with repudiations.

2.2 Secure

NRSFTP will guarantee the secure exchange of documents between the sender and

the receiver. By securely exchanging documents, both the sender and the receiver

will have the comfort of knowing that unintended parties will not be able to view the

document being transmitted.

2.3 Non-Real-Time File Transfer

When encrypting data, it is intended for a recipient to decrypt it in the future.

Therefore, the encrypted file must be transmitted in some way to the recipient.

3

4

Currently most secure file transfer protocol is for real-time transfer of files.

This means that either the sender or the receiver of the encrypted file will need to

implement a server for the real time transfer. This is not desired for most people

since the maintenance of a server is very costly.

With the above point in mind, none-real-time file transfer is a very important

criterion for NRSFTP. none-real-time transmission allows both parties exclude the

need to implement a dedicated server. Since the transmission medium can be

anything. It's up to the sender and the receiver to decide. Therefore, non-real-time

transmission is very cost effective and flexible.

The possibility for none-real-time transmission is very cost effective for

businesses. Since a dedicated server is not needed, below are some of the items that a

company can take advantage of.

• No need to hire a highly technical personal to maintain a server.

• Save on the cost of buying a dedicated server for real-time transmission, data
center to hold the server, and any additional costs to keep the server running
at all times.

• Servers typically need a valid public Internet 'P address for clients to
properly identify the location of the server. Public IPA address is harder to
obtain and it needs to be maintained also.

A major concern for non-real-time encryption and decryption of data is the

validity of sender's public key from start to end. Let say that the sender initially

digitally signs with the sender's private key, then two weeks later, the receiver

decrypts the file. But during the two weeks from the sender initially encrypted the

file to the receiver decrypting the file, the sender's digital certificate was revoked

(possibly a hacker that got into the system). NRSFTP still addresses this concern.

5

During decryption, the sender's digital certificate is validated with the certificate

authority. Therefore, if the sender revokes its public key with the certificate authority

before the receiver decrypts the file, then the receiver will not be able to decrypt the

file.

CHAPTER 3

EXAMPLE USES FOR NRSFTP

The real-estate industry can benefit from NRSFTP. Many different documents are

exchanged between the buyer, seller, broker, buyer's attorney, seller's attorney, bank,

appraiser, and etc. Some of these documents are the binder (agreement between the

buyer and the seller's initial price for the estate), the contract (contract between the

buyer and the seller's final price and other details for the estate), the financial

documents (W-2, pay stubs, and bank statements about the buyer), the appraisal (from

the appraiser estimating the price of the estate), the commitment letter (from the bank

stating the buyer is qualified for the applied mortgage), and possibly other documents.

Most of these documents contain sensitive information about the different parties

involved.

Currently, this industry relies heavily on fax as the medium to exchange the

documents. Fax, for the most part, is more secure than the exchange over public

Internet. But with email gaining popularity, these sensitive documents can be

attached within an email exchanged over the public interne more frequently in the

future. Therefore, these documents should be securely exchanged between the

different parties when transmitted over the public interne. Also, when the recipient

opens the document, the recipient should have the comfort of knowing the document

came from the intended sender.

Since all parties need the non-real-time functionality of NRSFTP, the

NRSFTP client can accommodate the security needs for all parties involved.

6

7

NRSFTP even provides non-repudiation so the validity of the sender is guaranteed to

the receiver.

For example, the buyer wants to send the bank its financial information

document. Since email is the envisioned common transmission medium within the

real-estate industry, the buyer can configure the bank's trading partnership to use

email as the transmission medium. Once the file is encrypted, then the encrypted file

is automatically attached to the email going to the bank's email address specified

within the digital certificate. When the bank receives the email with the NRSFTP

attachment, the bank can double click on the encrypted file and the NRSFTP client

will appear asking the bank to save the decrypted file into a specific directory.

8

Figure 3.1	 Different scenarios to exchange various types of documents from one
organization to another within the real-estate industry.

CHAPTER 4

NRSFTP PROTOCOL

4.1 Protocol Objects

The below object/fields are the components for a NRSFTP file. Detailed

infrastructure descriptions for some of the objects are within the next chapter.

• Version

• Document generation date

• Session key type

• Compressed object containing all files for transferring encrypted with the
session key

• NRSFTP headers

A separate NRSFTP header is generated for each sender receiver pair and

included within the NRSFTP file. The below object/fields are the components for a

NRSFTP header.

• Sender's digital certificate

• Receiver's digital certificate

• Routing number

• Control number

• Message digest type

• Message digest encrypted with sender's private key

• Session key encrypted with receiver's public key

9

10

4.2 Encryption

NRSFTP will encrypt a file using the following steps:

1. Validate all senders' and recipients' digital certificates against the certificate
revocation list (CRL) that was generated by the certificate authority.

2. Compress the files to be encrypted with ZIP to generate a zip object.

3. Aenerate a message digest from the zip object.

4. Encrypt (digitally sign) the message digest against the zipped object with
sender's private key. A separate encrypted message digest is generated for
each sender/receiver pair

5. Encrypt the compressed file using a random session key. A new random
session key is generated for each new NRSFTP file.

6. Encrypt the session key with each receiver's public key.

7. Aenerate a header object for each sender/receiver pair which contains the
sender's digital certificate, receiver's digital certificate, the routing number,
the encryption date, control number, recipient's public key encrypted session
key object, and the signed message digest object.

8. The receiver will receive the NRSFTP file which contains the session key
encrypted compressed object and the list of header objects.

For further clarification of the encryption process, below is a descriptive

example to encrypt three files to be sent to two TPs. First, validate all three pairs of

sender/receiver digital certificates (total of six) against the CARL. Second, generate a

zip object containing the three files. Third, generate a single message digest for the

zip object. Fourth, two encrypted message digests are generated using each of the

sender's private key. Fifth, a single session key encrypted zip object is generated

using a new random session key. Sixth, two encrypted session key objects are

generated by encrypting with each receiver's public key. Seventh, two header objects

11

are created. Lastly, the NRSFTP file will contain the two header objects and the

single session key encrypted zip object.

NRSFTP Encryption

Validate the sender's digital certificate and
receiver's digital certificate against the

CRL generated from the CA

Figure 4.1	 Steps to encrypt a document.

12

4.3 Decryption

NRSFTP will decrypt a file using the following steps:

1. First identify the sender's digital certificate and receiver's digital certificate
to see if it's configured within its system or software.

2. Validate the specific pair of sender and receiver's digital certificates against
the certificate revocation list (CRL) generated by the certificate authority.

3. The receiver then uses its private key to decrypt and obtain the session key.

4. Then use the session key to decrypt and obtain the compressed file.

5. Run a hash algorithm on the compressed file to obtain the message digest.

6. Decrypt the sender's signed message digest object by using the sender's
public key.

7. Compare the sender's message digest with the message digest that was
generated from the compressed file.

8. If the message digests matches, then uncompressed the data to get the files.

NRSFTP Decryption

13

The receiver program first iterate through
the list of header objects to see if its

configured within its system.

Then the program validates the sender's digital
certificate and receiver's digital certificate

against the CARL generated by the CA

Figure 4.2 	 Steps to decrypt a document.

CHAPTER 5

NRSFTP INFRASTRUCTURE

5.1 Digital Certificate

NRSFTP will use digital certificates using the X.509 standards since it is the industry

standard and most commonly used. X.509 digital certificate is also a part of OATH's

approach to standardize the encryption industry [4].

Digital certificate is the core building block for NRSFTP. The public key

technology associated with digital certificates is very powerful and useful in the

security world. Below are the different functions that NRSFTP utilizes digital

certificates for.

• When encrypting a file with NRSFTP, the digital certificate's public key
from the receiver is used to securely exchange the session key. The public
key is not used to encrypt the data. The public key is actually used to
encrypt the session key. The session key is actually the one that encrypts the
data.

• When encrypting a file with NRSFTP, digital certificate's public key from
the sender is used to confirm for non-repudiation.

• Both the digital certificate for the sender and the receiver are within the
NRSFTP encrypted file (encrypted header object portion). This is done so
the receiver's system can recognize the proper configuration to decrypt and
process the file.

• By allowing the receiver's digital certificates within the header object, an
intermediate party who represents multiple senders and receivers to transmit
documents can identify the proper receiver of the file.

• The X.509 digital certificate can validated with a certificate authority to
certify the validity of the digital certificate.

• Since the digital certificate is advertised publicly, the digital certificate does
not contain the private key. The private key must be kept secret at all times

14

15

to ensure the non-repudiation integrity. Please refer to the possible attacks
chapter for additional information.

5.2 Session Key

The public and private keys could be used to encrypt data. However the algorithm

requires significantly more computational operations than a session key (also called a

symmetric key).

With the above deficiency on public and private key cryptography in mind, a

symmetric key can be used along with the public key and private key infrastructure.

The symmetric key can be encrypted by the sender with the receiver's public key.

Then the encrypted symmetric key is sent back to the receiver with the encrypted

data, which the receiver uses its private key to decrypt and obtain the symmetric key.

Thus the symmetric key can decrypt the actual data.

The symmetric key in NRSFTP is a one-time-only key. It is created for each

new set of data to be encrypted.

5.3 Compression

Another nice function that NRSFTP performs is to compress the data with ZIP before

encrypting. This additional function reduces the data set by about 50%. Therefore,

although encrypting the file will increase the file size, the file being sent out by

NRSFTP most likely to be smaller than the original file.

Also, the most useful purpose for compressing the data is to strengthen the

cryptographic security. Most cryptanalysis techniques search for patterns found in

16

the data to crack the key. Since compressing the data decrease the patterns in the data

to be encrypted, therefore, it will be harder for cryptanalysis to crack the key.

5.4 Message Digest

A message digest is used as a building block to implement non-repudiation. NRSFTP

uses a hash algorithm to generate the message digest, and the message digest is

encrypted with the sender's private key. Since no one else has the sender's private

key, the encrypted file is a signature from the sender.

As long as a secure hash function is used, there is no way to take someone's

signature from one document and attach it to another, or to alter a signed message in

any way. The slightest change to a signed document will cause the digital signature

verification process to fail.

17

Figure 4.3 How message digest works from [9].

5.5 Routing Number

The purpose of the routing number is an optional identifier that the sender and

receiver can agree to utilize this field. By using the routing number, the receiver can

easily identify the type of document is within the NRSFTP file without going through

the encryption process. The routing number can also allow automated post

processing on the decrypted files for the receiver.

18

5.6 Control Number

The control number can be optionally utilized for many reasons. One, the sender and

the receiver can use this number as the common reference to identify a specific

NRSFTP file. Two, document acknowledgement can be sent from the receiver back

to the sender stating a specific control numbered NRSFTP file was received. Three,

the control number can be used for the receiver to check for duplicates and not

process the same NRSFTP document twice. Four, the receiver can check the

sequence of the control numbers to ensure documents are processed consecutively

without documents missing due to email lost and etc.

CHAPTER 6

POSSIBLE ATTACKS

6.1 Securing the Private Key

The security of NRSFTP relies heavily upon the security of the private key. If the

private key is obtained by the wrong person, the potential for exploitation is high.

And with "non-repudiation", it is very difficult to deny any messages that may have

been created fraudulently. This is a key limitation of public key cryptography from

NRSFTP technology over handwritten signature. Unlike the human hand, which can

not be compromised, the private key can be stolen even without the owner being

aware of it being compromised.

6.2 Digital Certificate Authentication

The key issue that could potentially limit the practical usefulness of digital certificate

is that the information to create the digital certificate may have been falsely inputted.

This is the classic false identification attack. For example, one may register a digital

certificate with a certificate authority and circulate the corresponding public key as

belonging to someone else. If another person relies upon such a false digital

certificate's public key, communications may actually be happening with an

electronic impersonator and not the real person. This can seriously jeopardize

people's trust on digital certificates. Therefore, the certificate authority has to ensure

the user's identity is valid.

19

20

6.3 False Document Flooding

A hacker can snoop on the traffic to and from the sender and receiver. Since the

header object contains information in plaintext format, the hacker can obtain both the

sender and receiver's digital certificate information. Then the hacker can possibly

use the same header object and encrypted digital digest object from the original

NRSFTP file. Also, the hacker can generate false encrypted session key object and

the encrypted compressed data object. With the four objects, the hacker can then

generate a NRSFTP file that appears to be valid. The hacker can then send the false

file to the receiver for processing. The false file will be processed by the receiver

executing every step until the very last step (checking for differences in the message

digests) and the decryption process will fail. But the steps taken to determine that this

file is an invalid file are very costly. A lot of processing time is wasted on decrypting

for the session key, compressed data, message digest, validating the sender's digital

certificate, and uncompressing the data. If the hacker sends multiples like hundreds

or even thousands of these documents to the recipient, then the recipient's system will

be flooded and appears to be down.

CHAPTER 7

NRSFTP CLIENT SOFTWARE

7.1 Software Description and Structure

The NRSFTP Client consists of multiple programs with different functionalities. The

many different programs are building blocks for the entire program and processing.

These building blocks fall under different categories like apples for user friendly

AUI screens (Araphical User Interface), actual programs to perform specific

functionalities, and programming objects that other programs can easily work with

and save implementation time.

The NRSFTP client follows through a series of programs to achieve a user

friendly encryption or decryption environment. To start, The NRSFTP client starts

with the NrsClient program initiating the NrsClient AUI apple through the

NrsClientFrame program. The NrsClientFrame program allows the NrsClient AUI

applet to display as a normal application within the Windows environment. The

NrsClient is the main console that allows the users to initiate other specific NRSFTP

encryption functionalities.

Before encrypting or decrypting a file, three different main components need

to be identified, the DTP's (Trading Partner) digital certificate, your digital certificate,

and your PKCS 12 file that holds the private key to your digital certificate. These

components plus other useful information is saved and constructs a BP configuration

file for simplified encryption or decryption process. The NrsClientTpEdit is the AUI

applet that organizes and works with these BP configurations files within the

21

22

$NRS_ROOT/Tp directory. The NrsClientTpEdit AUI applets is initiated from the

Client main console. The NrsClientTpEdit displays the available DTP's for the user

to use. From the NrsClientTpEdit applet, the user can have the option to create a new

ΤΠ configuration or edit an existing BP configuration. Both options are handled by

the NrsClientTpEdit AUI applets.

Since the ΤP configuration files are created, the decryption or encryption

process is simplified. The NrsClientCrypt is the AUI applet that allows the user to

encrypt or decrypt a file. The actual file encryption or decryption transformation

processing is done by the NrsCrypt program, which is initiated by the NrsClientCrypt.

NrsFile and NrsTp are very important programming objects to the above

overall structure. The NrsFile has multiple fields and parts just like the designed

NRSFTP encrypted file. Many of the programs and apples can referred to the

NrsFile object and easily utilize the different pieces of information. It'll be a

nightmare for the programs and applets to tract these different pieces of information

related to a NRSFTP encrypted file. The same concept is also true for the NrsTp

object. Also, both of these objects have functionalities related to the object it self.

This makes the programs and apples that utilize these objects easy to initiate these

functionalities.

The NrsLog is a universal functionality for all of the NRSFTP programs and

apples to generate error messages into the Temp directory. The NrsLog is the

centralized location to modify the look and feel of how the log files will look like.

The below sections provides more details for each of the components that

makes up the NRSFTP Client program.

23

7.2 NrsClient

The NrsClient program is just a few lines of simple codes to initiate the

NrsClientMain AUI applet through the NrsClientFrame program. This is how the

NrsClientMain AUI gets started.

7.3 NrsClientDecrypt

NrsClientDecrypt is a AUI apple that allows the users to have an easy to use

interface to decrypt a file. The different useable fields within this AUI are very self

explanatory. Since the decryption process can only decrypt a single input file at a

time and it finds the ΤP configuration automatically, only the input and output file to

be used is needed. After executing with all the above parameters entered, and if the

encryption or decryption process did not fail, then various information about the NRS

file is displayed within the pop-up panel.

7.4 NrsClientEncrypt

NrsClientEncrypt is a AUI apple that allows the users to have an easy to use

interface to encrypt a file. The different useable fields within this AUI are very self

explanatory. The user first chooses to encrypt or to decrypt a file. Then choose the

ΤΡ configuration file that holds the necessary information to perform the data

transformation. Then select the input and output file to be used. After executing with

all the above parameters entered, and if the encryption process did not fail, then

various information about the NRS file is displayed within the pop-up panel.

24

7.5 NrsClientFrame

Since the NrsClientMain AUI is an applets, it can only be displayed within a web

browser. One issue that was encountered with an applets is that tighter security is

placed on the applets program and file access to the local pc is denied.

This NrsClientFrame program allows an applets to be executed as an

application. An application can have normal access to files and looks like normal

windows programming. This omits the need to change the Java security policy on the

user's local pc. Changing the Java security policy for apples to have file access

rights can be a dangerous thing where other illicit program can take advantage of.

7.6 NrsClientMain

The NrsClientMain is the main AUI (Araphical User Interface) for the NRSFTP

client. It is just a main panel to lunch other applets like NrsClientTpEdit and

NrsClientCrypt. The NrsClient extends from the Java applets class. Therefore the

NrsClient is designed to start from a web browser. This functionality is designed so

implementation using a web browser remotely is possible. A very important function

is the automated update of CRL (certificate revocation list) files over the interne.

The CRL file is automatically updated when the NrsClient applets is started. The CRL

file validates the digital certificates to ensure the digital certificate is not revoked.

Therefore, the CRL file is updated here since users will have to enter into this screen

before using the other AUI screen functionalities.

25

7.7 NrsClientSerialCode

This is the serial code input applets panel that allows the users to input the serial code.

7.8 NrsClientTpEdit

The NrsClientTpEdit program is a AUI applets that allows the users to have an easy to

use interface to create a new ΤP configuration or edit an existing ΤP configuration

file. Creating a new ΤΠ and editing a ΤP were two separate AUI applets. But since

both AUI apples functions similarly, this NrsClientTpEdit was modified to handle

both functionalities. One can create new or edit the ΤΡ configuration file by using the

DTP's digital certificate file, your own digital certificate file, and your PKCS 12 private

key file. This method is typically used for a sender creating a ΤΠ to encrypt and send

out a file. The different useable field within this AUI is fairly self explanatory. The

user first chooses to create a BP by using the actual digital certificate files. Then the

user chooses the ΤP code to be created. The ΡΚCSl2 file that contains the private

key also has to be selected. After executing with all the above parameters entered,

and if the digital certificate are not invalid or revoked, then various information about

the ΤP configuration is displayed within the

7.9 NrsCrypt

NrsCrypt is the most important program for NRSFTP. It contains the core

functionalities for the actual file encryption and decryption process. Before

encryption or decryption, both the sender and the receiver's digital certificates are

validated to make sure they're valid. Doesn't make sense to try and process data if

26

the digital certificates aren't valid. For encryption, this program first generates the

message digest for the receiver to compare with. Then this program encrypts the

message digest with the sender's private key to generate a digital signature stating

that the message was from the intended sender. The actual data is then compressed

(to reduce file size and make the encryption stronger) and encrypted with a random

symmetric key. The symmetric key is then encrypted with the recipient's public key

so only the intended recipient can decrypt and have access to the data. For

decryption, the recipient first uses its private key to decrypt and obtain the symmetric

key. Then the symmetric key is used to decrypt and obtain the compressed data. The

compressed data is then uncompressed and the original data is obtained. Before the

original data is saved into the destination file, the original message digest is decrypted

using the sender's public key. Then a new message digest is created from the original

data. The two message digests are compared to see if they're the same. Only if they

are the same then the file can be created. This program is also designed for users to

execute and encrypt or decrypt within a command line environment. This can be very

helpful since large corporation will need to encrypt and decrypt at the command line

for automated processing.

7.10 NrsFile

NrsFile functions like an object which contains the fields for the NRSFTP protocol.

This is the core object that programs will use when referring to the NRSFTP

encrypted file. The layout of the fields for this object is exactly the same as the

documentation explaining about the NRSFTP protocol.

27

The NrsFile object contains multiple NrsFileHeader objects and the

symmetric key encrypted data. More detailed explanations about the headers are

within the NrsFileHeader section.

7.11 NrsFileHeader

The NrsFileHeader is designed to accommodate the capability to encrypt a single

NRSFTP file for multiple receivers. Each header object contains the necessary

information for the individual trading partner NRSFTP encryption!decryption. The

actual payload data is still within the NrsFile object. Therefore, the multiple headers

will not contribute to a large file size. Since the sender may want to choose different

digital certificates to the various receivers, this is why both the sender's and the

receiver's information is contained within the header.

7.12 NrsLog

NrsLog is designed to be a universal log generation utility for other NRSFTP

programs. The main reason for creating NrsLog is due to the fact that when executing

Java programs through a jar or executable, there are no command windows to capture

the error messages. Therefore, Ι created this universal program to generate all error

messages into log files within the temp directory. Having this universal log

mechanism will save lots of development time since all error messages and log

functionalities are centralized within one function. Each of the programs creates an

NrsLog object at the beginning. When error messages generate, it is written into the

Temp!programName.log file.

28

7.13 NrsSerialCode

This object is to implement a serial code. The serial code is needed to encrypt a file,

but a serial code is not needed when decrypting a file. With this in place, the owner

of the NRSFTP software can provide the end users with free trial versions of this

software for decryption purposes. This will help in advertising the software to others.

7.14 NrsTp

NrsTp is a very important object that the rest of the user interfaces and functionalities

depend on. This is the core object that programs will be used to properly identify the

certificates, the type of encryption encoding, and other properties when encrypting or

decrypting a file. Think of the NrsTp object as the object for effortless encryption and

decryption. Other than just the configuration properties for file encryption during

encryption or decryption, the NrsTp object also handles the loading and saving the

configuration properties into a file format. The most important function for NrsTp is

the digital certificate validation function. The digital certificate validation function

authenticates the digital certificate with the downloaded CRL (Certificate Revocation

List) file to see if the digital certificate was revoked. This function is currently used

at three different places. One, this function is used before the NrsTp is created. If

either the sender's digital certificate or the receiver's digital certificates are revoked,

it's doesn't make sense to generate a BP with revoked certificates. Two and three,

this function is used before both encrypting and decrypting a NRSFTP file.

29

CHAPTER 8

TESTING AND VALIDATION

8.1 Secure

The NRSFTP encrypted file was tested to ensure the contents of the file was secure

and not viewable by anyone else. Various methods were performed to check if the

file was readable by other programs like text editors, Microsoft Office programs,

document image readers, zip/compression software, and etc. For sample screen shots

of the above tests performed, please refer to Figures 8.1 to 8.5. Since the file is

compressed and encrypted, there were no visible patterns or readable characters

within the encrypted file. Please note that there are readable characters within the

NRSFTP file, but the characters are related to the NRSFTP file header information

which includes the digital certificate information. For further validation, the content

of the encrypted NRSFTP file was displayed in front of other users many times

previously and no one was able to point out any patterns or possible flaws in the

encrypted file.

Figure 8.1 	 Contents of a NRSFTP encrypted file using a text editor.

30

Figure 8.2 Microsoft Excel program is not able to open an encrypted NRSFTP
file.

Figure 8.3 Microsoft Word program is not able to open an encrypted NRSFTP
file.

32

Figure 8.4	 Windows Picture and Fax Viewer program is not able to open an
encrypted NRSFTP file.

Figure 8.5	 Windows zip compression program is not able to open an encrypted
NRSFTP file.

33

8.2 Non-Repudiation

The NRSFTP encrypted file was also tested to ensure the non-repudiation

functionality was working properly. Various tests were performed to possibly

compromise the NRSFTP encrypted file.

Some of the tests were performed in an attempt to decrypt a file using BP

setups that do not contain the proper digital certificate information for either the

sender or the receiver. Since the decryption process match and validates both the

sender and the receiver digital certificates against the BP setup and the CRL files, it's

impossible for an attacker to imitate the sender or receiver digital certificates and

decrypt the content of the file. The decryption process with an invalid ΤP setup was

unsuccessful in decrypting a different receiver's NRSFTP file. Please refer to Figure

8.6 for sample screen shot of the test performed.

Figure 8.6 Example of the program not allowing the user to decrypt an encrypted
NRSFTP file when a ΤP setup does not match the sender's and the receiver's digital
certificates.

Another test that was performed is revoking the sender's digital certificate

after generating and sending a NRSFTP file. When the receiver tries to decrypt the

NRSFTP file, and if the ΤΡ set up for the receiver is set to check against the CRL file,

the receiver will not be able to decrypt the file. This test proves that if the sender's

private key is jeopardized due to security breach, the sender can still revoke the

sender's digital certificate to ensure the receiver will not be able to decrypt the

NRSFTP file for non-repudiation purposes. Please refer to Figures 8.7 and 8.8 for

sample screen shots of the tests performed.

Figure 8.7	 Example of the program not allowing the user to encrypt a file since
the digital certificate (sender or receiver) was revoked.

Figure 8.8 	 Example of the program not allowing the user to decrypt a file since
the digital certificate (sender or receiver) was revoked.

Lastly, tests were performed with incorrect ΤΠ setups for either the sender or

the receiver. Some of the incorrect fields include the CRL files information, digital

certificates, and private key files. The NRSFTP program checks and validates all

these components for both the encryption and decryption process. For example, if the

private key does not match the digital certificate, then the NRSFTΠ program does not

perform the encryption/decryption process and generates an error message. Also, if

any of the CRL files does not belong to the proper intermediate or root digital

certificates, the NRSFTP program will not allow the user to eneryt/decrypt. Lastly,

if the intermediate or root digital certificate does not match the chain of authority for

37

the sender/receiver digital certificate, the NRSTP program will not allow the

encrypt/decrypt process. Please refer to Figure 8.9 for sample screen shot of the test

performed.

Figure 8.9 Example of the program not allowing the user to setup a ΤP when the
CARL file does not match the digital certificate (sender or receiver).

8.3 Non-Real Time File Transfer

The last important aspect of NRSTP is the capability of non-real time file transfer.

This functionality was also tested to ensure the non-real time transfer will not have

any affect or corrupt the NRSTP encrypted file in any way. Some of the non-real

time transfer test methods were DTP, email, and US file transfer. In all the above

transfer methods, the NRSTP file was decrypted without any issues. In addition, the

38

NRSFTP file was left in transit for over a period of time and the NRSFTP file was

still able to decrypt with validating against the CRL. Please refer to Figure 8.10 for

sample screen shot of the test performed.

Figure 8.10 The NRSFTP file can be transported in non-real time and the NRSFTP
file can still be decrypted after a period of time being left in transit. The picture
shown above is from another user using email to transfer the NRSFTP encrypted file
and the decryption process took place at another location.

8.4 User Functionality Testing

To better accommodate the usability for testing purposes, many additional

functionalities are enhanced to the NRSFTP program. To ensure the functionalities

are working properly, the below tests and validations were performed.

• No other third party binaries other than just Java

• Using Java SDK 5.0

• Incorporate the ΤΠ screen into the main screen

• Automated CRL file update

• Serial Code Validation for only Encryption

•ΤΠ Creation with Check CARL

•ΤΠ Creation without Check CRL

• Refresh the ΤΠΔ screen

• Edit ΤP

•ΤΠ Creation with expired ΤP certificate

•ΤP Creation with expired Your certificate

•ΤP Creation with revoked ΤΡ certificate

•ΤΡ Creation with revoked Your certificate

•ΤΡ Creation with non-matching Root Cert and CRL

•ΤΠ Creation with non-matching Intermediate Bert and CRL

• Encryption with Check CRL ΤΠ

• Encryption with Non-Check CRL ΤΠ

• Encryption for multiple ΤP

• Encryption specifying duplicate ΤP

• Encryption for multiple input files

• Encryption with bad ΤΠ set up (expired ΤP certificate)

• Encryption with bad ΤP set up (expired Your certificate)

• Encryption with bad ΤΡ set up (revoked ΤΡ certificate)

• Encryption with bad ΤP set up (revoked Your certificate)

39

40

• Encryption with bad ΤP set up (non-matching Root Cert and CRL)

• Encryption with bad ΤΡ set up (non-matching Intermediate Bert and CRL)

• Program memorizing last execution parameters

• Display Certificate Information After Encryption

• Decryption with Check CRL ΤΠ

• Decryption with Non-Check CRL ΤP

• Decryption from a multiple TP/Header FRS file

• Decryption for multiple input files

• Decryption with bad ΤΠ set up (expired ΤΠ certificate)

• Decryption with bad ΤΡ set up (expired Your certificate)

• Decryption with bad ΤΡ set up (revoked ΤΠ certificate)

• Decryption with bad ΤΠ set up (revoked Your certificate)

• Decryption with bad ΤΠ set up (non-matching Root Cert and CRL)

• Decryption with bad ΤP set up (non-matching Intermediate Cert and CRL)

• Display Certificate Information After Decryption

• Command Line Encryption with Check CRL ΤΠ

• Command Line Encryption with Non-Check CRL ΤΡ

• Command Line Encryption with bad ΤΠ set up (expired ΤΠ certificate)

• Command Line Encryption with bad ΤΠ set up (expired Your certificate)

• Command Line Encryption with bad ΤΠ set up (revoked ΤΡ certificate)

• Command Line Encryption with bad ΤΠ set up (revoked Your certificate)

• Command Line Encryption with bad ΤΠ set up (non-matching Root Cert and
CRL)

• Command Line Encryption with bad ΤΠ set up (non-matching Intermediate
Cert and CRL)

41

• Command Line Decryption with Check CRL ΤΠ

• Command Line Decryption with Non-Check CRL ΤP

• Command Line Decryption with bad ΤΠ set up (expired ΤΡ certificate)

• Command Line Decryption with bad ΤΠ set up (expired Your certificate)

• Command Line Decryption with bad ΤΠΔ set up (revoked ΤΠ certificate)

• Command Line Decryption with bad ΤP set up (revoked Your certificate)

• Command Line Decryption with bad ΤΠ set up (non-matching Root Cert and
CARL)

• Command Line Decryption with bad ΤΡ set up (non-matching Intermediate
Cert and CRL)

• When closing window, close only current window

• Automated log information when error occur

CHAPTER 9

FUTURE IMPROVEMENTS

9.1 NRSDTP Server

Although NRSDTP client is designed for non-real-time processing, the protocol itself

can also be used for real time processing. One of the great advantages for this

protocol is that a NRSDTP server can be implemented without the need for a user ID

and password authentication taken place. Due to the non-repudiation and secure

nature of the NRSDTΠ file, the server can accept an NRSDTΠ document without

questioning its authenticity.

The NRSDTP server can also be implemented as a Value Added Network

(VAN) which can route the NRSDTΠ files securely and without uncertainty to the

intended receiver. The sender and receiver digital certificates embedded within the

NRSDTΠ file are the identifiers for the routing sequence necessary for the server.

9.2 File Transfer Methods for NRSFTP Client

When the sender has a need to encrypt a file intended only for the receiver to see,

there must be a method developed to exchange the file between the sender and the

receiver. Therefore, as part of NRSDTP, different file transfer methods are addressed.

Since one of NRSFTP main focus is to allow non-real-time transfer of documents,

NRSDTP client should be able to handle any form of transmission method. The file

transfer methods addressed by NRSFTΠ client are.

42

• Save into directory (up to the user to transmit the file)

• Email

•DTP

•AS

• NRSFTP

43

CHAPTER 10

CONCLUSION

In summary, NRSDTP is designed to cover the following core functionalities.

• Secure transfer of document to the intended recipient.

• Πrovide non-repudiation to the document.

• Be able to transfer the file non-real time.

NRSDTP is designed to accommodate a wide area of security and

transmission needs. Documents can be securely exchanged with non-repudiation

without having to have the document exchanged through a real-time environment.

• The NRSFTP client software will have to provide the following
functionalities to ensure wide overall acceptance.

• Encrypt and decrypt using different trading partnership setups.

• Automated import and export of digital certificates to notify other trading
partners about your digital certificate.

• Command line execution to accommodate the need of automated
environments for commerce.

• Compatible with other current open protocols like FTP, ΡAΠ, and AS.

44

REFERENCES

1. Charlie Kaufman, Radial Perlman and Mike Specifier, Network Security, Prentice
Hall PAR, Upper Saddle River, NJ, 2002

2. Kent Carley and Lindsay Windsor, "Securing IT Resources with Digital
Certificates and DAP" in Proceedings of the 1997 CAUSE annual
Conference August 2004,
http://www.educause.edu/ir/library/html/cnc9707/cnc9707.htm1.

3. Charlene O'Hanlon, CORN, "VeriSign, Microsoft to Deliver Authentication via
Windows Server 2003" September 2004, http://www.crn.com .

4. VeriSign, "Oath — initiative for open authentication" September 2004,
http://www.openauthentication.org .

5. PAP Corporation, "An Introduction to Cryptography" September 2004,
http://www.pgp.com .

6. Dave H. "DTP File Transfer Protocol" September 2004,
http://www.cs.rpi.edu/courses/fa1196/netprog/lectures/html/ftp/.

7. N Software Inc. "FOPS Component" September 2004,
http://www.nsοftware.cοm/prοducts/controls/?ct1=FTΡS&prod=ipsssl.

8. John Radio, Chief Architect for Global exchanged Services (GGXS), "Global
exchanged Services: AS White Paper" September 2004,
http://www.gxs.cοm/gxs/as2wprequest.

45

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 2006

	Non-repudiation secure file transfer protocol (NRSFTP)
	Jerry Chen
	Recommended Citation

	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedications
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: NRSFTP Vision
	Chapter 3: Examples uses for NRSFTP
	Chapter 4: NRSFTP Protocol
	Chapter 5: NRSFTP Infrastructure
	Chapter 6: Possible Attacks
	Chapter 7: NRSFTP Client Software
	Chapter 8: Testing and Validation
	Chapter 9: Future Improvments
	Chapter 10: Conclusion
	References

	List of Figures

