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ABSTRACT

IN VITRO FEASIBILITY TESTING OF FLOATING LIGHT-ACTIVATED
MICROELECTRICAL STIMULATORS

by
Ammar Riad Abdo

One of the major challenges of neural stimulation is the mechanical stress and resulting

trauma induced on the implanted electrodes by the constant movement of the

interconnects. A potential way of eliminating interconnects is to use floating micro-

stimulators that can be activated through optical means. As a method of energy transfer to

the micro-stimulator, we propose to use a laser beam at near infrared (NIR) wavelengths.

There are two main objectives in this project to test the feasibility of the main

approach; investigate the charge injection capacity of titanium nitride (TiN) and iridium

oxide (IrOx) as potential contact materials, and measure the transmitted light power

through the neural tissue for various implantation depths. The charge injection capacity

of TiN electrodes for an extended range of cathodic voltages was also investigated.

Because the microstimulator will be implanted into the neural tissue, the laser

beam must penetrate a few millimeters before reaching the device. The transmitted light

power was measured for various types of neural tissue. The transmitted light power

through rat brain gray matter was much higher than that of the white matter and the

sciatic nerve. Penetration depth and reflectance were calculated according to Lambert-

Beer' s law from measurements of transmission for various tissue thicknesses.

The results suggest that FLAMES approach is feasible for implantation depths of

a few millimeters in the peripheral and central nervous system. Both IrOx and TiN allow

sufficient charge injection for this application. TiN is preferred for future experimentation



since TiN does not require a bias voltage to achieve useful charge injection rates, and

thus is a good choice as an electrode material in this application.



IN VITRO FEASIBILITY TESTING OF FLOATING LIGHT-ACTIVATED
MICROELECTRICAL STIMULATORS

by
Ammar Riad Abdo

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2007



APPROVAL PAGE

IN VITRO FEASIBILITY TESTING OF FLOATING LIGHT-ACTIVATED
MICROELECTRICAL STIMULATORS

Ammar Riad Abdo

Dr, Mesut Sahin, Thesis Advisor 	 Date
Assistant Professor of Biomedical Engineering, NJIT

Dr. Tara Alvarez, Committee Member	 Date
Associate Professor of Biomedical Engineering, NJIT

Dr. Bryan Pfister, Committee Member	 Date
Assistant Professor of Biomedical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Ammar Riad Abdo

Degree:	 Master of Science

Date:	 May 2007

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2007

• Bachelor of Science in Biomedical Engineering,
The Hashemite University, Zarqa, Jordan, 2004

Major:	 Biomedical Engineering



In the name of Allah, Most Gracious, Most Merciful

"Are those who know equal to who know not"
(Quran 39:9)

To my parents, to my sister Eiman and to my brother Zaid

V



ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Mesut Sahin for his supervision,

advice, and guidance from the very early stage of this research, and for giving me the

chance to work in the Neural Interface Laboratory. I would also like to thank Dr. Tara

Alvarez and Dr. Bryan Pfister for being my committee members. Many of my fellow

graduate students in the Neural Interface Laboratory are deserving of recognition for their

support. This study was supported by a grant from National Institute of Health (1-R21-

NS 050757-01A1).

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

2 CHARGE INJECTION CAPACITY OF TITANIUM NITRIDE
AND IRIDIUM OXIDE 	  5

2.1 Introduction 	 5

2.1.1 Weiland , Anderson, and Humayun Group 	 9

2.1.2 Zhou and Greenberg Group 	 13

2.1.3 Cogan, Plante, and Ehrlich Group 	 15

2.2 Charge Injection Capacity Measurements 	  22

	

2.2.1 Alternative Waveforms for TiN   23

2.2.1.1 Methods 	 23

2.2.1.2 Results and Discussion 	  25

	

2.2.2 Alternative Waveforms for IrOx   27

2.2.2.1 Methods 	 27

2.2.2.2 Results and Discussion 	  27

2.2.3 Charge Injection Capacity of TiN Electrodes for an Extended Voltage
Range 	 29

2.2.3.1 Methods 	  29

2.2.3.2 Results and Discussion 	  30

2.2.4 Conclusion   	 33

3 OPTICAL PROPERTIES OF RAT NEURAL TISSUES 	  34

3.1 Introduction 	 34

vii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

	3.1.1 Yaroslaysky, Schulze, and Schober Group   37

3.1.2 Eggert and Blazek Group 	  41

	

3.1.3 Svaasand and Ellingsen Group    45

3.2 Laser Calibration 	 47

3.3 NIR Transmittance and Penetration Depth in the Rat Peripheral Nerve......... 	 56

3.3.1 Methods 	  56

3.3.2 Results and discussion 	 58

3.4 NIR Transmittance and Penetration Depth in the Rat Brain Cortex 	 61

3.4.1 Methods 	  61

3.4.2 Results and discussion 	 62

3.5 Conclusion 	 65

APPENDIX A THE MATLAB CODE USED FOR CURVE FITTING 	  66

APPENDIX B THE MATLAB CODE USED FOR PENETRATION DEPTH
AND REFLECTANCE CALCULATIONS 	  67

REFERENCES 	  68

viii



LIST OF TABLES

Table Page

2.1 Charge Injection Requirements for Stimulation 	 7

3.1 Optical Properties of Native Human Brain Tissues 	 40

3.2 Optical Properties of Coagulated Human Brain Tissues 	 40

3.3 Optical Penetration Depth of Human Brain Tissue 47

ix



LIST OF FIGURES

Figure	 Page

1.1	 Strength-duration curve; a graph relating the intensity of an electrical
stimulus to its duration for threshold activation. 	 3

2.1	 Impedance modulus. Measurement was taken with a 5-mV sine wave,
dc potential 300 mV versus saturate calomel electrode. Averages of
measurements from three electrodes of each type are shown. Error bars
represent one standard deviation [5]  10

2.2	 Cyclic voltammagrams of iridium oxide and titanium nitride electrodes
[5 ] 	 11

2.3	 Voltage measured between current source and current sink in response
to current pulse. In all cases, current sink is a relatively large sheet of
platinum. (a) Electrode potential for iridium oxide versus titanium
nitride in response to a 100µA, 1001.1s current pulse. Electrode potential
of (b) iridium oxide and (c) titanium nitride in response to 50µA pulses
of varying duration [5]  12

2.4	 The 5 electrode micro array coated with thin-film TiN from University
of Michigan [4] 	 13

2.5	 Cyclic voltammograms of a TIN electrode at a potential scan rate of
100m V/s [4] 	 14

2.6	 Bode plot of a TiN electrode measured at open circuit potential with an
ac 10mV bias [4] 	 14

2.7	 Examples of charge-balanced, biphasic current pulses (50 Hz, 0.4 ms
leading phase) with different asymmetries in the cathodal and anodal
pulse widths. The asymmetric cathodal-first 1:8 and anodal first 3:1
waveforms resulted in the highest charge injection capacities at positive
and negative potential bias levels of 0.6 and 0.1 V, respectively [8] 	 16

2.8	 Cyclic voltammogram of an AIROF microelectrode [8] 	 17

2.9	 Charge-injection limits of AIROF (CSC = 29 mC/cm2, tip area 2024
p.m2

) subjected to biphasic, cathodal-first, current pulses as a function of
bias potential and waveform asymmetry. The cathodal pulse width was
0.4 ms. Closed and open symbols indicate whether the maximum
negative or positive potential limit, respectively, limited the charge
injection capacity [8]  17



Figure	 Page

2.10 Charge-injection limits of AIROF (CSC = 25.1 mC/cm 2 , tip area 2015
pm ) subjected to biphasic, anodal-first, current pulses as a function of
bias potential and waveform asymmetry. The anodal pulse width was
0.4 msec. Closed and open symbols indicate whether the maximum
negative or positive potential limit, respectively, limited the charge
injection capacity [8]  18

2.11 Cyclic voltammograms of SIROF and AIROF taken in PBS at a sweep
rate of 50 mV/s [9] 	 19

2.12 Impedance of SIROF in CBS/PBS as a function of film thickness [9] 	 20

2.13 Potential transient response of an 80 nm thick SIROF in response to
0.75 ms cathodal current pulses [9] 	 21

2.14 Comparison of the charge-injection limits of AIROF and PtIr as a
function of bias and pulse width [10] 	 21

2.15 Custom designed circuit for charge injection capacity measurements 	 24

2.16 Alternative waveforms for TiN. The charge injection capacity is plotted
as a function of pulse width 	 26

2.17 Alternative waveforms for IrOx. The charge injection capacity is plotted
as a function of pulse width 	 28

2.18 The electrode voltage with one of the contacts for a bias potential of -
1.0V 

	
31

2.19 Injected charge as a function of electrode voltage during a cathodic
current pulse with a 0.5ms duration for three different bias voltages; -0.8
(blue), -1.0 (pink), and -1.2V (red). The mean charge for six TiN
contacts and the standard deviations are shown (vertical bars)  32

2.20 Unrecoverable charge as a percentage of the total injected charge for
voltage pulse amplitudes varying from -1V to -3V. The pulse width is
0.5ms and the electrode. surface area is 4000µm2. Standard deviations
are vertical bars (n=6)  33

3.1	 Diagram of Beer absorption of a beam of light as it travels through a
material of a known thickness 	 35

xi



Figure	 Page

3.2 Optical properties of human white brain matter. Average of seven
samples. Squares: absorption coefficient, circles: scattering coefficient,
anisotropy factors and bars: standard errors. (a) Native samples and (b)
coagulated samples [15]  38

3.3	 Optical properties of human grey brain matter. Average of seven
samples. Squares: absorption coefficient, circles: scattering coefficient,
anisotropy factors and bars: standard errors. (a) Native samples and (b)
coagulated samples [15]  39

3.4	 Frontal grey matter (n=13): relative levels of reflection (R), absorption
(K), and scattering (S) plotted against wavelength [20] 	 43

3.5	 Frontal white matter (n=13): relative levels of reflection (R), absorption
(K), and scattering (S) plotted against wavelength [20] 	 43

3.6	 Frontal grey matter, frontal white matter, basal ganglia, midbrain, and
cerebellar hemisphere (one sample of each): relative levels of reflection
(R), absorption (K), and scattering (S) plotted against wavelength [20]  	 44

3.7	 Frontal grey (n=13) and white (n=13) matter: penetration depth (a)
plotted against wavelength [20] 	 44

3.8	 Optical penetration depth for red light in human brain tissue [21] 	 45

3.9	 The Laser Calibration. Percent error in curve fit = 0.79 	 49

3.10 The power measurements 	 49

3.11 The energy measurements 	 49

xii



Figure	 Page

52

53

53

53

54

54

55

55

58

59

63

3.24 Preparation used to measure the penetration depth in the rat sciatic nerve.

xiii



Figure	 Page

3.27 The transmittance of five samples as a function of the rat white brain
matter thickness. The exponential curve is the fit to the mean values

xiv



CHAPTER 1

INTRODUCTION

Electrical stimulation is currently used as a treatment method in a number of disorders of

the central and peripheral nervous system and is being investigated for many new

applications [1]. Many of these applications demand very localized activation of the

neural tissue at multiple sites to produce functional changes in the neural activity. In

order to achieve this high spatial selectivity, microelectrodes with multiple shanks that

are penetrating into the neural tissue have been developed [2]. One of the major

challenges of chronically implanted electrodes with penetrating shanks is the mechanical

stress and the resulting chronic tissue response induced by the movement of the electrode

and the tethering of interconnects. This tethering problem can be solved by replacing the

interconnects with telemetry, both for powering the device and controlling the stimulus

parameters.

An example of such a wireless, floating device in the peripheral nervous system is

the BION® stimulator that is controlled by radio-frequency magnetic waves [3]. Because

the telemetry and power circuitry are incorporated into this stimulator, the smallest

device size is in the order of several millimeters and therefore it is only suitable for

activation of peripheral nerves and muscles. To achieve the level of spatial selectivity

needed especially in the central nervous system applications, the device needs to be in the

submillimeter range and be able to inject sufficient current for neural stimulation.

As potential way of eliminating interconnects- we introduced a floating light

activated micro electrical stimulator (FLAMES) for neural stimulation. As a method of

1
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energy transfer to the micro-stimulator, we used a laser beam at near infrared (NIR)

wavelengths.

This project has two main objectives to test the feasibility of the main approach;

(1) investigate the charge injection capacity of titanium nitride (TiN) and iridium oxide

(IrOx) as a potential contact material of the FLAMES. Platinum (Pt) electrodes have

been used in different kind of medical stimulation applications. However, Pt electrodes

generate insufficient charges for intracortical or intraspinal stimulation. TiN and IrOx

electrodes have been introduced as alternative materials for platinum (Pt). Charge

injection capacity measurements were obtained. Various input stimuli were proposed as

alternative to the rectangular waveform. We investigate the behavior of the charge as a

function of pulse width. Charge injection capacity of TiN electrodes for an extended

voltage range was investigated in this work, and (2) measure the transmitted light power

through the neural tissues. Because the microstimulator is implanted inside the neural

tissue, light must penetrate a few millimeters through the tissue before reaching the

diode. We therefore measured the transmitted light power through the neural tissues to

measure how deep the FLAMES can be implanted into the peripheral and central

nervous system and still be activated. Penetration depth and reflectance were obtained

according to Beer's law from measurements of transmission. Rat sciatic nerve, white

brain matter, and grey brain matter were investigated in this work.

The future work will involve in vivo testing of the FLAMES. The NIR threshold

for activation will be measured for a range of pulse widths and the strength duration

curve (figure 1.1) will be obtained for various thicknesses of the neural tissue. The

voltage field generated by a microstimulator in a volume conductor will be analyzed. The
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two major questions to be addressed are: 1. How small can a floating stimulator be made

without sacrificing the stimulation strength? 2. How deep can it be implanted into the

CNS and still be activated without exceeding the NIR safety exposure limits on the

surface?

Figure 1.1 Strength-duration curve; a graph relating the intensity of an electrical stimulus

its duration for threshold activation.

The thesis includes two main chapters. The first one is the charge injection

capacity measurements of titanium nitride and iridium oxide, and the second one is the

optical properties of rat neural tissues. The first chapter starts with concepts and theories,

and then talks about various groups that contribute in this field. Finally, the chapter

describes our work. We introduced various waveforms as input stimuli for electrical

stimulation applications. We investigated the charge injection capacity of TiN electrodes

for an extended cathodic voltage range as well.

The second chapter begins with theoretical background, and then discussing the

background research in this field. Finally, the chapter discusses our work. We studied the
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optical properties of rat neural tissues. We measured the transmitted light power through

various neural tissues. We calculated the penetration depth and the reflectance according

to Beer's law.



CHAPTER 2

CHARGE INJECTION CAPACITY OF TITANIUM NITRIDE

AND IRIDIUM OXIDE

2.1 Introduction

Electrical stimulation of nerve cells has been widely used in different medical

applications; including the clinical treatment for various medical conditions. The largest

clinical success has been achieved in the cochlear implant. The implantable devices have

common design constrains including low power consumption, small size, and the ability

to stimulate effectively and safely. One of the vital areas where a device can be optimized

to satisfy these requirements is the stimulating electrode material [5].

In order to increase selectivity and accommodating more electrodes on the arrays

the size of electrodes should be small. This is very important to achieve high resolutions

for neural recording and stimulation. Several factors determine the size of the electrodes

and the amount of stimulus current that must be produced; the efficiency with which the

electrical charge can be transferred from metal to tissue, the electrode impedance, and the

stimulating electrode material [4], [5].

A key issue in this kind of applications is the safety requirement, in which an

electrode must be able to supply high-density electrical charge without generating

irreversible electrochemical reactions. There are two mechanisms for the flow of ionic

charges in the biological tissue; the capacitive mechanism and the faradic mechanism.

The capacitive mechanism of charge injection involves alternate attraction and repulsion

of ions in the tissue in response to the charging and discharging of the electrode double

layer. In this mechanism, there is no charge transfer across the electrode-electrolyte

5
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interface, and thus no electrochemical reactions can occur in the interface [4].

The Faradic mechanism involves electron transfer across the electrode-tissue

interface and can be divided into reversible and irreversible chemical reactions. The

reversible chemical reactions involve species that remain bound to the electrode surface,

and therefore these reactions produce no chemical species in the solution that could affect

the biological tissues. However, the irreversible reactions produce species that escape

from the electrode surface into the surrounding fluid, and therefore these reactions affect

the biological tissues by producing metal corrosion or dissolution, gas evolution, or

introduction of toxic products. The reversibility of the electrochemical reaction mainly

depends on the electrodes material.

There is an operational limit for an electrode, in which there is a limit to the

charge that can be injected in either anodic or cathodic direction with reversible surface

processes. This is known as "reversible charge injection limit" and expressed as a charge

density referred to the real or geometric surface area of the electrode. The current must be

reversed before reaching this charge limit to insure chemical reversibility.

Then reversible charge injection limit is quantified by determining the potential

limits for water electrolysis which is called the "water window". A water window is the

electrical/voltage potential range defined by hydrogen evolution at cathode and oxygen

evolution or surface oxidation at anode. This reaction is the most common

electrochemical reactions during pulse stimulation, which causes limitation to the charge

injection capacity of an electrode.

Theoretically, we can avoid water electrolysis with evolution of hydrogen or

oxygen as long as the electrode potential remains between 0.0V versus RHE (reversible
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hydrogen electrode) and 1.23V versus RHE. However, it is better to determine the water

window limits experimentally because practically there may be considerable over-

potential for these reactions. Cyclic voltammetry is a useful technique for this purpose.

"Only a limited number of electrode materials are suitable for chronic stimulation

at charge levels greater than 0.15mC/ cm 2" [7]. Threshold charge required for stimulation

is variance depends on the medical stimulation application. Table 2.1 shows the Charge

injection requirements for electrodes in the CNS based primarily on threshold

measurements. Capacitor electrodes which inject charge entirely by capacitive charging

and discharging of the electrical double-layer are attractive because they avoid any

irreversible reactions that might degrade either the electrode or the surrounding tissue.

However, the available charge per unit area is small (~20mC/cm 2 at 1 V). Porous

electrodes and dielectric films, such as Ta2O5 or TiO2, are used to increase the charge

capacity to physiologically useful levels, however with using these electrodes the charge

injection capacity has not been enough for small area (400-2000µm2) intracortical

electrodes at charge and current densities necessary for stimulation [7].

Table 2.1 Charge Injection Requirements for Stimulation

Note: Ref [7].
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TiN electrodes (capacitive electrodes based on titanium nitride deposited as a

highly porous coating by sputter deposition) have been evaluated for neural stimulation

applications. These electrodes have relatively large area (>1 mm2) and modest charge

injection densities about 0.5mC/cm2 with a pulse width of >0.5ms. TiN electrodes are

comparable with those required for intracortical stimulation. These electrodes are

delivered over longer pulse widths and lower current densities. Furthermore, it is

commonly used in the integrated circuit fabrication process, so there is no need for

special methods for material deposition [7].

Noble electrodes are faradic electrodes that transfer charge by surface reduction

and oxidation of the monolayer oxide film. Platinum electrodes (as one of the noble

electrodes) have been widely used in different stimulation applications, including cardiac

pacing, and deep brain stimulation. On the other hand, platinum (Pt) electrodes and the

other noble electrodes are not suitable for intracortical or intraspinal stimulation because

of insufficient charge injection capacity [7].

Intracortical stimulation requires using electrodes with very small areas, and

therefore the researchers have developed faradic electrodes coatings based on three

dimensional films of hydrate iridium oxide. "Iridium has electrochemical properties not

shared by Pt or its alloys" [7]. These films can be formed by repeating the oxidation and

reduction of the iridium on the metal surface, and this leads to greatly increase their

ability to inject charge. Iridium oxide electrodes (IrOx) have a relatively large charge

injection density and reversible faradic reactions [7].

Researches are now investigating the characteristics of TiN and IrOx using

electrochemical techniques such as pulse stimulation, cyclic voltammetry (CV), and
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electrochemical impedance spectroscopy (EIS). Pulse stimulation is a technique used to

calculate the safe charge injection capacity of the electrodes. Usually fast varying current

pulses are applied, whereby the safe charge injection capacity is the area under the

voltage waveform before exceeding the water window. CV is a technique used to

determine the operational water window limits, and to calculate the charge storage

capacity of the electrode. It is used to study the capacitive and faradic behavior of the

electrodes. EIS is a technique used to study the capacitive and faradic behavior of the

electrodes as well by studying the Bode plot of the electrode. The next part will discuss

what different groups have studied the characteristics of TiN and IrOx electrodes.

2.1.1 Weiland, Anderson, and Humayun Group

This group [5] "directly compared the electrical characteristics of iridium oxide and

titanium nitride by fabricating silicon substrate probes that differed only in the material

used to form the electrode". The silicon probes used in this work (provided by the

University of Michigan) had five 4000µm2 octagonal electrodes. The sputtering

technique was used to form both titanium nitride and iridium sites. They used three

titanium nitride 5-site probes and two iridium oxide 5-site probes in which three

electrodes on each material were studied in detail. In this work, both electrodes were

characterized by the electrochemical techniques mentioned earlier. The next paragraphs

will discuss the group work in more details.

A saturated calomel electrode (SCE) was used as a reference electrode, and a

large platinum sheet as a counter electrode. All the measurements were made in a

phosphate buffered saline. The CV measurements were obtained with 100mV/s triangle
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wave from -600 mV to 700 mV. The impedance measurements were obtained with a

5mV sine-wave, 0.1-100kHz, -300, 0, 300 and 600 mV vs. SCE. Biphasic pulses of 25,

50, and 100 µA with duration of 100, 200, and 500µs were applied in the voltage

measurements.

Figure 2.1 shows consistency in the electrical properties of the both the IrOx and

TiN electrodes, that there is small standard deviation of the averaged impedance spectra.

This figure also shows that the impedance amplitude of the TiN was 15% less than the

iridium oxide at frequencies greater than 10kHz. The impedance amplitude of both

materials is "nearly independent" of frequency at higher frequencies and becomes

frequency dependent at lower values (below 4 kHz for TiN and below 0.5 kHz for IrOx).

Since the frequency dependent impedance amplitude indicates capacitive charging as the

dominant current flow process, "TiN becomes capacitive at a higher frequency than

IrOx".

Figure 2.1 Impedance modulus. Measurement was taken with a 5-mV sine wave, dc
potential 300 mV versus saturate calomel electrode. Averages of measurements from
three electrodes of each type are shown. Error bars represent one standard deviation [5].
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Figure 2.2 shows the cyclic voltammetry of TiN and IrOx. It is obvious from the

figure that iridium oxide has a superior charge storage capacity, that the area under the

IrOx CV is "significantly larger" than the area under the TiN CV. The IrOx CV had

distinct peaks which implies reduction-oxidation reactions were involved. A reversibility

of these reactions has been approved by other groups. The TiN CV had no distinct peaks,

and thus an electrode current was dominated by capacitive current flow.

Figure 2.2 Cyclic voltammagrams of iridium oxide and titanium nitride electrodes [5].

Figure 2.3 shows the voltage measurements for TiN and IrOx in response to a

current pulse. The iridium oxide generated a smaller voltage in all cases except when

applying pulse duration less than 10µs (figure 2.3-a). By increasing the current pulse

duration, the double layer charge would increase and lead to an increase in an electrode

potential (figure 2.3-b, 2.3-c).

As mentioned, the charge injection limits is determined by determining the water

window limits. It was found by applying 0.2ms anodic pulses that the safe charge

injection for TiN is 0.87mC/ cm 2 . The voltage limits were —0.6 to +0.8 V (water window

minus the initial voltage drop). However, the safe charge injection for IrOx was measured

to be 4mC/ cm2 under the same conditions.
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In summary, this group has studied the characteristics of both IrOx and TiN using

electrochemical techniques such as pulse stimulation, CV, and EIS. This group has

shown that iridium oxide has lower impedance and a higher charge storage capacity than

titanium nitride, suggesting better performance as a stimulating electrode in applications

that require high current densities.

Figure 2.3 Voltage measured between current source and current sink in response to a
current pulse. In all cases, current sink is a relatively large sheet of platinum. (a)
Electrode potential for iridium oxide versus titanium nitride in response to a 10011A,
100µs current pulse. Electrode potential of (b) iridium oxide and (c) titanium nitride in
response to 5011A pulses of varying duration [5].
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2.1.2 Zhou and Greenberg Group

This group [4] has studied the University of Michigan electrodes (thin-film TiN coatings

on Si substrate). The electrochemical techniques were used to characterize the electrodes.

Figure 2.4 shows the 5 electrode microarray coated with thin-film TiN from University of

Michigan.

Figure 2.4 The 5 electrode microarray coated with thin-film TiN from University of
Michigan [4].

This electrode has a diameter of 71.8µm and an area of 4.05 x 10 -5cm2 and it has

"multilayers of thin-film coatings including ~ 1 µm TiN as the top layer of electrode

material". This group determined the injectable charge using pulse stimulation (a

cathodic first, biphasic charge-balanced current pulse with 1 ms pulse duration at 100

Hz.) in response to fast varying waveform as well as the electrode's stability. All tests

were conducted at the room temperature using a large Pt electrode as a counter electrode

and Ag/AgC1 as a reference electrode. Phosphate buffered solution (PBS) and

bicarbonate buffered solution (BBS) were used. EIS measurements were made at open

circuit potential with a 10mV AC excitation potential, and at frequency from 100kHz to

1Hz.
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This group has shown that TiN has no distinct peaks within the water window

limits of —1V to 1.2V as shown in figure 2.5. This result is concordant with Weiland and

Humayun group results. Figure 2.6 shows a typical Bode plot of a TiN electrode, the

electrode impedance increases with decreasing the frequency indicating no faradic

process was involved. The charge injection capacity measured for TiN is at 2.2 — 3.5mC/

cm2 range (1 ms pulse duration, with fast varying waveform). This value is considered

"much higher than other capacitive electrodes such as Ta 2O5".

Figure 2.5 Cyclic voltammograms of a TIN electrode at a potential scan rate of 100mV/s
[4].

Figure 2.6 Bode plot of a TiN electrode measured at open circuit potential with an ac
10mV bias [4].
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In summary, this group has studied the characteristics of TiN using

electrochemical techniques such as pulse stimulation, CV, and EIS. This group has

shown that there is no faradic process involved in titanium nitride electrode reactions.

Furthermore, they measured the charge injection capacity of TiN and found it to be at

2.2-3.5 mC/ cm2 range. This value is different than the value obtained by (Weiland, and

Humayun) group which is 0.87mC/ cm2 . The discrepancy could be due to the difference

(in materials) in the electrodes used in both studies.

2.1.3 Cogan, Plante, and Ehrlich Group

This group [8] has studied the activated iridium oxide films (AIROF) microelectrodes.

They used potential biasing and biphasic, asymmetric current pulse waveforms to

maximize the charge-injection capacity. These electrodes were fabricated at the

Huntington Medical Research Institute, the exposed geometric surface area (GSA) of the

iridium that used were either 1100 +- 100 µm2 or2000 +- 200 µm2 . "The exposed iridium

was activated to AIROF by potentiodynamic pulsing between -0.6 and +0.85V versus

Ag/AgCl in phosphate-buffered saline (PBS)".

The CV measurements were made at a sweep rate of 50mV/s between limits of

0.8 and -0.6V using Ag/AgCl as a reference electrode and a large area Pt as a counter-

electrode in PBS. Potential transit measurements were conducted in carbonate and

phosphate buffered saline solution (CBS/PBS). Bias levels from -0.1 to 0.7V were used,

in which it is considered positive or negative with respect to the equilibrium open circuit

potential of the AIROF (between 0.2-0.3V).

Figure 2.7 shows examples of asymmetric waveforms. Asymmetry defined as the
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ratio of the cathodal to anodal pulse width, which introduced by "increasing the pulse

width of the second pulse and decreasing the current accordingly to maintain charge-

balanced".

Figure 2.7 Examples of charge-balanced, biphasic current pulses (50 Hz, 0.4 ms leading
phase) with different asymmetries in the cathodal and anodal pulse widths. The
asymmetric cathodal-first 1:8 and anodal first 3:1 waveforms resulted in the highest
charge injection capacities at positive and negative potential bias levels of 0.6 and 0.1 V,
respectively [8].

Figure 2.8 shows the CV of an AIROF microelectrode with GSA equals to

1014=2 activated to a cathodic charge storage capacity (CSCc) equals to 25mC/cm2 (the

hatched area). AIROF has distinct peaks at 0.1V and 0.2V. There are two strategies of

asymmetries; cathodal-first current pulsing and anodal-first current pulsing. Figure 2.9

shows the charge injection limits of AIROF (cathodal first) as a function of anodic first

and cathodal to anodal pulse width asymmetry (CSCc = 29mC/cm2). The open symbols

show the 0.8V limit, and the closed ones show the -0.6V limit. It is obvious from the

figure how the charge injection capacity increased using asymmetric pulses; the charge

injection capacity with asymmetric pulses is 2.1 ± 0.9 times larger that that using

symmetric pulses. Furthermore, the optimum results were at 0.6 V biases with 1:8 pulse
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width ratios, that the mean charge injection capacity was 4.9 ± 0.58mC/cm2 , compared

with 0.3V bias (3.1 ± 0.4mC/cm 2).

Figure 2.8 Cyclic voltammogram of an AIROF microelectrode [8].

Figure 2.9 Charge-injection limits of AIROF (CSC = 29mC/cm2, tip area 2024µm2)
subjected to biphasic, cathodal-first, current pulses as a function of bias potential and
waveform asymmetry. The cathodal pulse width was 0.4ms. Closed and open symbols
indicate whether the maximum negative or positive potential limit, respectively, limited
the charge injection capacity [8].

The charge injection limits of AIROF (anodal first) as a function of bias and

waveform asymmetry is shown in figure 2.10. In this strategy, they biased the AIROF to
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a potential negative of its open circuit value. The maximum charge injection capacity

with symmetric pulse was 4.2mC/cm2 at a bias of 0.2V. However; the maximum charge

injection capacity for 1:2 and 1:3 asymmetric pulses (anodal to cathodal) were

6.4mC/cm2 and 9.6mC/cm2 at 0.1V bias, respectively.

Figure 2.10 Charge-injection limits of AIROF (CSC = 25.1 mC/cm2 , tip area 2015 µm2)
subjected to biphasic, anodal-first, current pulses as a function of bias potential and
waveform asymmetry. The anodal pulse width was 0.4 msec. Closed and open symbols
indicate whether the maximum negative or positive potential limit, respectively, limited
the charge injection capacity [8].

This group [9] has also introduced sputtered iridium oxide films (SIROFs) and

compared them with the activated iridium oxide films (AIROFs). SIROF films were

deposited by reactive sputtering from iridium metal in an oxidizing plasma. However,

AIROF is formed from iridium metal by electrochemical potential cycling in an aqueous

electrolyte. The characterization of sputtered iridium oxide films (SIROFs) as coatings

for nerve electrodes is reported using the electrochemical techniques.

The cathodal charge storage capacity (CSCc) was calculated using slow sweep
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rate CV measurements (50mV/s, phosphate buffered saline) between potential limits of

—0.6V and 0.8 V, and this is an estimation for the total amount of iridium oxide deposited

on the substrate. The EIS measurements were conducted using a 5mV rms sinusoidal

excitation voltage about a fixed potential of 0.3 V vs. Ag|AgCl in CBS/PBS solution. All

measurements were made using Ag/AgCl as a reference electrode and a large-area

platinum as a counter electrode. The surface area of the electrodes was 0.05cm 2 .

The cyclic voltammetry measurements showed that both AIROF and SIROF

(80nm thick) have cathodic charge storage capacity of 18mC/cm 2 . Figure 2.11 shows the

cyclic voltammetry of both electrodes, it is obvious that SIROF does not have distinct

peaks at 0.1V and 0.2V that are typical of AIROF. However, the charge is associated

"presumably due to the higher density of SIROF correspondingly lower ion transport

rates within the films".

Figure 2.11 Cyclic voltammograms of SIROF and AIROF taken in PBS at a sweep rate
of 50mV/s [9].
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Bode plots measurements were made over a thickness range of 80-4600nm, with

an uncoated Pt electrode included for comparison as shown in figure 2.12. SIROF

showed the same behavior as the AIROF, below 1000 Hz the impedance decreases with

increasing film thickness up to 2400nm.

Figure 2.12 Impedance of SIROF in CBS/PBS as a function of film thickness [9].

Potential transit measurements are shown in figure 2.13 as a response of an 80nm

thick SIROF. The charge injection capacity of SIROF was 0.37mC/cm 2 (before -0.6V

limit) with 0.75ms monophasic cathodic pulses, which is "slightly higher" than that of

uncoated Pt (-0.3). It was shown that the charge injection capacity increases with

increasing the SIROF thickness, that the charge injection capacity of 580nm SIROF was

0.75 with a cathodal polarization of -0.32. SIROF can provide charge injection at levels

beyond those of Platinum electrodes but still much less than AIROF.
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Figure 2.13 Potential transient response of an 80 nm thick SIROF in response to 0.75 ms
cathodal current pulses [9].

Finally, this group [10] compared the charge injection limits of AIROF and

Platinum-Iridium (PtIr) microelectrodes with similar geometric area and shape as shown

in figure 2.14; they found that AIROF was capable of injecting between 4 and 10 times

the charge of the PtIr.

Figure 2.14 Comparison of the charge-injection limits of AIROF and PtIr as a function
of bias and pulse width [10].
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In summary, this group has investigated both AIROF and SIROF microelectrodes

using the electrochemical techniques. "SIROF can provide charge-injection at levels

beyond those of platinum electrodes (but much less than AIROF) and is more robust than

AIROF" [9]. This may offer SIROF as an attractive alternative to other iridium oxides in

some applications. This group has shown that the charge-injection capacity of AIROF is

significantly increased by using either a positive bias for cathodal-first pulsing or a

negative bias for anodal-first pulsing. Moreover, using asymmetric waveforms

significantly increases the charge injection capacity with both cathodal-first and anodal-

first current pulsing, in which the second phase is delivered at a lower current density and

longer pulse duration.

2.2 Charge Injection Capacity Measurements:

This section will discuss our work in this field. As mentioned earlier, the size of the

electrode plays a vital role in micro-level applications. The electrode contacts have to be

small enough and generate sufficient charge for stimulation. TiN and IrOx have been

investigated in this work as contact material. Various waveforms were introduced as

alternative to the rectangular pulse to test the performance of these waveforms and to find

out if more injectable charge can be obtained using the alternative waveforms comparing

to the rectangular pulse. The charge injection capacity was obtained for TiN and IrOx

electrodes. The charge injection capacity of TiN electrodes for an extended voltage range

was also investigated.
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2.2.1 Alternative Waveforms for TiN

Rectangular waveforms are commonly used as an input stimulus. In this study, we have

introduced various waveforms as alternative input stimuli to the rectangular pulse. The

charge injection capacity measurements were obtained for TiN electrodes in the water

window limits. The behavior of the injected charge as a function of pulse width has been

investigated.

2.2.1.1 Methods

The electrodes of TiN were provided by the Center of Neural Communication

Technology at University of Michigan. The electrodes were placed in a phosphate

buffered normal saline (ph=7.4) at room temperature. Large Ag/AgCl electrode was used

as a reference. For measurements of charge injection capacity, rectangular, triangle,

sinusoidal, exponential increase, exponential decrease, Gaussian, triangle decrease, and

rectangular-last waveforms were used respectively. These waveforms were charge

balanced, cathodic first, and biphasic current stimuli pulse train applied at 50Hz. The

waveforms were applied using 20, 40, 60, 80, 100, 200, 300, and 500µs pulse widths.

The current stimulator was custom designed to ensure a fast rise time (<0.5µs) and

thereby allowing an accurate measurement of the access voltage at the onset of the

current pulse.

The back voltage from the electrode was first buffered with a unity gain FET

amplifier before sampled into a computer using data acquisition board (PCI 6071) and

LabVIEW software (both from National Instruments) at a sampling rate of 1MHz. The

bias voltage was set to OV and the current amplitudes were determined that generated a
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back voltage down to -1.2V. The initial voltage jump due to the access resistance was

subtracted in calculation of the back voltage. Eight TiN contacts with an area of 1771=2

were studied. Figure 2.15 shows the custom designed circuit used in this study.

Figure 2.15 Custom designed circuit for charge injection capacity measurements.

2.2.1.2 Results and Discussion

Figure 2.16 shows the mean charge of the highest three TiN contacts using different

waveforms as a function of pulse widths. Some contacts gave lower values comparing to

the others. The highest three values were from the same contacts. It is obvious from the

figure that the charge increases as the pulse width increase. The behavior of the all

waveforms was the same (exponential increase with increasing the pulse width).

Rectangle_last waveform gave the highest charge over the entire pulse width range

whereas the Rectangle_first gave the lowest charge over the entire pulse width range. The
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maximum charge obtained was 1.266mC/cm 2 using rectangular-last waveform at 500µs

pulse width. The minimum charge at 500µs obtained was 0.536mC/cm 2 using rectangle-

first waveform.

There is a significant difference applying the rectangle pulse first or last. The

charge injection capacity has been changed while applying different waveforms between

the two rectangular pulses. Triangle decrease waveform gave high charge over the entire

pulse width range. Exponential increase waveform gave low charge over the entire pulse

width range. There is a sudden increase in the charge after 300µs pulse width using the

exponential decrease waveform that at 500µs pulse width the injected charge exceeded

1mC/cm2 .

Weiland group found the injected charge of TiN Michigan electrodes to be

0.87mC/cm2 (0.2ms, -0.6 to 0.8V limit). At 0.2ms pulse width (-1.2V cathodic limit) we

found it to be 0.96mC/cm 2 . We obtained higher charge at 0.2ms because we clamped the

voltage at -1.2V instead of -0.6. Zhou group found the injected charge at lms to be at 2.2-

3.5mC/cm2 range (-l-1.2V limit). At 0.5ms pulse width we found the injected charge to

be l.266mC/cm2. Since the injected charge increases with increasing the pulse width,

higher charge at lms pulse width is expected.

In conclusion, different kinds of waveforms can be used as alternative to the

rectangular waveform such as triangle decrease waveform. Triangle decrease wave form

gave charge close to the rectangle_last waveform over the entire pulse width range. The

rectangle pulse is superior over the other waveforms since it gave the highest charge over

the entire pulse width range. The Injected charge of TiN electrodes is much higher than

other capacitive electrodes such as Ta 2O5 with injected charge at a range of 0.016-
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0.12mC/cm2 [41 and Pt and Ptlr-alloys electrodes at a range of 0.05-0.15mC/cm2 [71 This

range of TiN electrodes injectable charge (0.3-1.27mC/cm 2, rectangular pulse-last) is

useful for different kind of microstimulation applications as shown in Table 2.1.

Figure 2.16 Alternative waveforms for TiN. The charge injection capacity is plotted as a
function of pulse width.

2.2.2 Alternative Waveforms for IrOx

Also alternative waveforms were used with IrOx electrodes. As mentioned, IrOx has been

introduced as an electrode material for micro-stimulation applications. The behavior of

the IrOx electrode with different pulse widths also has been investigated. The charge

injection capacity was obtained in the water window limit.
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2.2.2.1 Methods

Also the IrOx electrodes were provided from the University of Michigan. The same

method was used with IrOx. Rectangular, exponential increase, exponential decrease,

linear decrease, sinusoidal, Gaussian, and linear increase waveforms were used. The bias

voltage was controlled with the custom-built circuit shown in figure 2.15. The bias

voltage was set to 200 mV and the current amplitudes were determined that generated a

back voltage down to -0.6V. Three IrOx contacts with an area of 177µm2 were studied.

2.2.2.2 Results and Discussion

Figure 2.17 shows the mean charge for three IrOx contacts using different waveforms as

a function of pulse widths. Some contacts gave lower values comparing to the others. It

can be concluded from the figure that the charge exponentially increases with increasing

pulse width and this is consistent with TiN electrodes measurements. Linear decrease

waveform gave the highest charge over the entire pulse width range. Exponential increase

gave the lowest charge over the entire pulse width range. The maximum charge obtained

was 0.98mC/cm2 using linear decrease waveform at 500µs pulse width. The minimum

charge at 500µs obtained was 0.45mC/cm 2 using exponential increase waveform. The

exponential increase waveform gave low value. The sinusoidal, rectangle and Gaussian

waveforms generated high values of charge (comparing to the other waveforms) over the

entire pulse width range.

The measured charge injection capacity of IrOx obtained in our laboratory

(0.98mC/cm2, 0.5ms, -0.6V cathodic limit) is much smaller than the one measured by

Weiland group (4mC/cm2, 0.2ms, -0.6 to 0.8V limit). In our work, we used only three
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contacts and these contacts could have been partially damaged after applying many

waveforms. Although the injected charge of IrOx was low, we still can compare the

charge injection capacity using different waveforms and test the performance of each

waveform. In conclusion, linear decrease waveform gave higher charge than the

rectangular waveform which warrants further investigation of the linear decrease

waveform.

Figure 2.17 Alternative waveforms for IrOx. The charge injection capacity is plotted as a
function of pulse width.

2.2.3 Charge Injection Capacity of TiN Electrodes for an Extended Voltage Range

The water window limit is the operational limit for an electrode, several groups reported

on maximum injectable charge of TiN electrodes within the water window limit (-l.2V,

slow cyclic voltammetry, 5mV/s). However, another group has tested rough surface TiN

electrodes using voltammetry at fast sweeping rates (>10V/s) within the voltage range of
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-3.0V to 1.0V. As a results, neither oxidation/reduction nor hydrogen

adsorption/desorption peaks could be observed. This group claimed that the charge-

transfer process was "almost completely reversible" for this voltage range and no

evidence of bubble generation was seen. In this work, we investigated the maximum

injectable and the recoverable charges with TiN electrodes for extended cathodic voltages

using current and voltage pulsing.

2.2.3.1 Methods

The electrodes of this study were the University of Michigan electrodes. The electrodes

were placed in a phosphate buffered normal saline (ph=7.4) at room temperature and the

bias voltage was controlled with the custom-built circuit (figure 2.15) with respect to a

large Ag/AgCl reference electrode. For measurements of charge injection capacity, a

charge balanced, cathodic first, biphasic current stimulus pulse train was applied at 50Hz.

Both cathodic and anodic phases were 0.5ms long and of the same amplitude. The current

stimulator was custom designed to ensure a fast rise time (<0.511s) and thereby allowing

an accurate measurement of the access voltage at the onset of the current pulse. The back

voltage from the electrode was first buffered with a unity gain FET amplifier before

sampled into a computer using data acquisition board (PCI 6071) and LabVIEW software

(both from National Instruments) at a sampling rate of 1MHz. Spike triggered averaging

method was employed to reduce the noise signal. The bias voltage was set to -0.8, -1.0,

and -l.2V and the current amplitudes were determined that generated a back voltage

down to -3.0V in steps of -0.2V. The initial voltage jump due to the access resistance was

subtracted in calculation of the back voltage. Six TiN contacts with an area of 177µm2
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were studied.

For the measurements of the recoverable/unrecoverable charge, six TiN contacts

with larger surface areas (4000µm2) were used to minimize the measurement errors of

electrode current. A single cathodic voltage pulse (0.5ms) with varying amplitude (0 to -

3.0V) was applied. The voltage was clamped at zero following the pulse. The electrode

current was integrated during the cathodic phase to find the injected charge and during

the following 50ms as the charge recovered from the electrode. The difference of the two

was taken as the unrecoverable charge.

2.2.3.2 Results and Discussion

Figure 2.18 shows the back voltage with one of the contacts as a response to current pulse

of 18µA (thick line) and 16µA (thin line). The current amplitude was increased until the

H2 evolution was evident with a plateau at the end of the cathodic cycle. The pulse

duration was 0.5ms, and the bias voltage was -1V. The first plateau (thick line) shows a

distortion at the end of the cathodic phase around -3.5V suggests faradaic reactions occur.

However, the second plateau (thin line) shows no distortion. The voltage step due to the

access resistance was about -0.2V within the first 2µs.
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Figure 2.18 The electrode voltage with one of the contacts for a bias potential of -1.0V.

Figure 2.19 shows the mean charge for six TiN contacts as a function of electrode

voltage during a cathodic current pulse with a 0.5ms duration for three different bias

voltages; -0.8, -l.0, and - l.2V. The maximum injectable charge was 4.45mC/cm2 at the

peak electrode voltage of -3.0V. This value is higher than 2.2-3.5mC/cm 2 [4] and

0.9mC/cm2 [5] reported earlier for the same pulse width. For most of our measurements,

the distortion occurred in the anodic phase when the holding potential was made more

positive than -0.9V. The maximum values of the total injectable charge with minimum

distortion were obtained for the bias voltages more negative than -l.0V (as shown in

figure 2.19). There was no evidence of bubble generation under microscopic observation

with high magnification (x130).
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Figure 2.19 Injected charge as a function of electrode voltage during a cathodic current
pulse with a 0.5ms duration for three different bias voltages; -0.8 (blue), -1.0 (pink), and -
1.2V (red). The mean charge for six TiN contacts and the standard deviations are shown
(vertical bars).

Figure 2.20 shows the unrecoverable charge plotted as a percentage of total

injected charge against the voltage pulse amplitude. Within the water window, the

unrecoverable charge was a little over 1%. The unrecoverable charge for the extended

voltage limits remained under 7% of the total injected charge. This small increase cannot

account for such a large change in the charge injection capacity. Most of this increase

must be provided by fast recoverable faradaic reactions.
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Figure 2.20 Unrecoverable charge as a percentage of the total injected charge for voltage
pulse amplitudes varying from -IV to -3V. The pulse width is 0.5ms and the electrode.
surface area is 4000µm2 . Standard deviations are vertical bars (n=6).

The large values of charge injection capacity of TiN and relatively small

unrecoverable charges warrant further investigation of the charge injection mechanism

and the feasibility of safe neural stimulation in TiN interfaces at extended range of

electrode voltages.

2.2.4 Conclusion

It can be concluded from the TiN and IrOx electrodes results that the injected charge is

high when the amplitude of the current stimulus decreases as a function of time. On the

other hand, the injected charge is low when the amplitude of the current stimulus

increases as a function of time. Both IrOx and TiN allow sufficient charge injection for

FLAMES approach. TiN is preferred for future experimentation since TiN does not

require a bias voltage to achieve useful charge injection rates, and thus is a good choice

as an electrode material in this application.



CHAPTER 3

OPTICAL PROPERTIES OF RAT NEURAL TISSUES

3.1 Introduction

Near-infrared light (NIR), ranging from 700 to 900 nm, has the maximum penetration

depth in white and gray matters of the nervous system [12]. This property has been

utilized in numerous applications ranging from spectroscopic imaging [13] to treatment

of brain tumors [14]. In these applications, knowledge of optical properties of the human

neural tissue is crucial to determine the specific wavelength range where light penetration

depth is maximum [15]. However, it is equally important to know the optical properties

in the animal models for development of such applications. The rat nervous system has

been frequently used as an animal model in testing of these devices [16]. In our

laboratory, we are also interested in transferring energy to an implantable microstimulator

(FLAMES) by optical means in the NIR wavelengths [17]. There are numerous reports

on optical properties of human neural tissue [15], [20], [21]. But, the literature from the

experimental animals is very limited and the reported values are varying substantially.

In our study, the microstimulator is implanted inside the neural tissue, and

therefore light must penetrate a few millimeters through the tissue before reaching the

device. As the light travels into the tissue, its intensity decreases due to absorption and

scattering. Some of the incident light also reflects back at the surface of entry. The

decaying of the light energy inside the tissue is governed by Beer's law (figure 3.1). One

way of expressing Beer's law is

34
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where It is the transmitted and lo is the incident light energy. R is the reflection

coefficient of the surface and a is the penetration depth. Penetration depth is defined as

the distance at which the total optical power is reduced to 37% of the incident light. For

direct measurements of light absorbed or scattered, the tissue should be very thin

(thickness << 1/scattering coefficient) [24].

Figure 3.1 Diagram of Beer absorption of a beam of light as it travels through a material
of known thickness.

There are three main types of spectroscopy; (l) Absorption spectroscopy: it is a

device that measures the radiation absorbed by a sample as it is excited to higher energy

levels. (2) Emission spectroscopy: it is a device that relies upon exciting a sample and

then measuring the radiation emitted as the sample falls down to lower energy levels. (3)

Scattering spectroscopy: it is a device that measures certain physical properties by

measuring the amount of light that a substance scatters at certain wavelengths, incident

angles, and polarization angles. Moreover, NIR specroscopy is well known for medical

applications. NIR specroscopy "is a spectroscopic method utilising the near infra-red

region of the electromagnetic spectrum (from about 800 nm to 2500 nm)" [18].

NIR spectroscopy has differnet kind of biomedical applications using the wave

length of 700 to 900 nm, "where light scattering is more prominent than light absorption"
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[19]. There are diffrences between healthy and disease tissues in light scattering

properties due to the possible changes in cellular and intracellular structures. One of these

applications is to detect both physiological and pathological conditions of tissues,

including blood flow and hemoglobin concentration measurements, also including cancer

diagnosis and tissue distinction [19].

In brain applications, an optical diffuse tomography (type of monitoring and

imaging modality) is used. In this technique there is a possibility to obtain

physiologically relevant information about the oxygen saturation of brain tissue.

However, quantitative information can not be retrieved unless the optical properties of

the brain tissues are known. Laser-induced interstitial heating of deep brain tumors is

promising minimally invasive therapeutic procedures for the treatment of neoplastic

lesions. The optical properties of tumors and of surrounding native brain tissue are

needed to obtain successful therapy planning. For optimal laser thermotherapy treatment,

knowledge of brain optical properties is required to determine the specific wavelength

range where light penetration depth is maximum [15].

The main purpose of this chapter is to measure the transmitted light power

through the rat neural tissues to measure how deep the FLAMES can be implanted into

the peripheral and central nervous system and still be activated. In this chapter, we report

the transmittance, penetration depth, and reflectance for NIR light in the rat neural tissues

including the sciatic nerve, and the brain cortex.

In the next part, I will talk about various groups that have studied the optical

properties of different types of human and animal tissues. In our project, we are using the

same principles and techniques that are used in NIR spectroscopy.
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3.1.1 Yaroslaysky, Schulze, and Schober Group

This group [15] has investigated the optical properties of native and coagulated human

brain tissues in vitro in the visible and near infrared spectral range. White brain matter,

grey brain matter, cerebellum and brainstem tissues were investigated in this work. In

addition, two human tumors were investigated. All samples were stored at low

temperature (2-3 °C, < 48h). The white matter samples had a thickness of 80-200µm. All

other samples had a thickness of 100-200µm. An integrating-sphere technique was used

to measure the diffuse reflectance, total transmittance, and collimated transmittance of

the samples. By using inverse Monte Carlo technique, the absorption coefficients, the

scattering coefficients and the anisotropy factors of the samples were determined from

the experimental data. Moreover, the values of reduced scattering coefficient and light

penetration depth were evaluated. For the purpose of this study, the results of the brain

white and grey matter only will be discussed.

The results of the optical properties of white and grey brain matters are

summarized in figures 3.2 and 3.3. Both white and grey brain matter had similar

dependencies of the optical properties on the wavelength. "The scattering coefficients

decreased and the anisotropy factor increased with the wavelength". The absorption

behavior of all tissues resembled a mixture of oxy- and deoxy- hemoglobin absorption

spectra. The reason it was "not possible to remove all blood residuals from the sections".

White brain matter had "substantially higher" extinction coefficients than those of grey

brain matter over the entire spectral range. Light penetration depth of grey matter was

greater than that of white matter.

The values of absorption and scattering coefficients increased for both white and
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grey matter after coagulation. Histological analysis has shown that coagulation causes

brain tissue shrinkage and condensation, and therefore concentration of chromophores

and scattering inhomogeneities increases and tissues become optically denser. As a result,

both scattering and absorption coefficients increase significantly in the spectral range.

The anisotropy factors of white brain matter and grey brain matter "remained nearly

unchanged".

Figure 3.2 Optical properties of human white brain matter. Average of seven samples.
Squares: absorption coefficient, circles: scattering coefficient, anisotropy factors and
bars: standard errors. (a) Native samples and (b) coagulated samples [15].



Figure 3.3 Optical properties of human grey brain matter. Average of seven samples.
Squares: absorption coefficient, circles: scattering coefficient, anisotropy factors and
bars: standard errors. (a) Native samples and (b) coagulated samples [15].

Table 3.1 and 3.2 show the optical properties of white and grey brain matters

published in the literature compared to those obtained in this work. It can be concluded

from table 3.l that light penetration depth of white brain matter is "substantially lower"

than that of grey matter. On the other hand, there are differences in absorption and

scattering coefficients. This discrepancy may be explained by the different theoretical

approaches used in different studies, and the different sample preparation techniques. It

can be concluded from the tables that light penetration depth is "substantially reduced"

after coagulation (Table 3.2).
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Table 3.1 Optical Properties of Native Human Brain Tissues

40

Note: Obtained in Yaroslaysky (*) and Known From the Literature. Wavelength ( 2 (nm)),

Table 3.2 Optical Properties of Coagulated Human Brain Tissues

Note: Obtained in Yaroslaysky (*) and Known From the Literature [15].

In summary, the results obtained from this work are in qualitative concordant with

the literature. However, differences exist and "most probably" due to the various
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theoretical models and sample preparation techniques employed. The spectral range of

1000-1100 nm is the optimal wavelength range for therapeutic and diagnostic light

applications, where the light penetration depth is maximal. The optical properties

changed "dramatically" after coagulation. This is an important factor which should be

carefully considered in treatment planning.

3.1.2 Eggert and Blazek Group

This group [20] has investigated the optical properties between 200 and 900nm of

meninges, normal human brain tissue, and brain tumors. According to Beer's law,

penetration depth was calculated from reflection and transmission measurements. The

relative levels of absorption and scattering were evaluated according to Kubelka-Munk

theory from the relative level of reflection measured in tissues samples more than 5mm

thick.

A two-beam spectral photometer with an integrating sphere was used as a

measuring instrument. The materials contained 13 brains and 1 specimen each of dura

matter, flax, and arachnoid obtained at autopsy and 30 samples of brain tumors (17

meningiomas, 5 glioblastomas, and 8 low grade gliomas) removed during operation. The

investigated samples were frozen by immersion in liquid nitrogen and stored at -18°C.

The slice thicknesses were 0.32, 0.55, and 0.62mm. The penetration depth was calculated

from reflectance (R) and transmittance (7) measurements with regard to the sample

thickness (d) used as follow:
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For the purpose of this study, the results of the brain white and grey matter only

will be discussed. Both grey and white brain matter shared common features. Reflectance

increased with the wavelength within the visible spectral range, and remind unchanged

between 600 and 900nm. The penetration depth increased with increasing the

wavelength. The absorption bands of hemoglobin interrupted the increase in both

penetration depth and reflectance. Absorption decreased with the wavelength. On the

other hand, scattering "slightly" increased within (200-600nm) spectral range, and

showed "nearly no changes" within the red and near infrared spectral range of the grey

matter. "Surprisingly, scattering decreased considerably in white matter beyond 600nm".

The back scattering fraction of the incident optical power is included within the measured

reflectance.

Figure 3.4 and 3.5 show the relative levels of reflection (R), absorption (K), and

scattering (S) as a function of wavelength for gray and white matter respectively.

Reflection of white matter is "considerably" higher and absorption is lower than in gray

matter. In the red and near infrared spectral range of the white matter, most of the

incident optical power was reflected and only minimal absorption was found. As

mentioned, scattering remained constant in grey matter but decreased considerably in

white matter beyond 600nm. In the range from 300 to 900nm, there were significant

differences between grey and white matter regarding reflection, absorption, and

scattering. Samples containing considerable amount of gray matter besides white matter
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were investigated. It was found that "nearly" the same optical properties obtained as in

pure grey matter (as shown in figure 3.6). Figure 3.7 shows the penetration depth of gray

and white matter. Gray matter penetration depth was "nearly twice" that of white matter

(high statistical dispersion between 600 and 900nm).

Figure 3.4 Frontal grey matter (n=13): relative levels of reflection (R), absorption (K),
and scattering (S) plotted against wavelength [20].

Figure 3.5 Frontal white matter (n=13): relative levels of reflection (R), absorption (K),
and scattering (S) plotted against wavelength [20].
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Figure 3.6 Frontal grey matter, frontal white matter, basal ganglia, midbrain, and
cerebellar hemisphere (one sample of each): relative levels of reflection (R), absorption
(K), and scattering (S) plotted against wavelength [20].

Figure 3.7 Frontal grey (n=13) and white (n=13) matter: penetration depth (a) plotted
against wavelength [20].

Finally, I would like to compare the previous two group's results. Both groups

showed the dependency of the optical properties to wavelength. The first group

(Yaroslaysky, Schulze, and Schober) showed that the scattering coefficient slightly

decreased within the investigated wavelength (300-1100nm) in white and grey brain

matter; however the second group (Eggert and Blazek) showed that the scattering

(fraction from the incident optical power) slightly increased within 200-600nm
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wavelength in grey and white brain matter. Beyond 600nm, scattering remained constant

in grey matter but decreased considerably in white matter. Regarding to the absorption

measurements, the first group was not able to measure it accurately because of the

difficulty in removing all blood residuals from the sections. The second group showed

that the absorption is higher in gray matter than in white matter (remnants of blood were

removed without any mentioned difficulties). Both groups showed that the gray matter

penetration depth is higher than that of white matter, but with quantitative discrepancies.

Within the near infrared range, the first group evaluated the penetration depth to be 0.9-

1.0mm in white matter and 3.28mm in grey matter (table 3.1). The second group

evaluated the penetration depth to be 0.75mm in white matter and 1.5mm in grey matter

(figure 3.7).

There are similarities as well as discrepancies between the two groups. The

discrepancies are due to the fact that (1) each group used different theoretical approach;

the first group used inverse Monte Carlo technique and the second group used Kubelka-

Munk theory, (2) each group used different measurement technique, and (3) sample

preparation method was different between the two groups.

3.1.3 Svaasand and Ellingsen Group

This group [21] has investigated the optical properties of the human brain in the

wavelength region from blue to near infrared; penetration depth of neonatal and adult

brain was calculated. The measurements were conducted on five human brains

immediately after autopsies which were carried out 1-2 days post mortem.

Optical fiber was used to couple the light into the center of the tissue samples.
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The fiber had a core diameter of 200µm and nominal numerical aperture of 0.2. The

optical loss of the fiber was less than 30dB/km for all wavelengths from 488nm to

1060nm. The detected light was measured using silicon PIN detector.

Figure 3.8 shows the results for penetration depth in the red part of the spectrum.

This figure shows that the penetration depths for the adult brains are systemically smaller

than the corresponding value for the neonatal brain. Furthermore, the penetration depth in

the grey matter was slightly larger than in the white matter. But according to this group

the differences were less than 10% for all wavelengths. The results for penetration depth

for various colors are summarized in Table 3.3. It is obvious from the table that the

penetration depths increase with increasing the wavelength.

Figure 3.8 Optical penetration depth for red light in human brain tissue [21].

In summary, this group has shown that the corresponding values for the

penetration depth in the neonatal brain are "typically 2-3 times larger" than that in the

fully myelinated adult brain at all wavelengths. "The results indicate that the penetration
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depth in adult brain tissue is dominated by the joint action of hemoglobin absorption and

scattering from myelin. Thus, the penetration is strongly dependent on the degree of

myelination".

Table 3.3 Optical Penetration Depth of Human Brain Tissue

Note: Ref [21].

Before talking about our work in this field; the optical properties of rat neural

tissues, the transmitted light power measurements, and penetration depth/reflectance

calculations I will talk about the laser source and the calibration procedures for it.

3.2 Laser Calibration:

A NIR laser source (DLS-500-830FS-100, StockerYale, Canada) is used in this work.

This source has an 827.3nm wavelength, and 73.8mW power. The NIR source is

controlled via a voltage control circuit built inside and this circuit is controlled via an

input signal generated by the computer. Calibration of the source (figure 3.9) was

required to determine the amount of power as a function of the DC control voltages. The

laser was modulated with a DC signal ranging from OV (full power) to 4.5V (off), with

voltage steps of 50mV. The voltage generated by the photodiode current across a
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resistance of 1000 was measured. Laser power was then calculated assuming a flux

responsivity of 0.50A/W (given by the manufacturer) and active area diameter of 100µm.

A forth order polynomial curve was fitted to the data using the least squares method. The

resulting equation is used to calculate the power and the energy for a given control

voltage during the in vivo testing of the FLAMES

P: Power (mW)
I: Current (mA)
R: Responsivity mA/mW)

P: Power
D: diameter

E: energy (mJ/cm^2)
P: power (mW/mm2)
s: pulse width (ms)

Figure 3.10 and 3.11 show the power and energy measurements. It is clear from the

figures that the system output changes almost linearly.



Figure 3.9 The Laser Calibration. Percent error in curve fit = 0.79.
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Figure 3.10 The power measurements.

Figure 3.11 The energy measurements.
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The laser profile has a Gaussian shape, where the maximum energy exists at the

center. The Gaussian function is

a: the amplitude
c: the standard deviation

The next step was to test if the profile of the NIR laser source is changed as a function of

distance between the laser source and the surface of the active area of the photodiode.

The profile was measured as follow; (1) we determine the center of the active area of the

photodiode (a commercial photodiode was used that has 0.1 mm diameter) by

determining the maximum voltage. The infrared light is not visible so a detector paper

was used that converts the infrared to a visible light for localizing the beam. (2) We

moved from the center in steps of 0.01, 0.05, and 0.1 mm toward the right and left side.

Figures (3.12, 3.13, 3.14, 3.15, and 3.16) show the profiles at different distances (between

the laser source and the surface of the photodiode). The curve-fitting of the laser profile

was done on Matlab using (lsqcurvefit) function. It is obvious from the figures that the

Gaussian shape of the profiles does not change as the distance between the laser and the

photodiode change. Some profiles show better fit than others, but all of them are

considered valid and have small error in the curve fit. The standard deviation (which is a

measure of how much the curve spreads) has changed as a function of distance.
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Figure 3.12 Laser profile at 14.1 cm distance between the laser and the photodiode

Figure 3.13 Laser profile at 14.6 cm distance between the laser and the photodiode

Figure 3.14 Laser profile at 15 cm distance between the laser and the photodiode
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Figure 3.15 Laser profile at 15.6 cm distance between the laser and the photodiode

Figure 3.16 Laser profile at 16 cm distance between the laser and the photodiode

The next step was to make sure that the profiles do not change with changing the

control voltages at certain distance (15 cm), so the profiles were measured with 0, 1, 2, 3,

and 4 V as shown in figures (3.17, 3.18, 3.19, 3.20, and 3.21). The standard deviations of

the curves at 1-4 voltages gave values close to the standard deviation at 15 cm (0.34);

0.35 at 1 V, 0.366 at 2 V, 0.37 at 3V, and 0.36 at 4 V. We can conclude from theses

measurements that the profiles at 15 cm do not change with changing the control

voltages.
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Figure 3.17 Laser profile at 15 cm distance between the laser and the photodiode

Figure 3.18 Laser profile at 15 cm distance between the laser and the photodiode

Figure 3.19 Laser profile at 15 cm distance between the laser and the photodiode
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Figure 3.20 Laser profile at 15 cm distance between the laser and the photodiode

Figure 3.21 Laser profile at 15 cm distance between the laser and the photodiode

In the animal experiments a top plastic piece was used to clamp the nerve to a

certain thickness (as shown in figure 3.24). So the final step of the laser calibration was to

make sure that the profile does not change with using the plastic piece. Figure 3.22 shows

the profile (at 15 cm) using a commercial photodiode with 0.08 mm diameter and without

using the plastic piece. A standard deviation of 0.267 was obtained; this value is less than

0.34 because we are using a smaller diameter photodiode. Figure 3.23 shows the profile

with using the plastic piece in top of the photodiode, the standard deviation was 0.26

which is almost the same value obtained without using the plastic piece. The two figures
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show the Gaussian shape of the two profiles, and this implies that the profile does not

change with using the plastic piece.

Figure 3.22 Laser profile at 15 cm distance between the laser and the photodiode surface.

Figure 3.23 Laser profile at 15 cm distance between the laser and the photodiode
surface.	 0.08mm	 diameter	 photodiode.	 With	 the	 plastic	 piece.
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3.3 NIR Transmittance and Penetration Depth in the Rat Peripheral Nerve:

This section deals with the transmitted light power measurements through the rat sciatic

nerve. Penetration depth and reflectance calculations were obtained. We compared the rat

sciatic nerve results with human brain white matter.

3.3.1 Methods:

Six Sprague-Dawley rats (400-500 g) were used for this study. The anesthesia was

induced (50mg/kg) and maintained with sodium pentobarbital with further doses as

needed. The body temperature was continuously monitored and maintained between 36-

37°C using a temperature regulated heating pad. Tracheotomy was performed to connect

the animal to a respirator. Respiration rate and end-tidal CO2 were monitored. The sciatic

nerves were dissected bilaterally and explanted. The epineurium and connective tissue

were carefully removed with minimal stretching of the nerve in a Petri dish. The nerve

was kept moist using saline solution at room temperature. All experimental procedures

were approved by the Animal Care Committee at Rutgers University.

A commercial photodiode (G9842, circular active area, 00.08mm, Hamamatsu,

GaAs PIN photodiode) was used to measure the transmitted light power through the

sciatic nerve. The photodiode was first secured at the bottom of a plastic apparatus with a

channel that is 2mm wide and 0.5mm deep (Figure 3.24). The explanted rat sciatic nerve

was then placed inside the channel, which then took the shape of the channel filling it

wall-to-wall. Plastic pieces, transparent at NIR wavelengths, were placed over the nerve

with varying heights from the photodiode plane and clamped securely. This set-up

allowed us to control the length of the pathway precisely that the laser beam traveled
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inside the neural tissue. The laser was centered above the set-up using a 3-axis

micromanipulator and aimed at the photodiode's active area.

The transmittance of the nerve was obtained for a few different thicknesses of the

nerve sample. The penetration depth (a) was estimated using a simple exponential curve

fit through the data points according to Beer's law. When only two measurement points

were available, the penetration depth was found using

where dl and d2 are the neural tissue thicknesses and TI and T2 are the transmittances

measured at dl and d2 respectively. The reflectance (R) was found by substituting the

calculated penetration depth back in Equ. 1.

The incident light power (Io) is measured with no neural tissue present. The

horizontal extent of the tissue sample perpendicular to the light beam was assumed to be

sufficiently large to neglect the boundary effects. The laser source (DLS-500-830FS-100,

StockerYale, Canada) was a 74mW, 830nm semiconductor source with a circular beam

shape that had a Gaussian intensity with a standard deviation of about 260µm at the

surface of the tissue slab. The laser was placed 15cm from the tissue surface.



Figure 3.24 Preparation used to measure the penetration depth in the rat sciatic nerve.

3.3.2 Results and Discussion:

Two point measurements (thickness of 0.55mm and 1.1mm) were made on the first five

samples and three point measurements (0.52, 0.89, and l.07mm) on the remaining two

samples. Figure 3.25 shows the transmittance values measured from seven samples as a

function of nerve sample thickness. The exponential line is a curve fit to the mean values.

The mean transmittance was 25.1+0.96%, 19.6+3.48%, 7.19+0.26%, 4.79+0.22%, and

4.22+0.61% at thickness values of 0.52, 0.55, 0.89, 1.07, and 1.1mm respectively.

The calculated penetration depth had a mean of 0.35mm with a standard deviation

of 0.023mm. The reflectance measurements varied substantially between the samples

with a mean value of 4.7% and a standard deviation of 20%.

58
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Figure 3.25 The transmittance of seven samples as a function of the rat sciatic nerve
thickness. The exponential curve is the fit to the mean values shown in diamonds (•) and
each symbol type indicates a different tissue sample.

In our study, we are using the same principle that Eggert and Blazek group used

(explained earlier). They evaluated the penetration depth according to Beer's law by

experimentally measuring the transmittance and the reflectance at one point

measurement. On the other hand, we evaluated the penetration depth by only measuring

the transmittance experimentally but at more than one point measurement.

As mentioned in the literature, the tissue layer should be very thin in order to

neglect the multiple scattering. In our work, we are using 0.5-1mm thicknesses, which is

the same range of thickness that Eggert and Blazek group used. Using large thicknesses is

one of the shortcomings of our technique and this is obvious in the reflectance

calculations. The reflectance results were not consistent, and some results were negative.

"Scattering is usually caused by random spatial variations in tissue density, refractive

index, and dielectric constant, and actual light distribution can be substantially different

from distribution estimated using Beer's law" [24]. For example, backscattering can

cause the light fluence rate to be higher than the total light at zero thickness. And this
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explains the inconsistency in our reflectance calculations and obtaining negative results.

On the other hand, penetration depth calculations were consistent. The

transmittance values measured followed the exponential behavior that governed by

Beer's law as light propagate inside the tissue with high correlation (>0.98) in the

exponential curve fit of each sample. Since we used large thicknesses, the calculated

penetration depth varies from the penetration depth governed by Beer's law. However,

this variance is not large because we obtained a high correlation in the curvefit.

Transmittance measurements demonstrated that FLAMES are feasible for

implantation depths of as much as 1.1mm for the rat peripheral nerve that at this depth

4.22% of the incident light was transmitted. Since our reflectance calculations were not

accurate, we were not able to exactly measure how deep the FLAMES can be implanted

into the sciatic nerve and still be activated.

The measured penetration depth of the rat sciatic nerve is much smaller than the

human white matter of the brain, which was measured as 2.3mm by Roggan et al. at 850

nm [23], 0.9mm by Yaroslaysky et al. at 850 nm) [15], and 0.75mm by Eggert et al. for

the entire near infrared spectral range) [20] .

The discrepancy in penetration depth of rat sciatic nerve and human white brain

matter is due to the fact that there are differences in (1) the optical properties between

tissues in rat and human, (2) the optical properties between white brain matter and

peripheral nerve, and (3) the sample preparation techniques. As mentioned, there are

differences in the white brain matter penetration depth results from group to another

because each group uses different measurement techniques and different theoretical

approaches.
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Sample preparation techniques play a vital role in measurement of the tissue

optical properties. In this study, the measurements were made immediately after

removing the nerve from the rats. Because of the practical limitation of in vivo

measurements we chose to do the measurements on the explanted nerves. For instance,

the excessive connective tissue and the vascularization around the nerve made the

measurements unstable. Reports in literature suggest that in vitro measurement of optical

properties can adequately match the in vivo case [15]. In our work, the explanted nerves

were not frozen or subjected to any fixation procedure.

3.4 NIR Transmittance and Penetration depth in the Rat Brain Cortex:

Rat brain cortex was investigated in this study. Penetration depth and reflectance

calculations were obtained by measuring the transmittance of the brain sample at various

thicknesses. The brain cortex has two different matters; grey matter and white matter. As

explained in the literature, there are variations in the optical properties between the white

matter and the grey matter. The grey matter has a higher penetration depth than the white

matter.

3.4.1 Methods:

Three Sprague-Dawley rats (400-500 g) were used for this study. The anesthesia was

induced (50mg/kg) and maintained with sodium pentobarbital with further doses as

needed. The body temperature was continuously monitored and maintained between 36-

37°C using a temperature regulated heating pad. The brain cortex was dissected and

explanted. Since the brain cortex samples were soft, the samples were placed in 10%
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formalin and kept in refrigerator for 24 hours to be fixed. The white and grey matters

were dissected and separated. The same setup and measurement techniques explained in

figure 3.24 were used. All experimental procedures were approved by the Animal Care

Committee at Rutgers University.

3.4.2 Results and Discussion:

Three point measurements (thickness of 0.52, 0.89, and 1.07mm) were made on the first

sample and four point measurements (0.52, 0.65, 0.78, and 1.07mm) on the remaining

four samples for both grey and white brain matter.

Figure 3.26 shows the transmittance values measured from five samples as a

function of grey brain matter sample thickness. The exponential line is a curve fit to the

mean values. The mean transmittance was 45.76±4.57%, 35.24±3.61%, 24.13±11.13%,

15.6%, and 11.97±15.1% at thickness values of 0.52, 0.65, 0.78, 0.89, and 1.07mm

respectively. The calculated penetration depth of the grey brain matter samples had a

mean of 0.41 mm with a standard deviation of 0.026mm. The reflectance calculations

were not accurate, that negative reflectance values were obtained from the rat brain grey

matter.
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Figure 3.26 The transmittance of five samples as a function of the rat grey brain matter
thickness. The exponential curve is the fit to the mean values shown in diamonds (•) and
each symbol type indicates a different tissue sample.

Figure 3.27 shows the transmittance values measured from five samples as a

function of white brain matter sample thickness. The exponential line is a curve fit to the

mean values. The mean transmittance was 16.63±38.83%, 10.36±21.1%, 6.02±7.29%,

8.71%, and 3.65±42.18% at thickness values of 0.52, 0.65, 0.78, 0.89, and l.07mm

respectively. The calculated penetration depth of the white brain matter samples had a

mean of 0.355mm with a standard deviation of 0.023mm. The reflectance measurements

varied substantially between the samples with a mean value of 28.4% and a standard

deviation of 25%.
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Figure 3.27 The transmittance of five samples as a function of the rat white brain matter
thickness. The exponential curve is the fit to the mean values shown in diamonds (•) and
each symbol type indicates a different tissue sample.

Penetration depth calculations also were consistent for both grey and white brain

matter. The transmittance values measured followed the exponential behavior with high

correlation (>0.99) in the exponential curve fit of each grey brain matter sample. The

white brain matter samples had a correlation greater than 0.98 except in one sample (0.95

correlation). Also in the rat brain cortex measurements, the variance of our calculated

penetration depth from Beer's law is not large because we obtained a high correlation in

the curvefit.

The measured penetration depth of the rat brain white matter is much smaller than

the human brain white matter. The penetration depth as well as the transmittance in the

rat grey brain matter is higher than that in the white brain matter, but the difference in the

transmittance between the grey and white matter is much significant than the difference

in the penetration depth. Although the reflectance calculations were not accurate, but it

can be concluded that grey matter reflectance is much higher than that of white brain

matter. And therefore, the transmittance in the grey matter is much higher. On the other
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hand, we expected the difference in the penetration depth between the grey and white

matter to be higher (0.41mm to 0.355mm) because the difference in the transmittance is

very significant. The reflectance results for both grey and white brain matter were not

very consistent because of the multiple backscattering effects.

Transmittance measurements demonstrated that FLAMES are feasible for

implantation depths of as much as 1.07mm for rat brain cortex. Since the transmitted light

power through rat brain gray matter was much higher than that of the white matter and

the sciatic nerve, FLAMES can be implanted into the rat brain gray matter and still be

activated for larger implementation depths and much further than 1.07mm.

3.5 Conclusion

The results suggest that FLAMES approach is feasible for implantation depths of a few

millimeters in the peripheral and central nervous system. The transmitted light power

through rat brain gray matter was much higher than that of the white matter and the

sciatic nerve. Penetration depth is a good indicator to the attenuation of the light while

traveling through an object.



APPENDIX A

THE MATLAB CODE USED FOR CURVE FITTING

This m-file does curve fitting to the data.



APPENDIX B

THE MATLAB CODE USED FOR PENETRATION DEPTH AND

REFLECTANCE CALCULATIONS

This m-file calculates the penetration depth and the reflection at the surface from

transmission measurements at two different thicknesses of the neural tissue.
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