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ABSTRACT

BIOMECHANICAL TESTING OF UPRIGHT RANGE OF MOTION
VERSUS OVERHEAD SUPINE RANGE OF MOTION

by
Linda Uko

Rehabilitation of an elbow, following injury, is not a well-studied subject. Clinically,

there is not a general consensus on which recovery method is optimal for healing an

unstable elbow. When dealing with medial collateral ligament deficiency, many authors

have proposed several forearm positions that will yield proper healing of the unstable

elbow. Some researchers believe that active mobilization of the elbow with the arm in a

vertical position is a safe protocol for rehabilitation with the forearm oriented in a supine

pronated position. It was also mentioned that the compressive forces due to the active

mobilization of the arm will stabilize the MCL deficient elbow'. This study is unique in

that the proposal is that supine overhead range of motion will stabilize the MCL deficient

elbow because gravity will act as a compressive force keeping the MCL deficient elbow

intact. In this study, the gravitational stabilizing factor will be demonstrated comparing

both the supine overhead range of motion and the commonly used upright range of

motion protocol. The hypothesis is that supine overhead range of motion provides

stability to a collateral deficient elbow. Moreover, supine overhead range of motion is a

superior way to rehabilitate an unstable elbow because the forces of gravity hold the

elbow in concentric reduction rather than distracting the elbow joint when the forearm is

rehabilitated in an upright manner. The overhead ROM provided more stability to the

unstable elbow, more especially to the elbows with the AC still intact.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to determine which rehabilitation protocol for subjects with

medial collateral ligament deficiency and/or lateral collateral ligament deficiency provides

the patient with optimal healing of the elbow. This will be demonstrated using biomechanical

testing of cadaver bones with medial collateral and lateral ligament deficiencies in both an

upright supine range of motion compared to overhead range of motion.

1.2 Background Information

1.2.1 Anatomy of the Elbow

The elbow joint is comprised of the ulna, humerus and the radius.

Figure 1.1 The side view of the elbow joint, containing the humerus, radius and ulna bones ¹²

1



2

Figure 1.2 The frontal view of the three bones that comprises the elbow joint ¹²

The elbow is a complex joint that allows for two types of motion: flexion-extension and

pronation and supination. The structures of the elbow that are responsible for the flexion and

extension of the forearm are the ulnohumeral and radiocapitellar (ie radiohumeral)

articulations. The proximal radioulnar articulation controls the pronation and supination

movement. The elbow is referred to as a trochleoginglymoid joint because of its hinged

nature and because of its ability to flex and extend.

Supination

Figure 1.3 An illustration of the types of rotations that are performed by the forearm: Supination (Palm facing
upwards), Pronation (Palm facing downwards)¹6
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The standard range for flexion and extension is from 0 degrees to 145 degrees. The

normal arc of pronation and supination is approximately 180 degrees — 90 degrees in each

direction. The elbow can operate within a functional range of 50 degrees each in supination

and pronation, and with an extension-flexion arc from a flexion contracture of 30 degrees to

flexion of 130 degrees.

1.2.2 Elbow Stability

The elbow is stabilized by several factors; ligaments, gravitational stabilizers, muscles of the

elbow, contact forces and the morphology of the elbow. The medial collateral ligament is a

complex that comprises of an anterior bundle, a posterior bundle and a transverse ligament.

The anterior bundle and the posterior bundle work in conjunction to provide stability to the

elbow. The anterior bundle tightens in extension meanwhile the posterior bundle tightens

during flexion". The anterior bundle of the MCL serves as the primary valgus stabilizer of

the elbow meanwhile the radial head serves as the secondary constraint¹4. In this study, the

stability maintained between the humerus and ulna will be the main focus because the

morphology of the ulna provides for better stability and the motion of the radius presents a

more complicated motion. Calculation from the motion of the radius will serve as a check for

the flexion and extension angles.

1.2.3 Medial Collateral Deficient Elbow

MCL deficiency is usually a result of thrower's elbow, in which the acceleration stage of

pitching produces high tensile stress to the ligament producing attenuation or a slight rupture

of the MCL4.



Medial
collateral
ligament

\11.11■11

Figure 1.4 The medial collateral ligament is the primary stabilizer of the elbow joint 19

1.2.4 Lateral Collateral Ligament

The lateral collateral ligament is comprised of the radial collateral ligament that stems from

the lateral epicondyle. The lateral collateral ligament has its origin at the center of the axis of

elbow rotation and thereby responsible for maintaining the length of the ulna throughout the

flexion/extension arc of motion. The lateral collateral ligament has also been reported as a

stabilizer of the ulnohumeral joint with active varus and external rotation.

Lateral
collateral
ligament

4

Figure 1.5 The lateral collateral ligament that serves as one of the stabilizers of the elbow joint 18
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1.2.5 Overhead Elbow Exercises 

The rehabilitation goal for any unstable elbow is to restore motion, yet allow the damaged 

ligaments to heal properly. Thus, early elbow motion is necessary to prevent stiffness. The 

overhead elbow exercises are done laying flat on your back. The subject places their arm 

over their chest and the splint is removed while the elbow remains bent. The bent elbow is 

then positioned directly over the shoulder, keeping the steady arm perpendicular to the floor. 

The subject proceeds to straighten the elbow and can use the free hand to support and 

straighten the injured arm. The subject then bends their elbow back down towards the chest. 

This procedure is repeated for ten repetitions. The subject has to rotate the forearm by 

bending the elbow at a 90 degree angle so that the palm is facing away from the subject. This 

position must be kept for 10 seconds. The subject then rotates the forearm in the opposite 

direction so that their palm is facing downwards. This position is also held for ten seconds. 

The free hand may be used as support for this process. This must be repeated for ten 

repetitions. At the completion of the exercises, the elbow splint is put back onto the elbow18
• 

Figure 1.6 Overhead Elbow Exercises 
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1.2.6 Flock of Birds Ascension Technology 

The elbow instability will be measured using the following outcome variables: 1) 

displacement of the proximal ulna relative to the distal humerus, 2) ulnohumeral angles (roll, 

pitch, yaw angles) at which elbow instability takes place during range of motion (ROM). 

These parameters will be measured using the Flock of Birds (FOB) electromagnetic tracking 

devicel9
. FOB provides six degrees of freedom information of both position and orientation 

of a sensor relative to its transmitter. The transmitter is capable of tracking the position and 

orientation of up to 30 sensors simultaneously. FOB is able to provide these outputs by 

transmitting a pulsed DC magnetic field that is measured by the applied sensors. Based on 

the magnetic field characteristics, the sensor is able to provide positional and orientational 

outputs and make it available to the host computer 19. 

Figure 1.7 The Flock of Birds Ascension Technology: contains the transmitter, as well as the sensors used in 
tracking position and orientation. 19 

The Flock of Birds Ascension Technology unit was coupled with a software program, 

WINBIRD. Figure 1.7 shows the setup of the program used to calculate the orientation of the 

sensor. 
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Figure 1.8 WINBIRD is a program coupled with Flock of Birds for data collection from the sensors.

The program can be used with up to two sensors in order to extract the rotational (roll, pitch

and yaw) and positional (x,y,z) values obtained by the Flock of Birds unit. The user is also

allowed to set up the system to allow for the data extraction of one or multiple sensors.



CHAPTER 2

METHODS AND MATERIALS

2.1 Testing Apparatus

A wooden jig was constructed with two board pieces attached by way of four wooden pegs.

This provided rotational freedom to test the specimen in both upright and overhead range of

motion without repositioning the transmitter. This maintained the coordinate systems of the

bones fixed relative to the transmitter's coordinate system.. It contained two custom clamps

on the wooden jig that rigidly held the humerus in place. Two holes were drilled into the

humerus and stainless steel pins were used to hold the humerus between the clamps. The

transmitter was securely placed proximal to the humerus. Another hole was drilled into the

proximal humerus. Two sensors were used in this experiment; one sensor was fixed, with two

plastic screws, to the distal end of the radius, meanwhile the second sensor was fixed to the

distal portion of the ulna. The second sensor was similarly screwed onto the ulna. Since the

humerus was fixed and stationed at neutral position, the sensor was used to take the rotational

and positional values of the humerus before the sensors were attached to the radius and ulna.

2.2 Cadaveric Specimens

The six cadaver arms were stored at -20 degrees Celsius and precut at the mid humerus. The

elbow was still intact and the bones were exposed. The specimens were given 12 hours to

thaw prior to testing. Holes were drilled into the specimens in order to mount the specimen to

the testing apparatus. Three holes were drilled into the humerus and securely mounted in

order to prevent movement of the humerus. Two holes were drilled onto the distal end of the

8
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ulna where the Flock of Birds sensor was attached. Both right and left elbows were used in

this experiment.

Figure 2.1 Actual View of a Specimen with FOB sensors attached with a transmitter fixed into position

2.3 Testing of a Specimen with Both Radius and Ulna Intact

One Flock of Bird receiver was mounted onto the ulna and the other receiver was mounted

onto the radius. The arm was oriented in an upright position with the forearm completely

extended (according to the maximum extension capability of each specimen). During the

passive range of motion, the arm was passively moved from full extension to complete

flexion and back to complete extension; completing one cycle. The jig was then rotated,

placing the arm in overhead ROM. The arm was passively moved from full overhead

extension to maximum flexion and back to maximum extension. The jig was rotated,
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positioning the arm in supine upright ROM. To simulate active motion, #5 caliber

nonabsorbable sutures were attached to the brachialis and triceps tendons and passed through

pulleys. 2- two kilogram weights were attached to each suture to replicate muscle tone.

Active elbow flexion is achieved by applying a force to the brachialis suture and active

extension by a force on triceps. The jig was rotated and active motion was performed with

the forearm in overhead ROM and the motion going from full extension to full flexion. This

process was executed when 1) Ligaments were intact 2) MCL ligament was severed 3) MCL,

LCL ligaments severed 3) MCL, LCL, AC ligaments severed. In this order were the

ligaments severed. At the completion of the trials, the elbow was disarticulated and the

landmarks of the arm were collected using a stylus.

2.4 Calibration of the Stylus

A centering program was created using Natick Mathworks MATLAB program in order to

calibrate the stylus and obtain the offset lengths of the tip from the center of the sensor. The

zero point of the stylus on the sensor was obtained and the stylus was rotated at 45 degrees.
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2.5 The Procedure for Computing Angles from the Flock of Birds Sensors

The Flock of Birds Sensor provides information about the orientation and position of the

sensor relative to the transmitter. In order to compute the angle of the ulna and radius relative

to the receiver, a series of transformations need to be performed. Figure 2.2 shows the series

of steps needed to compute the angles of the ulna and radius relative to the humerus.

Global coordinates of the landmarks
on the radius, humerus and ulna

obtained from the sensor on the stylus

Ulna, Radius and Humerus
Coordinate System created with
respect to the transmitter

-Receiver on the ulna with respect to the Ulna

-Receiver on the Humerus with repect to the Humerus

-Receiver on the Radius with respect to the Radius

-Local coordinates of the landmarks

-Ulna, during joint motion, with respect to the Humerus

-Radius, during joint motion, with respect to the Humerus

Figure 2.2 Extraction of Kinematic Data during Joint Motion
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2.6 Kinematic Data

The Flock of Birds kinematic data of the two sensors were obtained. The two sensors

provided the x, y, z displacement values of the sensors relative to the transmitter. It also

yielded the rotational values; roll, pitch and yaw of the sensors relative to the transmitter.

An anatomical Cartesian coordinate system of each bone was constructed to allow the

data obtained from the Flock of Birds to quantify the motion pathways of the ulna relative to

the humerus. The skin was removed from the arm and each of the bones was disarticulated.

The bony landmarks of each bone were identified using palpitation methods. The bony

landmarks that were chosen for the humerus were the midshaft, the medial epicondyle and

the lateral epicondyle. The landmarks that were chosen for the radial bone were the radial

styloid, lister's tubercle, and the radial head. The bony landmarks of the ulna were the ulnar

styloid, coronoid process, and the olecranon. The kinematic data for the landmarks were

obtained using a 93.668 millimeter stainless steel styloid securely attached to the sensor.

Using coordinate system transformation, the motion pathways were quantified for the

ulna relative to the humerus. First the landmarks of the humerus were used to create a

Cartesian coordinate system in which the x axis was formed with the medial epicondyle

(EM) and the lateral epicondyle (EL). The z-axis, which is considered in the plane of the

ulnar motion, was formed using the cross product of the distance from the midshaft and the

midpoint between the lateral and medial epicondyle. The y-axis was formed by the cross

product of the z-axis and the midpoint between the olecranon and the coronoid process. The

x-axis of the ulna was formed by the cross product of z-axis and the y-axis.
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Figure 2.3 The coordinate system used to define the ulna and the humerus. HT refers to the
long axis of the humerus (from the humerus to the midpoint of the EM and EL). Z is the
flexion axis and when crossed with HT provides the Y axis. The X axis is generated from the
cross product of the Y and Z axis ¹4 .

Once the anatomical coordinate systems were formed, a transformation matrix of the

ulna relative to the sensor was formed as well as the transformation matrix of the humerus

with respect to the transmitter. Through coordinate system transformations, the motion of the

ulna is described relative to the humerus. The coordinate system transformations will provide

information about the rotational changes occurring in the ulna relative to the humerus as well

as the changes in displacement at the elbow joint.
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2.7 Kinematic Calculation

Table 2.1 is the derivation of the coordinate system for the humerus, ulna and radius were

created from the landmarks collected.

Table 2.1 Mathematical Derivation of Bone Coordinate Systems
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2.7.1 Euler's Angle Computation

Euler's angles are used to describe the orientation of one coordinate system relative to

another coordinate system. The Euler's angles are used to describe the orientation of the

moving ulna coordinate system relative to the humerus coordinate system and the radial

coordinate system relative to the ulna coordinate system. The Euler's angles are sequence

dependent and are a sequence of ordered rotations from the initial position of the ulna

coordinate system". The rotation matrix for the ZYX order is:

Abduction/Adduction about the y axis:

Flexion/Extension about the x axis:

Internal/External Rotation about the z axis:

MATLAB software was used to calculate the subsequent rotations and the details of this

computation are found in Appendix B.
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2.7.2 Coordinate System of Flock of Birds System

The Flock of bird transmitter and the Flock of Bird sensors has the same coordinate system.

The transmitter represents the global coordinate system in which the sensor's local

coordinate system is based upon. The position and rotation of each sensor is relative to the

transmitter's coordinate system. The Flock of Bird's system uses Euler angles to define the

rotation of each sensor relative to the transmitter.

Figure 2.4 The coordinate system of the Flock of Birds Transmitter and its receiver ²0 .

2.7.3 Gimbal Lock

Gimbal lock is a problem that occurs when Euler angles are implemented. It is a

phenomenon whereby two axis of rotation are equivalent to one another or pointing in the

same direction. In this study, gimbal lock was avoided by careful attention to the nature

of the forearm's movement in order to avoid discrepancies in the data.

2.7.4 Data Processing

Figure 2.5 shows the process by which information from the Flock of Bird is transmitted

in order to extract the rotation and positional values during joint motion.
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CHAPTER 3

RESULTS

3.1 Sectioning of the Ligaments during the Experimental Protocol

The experiment was performed where the sectioning of the ligaments was alternated. Group

A had the MCL ligaments sectioned first, followed by the LCL and AC, sequentially. The

elbow was tested in both the overhead and upright supine ROM. Group B had the LCL

ligaments sectioned first, followed by the MCL and, sequentially. The experiment protocol is

shown in Table 3.1. This was done in an effort to see whether or not this has any affect on the

outcome of the testing.

Table 3.1 Experimental Protocol

The stability of the elbow was determined by three factors: elbow joint displacement,

internal/external rotation and adduction/abduction. Elbow stability in this study was maximal

in the healthy subjects, when all the ligaments were intact. Stability was determined

primarily by graphical analysis; determining how well the unstable states of the elbow

maintained a pattern and magnitude similar to the stable healthy elbow. To further assist in

the analysis, paired two T tests were performed in order to help verify if the results supports

the analysis.

18
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3.2 Elbow Joint Displacement

One of the factors used to quantify elbow instability was the change in displacement at the

elbow joint. The landmarks used to define the displacement at the elbow were the midpoint

between the olecranon and the coronoid process and the medial epicondyle. The intact state

of the elbow was defined as the neutral position of the elbow. From the neutral position, the

translational changes occurring when the MCL ligament, LCL ligament and AC were

severed was computed and evaluated. More importantly, the compression and distraction

translations were being computed which was defined as a translation in the z-direction. The

change in translational displacement and the standard deviation of these states from the

normal were calculated.

3.2.1 Active Motion; Group A
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Figure 3.1 Compression and distraction at the elbow joint during active motion when the medial collateral
ligament was first severed

Figure 3.1 shows that during active motion, the overhead position showed distraction and

compression pattern that was similar and close to that of the normal. These displacement

changes during active motion for the overhead protocol and the upright protocol are not large

in magnitude. In Specimen one, the overhead ROM distraction and compression changes

were not significantly different from the displacement changes occurring in the upright

supine ROM (p>.05). The same was true for Specimen three (p>.05). In Specimen five, the
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overhead ROM provided greater stability to the unstable elbow than the upright ROM

(p=.003).

3.2.2 Active Motion; Group B
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Figure 3.2 Compression and distraction at the elbow joint during active motion when the lateral collateral
ligament was first severed

In Figure 3.2, Specimen two showed greater stability in its overhead ROM (p=.005),

meanwhile Specimen four (p=0.000) and six (p=.051) maintained a displacement pattern

close to the intact elbow's displacement pattern.

3.2.3 Group A; Passive Motion
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Figure 3.3 Compression and distraction at the elbow joint during passive motion when the medial collateral
ligament was first severed

During passive motion, the MCL ligament deficient elbow in its upright ROM, showed

greater stability for Group A.



3.2.4 Passive Motion; Group B

24
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Figure 3.4 Compression and distraction at the elbow joint during passive motion when the lateral collateral
ligament was first severed

Specimen two was slightly more stable in the upright ROM than the overhead ROM. In

Specimen four, it is difficult to conclude graphically which protocol provided greater

stability, but statistically there was no significant difference in stability (v.225). Specimen

six was more stable in the upright ROM because it closely maintained a pattern and

magnitude similar to the neutral intact elbow (v.130).

3.2.5 Standard Deviation; Group A



26

Figure 3.5 The standard deviation of the elbow in its unstable states relative to the healthy intact elbow. This
pertains to the set of elbows in which the MCL ligament was first sectioned off.

In Specimen five, the standard deviation for Group A was higher for the upright active ROM

than the overhead active ROM for specimen five. Specimen three had a higher standard

deviation when positioned in an overhead active ROM. Specimen one during active motion,

had variable results; when the MCL was first cut, the upright position had a higher standard

deviation. When both the MCL and LCL ligaments were removed, the upright ROM varied

greatly from the neutral intact elbow. When all three ligaments were removed, overhead

ROM proved to have higher variability than the upright position. Group A during passive

motion had a higher standard deviation in the overhead ROM than in its supine upright

ROM.
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3.2.6 Standard Deviation; Group B

Figure 3.6 The standard deviation of the elbow in its unstable states relative to the healthy intact elbow. This
pertains to the set of elbows in which the LCL ligament was first sectioned off.

In Figure 3.6, Group B had higher variability in the upright supine active ROM than in the

overhead position. During passive motion, Specimen two and four had higher standard

deviation when the 1) LCL ligament 2) LCL and MCL ligaments were removed. In the

completely unstable case, Specimen two and Specimen four were slightly less variable in the

upright supine passive position. Specimen six was always less variable in the overhead

passive ROM.



3.3 Varus/Valgus Instability

Another factor used to describe elbow instability was valgus and varus angulation at the

elbow joint. The valgus/varus laxity was computed to determine the level of elbow

instability.

3.3.1 Active Motion; Group A

28



29

Figure 3.7 Specimen one, three and five's abduction and adduction angles relative to the elbow's flexion and
extension angles in its intact and unstable states.

In Figure 3.7 Group A showed greater varus and valgus stability in the overhead ROM than

when positioned uprightly. In observing the unstable states of the elbow, the overhead ROM

maintains a pattern resembling the intact state and also maintains a closer magnitude to the

neutral healthy elbow.

3.3.2 Active Motion; Group B
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Figure 3.8 Specimen two, four and six's abduction and adduction angles relative to the elbow's flexion and
extension angles in its intact and unstable states.

Figure 3.8 shows that Group B show slightly greater stability when placed in an overhead

ROM. Specimen two and Specimen six had increased stability in the overhead ROM

(p=.001, p=.004 respectively).

Once the LCL ligament was sectioned, the increase in varus and valgus stability

slightly changed when the elbow was placed in the overhead position (p=.138). When the

MCL ligament was later severed, there was no marked increase in stability for the elbow in

its overhead ROM (p=.192). In the completely unstable elbow, with all three ligaments
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removed, there was not a great effect on stability for the elbow placed in the overhead ROM

or placed in the upright ROM (p=.201).

3.3.3 Passive Motion; Group A
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Figure 3.9 Specimen one, three and five's abduction and adduction angles, during passive motion, relative to
the elbow's flexion and extension angles in its intact and unstable states.

During passive motion, the abduction and adduction of Group A was more stable in the

overhead ROM than in the supine upright ROM.

3.3.4 Passive Motion; Group B
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Figure 3.10 Specimen two, four and six's abduction and adduction angles, during passive motion relative to
the elbow's flexion and extension angles in its intact and unstable states.

In passive motion, the overhead ROM was more stable than the upright ROM for specimen

two and six (p—.007, p=.007). Difficulty was found in graphically interpreting the varus and

valgus stability of the elbow in Specimen four relative to both overhead and upright ROM.

Statistically, we can conclude that there was not a great difference in stability in the overhead

ROM compared to the upright ROM (p—.075).
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Statistically, when the LCL, MCL and AC ligaments were sectioned off, there was

not a marked increase in stability when placed in an overhead ROM compared to the upright

ROM (p=.221, p=.231, p=.243).

3.4 Rotational Instability

The third factor that describes instability is rotational variations, in which the ulna's

rotational pattern alters when the MCL, LCL and AC ligaments are cut. The rotational

changes from the standard intact state were calculated.

3.4.1 Active Motion: Grow) A
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Figure 3.11 Specimen one, three and five's internal and external rotation angles, during active motion, relative
to the elbow's flexion and extension angles in its intact and unstable states.

Figure 3.11 shows that the internal and external rotational stability was greater for the

overhead active motion of the arm than the upright supine position. For Group A, the

overhead position maintained values closer to that of the neutral position. Specimen one

maintains greater rotational stability in the overhead active ROM (p=.006). Meanwhile the

rotational stability of Specimen three, and Specimen five may have been slightly affected by

the arm being positioned in the overhead ROM (p=.932, p=.298, respectively).
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Figure 3.8 Specimen two, four and six's abduction and adduction angles relative to the elbow's flexion and
extension angles in its intact and unstable states.

Figure 3.8 shows that Group B show slightly greater stability when placed in an overhead

ROM. Specimen two and Specimen six had increased stability in the overhead ROM

(p—.001, p=.004 respectively).

Once the LCL ligament was sectioned, the increase in varus and valgus stability

slightly changed when the elbow was placed in the overhead position (p=.138). When the

MCL ligament was later severed, there was no marked increase in stability for the elbow in

its overhead ROM (p—.192). In the completely unstable elbow, with all three ligaments
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Figure 3.12 Specimen two, four and six's internal and external rotation angles, during active motion, relative
to the elbow's flexion and extension angles in its intact and unstable states.

The internal/external rotation of the forearm does not show a consistent trend. Specimen two

does not show a gross increase in stability in the overhead ROM (p=.795). In Figure 3.12,

Specimen four shows more stability in its overhead ROM than in the supine upright position

(p=.014). Specimen six showed more stability in its overhead ROM (p=.007).

3.4.3 Passive Motion; Group A



38

Figure 3.13 Specimen one, three and five's internal and external rotation angles, during passive motion,
relative to the elbow's flexion and extension angles in its intact and unstable states.

Graphical analysis indicates that Specimen one and Specimen three showed greater stability

in the overhead ROM than in its upright position, during passive motion. Graphically it is

shown that Specimen five is more stable in the overhead position because the MCL deficient

elbow and the MCL and LCL deficient elbow, better resembled the rotational pattern of the

healthy intact elbow. In addition, the magnitude by which the completely unstable elbow

differs from the intact elbow was smaller in the overhead ROM than the upright ROM. In

regard to the overall change in stability when the each ligament is sectioned off, Specimen
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five in the overhead position has an positive affect on stability but not the improvement may

not be tremendous (v.382).

The rotational stability of the elbow remained the slightly unchanged when the MCL

ligament was removed (v.521). The elbow's stability was still not greatly affected when the

LCL ligament was removed and when the AC ligament was removed (p=.533, p=.250,

respectively).

3.4.4 Passive Motion; Group B

140
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Figure 3.14 Specimen two, four and six's internal and external rotation angles, during passive motion, relative
to the elbow's flexion and extension angles in its intact and unstable states.

Figure 3.14 shows that Specimen two provides greater stability during overhead passive

ROM than the upright supine position (p=.025). Specimen six was more stable in the

overhead ROM because the completely unstable elbow had rotational laxity compared to the

upright ROM's rotational laxity (v.002). Specimen four did not show a marked increase in

rotational stability when place through an overhead arc of motion (p=.123).

During overhead ROM in a LCL deficient elbow, rotational stability increased

(p=.055). When the MCL ligament and the LCL ligament was removed, the rotational

stability did not show a major increase (p=.100, p=.141, respectively).

The level of stability for the elbow, during active motion, irrespective of which

ligament was removed, was not largely affected by the fact that the elbow was placed in an

overhead ROM. When either the MCL ligament or the LCL ligament was removed the

stability was not grossly affected by the positioning of the elbow (v.272). When both

ligaments were sectioned off, the stability remained slightly unaffected by whether or not the

elbow was placed in an overhead ROM (p=.526). When all the three ligaments were severed
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off, the stability of the elbow was not greatly defined by whether it was placed in an

overhead ROM (p=.204).

During passive motion, when either the MCL or the LCL ligament was removed, the

rotational stability of the elbow was possibly increased when placed in the overhead ROM

(p=.120). When both the MCL and LCL ligaments were sectioned off, the stability of the

elbow was not significantly improved in the overhead ROM compared to the upright supine

ROM (p-=.215). When all three ligaments were removed, the stability may have been

improved by the overhead positioning of the arm (p=.077).



CHAPTER 4 

DISCUSSION 

4.1 Analysis of Elbow Stability 

Elbow stability in a healthy elbow is attained with the help from the ligament forces and the 

muscle tension. The muscles in the elbow joint serve to create compressive forces at the 

joint. The anatomy of the elbow joint and the joint capsule serve to stabilize the elbow. 

Figure 4.1 The role of the biceps and the brachialis is to provide stability to the elbow and this creates a 
posterior force vector. The joint reaction force occurs at surfaces such as the coronoid process and the radial 
head, which also creates a posterior force vector 15. 

Elbow stability in this study was maximal in the healthy subjects, when all the 

ligaments were intact. The condition of the elbow when the MCL, LCL and AC were 

removed, were compared to the healthy state of the elbow. The varus and valgus rotational 

changes in the overhead position did offer greater stability at times; maintaining similar 

rotational patterns to the neutral overhead intact state. This difference in stability was not 

always consistent, because at times, the upright position offered equivalent, if not, greater 

stability. 

The internal and external rotational stability varied for the six specimens. The 

overhead ROM offered greater stability for the arm but this notion was not an absolute 

finding. At times the upright position offered greater stability to the unstable elbow. 

42 
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Graphically, the overhead ROM helped to maintain a rotational pattern that was similar to the

intact healthy elbow 58.3% of the trials, for both passive and active motion. From the

analysis of the graphs, the overhead ROM provided greater stability. During active motion,

the overhead ROM provided better stability.

The argument can be made that when the elbow is grossly unstable such as in the case

when the MCL, LCL and AC are completely disrupted, that no amount of rehabilitation will

make the elbow stable. With that notion, the rotational stability, when the MCL and LCL

ligaments were removed, during active motion for the most part was increased in the

overhead ROM (83.33% of the trials) or equivalent to the stability of the elbow in the supine

upright position

When the elbow is in a passive and active ROM, the elbow's yams and valgus

stability was more stable when placed in the overhead position. When considering an elbow

with incompetent MCL and LCL ligaments, the overhead ROM provided greater stability.

During passive motion, the overhead ROM provided greater stability if not equivalent

stability to the upright active ROM (83.33%).

It was believed that at the overhead ROM, gravity will serve as a compressive force

and decrease the distraction at the elbow joint, but the results did not always support that

claim. The distraction and compression at the elbow joint varied for both positions. At times

the overhead ROM was more stable than the upright ROM and at times, the upright position

served as a greater stabilizer. At times the elbow joint did not distract as much in the upright

position and other times the standard deviation of the elbow joint was greater in the overhead

ROM. During active motion it was seen graphically that the overhead ROM provided
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stability in 50% of the trials. During passive motion, the overhead ROM provided greater

stability than the supine upright ROM in 67% of the trials performed.

Elbow joint stability entails several factors including the contact forces between the

ulna and the humerus, lateral collateral ligament forces, medial collateral ligament forces,

joint reaction forces, the weight of the forearm and gravitational forces. Throughout the

range of motion, these forces work in concert to stabilize the elbow, therefore each position

yields different reaction forces. In this experiment, the condition of the elbow was altered by

first removing the medial collateral ligament, then the lateral collateral ligament and lastly

the AC complex. Each time the ligament was removed, different forces were compromised

and others had to compensate for the loss of a ligament. In the overhead ROM, the

gravitational forces had an effect but it is not certain whether the gravitational force exceeds

the other forces at the elbow. It is also not known whether the other forces at the elbow also

increase its force to overcome the loss of the ligaments.

Figure 4.2 The summation of the forces working at the elbow joint in order to maintain stability to the elbow ²¹ .

In the case of the rotational stability and varus/valgus stability the overhead position,

for both active and passive ROM provided equal if not better stability than the upright

position. In terms of elbow joint distraction and compression, there was not a major
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difference in displacement at the joint for the overhead ROM and the supine upright ROM.

The statistical analysis did not always support the results of the graph and at times indicated

that the differences presented by the positioning of the arm were a result of a random

occurrence. Because the statistical analysis is a hypothesis test and it was a secondary source

of analysis, its results did not supercede the graphical observation. The graphical analysis

provides a better idea of what happens during overhead and upright ROM.

The experiments were performed so that each Specimen either had the MCL ligament

cut first or the LCL ligament cut first. There was no correlation between which ligament was

sectioned off first and the stability of the elbow. Rotational stability, for the removal of all

three ligaments was improved in the overhead ROM for both active and passive motion.

When focusing on the stability of a partially unstable elbow (without the removal of the AC

ligament), the overhead ROM provided even greater stability to the elbow. Abduction and

adduction stability proved increased when in the overhead ROM. It was previously

mentioned that the MCL ligament is the primary valgus stabilizer. This was graphically and

statistically supported during both active and passive motion.

The difference between the statistical outcome and the graphical analysis can be

explained by the magnitude of change in stability. The improvement in stability in most of

the cases was relatively small changes. In order to support the claims of the hypothesis, the

magnitude by which stability improves needs to be quantified. The question that needs to be

answered is whether this improvement in stability will aid in accelerating recuperation and

by what factor will stability increase when placed in an overhead ROM.
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APPENDIX B

ROTATION 0F THE BONES OF THE FOREARM RELATIVE TO THE HUMERUS
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APPENDIX C
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